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Abstract 

 

 

Abstract 
 

Prostate cancer is a worldwide health problem with a higher incidence in older men. 

Prostate cancer risk is lower in Asian countries compared to the west, this has largely been 

attributed to difference in diets between the two populations. To date evidence from case-

control studies has indicated that cruciferous vegetables and regular exercise reduce the 

risk of prostate cancer progression; however, other similar studies have shown no 

association. These contrasting results may be due to study heterogeneity and the long latent 

period of prostate cancer. 

The aim of the work presented in this thesis is to further understand the role of sulforaphane, 

an isothiocyanate derived from broccoli plants in preventing prostate cancer by exploring 

its effect on the metabolic microenvironment of the prostate. 

One of the key metabolic pathways that is altered in prostate cancer is the Krebs’ cycle. 

Citrate, a product of the Krebs’ cycle accumulates in healthy prostate tissue and is reduced 

in prostate cancer. It was demonstrated by using a novel liquid chromatography and tandem 

mass spectrometry method that the levels of citrate within in vitro models of prostate cancer 

are markedly different to those of human tissue. Furthermore, citrate levels altered when 

prostate cells were exposed to reactive oxygen species. The addition of physiological 

quantities of sulforaphane to prostate cells in culture inhibited the reactive oxygen species-

mediated changes on the Krebs’ cycle. 

A randomised, double-blinded human intervention study was undertaken to further 

understand the role of sulforaphane in prostate cancer by recruiting men with early prostate 

cancer into three different study arms delivering sulforaphane in increasing concentrations 

through naturally bred broccoli varieties. A subgroup analysis demonstrated significant 

metabolite changes in prostate tissue that were driven by the study diet with accumulation 

of sulfate common to all three arms. This was positively correlated with lower rates of 

cancer at 12 months. 

The work presented here strengthens the argument that sulforaphane in physiologically 

achievable concentrations can alter the metabolic environment of the prostate and that this 

may contribute to the cancer preventing properties of cruciferous vegetables.   
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Summary 

Prostate cancer represents a global health problem. The lifetime risk for men to develop 

prostate cancer in the UK is estimated to be 1 in 8. Several studies have examined the effect 

of diet on cancer prevention in the last two decades. Most of these studies have examined 

the risk of prostate cancer in relation to certain dietary bioactives such as selenium and 

lycopene, in addition to total intake of fruit and vegetables. However, many of these dietary 

studies have been criticised for heterogeneity of study populations, differences in reporting 

habitual diets, and recall bias. As a result, the evidence to date remains conflicting. 

 

1.1. Introduction 
Prostate cancer (PCa) is the most common cancer in men in the UK and represents 26% of 

all male cancers as estimated by cancer registration statistics in 2013 (1). The number of 

new PCa cases is increasing each year with more than 47,000 new cases in 2013 (Figure 

1.1) (2). The incidence is linked with age (Figure 1.2 and Figure 1.3) with the highest rate 

of diagnoses found in the 65-69 year age group (UK data 2011-2013) (3). 

 
Figure 1.1 Cancer Research UK statistics showing the 10 most common cancers in males in 
the UK in 2013. Prostate cases were estimated around 47,300 accounting for 26% of all cancers 
if non-melanoma skin cancer (NMSC) were excluded. NMSC data were not taken in 
consideration due to under-reporting limitations. Cancer cases indicated as ‘Brain’ in this 
chart include brain, other central nervous system and intracranial tumours.   
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Figure 1.2 Cancer Research UK statistics data showing the five most common cancers in males 
aged 50-74 years (A) and those over the age of 75 (B) in the UK between 2011 and 2013.The 
average for PCa cases was 29% and 25% in the two age groups represented in A and B, 
respectively. Non-melanoma skin cancer (NMSC) were excluded due to under-reporting 
limitations.  
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Figure 1.3 Age-specific incidence rates in males in the UK between 2011 and 2013.The average 
number of cases is indicated per 100,000 population per year.  
 

The incidence of PCa is different across the world (~ 1 million new cases worldwide in 

2012), and UK rate is 17th highest in Europe as indicated by cancer registration data from 

other European countries (~ 417,000 new cases in 2012). There is little variation between 

UK regions; however PCa incidence in Norfolk is higher than UK average with an age-

standardised incidence rate of 116.2 new cases per 100,000 population (104.9 UK average) 

and an annual average number of 725 new diagnosed cases between 2008 and 2010 (4). 

The age-standardised rates were calculated using the European Standard Population which 

is a standard population structure introduced in 1976 to allow the comparison of incidence 

data across Europe (5). 

 

Since 1970, a dramatic increase in PCa incidence has been registered in Great Britain with 

a particular increase during the early 1990s and 2000s (Figure 1.4). This observation has 

been mainly explained with the introduction of the prostate specific antigen (PSA) test in 

general practice (6-8); however the recruitment into two trials known as Prostate testing for 

cancer and Treatment (ProtecT; NCT02044172) and Comparison Arm for ProtecT (CAP; 

ISRCTN92187251) which randomised men in the 50-69 age group to PSA testing in 

primary care has been also considered responsible of the increase reported in the early 

2000s (9).  
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Figure 1.4 PCa incidence in Great Britain from 1980 to 2012. Cancer Research UK data.  
 

1.2. Diagnosis of prostate cancer 
Several methods are clinically used to diagnose PCa and their application varies from the 

initial screening to the final diagnosis. A biochemical test to measure serum PSA levels 

and physical examination of the prostate (digital rectal examination, DRE) are currently 

widely used for screening. MRI scanning of the prostate is not recommended routinely in 

the UK however many centres are utilising MRI together with PSA and biopsy to increase 

the accuracy of PCa diagnosis. PSA testing was initially approved by the U.S. Food and 

Drug Administration (FDA) (1986) for the follow up of men already diagnosed with PCa, 

and subsequently its use in combination with DRE was regulated for screening purposes. 

Compared to other European countries and the US, PSA testing in the UK is thought to be 

low. One study of UK general practices examined the records of 126,000 men and showed 

that overall only 6.2% of those aged 45-89, were tested  (10) . In this cross-sectional study 

it was estimated that PSA testing rate was even lower at 1.4 % in men aged 45-49 and 

11.3% in men aged 75-79. In the UK, it is advised that men considering a PSA test should 

be counselled appropriately by their clinician regarding the limitations of PSA testing and 

that a full assessment is carried out taking into account the patients age, family history and 

DRE findings. PSA alone is not diagnostic of prostate cancer as it can be elevated in other 

benign conditions, in addition there is little agreement on what constitutes a normal PSA 

level as PCa can be found in almost all levels (although less frequently when < 1.5 µg/l). 

The controversies regarding PSA cut off levels and prostate cancer detection are beyond 

the scope of this thesis however most laboratories now use a cut off level of 4.0 µg/l above 

which it is regarded as abnormal.  
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Novel clinical biomarkers with high specificity and accuracy are currently needed in order 

to reduce the number of biopsy procedures that are found to be unnecessary and the 

overtreatment of low-grade non-aggressive cases. Several reports were recently published 

describing new diagnostic approaches based on the use of messenger RNA (mRNA) or 

microRNAs (miRNAs) that are found to be associated with PCa and measurable in urine 

samples (11, 12). Target genes overexpressed in urinary exosomes have been also 

suggested as potentially useful PCa biomarkers (13-15). Despite the large body of evidence 

supporting the potential diagnostic power of DNA-, RNA- and protein- based biomarkers 

found in a wide range of bio fluids (15), further studies are needed to translate these findings 

to clinical practice. 

 

1.2.1 Prostate biopsy  
Needle core biopsies of the prostate provide histological diagnosis of PCa in addition to 

assessment of volume of disease within the gland. Accurate assessment of disease burden 

is paramount in determining the most suitable treatment option for patients especially when 

surveillance is recommended.  

 

Traditionally, trans-rectal biopsies using TRUS guidance (TRUS biopsy) involve the use 

of an ultrasound probe to visualise the prostate and direct the needle through the rectum to 

obtain the samples. This method is operator dependent and due to the lack of a systematic 

sampling technique, localising the area of tumour in relation to various zones of the prostate 

is difficult. Cancer detection rates have improved since the description of this technique in 

1989 (16) by increasing the number of cores taken and taking more samples from the 

peripheral parts of the gland, however; the anterior and transitional zones of the prostate 

are often under-sampled (17).  

 

Transperineal biopsies (TPB) are obtained through the skin of the perineum. The technique 

uses TRUS to visualise the prostate, the needle samples are then passed through a grid 

template placed over the perineum that has perforations 5 mm apart in a pre-defined 

systematic pattern offering the advantage of sampling more prostate tissue within a wider 

area of the prostate leading to more accurate assessment of tumour distribution. This has 

been shown to diagnose more cancerous lesions in the anterior and transitional zones of the 

gland that might have been missed by the trans-rectal route (17). A recent study suggested 

that men who had PCa on one side of the prostate that was diagnosed using TRUS biopsy 

were later found to have cancer on both sides in up to 55% of cases when they had a TPB 

biopsy (46 median core samples). In addition, the same study indicated that up to 23% of 
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tumours were upgraded when repeat biopsies using a transperineal template were carried 

out. Infection rates are lower with TPB whilst other complications are comparable (18). 

One criticism of TPB is that unlike the TRUS biopsy that can be performed under local 

anaesthesia, template biopsies require general or regional anaesthesia. In this thesis, the use 

of TPB procedures as part of the protocol of a human dietary intervention study will be 

explained in further detail. This will provide an opportunity to discuss how this clinical 

procedure can provide more accurate assessment of the disease, which has previously been 

diagnosed as low to intermediate-risk following TRUS Biopsy, and ensure the safety of 

continued active surveillance. 

 

1.3. Treatment of prostate cancer 
Several treatment options can be offered at the time of diagnosis according to the grade and 

stage of the disease ranging from surveillance to radical surgery or radiotherapy as well as 

hormonal manipulation and in some cases chemotherapy. PCa staging is based on the TNM 

system: (T) primary tumour, (N) regional lymph node, and (M) metastases (Table 1.1). 

This system has been updated by the American Joint Committee on Cancer in 2010 (19). 

The histological grading was established by Gleason in in the 1960s–1970s, and is based 

on architectural patterns of the cancer stained on hematoxylin and eosin (H&E) sections 

(20). Normal cells are given a Grade 1 and 2, whereas cancer cells can vary between Grades 

3 and 5 with Grade 5 being correlated with poor prognosis. The presence of different cancer 

grades within the same gland led to the establishment of an overall Gleason score which 

results by the sum of the primary and secondary grades. For example, if the primary and 

secondary grades are 3 and 4, respectively, the overall Gleason score is equal to 7 (Gleason 

7=3+4). When only one grade is observed, primary and secondary grades are equally 

considered (e.g. Gleason 6=3+3 is given when Gleason 3 is present as primary and 

secondary grade). However, the original Gleason grading system has been significantly 

changed over the years (21, 22). Figure 1.5 describes the most recent Gleason grading, and 

the new “Grade Group” system adopted by the World Health Organization (WHO) in 2016 

(23, 24). The new Grade Group system was introduced by the International Society of 

Urologic Pathology (ISUP) in 2014, and is based on five Grade Groups (1-5) with the 

lowest grade 1 equivalent to the Gleason score 6 (25).  

 

Table 1.1 Prostate cancer staging system by the American Joint Committee on Cancer 
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Primary Tumor (T) Regional Lymph Nodes (N) Distant Metastasis (M) 

TX Primary tumor cannot be 
assessed 

NX Regional lymph nodes 
were not assessed 

M0 No distant metastasis 

T0 No evidence of primary 
tumor 

N0 No regional lymph node 
metastasis 

M1 Distant metastasis 

 

T1 Clinically inapparent 
tumor neither palpable nor 
visible by imaging 

N1 Metastasis in regional 
lymph node(s) 

M1a Nonregional lymph 
node(s) 

T1a Tumor incidental 
histologic finding in 5% or 
less of tissue resected 

 M1b Bone(s) 

T1b Tumor incidental 
histologic finding in more 
than 5% of tissue resected 

 M1c Other site(s) with or 
without bone disease 

T1c Tumor identified by 
needle biopsy (for example, 
because of elevated PSA) 

  

T2 Tumor confined within 
prostate 

  

T2a Tumor involves one-half 
of one lobe or less 

  

T2b Tumor involves more 
than one-half of one lobe but 
not both lobes 

  

T2c Tumor involves both 
lobes 

  

T3 Tumor extends through 
the prostate capsule 

  

T3a Extracapsular extension 
(unilateral or bilateral) 

  

T3b Tumor invades seminal 
vesicle(s) 

  

T4 Tumor is fixed or invades 
adjacent structures other than 
seminal vesicles, such as 
external sphincter, rectum, 
bladder, levator muscles, 
and/or pelvic wall 
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Figure 1.5 Diagram reported by Chen and Zhou indicating both the modern Gleason grading 
system and the new 'Grade Group' classification adopted by the WHO in 2016  
 

 

1.3.1 Active surveillance for low and intermediate-risk prostate cancer 

cases 
Studies have shown that men with low-grade organ-confined PCa are at low risk of 

progression (26, 27). This category of men can often avoid or delay radical treatment which 

can be associated with significant morbidity (28). AS is the process by which patients with 

organ-confined PCa are managed expectantly with regular monitoring. Treatment is only 

initiated when signs of progression are observed. Identifying patients suitable for AS can 

be done through the use of a number of variables like PSA, Gleason score sum (29), and 

clinical stage. A variety of tools that stratify patients according to risk of treatment failure 

have emerged over the last decade incorporating these variables. These tools have 

undergone extensive testing and validation (30).  

 

The protocol for AS can vary between hospitals and there is a strong need for standardising 

the criteria of AS inclusion and follow up not only on a national basis but also worldwide. 

One of the most common stratification tools was described by D’Amico. This defines low-

risk PCa as those men with Gleason score ≤6, PSA <10 µg/l and stage T1c or T2a (tumour-

node-metastasis staging system 2002), intermediate-risk as those with Gleason score 7, 

PSA of 10–20 µg/l and stage T2b-T2c and high-risk patients as those with PSA >20 µg/l 
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and stage ≥ T3 (31). These stratification criteria are widely used and are adopted by the 

National Institute for Health and Clinical Excellence (NICE). National cancer data suggest 

that in 2010, more than 160 patients with PCa opted for AS in Norwich (UK); some of 

those would have gone onto other treatments but were likely to have been on AS for at least 

a year. The local database for PCa at the Norfolk and Norwich University Hospital (NNUH) 

indicates that just over 300 patients with low to intermediate-risk disease are currently on 

AS (32).  

 

1.3.2 Surgery, radiotherapy and pharmacological treatment  
Radical surgery on the prostate is usually offered with a curative intent depending on the 

stage, Gleason score, PSA and the patient’s general health. Radical prostatectomy is the 

most common surgical treatment for localized PCa (33), and is mainly performed as a 

robot-assisted procedure (RARP) (34). There is increasing evidence that RARP represents 

a safe and effective procedure also in patients with clinically high-risk PCa (35). Despite 

the advantages of cancer cure, surgery carries significant morbidity with most men 

undergoing radical prostatectomy experiencing urinary incontinence and/or erectile 

dysfunction with varying degrees of severity and duration (33, 36). Radiotherapy is used 

as a form of radical treatment as an alternative to surgical prostatectomy usually in 

conjunction with hormonal manipulation or as a palliative treatment option to control 

symptoms. The outcomes from radiotherapy are comparable to surgery but carry additional 

side effects such as bladder and bowel symptoms and may not be suitable for patients with 

underlying inflammatory bowel disease or those who have received pelvic radiation in the 

past for other conditions. In terms of pharmacological treatments, they are mostly reserved 

for late stages of the disease. There have been some significant advances in the use of 

pharmacotherapy in the last two decades, Figure 1.6 describes the most important drugs 

introduced for the treatment of PCa to date. 
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Figure 1.6 Drugs approved for PCa treatment by the US Food and Drug Administration (FDA 
since 2004. This figure was adapted from an article published in Nature by Richard Hodson 
(37).  
 

1.4. Prostate cancer metabolism 
They key metabolic pathways that cells adopt to produce energy for growth and replication 

are altered in cancer, diverting energy and precursor production to glycolysis and using less 

oxidative respiration even in the presence of adequate amounts of oxygen (38, 39). 

In normal prostate cells, the metabolic pathway known as the tricarboxylic acid (TCA) 

cycle or Kreb’s cycle is modified to allow the export of citrate from the mitochondrion into 

prostatic secretions; this process provides abundance of citrate, the main source of energy 

for sperm (40). It is thought that this alteration to cellular metabolism might put prostate 

cells at a higher risk for cancerous transformations as these changes also create an 

environment that facilitates tumour growth (41). It is therefore not surprising that prostate 

cell metabolism has been of interest to researchers exploring an association between 

metabolic change and tumorigenesis (42). Costello and colleagues have undertaken 

numerous studies investigating the association of citrate levels and PCa as discussed in 

section 1.4.1.2 (41-46). 
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1.4.1.1. Glucose metabolism and cancer 

Glucose is converted to pyruvate that enters the mitochondria where it is converted to acetyl 

CoA by the action of pyruvate dehydrogenase (PDH) enzyme, a process that releases 

energy. Acetyl CoA can then enter the TCA cycle and is converted to citrate (47). Cancer 

cells have been shown to express high levels of pyruvate dehydrogenase kinase (PDK) that 

inhibits PDH allowing more pyruvate to be converted to lactate and as a result alternative 

precursors for TCA cycle intermediates are sought in a process termed anaplerosis (48).  

Tumour cells have also been shown to over-express glucose transporters (49) such as 

glucose transporter-1 (GluT1), one of 12 glucose transporters that have been shown to be 

tissue specific (50). Overexpression of GluT1 has been linked to cancers of the lung and 

colon which could explain the ability of these cells to import larger amounts of glucose 

necessary to fuel the higher energy demands (51-53). While some research groups have 

found similar evidence in PCa others have failed to do so (54). For example, Stewart and 

colleagues observed that GluT1 expression was proportional to the histological pattern 

(Gleason score) of the disease. More aggressive cancers with poor differentiation (high 

Gleason score) showed greater expression of GluT1 (55). In contrast, there is evidence to 

suggest that glucose is not over-utilised as an energy source in in the TCA cycle in PCa 

cell lines despite its availability; instead, cells appear to rely more on fatty acid β-oxidation. 

One possible explanation for this is the channelling of glucose to lactate that further 

enhances the acidic tumour environment (56). In clinical practice, the lack of high glucose 

uptake in prostate cancer tissue limits the use of glucose-based radio-labelled isotope scans 

such as fluoro-deoxy-glucose (FDG) positron emission tomography (PET). In other 

cancers, the high uptake of glucose results in greater uptake of FDG and cancer tissue 

appear as hot spots on PET enabling the use of such scans in the diagnosis and follow up 

of cancer patients.  

 

1.4.1.2. Citrate uptake and metabolism in prostate cancer 

Citrate is normally metabolised in the mitochondria by means of the TCA cycle to produce 

energy (47). This process in prostate epithelial cells is altered to allow the export of citrate 

into prostatic secretions where it plays an important role in supplying energy to sperm (41). 

The reduction in citrate oxidation leads to its accumulation in prostate tissue and produces 

an energy deficit. It was found that a drop in the activity of a key mitochondrial enzyme 

named m-aconitase (mACO), is responsible for this change (46). mACO catalyses the 

conversion of citrate to iso-citrate in the TCA cycle. Free cellular zinc, which forms a small 

proportion of the body’s total zinc content, competes with mACO; thus, high levels of zinc 

appear to inhibit the enzymatic action of mACO. Costello and colleagues have studied this 
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metabolic phenomenon which is unique to the prostate gland and found that benign 

epithelial prostate cells accumulate abnormally high levels of zinc which might explain the 

truncation of the TCA cycle and the high levels of citrate compared to cancerous tissue 

(42). When prostate epithelial cells undergo cancerous transformation, they lose the ability 

to accumulate zinc and therefore more mACO is available to oxidise citrate and restore the 

TCA cycle. This enables more citrate to be used to generate adenosine triphosphate (ATP) 

to sustain the high cellular turnover (57).  

 

However, TCA cycle enzymes such as mACO appear to be sensitive to the cellular redox 

status and their activities can be strongly affected by high levels of reactive oxygen species 

(ROS)(58). Several reports have shown inhibition of mACO and other TCA cycle enzyme 

with exposure to oxidative stress resulting in perturbations to the TCA cycle function (58, 

59). Whether ROS cause TCA cycle changes in human prostate cells is not well 

characterised.  

 

1.4.1.3. Anaplerosis 

In the absence of glucose, other sources of intermediates are sought to replenish the 

oxaloacetate used to generate citrate molecules in the TCA cycle (60). There are two main 

sources for this; the first is aspartate; an amino acid that is taken up from the plasma and 

converted to oxaloacetate by the enzyme aspartate aminotransferase (AST)(61, 62). The 

second source of intermediates comes from the amino acid glutamine(63). The TCA cycle 

balance is maintained by converting glutamate to alpha-ketoglutarate (a key TCA cycle 

intermediate) which is in turn converted to citrate by reversal of the TCA cycle through a 

series of reductive carboxylation reactions (64). 

 

1.4.1.4. The role of lipid metabolism in prostate cancer 

Cell replication not only requires energy but also, building blocks in the form of structural 

proteins and lipids for the generation of new cells. This process is upregulated in cancer 

(65). Lipids also provide an additional energy source in the form of fatty acids (FA), they 

form complex lipids used in cell signalling, and play a role in protein modification (66). A 

study carried out using in vitro models has shown increased expression of choline kinase 

an important enzyme in the formation of key cellular phospholipids in lung, colorectal and 

PCa cell lines (67).   

Citrate is converted to acetyl CoA in the cytosol by the action of ATP citrate lyase (ACLY) 

enzyme. ACLY was found to be up regulated in many human cancers including PCa (68). 

Acetyl CoA is converted to mevalonate by the enzymatic action of hydroxyl methyl 
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glutaryl CoA reductase (HMGRC), which regulates cholesterol synthesis (Figure 1.7) It is 

now becoming increasingly evident that enhanced cholesterol synthesis is strongly 

associated with PCa pathogenesis (69). Interestingly, statins, which are cholesterol-

lowering drugs, act as HMGRC inhibitors, and their anti-proliferative action in human 

cancer cells has been well-documented (70-72). However, there is still conflicting evidence 

regarding their role in vivo.(73, 74).  

Acetyl-CoA is also used as substrate for the production of malonyl CoA by acetyl-coA 

carboxylase (ACC) that is channelled into a series of reactions ending in the formation of 

saturated fatty acids (SFAs) (47). An anabolic enzyme known as fatty-acid synthase 

(FASN) plays a key role in the regulation of the condensation reactions of acetyl groups 

that lead to the de novo biosynthesis of SFAs (75, 76); the most abundant of which is 

palmitate, a 16-carbon FA. These SFAs are then elongated or desaturated by enzymatic 

action to form long chain FAs that play a role in cellular membrane structure (77). An 

increased expression of FASN has been observed in many human cancers, and this could 

explain the strong link between FA synthesis and cancer development (78, 79). Swinnen 

and colleagues have suggested a selective activation of FA synthesis in PCa (80). They 

reported an increased expression of both FASN and ACC in PCa cases compared to normal 

controls, but no significant changes in the expression of two genes involved in the synthesis 

of cholesterol. Stearoyl Co-A desaturase-1 (SCD-1) belongs to a family of enzymes 

involved in fatty acid synthesis that has been found to be upregulated in PCa. Fritz and 

colleagues demonstrated that the inhibition of SCD-1 slowed prostate cancer progression 

in a xenograft model (81). The alteration of citrate and FA synthesis in the prostate 

demonstrates that the metabolic changes that develop in PCa occur in multiple 

pathways(82).  
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Figure 1.7 Metabolic pathways that contribute to the transformation of citrate in the cytosol. 
Citrate is converted to different substrates that are used in cholesterol and FA syntheses 
through specific enzymatic reactions. The enzymes shown in red have been shown to be 
upregulated in many human cancers. ACLY, ATP citrate lyase; HMGCR, hydroxyl methyl 
glutaryl CoA reductase; ACC, acetyl-coA carboxylase. 
   
1.5. Prostate cancer and cruciferous vegetables: epidemiology, 

human studies and cellular mode of action 
Many studies have shown that the development of PCa is associated with multiple genetic 

and metabolic changes within prostate tissue (83, 84). Dietary intake of bioactive 

compounds could represent a promising chemo preventive strategy. Diet may be able to 

prevent the proliferation of existing cancer clones by altering gene expression and 

metabolism within the cancerous clones themselves or the tumour micro- and macro- 

environment (85, 86). Several studies have examined the effect of diet on cancer prevention 

in the last two decades (87-89). A number of these studies have examined the risk of PCa 

in relation to certain dietary substances such as selenium and lycopene (90, 91), in addition 

to total intake of fruit and vegetables (92). However, many of these dietary studies have 

been criticised for different reasons including heterogeneity of study populations, 

differences in food diaries and recall bias. As a result, the evidence remains conflicting. 

The European Prospective Investigation into Cancer and nutrition study (EPIC) has several 

strengths compared to other dietary studies, such as the prospective nature of the study and 

a robust 7-day food diary that has been validated in a number of publications (93). Despite 

the high quality of the dietary data in EPIC cohorts, PCa risk in relation to diet remains 

unclear as some studies show no reduction in the risk of developing the disease, whereas 

others have found clear protective properties of various plant foods.  



Chapter 1. General Introduction 

16 | P a g e  

 

Data obtained from epidemiological studies suggest that diets rich in cruciferous 

vegetables, such as broccoli, may reduce the incidence and progression of PCa (94). 

Richman and colleagues reported a reduced risk of approximately 60% when more than 8 

portions of cruciferous vegetables are consumed per week (86). The same research group 

has found a similar protective effect induced by exercise (brisk walking) that could suggest 

a common molecular mechanism between cruciferous vegetables and physical activity 

(95). However, Key and colleagues reported that there was no association between total 

fruit and vegetable intake and PCa risk for 1104 men diagnosed with the disease who were 

part of the EPIC cohort; this was also true for cruciferous vegetable intake when examined 

separately (92). These results, however, were obtained after a relatively short follow up of 

4.8 years and with a median age of 52 at recruitment. Given the fact that PCa incidence 

increases with age, and has a protracted course it is possible that with longer follow up a 

clearer correlation is seen. This is what a later study by Steinberger and colleagues showed 

when they reported on a larger number of men with PCa amongst the EPIC-Heidelberg 

cohort (96). In this study, they found an inverse relationship between cruciferous vegetables 

intake and PCa risk. The men in the latter study were followed up for a longer period with 

an average of 9.4 years. The authors examined the food diaries in more detail and were able 

to give a clearer estimate on the total consumption of cruciferous-derived phytochemicals 

when compared to the study previously published by Key and colleagues. It may become 

apparent therefore that with longer follow up clearer associations are recognised. 

 

These vegetables are unique in their ability to accumulate sulphur-containing glycosides 

known as glucosinolates, including glucoraphanin. Following consumption, these 

compounds produce bioactive isothiocyanates (ITCs). In vitro, animal and human studies 

provide robust evidence of the ability of ITCs to target multiple signalling pathways that 

are associated with prostate carcinogenesis (97). Broccoli accumulates the glucosinolate 

glucoraphanin. When consumed, glucoraphanin is converted to the isothiocyanate 

sulforaphane (SF), either by the action of the plant enzyme myrosinase or by the gut 

microbiota, if the myrosinase has been denatured by cooking. The research group led by 

Prof Richard Mithen at the Quadram Institute Bioscience (QIB) has developed over the last 

twenty years a cultivar of broccoli (Beneforte®) delivering a threefold higher concentration 

of SF than standard broccoli (98). Plant breeders at Seminis seeds developed the Beneforte® 

broccoli cultivar, which is subject to very stringent quality control and is now widely 

commercialised in US and several European countries, including the UK. The breeders 

have developed another broccoli cultivar which has been termed Beneforte extra, which 
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has almost double the amount of glucoraphanin compared to Beneforte® broccoli. These 

broccoli varieties represent the result of a special crossbreeding programme and are not 

genetically modified (GM) plant foods. However, broccoli is not only a rich source of 

glucoraphanin but other several sulphur-containing compounds such as sulphate and S-

methyl-L-cysteine sulphoxide (SMCSO) (99). 

 

The scientific evidence supporting the health-promoting effects of bioactive compounds 

from broccoli is largely provided by studies carried out using in vitro and animal models. 

One of the most studied phytochemicals from broccoli is SF (100). Numerous publications 

indicate the diversity of SFs targets  with many mechanisms of action that are observed in 

a variety of cell types including the prostate (97, 101). The main molecular target of SF 

appears to be nuclear factor erythroid 2–related factor 2 (NRF2) with consequent 

improvement of antioxidant defence mechanisms (102-104). However, the limitations of 

translating the experimental findings obtained in cells and animals are now becoming 

clearer to the science community, and the number of randomised controlled trials to test 

the preventive properties of broccoli and other cruciferous vegetables is increasing. To date 

there are more than 30 trials looking at the effect of SF on human health which are 

registered on clinicaltrials.gov. High-glucoraphanin broccoli varieties (Beneforte® and 

Beneforte extra) are currently tested in several randomised trials undertaken at the Norwich 

Research Park in order to obtain high quality data that aim to further define the biological 

mechanism of action as well as the bioavailability of SF and other ITCs derived from 

consumption of broccoli vegetables (105-109). There are only a few reports in the literature 

on the bioavailability of high-glucosinolate broccoli varieties (110, 111) and perhaps more 

importantly on the bioavailability of other sulphur containing compounds such as SMCSO 

that could potentially share a similar biological profile to ITCs. 

The work presented in this thesis is a multimodal approach to examine the effect of SF on 

the human prostate. The primary hypothesis is that SF derived from broccoli can change 

the metabolic environment of the prostate to one that is less favourable for cancer 

propagation. This is addressed in several ways:  

a. By developing a novel sensitive method using LC-MS/MS to detect TCA cycle 

intermediates in prostate cells to gain a broader understanding of the TCA 

cycle function in vitro. 

b. Testing the effect of SF extract in physiological concentrations on the TCA 

cycle of benign and cancerous prostate cell lines and test whether the 

antioxidant properties of SF have a role in maintaining TCA cycle function in 

a high ROS environment. 
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c. Obtaining a global non-targeted map of the prostate metabolome from two 

distinct prostate tissue zones extracted from patients undergoing surgery for 

prostate cancer.  

d. A randomised double blinded human intervention study to examine the effect 

of three different concentrations of SF from three broccoli varieties on prostate 

metabolism. 
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Summary 

Perturbations from metabolic homeostasis are critically involved in the emergence of 

cancerous clones, resulting in otherwise localised tumours becoming more aggressive and 

requiring clinical intervention. A better understanding of changes in metabolism associated 

with malignant transformation may help researchers to identify lifestyle (diet, exercise) or 

therapeutic interventions that could restore metabolic homeostasis, thereby reducing the 

risk of tumour progression. It is now well-established that the TCA cycle plays an important 

role on the metabolic transformation occurring in PCa. This Chapter describes the 

development of a chromatography-based method to study the TCA cycle in body fluids and 

tissues of human origin. This method has been established taking into consideration 

problems and limitations of existing techniques, and its application to different biological 

matrices will not only allow capture of metabolic changes in tissue but also in cell extracts, 

urine and blood samples. 

 

2.1. Introduction 
The TCA or Krebs’ cycle represents a crucial metabolic pathway in almost all living 

organisms (Figure 2.1). It encompasses a series of reactions that include oxidization and 

decarboxylation, resulting in the release of energy and a number of different intermediates 

that can be used for amino acid and lipid synthesis (112).  

 

Unlike most mammalian cells, prostate epithelial cells favour citrate export to oxidation, 

and although this incurs an energy disadvantage to the cell, it serves a role in providing 

energy to sperm by supplying seminal fluid with citrate (113). Cancerous prostate cells lose 

the ability to export citrate, and it is thought that they revert to using citrate to generate 

energy (114). The different metabolic fate of citrate in PCa cells has been the focus of 

attention of several research groups; it has been studied as a possible adjunct to diagnosis 

and explored as a possible target for PCa therapy (42, 115, 116). 

 

Many of the published reports on the role of citrate in prostate cell metabolism have used 

enzymatic or Nuclear Magnetic Resonance (NMR) methods to quantify or detect this six-

carbon metabolite (117-120). Studies that used enzymatic methods often relied on 

spectrophotometric methods, and thus provide indirect measurement of citrate and related 

TCA intermediates (121-123). NMR offers the advantage of requiring minimal sample 

preparation, but lacks sensitivity in comparison to liquid chromatography (LC). Analysis 

of small molecules using targeted liquid chromatography tandem mass spectrometry (LC-
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MS/MS) is thought to provide higher sensitivity, especially from matrices where 

compounds or molecules are at low concentrations (124). A list of the advantages and 

disadvantages of using NMR and LC-MS techniques for metabolites profiling is presented 

in Table 2.1Error! Reference source not found.. 

 

It was envisaged that measuring TCA cycle intermediates with LC-MS/MS could be a 

useful research tool, and may provide a more holistic picture of the changes that occur in 

the TCA cycle in PCa. This Chapter describes the development of a LC-MS/MS method 

that would allow the identification and quantification of TCA intermediates in different 

biological matrices with a relatively easy sample preparation process and high sensitivity.  

 

 
Figure 2.1 A diagram representing the Tricarboxylic acid (TCA) cycle (adapted from(125))   
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Table 2.1 Advantages and disadvantages of the two major technologies used for metabolite 
profiling (adapted from [16]) 

 

Technology  

Advantages Disadvantages 

NMR spectroscopy Fast  

Quantitative 

Separation and derivatization 
steps are not required  

Detects all organic classes 

Possible identification of new 
compounds 

Great availability of software 
and databases 

Low sensitivity (~ 5 µM) 

Large sample volume (~500 
µl) 

Expensive instrumentation 

Large instrument footprint 

LC-MS High sensitivity 

Flexible technology 

Detects most organic and some 
inorganic molecules 

Separation can be avoided  

(direct injection) 

Low sample volume (10 µl) 

Limited availability of 
software and databases 

Samples not recoverable 

Expensive instrumentation 

Slow 

Not easy to use for the 
identification of new 
compounds 

 

2.2. Aim 
v To develop a reliable method to simultaneously analyse the TCA cycle 

intermediates using LC-MS/MS 

 

v To apply this LC-MS/MS method to examine the TCA cycle in different biological 

matrices of human origin  

 

2.3. Materials and Methods 
2.3.1 Plasma and urine samples  
For purposes of method development and with local ethical approval, urine and plasma 

samples were obtained from historic aliquots collected from completed human intervention 

studies. These studies recruited healthy volunteers who gave consent for further research 

use of their samples after study completion. Synthetic urine control samples and fatty acid-

free human serum albumin (HSA) were purchased from Sigma® (Sigma-Aldrich). 

2.3.2 Human cell lines 
Human cancerous prostate adenocarcinoma (PC3) cells were purchased from European 

Collection of Authenticated Cell Cultures (ECACC) (No 90112714). Cells were routinely 
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cultured as monolayers in HAM F-12 medium supplemented with 10% foetal bovine serum 

(FBS) in a humidified atmosphere containing 5% CO2 at 37 ºC. Complete medium was 

changed every 48 hours. Cells were grown to 80% confluency on 10 cm dishes before 

performing the extraction of the TCA cycle as described on page 27.  

 

2.3.3 Prostate tissue 

Frozen samples of histologically proven benign (n=5) and cancerous (n=5) prostate tissue 

were obtained from the Norwich Biorepository (NNUH). The protocol was approved by 

the Faculty of Medicine and Health Science Research Ethics Committee (reference: 

20122013-37) in January 2013. Informed written consents were obtained from all patients 

using the current version of the Human Tissue Bank– Information Sheet for Patients and 

Consent Form, Version 11, Adult (23 March 2011). All samples were histologically 

examined by NNUH pathologists, and anonymised clinical information was provided by 

NNUH tissue bank.  

 

2.3.4 Liquid chromatography tandem mass spectrometry  

2.3.4.1. Reagents and acid standards 

All reagents used for LC-MS/MS were prepared from stock solutions following 

manufacture’s advice. A mobile phase was made with 0.2% formic acid. TCA cycle 

standards were purchased from Sigma® (Sigma-Aldrich) as powder and reconstituted in 

mobile phase at the concentration of 1 mg/ml that has been used for subsequent serial 

dilutions. Water was obtained from a Milli-Q® Integral Water Purification System 

(Millipore Ltd). Deuterated D4-citric acid (2, 2, 4, 4-D4, 98%) was purchased from 

Cambridge Isotope Laboratories, Inc. A standard curve of a number of TCA intermediates 

was produced from stock solutions at the concentration of 1 mg/ml; glutamic acid (≥99%), 

citric acid (≥99%), iso-citric acid (≥93%), α-ketoglutaric acid (≥99%), malic acid (≥99%), 

oxaloacetic acid (≥97%), succinic acid (≥99%), fumaric acid (≥99%), pyruvic acid (≥98%) 

and lactic acid (≥85%) were all solubilised in the relevant matrix (synthetic urine, 5% fatty-

acid free HSA, water and cell culture medium both acidified with 10% 0.3 mM perchloric 

acid). 100 µl of each standard were mixed together in a total volume of 1,000 µl to obtain 

a solution of 100 µg/ml of each standard. A five point standard curve was produced with a 

10-fold serial dilution over the range of  

10,000 ng/ml to 10 ng/ml. 10 µl of deuterated D4-citric acid was added to all samples as 

internal standard (final concentration of 10 µg/ml) to allow quantification based on the ratio 

of the internal standard to each intermediate peak. Figure 2.2 shows the chemical structure 

of measured compounds of the TCA cycle. 
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Figure 2.2 Chemical structure of TCA cycle intermediates.  
 

2.3.4.2. LC-MS/MS setup 

For LC-MS/MS analysis, the Agilent 1200 Series LC 6490 Triple Quad LC-MS mass 

spectrometer was used (Agilent Tecnologies). The HPLC column was a Kinetex C18 1.7 

µm (100 x 2.1 mm) from Phenomenex. The Agilent system used for this study comprised 

of a degasser, binary pump, cooled autosampler, column oven, diode array detector and 

6490 mass spectrometer. The gas temperature was 200 ˚C with a gas flow of 16 l/min, a 

sheath gas temperature of 300 ˚C with a sheath gas flow of 11 l/min, a nebuliser pressure 

of 50 psi and capillary voltage were 3500 °C for positive polarity and 3000 °C for negative 

polarity. The LC eluent flow was sprayed into the mass spectrometer interface without 

splitting. TCA cycle intermediates were monitored by tandem MS using multiple reaction 

monitoring (MRM) mode. Identification was achieved on the basis of retention time and 

product ions. Electrospray ionisation (ESI) was used in the positive mode for glutamic acid 

and in the negative mode for the other TCA cycle intermediates. 2 µl was used for the 

injection volume and the auto sampler was maintained at 4 °C. 

Table 2.2 summarises the monitored ions and the optimised MS operating parameters of 

the analytes. 

Agilent 6490 Mass spectroscopy includes i-Funnel Technology (Agilent Jet Stream, 

Hexabore capillary, high pressure and low pressure i-Funnels) and high throughput 

quadrupole driver electronics improve ion transmission and allow virtually instantaneous 
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polarity switching. The polarity switching from positive ion mode to negative ion mode is 

only 20 ms. 

 

The 6490 mass spectroscopy design uses printed circuit board technology with only a small 

conductive rim in the i-Funnel resulting in a reduced capacitance load. This makes +/- ion 

switching fast. 

 

Therefore, Agilent 6490 Mass spectroscopy allows switching polarity between positive and 

negative in a single method without time segmenting.  
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Table 2.2 LC-MS/MS parameters of each analyte (reproduced with permission from Al Kadhi et al (126) ) 

 

Analyte Retention time (min) Precursor Ion (m/z) Product Ion (m/z) Collision energy CellAccelerator Voltage Polarity 

D4-citric acid 1.13 195 114 12 4 Negative 

D4-citric acid 1.13 195 177 10 4 Negative 

Iso-citric acid 0.85 191 155 10 5 Negative 

Citric acid  1.13 191 111 10 5 Negative 

Citric acid  1.13 191 87 18 5 Negative 

Glutamic acid 0.6 148 130 8 4 Positive 

Glutamic acid 0.6 148 84 12 4 Positive 

Malic acid  0.7 133 115 10 5 Negative 

Malic acid  0.7 133 71 14 5 Negative 

Succinic acid  1.6 117 99 10 5 Negative 

Succinic acid  1.6 117 73 10 5 Negative 

Fumaric acid 1.3 115 71 10 5 Negative 

Fumaric acid 1.3 115 41 18 5 Negative 

Lactic acid 1.05 89 43 10 4 Negative 

α-ketoglutaric acid 1.03 145 101 10 5 Negative 

α-ketoglutaric acid 1.03 145 57 10 5 Negative 

Oxaloacetic acid 0.58 131 87 10 5 Negative 

Oxaloacetic acid 0.58 131 41 54 5 Negative 
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2.3.4.3. Urine and plasma sample preparation 

 

Urine samples were filtered by using a minisart Sterile-ED 0.20 µm filter. After filtration, 

an aliquot (10 µl) was mixed with 0.2% formic acid (80 µl) and 0.1 mg/ml internal standard 

(deuterated D4-citric acid, 10 µl). The mixture was vortexed for 30 seconds and kept on 

ice for 5 minutes (vortex twice/2 minutes). Samples were then centrifuged at 13,000 x g for 

5 minutes (4 °C). Supernatants were transferred to HPLC vials and analysed by the LC-

MS/MS method in the same day. Plasma samples (10 µl) were added to 5% trichloroacetic 

acid (80 µl) and 0.1 mg/ml internal standard (deuterated D4-citric acid, 10 µl). The mixture 

was processed as described above for urine samples. After centrifugation, supernatants 

were transferred to HPLC vials for analysis by LC-MS/MS. 

 

2.3.4.4. Cell lysate preparation 

Cell medium was removed once the cells reached 80% confluence, and cells were washed 

twice with 10 ml cold 0.9% sodium chloride (Sigma Aldrich). Cells were harvested using 

0.025% (w/v) trypsin (GibcoBRL) in a phosphate-buffered saline solution (D-PBS w/o 

Calcium Magnesium, Life Technologies Ltd). After cell count with a haemocytometer, cell 

suspensions were centrifuged at 1,200 x g for 10 minutes at room temperature. After 

decanting the supernatant, 10 ml of 0.9% sodium chloride was added and cells were gently 

suspended with a pipette before centrifugation at 1,200 x g for 10 minutes. Subsequent 

removal of supernatant was followed by addition of 0.5 ml of  

0.3 mM perchloric acid, the reaction mixture was kept on ice for 10 minutes followed by 

further centrifugation at higher speed of 12,000 x g for 10 minutes. Supernatant was then 

collected and frozen at -20 °C until required for analysis. LC-MS/MS analysis was carried 

out within 24-72 hours from sample collection. All reagents were kept on ice (below 6 °C) 

at all times. TCA intermediate concentrations were normalised per  

106 cells. A schematic description of sample preparation from cultured cells is described in 

Figure 2.3.  
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Figure 2.3 Extraction of TCA cycle intermediates from cultured cells.  
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2.3.4.5. Tissue preparation  

Each vial of tissue representing an independent sample was received frozen from The 

Norwich Biorepository and kept at -80 °C until processed. Tissue was pulverized with 

liquid nitrogen using a tissue grinder (BioPulverizer, Stratech Scientific Limited).  

500 µl of 3 M perchloric acid was added to each 20 mg of tissue powder and homogenised 

using an automated tissue homogeniser (IKA Ultra-Turrax T8 Disperser, Fisher Scientific 

Ltd) for 1 minute on medium speed. The homogenate was left on ice for 10 minutes then 

centrifuged at 12,000 x g for 10 minutes at 4 °C. The supernatant was collected and 

transferred to a HPLC vial and analysed by the LC-MS/MS method on the same day. 

Results were obtained as mmol per kg of tissue. These values were converted to nM per g 

to facilitate comparison with available reference ranges.  

 

2.3.4.6. Data analysis 

Data files were explored and analysed using MassHunter Workstation software (Agilent 

Technologies). The peak areas of the analytes were determined, and the concentration of 

the analyte was calculated using the peak area ratio (peak area of analyte/peak area of the 

internal standard). In the present study, the treatment consisted of a number of doses thus 

requiring one-way ANOVA followed by Bonferroni multiple comparison tests.  

 

2.4. Results 
2.4.1 Optimization of mass spectroscopy conditions and LC parameters 

The automated Agilent MassHunter Optimizer software was used to obtain precursor and 

products ions in each analyte. The most intense fragmentation patterns for organic acids 

are known to be decarboxylation and/or water elimination (127). In the current study, the 

precursor and product ions produced by the Agilent 6490 mass spectrometer were 

comparable with these patterns. However, selective fragments were also observed, and they 

can be useful if further identification is needed. An important example is represented by 

the fragmentation patterns observed for citric and isocitric acids. Both citric and isocitric 

acids show a main product ion with m/z 111 corresponding to [M-H-CO2-2 H2O]-; 

however, isocitric acid also gives rise to a relatively stable product ion with m/z 155 

corresponding to the neutral loss of two water molecules. The fragment m/z 155 produced 

by isocitric acid is hardly seen in the fragmentation pattern of citric acid. The same 

fragment 155 from isocitric acid was also observed by Bylund and colleagues (128). In 

terms of chromatographic separation, the use of Kinetex- C18 columns allowed good 
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separation and peak shapes for all TCA intermediates by using isocratic mobile phase 0.2% 

formic acid in water.   

 

2.4.2 Method validation 

This novel LC-MC/MS method was validated against published acceptance criteria for 

linearity, accuracy, precision, recovery, sample stability and matrix effect (129).  

Briefly, calibration curves were obtained by using authentic standards spiked in a matrix 

containing deuterated D4-citric acid as internal standard. Ratio of analyte and internal 

standard peak area was plotted against the corresponding concentration to obtain the 

calibration curve. For all TCA analytes, the calibration curves showed linearity with 

correlation coefficients r2>0.9998. In terms of sensitivity, limit of detection (LOD) and 

limit of quantification (LOQ) were calculated by injecting diluted solutions of TCA 

analytes in each matrix. LOD was estimated as the concentration of TCA intermediates that 

generated a peak with an area at least 3 times higher than the baseline noise. LOQ was 

calculated at a signal to-noise ratio 10 times higher than the baseline noise of these 

compounds. Furthermore, intraday precision was assessed by repeating the analysis of a 

single human plasma sample (number of repeat analysis= 10); CV (%) value was less than 

10% for all TCA intermediates. The same samples were analysed on 5 days to determine 

interday precision, and CV (%) was < 15% for most of the analytes except for succinic acid 

(18.8%); an explanation for the higher CV (%) could be its low concentration in human 

plasma (Table 2.3). The results obtained from this method were compared to similar 

published work and outlined in Table 2.4. 

Recovery was determined by spiking TCA intermediates at known concentrations in 

different matrices (0.2% formic acid in water; acidified synthetic urine and fatty acid-free 

HAS) with internal standard (deuterated D4-citric acid), and recoveries > 95% were found 

for all analytes.  

Finally, the use of Agilent 12000 series high performance auto sampler with an injection 

program was used to minimise carry-over effects which have been assessed by the injection 

of acidified water after running the highest concentration of each TCA standard. No carry-

over effect has been reported except for glutamic acid (< 1%).  

 



Chapter 2. TCA cycle analysis by LC-MS/MS 

31 | P a g e  

 

Table 2.3 validation data for each analyte (human plasma sample).i 

Analyte Linearity  

Range (µM) 

R2 Precision 

Intraday (%) (n=10) 

Precision 

Interday (%) (n=5) 

LOD* LOQ* 

Citric acid 0-520 0.9998 4.9 6.3 0.06 0.18 

Iso-citric acid 0-520 0.9997 4.6 10.5 0.06 0.18 

Malic acid 0-372 0.9999 8.9 13.5 0.06 0.18 

Lactic acid 0-1100 0.9987 4.4 9.9 1 3 

Succinic acid 0-840 0.9998 8.1 18.9 0.06 0.18 

Fumaric acid 0-430 0.9998 8.8 12.2 1 3 

Glutamic acid 0-340 0.9998 7.4 12.6 0.05 0.15 

*values in µM for 1:10 sample dilution 

Reproduced from Al Kadhi et al 2017 (126) 
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Table 2.4 Comparison between the described method and other methods of detection/quantification of Kreb's cycle acids 

Author Year 
published 

Method Matrix analysed Number of detected 
TCA cycle metabolites 

Run 

time 

LOD of 

citric acid 

(µM)  

LOQ of 

citric acid 

(µM) 

Al Kadhi et al 

(current method) 

 

2017 LC-MS/MS Cell lysates (PC3 human prostate 

cancer), human plasma and urine 

samples 

 

7 3 min 0.06 0.18 

Luo et al(127) 

 

2007 LC-MS/MS Bacterial cell extracts (E. coli) 7 N/A 0.04 179.8 

Bylund et al(128) 2007 LC-MS/MS Soil solution and stream water 10 30 

min 

0.002 N/A 

Tan et al(130) 2014 LC-MS/MS with 

derivatization 

Cell lysate (human ovarian 

carcinoma) and mouse tumour tissue 

8 8 min N/A N/A 



Chapter 2. TCA cycle analysis by LC-MS/MS 

33 | P a g e  

 

 

2.4.3 Identification and quantification of TCA cycle intermediates in 

human urine samples 

A synthetic urine sample was used with the addition of deuterated D4-citric acid standard 

to enable quantification. Following de-proteinisation with perchloric acid, TCA cycle 

intermediates were successfully detected in human urine samples (n=5). The calibration 

curve of each compound was linear and the correlation coefficient ranged from 0.95 to 0.99 

in the linear range of concentrations of 0-10,000 ng/ml. An example of detected citrate 

(acquisition time=1.1 min) and isocitrate (acquisition time=0.8 min) is shown in Figure 2.4. 

The average citrate level measured in urine collected from healthy subjects (n=5) was 369.3 

± 37.1 µg/ml. Previous reports have indicated that urinary citrate excretion ranged between 

350 and 1,200 mg/ day in healthy subjects (131, 132). Data obtained were comparable to 

the reported range of urinary citrate excretion taking into account that the normal range for 

24-hour urine volume is 800 to 2,000 ml per day. 



Chapter 2. TCA cycle analysis by LC-MS/MS 

34 | P a g e  

 

 
Figure 2.4 LC-MS/MS chromatograms of citrate and isocitrate in human urine. (A) Citrate 
and isocitrate standards spiked into a synthetic urine sample; (B) Citrate and isocitrate peaks 
in a nonspiked urine sample. (C) MS/MS spectra of citrate in both nonspiked and spiked urine 
samples. CA, citrate; ICA, isocitrate 
  

CA !/" 191→111   
ICA !/" 191→155   

ICA !/" 191→155   
CA !/" 191→111   
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2.4.4 Identification and quantification of TCA cycle intermediates from 

human plasma 

TCA cycle intermediates were isolated and measured from human plasma (n=10). Figure 

2.5 shows the detection of citrate and isocitrate standards in a bovine albumin construct 

and actual citrate/isocitrate detection peaks in human plasma. The calibration curve of each 

compound was linear and the correlation coefficient ranged from 0.96 to 1.0 in the linear 

range of concentrations of 0-10,000 ng/ml. The average concentrations obtained from 

human samples (143 ± 39.1 nM) were comparable to known reference range of citrate (100-

300 nM) (133, 134). Previous studied confirmed that citrate with an average concentration 

of 135 µM represents the most abundant intermediate of the TCA cycle in human blood 

(135). 

 

 

 
Figure 2.5 LC-MS/MS chromatograms of citrate and isocitrate in human plasma.A) Citrate 
standard spiked into a bovine albumin construct . B) Isocitrate standard spiked into a bovine 
albumin construct. C) Citrate and isocitrate peaks detected in human plasma sample. CA, 
citrate; ICA: isocitrate. 
  

CA !/" 191→111   

CA !/" 191→111   

ICA !/" 191→155   
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2.4.5 Quantification of TCA cycle intermediates from cell lysates 

For the purpose of method development PC3, malignant androgen-independent prostate 

cells were cultured as previously described. Most of the TCA cycle intermediates were 

successfully detected and quantified using standard solutions. The calibration curve of each 

compound was linear and the correlation coefficient ranged from 0.96 to 1.0 in the linear 

range of concentrations of 0-10,000 ng/ml. Some of the TCA cycle intermediates were 

more pH sensitive and very unstable such as oxaloacetate and α-ketoglutarate; both of these 

organic acids were difficult to detect and quantify. Figure 2.6 and  

 

Figure 2.7 show chromatograms of synthetic standards of TCA cycle intermediates and the 

TCA cycle intermediates detected from PC3 cell lysates, respectively.   
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Figure 2.6 LC-MS/MS chromatogram of standards of TCA cycle intermediates.  
Standards were spiked into mobile phase (0.2% formic acid) and run as a mixture of all 
compounds. CA, citrate (A); ICA, isocitrate (B); SA, succinate (C); FA, fumarate. A second 
peak is observed here which is malic acid; MA, malate (E); GA, glutamate (F); LA, lactate 
(G). 
.  
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Figure 2.7 LC-MS/MS chromatograms of TCA cycle intermediates extracted from PC3 cell 
lysates. CA, citrate and ICA, isocitrate (A), SA, succinate (B), FA, fumarate. Two other acids 
are detected here; first is the likely isomer of fumarate (ISO-FA) and the second peak is malic 
acid (MA) (C); MA, malate (D); glutamate (E); LA, lactate acid (F).   
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2.4.6 Identification and quantification of citric acid from prostate tissue 
Five histologically proven cancerous and five benign prostate tissue samples were obtained 

from the Norwich Biorepository (NNUH) in accordance with local regulatory approvals. 

Tissue originated from either radical prostatectomy/cysto-prostatectomy specimens or 

trans-urethral resection of the prostate (TURP). Table 2.5 outlines the origin of prostate 

tissue used in this experiment. Details of grade/stage were not included as the purpose of 

this experiment was for method development. 

Citrate was successfully detected and quantified by LC-MS/MS in both benign and cancer 

tissue (Figure 2.9). The relative concentration of citrate was comparable with that of 

published data (Table 2.6) (136).  

 

 
Figure 2.8. LC-MS/MS chromatograms of citrate in human prostate tissue. Citrate peak 
detected in benign (A) and cancer tissue (B). CA, citrate.   
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Figure 2.9  Citrate concentration (mmol) in human tissue. Frozen tissue samples were ground 
to powder before subsequent extraction. Citrate (mmol) was quantified from benign (n=5) and 
cancer (n=5) prostate tissue samples using LC-MS/MS. The results are corrected for tissue 
weight (kg). Bars represent the mean (SD)  Statistical value obtained from student t-test.   
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Table 2.5 Description of tissue samples used for the extraction of TCA cycle intermediates 

 

ID Type of tissue Specimen origin  Histological diagnosis  

C1 Prostate (anterior left lobe) Radical prostatectomy Adenocarcinoma 

C2 Prostate  TURP Adenocarcinoma 

C3 Prostate (left lobe) Radical prostatectomy Adenocarcinoma 

C4 Prostate (right lobe) Radical prostatectomy Adenocarcinoma 

C5 Prostate (left lobe) Radical prostatectomy Adenocarcinoma 

B1 Prostate (left lobe) Cysto-prostatectomy Benign 

B2 Prostate (right lobe) Radical prostatectomy Benign 

B3 Prostate (left lobe) Radical prostatectomy Benign 

B4 Prostate (left lobe) Radical prostatectomy Benign 

B5 Prostate (right lobe) Cysto-prostatectomy Benign 

 

 
Table 2.6 Average concentration of citrate in benign and cancerous prostate tissue expressed 
as nM per gram of tissue (SD) 

 

Tissue Citrate nM/g tissue Reference citrate nM/g wt (136) 

Benign 22,311 (16,160) 12,000-14,000 

Cancer 6,220 (4,034) 200-2,000 
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2.5. Discussion 
The metabolite profiling of tissue and body fluids has become increasingly important to 

study fundamental physiological aspects of human health and disease, as well as 

understanding the influence of different factors, such as diet and lifestyle changes (137).  

 

Using LC-MS/MS methods for quantification of metabolites from biological matrices 

enables accurate detection of target compounds in relatively low concentrations, reducing 

interference (124, 138). When examining the TCA cycle intermediates, LC-MS/MS is 

arguably superior to enzymatic assays that invariably rely on fluorescence techniques to 

measure concentrations of substrates indirectly, and only allow measurement of one 

compound at a time (139). The LC-MS/MS method described in this Chapter allows 

simultaneous measurement of most TCA cycle intermediates with relatively easy sample 

preparation. In addition, it allows measurement of lactate and glutamate which provide key 

information regarding the processes of glycolysis and glutaminolysis, both of which 

influence the concentration of metabolites that are used as substrates in the TCA cycle 

reactions. 

 

In a previous report describing LC-MS/MS quantification of TCA cycle intermediates from 

soil samples, Bylund et al  outlined the retention times and ion mass/charge ratio (m/z) for 

each of the TCA cycle intermediates (128). These data were used in the current study to 

develop a method to quantify the same intermediates but using a different biological matrix 

(human prostate, plasma and urine). The extraction technique and mobile phase were 

modified to optimise the number of intermediates that could be measured in one batch. This 

significantly improved detection and run time resulting in high sensitivity and relatively 

short run-times compared to published data (Table 2.4). Despite this, both α-ketoglutarate 

and oxalate were difficult to detect. This is likely due to their instability and pH sensitivity, 

which has been previously reported (127, 140).  

 

The method described in this Chapter showed successful detection of TCA cycle 

intermediates from a variety of biological sources. Measurement of citrate in particular, is 

shown to be reproducible and comparable to the ranges already reported in published 

literature (136). Citrate has been the most studied of the TCA cycle intermediates in relation 

to prostate metabolism, and has often been used as a surrogate for the function of the TCA 

cycle (135). It has also been reported that citrate plasma levels are the highest among TCA 

cycle intermediates in humans, and for this reason citrate metabolism is often studied to 
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better understand the role of the TCA cycle on the development of human metabolic 

diseases (134, 141). 

 

The key metabolic pathways that cells adopt to produce energy for growth and replication 

appear to be altered in cancer, diverting energy and precursor production to glycolysis and 

using less oxidative respiration, even in the presence of adequate amounts of oxygen (142). 

In normal prostate cells, the TCA cycle is modified to allow the export of citrate from the 

mitochondrion into prostatic secretions; this process provides abundance of citrate, the 

main source of energy for sperm (135). It is therefore thought that this alteration to the 

normal metabolism might put prostate cells at a higher risk for cancerous transformations, 

as these changes also create an environment that facilitates tumour growth (42). In the next 

Chapter of this thesis, the method described here is applied to study the TCA cycle function 

in a number of prostate cell lines that are frequently used in in vitro studies. Furthermore, 

the effect of oxidative stress on the TCA cycle in cancerous and benign prostate cell lines 

is explored, and the potential effect of SF, a bioactive derived from broccoli plants against 

TCA disruption is investigated.  

 

2.6. Conclusion  
Measuring TCA cycle intermediates using LC-MS/MS is feasible and allows accurate 

quantification of multiple compounds simultaneously. The described method offers several 

advantages compared to methods previously reported, mainly in terms of easy sample 

preparation without derivatization steps and high sensitivity. The potential application of 

this method for analysing the TCA cycle in different biological matrices could be important 

in translational studies looking at metabolic changes in response to therapeutic or dietary 

agents. The method outlined here is used in the subsequent chapter to assess the role of SF 

in vitro on TCA cycle function in human prostate cell lines.  
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Summary 

The TCA cycle represents a crucial metabolic pathway in almost all living organisms. 

Several pathological conditions are characterised by an altered TCA cycle that is thought 

to be in part due to the disruption of ROS homeostasis and redox regulation. This chapter 

describes the use of the developed LC-MS/MS method for quantifying TCA cycle 

intermediates to further understand the complex role of cellular metabolism in normal and 

malignant prostate cell lines. Furthermore, it investigates whether the bioactive SF can alter 

the relationship between the TCA cycle and ROS production through its protective effects 

against oxidative stress. 

 

3.1. Introduction 
The TCA cycle is an important modulator of intracellular ROS through the production of 

nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) from 

decarboxylation/oxidation reactions, and from having a direct link to the electron transport 

chain (143). It has been shown that human prostate epithelial cells, unlike most other 

eukaryotic cells, have modified the function of the TCA cycle to support the export of 

citrate out of the cytoplasm (114). Despite the energy deficit that incurs from not oxidizing 

citrate in the TCA cycle, this appears to be favoured by normal prostate epithelial cells to 

allow citrate to be used as both an energy source and to regulate the pH of seminal fluid. 

In contrast, cancerous prostate cells are thought to revert to utilizing citrate as a source of 

energy (144).  

 

The different metabolic fate of citrate in prostate cells has been attributed to a major 

difference in the activity of a key TCA cycle enzyme named aconitase. This enzyme 

regulates the amount of citrate converted to iso-citrate, and therefore acts as a rate-limiting 

step in the cycle (Figure 3.1). Early research had suggested that the higher levels of zinc 

found in healthy compared to malignant prostate cells, inhibited the function of aconitase 

resulting in truncation of the TCA cycle and accumulation of citrate (Figure 3.1) (43, 145). 

However, more recent studies have challenged this view suggesting that zinc may not be 

responsible for the observed differences between benign and malignant cell types (121). 

Moreover, other factors have been found to influence the activity of TCA cycle enzymes 

such as the cellular oxidative status (146). 
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Figure 3.1 Outline of main reactions in the TCA cycle (solid black arrows). In prostate 
epithelial cells, citrate is exported out of mitochondria (dotted line) due to the inhibition of 
aconitase enzyme by zinc. PDH, pyruvate dehydrogenase. LDH, lactate dehydrogenase. CS, 
citrate synthase. IDH1, iso-citrate dehydrogenase 1. SDH, succinate dehydrogenase. MDH, 
malate dehydrogenase. ZIP1, Solute Carrier Family 39 (Zinc transporter), Member 1  
 

SF is a naturally occurring phytochemical derived from cruciferous vegetables that has 

been found to have potential anti-cancer properties in a number of animal and cell models 

(147-149). Studies on the mechanism of action of SF in prostate cells have shown that it 

enhances the antioxidant capacity of the cell, largely via induction of phase II enzymatic 

pathways including glutathione and Nrf2 (102, 104, 150). The antioxidant potential of SF 

could therefore result in changes to redox-sensitive processes, which are known to regulate 

cellular metabolism, including the TCA cycle. SF has been shown to affect a number of 

mitochondrial functions in non-prostate cells through its antioxidant role (151). As a result, 

it would be reasonable to hypothesise that SF could alter the function of TCA cycle in the 

prostate.  

 

This chapter describes the TCA cycle intermediates in a variety of prostate cells including 

benign, malignant, and metastatic phenotypes. The effect of dietary SF on these compounds 

in a cell culture environment was also investigated (Table 3.1). Because the reactions in 

the TCA cycle happen in a stepwise fashion, measuring changes in levels of the TCA cycle 

compounds would help understand if the cycle is perturbed by SF as a whole, and 

potentially identify which steps in the process are altered. 
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Table 3.1 Characteristics of human prostate cell lines used in this experimental design 
  

Cell line Description Morphology AR Reference 

PNT1A Human Caucasian normal 
prostate, immortalised with 
SV40. Established from a 
histologically normal prostate 
of a 35 year old male at post 
mortem 

Epithelial Absent (152) 

RWPE-1 Human Caucasian normal 
prostate, immortalised with 
HPV-18. Established from a 
histologically normal prostate 
(peripheral zone) of a 54 year 
old male 

Epithelial Present (153) 

DU145 Human Caucasian prostate 
adenocarcinoma. Established 
from brain metastasis of a 69 
year old male 

Epithelial Absent (154) 

LNCAP Human Caucasian prostate 
carcinoma. Established from a 
lymph node metastasis of a 50 
year old male 

Epithelial Present (155) 

PC3 Human Caucasian prostate 
adenocarcinoma. Established 
from bone metastasis of a 62 
year old male 

Epithelial Absent (156) 

AR, androgen receptor 

 

3.2. Hypotheses 
v The TCA cycle intermediates in benign and malignant prostate cell lines 

commonly used in research experiments are different. 

 

v  SF in vitro can alter the TCA cycle of prostate cells exposed to ROS.  

 

3.3. Materials and Methods 
3.3.1 Cell culture 
Human normal prostatic epithelial PNT1A (EAACC No  95012614) and RWPE (ATCC 

No CRL-11609) cell lines were purchased from ECACC and American Type Culture 

Collection (ATCC), respectively. PNT1A and RWPE are benign epithelial androgen 

insensitive immortalised cell lines. PNT1A cells were cultured in Roswell Park Memorial 

Institute (RPMI-1640) medium supplemented with 10% FBS, and RWPE1 cells were 

cultured in keratinocyte serum free medium (K-SFM). K-SFM medium was supplemented 
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with bovine pituitary extract (BPE, 0.05 mg/ml) and human recombinant epidermal growth 

factor (EGF, 5 ng/ml). Human cancerous Caucasian prostate adenocarcinoma DU145 

(ATCC No HTB-81) and LNCaP (ATCC CRL-1740) were purchased from ATCC and 

cultured in EMEM and RPMI, respectively, both supplemented with 10% FBS. Human 

cancerous prostate adenocarcinoma PC3 cells were purchased from ECACC (No 

90112714) and were routinely cultured in Ham’s medium supplemented with 10% FBS. 

The three cancerous cell lines (PC3, DU145, and LNCaP) are immortalised cells derived 

from metastatic PCa samples, and only LNCaP is androgen sensitive.  

All cells were routinely cultured as monolayers in a humidified atmosphere containing 5% 

CO2 at 37 °C and were grown to 80% confluency on 10 cm dishes before performing the 

extraction of the TCA cycle intermediates as described in Chapter 2. 

 

3.3.2 Treatment with hydrogen peroxide 
Hydrogen peroxide (H2O2) was purchased from Sigma-Aldrich (Cat. No. 216763) and 

diluted in sterile MilliQ water and subsequently in culture medium to achieve a final 

concentration of 500 µM. All media were replaced for 24 hours before extraction. In the 

treatment group, media were changed to that containing H2O2 for 30 minutes before 

extraction of TCA cycle intermediates. DMSO was used as vehicle control. 

 

3.3.3 Treatment with sulforaphane 

4-(methylsulfinyl) butyl isothiocyanate (SF) (CAS 4478-93-7) (purity > 98%) was 

purchased from LKT Laboratories (St. Paul, USA). In each experiment, SF was added to 

culture media for 24 hours before treatment with H2O2 or extraction. The final concentration 

of SF in the media was 2 µM. Our research group has previously demonstrated that this 

concentration is representative of physiological levels of SF that are achieved in human 

plasma from consumption of cruciferous vegetables, such as broccoli (157). 

 

3.3.4 Analysis of TCA cycle intermediates by LC-MS/MS 
To compare the level of citrate and other compounds of intermediary metabolism in benign 

and cancerous prostate models, LC-MS/MS analysis was performed after extracting the 

intermediates from cultured PNT1A, RWPE, DU145, LNCaP, and PC3 cells (Figure 3.2). 

Cells were counted using a haemocytometer after being harvested with 0.05% trypsin 0.53 

mM ethylenediaminetetraacetic acid (EDTA). Cell lysate preparation and LC-MS/MS 

setup have been fully described in Chapter 2 (page 23-27). 

The concentration of TCA cycle intermediates was normalised by dividing the total 

concentration by the cell count. Results are presented as nmol per 1 x 106 cells in each 
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experiment. Data were expressed as mean ± SD of two or more technical replicates from a 

minimum of three independent biological replicates. Statistical comparisons were carried 

out using analysis of variance (ANOVA) followed by Bonferroni multiple comparisons 

tests. 

 

 
Figure 3.2 Images of epithelial prostate cell lines used in this project.A) Benign epithelial 
androgen insensitive immortalised cells (PNT1A and RWPE1). B) Cancerous cell lines (PC3, 
DU145, and LNCaP) derived from metastatic PCa samples. Images were sourced from ATCC 
and ECACC websites.   
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3.3.5 Aconitase enzyme activity assay 
Aconitase is an iron-sulfur protein that catalyses the isomerisation of citrate to iso-citrate 

via cis-aconitate. The enzymatic activity of aconitase of PNT1A and PC3 cells was 

measured by using a highly sensitive colorimetric assay (Cayman, Cat. No. 705502) 

following manufacturer’s guidelines. The colorimetric assay is based on the conversion of 

citrate into iso-citrate by the aconitase enzyme present in the cell samples. Iso-citrate is 

then converted to α-ketoglutarate in a reaction catalysed by isocitric dehydrogenase. These 

reactions are monitored by measuring the increase in absorbance at 340 nm due to the 

production of NADPH. The rate of NADPH production is proportional to aconitase activity 

(Figure 3.3). PNT1A and PC3 cells were routinely cultured as previously described, and 

were grown to 80% confluency on 10 cm dishes before being processed following the 

protocol recommended by the manufacturer’s instructions. After consecutive washing steps 

with cold PBS, cells were detached using a scraper and transferred to centrifuge tubes. 

After centrifugation at 800 x g for 10 minutes at 4 °C, the supernatant was discarded and 

the pellet was re-suspended in cold assay buffer. Cell suspensions were then sonicated with 

20 one-second bursts. After centrifugation at 20,000 x g for 10 minutes at 4 °C, the resulting 

pellet was re-suspended in cold assay buffer and stored at -80 °C until assayed. 50 µl of the 

sample was added in each well of a clear 96-well plate with 5 µl of assay buffer, 50 µl of 

NADP+ reagent, and 50 µl of isocitric dehydrogenase assay buffer. The reaction was 

initiated by adding 50 µl of substrate solution, and absorbance was measured at 340 nm for 

30-60 minutes at 37 °C by using a filter-based multi-mode microplate reader (FLUOstar-

Optima, BMG Labtech). Activated aconitase provided by the manufacturer was used as 

positive control.  

The enzyme activity was determined as the rate of the reaction by calculating the change 

of absorbance of NADPH at 340 nm (∆A340) per minute. Absorbance values at each time 

point were used to produce a linear curve. The change in absorbance can be calculated from 

the following equation by choosing any two time points:  

 

∆A340 = [(A340 Time	2 − 2340	 34!5	1
34!5	2 !47. − 34!5	1(!47. )  
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Figure 3.3 Chemical reactions explaining the principle of the aconitase enzyme assay.  
 

 

3.3.6 Measurement of intracellular ROS production by fluorescence 

Intracellular ROS levels were measured using the oxidant-sensitive probe 2’,7’-

dichlorofluorescin diacetate (DCFH-DA). PNT1A and PC3 cells were routinely cultured 

as previously described, and were grown to 80% confluency in a black bottom-clear 96 

well plate. Cells were washed twice with PBS and incubated with DCFH-DA (20 µM) at 

37 °C for 45 minutes in the dark. The dye, penetrating into viable cells, is metabolised in 

its free form, which can react with ROS and thereby develop fluorescence. Fluorescence 

was measured using a FLUOstar-Optima plate reader using 485 nm as λecc and 530 nm as 

λem. All data were analysed and expressed as means ± SD of three independent experiments. 

 

3.3.7 Microarray expression analysis 
Whole genome extraction analysis using Affymetrix GeneChip® Human Exon 1.0ST 

microarrays was performed on extracted RNA from cultured prostate cells. RNA extraction 

was carried out by a PhD student of the Food and Health Programme (Ms T. Sivapalan) as 

part of her research project. Total RNA was extracted from treated cells using the 

QIAGEN® RNeasy Mini Kit according to manufacturer’s instructions. RNA quantification 

was carried out using NanoDrop ND-1000 spectrophotometer using an average of three 

readings. The ratio of 260/280 absorbance (nucleic acid absorbance wavelength/protein 

absorbance wavelength) provided by the NanoDrop machine indicates RNA integrity. The 

RNA samples were sent to Nottingham Arabidopsis Stock centre and the Affymetrix 

GeneChip® Human Exon 1.0ST array was carried out according to manufacturer’s 

protocols. 
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The data analysis was carried out using R/Bioconductor package (r-project.org). The raw 

signal intensity data was provided in .CEL files. The data was RMA (robust multi-array 

analysis)-background corrected and quantile normalised to determine if any outliers were 

present. Once complete, linear probe level models were fit to the data to analyse gene level 

summaries. Subsequent statistical data analysis was performed to identify differentially 

expressed genes using R/limma software. Identification of genes that were differentially 

expressed were analysed for the level of statistical significance at different Benjamini and 

Hochberg adjusted p-values, to account for the potential false discovery rate. 

 

3.4. Results 
3.4.1 Characterization of TCA cycle intermediates in prostate cell lysates 

A summary reporting the concentrations of all TCA cycle intermediates in prostate cell 

lines measured by using LC-MS/MS can be found in Table 3.2. 

 

3.4.1.1. Citrate 

The concentration of citrate, which is often used as a measure of the TCA cycle function, 

was shown to be repeatedly higher in cancerous PC3 cells compared to all other cell lines 

tested (Figure 3.4). When compared to PNT1A, PC3 cells had significantly higher levels 

of citrate (p<0.01). 

 

 
Figure 3.4 Concentration of citrate in prostate cell lines normalised to 106 cells.Each column 
represents an average of a minimum of three biological replicates. Error bars indicate 
standard deviation (SD). * p<0.01 one-way ANOVA PC3 vs PNT1A.  
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3.4.1.2. Iso-citrate 

Iso-citrate is generated from the conversion of citrate by the action of mitochondrial 

aconitase enzyme. Using LC-MS/MS it was possible to quantify iso-citrate despite its low 

concentration (Figure 3.5). Levels of iso-citrate were not statistically different between cell 

lines. 

 

 
Figure 3.5 Concentration of iso-citrate in prostate cell lines normalised to 106 cells.Each 
column represents an average of a minimum of least three biological replicates. Error bars 
indicate SD. Levels of iso-citrate were not statistically different between cell lines.  
 

3.4.1.3. Alpha- Ketoglutarate (α-KG) 

Measurement of α-KG was difficult due to pH sensitivity. Detection problems were solved 

by increasing the pH of the cell lysate to 7.0-7.5 with potassium hydroxide at the 

concentration of 0.6 mM. This enabled the successful quantification of α-KG, but the pH 

change resulted in the loss of the spectral signal of the other metabolites. α-KG levels in 

both PNT1A and PC3 cell lysates were almost identical (Figure 3.6). 
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Figure 3.6 Concentration of α-KG in PNT1A and PC3 cells. Levels of α-KG were not 
statistically different between the two cell lines. Error bars indicate SD. Measurement of α-
KG in the other cell lines was not possible, either due to low concentration or instability of the 
acid rendering it undetectable.  
 

3.4.1.4. Succinate 

Quantification of succinate from cell lysates was successful in all cultured cell lines. 

LNCaP cells had the highest concentration of succinate that was statistically significant 

when compared to PNT1A and PC3 cells (p≤0.01, one-way ANOVA) (Figure 3.7). 

 

 
Figure 3.7 Concentration of succinate in prostate cell lines normalised to 106 cells. Each 
column represents an average of a minimum of three biological replicates. Error bars indicate 
SD. Statistically higher levels of succinate were observed in LNCaP cells compared to PNT1A 
and PC3 cells (* p≤0.01, one-way ANOVA).  
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3.4.1.5. Fumarate  

PC3 cells showed the highest concentration of fumarate compared to both benign cell lines 

(PNT1A and RWPE1). Fumarate was not detectable in either LNCaP or DU145 cell lines 

with a LOD of 1µM (Figure 3.8).  

 

 

 

 
Figure 3.8 Concentration of fumarate in prostate cell lines normalised to 106 cells. Each 
column represents an average of a minimum of three biological replicates. Error bars indicate 
SD. Measurement of fumarate was not feasible in all cell lines. PC3 cells showed the highest 
concentration of fumarate (*p<0.05 PC3 vs PNT1A, one-way ANOVA).  
 

 

3.4.1.6. Malate 

Malate results from the conversion of fumarate in the mitochondria through the enzymatic 

conversion by malate dehydrogenase enzyme (MDH). It is also formed from the inter-

conversion of cytosolic citrate via the action of malic enzyme (ME). Both LNCaP and PC3 

cells showed high levels of malate, which were statistically significant when compared to 

PNT1A (Figure 3.9). 
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Figure 3.9 Concentration of malate in prostate cell lines normalised to 106 cells. Each column 
represents an average of a minimum of three biological replicates. Error bars indicate SD. 
PC3 and LNCaP cells had statistically higher levels of malate when compared to PNT1A and 
DU145 cells (*p<0.05, **p<0.001; one-way ANOVA).  
 

3.4.1.7. Glutamate 

Glutamate is derived from the amino acid glutamine. In the absence of adequate glycolysis, 

glutamate can contribute to the TCA cycle. Therefore, its quantification can be informative 

when looking at the TCA cycle function. Results of glutamate analysis showed highest 

levels in LNCaP cell lysates (Figure 3.10). 

 

 
Figure 3.10 Concentration of glutamate in prostate cell lines normalised to 106 cells. Each 
column represents an average of a minimum of three biological replicates. Although glutamate 
is not directly part of the TCA cycle, it replenishes the intermediate α-KG through the 
conversion of glutamine to glutamate via the action of glutamase enzyme. (*p<0.01; one-way 
ANOVA LNCaP vs PNT1A).  
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3.4.1.8. Lactate 

Lactate is mainly the result of conversion of pyruvate from glucose breakdown. Tumours 

generally display high levels of lactate that are thought to contribute to the acidic 

environment which is favoured by cancer cells (158). In this analysis, lactate was almost 

three times higher in LNCaP cells compared to PC3 and PNT1A cells (Figure 3.11). 

 

 
Figure 3.11 Concentration of lactate in prostate cell lines normalised to 106 cells. Each column 
represents an average of a minimum of three biological replicates. Error bars indicate SD. 
LNCaP cells showed the highest concentration of lactate amongst the tested cell lines 
(***p<0.001 LNCaP vs PNT1A, RWPE1, PC3; ## DU145 vs LNCaP; one-way ANOVA). 
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Table 3.2 Average (SD) concentration of TCA cycle metabolites in commonly used prostate cell lines obtained using LC-MS/MS analysis of cell extracts. 

 

 BR Citrate Iso-
citrate 

αKG Succinate Fumarate Malate Oxalate Glutamate Lactate 

PC3-
Hams 
F12 

6 826 
(175) 

70 
(4.7) 

169 
(81) 

312 (203) 854 (514) 2,650 
(1,388) 

ND 154 (32) 10,551 (2,446) 

PC3-
RPMI 

6 449 
(47) 

134 
(10) 

ND 219 (13) ND 4,200 
(370) 

ND 935 (130) 6,376 (2,012) 

PNT1A 6 198 
(102) 

18.6 
(3.4) 

225 
(142) 

182 (106) 179 (45) 306 
(133) 

ND 207 (111) 8,221 (5,700) 

RWPE1 3 227 (2) 17 
(0.4) 

ND 435 (6) 395 (12) 1,210 
(44) 

ND 540 (189) 6,153 (326) 

DU145 3 285 
(13) 

34 (3) ND 332 (6) ND 356 
(13) 

ND 630 (67) 12,295 (450) 

LNCaP 3 511 
(71) 

23 
(11) 

ND 815 (161) ND 2,316 
(27) 

ND 1,208 
(272) 

38,119 (7,947) 

Concentration shown as (nM/106 cells). 

BR; biological replicates, ND; not detected. 
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3.4.2 Effect of culture media on TCA cycle metabolites 
In this study, the higher levels of citrate found in the malignant PC3 cell line were 

contradictory to what has been described in studies of prostate tissue, which have 

repeatedly shown lower levels of citrate in cancerous prostates compared to benign glands 

(42, 115, 159, 160). One possible explanation for this result would be a different 

composition of the culture medium and the effect of FBS used to support the growth of 

cells in culture, both these possibilities were explored.  

 

3.4.2.1. The potential effect of foetal bovine serum on the results 

FBS was added in equal amounts to the media in each cell line. In addition, it was heat 

inactivated thereby eliminating any potential enzymatic effect. Therefore, the hypothesis 

that FBS could affect the levels of TCA cycle intermediates in the cultured prostate cell 

lines can be excluded. 

 

3.4.2.2. The effect of growth media 

To explore the influence of the culture medium on the concentration of citrate, first; the 

differences between the culture media of PNT1A and PC3 cells (HAM-F12 and RPMI-

1640 respectively) were examined (Table 3.3). Second, an LC MS/MS analysis of TCA 

cycle intermediates was carried out on the cell-free growth media to quantify the levels of 

citrate. Finally, the levels of TCA cycle intermediates were measured in a repeat 

experiment where both cell lines (PNT1A and PC3) were cultured using RPMI-1640, 

supplemented with 10% FBS. RPMI-1640 does not contain zinc or pyruvate compared to 

HAM-F12 medium (Table 3.3).  

 

Table 3.3 A comparison between constituents of RPMI-1640 and HAM-F12 media 
 

Constituent RPMI-1640 medium 
(concentration g/l) 

HAM-F12 medium   
(concentration g/l) 

Amino Acids   

Glycine 0.01 0.0075100 

L-Arginine hydrochloride 0.24 0.211 

L-Asparagine 0.05 0.01501 

L-Aspartic acid 0.02 0.0133 

L-Cystine 0.05 0.035 

L-Glutamic Acid 0.02 0.0147 

L-Glutamine 0.3 0.146 

L-Histidine 0.015 0.02096 
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Constituent RPMI-1640 medium 
(concentration g/l) 

HAM-F12 medium   
(concentration g/l) 

L-Hydroxyproline 0.02 NA 

L-Isoleucine 0.05 0.00394 

L-Leucine 0.05 0.0131 

L-Lysine hydrochloride 0.04 0.0365 

L-Methionine 0.015 0.00448 

L-Phenylalanine 0.015 0.00496 

L-Proline 0.02 0.0345 

L-Serine 0.03 0.0105 

L-Threonine 0.02 0.0119 

L-Tryptophan 0.005 0.00204 

L-Tyrosine 0.02 0.00778 

L-Valine 0.02 0.0117 

L-Alanine NA 0.009 

Vitamins   

Biotin 0.0002 0.0000073 

Choline chloride 0.003 0.01396 

D-Calcium pantothenate 0.00025 0.00048 

Folic Acid 0.001 0.00132 

Niacinamide 0.001 0.000037 

Para-Aminobenz.oic Acid 0.001 NA 

Pyridoxine hydrochloride 0.001 0.000062 

Riboflavin 0.0002 0.000038 

Thiamine  hydrochloride 0.001 0.00034 

Vitamin B12 0.000005 0.00136 

i-Inositol 0.035 0.018 

Others   

CuSO4•5H2O NA 0.0000025 

ZnSO4•7H2O   0.0008630 

FeSO4•7H2O NA 0.0008340 

D-GJucose (Dextrose) 2 1.8020000 

Glutathione (reduced) 0.001   

Phenol red 0.005 0.0013000 

Putrescine•HCl NA 0.0002 

Pyruvic Acid•Na NA 0.110000 

Thioctic Acid NA 0.00 

Thymidine NA 0.00073 
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3.4.2.3. Quantification of citrate from growth media 

PNT1A and PC3 cells were cultured in RPMI-1640 and HAM-F12, respectively, 

supplemented with 10% FBS. Growth media were changed in all culture plates 24 hours 

prior to extraction of TCA cycle intermediates, and results were normalised per cell count. 

At the time of extraction, fresh aliquots of both growth media that had no contact with cells 

were also collected. Proteins were precipitated using equal added volumes (100 µl) of 3 M 

perchloric acid. The remainder of the extraction methods were carried out as described in 

Chapter 2 section 2.2.4. The levels of citrate were very similar in “cell-free” RPMI-1640 

and HAM-F12 media samples. Recovered media from PNT1A and PC3 cells after 24 hours 

of cell culture had higher levels of citrate compared to cell-free media, reflecting the 

cellular activity; however, there was no significant difference between the media of the two 

cell types (Figure 3.12). 

 

 
Figure 3.12 Citrate concentration in culture media measured using LC-MS/MS. The growth 
media was supplemented with 10% FBS. Citrate from PNT1A and PC3 culture media was 
measured after 24 hours of culture.  
 

3.4.2.4. The effect of change of culture medium on PC3 cells 

PC3 cells were grown in both RPMI-1640 and HAM-F12 media, following which TCA 

cycle intermediates were extracted as described in materials and methods. PC3 cells that 

were cultured in RPMI-1640 had lower levels of TCA cycle intermediates compared to 

those cultured in HAM-F12 medium, with the exception of glutamate which was 

significantly higher in the RPMI grown cells (p<0.05) (Figure 3.13).  
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The concentration of the amino acid glutamine in commercial RPMI media is almost 

double that of HAM-F12, which could be responsible for the relatively high glutamate 

observed (Table 3.3).  

 

3.4.2.5. TCA cycle intermediates in PNT1A and PC3 cells using RPMI-

1640 as culture medium 

When compared to PNT1A, the change of media did not affect the results significantly and 

there were still higher levels of intermediates in PC3 cell lysates except for lactate, which 

was significantly lower in PC3 cells when grown in RPMI-1640 medium (Error! 

Reference source not found.). 

  

 
Figure 3.13 A comparison between levels of TCA cycle intermediates in PC3 cell lysates 
cultured using different growth media. Citrate and glutamate levels were significantly affected 
by change of growth medium; HAM-F12 medium (orange bars), RPMI-1640 medium (white 
bars). Each bar is an average of a minimum of three biological replicates. Error bars represent 
SD. (*p<0.05, one-way ANOVA)  
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Figure 3.14 Comparison of TCA cycle intermediates in PNT1A and PC3 cells cultured using 
the same growth medium. PNT1A (black bars) and PC3 (grey bars) cells were cultured in 
RPMI-1640 medium with 10% FBS following the same experimental conditions. Each column 
represents an average of three biological replicates. Error bars indicate SD. (*p<0.05, t-test)  
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3.4.3 Measurement of aconitase activity in PC3 and PNT1A cells 
In order to measure the activity of aconitase in both cell lines, PNT1A and PC3 cells were 

cultured in the same growth medium (RPMI-1640). An enzyme extraction and activity 

quantification assay was performed as described in Materials and Methods (page 50). PC3 

cells showed almost double the aconitase enzyme activity of PNT1A cells (4.7 vs 2.1 

nmol/ml/minute, p<0.05, t-test) (Figure 3.15). It is important to note that this enzymatic 

assay does not separate cytosolic from mitochondrial fractions of aconitase, and thus 

reflects the total aconitase activity of these cells lines.  

 

 
Figure 3.15 Activity of aconitase enzyme measured by rate of production of NADPH. The 
conversion of citrate to iso-citrate and subsequently to α-ketoglutarate releases NADPH which 
is measured by monitoring absorbance changes at 340 nm. The rate of reaction was calculated 
using the average of absorbance values between 1 and 29 minutes in three replicates. Data 
presented as average values and error bars indicate standard deviation from biological 
replicates. Data were normalised to protein content. p value <0.05, (unpaired t-test).  
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3.4.4 Gene expression profiles of enzymes of TCA cycle and associated fatty 

acid synthesis pathways in PC3 and PNT1A cells 

The results of LC-MS/MS analysis showed that citrate was higher in the malignant cell line 

PC3, compared to benign PNT1A cells. These findings are in contradiction with previous 

studies on citrate concentration in cell models, as well as prostate tissue (119, 135, 159, 

161). To investigate this further, microarray data obtained from Affymetrix analysis of 

RNA from both PNT1A and PC3 cells were examined. Following global analysis of gene 

expression, data were extracted for genes linked to the TCA cycle and lipid synthesis. Gene 

selection was based on reviewing metabolic pathways in Kyoto Encyclopaedia of Genes 

and Genomes (KEGG).  

Figure 3.16 shows the fold difference in expression of key genes linked to the TCA cycle. 

Pyruvate dehydrogenase kinase subunits 1 & 3 (PDK 1 & 3) were strongly overrepresented 

in PC3 cells (p<0.0001), whereas cytosolic aconitase 1 (ACO1 or cACO) was 

overexpressed in PNT1A cells (p<0.0001). PC3 cells showed higher expression of iso-

citrate dehydrogenase (IDH1) and fumarate hydrates (FH), both of which could enhance 

the oxidization of citrate in the TCA cycle. The gene expression of the key rate-limiting 

mitochondrial enzyme in the TCA cycle, aconitase 2 (ACO2 or mACO), was not 

statistically different between the two prostate cell lines. Interestingly, several genes that 

control the synthesis of fatty acids and cholesterol, that have been linked with PCa, were 

overrepresented in the benign PNT1A cell line (Figure 3.17). HMGRC, an enzyme 

involved in cholesterol synthesis, and ACLY that controls citrate conversion to acetyl-CoA 

in the cytoplasm, were both overexpressed in PNT1A cells. PC3 cells showed higher levels 

of fatty acid synthase (FASN) expression, but did not reach statistical significance.   
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Figure 3.16 Microarray data of key TCA cycle-related genes. Data are shown as fold difference of log2 expression values. Statistically significant results are highlighted 
in red (p<0.05, ANOVA). ACO1-2; aconitase 1-2, CS; citrate synthase, FH; fumarate hydratase, IDH1-3; isocitrate dehydrogenase 1-3, LDHA; lactate dehydrogenase 
A, MDH1; malate dehydrogenase 1 and 1B, ME1-3; malic enzyme 1-3, OGDH; oxaloglutarate dehydrogenase, SDHA-C; succinate dehydrogenase subunit A-C, 
SDHAF2; succinate dehydrogenase complex assembly factor 2, PDHA1-2; pyruvate dehydrogenase alpha 1-2, PDK 1-4; pyruvate dehydrogenase kinase 1-4, PKM2; 
pyruvate kinase muscle 2.  
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Figure 3.17 Microarray data of lipogenesis and anaplerosis-related genes. Data are shown as fold difference of log2 expression values. Statistically significant results 
are highlighted in red (p<0.05, ANOVA). ABC1; ATP binding cassette protein 1, ACAA1-2; acetyl-CoA acyltransferase 1-2, ACACA; acetyl-CoA carboxylase alpha, 
ACAT1-2; acetyl-CoA acetyltransferase 1-2, ACLY; ATP citrate lyse, AMACR; alpha-methylacyl-CoA racemase, CLYBL; citrate lyase beta like, FASN; fatty acid 
synthase, GOT1; glutamic-oxaloacetic transaminase 1, HMGCR; 3-hydroxy-3-methylglutaryl-CoA reductase, LDLR; low density lipoprotein receptor, MCAT; 
malonyl CoA:ACP acyltransferase, MLYCD; malonyl-CoA decarboxylase, SLC25A1; solute carrier family 25 (mitochondrial carrier; citrate transporter), member 
1.  
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3.4.5 The effect of oxidative stress on the TCA cycle 

3.4.5.1. Baseline levels of ROS in PC3 and PNT1A cells 

In order to investigate the effect of ROS on the TCA cycle in prostate cells, benign PNT1A 

and malignant PC3 cells were cultured as described in Materials and Methods (page 51). 

Baseline levels of H2O2 were measured in both cell lines (Figure 3.18). PC3 cells showed 

almost double the amount of H2O2 measured in PNT1A cells, which is in accordance with 

published data. 

 

 
Figure 3.18 Baseline levels of ROS in prostate cell lines. PC3 cells (grey bar) display higher 
levels of ROS compared to PNT1A (black bar). Data are expressed as fluorescence unit from 
three independent experiments (average ±SD) seeding cells at the same recommended density 
of 25 x 103 /well.  
 

3.4.5.2. The effect of exogenous hydrogen peroxide on the TCA cycle in 

PC3 and PNT1A cells 

A further experiment was conducted to examine the effect of oxidative stress on levels of 

citrate and other TCA cycle intermediates. The addition of H2O2, at the concentration of 

500 µM, to both cell lines for 30 minutes resulted in an increase in citrate levels compared 

to controls (Figure 3.19). 
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Figure 3.19 Citrate levels in prostate cell lines exposed to oxidative stress. Treatment with 500 
µM of H2O2 results in a significant increase in citrate levels compared to controls in normal 
PNT1A and cancerous PC3 prostate cells; untreated PNT1A (black bars) and PC3 (grey bars). 
*p<0.05, unpaired t-test.  
 

 

3.4.6 The in vitro effect of sulforaphane on the TCA cycle  
Studies on the beneficial properties of dietary ITCs have reported their indirect antioxidant 

action through the induction of antioxidant defence mechanisms (phase II enzymes) (150). 

Previous work carried out in our research group has demonstrated that SF can protect 

prostate cells against oxidative stress and restore the activity of key enzymes involved in 

the TCA cycle, such as the α-ketoglutarate dehydrogenase (α-KGDH) (unpublished data). 

To investigate whether SF could alter the function of the TCA cycle in an oxidative stress 

environment, PNT1A and PC3 cells were exposed to physiologically relevant 

concentrations of SF before being challenged with a pro-oxidant agent (H2O2).  

 

3.4.6.1. Does sulforaphane alter TCA cycle function at physiological 

concentrations? 

Both PNT1A and PC3 cells were exposed to 2 µM SF or vehicle control (DMSO) for 24 

hours before extraction of TCA cycle intermediates. SF alone did not have an effect on 

citrate in either of the cell lines (Figure 3.20). 
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Figure 3.20 Citrate levels in PNT1A and PC3 cells exposed to SF. Treatment with SF (green 
bars) for 24 hours did not alter the levels of citrate compared to untreated PNT1A (black bars) 
and PC3 (grey bars). Each column represents an average (SD) of biological replicates.  
 

3.4.6.2. Does sulforaphane alter TCA cycle function in the presence of 

oxidative stress? 

3.4.6.2.1. Citrate levels in PC3 cells exposed to a pro-oxidant agent 

The addition of H2O2 to culture media for 30 minutes markedly increases citrate levels in 

PC3 cell extracts (p<0.05). This effect was significantly reduced when cells were exposed 

to SF (2 µM) for 24 hours before being exposed to H2O2 challenge (p<0.05, one-way 

ANOVA) (Figure 3.21). 

 

3.4.6.2.2. Citrate levels in PNT1A cells exposed to a pro-oxidant agent 

The exposure of PNT1A cells to H2O2 for 30 minutes resulted in a similar increase in citrate 

levels as seen in the malignant PC3 cell line; however SF did not have the same effect and 

no reduction was seen in levels of citrate when cells were incubated with SF before 

exposure to H2O2 (Figure 3.22). 
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Figure 3.21 Citrate levels in PC3 cells exposed to SF for 24 hours prior to treatment with H2O2 
for 30 minutes. Each column represents the average (SD) of biological replicates. (*p<0.001 vs 
untreated cells, #p<0.05 vs H2O2, one-way ANOVA.  
 

 
Figure 3.22 Citrate levels in PNT1A cells exposed to SF for 24 hours prior to treatment with 
H2O2 for 30 minutes. Each column represents the average (SD) of biological replicates. 
(*p<0.001 vs untreated cells, one-way ANOVA).  
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3.5. Discussion 
3.5.1 Changes to the TCA cycle in prostate cells 
The TCA cycle is a key metabolic process in mammalian cells (143). Acetyl-CoA from 

glycolysis and other nutrient breakdown enters the TCA cycle to produce citrate. Sufficient 

evidence now exists to support the theory of altered metabolism in prostate cells. Where 

most healthy mammalian cells oxidise citrate in the mitochondria to primarily produce 

energy; prostate cells have the ability to accumulate and subsequently excrete citrate (145). 

It is important to note that this property is seen in epithelial secretory prostate cells. The 

prostate epithelium is made up of different cellular components including epithelial 

secretory cells, basal, neuroendocrine, and stem cells (162). The outer portion of the 

prostate gland (the peripheral zone) forms the majority of the bulk of the gland, and is also 

the zone where most glandular tissue is found. Therefore, higher numbers of epithelial cells 

are seen in the peripheral zone, and similarly higher rates of adenocarcinoma are observed 

in this zone of tissue (162-164). 

 

PCa cells are able to switch back to citrate oxidation. This shift to citrate oxidation provides 

cancer cells with energy. Studies of citrate content from prostate tissue using magnetic 

resonance spectroscopy imaging (MRSI) and NMR techniques, in both rodents and in 

humans, have repeatedly shown a drop in citrate concentration in malignant compared to 

healthy tissue (136, 160). This is different to what is observed in other mammalian tumours, 

where aerobic glycolysis is up-regulated by the action of ACLY enzyme (165). Many 

tumours therefore rely on a truncated TCA cycle in order to increase lipid and FA synthesis, 

which are used to increase tumour biomass (166). In contrast, it would appear that PCa 

cells have to achieve a fine balance of increasing energy supply through citrate oxidation 

as well as increased fatty acid β-oxidation. This would provide a constant supply of acetyl-

CoA for macromolecular synthesis, especially given the fact that most PCa cells have lower 

capabilities of using glucose for this purpose (Figure 3.23) (56).  

 

The ability of PCa cells to enhance lipid synthesis has been demonstrated by several groups 

that collectively show up-regulation in the expression of key genes that regulate crucial 

enzymatic steps, such as FASN, ACLY and alpha-methylacyl-CoA racemase (AMACR). 

AMACR is a peroxisomal enzyme that regulates the entry of branched chain fatty acids to 

mitochondrial β-oxidation (167-170). 
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Figure 3.23 Lipid synthesis and glycolysis in cancer. Sourced from a review by Wu et al. [102].  
 

The analysis of intermediary metabolites presented in this Chapter has demonstrated an 

unexpected pattern of elevated citrate concentration in cancerous PC3 cells, compared to 

both benign PNT1A and RWPE1 cell lines. 

There are several possible causes that may explain these unexpected findings: 

 

§ The immortalisation of the cell line may alter metabolic pathways. 

Primary epithelial cells of the prostate usually senesce after five passages, and therefore 

many commercial suppliers of human cells use viruses such as human papilloma virus 

(HPV) to immortalise cells (171). Although there is no direct evidence linking this process 

with altered TCA cycle function specifically, a similar observation of unexpected citrate 

levels was noted on an NMR study of RWPE1 cells in culture by Teahan and colleagues. 
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The authors were also suggesting a potential role of the immortalisation in explaining their 

unexpected findings (172).  

 

§ Cell culture environment 

There is no doubt that the culture conditions differ to normal body physiology. Many of 

the commonly used prostate cell lines are routinely cultured in recommended growth media 

from their respective suppliers. Although some of these culture media differ slightly, most 

share common ingredients as well as the similarity in general culture conditions, in terms 

of temperature and CO2 levels.  

 

§ Role of culture medium  

PC3 cells are normally grown in HAM-F12 medium and PNT1A in RPMI-1640 medium. 

Therefore, the differences in media composition were explored and summarised in Table 

3.3. The growth media are a mixture of amino acids, minerals, vitamins and sugars. Glucose 

concentrations were very similar in both growth media. Glucose would have a direct impact 

on the levels of pyruvate that enters the TCA cycle, and subsequently the amount of citrate 

produced. There were small amounts of pyruvate sodium and zinc sulphate in HAM-F12 

medium that were lacking in RPMI-1640. In order to overcome the possible effect of the 

medium on the observed level of TCA cycle intermediates, both cells were cultured in 

RPMI-1640 media following identical experimental conditions. FBS was added in equal 

concentrations to all culture media. FBS was also heat-inactivated, therefore the enzymatic 

action, such as that of LDH would have been inactivated equally in all media.  

Overall, the results of LC-MS/MS analysis of TCA cycle intermediates, with the exception 

of lactate, showed higher concentrations in PC3 cells compared to PNT1A, despite the 

change in the culture media. Lysates from PC3 cells still contained significantly higher 

levels of citrate compared to benign PNT1A cells, suggesting that the differences in the 

media were not enough to explain the results. A study by Toghrol and colleagues, 

examining the levels of citrate in rat ventral prostate samples, also showed that exogenous 

pyruvate did not affect the measured citrate levels (173). Although zinc may have an 

important role on the TCA cycle in general, it is unlikely to be responsible for the 

observations seen in this Chapter, as the concentration of zinc in HAM-F12 medium was 

very small (0.0008 g/l). A study by Matheson and colleagues demonstrated that adding zinc 

even at a slightly higher concentration of 0.001 g/l to PC3 cells in culture did not change 

the citrate concentration, nor did it alter the total ATP produced (121).  
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§ The role of aconitase enzyme 

The function of aconitase from cell extracts was higher in the PC3 cell line compared to 

PNT1A, which would be in line with published evidence on the re-activation of aconitase 

in PCa (46, 145, 161). However, it is important to note that the assay used in this study did 

not distinguish between the mitochondrial (M) and cytosolic (C) fractions of the enzyme. 

Similar findings were seen when comparing aconitase activity between PC3-M and PNT2-

C2 cells, which share many similarities with PC3 and PNT1A cell lines (174). In that study, 

the mitochondrial fraction of the enzyme was functionally identical, whereas the cytosolic 

enzyme was much more active in PC3-M cells. 

 

§ Role of gene expression in TCA cycle function and lipid metabolism 

In the absence of zinc and pyruvate sodium in the culture media, there was less citrate in 

PC3 cell extracts but citrate concentrations were still higher compared to PNT1A. To 

exclude a genetic cause for the observed results, gene expression profiles obtained from 

microarray data were interrogated. PC3 and PNT1A cells showed similar levels of ACO2 

expression that encodes for the key rate-limiting enzyme mitochondrial aconitase (Figure 

3.16). Interestingly, the expression of ACO1 was higher in PNT1A cells. ACO1 encodes 

for the cytosolic aconitase that also functions as an iron regulatory binding protein. In its 

metabolic function it is responsible for the interconversion of citrate to iso-citrate in the 

cytoplasm (175). However, data from LC-MS/MS analysis presented in this Chapter 

showed equal amounts of iso-citrate in both PC3 and PNT1A cells, which would suggest a 

negligible effect of ACO1 expression on the observed results. 

Gene expression analysis also showed higher levels of PDK1 in PC3 cells. This gene is one 

of four that encode for PDK, which normally inhibits the action of PDH, facilitating the 

shunting of pyruvate away from the TCA cycle and increasing the production of lactate 

(Figure 3.24). This would be compatible with the results obtained when PC3 cells were 

cultured in HAM-F12 medium, where significantly higher amounts of lactate were 

produced compared to benign cells. 

The expression of ACAT1 and AMACR were higher in PC3 cells. Both of these genes 

encode for mitochondrial enzymes that are linked to FA metabolism. There is evidence that 

increased ACAT1 expression correlates with the grade of PCa on tissue microarray of over 

250 samples (176). AMACR overexpression was found to be associated with PCa risk on 

a meta-analysis of 22 studies including 4385 patients (177). 
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3.5.2 Oxidative stress and TCA cycle dysfunction  
Tumours of different origin often share features of hypoxia and increased free radicals 

(178). PCa is no exception to this, with evidence suggesting increasing levels of ROS are 

associated with worsening degree of differentiation and increased metastatic phenotype 

(179). 

Analysis of TCA cycle intermediates in prostate cell lines has demonstrated an unusual 

pattern of high citrate in malignant PC3 cells, compared to the two benign PNT1A and 

RWPE1 cell lines. ROS have an effect on the function of TCA cycle enzymes through 

direct inhibition, and this has been shown in several cell and animal models (146). 

Subsequently, the levels of citrate and other TCA cycle metabolites may be affected by 

different levels of ROS within a cell culture model. Measurement of baseline ROS 

demonstrated a much higher level of H2O2 in PC3 cells compared to PNT1A. Furthermore, 

inducing oxidative stress in the benign cell line PNT1A almost doubled the amount of the 

citrate produced. A similar increase was also noted when PC3 cells were exposed to ROS. 

It is clear that ROS have a direct effect on the levels of citrate and indeed the other TCA 

cycle intermediate compounds. This may explain the unusual pattern of high citrate in PC3 

cells. In prostate tissue, little doubt exists that citrate concentration, or at least its ratio to 

creatine or choline, is reduced in PCa (119, 136, 160). It could be hypothesised that tumours 

of the prostate in vivo are able to achieve a better balance towards citrate oxidation through 

better control of ROS compared to cultured cells, or it might be that citrate produced in 

vivo in cancer tissue is utilised rapidly to form lipids and FAs.  

 

The dietary bioactive SF from broccoli is known to have anti-oxidant properties, but its 

effect on citrate or other TCA cycle compounds in the prostate has not been previously 

examined. SF is an ITC derived from enzymatic hydrolysis of the parent group of 

compounds termed glucosinolates. Several epidemiological studies suggest a lower rate of 

PCa progression with increased consumption of glucosinolate-containing vegetables (86, 

94). The data presented in this Chapter show that SF alone did not alter the level of citrate 

in either of the cell lines. However, SF was able to prevent the increase in citrate levels 

induced by oxidative stress, as demonstrated by significantly lower levels of citrate found 

when PC3 were exposed to physiologically relevant concentration of SF before an H2O2 

challenge. The protective effect of SF against H2O2- dependent citrate increase could be 

explained through its indirect antioxidant potential (151). Previous findings indicate that 

SF at physiologically relevant concentrations did not significantly alter ROS levels in PC3 

cells; however it was able to suppress H2O2–induced ROS production of approximately 

80% (unpublished data). Most of the TCA cycle enzymes, including aconitase and α-
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KGDH, are known to be sensitive to oxidation, and in the presence of elevated levels of 

ROS, their activity is compromised resulting in an alteration of the TCA cycle function (58, 

180). Several pathological conditions considered as oxidative stress diseases are 

characterised by the loss of α-KGDH enzymatic activity (181-184). Therefore, the ability 

of SF to maintain ROS homeostasis could be crucial for restoring the activity of key TCA 

enzymes, and thus preventing an inefficiency of the TCA cycle. In a study where albino 

mice were exposed to the lung carcinogen benzo (a) pyrene (BaP), which is known to 

induce ROS levels; BaP caused a significant reduction in activity levels of all TCA cycle 

enzymes including aconitase and α-KGDH. Moreover, dietary SF fed to these mice had a 

protective effect against the action of BaP by increasing the activity of these enzymes 

(aconitase, α-KGDH; p < 0.05) only in BaP-treated mice but not in control animals (185). 

In the experimental conditions described in this Chapter, PCa cells may use the higher 

levels of citrate induced by ROS to initiate cholesterol synthesis and steroidogenesis, which 

are known to drive proliferation. By counteracting this ROS-dependent increase of citrate, 

SF could reduce de novo lipogenesis and thus may significantly delay cancer cell growth. 

 

The inactivation of enzymes by free radicals such as H2O2 is not limited to the TCA cycle. 

Several other key metabolic processes that precede mitochondrial oxidation may also be 

affected. The conversion of pyruvate to acetyl-CoA is one such process that relies on the 

function of PDH. The phosphorylation of PDH renders it inactive and this is controlled by 

four kinases belonging to the PDK family. PDK2 is crucial to PDH function and has been 

shown to be susceptible to oxidative stress (59).  

The loss of PDK inhibition would substantiate the conversion of pyruvate to acetyl-CoA, 

and therefore more citrate would be available. In the absence of aconitase, which is also 

sensitive to ROS, the citrate produced is not oxidised. Collectively this might explain the 

rise in citrate when prostate cells are exposed to ROS (Figure 3.24).  
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Figure 3.24 The effect of ROS on pyruvate metabolism and TCA cycle function. A) In normal 
redox balance, pyruvate dehydrogenase kinase 2 (PDHK2 or PDK2) inhibits pyruvate 
dehydrogenase (PDH) limiting the supply of acetyl-CoA to the TCA cycle. Exposure to excess 
ROS disinhibits PDH and enhances the conversion of pyruvate to acetyl-CoA.   
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3.6. Conclusions 
In summary, PC3 cells display an abnormally high level of citrate compared to benign 

PNT1A cells. This is contrary to what is seen in cancerous and benign prostate tissue. The 

factors that influence the TCA cycle function in tissue, such as zinc concentration, do not 

explain the observations in cell culture. When cells were cultured in the same medium 

without exposure to zinc, PC3 cells still had double the amount of citrate compared to their 

benign counterparts.  

In addition, gene expression data supported enhanced citrate oxidation and higher 

conversion of glucose to lactate in PC3 cells, but the opposite was observed in metabolite 

concentrations. Furthermore, exposure to oxidative stress led to citrate accumulation in 

both cell lines, suggesting inhibition of TCA cycle enzymes by ROS. SF at low 

physiological concentrations prevented the H2O2-induced increase in citrate.  

Overall, the data presented in this Chapter suggest that PC3 cells, which are a model for 

aggressive PCa, do not share the same metabolic phenotype of cancer in vivo, and thus a 

better understanding of their usefulness and limitations to study prostate metabolism is 

needed. The data also suggest a mechanism by which SF could influence the redox status 

in the prostate and subsequently alter the metabolic environment through changes in the 

TCA cycle. How this translates in tissue, and indeed in vivo, is examined in the next two 

Chapters.  
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Summary 
In the previous two Chapters, a new LC-MS/MS method was found to accurately detect 

and quantify TCA cycle compounds even at low concentrations. Applying this method to 

prostate cells in culture revealed that benign and cancerous cells do not share the metabolic 

fate of citrate previously described in the literature. In addition, dietary SF was found to 

reduce the effect of ROS on the TCA cycle in both benign and malignant prostate cells. 

However, these findings were limited by the in vitro nature of the experiments. In order to 

further understand the exact changes in the TCA cycle as well as other metabolic pathways 

in the human prostate, non-targeted chromatography analyses were undertaken using an ex 

vivo model. Improving our knowledge of the metabolic profile of two distinct zones of the 

healthy prostate would help to identify potential metabolic pathways that could be modified 

by diet. In addition, it would help to understand the volume and quality of data that can be 

obtained from prostate biopsy specimens using chromatography platforms. Ultimately, this 

knowledge could help design better intervention studies looking at the role of diet in 

prevention or treatment of prostate diseases, such as cancer. 

 

4.1. Introduction 
In the field of PCa, metabolomic approaches have been applied in the search for new 

biomarkers and prognostic tools (119, 186, 187). The unique metabolism of the prostate is 

not a new concept and  has been explored by several research groups in the last three 

decades (42, 145, 173, 188, 189). One of the important discoveries regarding prostate 

metabolism is the ability of healthy prostate epithelial cells to secrete high amounts of 

citrate, this process is reversed in PCa (186, 190). Other metabolic adaptations include the 

ability of prostate cells to accumulate high amounts of cholesterol, which have been 

attributed to enhanced uptake and synthesis of cholesterol (191). FA metabolism has also 

been found to be upregulated in PCa, with several changes to key gene regulators that 

control FA synthesis and oxidation, such as FASN and α- AMACR (80, 167, 168). The 

findings described in Chapter 3 clearly indicate the limitation of using prostate cell models 

in vitro to investigate the central carbon metabolism of the prostate, or indeed the effect of 

exogenous compounds like SF on this pathway, highlighting the need for further 

translational studies. 

 

The outer part of the prostate at the base is called the peripheral zone (PZ), and it is known 

that >75% of PCa is found in this area. In contrast, most benign enlargement that commonly 

afflicts older men and causes restriction to the outflow of urine is seen in the transitional 
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zone (TZ) that surrounds the urethra (Figure 4.1) (162, 164). Despite the numerous 

molecular studies on PCa to date, it is still unclear why cancer is more prevalent in the PZ 

and less in the TZ. Studies so far have identified genetic differences between these two 

zones (192, 193), but whether these changes translate into unique metabolic characteristics, 

such as those aforementioned, is still unknown. 

This Chapter describes the metabolic properties of non-cancerous tissue derived from the 

PZ and TZ of the prostate using a highly sensitive platform based on the combination of 

liquid and gas chromatography with tandem mass spectrometry. The information obtained 

from this ex vivo model will contribute to the effects of a dietary intervention with SF on 

prostate metabolism which is described in Chapter 5 by providing a broad picture of 

metabolites found non-cancerous prostate tissue through a non-targeted metabolite analysis 

by alcohol extraction and downstream high throughput chromatography.  

 

4.2. Aim 
v To explore differences in metabolites between the peripheral and transitional zones 

of the prostate.  

 

v To test the metabolite extraction and analytical methods used on prostate tissue in 

the dietary study (ESCAPE). 

 

4.3. Materials and Methods 
4.3.1 Patient selection 
Eighteen patients undergoing radical prostatectomy for organ-confined PCa were 

consented to allow the use of prostate tissue for research via the tissue bank at the NNUH, 

with ethical approval granted from the Faculty of Medicine and Health Sciences Research 

Ethics of the University of East Anglia (UEA) (Reference number: FMHS 20122014-37). 

 

4.3.2 Tissue sampling procedure 
Patients underwent endoscopic extra peritoneal radical prostatectomy (EERP). All 

procedures were conducted by a single surgeon (Mr Robert Mills, NNUH Urology 

consultant). The prostate gland was removed from the abdominal cavity immediately after 

resection, and rapidly biopsied after extraction to reduce ischaemic artefacts using a 

standard core biopsy instrument. 

A total of 12 biopsy samples were collected from each prostate gland, covering both 

prostate zones and both sides of the prostate, as described below: 
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The extracted whole prostatectomy specimen was placed on a surgical table or equivalent. 

I. The apex and base of the gland were identified, the prostate was then cut 

transversely (axial section) halfway along the gland.  

II. Using the midline and the urethra as guides, equally sized biopsies were taken from 

the different zones, as shown in Figure 4.1, avoiding obvious tumour sites where 

feasible. The procedure was repeated in an identical manner for each side of the 

prostate. 

III. Four cores of tissue were collected from each prostate gland for metabolic profile 

assessment (TZ x2, PZx2), and were placed in 80% HPLC-grade methanol/water 

for 24 hours, as per manufacturers’ guidelines (Metabolon®). The extracts were 

then frozen at -80 ºC, and recovered tissue cores were sent for histological analysis. 

IV. Four tissue samples were collected from each prostate gland and kept in RNAlater 

for storage at -80 °C for future next generation RNA sequencing.  

V. Four tissue samples were snap frozen and stored at -80 ºC for future analyses. 

VI. The remaining prostate gland was sent for histological analysis and tissue banking 

at the Norwich Biorepository (NNUH).  

 
Figure 4.1 Transverse section of the prostate specimen showing sampling sites. A hypothetical 
midline is assumed and samples are taken in mirror fashion from both sides of the gland. PZ, 
peripheral zone marked in red; TZ, Transitional zone marked in blue.   
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4.3.3 Histological analysis  
All prostatectomy specimens were examined by NNUH consultant pathologists. Tissue 

samples that were incubated in methanol were also examined histologically by a single 

pathologist with a specialist interest in urological pathology (Prof Richard Ball, NNUH 

histopathology consultant). 

 

4.3.4 Metabolomic analysis  
Methanol extracts were sent by a temperature-controlled courier service to Metabolon® for 

analysis (Metabolon, Durham, USA). Once received, samples were prepared using an 

automated MicroLab STAR® system from Hamilton Company. Recovery standards were 

added prior to the first step in the extraction process for QC purposes. A series of organic 

and aqueous extractions were carried out to remove the protein fraction while allowing 

maximum recovery of small molecules. The final extract was divided into two fractions; 

one for analysis by LC and one for analysis by GC. Samples were placed on a TurboVap® 

(Zymark) to remove the organic solvent. Each sample was then frozen and dried under 

vacuum. Samples were then prepared for the appropriate instrument, either LC-MS or GC-

MS, as described below. 

 

4.3.5 Liquid chromatography/Mass Spectrometry (LC-MS, LC-MS2) 
The LC-MS analysis was performed using a Waters ACQUITY UPLC and a Thermo-

Finnigan LTQ mass spectrometer, which was equipped with ESI source and linear ion-trap 

(LIT) mass analyser. The sample extract was split into two aliquots, dried, then 

reconstituted in acidic or basic LC-compatible solvents, each of which contained 11 or 

more injection standards at fixed concentrations. One aliquot was analysed using acidic 

positive ion optimized conditions, and the other using basic negative ion optimized 

conditions, in two independent injections using separate dedicated columns. Extracts 

reconstituted in acidic conditions were gradient eluted using water and methanol, both 

containing 0.1% formic acid, while the basic extracts, which also used water/methanol, 

contained 6.5 mM ammonium bicarbonate. The MS analysis alternated between MS and 

data-dependent MS2 scans using dynamic exclusion. 

 

4.3.6 Gas chromatography/Mass Spectrometry (GC-MS) 
The GC-MS analysis was carried out on dried samples that were derivatized under dried 

nitrogen using bistrimethyl-silyl-triflouroacetamide (BSTFA). Samples were analysed on 

a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole mass spectrometer using 
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electron impact ionization and a 5% phenyl column. The temperature ramp was from 40 

°C to 300 °C in a 16 minute period. 

 

4.3.7 Mass determination and MS/MS fragmentation (LC-MS), (LC-

MS/MS) 
An aliquot was analysed by using a Waters ACQUITY UPLC and a Thermo-Finnigan 

LTQ-FT mass spectrometer, which had a linear ion-trap (LIT) front end and a Fourier 

transform ion cyclotron resonance (FT-ICR) mass spectrometer backend. For ions with 

counts greater than 2 million, an accurate mass measurement could be performed. Accurate 

mass measurements could be made on the parent ion as well as fragments. The typical mass 

error was less than 5 ppm. Fragmentation spectra (MS/MS) were typically generated in a 

data dependent manner. 

 

4.3.8 Data quality provided by Metabolon®  

4.3.8.1. Instrument and Process Variability 

Instrument variability was determined by calculating the median relative standard deviation 

(RSD) for the internal standards that were added to each sample prior to injection into the 

mass spectrometers. Overall process variability was determined by calculating the median 

RSD for all endogenous metabolites (i.e., non-instrument standards) present in 100% of the 

pooled samples (Table 4.1). 

 

Table 4.1 Results of process variability 
 

QC Sample Measurement Median RSD 

Internal standards Instrument Variability 6 % 

Endogenous biochemicals Total Process Variability 13 % 

 

4.3.8.2. QA/QC 

For QA/QC purposes, a number of additional samples are included with each day’s 

analysis. Furthermore, a selection of QC compounds were added to every sample, including 

those under test. These compounds were carefully chosen so as not to interfere with the 

measurement of the endogenous compounds. Table 4.2 describes the QC samples and 

compounds. 
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4.3.8.3. Bioinformatics 

Metabolon’s informatics system consisted of four major components: (1) Laboratory 

Information Management System (LIMS), (2) the data extraction and peak-identification 

software, (3) data processing tools for QC and compound identification, and (4) a collection 

of information interpretation and visualization tools. 

 

Table 4.2 Quality control and standardisation procedures performed by Metabolon® 
 

Type Description Purpose 

MTRX3 Large pool of human 
plasma maintained by 
Metabolon that has been 
characterized 
extensively. 

Assure that all aspects of Metabolon process 
are operating within specifications. 

CMTRX Pool created by taking a 
small aliquot from every 
patient sample. 

Assess the effect of a non-plasma matrix on 
the Metabolon process and distinguish 
biological variability from process 
variability. 

PRCS Aliquot of ultra-pure 
water 

Process Blank used to assess the 
contribution to compound signals from the 
process. 

SOLV Aliquot of solvents used 
in extraction. 

Solvent blank used to segregate 
contamination sources in the extraction. 

DS Derivatization Standard Assess variability of derivatization for GC-
MS samples. 

IS Internal Standard Assess variability and performance of 
instrument. 

 

4.3.8.4. Data extraction and Quality Assurance 

The data extraction of the raw mass spectrometry data files yielded information that was 

loaded into a database. Once in the database the information was examined and appropriate 

QC limits were imposed. Peaks were identified using Metabolon’s proprietary peak 

integration software, and component parts were stored in a separate and specifically 

designed complex data structure. 

 

4.3.8.5. Compound identification 

Compounds were identified by comparison to library entries of purified standards or 

recurrent unknown entities. Identification of known chemical entities was based on 

comparison to metabolomic library entries of purified standards. The combination of 

chromatographic properties and mass spectra gave an indication of a match to the specific 

compound or an isobaric entity. Additional entities could be identified by virtue of their 
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recurrent nature (both chromatographic and mass spectral). These compounds have the 

potential to be identified by future acquisition of a matching purified standard or by 

classical structural analysis.   

 

4.3.8.6. Normalisation 

A data normalisation step was performed to correct variation resulting from instrument 

inter-day tuning differences. Each compound was corrected in run-day blocks by 

registering the medians to equal one (1.00) and normalizing each data point proportionately 

(termed the “block correction”). 

 

 

 

4.3.9 Statistical analysis  
Raw area counts for each of the metabolites identified were generated by Metabolon® 

platforms as previously described. The data received from Metabolon were in the form of 

a table that contained the raw and normalised metabolite signals from each individual tissue 

core. These data were used for subsequent statistical analysis carried out with Matlab 

(Mathworks®, USA) and Metaboanalyst software v3.0 (194, 195). The latter is a peer 

reviewed, open-source web-based software that was chosen mainly for its ability to perform 

pathway analyses (194-198). Graphpad prism® software (GraphPad Software Inc., La 

Jolla, USA) was also used to generate illustrations and statistical analyses where indicated.  

 

4.3.9.1. Multivariate analysis  

Principal component analysis (PCA) was used to visualise the variation in the data. A small 

number of drug metabolites had large variations in the dataset and were subsequently 

excluded. Despite this, PCA did not discriminate between the two prostate zones, therefore 

a supervised method using partial least square discriminate analysis (PLS-DA) was adopted 

to query the dataset. The rationale behind using a supervised method was to allow the 

extraction of zone-specific, meaningful data that may have been masked by the large 

variations in the dataset.  

 

4.3.9.2. Univariate analysis  

Individual metabolite differences between the two zones were examined with univariate 

methods. An important aspect was to account for spatial variation between samples (right 

and left sided biopsies) and histological status (cancerous and non-cancerous cores). The 

prostate gland is contiguous and has no anatomical sides, labelling right and left samples 
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was performed to ensure coverage of a wider part of the prostate, which would increase the 

likelihood of obtaining non-cancerous samples. To overcome this variation, analysis of 

variance accounting for both laterality and histological result was used (N-way ANOVA). 

The data uploaded onto Matlab were log10 transformed to reduce variability. Data 

uploaded onto Metaboanalyst were log2 transformed and autoscaled by dividing the 

metabolite values by the standard deviation. 

 

4.3.9.3. Pathway analysis 

Pathway analysis was carried out using Metaboanalyst software. The software utilises the 

uploaded metabolite signals from each zone to perform a pathway enrichment analysis. In 

addition, topology analysis with degree of centrality measurements was carried out using 

the software’s pathway databank that is based on KEGG (196) 

 

4.3.10 Batch variability 
The samples were collected and sent for analysis prospectively. In order to reduce sample 

storage time, the methanol extracts were analysed in two batches. The first batch (n=8 

patients, 32 cores of tissue, 4 from each patient) returned 266 individual metabolites from 

each core. The second batch (n=10 patients, 40 cores of tissue, 4 from each patient) was 

processed after instrument upgrade (Metabolon®, USA) using the exact techniques and 

standardisation procedures that were used in the first batch. The analysis of the second set 

of samples yielded 413 metabolites for each core of tissue. The lists of metabolites with 

associated Human Metabolite Data Base (HMDB) or KEGG IDs (where known) for each 

dataset are described in appendices 1-2. The differences in the total number of identified 

metabolites between batches was in part due to expansion of the metabolite detection in the 

second set of data due to an unanticipated change in Metabolon® platform technology. 

Missing values were deleted in a pair-wise fashion. Additionally, the global analytical 

approach resulted in a number of metabolites that did not have KEGG or HMDB 

identification numbers in both datasets. This led to limitations in pathway analyses, which 

rely on known compound identifiers for determination of metabolite interactions and 

topology analysis.   

 

Table 4.3 shows a summary of the differences between the two sets of data. There were 

160 common metabolites between the two datasets (appendix 3), including drug related 

xenobiotics that were excluded from final statistical analyses (Figure 4.2).  
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Table 4.3 Summary of metabolite identifiers between the two batches of samples 
 

 Sample batch 1 Sample batch 2 

Compounds with KEGG/HMDB ID 210 300 

Metabolites with no KEGG ID 56 113 

Total 266 413 

 

 
Figure 4.2 Venn diagram showing the number of metabolites shared between the two separate 
batches of samples.  
 

4.4. Results 
A total of 72 samples from 18 men undergoing radical prostatectomy were processed (four 

cores per patient = one core from each zone, repeated on both sides of the gland). Table 4.4 

describes the demographic and tumour stage details of the study participants. The average 

age was 62 ± 6.7 years, and average PSA preoperatively was 8.7 ± 4.2 µg/l. All patients 

had an American Society of Anaesthesiologists (ASA) co-morbidity score of 2, which 

reflects the average general health status of men in this age group. An ASA score of 2 

implies the presence of mild diseases only without substantive functional limitations. 

Examples include (but not limited to): current smokers, social alcohol drinkers, well-

controlled diabetes or hypertension, and mild lung disease. Thirteen of 72 cores (18%) were 

cancerous (10 cores from the peripheral and 3 from the transitional zone), these were 

analysed separately as described on page 103. 

 

Table 4.4 Demographic and prostate biopsy characteristics of study patients prior to surgery 
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4.4.1 Analysis of benign tissue  
Metabolite data from tissue samples were collated in one dataset. Thirteen cancerous tissue 

cores were factored in for univariate and multivariate models, details of cancerous samples 

are given in section 4.4.2 on page 103.  

 

4.4.1.1. Multivariate analysis  

A multivariate approach was used to establish whether there were obvious trends in the 

dataset. As the combined dataset of the two batches of metabolite extracts collected over 2 

years contained 160 features for each of the 72 samples, this resulted in a large data matrix. 

PCA analysis demonstrated no obvious clustering of the data. A second supervised method 

termed PLS-DA was used to uncover potentially important metabolites that might have 

been otherwise overlooked. Results of both these methods are described below.  

 

ID Age ASA  PSA 
(ug/l) 

Gleason 
sum 

Gleason 
score 

Laterality No. of +ve 
cores 

% tissue 
involvement 

A 54 2 5.9 7 3+4 BL n/a n/a 

B 64 2 8.8 7 3+4 L 2 n/a 

C 67 2 6 7 4+3 BL 3 12 

D 59 2 6.9 6 3+3 BL 4 10 

E 64 2 8.5 7 4+3 L 1 10 

F 67 2 12.3 7 3+4 R 2 n/a 

G 57 2 4.5 7 3+4 BL 6 25 

H 64 2 8.5 7 3+4 R 1 5 

J 52 2 3.4 6 3+3 R 3 5 

K 73 2 8.5 6 3+3 R 1 3 

L 57 2 4.3 7 3+4 R 2 2 

N 66 2 10 7 3+4 R 4 60 

O 47 2 3.4 7 3+4 R 4 15 

P 57 2 20 7 4+3 R 3 10 

Q 63 2 14 7 4+3 L 5 25 

R 67 2 13.2 7 3+4 R 2 25 

S 68 2 11.9 9 4+5 R 5 8 

T 69 2 7.9 8 4+4 BL n/a n/a 

ASA, American society of anaesthesiologist; PSA, Prostate specific antigen; TRUS, 
Transrectal ultrasound; BL, bilateral; L, Left; R, Right; No. of +ve cores, the number of 
samples that contained cancer (where recorded);% tissue involvement, percentage of cancer 
tissue found in the specimen which indirectly gives an idea of tumour burden (where 
recorded); n/a, data not available.  
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4.4.1.1.1. Principal component analysis 

PCA provided visual information regarding outliers in the data but failed to separate the 

two zones. Several metabolites were significantly higher in a few samples and had a greater 

impact on the results. Excluding some of the extreme values and using log transformation 

resulted in greater homogeneity in the data (Figure 4.3). A second analysis was carried out 

aiming to reduce the impact of histology status and the side of the biopsy (i.e. left or right) 

by calculating the average of right and left side samples for each zone and excluding 

cancerous cores; however, there was still no obvious clustering of the two groups (Figure 

4.4). 

 

4.4.1.1.2. Partial least square-discriminate analysis  

Component 1 of PLS-DA explained 27 % of the variance (Figure 4.5). Incorporating 5 

components accounted for a total of 56.9% of the variance in the data. It is important to 

note that this is a supervised method of analysis that acquires the group origin of each 

sample during the computation. Multiple testing using Leave One Out (LOO) method did 

not give a statistically significant result. However, this analysis identified a number of 

compounds that had the biggest effect on the variation observed in the dataset. Using 

Variable Importance in the Projection (VIP) scores, a list of compounds was generated that 

was later compared with univariate analysis results (Figure 4.6). 
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Figure 4.3 Principal component (PC) scores plot of metabolite data from 72 prostate tissue 
cores after excluding xenobiotic metabolites. Top plot = Zone of origin is highlighted for each 
core of tissue (transitional zone, TZ, red; peripheral zone, PZ, blue). Bottom plot = Samples 
coloured by patient.   
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Figure 4.4 Principal component analysis (PCA) after calculating the average value of right and 
left sided samples and excluding cancer cores failed to separate the prostate zones. PZ, 
peripheral zone (orange triangles); TZ, transitional zone (blue squares).  

 
Figure 4.5 Scores plot between the selected principal components (PCs). The explained 
variances are shown in brackets. Multiple testing using Leave One Out method was not 
statistically significant. PZ, peripheral zone (orange triangles); TZ, transitional zone (blue 
squares).   
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Figure 4.6 Important features identified by PLS-DA. The coloured boxes on the right indicate 
the relative concentrations of the corresponding metabolite in each zone of tissue. Variable 
Importance in Projection (VIP) is a weighted sum of squares of the PLS loading, taking into 
account the amount of explained Y-variation in each dimension. VIP scores ≥2 are considered 
highly significant. PE, phosphoethanolamine; PC, phosphatidylcholine; GPE, glycerol-3-
phosphorylethanolamine; GPG, glycero-3-phosphoglycerol; GPI, glycerl-3-phosphoinsositol; 
PZ, peripheral zone; TZ, transitional zone.  
 

4.4.1.2. Univariate analysis 

Univariate methods were used to explore the differences in metabolite signals between the 

peripheral zone and transition zone, taking into account which side the biopsy was taken 

from, and the histological result. Using N-way ANOVA, a number of metabolites were 

found to be significantly different between the two prostate zones (Table 4.5).  

 

Table 4.5 List of statistically significant metabolites between the two prostate zones 
 

Compound Super 
pathway 

Sub pathway Trend in 
prostate 
zone 

P value 

N-acetyl-aspartyl-
glutamate (NAAG) 

Amino Acid Glutamate Metabolism ↑ PZ <0.001 

Serotonin Amino Acid Tryptophan Metabolism ↑ PZ <0.001 

Gamma-
aminobutyrate 
(GABA) 

Amino Acid Glutamate Metabolism ↑ PZ 0.003 

Ophthalmate Amino Acid Glutathione Metabolism ↑ PZ 0.007 
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Compound Super 
pathway 

Sub pathway Trend in 
prostate 
zone 

P value 

Isobutyrylcarnitin
e 

Amino Acid Leucine, Isoleucine and 
Valine Metabolism 

↑ PZ 0.008 

Hypotaurine Amino Acid Methionine, Cysteine, 
SAM and Taurine 
Metabolism 

↑ PZ 0.014 

Spermidine Amino Acid Polyamine Metabolism ↑ PZ 0.018 

Tryptophan 
betaine 

Amino Acid Tryptophan Metabolism ↑ PZ 0.021 

Phenylacetylgluta
mine 

Amino Acid Phenylalanine and 
Tyrosine Metabolism 

↑ PZ 0.024 

Glutathione, 
reduced (GSH) 

Amino Acid Glutathione Metabolism ↑ PZ 0.029 

5-oxoproline Amino Acid Glutathione Metabolism ↑ PZ 0.035 

3-indoxyl sulfate Amino Acid Tryptophan Metabolism ↑ PZ 0.045 

Lactate Carbohydrate Glycolysis, 
Gluconeogenesis, and 
Pyruvate Metabolism 

↑ TZ 0.046 

Succinylcarnitine Energy TCA Cycle ↑ PZ <0.001 

Acetylcholine Lipid Neurotransmitter ↑ PZ <0.001 

1-(1-enyl-
palmitoyl)-GPE 
(P-16:0) 

Lipid Lysolipid ↑ PZ <0.001 

Glycerophosphoryl
choline (GPC) 

Lipid Phospholipid Metabolism ↑ PZ <0.001 

1-palmitoyl-GPE 
(16:0) 

Lipid Lysolipid ↑ PZ <0.001 

1-oleoyl-GPE 
(18:1) 

Lipid Lysolipid ↑ PZ 0.001 

1-palmitoyl-GPG 
(16:0) 

Lipid Lysolipid ↑ PZ 0.001 

1-linoleoyl-GPE 
(18:2) 

Lipid Lysolipid ↑ PZ 0.001 

Glycerophosphoet
hanolamine 

Lipid Phospholipid Metabolism ↑ PZ 0.001 

Docosapentaenoate 
(n6 DPA; 22:5n6) 

Lipid Polyunsaturated Fatty 
Acid (n3 and n6) 

↑ PZ 0.002 

Choline phosphate Lipid Phospholipid Metabolism ↑ TZ 0.004 

1-(1-enyl-stearoyl)-
GPE (P-18:0) 

Lipid Lysolipid ↑ PZ 0.004 

1-stearoyl-GPS 
(18:0) 

Lipid Lysolipid ↑ PZ 0.004 

Octanoylcarnitine Lipid Fatty Acid Metabolism 
(Acyl Carnitine) 

↑ PZ 0.008 
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Compound Super 
pathway 

Sub pathway Trend in 
prostate 
zone 

P value 

1-oleoyl-GPI (18:1) Lipid Lysolipid ↑ PZ 0.008 

Dihomo-linolenate 
(20:3n3 or n6) 

Lipid Polyunsaturated Fatty 
Acid (n3 and n6) 

↑ PZ 0.01 

Dihomo-linoleate 
(20:2n6) 

Lipid Polyunsaturated Fatty 
Acid (n3 and n6) 

↑ PZ 0.01 

1-palmitoleoyl-
GPC (16:1) 

Lipid Lysolipid ↑ PZ 0.01 

Eicosenoate (20:1) Lipid Long Chain Fatty Acid ↑ PZ 0.01 

1-palmitoyl-GPI 
(16:0) 

Lipid Lysolipid ↑ PZ 0.014 

1-stearoyl-GPI 
(18:0) 

Lipid Lysolipid ↑ PZ 0.015 

Sphingosine Lipid Sphingolipid Metabolism ↑ PZ 0.025 

1-stearoyl-GPC 
(18:0) 

Lipid Lysolipid ↑ PZ 0.026 

Oleoylcarnitine Lipid Fatty Acid Metabolism 
(Acyl Carnitine) 

↑ PZ 0.035 

Deoxycarnitine Lipid Carnitine Metabolism ↑ PZ 0.039 

1-linoleoyl-GPC 
(18:2) 

Lipid Lysolipid ↑ PZ 0.042 

1-(1-enyl-oleoyl)-
GPE (P-18:1) 

Lipid Lysolipid ↑ PZ 0.046 

1-arachidonoyl-
GPE (20:4) 

Lipid Lysolipid ↑ PZ 0.048 

Stearoylcarnitine Lipid Fatty Acid Metabolism 
(Acyl Carnitine) 

↑ PZ 0.050 

1-palmitoyl-GPC 
(16:0) 

Lipid Lysolipid ↑ PZ 0.050 

3-
aminoisobutyrate 

Nucleotide Pyrimidine Metabolism, 
Thymine containing 

↑ PZ <0.001 

N1-
methyladenosine 

Nucleotide Purine Metabolism, 
Adenine containing 

↑ PZ 0.001 

Guanosine Nucleotide Purine Metabolism, 
Guanine containing 

↑ TZ 0.002 

Inosine Nucleotide Purine Metabolism, 
(Hypo)Xanthine/Inosine 
containing) 

↑ TZ 0.003 

Pseudouridine Nucleotide Pyrimidine Metabolism, 
Uracil containing 

↑ TZ 0.01 

Cytidine 5''-
monophosphate 
(5''-CMP) 

Nucleotide Pyrimidine Metabolism, 
Cytidine containing 

↑ PZ 0.02 
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Compound Super 
pathway 

Sub pathway Trend in 
prostate 
zone 

P value 

Adenosine Nucleotide Purine Metabolism, 
Adenine containing 

↑ TZ 0.05 

4-
hydroxyhippurate 

Xenobiotics Benzoate Metabolism ↑ PZ 0.005 

Hippurate Xenobiotics Benzoate Metabolism ↑ PZ 0.043 

GPE, glycerol-3-phosphorylethanolamine; GPG, glycero-3-phosphoglycerol; GPI, 
glycerol-3-phosphoinositol; PZ, peripheral zone; TZ, transitional zone. p values from N-
way ANOVA 

 

4.4.1.3. Pathway analysis  

Impact scores derived from pathway analysis can provide useful information as certain 

metabolites occupy important positions in a given pathway therefore small changes to such 

compounds have larger effects on the overall function of a given biochemical pathway even 

when their relative concentrations do not reach statistical significance. One way of 

quantifying this is through determining the number of connections metabolites have to 

other compounds and whether they occupy rate-limiting positions. This analysis can be 

achieved in similar fashion to gene functional analysis. Data from mass spectroscopy were 

uploaded onto Metaboanalyst, it was possible to perform an enrichment analysis that 

provided a p value with multiple testing from the comparison of the expected number of 

metabolites in a pathway vs the number of compounds detected. A  topological value was 

derived from metabolites that were statistically significant on univariate analysis. Even 

though only a small number of pathways reached statistical significance after multiple 

testing, by examining the overrepresented pathways in each prostate zone it became clear 

that several metabolic processes are different.  

Steroid hormone biosynthesis and fatty acid biosynthesis were among the most 

overrepresented pathways in the PZ, compared to phenylalanine biosynthesis and the 

pentose phosphate pathway, both of which were overrepresented in the TZ (Figure 4.7 and 

Figure 4.9). Alanine and glycerophospholipid metabolisms had the higher impact scores in 

PZ and TZ, respectively (Figure 4.8 and Figure 4.10).   
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Figure 4.7 Pathways that are overrepresented in the peripheral zone. Glutamate metabolism, 
steroid hormone biosynthesis, and fatty acid biosynthesis were among the highly significant 
pathways. Each bar represents the p value of each pathway expressed as –log10.  

 
Figure 4.8 Impact scores obtained from topology analysis in the peripheral zone. Metabolites 
that are topologically more central within a given pathway, or have more connections to 
others, have a larger impact on a given pathway and will result in a higher impact score.   
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Figure 4.9 Pathways that were overrepresented in the transitional zone. Phenylalanine, 
pentose phosphate pathway, and pyruvate metabolism are highly significant. Each bar 
represents the p value of each pathway expressed as –log10.  

 
Figure 4.10 Impact scores obtained from topology analysis in the transition zone. Metabolites 
that are topologically more central within a given pathway, or have more connections to 
others, have a larger impact on a given pathway and will result in a higher impact score.   
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4.4.1.3.1. Tricarboxylic acid cycle metabolites 

The TCA cycle is central to all mammalian metabolism. In PCa, distinct changes in levels 

of citrate, and the ratio of citrate to choline-plus-creatine have been previously observed. 

Most PCa tissues display a lower citrate level and lower citrate/choline+creatine ratio 

compared to non-cancerous prostate tissue (136, 160). No previous data exists on whether 

these ratios differ within the same gland. Comparing the ratio of citrate/choline-+ -creatine 

between the PZ and TZ did not show a statistically significant difference (p=0.3) (Figure 

4.11).  

In the previous Chapters, the levels of TCA cycle intermediates, including citrate, measured 

in prostate cultured cells were surprisingly different from published in vivo prostate tissue 

studies. The TCA cycle-related metabolites from the two prostate zones were compared. 

Alpha-ketoglutarate and oxaloacetate were not detected in any of the samples. Levels of 

citrate were overall lower in the PZ but this did not reach statistical significance (p=0.18) 

(Figure 4.12). .  

 

 
Figure 4.11 A comparison of citrate to choline-plus-creatine ratio between the two prostate 
zones. Data are expressed as citrate/choline-plus-creatine ratio of the peripheral zone (PZ) and 
transitional zone (TZ) for each patient. Cancerous samples were deleted in pairwise fashion.  
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Figure 4.12 A comparison of TCA cycle-related metabolites between the two prostate zones. 
Cancerous samples were excluded from this analysis. PZ, peripheral zone; TZ, transitional 
zone.  
 

4.4.1.3.2. Acetylcholine, N-acetyl-aspartyl-glutamate and serotonin 

§ Acetylcholine 

Acetylcholine (Ach) is a neurotransmitter that stimulates muscarinic receptors. Several 

subtypes have been identified in the urinary tract, including the prostate (199). Levels of 

Ach were significantly higher in the PZ (Table 4.5). 

 

§ N-acetyl-aspartyl-glutamate  

N-acetyl-aspartyl-glutamate (NAAG) is a recognised neurotransmitter, which acts as an 

agonist at group II metabotropic glutamate receptors, mostly described at neuron ends and 

glia. NAAG is degraded by NAAG-peptidases with two common classes, which have been 

identified in prostate tissue (200). Levels of NAAG were higher in PZ (Table 4.5). 

 

§ Serotonin  

Levels of serotonin (5-hydroxy tryptamine, 5-HT) were higher in the PZ (Table 4.5). 5-HT 

is a biochemical messenger synthesized from the amino acid L-tryptophan, and has been 

linked to PCa cell growth (201). 

 

4.4.1.3.3. Lipid metabolites 

Analysis of the combined data from both sample batches showed a total of 56 lipid 

compounds. Several of these metabolites were preferentially seen in the PZ. The majority 
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belonged to the lysolipid sub pathway but also included polyunsaturated fatty acids (PUFA) 

and long-chain fatty acids (Table 4.6). Lipid metabolism plays a vital role in many human 

cancers, including that of the prostate (202). Lysolipids in particular have structural roles 

in cell membranes, as well as being degradable to free fatty acids, and have been suggested 

as biomarkers for PCa (203).  

 

Table 4.6 Summary of statistically significant lipid metabolites identified in each of the 
prostate zones 
 

Compound Super 
pathway 

Sub pathway Trend in 
prostate 
zone 

P value 

Acetylcholine Lipid Neurotransmitter ↑ PZ <0.001 

1-(1-enyl-
palmitoyl)-GPE (P-
16:0) 

Lipid Lysolipid ↑ PZ <0.001 

Glycerophosphorylc
holine (GPC) 

Lipid Phospholipid 
Metabolism 

↑ PZ <0.001 

1-palmitoyl-GPE 
(16:0) 

Lipid Lysolipid ↑ PZ <0.001 

1-oleoyl-GPE (18:1) Lipid Lysolipid ↑ PZ 0.001 

1-palmitoyl-GPG 
(16:0) 

Lipid Lysolipid ↑ PZ 0.001 

1-linoleoyl-GPE 
(18:2) 

Lipid Lysolipid ↑ PZ 0.001 

Glycerophosphoeth
anolamine 

Lipid Phospholipid 
Metabolism 

↑ PZ 0.001 

Docosapentaenoate 
(n6 DPA; 22:5n6) 

Lipid Polyunsaturated Fatty 
Acid (n3 and n6) 

↑ PZ 0.002 

Choline phosphate Lipid Phospholipid 
Metabolism 

↑ TZ 0.004 

1-(1-enyl-stearoyl)-
GPE (P-18:0) 

Lipid Lysolipid ↑ PZ 0.004 

1-stearoyl-GPS 
(18:0) 

Lipid Lysolipid ↑ PZ 0.004 

Octanoylcarnitine Lipid Fatty Acid Metabolism 
(Acyl Carnitine) 

↑ PZ 0.008 

1-oleoyl-GPI (18:1) Lipid Lysolipid ↑ PZ 0.008 

Dihomo-linolenate 
(20:3n3 or n6) 

Lipid Polyunsaturated Fatty 
Acid (n3 and n6) 

↑ PZ 0.010 

Dihomo-linoleate 
(20:2n6) 

Lipid Polyunsaturated Fatty 
Acid (n3 and n6) 

↑ PZ 0.010 

1-palmitoleoyl-GPC 
(16:1) 

Lipid Lysolipid ↑ PZ 0.011 
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Compound Super 
pathway 

Sub pathway Trend in 
prostate 
zone 

P value 

Eicosenoate (20:1) Lipid Long Chain Fatty Acid ↑ PZ 0.011 

1-palmitoyl-GPI 
(16:0) 

Lipid Lysolipid ↑ PZ 0.014 

1-stearoyl-GPI 
(18:0) 

Lipid Lysolipid ↑ PZ 0.015 

Sphingosine Lipid Sphingolipid 
Metabolism 

↑ PZ 0.025 

1-stearoyl-GPC 
(18:0) 

Lipid Lysolipid ↑ PZ 0.026 

Oleoylcarnitine Lipid Fatty Acid Metabolism 
(Acyl Carnitine) 

↑ PZ 0.035 

Deoxycarnitine Lipid Carnitine Metabolism ↑ PZ 0.039 

1-linoleoyl-GPC 
(18:2) 

Lipid Lysolipid ↑ PZ 0.042 

1-(1-enyl-oleoyl)-
GPE (P-18:1) 

Lipid Lysolipid ↑ PZ 0.046 

1-arachidonoyl-
GPE (20:4) 

Lipid Lysolipid ↑ PZ 0.048 

Stearoylcarnitine Lipid Fatty Acid Metabolism 
(Acyl Carnitine) 

↑ PZ 0.050 

1-palmitoyl-GPC 
(16:0) 

Lipid Lysolipid ↑ PZ 0.050 

GPC, glycerol-3-phoshpocholine; GPE, glycerol-3-phosphorylethanolamine; GPG, 
glycero-3-phosphoglycerol; GPI, glycerl-3-phosphoinsositol; PZ, peripheral zone; TZ, 
transitional zone. P value derived from n-way ANOVA 

 

4.4.2 Analysis of cancerous tissue 

Thirteen tissue cores in total were malignant. Table 4.7 describes the histological details of 

this group of samples. As most cancers of the prostate are found in the PZ, the focus of this 

analysis was to compare the results of metabolite profiles between the cancerous and non-

cancerous samples in PZ only. Paired samples from six individuals were included in this 

analysis. 

 

 

 

 

 

Table 4.7 Summary of cancerous samples identified in the cohort 
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Patient Sample ID Zone Gleason score Pattern 

A PZ-M1-A Peripheral 7 4+3 

A PZ-M2-A Peripheral 7 4+3 

C PZ-M2-C Peripheral 6 3+3 

E PZ-M1-E Peripheral 7 3+4 

E PZ-M2-E Peripheral 7 3+4 

F TZ-M1-F Transition 7 3+4 

G PZ-M1-G Peripheral 7 3+4 

K PZ_M2_K Peripheral 7 3+4 

L TZ_M1_L Transition 7 3+4 

N PZ_M2_N Peripheral 7 3+4 

O TZ_M2_O Transition 6 3+3 

P PZ_M2_P Peripheral 7 4+3 

Q PZ_M1_Q Peripheral 7 4+3 

 

A paired sample t-test was performed on matching PZ cancer and non-cancer samples. 

Although limited by a small number of individuals, the data showed four metabolites that 

were significantly different between cancer and non-cancer tissue (Table 4.8). 

Reduced nicotinamide adenine dinucleotide (NADH) was significantly lower in cancer 

tissue, whereas levels of the lysolipid palmitoleoyl-glycero-3-phosphocholine and the 

phospholipid breakdown product phosphoethanolamine were significantly higher in cancer 

tissue.  

 

Table 4.8 List of metabolites significantly different between cancerous and non-cancerous 
samples 
 

Compound p-value Trend in cancer 

NADH 0.01 Down 

Uridine 0.006 Down 

Palmitoleoyl-glycero-3-phosphocholine 0.02 Up 

Phosphoethanolamine 0.03 Up 

 

 

 

4.5. Discussion 
. 

Delineating the so-called “prostate metabolome” has been the focus of many research 

studies. One notable study is that of Sreekumar and colleagues that examined over 40 
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prostate tissue samples with matched urine and plasma from men with benign and biopsy-

proven PCa (204, 205). From a total of 518 different metabolites identified, sarcosine was 

one of the compounds that was highly correlated with PCa aggressiveness. Further targeted 

analyses of sarcosine by the same group on a different set of prostate tissue samples, 

showed no sarcosine in benign tissue and a proportional increase in sarcosine from 

localised to metastatic cancer, suggesting that sarcosine could be used as a biomarker for 

diagnosis. Similar studies by two independent research groups, however, either failed to 

associate sarcosine from urine samples with PCa or did not find a correlation as strong as 

that of earlier studies (206-208). This highlights some of the difficulties in reproducing 

metabolomic analyses, which may be the result of variation in methodology and, to a 

degree, heterogeneity of study populations. Interestingly, sarcosine was not detected in any 

of the samples presented in this Chapter.  

 

The majority of diagnosed PCa is found in the peripheral zone compared to the transition 

zone (163). This zonal predilection for cancer has been explored from a gene expression 

standpoint by several research groups. For example, a publication by van der Heul-

Nieuwenhuijsen suggested 199 genes that were preferentially expressed in the PZ, and 147 

that were preferentially expressed in the TZ, based on microarray analyses of benign 

prostate tissue (192). The metabolic phenotype of the prostate zones remains understudied. 

It is not unreasonable, however, to assume that if genetic changes exist between the two 

zones, that these would translate into distinct metabolic alterations as many of the altered 

genes would directly, or indirectly, control the transcription of key proteins affecting a 

potentially wide range of biochemical processes. 

 

The data presented in this Chapter describe, for the first time, metabolite profiles of non-

cancerous tissue obtained from different zones of the prostate in men with localised PCa 

who underwent prostatectomy procedures. Using a solvent and water mixture to extract 

metabolites enabled the histological assessment of each individual tissue sample, in 

addition to the histological examination of the whole prostate gland. This collectively 

provided ample histopathological data to support the metabolite findings. 

 

4.5.1 The peripheral zone of the prostate has a unique metabolic signature 
After excluding metabolites that belonged to drug metabolism pathways, multivariate and 

univariate analyses of the combined data showed several metabolites that were significantly 

more abundant in the PZ compared to the TZ. Several of these metabolites belong to distinct 

super- or sub-pathways. 
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4.5.1.1. Neurotransmitters 

Levels of NAAG were higher in the PZ. NAAG is a neurotransmitter that is found in 

abundance in the mammalian nervous system. It is catabolised to glutamate and N-acetyl-

L-aspartate (NAA) by two groups of glutamate carboxypeptidases (GCP II and III). Both 

GCPs are membrane bound and have also been identified in the human prostate. GCPII in 

the prostate is called prostate specific membrane antigen (PSMA) (200). PSMA is 

expressed in benign and cancerous prostate tissue; however, the degree of expression is 

higher in cancer and increases with cancer severity (209). Radiolabelled indium coupled 

with an anti-PSMA antibody has shown some promise in detecting PCa recurrence after 

surgery (ProstaScint® scan, Cytogen Corporation, Princeton, NJ, U.S). Inhibitors of these 

GCPs have also shown anti-tumour properties in animal models of PCa (210). There are 

no studies comparing the immunohistochemical staining of PSMA in different zones of the 

prostate; however from the data presented here, the abundance of NAAG in benign 

peripheral zone tissue could indicate the low activity of GCPII. McDunn and colleagues 

found the breakdown product NAA to be associated with organ-confined PCa when 

compared to cancer that had extended beyond the capsule of the prostate, indicating more 

catabolism of NAAG with advanced disease (115) 

 

A second neurotransmitter of interest is 5-HT, or serotonin. Levels of 5-HT were 

significantly higher in the PZ. 5-HT is a metabolite derived from tryptophan, and functions 

as a neurotransmitter but also has growth promoting properties. Several reports exist 

demonstrating the role of serotonin in inducing cell growth and proliferation in several 

cancer cell lines, including androgen resistant PCa (211-213). It is accepted that in hormone 

resistant PCa, neuroendocrine (NE)-like cells emerge and are associated with poor 

prognosis. NE cells typically secrete serotonin, amongst other neurotransmitters, that are 

thought to have an autocrine as well as a paracrine effect, promoting cell growth and 

migration (214). Higher levels of serotonin in the PZ therefore could favour the growth and 

migration of cancer.  

 

Finally, Ach was also found to be higher in the PZ, compared to the TZ. Ach is a 

neurotransmitter associated with the parasympathetic nervous system. In a study looking 

at the change in type of innervation that prostate tissues receive in different grades of PCa, 

researchers found a strong correlation between the levels of Ach and high-grade/advanced 

disease in both animal models and in human tissue (215). 
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Overall, the finding of increased neurotransmitter metabolites in the PZ could represent the 

abundance of nerve tissue in this part of the prostate compared to the TZ; however, a 

significant body of evidence seems to suggest that these same metabolites are also 

associated with cancer and correlate to cancer severity (201, 211-215). This could indicate 

that the PZ tissue environment favours cancer development or tumour propagation, which 

could provide one possible explanation to the cancer predilection to this part of the gland. 

However, the neurotransmitters discussed above were not significantly different when 

comparing cancer to non-cancer samples within the PZ in this cohort. This might be a result 

of the small number of cancerous samples or a true reflection of the zone specificity of 

these metabolites.  

 

4.5.1.2. Products of intermediary metabolism 

As previously discussed, the prostate gland is characterised by high levels of zinc. This is 

thought to inhibit the mitochondrial enzyme aconitase, leading to citrate accumulation. PCa 

tissue has been repeatedly shown to have low zinc concentration and less citrate compared 

to benign tissue (144). Multivariate and univariate analyses of TCA cycle metabolites in 

both zones did not show a significant difference. Moreover, the ratio between citrate and 

choline plus creatine was equal when comparing the PZ and TZ in benign tissue, as well as 

paired cancerous and non-cancerous samples from the PZ. The citrate/choline ratio has 

been repeatedly shown to be low in PCa, using functional magnetic resonance imaging 

(MRI) techniques (119, 172)  

Glucose is normally metabolised to pyruvate, which enters the mitochondria where it is 

converted to acetyl CoA by the action of PDH enzyme. Acetyl CoA, which can also be a 

product of fatty acid β-oxidation, enters the TCA cycle and is converted to citrate. Cancer 

cells have been shown to express high levels of PDK that inhibits PDH allowing more 

pyruvate to be converted to lactate. In this analysis, lactate was significantly higher in the 

benign TZ compared to the PZ. This could represent an ischaemic artefact, however, in the 

absence of a change in pyruvate and other TCA cycle intermediates that are highly 

influenced by tissue oxygen levels, this is less likely. Higher levels of succinylcarnitine 

were found in the PZ. Succinylcarnitine can be derived from the TCA cycle intermediate 

succinyl-CoA, which is the precursor of succinate by attaching succinyl as the acyl group 

with amino acid carnitine. Succinylcarnitine can be a source of both succinate and carnitine 

that could potentially have an impact on energy levels within the cells through the TCA 

cycle and mitochondrial oxidation of fatty acids (216). 
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4.5.1.3. Lipid metabolites 

The metabolic analysis described in this Chapter has identified a total of 56 lipid 

compounds belonging to different metabolic sub-pathways. There is an accepted view of 

enhanced lipid synthesis in cancers in general to provide energy and membrane building 

blocks to rapidly growing cells (65). The PZ showed higher amounts of lipid metabolites 

that belong to the lysolipid metabolic sub pathway compared to the TZ, as well as other 

phospholipids, acylcarnitines, PUFA, and long-chain FA. Moreover, pathway analysis 

revealed that steroid biosynthesis, FA, and lipid metabolic pathways were overrepresented 

in the PZ (Figure 4.7). A previous study looking at the metabolic properties of PCa found 

nucleotides, lysolipids, carnitines, and free FA all to be linked to cancer and associated 

with increased chance of extra-capsular extension of the disease, which carries worse 

prognosis (115).  

Lysophosphatidylcholines (LysoPC) attach to FAs of varying lengths, and not only serve 

as cell membrane building blocks, but also as signalling molecules and transport systems 

that deliver FAs to mitochondria and peroxisomes (202). One common FA incorporated 

into lysolipids is 16-carbon palmitate, forming several lysolipid combinations. Palmitate 

containing lysolipids were significantly higher in the PZ compared to the TZ. This was also 

the case for lysolipids containing 18-carbon fatty acids (Table 4.6). 

Higher levels of four acyl carnitines were identified in the PZ of the prostate. These medium 

and long-chain acyl carnitines contain FAs linked to a carboxyl group via an ester bond. 

Acyl carnitines are sourced from diet as well as produced endogenously, and have been 

linked to PCa and associated with aggressive forms of the disease (216, 217). A study 

conducted by Giskeødegård and colleagues compared plasma metabolites from men with 

PCa and those with benign prostate hyperplasia (BPH). The authors found higher levels of 

acylcarnitines in PCa cases compared to BPH controls, including octanoylcaritine (203) 

The latter was found to be significantly higher in the PZ tissue compared to the TZ in this 

dataset (Table 4.6). Overall, the experimental findings indicate enhanced lipid metabolism 

in the PZ of the prostate, which could explain the predisposition of this zone to cancer. 

The finding of PUFAs in prostate tissue presented in this Chapter supports the potential 

role that dietary intake of these compounds could have on prostate health. Many published 

studies examining the association of these compounds, that are found in fish oils, with PCa, 

assessed plasma rather than end-organ tissue levels (218, 219). The debate about the benefit 

or potential harm of these diet-derived compounds has not been resolved. A recent meta-

analysis examining this particular issue however, found n3 PUFAs eicosapentaenoic acid 

(EPA) and docosahexaenoic acid (DHA) both to be associated with high-grade PCa. 

Conversely, plasma levels of docosapentaenoate or DPA were associated with lower- PCa 
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risk (219). In the data presented here, EPA and DHA were both identified in TZ and PZ 

tissue but were not statistically different, whereas DPA was one of the PUFAs found to be 

more abundant in the benign PZ compared to the benign TZ. 

 

4.6. Conclusion 
This Chapter has demonstrated that the extraction of metabolites from prostate tissue is 

feasible. Several classes of compounds that are known to be associated with cancer 

phenotypes were found to be upregulated in the PZ of the prostate. These metabolites, such 

as neurotransmitters and lipids, may play a role in the development or progression of cancer 

by acting as substrates that promote cancer proliferation. Furthermore, the data demonstrate 

how compounds delivered from diet can accumulate in prostate tissue, which may have 

biological consequences that could be exploited in human intervention trials. In the next 

chapter, the effect of SF on prostate metabolism in men with prostate cancer is explored 

through a human dietary intervention study using broccoli. 
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Summary 
PCa is a major public health problem for which there is a strong need for new preventive 

strategies based on lifestyle and drug interventions. Observational studies suggest that 

healthy eating patterns and increasing physical activity are associated with lower rates of 

PCa progression. Higher intake of cruciferous vegetables in particular has been associated 

with both a decreased risk of PCa progression and biochemical recurrence following radical 

treatment; however, the underlying biological mechanisms behind this remain poorly 

defined. The previous Chapters highlighted (i) the limitations of exploring the effects of SF 

from broccoli on prostate metabolism using in vitro cancer models and (ii) the feasibility 

of using a combined metabolomic approach in an ex vivo model for the profiling of tissue 

biopsies. Taking into consideration the experimental findings described in Chapter 4, it was 

envisaged that the application of this metabolomic protocol in assessing the effects of a diet 

intervention could yield high quality data with a translational value. This Chapter describes 

the design of a randomised double-blinded intervention trial that was undertaken to 

determine whether a diet rich in SF will result in changes in metabolites within prostate 

tissue in vivo (ESCAPE, ClinicalTrials.gov Identifier: NCT01950143). All aspects related 

to the design and conduct of the trial are fully outlined in the current Chapter, whereas the 

metabolomic data obtained from a sub-cohort of patients are presented in Chapter 6. 

 

5.1. Introduction  
5.1.1 Prostate cancer and cruciferous vegetables: epidemiology, human 

studies and cellular mode of actions 
Data obtained from epidemiological studies suggest that diets rich in cruciferous 

vegetables, such as broccoli, may reduce the incidence and progression of PCa (94). These 

vegetables are unique in their ability to accumulate sulfur-containing glycosides known as 

glucosinolates, including glucoraphanin. When consumed, glucoraphanin is converted to 

the isothiocyanate Sulforaphane, either by the action of the plant enzyme myrosinase or by 

the gut microbiota. The food and health research group at QIB has developed a cultivar of 

broccoli (Beneforte®) over the last twenty years that delivers a threefold higher 

concentration of SF than standard broccoli (98). Plant breeders at Seminis seeds developed 

the Beneforte® broccoli cultivar, which is subject to very stringent quality control and is 

now widely commercialised in US and several European countries, including the UK. The 

breeders have developed another broccoli cultivar, which has been termed Beneforte Extra, 

that has almost double the amount of glucoraphanin compared to Beneforte® broccoli. 
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A large body of experimental evidence in model systems has shown that SF has preventive 

properties against cancer through multiple mechanisms of action, such as modulation of 

gene expression and cell signalling pathways (100, 220). This Chapter describes a 

randomised double-blinded intervention trial titled Effect of Sulforaphane on prostate 

CAncer PrEvention (ESCAPE) (ClinicalTrials.gov Identifier NCT01950143), which has 

been designed to test the hypothesis that a SF-rich diet can alter the metabolism and gene 

expression of prostate tissue in men with early stage PCa, in a manner that would reduce 

the probability of emergence and progression of aggressive cancerous clones. Traka and 

colleagues have shown that a broccoli-rich diet can alter prostate gene expression in men 

with high-grade prostatic intraepithelial neoplasia (HGPIN), a condition that is believed to 

be a precursor to PCa (221). However, their study was not able to distinguish between the 

biological effects of broccoli as a whole, which is a chemically complex food consisting of 

several classes of bioactive compounds, vitamins and minerals, and that of glucoraphanin 

and its isothiocyanate derivative, SF. The dietary intervention tested in the ESCAPE study 

has been designed to deliver SF through the consumption of three types of soups containing 

different doses of glucoraphanin (SF precursor) within a constant broccoli background, 

thereby enabling the effect of SF to be investigated against the background of the other 

compounds present in the plant.  

 

5.1.2 Active surveillance for low- and intermediate-risk prostate cancer 

cases 

Studies have shown that men with low-grade organ confined PCa are at low risk of 

progression (26, 27). This category of men can often avoid or delay radical treatment which 

can be associated with significant morbidity (28). AS is the process by which patients with 

organ-confined PCa are managed expectantly with regular monitoring. Treatment is only 

initiated when signs of progression are observed. Identifying patients suitable for AS can 

be done through risk stratification using a number of variables like PSA, Gleason score 

sum (29), and clinical stage to calculate the likelihood of disease progression or harbouring 

more aggressive disease. A number of tools exist that stratify patients with PCa into risk 

categories, and many have undergone extensive testing and validation (30). For the 

purposes of the ESCAPE study, D’Amico’s risk groups were used to define low-risk PCa 

as those men with Gleason score ≤6, PSA <10 µg/l and stage ≤ T2a (tumour-node-

metastasis staging system 2002), and intermediate risk as those with Gleason score 7, PSA 

of 10–20 µg/l, and stage T2b-T2c (31). This classification is also adopted by NICE. 

The local database for PCa in NNUH indicates that just over 300 patients with low to 

intermediate-risk disease are currently on AS (32).  
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5.1.3 Prostate biopsy  
 AS patients require regular follow up to ensure that monitoring is still suitable. The disease 

progression is assessed mainly by physical examination of the prostate and PSA blood test. 

It is often necessary to repeat the prostate biopsies to ensuure the disease has not changed 

histologically. At the time of writing the ESCAPE study protocol there were no national 

guidelines for the timing of repeat biopsies in men on AS, as a result the decision to repeat 

the biopsies was often made on an individual or institutional basis. Since, NICE has 

produced an AS protocol that recommends PSA testing every 3 to 4 months in the first year 

of surveillance together with 6- to 12 –monthly physical examination of the prostate and 

repeat prostate biopsies every 12 months (222). However, there is no consensus on the 

technique of obtaining needle core biopsies of the prostate, or the exact number of samples 

to be taken for men on AS. In general, the 1st diagnostic biopsy that men undergo is carried 

out with TRUS guidance under local anaesthesia (LA), although more recently several 

other imaging modalities replacing or augmenting ultrasound are being investigated, such 

as the use of MRI fusion.  

 

One difficulty in prostate biopsy is that PCa is often not localised to one part of the gland. 

In addition, areas of cancer are not readily palpable on examination in early stages of the 

disease, and visualising these cancerous lesions during the biopsy on ultrasound is 

unreliable (223). The ESCAPE protocol was designed to allow tissue collection through a 

transperineal route (TPB biopsies). This technique enables biopsies to be taken from a 

wider area of the prostate, resulting in a more effective sampling of the entire gland. The 

trial protocol has been designed to carry out a biopsy procedure at the start of the study, 

and a further biopsy procedure at the end of the dietary intervention in 12 months. Although 

volunteers will have two additional biopsy procedures during the study, they will not need 

further samples for their routine follow up or care at the hospital, in addition, volunteers 

will be able to have TPB which offers better sampling and more accurate disease 

assessment ensuring safety of continued AS. 

 

5.2. Aim 
v To describe the outline of a dietary intervention trial designed to study the effect 

of SF on the prostate. 
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5.3. Material and Methods 
5.3.1 Trial management 
ESCAPE is a multi-institutional trial supported by the Prostate Cancer Foundation (PCF) 

(USA). All the institutions involved in this trial are affiliated to the Norwich Research Park 

(UK). Investigators at QIB designed the protocol [Dr Omar Al Kadhi (Urology Specialist 

Registrar & PhD student and Dr Antonietta Melchini (senior scientist)] in collaboration 

with clinicians at the NNUH [Dr Omar Al Kadhi and Dr Robert Mills (Consultant 

Urologist)]and co-investigators at the UEA. QIB is acting as sponsor and NNUH as the 

investigator site. The protocol was approved by the QIB Human Research Governance 

Committee in March 2013 and subsequently by the National Research Ethics Service 

(NRES) East of England – Cambridge South Research Ethics Committee (REC ref: 

13/EE/0110) (Figure 5.1). ESCAPE has been adopted by the National Institute for Health 

Research Clinical Research Network (NIHR) Clinical Research Network (CRN) Portfolio 

in May 2013 (Study ID: 14482). The trial was registered on ClinicalTrials.gov 

(NCT01950143), International Clinical Trials Registry Platform (ISRCTN40496794), and 

Clinical Trials database Cancer Research UK.   

 

5.3.2 Individual contributions to the trial 
I am part of the ESCAPE study team. My roles included the following 

• Trial design 

• Writing the study protocol with Dr Melchini (senior scientist at QIB) 

• Writing the patient information sheet (PIS) 

• Completing the IRAS paperwork with Dr Melchini 

• Attendance at the Research Ethics Committee meeting 

• Identifying suitable participants from the Urology department at the 

NNUH with Dr Mills 

• Conducting study talks at the QIB Human Nutrition Unit 

• Collecting  transporting biological samples from hospital site to QIB 

laboratory facilities  on study days 

• Conducting outpatient clinic follow up for study patients and collecting 

trial data 

• Analysing metabolic data from prostate tissue on a subgroup of patients 

presented in Chapter 6 
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5.3.3 Trial population 
The target population were men aged 18-80 years with a BMI between 19.5 and 35 kg/m2, 

with low-risk PCa (PSA < 10 ng/ml; Gleason sum = 6; T category < T2) or intermediate-

risk PCa patients (PSA 10-20ng/ml; Gleason sum = 7 (including selected Gleason 4+3 = 7 

cases that will not be advised to undergo radical prostatectomy; T category T1 or T2) who 

have already decided to take up AS or monitoring. Eligibility criteria have been chosen to 

reflect the population of men on AS within the region from which patients will be recruited 

via NNUH. Eligibility criteria are listed in Table 5.1. 

 

5.3.4 Recruitment policy 
Eligible patients were identified and recruited by myself and Mr Robert Mills (consultant 

urologist) at the NNUH. Identified patients were provided with an information pack 

consisting of a letter of invitation, participant information sheet (PIS) and response slip to 

be sent to the study team using a prepaid envelope. Interested volunteers were then invited 

to attend an information exchange at the QIB Human Nutrition Unit (HNU) to ensure their 

full understanding of the study protocol prior to obtaining written informed consent. 

Volunteers were given at least 3 days to decide whether they would like to take part or not. 

After this consideration period those volunteers interested in taking part were seen in clinic 

at the NNUH to give written informed consent and undergo the first clinical visit. 
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Figure 5.1 Gaining ethical and regulatory approvals for conducting the ESCAPE study.   
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Table 5.1 Eligibility criteria for the trial 
 

Inclusion criteria Exclusion criteria 

Males  Those taking 5α-reductase inhibitors or 
testosterone replacement supplements 

On active surveillance for low- and 
intermediate-risk PCa (Gleason score ≤7, 
PSA ≤20 µg/l, stage ≤ T2) 

Those on warfarin treatment 

Aged 18-80 years Those diagnosed with diabetes  

BMI between 19.5 and 35 kg/m2 Those diagnosed with or suspected to be at 
high-risk for human immunodeficiency virus 
(HIV) and/or hepatitis virus infection 

Smokers and non-smokers Those allergic to any of the ingredients of the 
broccoli soups 

 Those taking dietary supplements or herbal 
remedies which may affect the trial outcome  

 Parallel participation in another research 
project that involves dietary intervention  

 Anybody related to or living with any member 
of the trial team 

 

5.3.5 Trial design 
The trial outline is presented in Figure 5.2. ESCAPE is a randomised double-blinded 

intervention recruiting men with low-risk or intermediate-risk PCa on AS. Patients were 

allocated randomly to one of three dietary arms in which they were required to consume 

one portion of broccoli soup per week, delivering different levels of glucoraphanin (SF 

precursor). This has been part of their normal diet for one year. The three types of soup 

contained standard broccoli (i), glucoraphanin-enriched broccoli (Beneforté®) (ii), or 

glucoraphanin-enriched broccoli Beneforté Extra (iii). The trial has involved lifestyle 

assessments and collection of prostate biopsies, blood and urine samples at baseline and 

after 12 months. Blood markers were monitored at regular intervals (every 3-4 months) as 

part of the participants’ on-going clinical follow up. Prostate biopsies were obtained 

through TPB or standard TRUS-guided biopsy. TPB is a clinical procedure carried out 

under a general anaesthetic, which gives more detailed spatial information of the cancer 

within the prostate compared to other standard techniques. However, the patients had the 

possibility to choose TRUS-guided biopsy if they did not wish to undergo TPB or if they 

were considered unsuitable for general anaesthesia. The trial dropout rate was 

approximately 8% due to the clinical progression of PCa within the 12-month period. In 

the event of clinical progression, patients discontinued the intervention and received advice 

from their clinicians. If they proceeded to prostatectomy, they were asked if they would 
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donate part of their prostate gland for research purposes. At the end of the 12-month 

intervention, patients were offered the possibility to continue the broccoli diet for a further 

12 months after giving a separate written consent. They were required to eat one portion of 

broccoli soup per week for a further 12-month period, but did not attend extra hospital visits 

for the purpose of the trial or give additional biological samples. Following ethical 

approval, the trial team created an anonymised database with clinical follow-up data for 

the extended intervention period.  

 

5.3.6 Trial objectives 
The primary and secondary aims of this trial are listed in Table 5.2. The trial was designed 

to provide information about changes in global gene expression and metabolism in response 

to a SF-rich diet. Recruited men on AS for PCa were randomly allocated to three dietary 

arms and received different levels of SF over a 12-month period. The trial design was 

chosen to determine whether changes in gene and metabolite levels induced by SF would 

occur in a dose-related fashion. The trial also incorporated analyses of blood and urine 

samples from the trial cohort to obtain additional information on the systemic effects of the 

dietary intervention.  

Furthermore, it will be determined whether dietary induced changes (if any) are related to 

genetic polymorphisms including glutathione S-tranferase Mu 1 (GSTM1). It is well-

established that GST genotype influences the effects of dietary ITCs (224). When ITCs are 

absorbed, they are subjected to enzymatic conjugation with the tripeptide γ-

glutamylcysteineglycine (GSH) that is catalyzed by GSTs [14]. Several studies have 

reported that the protective effects associated with dietary consumption of ITCs were 

greatest in individuals who were glutathione S-transferase theta 1 (GSTT1)- and GSTM1-

null, rather than those who were GSTT1- and GSTM1-positive. However, there are a few 

studies that showed opposite or no association [15].  

Finally, the physical activity of the trial population will be assessed to determine whether 

metabolic changes in response to diet are correlated with their physical activity. 
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Figure 5.2 ESCAPE study outline.  
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Table 5.2 Trial primary and secondary aims 
 

Primary Aim Secondary Aims 

To determine whether a 12-month diet rich in 
broccoli results in changes in global gene 
expression in prostate tissue from men on AS 
for low- and intermediate- risk PCa. 
Comparisons will be made between three 
diets, each delivering different levels of 
glucoraphanin/SF, to distinguish the 
biological effects of glucoraphanin/SF from 
that of the broccoli itself. 

To determine whether a 12-month diet rich in 
broccoli results in changes in levels of 
metabolites in prostate tissue from men on AS 
for low- and intermediate- risk PCa. 

 To determine whether metabolic changes in 
response to diet within prostate tissue are 
correlated with metabolite levels in plasma. 

 To determine whether plasma levels of PSA 
and other biomarkers are affected by diet. 

 To demonstrate if the extent of modulation of 
gene expression and metabolite changes by 
diet is affected by the glutathione S-transferase 
Mu 1 (GSTM1) or other relevant genotypes. 

 To determine whether the dietary intervention 
affects the levels and nature of RNA found 
within urinary exosomes. 
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5.3.7 Trial procedure 
A flow chart of the overall trial design is presented in Figure 5.3. Patients were asked to 

undergo 5 separate visits during their participation in the trial. Consent for the trial and 

clinical procedures were obtained by research nurses and urologists. In total, volunteers 

were asked to sign three consent forms: trial consent form (1), The Norwich Biorepository 

consent form (2), and NNUH standard patient agreement to investigation (3). GPs were 

informed by letter of their patients’ participation if the volunteer gave consent. A basic 

health questionnaire including results from the measurement of blood pressure, heart rate, 

and BMI was completed at the start of the trial and repeated at 12 months. Before the biopsy 

procedures, patients had a pre-operative assessment carried out by telephone for patients 

undergoing TRUS-biopsy under local anaesthesia, or face to face with a nurse specialist at 

the NNUH for those undergoing TPB under GA. The pre-operative assessment at the 

NNUH involved electrocardiography (ECG) for patients >50 years of age or those with 

history of a cardiac condition, urine dipstick test to exclude infection, and pre-operative 

blood tests. All patients were tested for methicillin-resistant Staphylococcus aureus 

(MRSA) with skin swabs. Patients were asked not to eat cruciferous vegetables 2 days prior 

to the biopsy procedure where study samples (blood, urine, prostate biopsies) were 

collected at the same time. All biological material collected at NNUH was taken to QIB or 

sent to the biorepository for appropriate processing and storage. 

 

5.3.8 Trial intervention 

Three types of soup containing standard broccoli, glucoraphanin-enriched broccoli 

(Beneforté®), or glucoraphanin-enriched broccoli Beneforté extra broccoli, were 

specifically developed for this trial. These soups deliver contrasting amounts of the SF 

precursor, glucoraphanin, within a constant broccoli background.  

Beneforté® and Beneforté extra broccoli varieties were developed by conventional 

breeding. Beneforté® contains a single allele of the Myb28 transcription factor from B. 

villosa that elevates the glucoraphanin content from approximately 5 to 15 µmoles/g fresh 

weight (fw) (225). Beneforté extra contains two Myb28 villosa alleles that elevate the 

glucosinolate content to approximately 30 µmoles/g fw. Standard broccoli, Beneforté®, 

and Beneforté extra plants have the same appearance and flavour, thus enabling a double-

blinded trial to be undertaken. The three types of broccoli soups were prepared by an 

international food manufacturing company (Bakkavor®). In order to minimise intra-batch 

variability, trial soups were produced using fresh broccoli and then appropriately stored at 

-20 °C until delivered to participants. The volume and packaging of the study diet were 

specifically chosen to facilitate safe storage and delivery.  
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5.3.9 Phytochemical analysis of the trial intervention 
LC-MS analyses to quantify glucoraphanin concentrations were performed in each batch 

of soups produced for the trial as described below.  

 

5.3.9.1. Glucosinolate analysis 

LC-MS analysis was carried out to identify the major GLSs present in the broccoli soups. 

GLSs were extracted from freeze-dried powder (100 mg) of soups made with (i) standard 

broccoli, (ii) glucoraphanin-enriched broccoli (Beneforté®), or (iii)) glucoraphanin-

enriched broccoli Beneforté extra broccoli using hot 70% (v/v) aqueous methanol followed 

by the addition of an internal standard (sinigrin, 50 µl). Briefly, samples were incubated in 

a water bath preheated at 70 °C for 30 minutes to inactivate the myrosinase enzymes. After 

centrifugation at 3,000 x g for 5 minutes at room temperature, supernatants were collected 

and allowed to drip slowly through a mini-column packed with DEAE- Sephadex A25, 

which was washed twice with 0.5 ml of de-ionized water and 0.5 mL of 0.02 M sodium 

acetate buffer at pH 5. GLSs were desulfated by adding 75 µl purified sulfatase to the 

column, which was allowed to stand at room temperature overnight. The desulfated-GLSs 

(DS-GLSs) were eluted with 1.25 ml of deionized water, and analysed by positive ion 

atmospheric pressure chemical ionisation (APCI+) LC-MS. 

 

5.3.9.2. Analysis of other sulfur- containing compounds  

Freeze-dried powder (~2 g) of soups made with standard broccoli, Beneforté®, and 

Beneforte extra broccoli was used to analyse sulfur containing compounds (total sulfur, 

SMSCO, sulfate). Sulfur was measured by using inductively coupled plasma-mass 

spectrometry (ICP-MS). ICP-MS analysis was carried out by an external company 

(Eurofins Scientific, UK). Sulfate and SMCSO were measured by LC-MS/MS analysis 

following a method developed by an QIB analytical chemist (Dr Shikha Saha). Briefly, 

freeze-dried powder (20-30 mg) was mixed with a water solution (1 ml) of polyvinyl 

polypyrrolidone (25 mg/ml) for 1 hour at 4 °C and subsequently incubated at 95 °C for 15 

minutes. After centrifugation, supernatants were filtered (pore size: 0.45 µm) into HPLC 

vials and analysed on Agilent 6490 Mass spectroscopy in MRM mode to measure sulfate 

concentrations. A porous graphitic carbon column (PGC, Hypercarb) and formic acid as 

mobile phase (1% in water + 1% in acetonitrile) were used to carry out this analysis. A 

calibration curve was obtained by using a range of concentrations from  

0.25 mM to 2 mM of sulfate standard purchased from Sigma®. SMCSO was measured by 

following the extraction method described by Bernaert and colleagues (226). Freeze-dried 
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powder (~50 mg) was mixed with 5 ml of O-(carboxymethyl)-hydroxylamine 

hemihydrochloride for 10 minutes. After centrifugation, the supernatant was diluted with 

0.1% formic acid in water, and analysed by LC-MS/MS using an Agilent 6490 mass 

spectrometer with a photodiode array detector. The analyses of SMCSO and sulfate in the 

broccoli soup samples were performed by Dr Shikha Saha.  

 

5.3.10 Randomisation  
Recruited patients were randomized to one of three arms: 

Arm I       one portion (300 g) per week of standard broccoli soup 

Arm II     one portion (300 g) per week of glucoraphanin-enriched Beneforté® 

broccoli soup 

Arm III     one portion (300 g) per week of Beneforté extra broccoli soup 

The randomisation was undertaken through an electronic randomisation generator 

(www.randomization.com). This uses a method called “Block randomisation”, whereby 

participants are equally distributed to the three arms. 

 

5.3.11 Lifestyle assessment 

Regular exercise and diets rich in broccoli have both been associated with the reduction in 

the risk of progression of PCa from localised to aggressive disease (95). The participants’ 

habitual diet was measured during the intervention to gain information on their broccoli 

intake. The QIB standard food diary was used to record food intake, beverages, and 

supplements consumed over a 7-day period (incorporating 7 different days, including 

weekends) before starting the intervention, then at 6 and 12 months. Food diaries were 

analysed using DietPro7 as UK food composition tables.  

Considering the demographics of the trial population, Community Healthy Activities 

Model Program for Seniors (CHAMPS) physical activity questionnaires were used because 

they include the assessment of types as well as levels of physical activity that are 

meaningful and appropriate for older adults, including both light and more vigorous 

activities (227).  

 

5.3.12 Trial compliance 
Two main approaches were used to monitor compliance. Patients were asked to: (i) 

complete a 7-day diet diary and (ii) fill in record sheets on a weekly basis recording soup 

consumption. In addition, ESCAPE team members routinely delivered frozen soups to the 

participants’ houses and collected record sheets and pot lids.  
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Figure 5.3 Trial flow chart.  
 

5.4. Experimental methods 
5.4.1 Prostate biopsies and processing 
Prostate sampling was carried out at the NNUH. TPB procedures were performed in the 

operating theatre under general anaesthesia with intravenous aminoglycoside antibiotic 

prophylaxis, in accordance with the NNUH Trust guidelines. Patients were placed on their 

back for the duration of the procedure, which lasted between 45-60 minutes. In selected 

cases, a catheter was placed through the urethra into the bladder to allow better visualisation 

of the urethra and facilitate urinary drainage; these catheters were removed prior to 

discharge. A trans-rectal ultrasound probe was used to visualise the prostate. The skin was 

prepared with topical surgical antiseptic solution (povidone iodine). A pre-designed 

template for brachytherapy procedures (procedure whereby radioactive seeds are implanted 

into the prostate through the perineum) was then used to guide the biopsy needle which is 
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passed through the holes on the template into the prostate gland with one skin puncture per 

core (Figure 5.4). Each group of needle samples were labelled separately. After completion 

of the procedure, a dressing was applied to the perineum. Although this is a day-case 

procedure (i.e. patients are discharged home the same day), some patients required an 

overnight stay in hospital.  

 

 
Figure 5.4 Outline of the setup for transperineal template biopsy procedure of the prostate.  

 

If the patient was ineligible for TPB, TRUS biopsy was carried out under local anaesthesia. 

Patients were given oral fluoroquinolone antibiotics before the procedure and further doses 

supplied to reduce the risk of infection post-operatively, as per the NNUH Trust guidelines. 

An ultrasound probe was inserted into the rectum that guided the sampling needles into the 

prostate after instilling local anaesthesia (lidocaine 1%). TRUS biopsy procedures took 

approximately 30 minutes.  

For each participant, prostate biopsies (n=8) were collected at baseline and after a 12-month 

intervention period for metabolomic and gene expression analyses. Three biopsy samples 

were deposited into pre-labelled vials containing room temperature extraction solvent (one 

biopsy per vial). Following incubation at room temperature (up to 24 hours), these biopsy 

samples were removed from the extraction solvent and underwent histopathological 

assessment, allowing detailed correlation of metabolic analysis with histopathological 

findings. The vials containing extracted metabolites were stored at  

-80 °C until required for metabolomic analysis (204). A further three prostate biopsy cores 

were immersed in RNA-later solution on collection and subsequently stored at  



Chapter 5. ESCAPE trial 

126 | P a g e  

 

-80 °C until required for global and targeted gene expression analyses. Two prostate biopsy 

cores were snap frozen for future research.  

 

5.4.2 Histological analysis 

Template prostate biopsies from ESCAPE patients were fixed in 10% formal saline and 

processed in paraffin wax blocks using standard techniques. H&E-stained sections, 4 µm 

thick, were cut from each block at 3 levels for histopathological assessment. If necessary, 

deeper levels or other techniques (for example, immunohistochemistry) were employed to 

establish a definitive diagnosis for each of the biopsies. If PCa was present, it was given a 

Gleason sum and the proportion of tumour within the biopsy was estimated. Evidence of 

perineural or lymphovascular invasion was determined as well as extracapsular spread. The 

biopsies for metabolomic analysis were also histopathologically assessed after metabolite 

extraction. After 24 hours incubation with methanol, biopsy cores were processed in 

paraffin wax blocks and a single H&E-stained section was prepared. Each section was 

assessed and its various components (stroma versus glands; inflammation, etc.) were 

described. If cancer was present, it was given a Gleason sum and estimation of the 

proportion of the length of the core involved.  

 

5.4.3 Blood sampling and processing 

Blood samples were collected at baseline and after a 12-month intervention period for 

standard haematological and biochemical analyses (full blood count, urea and electrolytes, 

liver function tests, fasting glucose, glycated haemoglobin (HbA1c), lipid profile, and 

PSA), genotyping and metabolomic analysis. Haematological and biochemical analyses 

were performed by the NNUH Laboratory Medicine departments using Sysmex XE2100 

analysers and Abbott Accelerator system. The same hospital platforms were used to 

monitor blood markers (fasting glucose, lipid profile, PSA) at regular intervals (every 3-4 

months) during the intervention. Genomic DNA was extracted from each blood sample 

using the QIAamp DNA Mini kit protocol (Qiagen Inc.) prior to genotyping for GSTM1 

using real-time PCR according to the method of Cotton and colleagues (228), and other 

selected genotypes considered relevant for the purposes of this study. Plasma metabolomic 

analysis will be performed once the collection of paired samples is completed in October 

2016. Plasma samples will be analysed using the same metabolomic platforms described 

in Chapter 6. 
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5.4.4 HbA1c analysis 
K2+EDTA-collected whole blood was used for a quantitative determination of 

Haemoglobin A1c concentration (HbA1c). HbA1c is an indicator of the mean daily blood 

glucose concentration over the preceding 6-8 weeks (229). The analysis was carried out by 

using a latex enhanced immunoturbidimetric assay suitable for use on RX Daytona 

analyser. This method allows the measurement of both HbA1c and total haemoglobin 

concentrations. HbA1c is reported as a percentage of the total haemoglobin concentration 

(% HbA1c). Briefly, whole blood samples were pre-treated with a protease enzyme to lyse 

red blood cells and cause hydrolysis of the haemoglobin. Total haemoglobin was measured 

by converting all the haemoglobin derivatives into haematin in an alkaline solution of a 

non-ionic detergent as previously described (230). 

The production of alkaline haematin results in an increase in absorbance at 600 nm. HbA1c 

was measured by using a latex agglutination inhibition assay. This assay is based on the 

use of a synthetic polymer containing multiple copies of the immunoreactive portion of 

HbA1c, which causes agglutination of latex coated with HbA1c specific mouse monoclonal 

antibodies. When HbA1c is not present, this polymer agglutinates with the HbA1c R2 

reagent, and the antibody-coated micro particles in the HbA1c R1 reagent increase the 

absorbance measured at 700nm. In the presence of HbA1c the rate of agglutination slows 

down because it competes with the HbA1c agglutinator for antibody binding sites on the 

latex, resulting in a decrease of absorbance. Thus, the increase in absorbance is inversely 

proportional to the concentration of HbA1c in the sample, which is calculated through a 

calibration curve. HbA1c and Total Haemoglobin values expressed in g/dl are then used to 

calculate % HbA1c in each sample. 

 

5.4.5 Metabolite profiling 
Metabolite profile analyses was performed on biopsy cores and plasma samples collected 

before and after the 12-month intervention. Metabolomic analysis was carried out by 

Metabolon® (Metabolon, Durham, USA). Metabolon® is a service and diagnostic products 

company with the ability to identify and produce a profile of up to 350 known plasma 

metabolites using standard metabolomics techniques, such as LC-MS and GC-MS (204). 

The final analyses will be performed once the sample collection is completed; however the 

methods were tested as part of the pilot study described in Chapter 6. 

 

5.4.6 Urinary biomarkers 

First pass urine samples were collected following DRE prior to the prostate biopsy 

procedure. Intact exosomal RNAs were obtained from DRE urine following the method of 
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Miranda et al. (231). Utilising gene-specific primers and chum RNA, cDNA was generated 

and multiplex analysis (up to 30 probes) of total cellular or exosomal RNA biomarkers will 

be performed, starting from as little as 3 ng RNA per sample, by using TaqMan® Array 

Microfluidic Cards (Applied Biosystems). Genes assayed will include a combination of 

control probes, together with diagnostic and established prognostic biomarkers. 

 

5.4.7 Biobanking for future research 
Patients were asked to sign a separate consent form agreeing to donate additional samples 

to the local biobank for research purposes. It is envisaged that the banking of tissue, blood 

and urine samples collected from this cohort of patients at the Norwich Biorepository will 

be invaluable for obtaining additional information for this trial and for designing further 

studies.  

 

5.4.8 Statistical analysis 
There are no data reporting the global effect of a diet delivering increasing concentrations 

of SF or other ITCs on gene expression or metabolite profiles within the prostate or at a 

systemic level. As the primary data analysis is based upon the use of transcriptomic and 

metabolite data, neither of which were used in prior diet intervention studies, it was not 

possible to perform conventional power calculations. Rather than define the entire 

experiment as a pilot study, it was decided to assess the sample size to report statistically 

significant changes in gene expression by two methods: i) “Sample Size for Microarray 

Experiments” developed by the Section of Bioinformatics of the University of Texas M. 

D. Anderson Cancer Centre (232), and ii) reported calculations based on previously 

published microarray data (233). 

It has been estimated that 26 subjects in each of the three dietary groups (78 in total) are 

required to detect 1.5-fold differences with a significant difference (p<0.02) between any 

two of the three dietary groups, with a power of 80% and a standard deviation of 0.66 

(based on a log2 scale of gene intensity measurements). 

 

5.5. Results 
5.5.1 Trial cohort 
Fifty eligible patients were recruited from the NNUH (Figure 5.5). Since October 2013, the 

study response rate was 49% (84 response letters out of 170 information packs sent out) 

with a recruitment rate of 67% (50 recruited out of 74 study talks). Recruited patients were 
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randomised to the three dietary arms through an electronic randomisation generator as 

previously described (Diet A, n=17; Diet B, n=16; Diet C, n=17). 

 
Figure 5.5  Recruitment rate in the ESCAPE study. Recruitment was terminated at 50 
volunteers. 
 

5.5.2 Baseline anthropometric measurements  

Baseline anthropometric measurements of the trial population are shown in Table 5.3. 

Statistical analysis indicated that there were no significant differences between dietary arms 

for any variable except for the systolic blood pressure, which was significantly different 

between Diet C and the other two dietary arms (p=0.05 vs Diet A; p=0.03 vs Diet B). 

 

Table 5.3 Baseline anthropometric measurements 
 Diet A (n=17) Diet B (n=16) Diet C (n=17) 

Age (yrs) 66±5.926 66±7.042 66±6.102 

BMI (kg/m2)  26.47±3.215 27.74±2.180 27.79±3.595 

Systolic BP (mm Hg) 141.5± 15.590 141.2±16.900 150.2±14.720 

Diastolic BP (mm Hg) 82.13±10.270 87.56±10.420 86.93±9.580 

5.5.3 Baseline blood measurements  

Levels of plasma lipids (Figure 5.6), glucose (Figure 5.7) and PSA (Figure 5.8) at baseline 

did not show any significant difference between the three study arms.  
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Figure 5.6 Lipid profile at baseline. A) Cholesterol, B) LDL-cholesterol, C) HDL-cholesterol, 
and D) triglycerides measured in patients’ serum before starting the diet intervention. Box 
plots represent the median of each sample with 25th and 75th percentiles. Whiskers indicate the 
range. p=0.10 (A), p=0.22 (B), p=0.15 (C), p=0.21 (D); p values from one way ANOVA followed 
by Tukey’s multiple comparison test. 
 

 
Figure 5.7 Fasting glucose levels (A) and HbA1c % (B) at baseline. Green lines indicate healthy 
ranges in adult males. Box plots represent the median of each sample with 25th and 75th 
percentiles. Whiskers indicate the range.   p=0.81 (A), p=0.33 (B); p values from one way 
ANOVA followed by Tukey’s multiple comparison test.  



Chapter 5. ESCAPE trial 

131 | P a g e  

 

 
Figure 5.8 PSA concentrations at baseline. Box plots represent the median of each sample with 
25th and 75th percentiles. Whiskers indicate the range. p=0.25; p value from one way ANOVA 
followed by Tukey’s multiple comparison test.  
 

The level of urea, creatinine, electrolytes (Na, K) and estimated glomerular filtration rate 

(eGFR) were measured in order to indirectly reflect the participants’ kidney function. Liver 

function was also checked by measuring albumin, globulin, bilirubin, total proteins and 

liver enzymes, including alanine aminotransferase (ALT) and alkaline phosphatase (ALP). 

Figure 5.9 and Figure 5.10 indicate normal kidney and liver function for all participants 

randomised to the three diet interventions. 

 
Figure 5.9 Kidney function assessed in randomised participants before starting the 
intervention.K; potassium (mmol/L), Urea; urea (mmol/L), CREAT; Creatinine (mmol/L), 
eGFR; estimated glomerular filtration rate (ml/min/1.73m2), Na; sodium (mmol/L). Data 
presented as mean (SD).  
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Figure 5.10 Liver function assessed in randomised participants before starting the 
intervention. Bilirubin; total bilirubin (µmol/L), ALT; alanine aminotransferase (U/L), 
Globulin; globulin (g/L), Albumin; albumin (g/L), ALP; alkaline phosphatase (U/L), Protein; 
total protein (g/L). Data presented as mean (SD).  
 
 

5.5.4 Phytochemical characterization of the trial intervention 

5.5.4.1. Glucosinolate levels 

LC-MS analysis was carried out to identify the major GLSs present in standard broccoli, 

glucoraphanin-enriched broccoli (Beneforté®), and extra glucoraphanin-enriched broccoli 

(Beneforté extra) soups. This work was conducted by Dr Shikha Saha (analytical 

biochemist at the QIB). Two aliphatic compounds [4-Methylsulfinylbutyl glucosinolate 

(glucoraphanin) and 3-Methylsulfinylpropyl glucosinolate (glucoiberin)] and four indole-

GLSs (hydroxyindolylmethyl-, indolylmethyl-, 1-methoxyindolylmethyl- and 4-

methoxyindolylmethyl-GLSs) were identified by their target ion and further MS/MS 

measurements after fragmentation of (m+H)+ (Figure 5.11). DS-GLSs were quantified by 

addition of sinigrin as internal standard. Glucoraphanin content was 42.5±0.782 

µmoles/300g fw, 179.88±4.212 µmoles/300 g fw and 442.40 µmoles/300 g fw in standard, 
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Beneforté® and Beneforte extra broccoli soups, respectively (Figure 5.12).

 
 

Figure 5.11 LC-MS chromatograms of study soups. A) Chromatogram of soups made with 
standard broccoli, B) Beneforte® broccoli, and C) Beneforte extra broccoli. IS, internal 
standard; G, glucoraphanin. Graph obtained with permission from Dr Shikha Saha (ESCAPE 
study protocol data)  
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Figure 5.12 Glucoraphanin concentrations in standard (n=10), Beneforte® (n=7) and 
Beneforte extra (n=11) broccoli soups. Data presented as mean (SD). ***p<0.0001 vs standard 
broccoli soup (one-way ANOVA). Graph obtained with permission from Dr Shikha Saha 
(ESCAPE study protocol data).  
 

5.5.4.2. Total sulfur, SMCSO, and sulfate levels  

Sulfate, SMCSO, and total sulfur content of standard, Beneforté® and Beneforte extra 

broccoli soups is shown in Table 5.4. The concentration of these compounds is very similar 

between Beneforté® and Beneforte Extra.  

 

Table 5.4 Sulfate, SMCSO and total sulfur concentrations expressed as (µmol/300 g fresh 
weight) in the ESCAPE broccoli soups 
 

Phytochemical content 

 

Broccoli soup 

Standard 
broccoli  

Beneforte® 
broccoli  

Beneforte Extra 
broccoli  

Sulfate 531.35 ± 24.7 444.63 ± 29.3 543.9±24.6 

S-methyl-l-cysteine sulfoxide 
(SMCSO) 

1,030.1 ±87.1  1,513.9 ±36.8 1,453.0 ±71.7 

Total sulfur 4,564.8 ±162.9 6,356.4 ±102.6 6,379.2±264.3 

 

5.5.5 Follow-up blood measurements  
Blood markers were monitored at regular intervals (every 3-4 months) as part of the 

participants’ on-going clinical follow up. PSA monitoring is part of their hospital AS 

programme, whereas fasting glucose and lipids were measured only for trial purposes. Data 

collected during the intervention were sent to participants’ GPs allowing them to take 

action if required. Figure 5.13 shows PSA levels measured at several intervals in all three 

diet arms. In terms of lipid profile, no significant change was observed during the broccoli 
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intervention (Figure 5.14). It is important to take into consideration that 13% of the trial 

cohort takes cholesterol-lowering drugs (statins). Interestingly, a significant reduction in 

fasting glucose levels was observed with Diet B (p<0.001) (Figure 5.15). A similar effect 

was observed in participants randomised to Diet A; however this effect was only 

statistically significant at 3 months (p<0.05).  

These findings can be interpreted once all participants have completed the intervention and 

the study is un-blinded. 

 

 
Figure 5.13 PSA levels measured at 3-month intervals during the intervention. Data obtained 
from participants randomised to the three study arms. Box plots represent the median of each 
sample with 25th and 75th percentiles. Whiskers indicate the range.: diet A (A), diet B (B) and 
diet C (C). p value ≥0.05 when comparing PSA at baseline vs 9 months in all study arms (paired 
t-test).  
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Figure 5.14 Lipid profile measured at 3-month intervals during the intervention. Box plots 
represent the median of each sample with 25th and 75th percentiles. Whiskers indicate the 
range. Data obtained from participants randomised to the three study arms: A) diet A; B) diet 
B; C) diet C.  
 

 
Figure 5.15 Fasting glucose levels measured at several intervals during the intervention. Box 
plots represent the median of each sample with 25th and 75th percentiles. Whiskers indicate the 
range.  Data obtained from participants randomised to the three study arms. : A) diet A; B) 
diet B; C) diet C.* p<0.05, **p<0.01, ***p<0.001, paired t-test   
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5.6. Discussion 
Increasing the consumption of fresh fruit and vegetables has been linked to a lower 

incidence of advanced PCa (234). Several reports from epidemiological studies indicate 

that cruciferous vegetables in particular might play a beneficial role in PCa prevention (94, 

95, 234, 235). Currently ESCAPE is one of the few dietary trials listed on the NIHR 

Prostate Clinical Studies Group. 

 

The ESCAPE study is unique because it is randomised and double-blinded, unlike many of 

the published reports on the role of cruciferous vegetable intake, which are largely from 

case-controlled studies (235-237). The use of broccoli soups as a delivery vehicle for SF 

has allowed for the first time, a double-blinded study to be undertaken as it is not possible 

to differentiate between the types of broccoli used based on colour, texture or taste. 

Furthermore, the comprehensive characterisation of the study soups by chromatography 

methods has enabled quantification of key constituents of interest such as sulfate and 

sulfur-containing compounds, including glucosinolates and SMSCO. The estimated intake 

of sulfate from a standard Western diet ranges between 0.2 to 1.5 g/day (238); cruciferous 

vegetables in particular have been reported to be major sources of dietary sulfate after bread 

(239). The results of age and anthropometric measurements as well as blood parameters at 

baseline demonstrate the homogeneity of the trial population. A further strength of this 

study is the collection of data from biological samples, as well as calorie expenditure, life 

style, and dietary habits, reducing the impact of these variables on the observed results.  

 

The AS protocol which includes repeat biopsies offers great advantages for studying the 

effects of lifestyle interventions on PCa. Patients recruited into the ESCAPE trial undergo 

a biopsy procedure at the start of the trial and at the end of the intervention. The use of 

transperineal biopsies offers better sampling of the prostate gland by obtaining more tissue 

for analysis in a systematic fashion, including areas of the prostate that are difficult to 

access via the conventional trans-rectal route (240, 241). It will also reduce the variability 

of tissue sampling, improving the quality of the data. The histological data from a subgroup 

of men who have completed the trial is presented in Chapter 6. 

 

When comparing PSA levels at the start of the trial and at 9 months of follow-up there was 

no significant change in any of the dietary arms (Figure 5.13). This may be attributed to 

the relatively short time of observation of 12 months to capture changes in PSA. In a study 

of 541 men on AS for PCa with a median follow up of 5 years, the percentage of patients 

experiencing any change in their PSA in the first year was 27%, compared to 95% at year 
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5, and only 10% had a change of PSA≥1ug/ml in the first year of follow up compared to 

56% at year 5 (242). The ESCAPE study extension to > 12 months is currently capturing 

PSA data on men who consented to extend the study diet for a further 12 months. The 

longer follow up in these men may yield more informative results. 

 

One interesting finding that emerged during follow-up was changes in fasting glucose 

levels. None of the participants were diabetic at the start of the study, and there was no 

significant difference in BMI between the study participants (Table 5.3). Additionally, all 

volunteers had a baseline fasting glucose, and glycated haemoglobin measurement at the 

start of the study (Figure 5.7). At three months, patients in study arms A and B showed 

significant reductions in serum fasting glucose, this persisted at 9 months in study arm B 

only (Figure 5.15). The exact mechanism behind this observation is not yet clear, however 

brassica vegetables have been previously shown to have an anti-glycaemic effect in an 

animal model. In a study that fed Wistar diabetic rats with an extract of Brassica oleraceae 

var gongylodes (Kohlrabi), the authors found a reduction in serum glucose similar to that 

of glibenclamide (oral hypoglycaemic drug) (243). The brassica extract fed to these rats 

over a course of four weeks led to a 64% reduction in fasting glucose levels that the authors 

attributed to a multi-factorial change in metabolism induced by the brassica diet that is 

likely to involve activation of AMPK pathway. More work is required to understand the 

exact mechanism through which the study soups in ESCAPE could have altered glucose 

levels, and final analysis of unblinded data will inform if a dose effect occurred. 

 

5.7. Conclusions 
The ESCAPE study is likely to offer further insights into the role of phytochemicals from 

diet, especially SF in PCa. The detailed analysis of the study soups together with the 

acquisition of extensive metabolomic, genetic, dietary and lifestyle data is the first of its 

kind in dietary studies on early PCa. Although, ESCAPE is not designed to assess clinical 

endpoints, the results from this trial may enable subsequent studies to be designed to assess 

whether a broccoli-rich diet could prevent the progression of PCa. In the next chapter, 

preliminary data from a subgroup of ESCAPE patients is presented.. 
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Summary 
An understanding of the molecular mechanisms by which dietary factors influence prostate 

carcinogenesis continues to be challenging for scientists. The combined use of techniques 

for studying genetic and metabolic parameters will generate a more comprehensive 

understanding of the role of diet in the development of PCa. The work reported in this 

Chapter was aimed to establish whether the experimental approach proposed in the 

ESCAPE protocol would be valuable to understand the effects of a SF-rich diet on prostate 

metabolism in vivo. Global biochemical profiles were determined in biopsy cores, fasting 

plasma and urine collected from a subset of ESCAPE patients (n=15) at baseline and at 12 

months. The ESCAPE study will remain blinded until all volunteers complete the trial. 

Despite the limitations of the small number of participants in this subgroup analysis, the 

data presented here demonstrates the safety of the study diet by examining baseline and 12-

month serum kidney and liver function as well as BMI and physical activity. In addition, 

the metabolic data have shown changes in prostate tissue metabolites that are likely to be 

driven by the study diet.  

 

6.1. Introduction  
Measuring the effect of a particular diet on human health is complex given the multitude 

of confounding factors such as individual variations in body physiology (partially linked to 

genetic diversity), differences in physical activity, environmental exposure and dietary 

habits. Furthermore it is important to take into consideration that many foods with 

proclaimed health benefits are a milieu of chemical compounds and minerals making it 

difficult to establish the role of individual constituents.  

Epidemiological data stemming mostly from case-controlled studies have suggested a 

lower risk of PCa in men who consume cruciferous vegetables regularly (>1 portion per 

week) compared to less regular consumers of these vegetables (235-237, 244-246). Several 

studies have been conducted in order to understand the mechanism(s) behind this reported 

health benefit. Data obtained from in vitro and animal studies have related the cancer 

preventive efficacy of cruciferous vegetables to the ability of their degradation products 

ITCs to target multiple molecules or signalling pathways, and in so influencing prostate 

carcinogenesis (97, 220, 247-249). In particular, the ability of ITCs to ameliorate oxidative 

stress may represent the key factor for preventing metabolic deregulation in cancer cells 

(tumour development) or restoring normal metabolic function in late stages (tumour 

progression) (250). Despite the numerous advances achieved in our understanding of these 

bioactives, prospective studies in humans are still sparse.  
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In Chapter 5, the ESCAPE study was discussed which sets out to remove some of the 

ambiguity surrounding the role of glucosinolates in PCa prevention through a randomised 

double-blinded design. The trial involves studying the effect of SF delivered in three 

different concentrations through a weekly diet intervention that has been carefully selected 

to eliminate some of the confounding factors mentioned earlier. In addition, the study 

captures metabolite data from blood, prostate tissue and urine together with a wealth of 

genomic information. Volunteers’ dietary habits and physical activity were also recorded 

prospectively. The ESCAPE study is still ongoing, however this Chapter deals with a subset 

of metabolite data from prostate tissue belonging to a cohort of volunteers (n=15) who 

completed 12 months of the study. The trial remains blinded therefore the three study arms 

are referred to as A, B and C.  

 

6.2. Aim 
v To examine preliminary data from a subgroup of ESCAPE participants focusing 

on changes in the metabolite profiles of prostate tissue. 

 

6.3. Materials and Methods 
6.3.1 Biological samples collection 
Biological samples were collected at baseline and after the 12-month intervention from 15 

patients, who have completed the ESCAPE study before April 2015. These samples were 

collected at the NNUH and transported to the QIB laboratory where they were 

appropriately processed and stored until required for analysis following study specific 

Standard Operating Procedures (SOPs).  

 

6.3.1.1. Tissue samples 

Prostate tissue samples were collected through a transperineal template biopsy (TPB) 

procedure as previously described in Chapter 5. A graphic representation of the tissue 

collection process is presented in Figure 6.1. TPB procedures were carried out at the NNUH 

by a single urological surgeon (RDM) following hospital SOPs. For metabolomic analyses, 

prostate needle cores (n=3) were deposited into pre-labelled vials containing room 

temperature extraction solvent (one biopsy per vial). Following incubation at room 

temperature (up to 24 hours), biopsy samples were removed from the extraction solvent 

and underwent histopathological assessment, allowing detailed correlation of metabolic 

analysis with histopathological findings. The vials containing extracted metabolites were 

stored at -80°C until required for metabolomic analysis (Figure 6.2). 
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Figure 6.1 Collection of tissue samples through transperineal template (TPB) biopsy 
procedure as part of the ESCAPE protocol. A) Longitudinal diagram showing the anterior 
and posterior areas of the prostate targeted by the biopsy needle. B) Cross section diagram 
showing the four quadrants from which an average of 5-10 core biopsies were collected.  
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Figure 6.2 Metabolomic analysis and histopathological assessment of pre- and post-
intervention tissue samples obtained from patients recruited into the ESCAPE trial.   
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6.3.2 Metabolite profiling 
Metabolomic analysis of tissue, plasma and urine samples was carried out by an US 

company called Metabolon®. Briefly, the sample preparation process was performed using 

the automated MicroLab STAR® system from Hamilton Company. Standards were added 

prior to the first step in the extraction process for QC purposes. Samples were prepared 

using a series of organic and aqueous extractions to remove the protein fraction while 

allowing maximum recovery of small molecules. The resulting extract was then divided 

into two fractions; one for analysis by LC and one for analysis by GC. Samples were placed 

briefly on a TurboVap® (Zymark) to remove the organic solvent. Each sample was then 

frozen and dried under vacuum and thus prepared for the appropriate instrument, either LC-

MS or GC-MS. Each sample was divided into five fractions: fractions 1-2 for analysis by 

two separate reverse phase (RP)/UPLC-MS/MS methods with positive ion mode ESI, 

fractions 3 for analysis by RP/UPLC-MS/MS with negative ion mode ESI, fractions 4 for 

analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and fractions 5 was 

reserved for backup. A full description of the applied metabolomic platform is presented in 

Chapter 4 on page 84.  

 

6.3.3 Statistical analysis 

LC and GC MS/MS data from Metabolon® were processed as described in Chapter 4 

session 4.3.9 on page 87. Briefly, raw area counts from LC and GC platforms were 

uploaded to Metaboanalyst web platform (Metaboanalyst.ca), Minitab (version 17) and 

MATLAB®. Data were normalised by log transformation followed by multivariate, 

univariate and metabolite pathway analyses. Due to the limited sample size, two approaches 

to data analyses were attempted. First, the effect of being on any of the three dietary arms 

for 12-months was explored by grouping all participants together and comparing the 

metabolite profiles before and after the intervention (T0 and T12, respectively). Second, 

the effect of individual study diets was examined by looking at all metabolites between the 

three study arms at the start of the trial and at 12 months. As previously found with this 

type of data few values were much higher than any other and were mainly represented by 

xenobiotic compounds. Student’s t-test was used for comparing means and one-way 

ANOVA where indicated.  

Pathway analysis was undertaken using Metaboanalyst (http://www.metaboanalyst.ca) by 

comparing T0 vs T12 data obtained from all participants regardless of study arm. 

Biochemical names were used as identifiers on Metaboanalyst. The data were then log 

transformed for normalisation. Enrichment analysis was done using GlobalTest 

(http://bioconductor.org/packages/release/bioc/html/globaltest.html) which is based on 
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gene enrichment analysis using R (www.r-project.org) utilising Metaboanalyst’s 

homosapien library of metabolites.Pathway topology analysis was measured using relative-

betweeness centrality.  

 

6.4. Results 
6.4.1 Tolerability and compliance to study diet 
A total of fifteen patients successfully completed 12 months of the study. This cohort was 

randomised to the three dietary arms (Diet A, n=4; Diet B, n=6; Diet C, n=5). Two main 

approaches were used to monitor compliance. Patients: (i) completed 7-day diet diaries and 

(ii) filled in record sheets on a weekly basis recording soup consumption. ESCAPE team 

members routinely delivered frozen soups to the participants’ houses and collected record 

sheets and pot lids. No issues with compliance were reported.  

There was no evidence of toxicity associated with any of the levels of glucoraphanin 

delivered by the study diet reflected in baseline and post-intervention plasma urea and 

electrolyte profiles as well as liver function tests (Figure 6.3 and Figure 6.4). No changes 

in BMI were observed in any of the three dietary arms (Figure 6.5). 
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Figure 6.3  Liver function before and after the 12-months diet intervention. Albumin; albumin 
(g/L), ALP; alkaline phosphatase (U/L), ALT; alanine aminotransferase (U/L), Globulin; 
globulin (g/L), Bilirubin; total bilirubin (µmol/L), Protein; total protein (g/L).  Data presented 
as mean (SD).  
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Figure 6.4 Kidney function before and after the 12-months diet intervention. K; potassium 
(mmol/L), Urea; urea (mmol/L), CREAT; Creatinine (mmol/L), eGFR; estimated glomerular 
filtration rate (ml/min/1.73m2), Na; sodium (mmol/L). Data presented as mean (SD). 
 

 
Figure 6.5 Baseline and post- intervention Body Mass Index (BMI) values. Data presented as 
mean (SD)..   
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6.4.2 ESCAPE study extension 
In December 2014, a substantial amendment was approved from the NRES Research Ethics 

Committee (East of England- South Cambridge) to offer a further 12 months of the diet 

intervention once participants complete the study. At the end of the trial, patients were 

asked if they wish to continue the diet for a further 12 months. Those who agreed by giving 

written consent were asked to incorporate one pot of the study soup per week in their diet 

for a further 12-months. However patients were not asked to attend extra hospital visits for 

the purpose of the study or give additional biological samples; instead the clinical data 

related to their PCa follow up at the NNUH was captured.  

Among the subgroup of fifteen patients discussed in this Chapter, thirteen patients gave 

consent for extending the diet intervention for a further 12 months. The relevant clinical 

information was recorded in an anonymised study database.  

 

6.4.3 Calorie expenditure and habitual diet analysis 
Participants’ physical activity and habitual diet were recorded through CHAMPS 

questionnaires and 7-day diet diaries as described in Chapter 5. Participants’ physical 

activity was assessed at the time of recruitment, during the intervention (6- months) and at 

the end of the trial. CHAMPS questionnaires were analysed as described by Stewart and 

colleagues taking into account anthropometric measurements at each time point (227). Due 

to the low sample number the average of the two time points (T6 and T12) was calculated 

for each of the participants. The average calorie expenditure per week, the frequency of 

physical activities of any intensity and specifically of moderate intensity (Metabolic 

Equivalent of Task, MET ≥3.0) were not statistically different between the study arms 

(p=0.2, 0.1, 0.8 respectively; one-way ANOVA) (Figure 6.6).  

Patients completed a 7-day diet diary three times during the intervention period (baseline, 

6-months and 12-months). Diet diaries were analysed by using a software package 

(DietPlan6) which uses UK food tables from the 7th Edition of McCance and Widdowson’s 

The Composition of foods plus the revised Composition of Foods Integrated Data Set (251). 

The analysis of diet diaries has provided useful information about participants’ intake of 

cruciferous vegetables during the intervention. Table 6.1 indicates that broccoli, 

cauliflower, Brussel sprouts and cabbage are the main cruciferous vegetables consumed 

from this cohort.  

Diet analysis also revealed that the average sulfur intake was not statistically different 

between the three study arms (Figure 6.7). 
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Figure 6.6 Physical activity measures derived from baseline and 12-month CHAMPS 
questionnaire across the three dietary arms. Data presented as mean  (SD).   
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Table 6.1 Pattern of cruciferous vegetable intake of the ESCAPE study cohort (n=15) 
 

 Total intake expressed as g/week 

(min-max) 

Cruciferous 
vegetables 

Baseline After 6-months After 12-months 

Broccoli 108.9 

(0-527) 

62.00 

(0-275) 

56.53 

(0-220) 

Cauliflower 76.64 

(0-693) 

73.53 

(0-338) 

47.33 

(0-239) 

Brussel sprouts 46.93 

(0-260) 

20.00 

(0-300) 

51.13 

(0-361) 

Cabbage 58.93 

(0-240) 

6.00 

(0-60) 

42.80 

(0-355) 

Mustard 0.85 

(0-12) 

1.833 

(0-15) 

2.13 

(0-12) 

 

 

 
Figure 6.7 Sulfur intake calculated from 7-day diet diaries repeated three times during the 
trial. Box plots represent the median of each sample with 25th and 75th percentiles. Whiskers 
indicate the range No statistically significant difference was observed between the three 
dietary arms of the study. p=0.76 (One-way ANOVA).  
 

6.4.4 Histological analysis by template prostate biopsy 
Recruited patients underwent TPB at the start of the study and at 12 months. The sample 

collection procedure was fully described in Chapter 5 at page 124. Research samples were 

collected separately to clinical samples and the average number of clinical biopsies taken 
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at the start of the study was 27 (±3.6) and at 12 months was 26.5 (±3.9) (p value = 0.8, 

paired t-test). The number of prostate cores taken at baseline and at 12 months for each 

dietary arm were not statistically different (one-way ANOVA with Bonferroni post-hoc 

test) (Figure 6.8). The number of cancer samples in each participant (percentage of cancer 

cores) were not affected by any of the three dietary arms (Figure 6.9). Two of four 

participants in study arm ‘A’, 2 of 6 in study arm ‘B’ and 1 of 5 in study arm ‘C’ 

experienced increase in Gleason score at repeat prostate biopsy at 12 months (50%, 33% 

and 20%, respectively) (Figure 6.10). The histological landscape of study patients at both 

baseline and after 12 months is shown in Figure 6.11.  

 
Figure 6.8 Average (±SD) of prostate tissue samples collected from a cohort of ESCAPE study 
participants (n=15) at baseline (A) and after 12 months of dietary intervention (B).There was 
no statistically significant difference in number of cores collected between study arms at both 
time points (One-way ANOVA).   
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Figure 6.9 Changes in percentage of cancer samples detected on prostate biopsy. Data obtained 
at baseline (T0) and after 12 months of dietary intervention (T12) in each arm of the ESCAPE 
study (A, B and C).p value from paired student’s t-test.  
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Figure 6.10 Percentage of patients who had upgraded Gleason score on repeat prostate biopsy. 
Data obtained from histopathological assessment of prostate core biopsies collected after 12 
months of dietary intervention in each of the three study arms (Diet A, B and C).  
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Figure 6.11 Histological assessment of prostate biopsy samples collected from a subgroup of ESCAPE study patients (n=15) at baseline and after 12 months. 
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6.4.5 Metabolomic analysis of prostate tissue samples from ESCAPE sub-

cohort 

Global biochemical profiles were determined in biopsy cores from ESCAPE patients 

(n=15) at baseline and at 12 months. The ESCAPE study remained blinded for the purpose 

of this analysis. 

 

6.4.5.1. Multivariate analysis  

6.4.5.1.1. Comparing all data between baseline and at 12 months regardless of 

study arm 

PCA analysis was carried out on log2 transformed data. As previously observed when 

analysing prostatectomy tissue in Chapter 4, drug metabolites were heterogeneous and 

skewed the data considerably. No separation between metabolites at T0 and T12 was 

observed using this method (Figure 6.12). Assigning each metabolite to a group (T0 and 

T12) and performing a supervised PLS-DA did not show a statistically significant 

difference between components on multiple testing, however it did generate a list of 

important compounds that were later cross-checked with univariate methods (Figure 6.12, 

Figure 6.13, and Figure 6.14). Multivariate testing was helpful in identifying outliers. 

Spermine was found to be very high in a small number of samples and subsequently 

excluded from the final dataset.  

Levels of sulfate at 12 months feature high on VIP scores indicating that the dietary 

intervention had led to sulfate accumulation in all participants (Figure 6.14). An inverse 

trend was noted with uridine 5`diphosphate and uridine diphosphategalactose levels of 

which were lower at 12 months compared to baseline (Figure 6.14).  
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Figure 6.12 Principal component (PC) scores plots for all prostate tissue metabolite data at 
baseline and after 12-months dietary intervention. No clear separation between the two groups 
(baseline, red circles; 12-months, green circles) was demonstrated. 
 

 
Figure 6.13 Scores plot between the selected principal components (PCs) using Partial Least 
Squares-Discriminate Analysis (PLS-DA). This method is supervised and assigns each feature 
to a pre-defined group. Baseline prostate metabolite data are shown in red circles; data at 12 
months are in green circles. The explained variances are shown in brackets. Multiple testing 
using Leave One Out Cross Validation (LOOCV) method was not statistically significant 
(p=0.8).   
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Figure 6.14 Important features identified by PLS-DA. The coloured boxes on the right indicate 
the relative concentrations of the corresponding metabolite in each time point. Variable 
Importance in Projection (VIP) is a weighted sum of squares of the PLS loadings taking into 
account the amount of explained Y-variation in each dimension, VIP scores ≥2 are considered 
highly significant.  
 

6.4.5.1.2. Comparing metabolite data per study arm at baseline and at 12 months 

Prostate metabolite data from each of the dietary arms were compared at baseline and then 

at 12 months. Using PCA, spermine was also identified as an outlier and was subsequently 

excluded. Once again log transformation was utilised to overcome the large variations in 

the data (Figure 6.15). There were notable changes in the spread of metabolites on PCA at 

12 months but no clear separation between the three study arms (Figure 6.16). Further 

analysis with PLS-DA methods identified a list of important features, although these did 

not reach statistical significance on multiple testing (p=0.1) it highlighted contrasting levels 

of sulfate in the three dietary arms as well as different levels of lysolipids and unsaturated 

fatty acids (Figure 6.17). 
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Figure 6.15 Principal component (PC) scores plots for all prostate tissue metabolite data at 
baseline with the three study arms.Diet A (blue), B (yellow) and C (red). Shaded areas 
represent 95% confidence.  

 
Figure 6.16 Principal component (PC) scores plots for all prostate tissue metabolite data at 12 
months with the three study arms. Diet A (blue), B (yellow) and C (red). Shaded areas 
represent 95% confidence.   
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Figure 6.17 Important features identified by PLS-DA carried out on prostate tissue extracts 
at the end of the 12-month intervention. The coloured boxes on the right indicate the relative 
concentrations of the corresponding metabolite in each study arm. Variable Importance in 
Projection (VIP) is a weighted sum of squares of the PLS loadings taking into account the 
amount of explained Y-variation in each dimension. VIP scores ≥2 are considered highly 
significant.  
 

 
6.4.5.2. Univariate analysis  

Twenty-two metabolites were significantly different between prostate tissue at baseline and 

at 12-months (paired t test, p<0.05) (Table 6.2). Interestingly, sulfate was significantly 

higher in prostate tissue at 12-months (p=0.0006).  

 

Table 6.2 List of metabolites statistically significant in prostate tissue 
 

Biochemical Subpathway Trend at 
12 months 

p value 

1-Arachidonoyl-GPE 
(20:4n6) 

Lysolipid Up 0.026 

6-oxopiperidine-2-carboxylic 
acid 

Lysine Metabolism Up 0.010 
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Biochemical Subpathway Trend at 
12 months 

p value 

Acetylcholine Neurotransmitter Up 0.034 

Adenosine 5'-diphosphate 
(ADP) 

Purine Metabolism, Adenine 
containing 

Up 0.002 

Adipate Fatty Acid, Dicarboxylate Down 0.037 

Asparagine Alanine and Aspartate Metabolism Down 0.036 

Coenzyme A Pantothenate and CoA Metabolism Up 0.025 

Creatinine Creatine Metabolism Up 0.046 

Cysteine-glutathione disulfide Glutathione Metabolism Up 0.007 

Glutathione, reduced (GSH) Glutathione Metabolism Up 0.039 

Glycerol Glycerolipid Metabolism Up 0.049 

Guanosine 5'- diphosphate 
(GDP) 

Purine Metabolism, Guanine 
containing 

Down 0.038 

Heme Hemoglobin and Porphyrin 
Metabolism 

Down 0.033 

Imidazole propionate Histidine Metabolism Up 0.044 

Methyl glucopyranoside 
(alpha + beta) 

Food Component/Plant Up 0.001 

Phosphate Oxidative Phosphorylation Up 0.005 

S-Adenosylmethionine 
(SAM) 

Methionine, Cysteine, SAM and 
Taurine Metabolism 

Up 0.021 

Serotonin Tryptophan Metabolism Up 0.025 

S-Methylglutathione Glutathione Metabolism Up 0.024 

Spermine Polyamine Metabolism Up 0.024 

Sulfate Chemical Up 0.0006 

UDP-glucuronate Nucleotide Sugar Down 0.024 

Uridine 5'-diphosphate (UDP) Pyrimidine Metabolism, Uracil 
containing 

Down 0.002 

 

 

6.4.5.3. Pathway analysis  

All data obtained from prostate tissue at baseline and 12 months regardless of study arm 

were uploaded to Metaboanalyst web platform. As previously experienced with ex vivo 

prostate tissue (Chapter 4), many of the biochemical compounds identified were not 

recognised by Metaboanalyst’s library. A total of 110 compounds were not listed (28%). 

Despite this limitation, pathway analysis by enrichment and topology identified sulfur 

metabolism among the most significantly altered pathways (p=0.0002) which is 

complementary to the univariate results (Table 6.3, Figure 6.18).  
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Table 6.3 Results of pathway analysis from prostate tissue metabolites at baseline vs end of 
study 
 

Pathway  Total  Hits P value FDR Impact 

Sulfur metabolism 18 3 0.000299 0.019107 0.04016 

Cysteine and methionine metabolism 56 9 0.001113 0.035628 0.4023 

Purine metabolism 92 16 0.008767 0.12382 0.3365 

beta-Alanine metabolism 28 8 0.00895 0.12382 0.10072 

Glutathione metabolism 38 10 0.009674 0.12382 0.37043 

Arginine and proline metabolism 77 17 0.011724 0.12505 0.37823 

Pyrimidine metabolism 60 11 0.046543 0.37347 0.27 

Porphyrin and chlorophyll metabolism 104 3 0.046684 0.37347 0.05182 

Fatty acid metabolism 50 4 0.060361 0.42924 0.21301 

Tryptophan metabolism 79 5 0.088999 0.56959 0.20083 

Methane metabolism 34 3 0.10883 0.63317 0.05444 

Pantothenate and CoA biosynthesis 27 4 0.137 0.69904 0.18868 

Amino sugar and nucleotide sugar 
metabolism 

88 7 0.16254 0.69904 0.22927 

Ubiquinone and other terpenoid-quinone 
biosynthesis 

36 1 0.19302 0.69904 0.00069 

Riboflavin metabolism 21 2 0.19426 0.69904 0 

Pentose and glucuronate interconversions 53 6 0.20357 0.69904 0.13086 

Starch and sucrose metabolism 50 4 0.2129 0.69904 0.3002 

Galactose metabolism 41 6 0.22672 0.69904 0.03408 

Glycerolipid metabolism 32 5 0.23748 0.69904 0.22868 

Fatty acid elongation in mitochondria 27 1 0.2403 0.69904 0.26765 

Valine, leucine and isoleucine degradation 40 1 0.2403 0.69904 0.04898 

Terpenoid backbone biosynthesis 33 1 0.2403 0.69904 0 

Glycolysis or Gluconeogenesis 31 2 0.3075 0.82735 0.04202 

Valine, leucine and isoleucine biosynthesis 27 2 0.32051 0.82735 0 

Glyoxylate and dicarboxylate metabolism 50 9 0.3346 0.82735 0.09086 

Propanoate metabolism 35 3 0.3534 0.82735 0.05474 

Citrate cycle (TCA cycle) 20 8 0.3598 0.82735 0.37232 

Synthesis and degradation of ketone bodies 6 2 0.36197 0.82735 0 

Inositol phosphate metabolism 39 2 0.38547 0.8507 0.13703 

Glycine, serine and threonine metabolism 48 8 0.40929 0.86039 0.27259 

Biotin metabolism 11 1 0.41675 0.86039 0 

Thiamine metabolism 24 1 0.44432 0.8649 0 

D-Arginine and D-ornithine metabolism 8 1 0.45252 0.8649 0.5 

Lysine degradation 47 8 0.49665 0.8649 0.27685 
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Pathway  Total  Hits P value FDR Impact 

Taurine and hypotaurine metabolism 20 4 0.50436 0.8649 0.41188 

Ascorbate and aldarate metabolism 45 8 0.51522 0.8649 0.13034 

Fructose and mannose metabolism 48 2 0.51664 0.8649 0.07162 

Pentose phosphate pathway 32 2 0.5263 0.8649 0.1082 

Pyruvate metabolism 32 4 0.52705 0.8649 0.38933 

Fatty acid biosynthesis 49 2 0.55917 0.89468 0.0218 

Nicotinate and nicotinamide metabolism 44 10 0.5832 0.91036 0.08933 

Phenylalanine, tyrosine and tryptophan 
biosynthesis 

27 1 0.63808 0.96743 0 

Caffeine metabolism 21 2 0.67181 0.96743 0.12066 

Aminoacyl-tRNA biosynthesis 75 8 0.68089 0.96743 0.16902 

Glycosylphosphatidylinositol(GPI)-anchor 
biosynthesis 

14 1 0.72159 0.96743 0.0439 

D-Glutamine and D-glutamate metabolism 11 2 0.72601 0.96743 0.02674 

Lysine biosynthesis 32 6 0.75192 0.96743 0.16762 

Cyanoamino acid metabolism 16 2 0.78494 0.96743 0 

Glycerophospholipid metabolism 39 11 0.79012 0.96743 0.51656 

Sphingolipid metabolism 25 6 0.83012 0.96743 0.53458 

Primary bile acid biosynthesis 47 3 0.83204 0.96743 0.06373 

Linoleic acid metabolism 15 3 0.83621 0.96743 0.65625 

Phenylalanine metabolism 45 5 0.84767 0.96743 0.0315 

Vitamin B6 metabolism 32 2 0.85285 0.96743 0.07958 

Steroid hormone biosynthesis 99 3 0.86289 0.96743 0.01589 

Ether lipid metabolism 23 2 0.86474 0.96743 0 

Butanoate metabolism 40 7 0.87298 0.96743 0.14237 

Nitrogen metabolism 39 5 0.87674 0.96743 0.00067 

Tyrosine metabolism 76 2 0.9043 0.98094 0 

Drug metabolism - cytochrome P450 86 2 0.93506 0.98956 0.02053 

Histidine metabolism 44 8 0.94317 0.98956 0.12861 

alpha-Linolenic acid metabolism 29 1 0.97679 0.9956 0 

Alanine, aspartate and glutamate 
metabolism 

24 8 0.99126 0.9956 0.5774 

Arachidonic acid metabolism 62 2 0.9956 0.9956 0.21669 

FDR, false discovery rate       
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Figure 6.18 Pathway analysis of prostate metabolite data at baseline and 12 months. p value 
obtained from enrichment analysis is displayed as (-)natural log to facilitate visualisation, 
therefore pathways that are most significantly altered will have higher values on the y axis. 
Pathway impact is shown on the x axis and is derived from metabolite topology analysis using 
betweenness centrality measurements therefore pathways with higher impact values indicate 
alterations in metabolite(s) that occupy key positions within that pathway (arbitrary units).  
 
6.4.5.3.1. Tissue sulfate, ADP and prostate cancer 

Prostate tissue sulfate was significantly higher at 12 months (p=0.0006) indicating 

accumulation in prostate tissue over the course of the trial. As previously discussed in 

Chapter 5, study soups were characterised in terms of sulfur containing compounds by 

using LC-MS analysis and a high sulfate content was reported (8.35 µmol/g dw normal 

broccoli; 9.42 µmol/g dw Beneforte broccoli; 11.67 µmol/g dw Beneforte extra broccoli). 

Furthermore, significant diet-induced changes in nucleotides were observed with increased 

adenosine 5'-diphosphate (ADP) (p=0.001) and decreased guanosine 5'- diphosphate 

(GDP) (p=0.002) at 12-months. The pathway analysis described earlier also indicated a 

significant alteration in both these metabolites’ pathways (sulfur and purine metabolic 

pathways respectively). In order to establish whether this was related to changes in PCa 

status in the participants, the correlation with the percentage of prostate tumour measured 

at 12 months was examined. Interestingly, tissue ADP and sulfate accumulation were both 

inversely associated with the percentage of cancerous samples found on template biopsy at 

12 months (Figure 6.19 and Figure 6.20). 
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Figure 6.19 Linear regression analysis of sulfate levels in prostate tissue and the percentage of 
PCa samples found on repeat template prostate biopsy at 12 months post dietary intervention 
in a subgroup of ESCAPE study volunteers (n=15) (p=0.04).  
 

 
Figure 6.20 Linear regression analysis of adenosine diphosphate (ADP) levels in prostate tissue 
and the percentage of PCa samples found on repeat template prostate biopsy at 12 months 
post dietary intervention in a subgroup of ESCAPE study volunteers (n=15) (p=0.003).  
 

6.4.5.3.2. Glutathione metabolites 

Tissue metabolite profiling indicated a change in glutathione metabolism with a significant 

increase of reduced glutathione (GSH) (p=0.03), S-methylglutathione (p=0.02) and 

cysteine-glutathione disulfide (p=0.006). This corresponds to significant change in the 

glutathione metabolism pathway (p=0.009) (Table 6.2 and Table 6.3). GSH was inversely 

correlated with the amount of PCa found on repeat biopsy but this trend did not reach 

statistical significance (p=0.1) (Figure 6.21). 
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Figure 6.21 Linear regression analysis of glutathione levels in prostate tissue and the 
percentage of PCa samples found on repeat template prostate biopsy at 12 months post dietary 
intervention in a subgroup of ESCAPE study volunteers (n=15) (p=0.1).  
 

6.4.5.3.3. Uridine-related metabolites 

Levels of uridine diphosphate (UDP) and UDP glucouronic acid were both lower after 12 

months of the study (Table 6.2). Both UDP and UDP glucouronic acid are utilised in the 

N-glycosylation reactions to produce glycosaminoglycans and glycolipids as part of the 

hexoseamin biosynthesis pathway (252). Higher levels of these metabolites have been 

found in several human cancers including the prostate (252). Although study participants 

showed lower levels of UDP related metabolites on both multivariate and univariate 

analyses, neither were significantly correlated to the amount of cancer cores found on 

repeat prostate biopsy at the end of the study period (Figure 6.22).  
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Figure 6.22 Linear regression analysis of Uridine diphosphate (UDP) (top graph) and UDP 
glucuronic acid (bottom graph)in prostate tissue and the percentage of PCa samples found on 
repeat template prostate biopsy at 12 months post dietary intervention in in a subgroup of 
ESCAPE study volunteers (n=15) (p >0.05).  
 

6.5. Discussion 
The ESCAPE study has now completed recruitment and sample analyses are currently in 

progress. For the purposes of the analysis presented in this chapter the study remained 

blinded. Trial arms were referred to as Diet A, B and C reflecting different levels of 

glucoraphanin content as previously described in Chapter 5 on page 134 (Figure 5.12). 

Despite the limitation of study blinding, the analysis of this subgroup of men has provided 

insights into the effects of the trial intervention and was important for method testing given 

the length of time between the start of the study and the predicted date for final sample 

analysis. 
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The subgroup of men (n=15) appeared homogenous with regards to baseline biochemical 

blood markers as well as BMI and physical activity levels. There were no reported toxicities 

with the study diet throughout the follow up period as indicated by normal liver and renal 

function and no significant changes in BMI. One notable difference was the change in 

consumption of cruciferous vegetables (Table 6.1). This is likely to be seasonal variation 

however, an observer effect which has been noted in other studies whereby participants 

alter their habits or behaviours as a result of awareness of being studied or observed could 

also be responsible for the difference (253). 

Physical activity levels measured by calorie expenditure and type of activity were 

comparable between the study arms throughout the observed period (Figure 6.6). Although 

the number of participants was small in this subgroup and therefore limiting the statistical 

power, it was important to account for the effect of exercise on the observed results. Several 

studies have shown improved overall survival and PCa specific survival in men diagnosed 

with PCa who engage in regular physical activity such as brisk walking (speed ≥3 mph 3 

times per week), cycling  

20 minutes per day or exercising ≥ 1 hour per week (95, 254, 255). The ESCAPE study 

protocol did not include an exercise component but whether participating in a research 

study will change their activity levels as part of adopting a healthier lifestyle remains to be 

determined. 

The AS cohort in the ESCAPE study is unique for a number of reasons; first, men were 

required to undergo a transperineal TPB biopsy at the beginning of the trial and a further 

biopsy at 12 months providing detailed histological data as well as clinical and biochemical 

follow up every 3 months. Second, the men who took part in the study reflect the true 

population of AS in the studied region (Norfolk) because in contrast to many institutions 

that restrict AS to men with low- or very low-risk PCa, the NNUH AS cohort also includes 

men with intermediate-risk PCa who are appropriately counselled regarding the risk of 

continued AS but still decline radical treatment. 

Many healthcare regulators including NICE recommend annual prostate biopsies on men 

who choose AS but there is no guidance on the best type of biopsy procedure (222). TPB  

procedures offer several advantages over routine TRUS guided 12-core biopsies including 

better sampling of anterior parts of the prostate gland that could harbour high-grade disease 

and better mapping of tumour sites within the prostate (240, 241, 256). However despite 

these advantages, there is insufficient evidence in the literature regarding the continued use 

of TPBs to monitor PCa in men who choose AS. The ESCAPE trial to date has shown that 

repeat TPB is feasible and men choose it over TRUS guided biopsies when given the 

choice. With the limitation of the low number of participants it would appear that the 
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number of patients experiencing upgrade of PCa during surveillance is similar to published 

literature (257) Thirty- three percent of patients in the subgroup of ESCAPE presented in 

this Chapter had increased Gleason score on repeat biopsy (Figure 6.10). Cooperberg et al 

reported similar upgrade rates in men who were part of the University of California San 

Francisco (UCSF) AS programme (35% upgrade for low risk PCa and 30% for intermediate 

risk during 4 years of follow up, using UCSF Cancer of the Prostate Risk Assessment score 

which is very similar to D’amico risk groups) (257). 

 

6.5.1 Changes in prostate tissue metabolites  
The metabolite analysis indicated a significant alteration in several metabolic pathways 

especially sulfate, cysteine and glutathione regardless of study arm (Table 6.2, Figure 6.18). 

Sulfate levels measured from prostate tissue at baseline and then after 12 months of the 

study diet were significantly different (all three study arms grouped together). Sulfate 

content in food varies considerably with some vegetables being naturally rich in sulfate 

such as cruciferous vegetables, other sources are red meat, bread and food additives (238). 

Data on total sulfur intake from the ESCAPE volunteers was calculated from diet diaries 

(excluding the sulfur content of the study soup). Interestingly this did not show a significant 

difference between the three trial arms (Figure 6.7), therefore it would support the idea of 

higher sulfate levels in tissue as a direct result of the study soups. In the previous Chapter, 

the quantification of sulfate and SMCSO from the three types of study soups indicated a 

positive correlation between the level of glucoraphanin and these two compounds (Figure 

5.12, Table 5.4). These findings are in keeping with those of Florin et al who measured 

sulfate content from several types of foods including brassica vegetables. Florin and 

colleagues found a positive linear correlation between glucosinolates content of brassicas 

and sulfate (239). The mechanism behind this accumulation needs further examination 

however, two main routes are likely, one of which is direct delivery of sulfate and sulfur-

compounds through the serum, the other being urinary reflux into the prostate. A study 

looking at the bioavailability of such compounds in the sera of healthy volunteers after 

ingesting broccoli soup has detected several compounds that could act as sulfate donors in 

under two hours after consumption (unpublished data from BOBS study, ethics REC 

reference 14/EE/1121; ClinicalTrials.gov Identifier NCT02300324). A further study by 

Waring et al showed that radiolabelled sulfur in SMCSO was almost completely 

recoverable in healthy male volunteers up to 14 days from ingestion and that inorganic 

sulfate constituted a large proportion of sulfur containing molecules (258). This strengthens 

the argument that  reflux of sulfur metabolites from urine into the prostate is a more likely 

route. Urinary reflux into the prostate has been previously put forward as a cause for non-



Chapter 6. Metabolomic analysis of the ESCAPE cohort 

169 | P a g e  

 

bacterial prostatitis. Kirby and colleagues showed that upon micturition almost 70% of men 

showed urine reflux into the prostate gland (259) In addition, the preliminary results of 

urinary metabolite profiling from ESCAPE participants indicated higher levels of 

sulforaphane-N-acetyl cysteine as well as a number of sulfate-containing compounds at 12 

months in all participants compared to baseline that would support a theory of retrograde 

reflux of metabolites into the prostate (data not presented in this thesis). Regardless of the 

mechanism, sulfate accumulation in prostate tissue seems to inversely correlate with the 

amount of PCa found on repeat biopsy (Figure 6.19). This trend of sulfate accumulation is 

also mirrored by increased levels of ADP in prostate biopsy tissue (Figure 6.20). ADP to 

ATP interconversion is crucial to energy homeostasis through the transfer of hydrogen-

phosphate ions (HPO4
2-) (260). Therefore ADP and phosphate accumulation in prostate 

tissue may signify ATP shortage this coupled with the finding of low UDP-glucuronate 

may suggest increased phase 2 detoxification reactions through both increased sulfate and 

glucuronide conjugation (261). Sulfation (sulfate conjugation) requires the incorporation 

of sulfate with ATP to form adenosine phosphosulfate (APS) releasing phosphate, the 

resulting APS is then used to synthesise 3'-phosphoadenosine 5'-phosphosulfate (PAPS) 

consuming further molecules of ATP (262). Thus the high level of sulfate may enhance 

these reactions and ultimately starve cells from ATP limiting cancer growth (263). 

Furthermore, ATP is also utilised in glucuronide conjugation whereby UDP-glucuronate is 

used as a substrate, low levels of the latter may indicate upregulation of this reaction which 

would further deplete ATP stores. 

 

6.6. Conclusion 
The findings presented in this Chapter indicate a significant alteration in several metabolic 

pathways in prostate tissue with strong evidence to support a shift in sulfate mediated 

reactions that are likely to be induced by the dietary intervention with broccoli soups. The 

inverse correlation between sulfate accumulation in tissue and the percentage of PCa on 

final biopsy after 12 months may be related to ATP depletion with consequent 

accumulation of ADP and phosphate. This hypothesis is also supported by the observed 

decrease in UDP-glucuronate which also depletes ATP stores. Together these findings 

warrant further investigation into whether sulfate accumulation does indeed originate from 

a broccoli rich diet and if this leads to elimination of cancerous clones. This research 

question can be addressed by undertaking further human intervention trials specifically 

designed to investigate this hypothesis.
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7.1. General discussion 
PCa is a public health problem that claims the lives of over 10,000 men a year in the UK 

alone (2). Projections for cancer incidence in the UK indicate that PCa will represent 26% 

of all male cancers by 2030 (264). This, together with an ageing population, will no doubt 

place a significant burden on our already strained health system and affect the lives of many 

men.  

 

The aetiology of PCa remains unknown, however, epidemiological and autopsy studies 

have identified that environmental factors and diet patterns play an important role in 

developing the disease with a long latent period (265-268). When examining modifiable 

environmental factors two main themes emerge as potential targets; first, dietary 

modification, and second, modifying physical activity levels; both of these areas have 

attracted extensive studies over the last 3 decades (94, 219, 269).  

 

The effect of the dietary bioactive SF, which is derived from Brassica plants, on human 

health has been explored in cell, animal and human models of chronic diseases, including 

PCa (270). The mechanism behind the protective effect of healthy eating and physical 

activity against the development of PCa is likely to be multifactorial; however several 

authors agree that induction of phase II enzymes, and reduction of oxidative stress are key 

factors (103).  

 

The experimental work presented in this thesis aimed to understand whether SF could affect 

the metabolism of the prostate in a way that would (i) reduce the transformation of normal 

cells to cancerous cells, and (ii) modify the environment in which existing cancerous cells 

would proliferate in order to retard the progression of the disease. A multidisciplinary 

approach was undertaken to investigate the role of SF on human prostate metabolism by 

using: 

  

• in vitro models of human PCa;    

• an ex vivo model based on the use of human tissue obtained from prostatectomy 

specimens; 

• un-targeted metabolomic platforms for the analysis of prostate tissue collected 

from men with localised PCa recruited into an intervention trial. 

 

It was envisaged that the interpretation of data obtained by applying this multidisciplinary 

approach would better inform on the effect of SF on the metabolism of the human prostate, 
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and furthermore, elucidate potential mechanisms of action by which SF intake could 

represent a successful cancer preventive strategy.  

 

7.2. The limited translational value of experimental evidences 

obtained from in vitro models of prostate cancer  
The effect of SF on cellular metabolism was investigated by using normal (PNT1A, RWPE-

1), cancerous androgen-sensitive (LnCap), and androgen-independent (PC3, DU145) cell 

lines. These cell lines are commonly used for studying human prostate biology, and their 

genotypic and phenotypic features have been extensively characterised (271). RWPE-1 

cells are less commonly used compared to the other prostate cell lines; however this cell 

line represents an alternative model to study the normal prostate epithelium (153). 

 

Prostate cells are characterised by a different TCA cycle function compared to other 

mammalian cells. A long history of clinical and fundamental research has demonstrated the 

importance of studying the TCA cycle activity for developing new strategies against 

prostate carcinogenesis (159). A novel analytical method based on LC-MS/MS, which 

allows the simultaneous measurement of TCA cycle intermediates, even at low 

concentrations, from a variety of biological matrices including cultured prostate cells, was 

successfully established (Chapter 2). The application of this newly developed method has 

enabled (i) a full characterization of the chosen cell models in terms of their baseline levels 

of TCA cycle intermediates, and (ii) to explore the effects of exogenous compounds such 

as a ROS-inducer agent and dietary bioactives (SF), on TCA cycle function (Chapter 3). 

To our knowledge, there are no previous reports indicating the different levels of TCA 

intermediates in commonly used prostate cells, and how SF could affect their production 

by changing cellular redox status. 

 

Interesting findings were obtained by measuring the concentration of citrate, and other 

TCA cycle intermediate compounds, from a variety of benign as well as cancerous prostate 

cell models using LC-MS/MS. Surprisingly, cancerous PC3 cells, which are regarded as 

highly aggressive, displayed the highest amounts of citrate amongst the cell lines tested. 

This is the opposite of what is reported in tissue, where it has been shown that citrate is 

persistently lower in PCa compared to benign prostate tissue (41, 114, 161). The high 

citrate content of PC3 cells compared to benign PNT1A cells was investigated by first 

unifying the culture growth medium (eliminating small traces of Zinc and pyruvate that 

were present in PC3 media) and measuring the activity of a key citrate regulating enzyme 
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(aconitase). The results demonstrated a persistent pattern of higher citrate content in PC3 

cells compared to PNT1A. Moreover, the activity of the aconitase enzyme was more 

pronounced in PC3 cells. It is widely accepted that PC3 cells exist in high ROS 

environments (179), and previous cell and animal studies have shown that TCA cycle 

enzymes are inhibited by ROS (58, 59). Therefore, it was postulated that intracellular ROS 

were behind the observed high citrate level, due to the inactivation of aconitase in vitro. 

This was shown by challenging the cells with exogenous ROS in culture, which led to a 

statistically higher level of citrate. The addition of physiological levels of SF to cultured 

prostate cells prior to a hydrogen peroxide challenge protected PC3 cells against the 

dramatic increase in citrate observed in controls; these results indicated a protective effect 

of SF against oxidative stress-induced changes on the TCA cycle function. There is 

evidence that TCA cycle function is dramatically compromised by endogenous and 

exogenous compounds able to influence cellular oxidative status (58, 146, 180). Several 

chronic diseases have been associated with alteration of the TCA cycle function due to 

increased levels of ROS, mainly in diseases associated with neurodegeneration (182). The 

protective effect of SF, at physiologically achievable concentrations, in preventing H2O2-

induced increase in citrate in prostate cells could suggest a potential mechanism by which 

SF may restore an ineffective TCA cycle function in pathological conditions; however, 

there is a strong need of further investigations in in vivo models. 

 

These findings could also suggest a potential mechanism of action by which SF could 

prevent cancer cell proliferation in vitro. The higher citrate levels measured in cancer PC3 

cells in response to oxidative stress may facilitate cell growth through the utilization of 

citrate as a substrate for the biosynthesis of cholesterol and steroids, which are known to 

drive proliferation (202, 272). A previous study carried out by Mycielska and colleagues 

has demonstrated a pro-metastatic effect of citrate in PC3 cells as a result of its increased 

metabolism by two enzymes (ACNTs and FAS) which are found to be up-regulated in PCa 

cells (Figure 7.1) (122). They reported an increased uptake of citrate from the PC3 

extracellular space, which led to a reduction in cell adhesion, and enhanced cell motility, 

exacerbating their metastatic phenotype. Neither of these citrate-induced effects was 

observed in normal PNT1A cells under the same experimental conditions (122). It is 

important to stress that this study found higher levels of endogenous citrate in normal 

PNT1A cells, compared to PC3 cells, which have not been observed in our experimental 

conditions. However, Mycielska and colleagues have measured citrate concentrations by 

using spectrophotometric techniques that are considerably less specific, accurate, and 

sensitive, compared to the LC-MS/MS method developed for the purpose of this study. 
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Taking into consideration the pro-metastatic action of citrate in cultured PCa cells, future 

studies to determine whether SF could prevent the pro-metastatic effects of citrate in vitro 

are required. 

 

 
Figure 7.1 A model of citrate-enhanced metastatic cell behaviour described by Mycielska  
 and colleagues (135).  
 

In conclusion, based on the clinical relevance of reduced citrate levels found in prostatic 

fluids and tissue of cancer patients (273), these data mainly suggest that cultured PC3 cells, 

which are a model for aggressive PCa, do not share the same metabolic phenotype of cancer 

in vivo. Thus, a better understanding of their usefulness and limitations regarding the study 

of prostate metabolism is needed. These data also suggest a mechanism by which SF could 

influence the redox status in the prostate, and subsequently alter the metabolic environment 

through changes in the TCA cycle. How this translates in tissue, and indeed in vivo, has not 

been explored to date. 

 

7.3. A prostatectomy-based ex vivo model as alternative tool for 

studying prostate metabolism 
Cancer growth largely occurs in the PZ of the gland (~80%), and epithelial cells from this 

zone are considered metabolically different, mainly as a result of the higher levels of zinc, 

which affect TCA cycle activity (159, 161). To further understand the normal metabolome 

in the prostate gland, non-targeted metabolite profiles were obtained from non-cancerous 

prostate tissue in men undergoing surgery for PCa. Metabolomic analysis, using highly 

sensitive chromatography techniques, showed a unique metabolic phenotype in each of the 

two prostate zones. PZ tissue showed distinctly higher levels of lipid metabolites, 

neurotransmitters, and other classes of compounds that are known to be associated with 
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cancer phenotypes. However, multivariate and univariate analyses of TCA cycle 

metabolites in both zones did not show a significant difference.  

 

The prostate gland is characterised by high innervation, and as with other mammalian 

organs, receives dual innervation by adrenergic and cholinergic nerves that regulate its 

growth and physiology (274). There is evidence that suggests a positive association 

between perineural innervation and PCa (215, 275-277). Most of these studies were carried 

out by using prostatectomy specimens where higher perineural space invasion was found 

in prostate adenocarcinoma (275, 276, 278). Furthermore, Powell and colleagues have 

established an in vitro model of perineural invasion that could be used to identify an 

effective strategy to reduce PCa metastasis (277). Metabolomic analysis, described in 

Chapter 4 of this thesis, revealed higher levels of neurotransmitter metabolites, such as 

NAAG and serotonin, in the PZ compared to the TZ. The neuroanatomy of the prostate 

gland has been previously described, and the PZ is known to have a significantly greater 

innervation than the TZ (Figure 7.2) (274); thus the significant difference in 

neurotransmitter levels between the two prostate zones that has been observed in this ex 

vivo model could be explained by anatomical reasons.  

 
Figure 7.2 Images of prostate sections obtained by Powell and colleagues, showing the location 
of nerves (blue ink) across a wholemount slide (A), immunostained nerves from the PZ (B) and 
TZ (C). Statistical analysis indicated a significantly higher concentration of nerves in the PZ 
(21.45 units) compared to the TZ (8.50 units) (p< 0.0006).   



Chapter 7. General Discussion 

176 | P a g e  

 

Because of the strong link between neurotransmitters and cancer progression (211, 215), it 

is plausible to suggest that the high levels of NAAG and serotonin resulting from the 

neuroanatomical features of the PZ could contribute to create a tissue environment that 

favours cancer development in this region of the gland. 

 

The two zones of the prostate were also characterised by a different profile in terms of lipid 

metabolites, with a total of 56 identified compounds belonging to different metabolic sub-

pathways. It is well established that PCa, as with other cancer types, is closely linked with 

a metabolic dysregulation, which leads to a unique reprogramming of cellular metabolism 

(84). These metabolic alterations involve mainly glycolysis and lipogenesis processes that 

provide cancer cells with sufficient energy and membrane building blocks to support their 

abnormal proliferation (65, 202). Higher levels of lipid metabolites were found in the PZ, 

suggesting that this region of the gland is exposed to an environment rich in compounds, 

which are known to facilitate the emergence of cancer clones (Figure 7.3).  

 

 
Figure 7.3 Metabolic sub-pathways found significantly higher in the PZ compared to the TZ.  
 

These lipid signatures may represent potential targets for lifestyle interventions, including 

diet-based interventions designed to deliver dietary compounds potentially active on lipid 

metabolism. Armah and colleagues found reduced levels of plasma LDL-cholesterol 

following consumption of glucoraphanin-enriched broccoli in humans (279). This effect 

was explained by the modulatory action of broccoli-derived bioactives on cholesterol 

synthesis, which has also been demonstrated in animal studies (280, 281). This cholesterol 

lowering effect could be induced by their action on the Nrf2-antioxidant system, resulting 
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in the activation of AMPK and suppression of PI3K signalling pathways, which are both 

involved in cholesterol and steroid biosynthesis (282). Further evidence of the effect of 

broccoli consumption on lipid metabolism was provided by a randomised controlled trial 

recruiting subjects with a high risk of cardiovascular diseases (283). Diet-induced changes 

were observed in plasma mainly in terms of reduced levels of TCA cycle intermediates, 

acylcarnitines, and other lipid related compounds.  

 

Undoubtedly, the applied ex vivo model has been a valuable experimental approach for the 

identification of pathways that are more likely to be responsible for the high susceptibility 

of the PZ to the emergence of cancerous clones. These metabolic pathways could be 

targeted by dietary bioactives, and further investigations are required for a better 

understanding of how diet-induced systemic changes may contribute to the changes of the 

unique metabolic profile of the prostate, and whether organ (prostate)-specific changes can 

be identified. Finally, it is plausible to suggest that the different metabolism of the prostatic 

zones should be taken into consideration when tissue sampling strategies are designed in 

future studies. 

 

7.4. Changes of prostate metabolism induced by dietary 

bioactives: evidence from a randomised double-blinded trial 
An in vivo approach was used to further understand the experimental findings obtained by 

performing the in vitro and ex vivo work discussed so far. The need of undertaking 

controlled randomised trials (CRTs) for exploring the effect of diet on PCa prevention is 

increasingly accepted by the research community. More often, observations emerging from 

in vitro and animal studies are not relevant in clinical settings, resulting in a significant loss 

of time and money. The cancer preventive properties of dietary ITCs from cruciferous 

vegetables have been extensively investigated in pre-clinical studies; however, how these 

experimental findings can translate to a clinical benefit remains unclear. 

 

Epidemiological data have provided robust evidence of a reduced risk of PCa in men who 

regularly consume high levels of cruciferous vegetables (~ one portion/day) (86, 284). 

Cruciferous vegetables, such as broccoli, represent one of the major dietary sources of 

sulfur-containing compounds, including glucosinolates and their breakdown products (e.g. 

ITCs) (99, 285). The level of sulfate present in these vegetables is relatively high (>0.9 

mg/g) compared to low-sulfate foods characterised by <0.1 mg/g (239). Among these sulfur 

compounds, SMCSO is present at high concentrations in cruciferous plants, and recent 
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work has confirmed its bioavailability following broccoli consumption (BOBS study, 

ClinicalTrials.gov Identifier NCT02300324, unpublished data). A previous study, carried 

out by administering an oral dose of radiolabelled SMCSO ([35S]-SMCSO) for 14 days to 

healthy subjects, found that it was mainly excreted in the urine as inorganic sulfate of which 

20% was excreted during the first day (258). Until now, however, there has been very little 

research to explore how sulfur compounds, such as sulfate and SMCSO, contribute to the 

beneficial effect of cruciferous consumption against cancer (286-289).  

 

The ESCAPE trial was designed to determine whether broccoli-derived compounds can 

influence the metabolism of the human prostate, resulting in changes to the tumour 

environment that would be unfavourable for cancer growth. The use of broccoli soups 

specifically developed for this trial has allowed a double-blinded trial to be undertaken. 

The advantage of a broccoli-based intervention, instead of a SF-rich supplement, was the 

simultaneous delivery of SF with other sulfur-containing compounds, including SMCSO 

and sulfate, that could potentially exert synergistic and/or additive effects. Metabolomic 

data, fully described in Chapter 6 of this thesis, revealed a significant increase of tissue 

sulfate levels in the prostate of men randomised to the ESCAPE trial after a 12-month 

broccoli intervention. These preliminary data were not informative on how the 

consumption of a different variety of broccoli (normal or glucoraphanin-enriched broccoli) 

influenced sulfate accumulation in the prostate, due to the blinded nature of the analyses 

described in this thesis. However, an increased level of sulfate in the prostate after a 12-

month broccoli intervention, compared to baseline level, could have significant 

implications in explaining the key mechanisms underlying the beneficial effect of broccoli 

consumption which have been observed in epidemiological studies. 

 

Sulfate can reach the systemic circulation from the gastrointestinal tract, where it is 

delivered as inorganic sulfate through the diet, and an intracellular pool generated by the 

metabolism of sulphur-containing compounds, such as amino acids (methionine and 

cysteine) and products of sulfonation reactions (i.e. xenobiotics detoxification, bile acids 

activation, steroids inactivation) (Figure 7.4) (238). Methionine is converted to cysteine 

through two reactions catalysed by cystathionine β- synthase (CBS) and cystathionine γ- 

lyase (CTH). Cysteine is metabolised by two different pathways; one pathway still requires 

CBS and CTH enzymes, whereas the other is regulated by cysteine dioxygenase (CDO), 

glutamic-oxaloacetic transaminase 1 (GOT1), and sulphide oxidase (SUOX). Intracellular 

sulfate is largely used for sulfonation of a wide range of endogenous and exogenous 

compounds, and as a result of the action of cytosolic sulfatases, more inorganic sulfate is 
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then released from sulfonated compounds. Sulfate is largely excreted in urine, and its faecal 

excretion is very poor (238). 

 

 
Figure 7.4  Physiological absorption and excretion of sulfate.  Inorganic sulfate present in the 
diet is absorbed though the small intestine, and undergoes a reabsorption process in the 
kidneys before being excreted in urine. An intracellular pool of inorganic sulfate is generated 
by the metabolism of the sulfur-containing amino acids methionine and cysteine. Sulfate is 
used within the cells to form sulfonated metabolites of endogenous compounds and 
xenobiotics, which in turn generate more inorganic sulfate by the action of cytosolic sulfatases. 
Circulating sulfate is mainly excreted through the urine following a reabsorption process in 
the kidneys, and only a very small proportion is excreted with faeces. APS, adenosine 5’-
phosphosulfate; PAPS, 3’-phosphoadenosine 5’-phosphosulfate; PAPSS2, PAPS synthetase; 
SULT, sulfotranspherases; CBS, cystathionine β- synthase; CTH, cystathionine γ- lyase; 
CDO1, cysteine dioxygenase; GOT1, glutamic-oxaloacetic transaminase 1; SUOX, sulphide 
oxidase;  
 

The main biological role of sulfate is the regulation of phase II reactions which are part of 

the physiological system for xenobiotics detoxification (290), and as already mentioned, 

the products of these reactions (sulfonated compounds) contribute to sulfate homeostasis. 

The metabolism of xenobiotics occurs mainly in two phases through several enzymatic 

reactions based on the chemistry of the xenobiotic. Initially, the compound is converted to 

an intermediate metabolite containing nucleophilic groups by oxido-reduction and 

hydrolysis reactions (Phase 1 enzymes), and subsequently the nucleophilic moieties are 

conjugated with an endogenous molecule (glucuronic acid or glutathione) to be easily 

excreted in the urine (Figure 7.5). Diet can influence xenobiotic metabolism at different 
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levels (291); it is now well established that this modulatory action significantly contributes 

to the cancer preventative benefits of dietary bioactives through the elimination of 

carcinogens (291-293). However, the same mechanisms of action could represent a 

problem by interfering with drug metabolism (294). 

 

  
Figure 7.5 Schematic diagram of the physiological system for the metabolism of xenobiotics 
indicating the key mediators of phase I, II enzymes, and phase III transporters.  
 

A large body of evidence suggest that food bioactives exert their beneficial effect on human 

health mainly by enhancing phase II metabolism through the activation of Nrf2 signalling 

pathway (295). SF is considered one of the most potent Nrf2 regulators, and its effects on 

phase 2 metabolism are well documented in in vitro and animal studies (296). To date, the 

significant inducing effect exerted by SF, and other brassica-derived ITCs, on phase II 

enzymes is considered the key mechanism responsible for the strong association between 

consuming diets rich in these vegetables and reduction of cancer risks (101). However, the 

accumulation of sulfate, observed in the ESCAPE cohort following a long term broccoli-

based intervention, could suggest a new potential mechanism by which diets rich in these 

vegetables can enhance phase II metabolism in the prostate and prevent cancer progression. 

SMCSO could potentially be the key compound to explain the observed diet-induced 

metabolic changes in the prostate because the inorganic sulfate resulting from its metabolic 

fate within the cells, may enhance the synthesis of PAPS, known to be dependent on the 

availability of the intracellular sulfate pool. Increased PAPS synthesis may deplete 

intracellular ATP pools, with resulting production of ADP and phosphate. Accumulation 

of ADP and phosphate was found in the prostate tissue of men randomised to the ESCAPE 

intervention, and the significant association between ADP and reduced percentage of 

cancer at repeat biopsy could support the proposed hypothesis (Figure 7.6).  
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Figure 7.6 SMCSO is mainly metabolised to inorganic sulfate  (∼50% with urea) in humans. 
An increased availability of sulfate results in increasing synthesis of PAPS within the cells. 
PAPS is the universal sulfonate donor molecule for sulfonation reactions involved in the 
metabolism of xenobiotics.  
 

The high urinary excretion of SMCSO and inorganic sulfate (produced from the 

intracellular metabolism of SMSCO and also delivered through the ESCAPE diet 

intervention) could support the role of the diet in inducing prostate sulfate levels, and 

therefore be potentially responsible for the ATP depletion and the reduced percentage of 

cancer found at repeat biopsy. The exposure of the prostate to high levels of SMCSO and 

sulfate could be caused by intraprostatic urinary reflux. There is evidence to support the 

theory of intraprostatic urinary reflux as an exposure route of the prostate to infectious 

agents and chemical compounds present in the systemic circulation (297, 298). Reflux of 

urine into intraprostatic ductuli and ejaculatory ducts may also influence cancer 

development and progression to advanced disease. The concept of intraprostatic reflux was 

introduced by Kirby and colleagues, who provided histological evidence of the presence of 

carbon particles in the prostate glands of men who had carbon particles injected into their 

bladders prior to a TURP procedure (298). The anatomy of the prostate facilitates the reflux 

of urine into the peripheral zone of the gland that, as a result is more exposed to bacterial 

agents, and this could explain the higher rate of prostatic infections in this zone of the 
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prostate (299, 300). It therefore seems plausible that urinary intraprostatic reflux could be 

a potential exposure route of the prostate epithelium to compounds delivered through diet.  

 

Further investigations need to be carried out to gain additional evidence for the 

accumulation of sulfate in the prostate as a direct effect of consuming a broccoli-rich diet 

containing high levels of sulfur-containing compounds. Windows of opportunity trials 

could represent a valuable approach to test the proposed hypothesis in an independent 

patient cohort by investigating the specificity of sulfate accumulation in the prostate 

through the analyses of non-prostatic tissue. Furthermore, the use of a non-interventional 

arm will help in understanding whether tissue metabolic changes are specifically induced 

by sulfur-enriched diets.  

 

7.5. Conclusions 
The preliminary data obtained from the ESCAPE trial have provided valuable information 

to address some of the main challenges associated with cancer chemoprevention. First, the 

comprehensive characterization of the diets used in the trial in terms of concentrations of 

SF and other sulfur-containing compounds, along with bioavailability data obtained by 

parallel trials, has informed on (i) physiological achievable concentrations of these 

bioactives, (ii) their safety following long-term exposure, and (iii) advantages of using a 

food-based intervention instead of supplements. It is envisaged that this information will 

inform future preclinical studies on the use of sulfur-containing compounds at 

physiologically achievable concentrations. The design of future preclinical studies will also 

be improved through a more rigorous selection of cell culture models to study prostate 

biology, taking into consideration the points raised by the in vitro work described in this 

thesis. 

 

Furthermore, the global approach applied to study the diet-induced changes in prostate 

metabolism, led to the identification of metabolites such as sulfate, ADP/phosphate pool, 

and glutathione that are affected by the broccoli intervention. Despite the fact that the 

ESCAPE trial has not been designed to assess clinical endpoints, the portfolio of clinical 

data gained from the extensive histological assessment of each prostate biopsy core has 

been valuable for the interpretation of metabolomic data. Linear regression analyses have 

shown an inverse correlation between tissue sulfate accumulation and cancer percentage at 

12 months biopsy, which may be related to the ATP depletion with consequent 

accumulation of ADP and phosphate. The full body of obtained data on the composition of 

bioactives delivered by the trial intervention, their effect on prostate metabolite levels after 
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12-months exposure and percentage of cancer within the same tissue, suggests a new 

potential mechanism by which diet could prevent cancer progression. The proposed 

mechanism needs to be tested in an independent patient cohort and further explored in 

preclinical studies, including prostatectomy-based models, taking into consideration the 

unique metabolic signature of prostatic regions. A further understanding of the key 

mechanisms of action of sulfur bioactives as cancer preventive agents may also be 

important for the rational development of biomarkers. 

 

Finally, the ESCAPE trial highlighted the advantages of undertaking interventional studies 

in cancer patients on AS. One of the major challenges of studying cancer preventive 

strategies is the selection of the patient population, and there is a strong need to better 

identify high-risk patient groups, in particular when testing lifestyle interventions. The AS 

protocol involves biopsy procedures at regular intervals and this represents a great 

advantage for collecting biological material together with extensive clinical information.  
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Appendix 1. Metabolites identified in the first batch of 
samples analysed through Metabolon® platforms (n=8 
patients, n=32 tissue samples) 
 

BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

1,2-propanediol Xenobiotics Chemical C0058
3 

HMDB
01881 

1,3-diaminopropane Amino Acid Polyamine 
Metabolism 

C0098
6 

HMDB
00002 

1,5-anhydroglucitol (1,5-AG) Carbohydrate Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

C0732
6 

HMDB
02712 

1,6-anhydroglucose Xenobiotics Food 
Component/Plant 

 HMDB
00640 

1-
arachidonoylglycerophosphoetha
nolamine* 

Lipid Lysolipid  HMDB
11517 

1-
arachidonoylglycerophosphoinosi
tol* 

Lipid Lysolipid   

1-arachidonylglycerol Lipid Monoacylglycerol C1385
7 

HMDB
11572 

1-
docosahexaenoylglycerophosphoe
thanolamine* 

Lipid Lysolipid   

1-
eicosatrienoylglycerophosphochol
ine (20:3)* 

Lipid Lysolipid   

1-
eicosenoylglycerophosphocholine 
(20:1n9)* 

Lipid Lysolipid   

1-
eicosenoylglycerophosphoethanol
amine (20:1n9)* 

Lipid Lysolipid   

1-linoleoylglycerol (1-
monolinolein) 

Lipid Monoacylglycerol   

1-linoleoylglycerophosphocholine 
(18:2n6) 

Lipid Lysolipid C0410
0 

 

1-
linoleoylglycerophosphoethanola
mine* 

Lipid Lysolipid  HMDB
11507 

1-
margaroylglycerophosphoethanol
amine* 

Lipid Lysolipid   
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BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

1-
myristoylglycerophosphocholine 
(14:0) 

Lipid Lysolipid C0423
0 

HMDB
10379 

1-octadecanol Lipid Fatty Alcohol, 
Long Chain 

D0192
4 

HMDB
02350 

1-oleoylglycerophosphocholine 
(18:1) 

Lipid Lysolipid   

1-
oleoylglycerophosphoethanolami
ne 

Lipid Lysolipid  HMDB
11506 

1-oleoylglycerophosphoinositol* Lipid Lysolipid   

1-oleoylglycerophosphoserine Lipid Lysolipid   

1-oleoylplasmenylethanolamine* Lipid Lysolipid   

1-
palmitoleoylglycerophosphocholi
ne (16:1)* 

Lipid Lysolipid   

1-palmitoylglycerol (1-
monopalmitin) 

Lipid Monoacylglycerol  HMDB
31074 

1-
palmitoylglycerophosphocholine 
(16:0) 

Lipid Lysolipid   

1-
palmitoylglycerophosphoethanol
amine 

Lipid Lysolipid  HMDB
11503 

1-
palmitoylglycerophosphoglycerol
* 

Lipid Lysolipid   

1-
palmitoylglycerophosphoinositol* 

Lipid Lysolipid   

1-
palmitoylplasmenylethanolamine
* 

Lipid Lysolipid   

1-stearoylglycerol (1-
monostearin) 

Lipid Monoacylglycerol D0194
7 

HMDB
31075 

1-stearoylglycerophosphocholine 
(18:0) 

Lipid Lysolipid   

1-
stearoylglycerophosphoethanola
mine 

Lipid Lysolipid  HMDB
11130 

1-stearoylglycerophosphoinositol Lipid 

1-stearoylglycerophosphoserine* Lipid Lysolipid   

1-
stearoylplasmenylethanolamine* 

Lipid Lysolipid   

2-aminoadipate Amino Acid Lysine 
Metabolism 

C0095
6 

HMDB
00510 
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BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

2-aminobutyrate Amino Acid Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0226
1 

HMDB
00650 

2-arachidonoyl glycerol Lipid Monoacylglycerol C1385
6 

HMDB
04666 

2-
arachidonoylglycerophosphocholi
ne* 

Lipid Lysolipid   

2-
arachidonoylglycerophosphoetha
nolamine* 

Lipid Lysolipid   

2-
docosahexaenoylglycerophosphoc
holine* 

Lipid Lysolipid   

2-
docosahexaenoylglycerophosphoe
thanolamine* 

Lipid Lysolipid   

2-
docosapentaenoylglycerophospho
ethanolamine* 

Lipid Lysolipid   

2-
eicosapentaenoylglycerophosphoe
thanolamine* 

Lipid Lysolipid   

2-hydroxyacetaminophen 
sulfate* 

Xenobiotics Drug   

2-hydroxybutyrate (AHB) Amino Acid Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0598
4 

HMDB
00008 

2-hydroxyglutarate Lipid Fatty Acid, 
Dicarboxylate 

C0263
0 

HMDB
00606 

2-
linoleoylglycerophosphocholine* 

Lipid Lysolipid   

2-
linoleoylglycerophosphoethanola
mine* 

Lipid Lysolipid   

2-methylbutyrylcarnitine (C5) Amino Acid Leucine, 
Isoleucine and 
Valine 
Metabolism 

 HMDB
00378 

2-
myristoylglycerophosphocholine* 

Lipid Lysolipid   

2-oleoylglycerophosphocholine* Lipid Lysolipid   

2-
oleoylglycerophosphoethanolami
ne* 

Lipid Lysolipid   



Appendix 1 

187 | P a g e  

 

BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

2-palmitoylglycerol (2-
monopalmitin) 

Lipid Monoacylglycerol  HMDB
11533 

2-
palmitoylglycerophosphocholine* 

Lipid Lysolipid   

2-
palmitoylglycerophosphoethanol
amine* 

Lipid Lysolipid   

2-
stearoylglycerophosphocholine* 

Lipid Lysolipid   

2-
stearoylglycerophosphoinositol* 

Lipid Lysolipid   

3-(cystein-S-yl)acetaminophen* Xenobiotics Drug   

3-(N-acetyl-L-cystein-S-yl) 
acetaminophen* 

Xenobiotics Drug   

3-(N-
morpholino)propanesulfonic acid  

Xenobiotics Chemical   

3-aminoisobutyrate Nucleotide Pyrimidine 
Metabolism, 
Thymine 
containing 

C0514
5 

HMDB
03911 

3-dehydrocarnitine* Lipid Carnitine 
Metabolism 

C0263
6 

HMDB
12154 

3-indoxyl sulfate Amino Acid Tryptophan 
Metabolism 

 HMDB
00682 

3-phosphoglycerate Carbohydrate Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

C0059
7 

HMDB
00807 

4-acetamidophenol Xenobiotics Drug C0680
4 

HMDB
01859 

4-acetaminophen sulfate Xenobiotics Drug C0680
4 

HMDB
59911 

4-androsten-3beta,17beta-diol 
disulfate (1)* 

Lipid Steroid C0429
5 

HMDB
03818 

4-hydroxybutyrate (GHB) Lipid Fatty Acid, 
Monohydroxy 

C0098
9 

HMDB
00710 

4-hydroxyhippurate Xenobiotics Benzoate 
Metabolism 

 HMDB
13678 

4-methylsulfinylbutyl 
glucosinolate 

Xenobiotics Food 
Component/Plant 

  

5-methylthioadenosine (MTA) Amino Acid Polyamine 
Metabolism 

C0017
0 

HMDB
01173 

5-oxoproline Amino Acid Glutathione 
Metabolism 

C0187
9 

HMDB
00267 
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BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

6-phosphogluconate Carbohydrate Pentose Phosphate 
Pathway 

C0034
5 

HMDB
01316 

6-sialyl-N-acetyllactosamine Carbohydrate Aminosugar 
Metabolism 

 HMDB
06584 

7-beta-hydroxycholesterol Lipid Sterol  HMDB
06119 

acetyl CoA Lipid Fatty Acid 
Metabolism 

C0002
4 

HMDB
01206 

acetylcarnitine Lipid Fatty Acid 
Metabolism (Acyl 
Carnitine) 

C0257
1 

HMDB
00201 

acetylcholine Lipid Neurotransmitter   

adenine Nucleotide Purine 
Metabolism, 
Adenine 
containing 

C0014
7 

HMDB
00034 

adenosine Nucleotide Purine 
Metabolism, 
Adenine 
containing 

C0021
2 

HMDB
00050 

adenosine 5'-diphosphate (ADP) Nucleotide Purine 
Metabolism, 
Adenine 
containing 

C0000
8 

HMDB
01341 

adenosine 5'-monophosphate 
(AMP) 

Nucleotide Purine 
Metabolism, 
Adenine 
containing 

C0002
0 

HMDB
00045 

adenosine 5'-triphosphate (ATP) Nucleotide Purine 
Metabolism, 
Adenine 
containing 

C0000
2 

HMDB
00538 

adenosine 5'diphosphoribose Cofactors and 
Vitamins 

Nicotinate and 
Nicotinamide 
Metabolism 

C0030
1 

HMDB
01178 

agmatine Amino Acid Polyamine 
Metabolism 

C0017
9 

HMDB
01432 

alanine Amino Acid Alanine and 
Aspartate 
Metabolism 

C0004
1 

HMDB
00161 

alpha-ketoglutarate Energy TCA Cycle C0002
6 

HMDB
00208 

alpha-tocopherol Cofactors and 
Vitamins 

Tocopherol 
Metabolism 

C0247
7 

HMDB
01893 

androsterone sulfate Lipid Steroid  HMDB
02759 
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BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

arabitol Carbohydrate Pentose 
Metabolism 

C0190
4 

HMDB
01851 

arachidate (20:0) Lipid Long Chain Fatty 
Acid 

C0642
5 

HMDB
02212 

arachidonate (20:4n6) Lipid Polyunsaturated 
Fatty Acid (n3 and 
n6) 

C0021
9 

HMDB
01043 

arginine Amino Acid Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0006
2 

HMDB
00517 

 

 

ascorbate (Vitamin C) Cofactors and 
Vitamins 

Ascorbate and 
Aldarate 
Metabolism 

C0007
2 

HMDB
00044 

asparagine Amino Acid Alanine and 
Aspartate 
Metabolism 

C0015
2 

HMDB
00168 

aspartate Amino Acid Alanine and 
Aspartate 
Metabolism 

C0004
9 

HMDB
00191 

atenolol Xenobiotics Drug D0023
5 

HMDB
01924 

beta-alanine Nucleotide Pyrimidine 
Metabolism, 
Uracil containing 

C0009
9 

HMDB
00056 

beta-hydroxyisovaleroylcarnitine Amino Acid 

butyrylcarnitine Lipid Fatty Acid 
Metabolism (also 
BCAA 
Metabolism) 

C0286
2 

HDMB
02013 

C-glycosyltryptophan* Amino Acid Tryptophan 
Metabolism 

  

caffeine Xenobiotics Xanthine 
Metabolism 

C0748
1 

HMDB
01847 

carboxyethyl-GABA Amino Acid Glutamate 
Metabolism 

 HMDB
02201 

carnitine Lipid Carnitine 
Metabolism 

C0031
8 

HMDB
00062 

chiro-inositol Lipid Inositol 
Metabolism 

C1989
1 

HMDB
34220 

cholestanol Lipid Sterol C1297
8 

HMDB
00908 

cholesterol Lipid Sterol C0018
7 

HMDB
00067 
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BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

choline Lipid Phospholipid 
Metabolism 

C0011
4 

HMDB
00097 

choline phosphate Lipid Phospholipid 
Metabolism 

C0058
8 

HMDB
01565 

cis-vaccenate (18:1n7) Lipid Long Chain Fatty 
Acid 

C0836
7 

HMDB
03231 

citrate Energy TCA Cycle C0015
8 

HMDB
00094 
 

coenzyme A Cofactors and 
Vitamins 

Pantothenate and 
CoA Metabolism 

C0001
0 

HMDB
01423 

creatine Amino Acid Creatine 
Metabolism 

C0030
0 

HMDB
00064 

creatinine Amino Acid Creatine 
Metabolism 

C0079
1 

HMDB
00562 

cysteine Amino Acid Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0009
7 

HMDB
00574 

cysteine-glutathione disulfide Amino Acid Glutathione 
Metabolism 

 HMDB
00656 

cytidine Nucleotide Pyrimidine 
Metabolism, 
Cytidine 
containing 

C0047
5 

HMDB
00089 

cytidine 5'-diphosphocholine Lipid Phospholipid 
Metabolism 

C0030
7 

HMDB
01413 

cytidine 5'-monophosphate (5'-
CMP) 

Nucleotide Pyrimidine 
Metabolism, 
Cytidine 
containing 

C0005
5 

HMDB
00095 

cytidine-5'-
diphosphoethanolamine 

Lipid Phospholipid 
Metabolism 

C0057
0 

HMDB
01564 

dehydroascorbate Cofactors and 
Vitamins 

Ascorbate and 
Aldarate 
Metabolism 

C0542
2 

HMDB
01264 

dehydroisoandrosterone sulfate 
(DHEA-S) 

Lipid Steroid C0455
5 

HMDB
01032 

deoxycarnitine Lipid Carnitine 
Metabolism 

C0118
1 

HMDB
01161 

dihomo-linoleate (20:2n6) Lipid Polyunsaturated 
Fatty Acid (n3 and 
n6) 

C1652
5 

HMDB
05060 

dihomo-linolenate (20:3n3 or n6) Lipid Polyunsaturated 
Fatty Acid (n3 and 
n6) 

C0324
2 

HMDB
02925 
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BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

docosahexaenoate (DHA; 22:6n3) Lipid Polyunsaturated 
Fatty Acid (n3 and 
n6) 

C0642
9 

HMDB
02183 

docosapentaenoate (n3 DPA; 
22:5n3) 

Lipid Polyunsaturated 
Fatty Acid (n3 and 
n6) 

C1651
3 

HMDB
01976 

docosapentaenoate (n6 DPA; 
22:5n6) 

Lipid Polyunsaturated 
Fatty Acid (n3 and 
n6) 

C1651
3 

HMDB
13123 

eicosapentaenoate (EPA; 20:5n3) Lipid Polyunsaturated 
Fatty Acid (n3 and 
n6) 

C0642
8 

HMDB
01999 

eicosenoate (20:1n9 or 11) Lipid Long Chain Fatty 
Acid 

  

erythritol Xenobiotics Food 
Component/Plant 

C0050
3 

HMDB
02994 

erythronate* Carbohydrate Aminosugar 
Metabolism 

 HMDB
00613 

ethanolamine Lipid Phospholipid 
Metabolism 

C0018
9 

HMDB
00149 

flavin adenine dinucleotide 
(FAD) 

Cofactors and 
Vitamins 

Riboflavin 
Metabolism 

C0001
6 

HMDB
01248 

fructose Carbohydrate Fructose, Mannose 
and Galactose 
Metabolism 

C0009
5 

HMDB
00660 

fucose Carbohydrate Pentose 
Metabolism 

C0101
8 

HMDB
00174 

fumarate Energy TCA Cycle C0012
2 

HMDB
00134 

galactose Carbohydrate Fructose, Mannose 
and Galactose 
Metabolism 

C0158
2 

HMDB
00143 

gamma-aminobutyrate (GABA) Amino Acid Glutamate 
Metabolism 

C0033
4 

HMDB
00112 

gamma-glutamylcysteine Peptide Gamma-glutamyl 
Amino Acid 

C0066
9 

HMDB
01049 

gamma-glutamylglutamate Peptide Gamma-glutamyl 
Amino Acid 

C0528
2 

HMDB
11737 

gamma-glutamylglutamine Peptide Gamma-glutamyl 
Amino Acid 

C0528
3 

HMDB
11738 

gluconate Xenobiotics Food 
Component/Plant 

C0025
7 

HMDB
00625 

glucose Carbohydrate Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

C0003
1 

HMDB
00122 



Appendix 1 

192 | P a g e  

 

BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

glucose 1-phosphate Carbohydrate Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

C0010
3 

HMDB
01586 

glucose-6-phosphate (G6P) Carbohydrate Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

C0066
8 

HMDB
01401 

glutamate Amino Acid Glutamate 
Metabolism 

C0002
5 

HMDB
00148 

glutamate, gamma-methyl ester Amino Acid Glutamate 
Metabolism 

  

glutamine Amino Acid Glutamate 
Metabolism 

C0006
4 

HMDB
00641 

glutarylcarnitine (C5) Amino Acid Lysine 
Metabolism 

 HMDB
13130 

glutathione, oxidized (GSSG) Amino Acid Glutathione 
Metabolism 

C0012
7 

HMDB
03337 

glutathione, reduced (GSH) Amino Acid Glutathione 
Metabolism 

C0005
1 

HMDB
00125 

glycerate Carbohydrate Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

C0025
8 

HMDB
00139 

glycerol Lipid Glycerolipid 
Metabolism 

C0011
6 

HMDB
00131 

glycerol 2-phosphate Xenobiotics Chemical C0297
9 

HMDB
02520 

glycerol 3-phosphate (G3P) Lipid Glycerolipid 
Metabolism 

C0009
3 

HMDB
00126 

glycerophosphoethanolamine Lipid Phospholipid 
Metabolism 

C0123
3 

HMDB
00114 

glycerophosphorylcholine (GPC) Lipid Phospholipid 
Metabolism 

C0067
0 

HMDB
00086 

glycine Amino Acid Glycine, Serine 
and Threonine 
Metabolism 

C0003
7 

HMDB
00123 

glycylisoleucine Peptide Dipeptide   

glycylleucine Peptide Dipeptide C0215
5 

HMDB
00759 

guanine Nucleotide Purine 
Metabolism, 
Guanine 
containing 

C0024
2 

HMDB
00132 

guanosine Nucleotide Purine 
Metabolism, 

C0038
7 

HMDB
00133 
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BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

Guanine 
containing 

guanosine 5'- monophosphate (5'-
GMP) 

Nucleotide Purine 
Metabolism, 
Guanine 
containing 

C0014
4 

HMDB
01397 

heme Cofactors and 
Vitamins 

Hemoglobin and 
Porphyrin 
Metabolism 

  

hexanoylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

 HMDB
00705 

hippurate Xenobiotics Benzoate 
Metabolism 

C0158
6 

HMDB
00714 

histamine Amino Acid Histidine 
Metabolism 

C0038
8 

HMDB
00870 

histidine Amino Acid Histidine 
Metabolism 

C0013
5 

HMDB
00177 

hydroxybutyrylcarnitine* Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

 HMDB
13127 

hypotaurine Amino Acid Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0051
9 

HMDB
00965 

hypoxanthine Nucleotide Purine 
Metabolism, 
(Hypo)Xanthine/I
nosine containing 

C0026
2 

HMDB
00157 

inosine Nucleotide Purine 
Metabolism, 
(Hypo)Xanthine/I
nosine containing 

C0029
4 

HMDB
00195 

inositol 1-phosphate (I1P) Lipid Inositol 
Metabolism 

C0400
6 

HMDB
00213 

Isobar: fructose 1,6-diphosphate, 
glucose 1,6-diphosphate, myo-
inositol 1,4 or 1,3-diphosphate 

Carbohydrate Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

  

isobutyrylcarnitine Amino Acid Leucine, 
Isoleucine and 
Valine 
Metabolism 

 HMDB
00736 

isocitrate Energy TCA Cycle C0031
1 

HMDB
00193 

isoleucine Amino Acid Leucine, 
Isoleucine and 

C0040
7 

HMDB
00172 
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BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

Valine 
Metabolism 

isovalerylcarnitine Amino Acid Leucine, 
Isoleucine and 
Valine 
Metabolism 

 HMDB
00688 

itaconate (methylenesuccinate) Energy TCA Cycle C0049
0 

HMDB
02092 

kynurenine Amino Acid Tryptophan 
Metabolism 

C0032
8 

HMDB
00684 

lactate Carbohydrate Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

C0018
6 

HMDB
00190 

lactose Carbohydrate Disaccharides and 
Oligosaccharides 

C0024
3 

HMDB
00186 
 

leucine Amino Acid Leucine, 
Isoleucine and 
Valine 
Metabolism 

C0012
3 

HMDB
00687 

lidocaine Xenobiotics Drug D0035
8 

HMDB
14426 

linoleate (18:2n6) Lipid Polyunsaturated 
Fatty Acid (n3 and 
n6) 

C0159
5 

HMDB
00673 

lysine Amino Acid Lysine 
Metabolism 

C0004
7 

HMDB
00182 

malate Energy TCA Cycle C0014
9 

HMDB
00156 

maltose Carbohydrate Glycogen 
Metabolism 

C0020
8 

HMDB
00163 

maltotriose Carbohydrate Glycogen 
Metabolism 

C0183
5 

HMDB
01262 

mannitol Carbohydrate Fructose, Mannose 
and Galactose 
Metabolism 

C0039
2 

HMDB
00765 

mannose Carbohydrate Fructose, Mannose 
and Galactose 
Metabolism 

C0015
9 

HMDB
00169 

margarate (17:0) Lipid Long Chain Fatty 
Acid 

 HMDB
02259 

methyl-alpha-glucopyranoside Xenobiotics Food 
Component/Plant 

C0260
3 

 

methylphosphate Nucleotide Purine and 
Pyrimidine 
Metabolism 
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BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

myo-inositol Lipid Inositol 
Metabolism 

C0013
7 

HMDB
00211 

N-acetyl-aspartyl-glutamate 
(NAAG) 

Amino Acid Glutamate 
Metabolism 

C1227
0 

HMDB
01067 

N-acetylaspartate (NAA) Amino Acid Alanine and 
Aspartate 
Metabolism 

C0104
2 

HMDB
00812 

N-acetylneuraminate Carbohydrate Aminosugar 
Metabolism 

C0027
0 

HMDB
00230 

N-acetylputrescine Amino Acid Polyamine 
Metabolism 

C0271
4 

HMDB
02064 

N1-methyladenosine Nucleotide Purine 
Metabolism, 
Adenine 
containing 

C0249
4 

HMDB
03331 

nicotinamide Cofactors and 
Vitamins 

Nicotinate and 
Nicotinamide 
metabolism 

C0015
3 

HMDB
01406 

nicotinamide adenine 
dinucleotide (NAD+) 

Cofactors and 
Vitamins 

Nicotinate and 
Nicotinamide 
Metabolism 

C0000
3 

HMDB
00902 

nicotinamide adenine 
dinucleotide reduced (NADH) 

Cofactors and 
Vitamins 

Nicotinate and 
Nicotinamide 
Metabolism 

C0000
4 

HMDB
01487 

octanoylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

C0283
8 

HMDB
00791 

oleamide Lipid Fatty Acid, Amide C1967
0 

HMDB
02117 

oleate (18:1n9) Lipid Long Chain Fatty 
Acid 

C0071
2 

HMDB
00207 

oleoylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

 HMDB
05065 

ophthalmate Amino Acid Glutathione 
Metabolism 

 HMDB
05765 

ornithine Amino Acid Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0007
7 

HMDB
03374 

p-acetamidophenylglucuronide Xenobiotics Drug  HMDB
10316 

p-cresol sulfate Amino Acid Phenylalanine and 
Tyrosine 
Metabolism 

C0146
8 

HMDB
11635 

palmitate (16:0) Lipid Long Chain Fatty 
Acid 

C0024
9 

HMDB
00220 
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BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

palmitoleate (16:1n7) Lipid Long Chain Fatty 
Acid 

C0836
2 

HMDB
03229 

palmitoyl sphingomyelin Lipid Sphingolipid 
Metabolism 

  

palmitoylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

C0299
0 

HMDB
00222 

pantothenate Cofactors and 
Vitamins 

Pantothenate and 
CoA Metabolism 

C0086
4 

HMDB
00210 

phenol sulfate Amino Acid Phenylalanine and 
Tyrosine 
Metabolism 

C0218
0 

HMDB
60015 

phenylacetylglutamine Amino Acid Phenylalanine and 
Tyrosine 
Metabolism 

C0414
8 

HMDB
06344 

phenylalanine Amino Acid Phenylalanine and 
Tyrosine 
Metabolism 

C0007
9 

HMDB
00159 

phosphate Energy Oxidative 
Phosphorylation 

C0000
9 

HMDB
01429 

phosphoethanolamine Lipid Phospholipid 
Metabolism 

C0034
6 

HMDB
00224 

proline Amino Acid Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0014
8 

HMDB
00162 

propionylcarnitine Lipid Fatty Acid 
Metabolism (also 
BCAA 
Metabolism) 

C0301
7 

HMDB
00824 

pseudouridine Nucleotide Pyrimidine 
Metabolism, 
Uracil containing 

C0206
7 

HMDB
00767 

putrescine Amino Acid Polyamine 
Metabolism 

C0013
4 

HMDB
01414 

pyroglutamine* Amino Acid Glutamate 
Metabolism 

  

pyrophosphate (PPi) Energy Oxidative 
Phosphorylation 

C0001
3 

HMDB
00250 

ribitol Carbohydrate Pentose 
Metabolism 

C0047
4 

HMDB
00508 

ribose Carbohydrate Pentose 
Metabolism 

C0012
1 

HMDB
00283 

S-adenosylhomocysteine (SAH) Amino Acid Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0002
1 

HMDB
00939 
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BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

S-methylcysteine Amino Acid Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

 HMDB
02108 

scyllo-inositol Lipid Inositol 
Metabolism 

C0615
3 

HMDB
06088 

serine Amino Acid Glycine, Serine 
and Threonine 
Metabolism 

C0006
5 

HMDB
00187 

serotonin (5HT) Amino Acid Tryptophan 
Metabolism 

C0078
0 

HMDB
00259 

sorbitol Carbohydrate Fructose, Mannose 
and Galactose 
Metabolism 

C0079
4 

HMDB
00247 

spermidine Amino Acid Polyamine 
Metabolism 

C0031
5 

HMDB
01257 

spermine Amino Acid Polyamine 
Metabolism 

C0075
0 

HMDB
01256 

sphingosine Lipid Sphingolipid 
Metabolism 

C0031
9 

HMDB
00252 

stearamide Lipid Fatty Acid, Amide C1384
6 

HMDB
34146 

stearate (18:0) Lipid Long Chain Fatty 
Acid 

C0153
0 

HMDB
00827 

stearoyl sphingomyelin Lipid Sphingolipid 
Metabolism 

C0055
0 

HMDB
01348 

stearoylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

 HMDB
00848 

succinate Energy TCA Cycle C0004
2 

HMDB
00254 

succinylcarnitine Energy TCA Cycle   

taurine Amino Acid Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0024
5 

HMDB
00251 

theobromine Xenobiotics Xanthine 
Metabolism 

C0748
0 

HMDB
02825 

thiosulfate Xenobiotics Chemical C0552
9 

 

threonate Cofactors and 
Vitamins 

Ascorbate and 
Aldarate 
Metabolism 

C0162
0 

HMDB
00943 

threonine Amino Acid Glycine, Serine 
and Threonine 
Metabolism 

C0018
8 

HMDB
00167 
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BIOCHEMICAL SUPER_ 

PATHWAY 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

trans-4-hydroxyproline Amino Acid Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0115
7 

HMDB
00725 

trans-aconitate Energy TCA Cycle C0234
1 

HMDB
00958 

trizma acetate Xenobiotics Chemical C0718
2 

 

tryptophan Amino Acid Tryptophan 
Metabolism 

C0007
8 

HMDB
00929 

tryptophan betaine  Amino Acid Tryptophan 
Metabolism 

C0921
3 

HMDB
61115 

tyrosine Amino Acid Phenylalanine and 
Tyrosine 
Metabolism 

C0008
2 

HMDB
00158 

uracil Nucleotide Pyrimidine 
Metabolism, 
Uracil containing 

C0010
6 

HMDB
00300 

urate Nucleotide Purine 
Metabolism, 
(Hypo)Xanthine/I
nosine containing 

C0036
6 

HMDB
00289 

urea Amino Acid Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0008
6 

HMDB
00294 

uridine Nucleotide Pyrimidine 
Metabolism, 
Uracil containing 

C0029
9 

HMDB
00296 

uridine monophosphate (5' or 3') Nucleotide Pyrimidine 
Metabolism, 
Uracil containing 

C0136
8, 
C0010
5 

HMDB
00288 

valine Amino Acid Leucine, 
Isoleucine and 
Valine 
Metabolism 

C0018
3 

HMDB
00883 

xanthine Nucleotide Purine 
Metabolism, 
(Hypo)Xanthine/I
nosine containing 

C0038
5 

HMDB
00292 

xanthosine Nucleotide Purine 
Metabolism, 
(Hypo)Xanthine/I
nosine containing 

C0176
2 

HMDB
00299 

xylitol Carbohydrate Pentose 
Metabolism 

C0037
9 

HMDB
02917 
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Appendix 2 Metabolites identified in the second batch of 
samples analysed through Metabolon® platforms (n=10 
patients, n=40 tissue samples) 
 

BIOCHEMICAL SUPER_ 

PATHWA
Y 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

1,2,3-benzenetriol sulfate (2) Xenobiotics Chemical   

1,2-dilinoleoyl-GPC (18:2/18:2) Lipid Phospholipid 
Metabolism 

  

1,2-dioleoyl-GPC (18:1/18:1)* Lipid Phospholipid 
Metabolism 

  

1,2-dioleoyl-GPE (18:1/18:1) Lipid Phospholipid 
Metabolism 

  

1,2-dipalmitoyl-GPC (16:0/16:0) Lipid Phospholipid 
Metabolism 

 HMDB
00564 

1,3-dimethylurate Xenobiotics Xanthine 
Metabolism 

 HMDB
01857 

1,5-anhydroglucitol (1,5-AG) Carbohydra
te 

Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

C0732
6 

HMDB
02712 

1,7-dimethylurate Xenobiotics Xanthine 
Metabolism 

C1635
6 

HMDB
11103 

1-(1-enyl-oleoyl)-2-arachidonoyl-
GPE (P-18:1/20:4)* 

Lipid Plasmalogen   

1-(1-enyl-oleoyl)-GPE (P-18:1)* Lipid Lysolipid   

1-(1-enyl-palmitoyl)-2-
arachidonoyl-GPC (P-16:0/20:4)* 

Lipid Phospholipid 
Metabolism 

  

1-(1-enyl-palmitoyl)-2-
arachidonoyl-GPE (P-16:0/20:4)* 

Lipid Plasmalogen   

1-(1-enyl-palmitoyl)-2-linoleoyl-
GPC (P-16:0/18:2)* 

Lipid Phospholipid 
Metabolism 

  

1-(1-enyl-palmitoyl)-2-linoleoyl-
GPE (P-16:0/18:2)* 

Lipid Plasmalogen   

1-(1-enyl-palmitoyl)-2-oleoyl-GPC 
(P-16:0/18:1)* 

Lipid Plasmalogen   

1-(1-enyl-palmitoyl)-2-oleoyl-GPE 
(P-16:0/18:1)* 

Lipid Plasmalogen   

1-(1-enyl-palmitoyl)-2-palmitoleoyl-
GPC (P-16:0/16:1)* 

Lipid Plasmalogen   

1-(1-enyl-palmitoyl)-2-palmitoyl-
GPC (P-16:0/16:0)* 

Lipid Plasmalogen   

1-(1-enyl-palmitoyl)-GPE (P-16:0)* Lipid Lysoplasmalogen   

1-(1-enyl-stearoyl)-2-arachidonoyl-
GPE (P-18:0/20:4)* 

Lipid Phospholipid 
Metabolism 

 HMDB
05779 
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BIOCHEMICAL SUPER_ 

PATHWA
Y 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

1-(1-enyl-stearoyl)-2-linoleoyl-GPE 
(P-18:0/18:2)* 

Lipid Plasmalogen   

1-(1-enyl-stearoyl)-2-oleoyl-GPE 
(P-18:0/18:1) 

Lipid Plasmalogen  

1-(1-enyl-stearoyl)-GPE (P-18:0)* Lipid Lysolipid   

1-arachidonoyl-GPC (20:4)* Lipid Lysolipid C0520
8 

HMDB
10395 

1-arachidonoyl-GPE (20:4)* Lipid Lysolipid  HMDB
11517 

1-arachidonoyl-GPI (20:4)* Lipid Lysolipid  HMDB
61690 

1-dihomo-linolenylglycerol (20:3) Lipid Monoacylglycerol   

1-linoleoyl-2-arachidonoyl-GPC 
(18:2/20:4)* 

Lipid Phospholipid 
Metabolism 

  

1-linoleoyl-GPC (18:2) Lipid Lysolipid C0410
0 

HMDB
10386 

BIOCHEMICAL SUPER_P
ATHWAY 

SUB_PATHWAY KEGG HMDB
_ID 

1-linoleoyl-GPE (18:2)* Lipid Lysolipid  HMDB
11507 

1-linoleoylglycerol (18:2) Lipid Monoacylglycerol   

1-methylguanidine Amino 
Acid 

Guanidino and 
Acetamido 
Metabolism 

C0229
4 

HMDB
01522 

1-methylhistamine Amino 
Acid 

Histidine 
Metabolism 

C0512
7 

HMDB
00898 

1-methylhistidine Amino 
Acid 

Histidine 
Metabolism 

C0115
2 

HMDB
00001 

1-methylimidazoleacetate Amino 
Acid 

Histidine 
Metabolism 

C0582
8 

HMDB
02820 

1-methylnicotinamide Cofactors 
and 
Vitamins 

Nicotinate and 
Nicotinamide 
Metabolism 

C0291
8 

HMDB
00699 

1-methylurate Xenobiotics Xanthine 
Metabolism 

C1635
9 

HMDB
03099 

1-oleoyl-2-linoleoyl-GPC 
(18:1/18:2)* 

Lipid Phospholipid 
Metabolism 

  

1-oleoyl-2-linoleoyl-GPE 
(18:1/18:2)* 

Lipid Phospholipid 
Metabolism 

 HMDB
05349 

1-oleoyl-GPC (18:1) Lipid Lysolipid  HMDB
02815 

1-oleoyl-GPE (18:1) Lipid Lysolipid  HMDB
11506 
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BIOCHEMICAL SUPER_ 

PATHWA
Y 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

1-oleoyl-GPI (18:1)* Lipid Lysolipid   

1-oleoyl-GPS (18:1) Lipid Lysolipid   

1-palmitoleoyl-2-linoleoyl-GPC 
(16:1/18:2)* 

Lipid Phospholipid 
Metabolism 

  

1-palmitoleoyl-GPC (16:1)* Lipid Lysolipid  HMDB
10383 

1-palmitoyl-2-arachidonoyl-GPC 
(16:0/20:4) 

Lipid Phospholipid 
Metabolism 

  

1-palmitoyl-2-arachidonoyl-GPE 
(16:0/20:4)* 

Lipid Phospholipid 
Metabolism 

 HMDB
05323 

1-palmitoyl-2-linoleoyl-GPC 
(16:0/18:2) 

Lipid Phospholipid 
Metabolism 

  

1-palmitoyl-2-linoleoyl-GPE 
(16:0/18:2) 

Lipid Phospholipid 
Metabolism 

 HMDB
05322 

1-palmitoyl-2-oleoyl-GPC 
(16:0/18:1) 

Lipid Phospholipid 
Metabolism 

  

1-palmitoyl-2-oleoyl-GPE 
(16:0/18:1) 

Lipid Phospholipid 
Metabolism 

 HMDB
05320 

1-palmitoyl-2-oleoyl-GPI 
(16:0/18:1)* 

Lipid Phospholipid 
Metabolism 

  

1-palmitoyl-2-oleoyl-GPS 
(16:0/18:1) 

Lipid Phospholipid 
Metabolism 

C1388
0 

 

1-palmitoyl-2-palmitoleoyl-GPC 
(16:0/16:1)* 

Lipid Phospholipid 
Metabolism 

  

1-palmitoyl-2-stearoyl-GPC 
(16:0/18:0) 

Lipid Phospholipid 
Metabolism 

 

1-palmitoyl-3-linoleoyl-glycerol 
(16:0/18:2)* 

Lipid Phospholipid 
Metabolism 

  

1-palmitoyl-GPC (16:0) Lipid Lysolipid  HMDB
10382 

1-palmitoyl-GPE (16:0) Lipid Lysolipid  HMDB
11503 

1-palmitoyl-GPG (16:0)* Lipid Lysolipid   

1-palmitoyl-GPI (16:0)* Lipid Lysolipid  HMDB
61695 

1-stearoyl-2-arachidonoyl-GPC 
(18:0/20:4) 

Lipid Phospholipid 
Metabolism 

  

     

BIOCHEMICAL SUPER_P
ATHWAY 

SUB_PATHWAY KEGG HMDB
_ID 

1-stearoyl-2-arachidonoyl-GPE 
(18:0/20:4) 

Lipid Phospholipid 
Metabolism 
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1-stearoyl-2-arachidonoyl-GPI 
(18:0/20:4) 

Lipid Phospholipid 
Metabolism 

  

1-stearoyl-2-arachidonoyl-GPS 
(18:0/20:4) 

Lipid Phosphatidylserine 
(PS) 

  

1-stearoyl-2-linoleoyl-GPC 
(18:0/18:2)* 

Lipid Phospholipid 
Metabolism 

  

1-stearoyl-2-linoleoyl-GPE 
(18:0/18:2)* 

Lipid Phospholipid 
Metabolism 

  

1-stearoyl-2-oleoyl-GPC (18:0/18:1) Lipid Phospholipid 
Metabolism 

 

1-stearoyl-2-oleoyl-GPE (18:0/18:1) Lipid Phospholipid 
Metabolism 

  

1-stearoyl-2-oleoyl-GPG (18:0/18:1) Lipid Phospholipid 
Metabolism 

  

1-stearoyl-2-oleoyl-GPS (18:0/18:1) Lipid Phosphatidylserine 
(PS) 

  

1-stearoyl-GPC (18:0) Lipid Lysolipid  HMDB
10384 

1-stearoyl-GPE (18:0) Lipid Lysolipid  HMDB
11130 

1-stearoyl-GPG (18:0) Lipid Lysolipid   

1-stearoyl-GPI (18:0) Lipid Lysolipid  HMDB
61696 

1-stearoyl-GPS (18:0)* Lipid Lysolipid   

10-nonadecenoate (19:1n9) Lipid Long Chain Fatty 
Acid 

 HMDB
13622 

2-aminoadipate Amino 
Acid 

Lysine 
Metabolism 

C0095
6 

HMDB
00510 

2-aminophenol sulfate Xenobiotics Chemical  HMDB
61116 

2-hydroxyacetaminophen sulfate* Xenobiotics Drug   

2-hydroxybutyrate/2-
hydroxyisobutyrate 

Amino 
Acid 

Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

  

2-hydroxydecanoate Lipid Fatty Acid, 
Monohydroxy 

  

2-hydroxyglutarate Lipid Fatty Acid, 
Dicarboxylate 

C0263
0 

HMDB
00606 

2-hydroxyhippurate (salicylurate) Xenobiotics Benzoate 
Metabolism 

C0758
8 

HMDB
00840 

2-methoxyacetaminophen 
glucuronide* 

Xenobiotics Drug   
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2-methoxyacetaminophen sulfate* Xenobiotics Drug   

2-methylbutyrylcarnitine (C5) Amino 
Acid 

Leucine, 
Isoleucine and 
Valine 
Metabolism 

 HMDB
00378 

2-oleoylglycerol (18:1) Lipid Monoacylglycerol   

2-palmitoyl-GPC (16:0)* Lipid Lysolipid  HMDB
61702 

2-stearoyl-GPE (18:0)* Lipid Lysolipid   

3-(3-hydroxyphenyl)propionate 
sulfate 

Amino 
Acid 

Phenylalanine and 
Tyrosine 
Metabolism 

  

3-(4-hydroxyphenyl)lactate Amino 
Acid 

Phenylalanine and 
Tyrosine 
Metabolism 

C0367
2 

HMDB
00755 

3-(cystein-S-yl)acetaminophen* Xenobiotics Drug   

3-(N-acetyl-L-cystein-S-yl) 
acetaminophen 

Xenobiotics Drug   

3-aminoisobutyrate Nucleotide Pyrimidine 
Metabolism, 
Thymine 
containing 

C0514
5 

HMDB
03911 

3-carboxy-4-methyl-5-propyl-2-
furanpropanoate (CMPF) 

Lipid Fatty Acid, 
Dicarboxylate 

 HMDB
61112 

3-hydroxy-3-methylglutarate Lipid Mevalonate 
Metabolism 

C0376
1 

HMDB
00355 

3-hydroxybutyrate (BHBA) Lipid Ketone Bodies C0108
9 

HMDB
00357 

3-hydroxybutyrylcarnitine (1) Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

 HMDB
13127 

3-hydroxybutyrylcarnitine (2) Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

  

3-hydroxyhippurate Xenobiotics Benzoate 
Metabolism 

 HMDB
06116 

3-hydroxypyridine sulfate Xenobiotics Chemical  

3-indoxyl sulfate Amino 
Acid 

Tryptophan 
Metabolism 

 HMDB
00682 

3-methylhistidine Amino 
Acid 

Histidine 
Metabolism 

C0115
2 

HMDB
00479 

3-phosphoglycerate Carbohydra
te 

Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

C0059
7 

HMDB
00807 
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4-acetamidophenol Xenobiotics Drug C0680
4 

HMDB
01859 

4-acetamidophenylglucuronide Xenobiotics Drug  HMDB
10316 

4-acetaminophen sulfate Xenobiotics Drug C0680
4 

HMDB
59911 

4-androsten-3beta,17beta-diol 
disulfate (1) 

Lipid Steroid C0429
5 

HMDB
03818 

4-guanidinobutanoate Amino 
Acid 

Guanidino and 
Acetamido 
Metabolism 

C0103
5 

HMDB
03464 

4-hydroxybutyrate (GHB) Lipid Fatty Acid, 
Monohydroxy 

C0098
9 

HMDB
00710 

4-hydroxyhippurate Xenobiotics Benzoate 
Metabolism 

 HMDB
13678 

4-methylbenzenesulfonate Xenobiotics Chemical C0667
7 

 

4-methylcatechol sulfate Xenobiotics Benzoate 
Metabolism 

  

5-methylthioadenosine (MTA) Amino 
Acid 

Polyamine 
Metabolism 

C0017
0 

HMDB
01173 

5-oxoproline Amino 
Acid 

Glutathione 
Metabolism 

C0187
9 

HMDB
00267 

6-phosphogluconate Carbohydra
te 

Pentose Phosphate 
Pathway 

C0034
5 

HMDB
01316 

6-sialyl-N-acetyllactosamine Carbohydra
te 

Aminosugar 
Metabolism 

 HMDB
06584 

7-alpha-hydroxy-3-oxo-4-
cholestenoate (7-Hoca) 

Lipid Sterol C1733
7 

HMDB
12458 

7-methylguanine Nucleotide Purine 
Metabolism, 
Guanine 
containing 

C0224
2 

HMDB
00897 

Acetylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

C0257
1 

HMDB
00201 

Acetylcholine Lipid Neurotransmitter   

Acisoga Amino 
Acid 

Polyamine 
Metabolism 

  

Adenine Nucleotide Purine 
Metabolism, 
Adenine 
containing 

C0014
7 

HMDB
00034 

Adenosine Nucleotide Purine 
Metabolism, 

C0021
2 

HMDB
00050 
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Adenine 
containing 

Adenosine 3',5'-cyclic 
monophosphate (camp) 

Nucleotide Purine 
Metabolism, 
Adenine 
containing 

C0057
5 

HMDB
00058 

Adenosine 5'-diphosphate (ADP) Nucleotide Purine 
Metabolism, 
Adenine 
containing 

C0000
8 

HMDB
01341 

Adenosine 5'-diphosphoribose 
(ADP-ribose) 

Cofactors 
and 
Vitamins 

Nicotinate and 
Nicotinamide 
Metabolism 

C0030
1 

HMDB
01178 

Adenosine 5'-monophosphate 
(AMP) 

Nucleotide Purine 
Metabolism, 
Adenine 
containing 

C0002
0 

HMDB
00045 

Alanine Amino 
Acid 

Alanine and 
Aspartate 
Metabolism 

C0004
1 

HMDB
00161 

Allantoin Nucleotide Purine 
Metabolism, 
(Hypo)Xanthine/I
nosine containing 

C0235
0 

HMDB
00462 

Alpha-ketoglutarate Energy TCA Cycle C0002
6 

HMDB
00208 

Alpha-tocopherol Cofactors 
and 
Vitamins 

Tocopherol 
Metabolism 

C0247
7 

HMDB
01893 

Androsterone sulfate Lipid Steroid  HMDB
02759 

Anserine Peptide Dipeptide 
Derivative 

C0126
2 

HMDB
00194 

Arabitol/xylitol Carbohydra
te 

Pentose 
Metabolism 

  

Arabonate/xylonate Carbohydra
te 

Pentose Phosphate 
Pathway 

  

Arachidate (20:0) Lipid Long Chain Fatty 
Acid 

C0642
5 

HMDB
02212 

Arginine Amino 
Acid 

Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0006
2 

HMDB
00517 

Argininosuccinate Amino 
Acid 

Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0340
6 

HMDB
00052 
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Ascorbate (Vitamin C) Cofactors 
and 
Vitamins 

Ascorbate and 
Aldarate 
Metabolism 

C0007
2 

HMDB
00044 

Asparagine Amino 
Acid 

Alanine and 
Aspartate 
Metabolism 

C0015
2 

HMDB
00168 

Aspartate Amino 
Acid 

Alanine and 
Aspartate 
Metabolism 

C0004
9 

HMDB
00191 

Azelate (nonanedioate) Lipid Fatty Acid, 
Dicarboxylate 

C0826
1 

HMDB
00784 

Behenoyl sphingomyelin 
(d18:1/22:0)* 

Lipid Sphingolipid 
Metabolism 

  

Beta-alanine Nucleotide Pyrimidine 
Metabolism, 
Uracil containing 

C0009
9 

HMDB
00056 

Betaine Amino 
Acid 

Glycine, Serine 
and Threonine 
Metabolism 

C0071
9 

HMDB
00043 

Betonicine Xenobiotics Food 
Component/Plant 

C0826
9 

HMDB
29412 

Biliverdin Cofactors 
and 
Vitamins 

Hemoglobin and 
Porphyrin 
Metabolism 

C0050
0 

HMDB
01008 

Butyrylcarnitine Lipid Fatty Acid 
Metabolism (also 
BCAA 
Metabolism) 

C0286
2 

HMDB
02013 

C-glycosyltryptophan Amino 
Acid 

Tryptophan 
Metabolism 

  

Caffeine Xenobiotics Xanthine 
Metabolism 

C0748
1 

HMDB
01847 

Carnitine Lipid Carnitine 
Metabolism 

C0031
8 

HMDB
00062 

Carnosine Peptide Dipeptide 
Derivative 

C0038
6 

HMDB
00033 

Catechol sulfate Xenobiotics Benzoate 
Metabolism 

C0009
0 

HMDB
59724 

Cholesterol Lipid Sterol C0018
7 

HMDB
00067 

Choline Lipid Phospholipid 
Metabolism 

C0011
4 

HMDB
00097 

Choline phosphate Lipid Phospholipid 
Metabolism 

C0058
8 

HMDB
01565 
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Cis-4-decenoyl carnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

  

Cis-urocanate Amino 
Acid 

Histidine 
Metabolism 

  

Citrate Energy TCA Cycle C0015
8 

HMDB
00094 

Citrulline Amino 
Acid 

Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0032
7 

HMDB
00904 

Creatine Amino 
Acid 

Creatine 
Metabolism 

C0030
0 

HMDB
00064 

Creatine phosphate Amino 
Acid 

Creatine 
Metabolism 

C0230
5 

HMDB
01511 

Creatinine Amino 
Acid 

Creatine 
Metabolism 

C0079
1 

HMDB
00562 

Cysteine Amino 
Acid 

Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0009
7 

HMDB
00574 

Cysteine-glutathione disulfide Amino 
Acid 

Glutathione 
Metabolism 

 HMDB
00656 

Cysteinylglycine Amino 
Acid 

Glutathione 
Metabolism 

C0141
9 

HMDB
00078 

Cystine Amino 
Acid 

Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0049
1 

HMDB
00192 

Cytidine Nucleotide Pyrimidine 
Metabolism, 
Cytidine 
containing 

C0047
5 

HMDB
00089 

Cytidine 5'-diphosphocholine Lipid Phospholipid 
Metabolism 

C0030
7 

HMDB
01413 

Cytidine 5'-monophosphate (5'-
CMP) 

Nucleotide Pyrimidine 
Metabolism, 
Cytidine 
containing 

C0005
5 

HMDB
00095 

Cytidine-5'-
diphosphoethanolamine 

Lipid Phospholipid 
Metabolism 

C0057
0 

HMDB
01564 

Decanoylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

 HMDB
00651 

Dehydroisoandrosterone sulfate 
(DHEA-S) 

Lipid Steroid C0455
5 

HMDB
01032 
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Deoxycarnitine Lipid Carnitine 
Metabolism 

C0118
1 

HMDB
01161 

Dihomo-linoleate (20:2n6) Lipid Polyunsaturated 
Fatty Acid (n3 and 
n6) 

C1652
5 

HMDB
05060 

Dihomo-linolenate (20:3n3 or n6) Lipid Polyunsaturated 
Fatty Acid (n3 and 
n6) 

C0324
2 

HMDB
02925 

Diltiazem Xenobiotics Drug C0695
8 

HMDB
14487 

Dimethylarginine (SDMA + 
ADMA) 

Amino 
Acid 

Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0362
6 

HMDB
01539 

Dimethylglycine Amino 
Acid 

Glycine, Serine 
and Threonine 
Metabolism 

C0102
6 

HMDB
00092 

Docosadienoate (22:2n6) Lipid Polyunsaturated 
Fatty Acid (n3 and 
n6) 

C1653
3 

HMDB
61714 

Docosapentaenoate (n3 DPA; 
22:5n3) 

Lipid Polyunsaturated 
Fatty Acid (n3 and 
n6) 

C1651
3 

HMDB
01976 

Docosapentaenoate (n6 DPA; 
22:5n6) 

Lipid Polyunsaturated 
Fatty Acid (n3 and 
n6) 

C1651
3 

HMDB
01976 

Eicosenoate (20:1) Lipid Long Chain Fatty 
Acid 

 HMDB
02231 

Ergothioneine Xenobiotics Food 
Component/Plant 

C0557
0 

HMDB
03045 

Erythronate* Carbohydra
te 

Aminosugar 
Metabolism 

 HMDB
00613 

Ethylmalonate Amino 
Acid 

Leucine, 
Isoleucine and 
Valine 
Metabolism 

 HMDB
00622 

Flavin adenine dinucleotide (FAD) Cofactors 
and 
Vitamins 

Riboflavin 
Metabolism 

C0001
6 

HMDB
01248 

Fructose Carbohydra
te 

Fructose, Mannose 
and Galactose 
Metabolism 

C0009
5 

HMDB
00660 

Fumarate Energy TCA Cycle C0012
2 

HMDB
00134 

Gamma-aminobutyrate (GABA) Amino 
Acid 

Glutamate 
Metabolism 

C0033
4 

HMDB
00112 
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Gamma-glutamyl-epsilon-lysine Peptide Gamma-glutamyl 
Amino Acid 

 HMDB
03869 

Gamma-glutamylalanine Peptide Gamma-glutamyl 
Amino Acid 

 HMDB
29142 

Gamma-glutamylcysteine Peptide Gamma-glutamyl 
Amino Acid 

C0066
9 

HMDB
01049 

Gamma-glutamylglutamate Peptide Gamma-glutamyl 
Amino Acid 

C0528
2 

HMDB
11737 

Gamma-glutamylglutamine Peptide Gamma-glutamyl 
Amino Acid 

C0528
3 

HMDB
11738 

Gamma-glutamylleucine Peptide Gamma-glutamyl 
Amino Acid 

 HMDB
11171 

Gamma-glutamylmethionine Peptide Gamma-glutamyl 
Amino Acid 

 HMDB
29155 

Gamma-glutamylvaline Peptide Gamma-glutamyl 
Amino Acid 

 HMDB
11172 

Gamma-tocopherol/beta-
tocopherol 

Cofactors 
and 
Vitamins 

Tocopherol 
Metabolism 

  

Gluconate Xenobiotics Food 
Component/Plant 

C0025
7 

HMDB
00625 

Glucose Carbohydra
te 

Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

C0003
1 

HMDB
00122 

Glucuronate Carbohydra
te 

Aminosugar 
Metabolism 

C0019
1 

HMDB
00127 

Glutamate Amino 
Acid 

Glutamate 
Metabolism 

C0002
5 

HMDB
00148 

Glutamate, gamma-methyl ester Amino 
Acid 

Glutamate 
Metabolism 

  

Glutamine Amino 
Acid 

Glutamate 
Metabolism 

C0006
4 

HMDB
00641 

Glutarate (pentanedioate) Amino 
Acid 

Lysine 
Metabolism 

C0048
9 

HMDB
00661 

Glutathione, oxidized (GSSG) Amino 
Acid 

Glutathione 
Metabolism 

C0012
7 

HMDB
03337 

Glutathione, reduced (GSH) Amino 
Acid 

Glutathione 
Metabolism 

C0005
1 

HMDB
00125 

Glycerate Carbohydra
te 

Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

C0025
8 

HMDB
00139 

Glycerol Lipid Glycerolipid 
Metabolism 

C0011
6 

HMDB
00131 
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Glycerol 3-phosphate Lipid Glycerolipid 
Metabolism 

C0009
3 

HMDB
00126 

Glycerophosphoethanolamine Lipid Phospholipid 
Metabolism 

C0123
3 

HMDB
00114 

Glycerophosphoglycerol Lipid Glycerolipid 
Metabolism 

C0327
4 

 

Glycerophosphoinositol* Lipid Phospholipid 
Metabolism 

 

Glycerophosphorylcholine (GPC) Lipid Phospholipid 
Metabolism 

C0067
0 

HMDB
00086 

Glycine Amino 
Acid 

Glycine, Serine 
and Threonine 
Metabolism 

C0003
7 

HMDB
00123 

Glycosyl-N-palmitoyl-sphingosine Lipid Sphingolipid 
Metabolism 

  

Glycosyl-N-stearoyl-sphingosine Lipid Sphingolipid 
Metabolism 

  

Glycylleucine Peptide Dipeptide C0215
5 

HMDB
00759 

Glycylvaline Peptide Dipeptide  HMDB
28854 

Guanidinoacetate Amino 
Acid 

Creatine 
Metabolism 

C0058
1 

HMDB
00128 

Guanidinosuccinate Amino 
Acid 

Guanidino and 
Acetamido 
Metabolism 

C0313
9 

HMDB
03157 

Guanine Nucleotide Purine 
Metabolism, 
Guanine 
containing 

C0024
2 

HMDB
00132 

Guanosine Nucleotide Purine 
Metabolism, 
Guanine 
containing 

C0038
7 

HMDB
00133 

Guanosine 5'- monophosphate (5'-
GMP) 

Nucleotide Purine 
Metabolism, 
Guanine 
containing 

C0014
4 

HMDB
01397 

Gulonic acid* Cofactors 
and 
Vitamins 

Ascorbate and 
Aldarate 
Metabolism 

  

Heme Cofactors 
and 
Vitamins 

Hemoglobin and 
Porphyrin 
Metabolism 

C0003
2 

HMDB
03178 
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Hexanoylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

 HMDB
00705 

Hippurate Xenobiotics Benzoate 
Metabolism 

C0158
6 

HMDB
00714 

Histamine Amino 
Acid 

Histidine 
Metabolism 

C0038
8 

HMDB
00870 

Histidine Amino 
Acid 

Histidine 
Metabolism 

C0013
5 

HMDB
00177 

Homoarginine Amino 
Acid 

Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0192
4 

HMDB
00670 

Homocitrulline Amino 
Acid 

Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0242
7 

HMDB
00679 

Hypotaurine Amino 
Acid 

Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0051
9 

HMDB
00965 

Hypoxanthine Nucleotide Purine 
Metabolism, 
(Hypo)Xanthine/I
nosine containing 

C0026
2 

HMDB
00157 

Imidazole lactate Amino 
Acid 

Histidine 
Metabolism 

C0556
8 

HMDB
02320 

Imidazole propionate Amino 
Acid 

Histidine 
Metabolism 

 HMDB
02271 

Indolelactate Amino 
Acid 

Tryptophan 
Metabolism 

C0204
3 

HMDB
00671 

Inosine Nucleotide Purine 
Metabolism, 
(Hypo)Xanthine/I
nosine containing 

C0029
4 

HMDB
00195 

Isobar: fructose 1,6-diphosphate, 
glucose 1,6-diphosphate, myo-
inositol 1,4 or 1,3-diphosphate 

Carbohydra
te 

Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

  

Isobutyrylcarnitine Amino 
Acid 

Leucine, 
Isoleucine and 
Valine 
Metabolism 

 HMDB
00736 

Isocitrate Energy TCA Cycle C0031
1 

HMDB
00193 

Isoleucine Amino 
Acid 

Leucine, 
Isoleucine and 

C0040
7 

HMDB
00172 
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Valine 
Metabolism 

Isoleucylglycine Peptide Dipeptide   

Isovalerylcarnitine Amino 
Acid 

Leucine, 
Isoleucine and 
Valine 
Metabolism 

 HMDB
00688 

Kynurenate Amino 
Acid 

Tryptophan 
Metabolism 

C0171
7 

HMDB
00715 

Kynurenine Amino 
Acid 

Tryptophan 
Metabolism 

C0032
8 

HMDB
00684 

Lactate Carbohydra
te 

Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

C0018
6 

HMDB
00190 

Lactosyl-N-palmitoyl-sphingosine Lipid Sphingolipid 
Metabolism 

 

Laurylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

 HMDB
02250 

Leucine Amino 
Acid 

Leucine, 
Isoleucine and 
Valine 
Metabolism 

C0012
3 

HMDB
00687 

Leucylglycine Peptide Dipeptide   

Lidocaine Xenobiotics Drug D0035
8 

HMDB
14426 

Linoleoylcarnitine* Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

 HMDB
06469 

Lysine Amino 
Acid 

Lysine 
Metabolism 

C0004
7 

HMDB
00182 

Malate Energy TCA Cycle C0014
9 

HMDB
00156 

Maleate Lipid Fatty Acid, 
Dicarboxylate 

C0138
4 

HMDB
00176 

Malonate Lipid Fatty Acid 
Synthesis 

C0038
3 

HMDB
00691 

Malonylcarnitine Lipid Fatty Acid 
Synthesis 

 HMDB
02095 

Mannitol/sorbitol Carbohydra
te 

Fructose, Mannose 
and Galactose 
Metabolism 

C0150
7 

HMDB
00247 
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BIOCHEMICAL SUPER_ 

PATHWA
Y 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

Mannose Carbohydra
te 

Fructose, Mannose 
and Galactose 
Metabolism 

C0015
9 

HMDB
00169 

Margarate (17:0) Lipid Long Chain Fatty 
Acid 

 HMDB
02259 

Mead acid (20:3n9) Lipid Polyunsaturated 
Fatty Acid (n3 and 
n6) 

 HMDB
10378 

Metformin Xenobiotics Drug C0715
1 

HMDB
01921 

Methionine Amino 
Acid 

Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0007
3 

HMDB
00696 

Methionine sulfone Amino 
Acid 

Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

  

Methionine sulfoxide Amino 
Acid 

Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0298
9 

HMDB
02005 

Methyl glucopyranoside (alpha + 
beta) 

Xenobiotics Food 
Component/Plant 

  

Methyl-4-hydroxybenzoate sulfate Xenobiotics Benzoate 
Metabolism 

  

Methylmalonate (MMA) Lipid Fatty Acid 
Metabolism (also 
BCAA 
Metabolism) 

C0217
0 

HMDB
00202 

Methylphosphate Nucleotide Purine and 
Pyrimidine 
Metabolism 

 HMDB
61711 

Methylsuccinate Amino 
Acid 

Leucine, 
Isoleucine and 
Valine 
Metabolism 

 HMDB
01844 

Myo-inositol Lipid Inositol 
Metabolism 

C0013
7 

HMDB
00211 

Myristoleoylcarnitine* Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

 

Myristoylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

 HMDB
05066 

N(1)-acetylspermine Amino 
Acid 

Polyamine 
Metabolism 

C0256
7 

HMDB
01186 
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BIOCHEMICAL SUPER_ 

PATHWA
Y 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

N-(2-furoyl)glycine Xenobiotics Food 
Component/Plant 

 HMDB
00439 

N-acetyl-aspartyl-glutamate 
(NAAG) 

Amino 
Acid 

Glutamate 
Metabolism 

C1227
0 

HMDB
01067 

N-acetylalanine Amino 
Acid 

Alanine and 
Aspartate 
Metabolism 

C0284
7 

HMDB
00766 

N-acetylalliin Xenobiotics Food 
Component/Plant 

  

N-acetylarginine Amino 
Acid 

Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0256
2 

HMDB
04620 

N-acetylaspartate (NAA) Amino 
Acid 

Alanine and 
Aspartate 
Metabolism 

C0104
2 

HMDB
00812 

N-acetylcarnosine Peptide Dipeptide 
Derivative 

 HMDB
12881 

N-acetylglucosaminylasparagine  Carbohydra
te 

Aminosugar 
Metabolism 

C0454
0 

HMDB
00489 

N-acetylglutamate Amino 
Acid 

Glutamate 
Metabolism 

C0062
4 

HMDB
01138 

N-acetylglutamine Amino 
Acid 

Glutamate 
Metabolism 

C0271
6 

HMDB
06029 

N-acetylglycine Amino 
Acid 

Glycine, Serine 
and Threonine 
Metabolism 

 HMDB
00532 

N-acetylhistidine Amino 
Acid 

Histidine 
Metabolism 

C0299
7 

HMDB
32055 

N-acetylmethionine Amino 
Acid 

Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0271
2 

HMDB
11745 

N-acetylneuraminate Carbohydra
te 

Aminosugar 
Metabolism 

C0027
0 

HMDB
00230 

N-acetylputrescine Amino 
Acid 

Polyamine 
Metabolism 

C0271
4 

HMDB
02064 

N-acetylserine Amino 
Acid 

Glycine, Serine 
and Threonine 
Metabolism 

 HMDB
02931 

N-acetyltaurine Amino 
Acid 

Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 
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BIOCHEMICAL SUPER_ 

PATHWA
Y 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

N-acetylthreonine Amino 
Acid 

Glycine, Serine 
and Threonine 
Metabolism 

  

N-delta-acetylornithine Amino 
Acid 

Urea cycle; 
Arginine and 
Proline 
Metabolism 

  

N-ethylglycinexylidide Xenobiotics Drug C1656
1 

HMDB
60656 

N-formylmethionine Amino 
Acid 

Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0314
5 

HMDB
01015 

N-methylpipecolate Xenobiotics Chemical   

N-methylproline Amino 
Acid 

Urea cycle; 
Arginine and 
Proline 
Metabolism 

  

N-palmitoyl-sphinganine 
(d18:0/16:0) 

Lipid Sphingolipid 
Metabolism 

 HMDB
11760 

N-palmitoyl-sphingosine 
(d18:1/16:0) 

Lipid Sphingolipid 
Metabolism 

 HMDB
04949 

N1,N12-diacetylspermine Amino 
Acid 

Polyamine 
Metabolism 

C0341
3 

HMDB
02172 

N1-Methyl-2-pyridone-5-
carboxamide 

Cofactors 
and 
Vitamins 

Nicotinate and 
Nicotinamide 
Metabolism 

C0584
2 

HMDB
04193 

N1-methyladenosine Nucleotide Purine 
Metabolism, 
Adenine 
containing 

C0249
4 

HMDB
03331 

N2,N2-dimethylguanosine Nucleotide Purine 
Metabolism, 
Guanine 
containing 

 HMDB
04824 

N2-acetyllysine/N6-acetyllysine Amino 
Acid 

Lysine 
Metabolism 

  

N6,N6,N6-trimethyllysine Amino 
Acid 

Lysine 
Metabolism 

C0379
3 

HMDB
01325 

N6-succinyladenosine Nucleotide Purine 
Metabolism, 
Adenine 
containing 

HMDB
00912 

Nicotinamide Cofactors 
and 
Vitamins 

Nicotinate and 
Nicotinamide 
Metabolism 

C0015
3 

HMDB
01406 
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BIOCHEMICAL SUPER_ 

PATHWA
Y 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

Nicotinamide adenine dinucleotide 
(NAD+) 

Cofactors 
and 
Vitamins 

Nicotinate and 
Nicotinamide 
Metabolism 

C0000
3 

HMDB
00902 

Nicotinamide adenine dinucleotide 
reduced (NADH) 

Cofactors 
and 
Vitamins 

Nicotinate and 
Nicotinamide 
Metabolism 

C0000
4 

HMDB
01487 

Nonadecanoate (19:0) Lipid Long Chain Fatty 
Acid 

C1653
5 

HMDB
00772 

O-methylcatechol sulfate Xenobiotics Benzoate 
Metabolism 

  

BIOCHEMICAL SUPER_P
ATHWAY 

SUB_PATHWAY KEGG HMDB
_ID 

O-methyltyrosine Amino 
Acid 

Phenylalanine and 
Tyrosine 
Metabolism 

  

O-sulfo-L-tyrosine Xenobiotics Chemical   

Octanoylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

C0283
8 

HMDB
00791 

Oleamide Lipid Fatty Acid, Amide C1967
0 

HMDB
02117 

Oleoylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

 HMDB
05065 

Ophthalmate Amino 
Acid 

Glutathione 
Metabolism 

 HMDB
05765 

Ornithine Amino 
Acid 

Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0007
7 

HMDB
03374 

Orotate Nucleotide Pyrimidine 
Metabolism, 
Orotate containing 

C0029
5 

HMDB
00226 

Orotidine Nucleotide Pyrimidine 
Metabolism, 
Orotate containing 

C0110
3 

HMDB
00788 

Oxalate (ethanedioate) Cofactors 
and 
Vitamins 

Ascorbate and 
Aldarate 
Metabolism 

C0020
9 

HMDB
02329 

Oxypurinol Xenobiotics Drug D0236
5 

HMDB
00786 

P-cresol sulfate Amino 
Acid 

Phenylalanine and 
Tyrosine 
Metabolism 

C0146
8 

HMDB
11635 
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BIOCHEMICAL SUPER_ 

PATHWA
Y 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

P-cresol-glucuronide* Amino 
Acid 

Phenylalanine and 
Tyrosine 
Metabolism 

 HMDB
11686 

Palmitate (16:0) Lipid Long Chain Fatty 
Acid 

C0024
9 

HMDB
00220 

Palmitoyl dihydrosphingomyelin 
(d18:0/16:0)* 

Lipid Sphingolipid 
Metabolism 

  

 

Palmitoyl sphingomyelin 
(d18:1/16:0) 

 

Lipid 

 

Sphingolipid 
Metabolism 

  

Palmitoylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

C0299
0 

HMDB
00222 

Pantothenate Cofactors 
and 
Vitamins 

Pantothenate and 
CoA Metabolism 

C0086
4 

HMDB
00210 

Paraxanthine Xenobiotics Xanthine 
Metabolism 

C1374
7 

HMDB
01860 

Phenol sulfate Amino 
Acid 

Phenylalanine and 
Tyrosine 
Metabolism 

C0218
0 

HMDB
60015 

Phenylacetylglutamine Amino 
Acid 

Phenylalanine and 
Tyrosine 
Metabolism 

C0414
8 

HMDB
06344 

Phenylalanine Amino 
Acid 

Phenylalanine and 
Tyrosine 
Metabolism 

C0007
9 

HMDB
00159 

Phosphate Energy Oxidative 
Phosphorylation 

C0000
9 

HMDB
01429 

Phosphoethanolamine Lipid Phospholipid 
Metabolism 

C0034
6 

HMDB
00224 

Pipecolate Amino 
Acid 

Lysine 
Metabolism 

C0040
8 

HMDB
00070 

Piperine Xenobiotics Food 
Component/Plant 

C0388
2 

HMDB
29377 

Pro-hydroxy-pro Amino 
Acid 

Urea cycle; 
Arginine and 
Proline 
Metabolism 

 HMDB
06695 

Proline Amino 
Acid 

Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0014
8 

HMDB
00162 

Propionylcarnitine Lipid Fatty Acid 
Metabolism (also 

C0301
7 

HMDB
00824 
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BIOCHEMICAL SUPER_ 

PATHWA
Y 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

BCAA 
Metabolism) 

Propyl 4-hydroxybenzoate sulfate Xenobiotics Benzoate 
Metabolism 

 

Pseudoephedrine Xenobiotics Drug C0276
5 

HMDB
01943 

Pseudouridine Nucleotide Pyrimidine 
Metabolism, 
Uracil containing 

C0206
7 

HMDB
00767 

Putrescine Amino 
Acid 

Polyamine 
Metabolism 

C0013
4 

HMDB
01414 

Pyridoxate Cofactors 
and 
Vitamins 

Vitamin B6 
Metabolism 

C0084
7 

HMDB
00017 

Pyroglutamine* Amino 
Acid 

Glutamate 
Metabolism 

  

Pyruvate Carbohydra
te 

Glycolysis, 
Gluconeogenesis, 
and Pyruvate 
Metabolism 

C0002
2 

HMDB
00243 

Quinate Xenobiotics Food 
Component/Plant 

C0029
6 

HMDB
03072 

Quinolinate Cofactors 
and 
Vitamins 

Nicotinate and 
Nicotinamide 
Metabolism 

C0372
2 

HMDB
00232 

Ranitidine Xenobiotics Drug D0042
2 

HMDB
01930 

Ribitol Carbohydra
te 

Pentose 
Metabolism 

C0047
4 

HMDB
00508 

Ribonate Carbohydra
te 

Pentose 
Metabolism 

C0168
5 

HMDB
00867 

S-adenosylhomocysteine (SAH) Amino 
Acid 

Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0002
1 

HMDB
00939 

S-adenosylmethionine (SAM) Amino 
Acid 

Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0001
9 

HMDB
01185 

S-methylcysteine Amino 
Acid 

Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

 HMDB
02108 

S-methylglutathione Amino 
Acid 

Glutathione 
Metabolism 

C1134
7 
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BIOCHEMICAL SUPER_ 

PATHWA
Y 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

S-nitrosoglutathione (GSNO) Amino 
Acid 

Glutathione 
Metabolism 

 HMDB
04645 

Saccharin Xenobiotics Food 
Component/Plant 

D0108
5 

HMDB
29723 

Sedoheptulose-7-phosphate Carbohydra
te 

Pentose Phosphate 
Pathway 

C0538
2 

HMDB
01068 

Serine Amino 
Acid 

Glycine, Serine 
and Threonine 
Metabolism 

C0006
5 

HMDB
00187 

Serotonin Amino 
Acid 

Tryptophan 
Metabolism 

C0078
0 

HMDB
00259 

Solanidine Xenobiotics Food 
Component/Plant 

C0654
3 

HMDB
03236 

Spermidine Amino 
Acid 

Polyamine 
Metabolism 

C0031
5 

HMDB
01257 

Spermine Amino 
Acid 

Polyamine 
Metabolism 

C0075
0 

HMDB
01256 

Sphinganine Lipid Sphingolipid 
Metabolism 

C0083
6 

HMDB
00269 

Sphingomyelin (d18:1/14:0, 
d16:1/16:0)* 

Lipid Sphingolipid 
Metabolism 

  

Sphingomyelin (d18:1/15:0, 
d16:1/17:0)* 

Lipid Sphingolipid 
Metabolism 

 

Sphingomyelin (d18:1/17:0, 
d17:1/18:0, d19:1/16:0) 

Lipid Sphingolipid 
Metabolism 

  

Sphingomyelin (d18:1/18:1, 
d18:2/18:0) 

Lipid Sphingolipid 
Metabolism 

  

Sphingomyelin (d18:1/20:0, 
d16:1/22:0)* 

Lipid Sphingolipid 
Metabolism 

  

Sphingomyelin (d18:1/20:1, 
d18:2/20:0)* 

Lipid Sphingolipid 
Metabolism 

 

Sphingomyelin (d18:1/21:0, 
d17:1/22:0, d16:1/23:0)* 

Lipid Sphingolipid 
Metabolism 

  

Sphingomyelin (d18:1/22:1, 
d18:2/22:0, d16:1/24:1)* 

Lipid Sphingolipid 
Metabolism 

  

Sphingomyelin (d18:1/24:1, 
d18:2/24:0)* 

Lipid Sphingolipid 
Metabolism 

  

Sphingomyelin (d18:2/16:0, 
d18:1/16:1)* 

Lipid Sphingolipid 
Metabolism 

  

Sphingomyelin (d18:2/23:0, 
d18:1/23:1, d17:1/24:1)* 

Lipid Sphingolipid 
Metabolism 

  

Sphingomyelin (d18:2/24:1, 
d18:1/24:2)* 

Lipid Sphingolipid 
Metabolism 
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BIOCHEMICAL SUPER_ 

PATHWA
Y 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

Sphingosine Lipid Sphingolipid 
Metabolism 

C0031
9 

HMDB
00252 

Stachydrine Xenobiotics Food 
Component/Plant 

C1017
2 

HMDB
04827 

Stearate (18:0) Lipid Long Chain Fatty 
Acid 

C0153
0 

HMDB
00827 

Stearoyl sphingomyelin 
(d18:1/18:0) 

Lipid Sphingolipid 
Metabolism 

C0055
0 

HMDB
01348 

Stearoylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

 HMDB
00848 

Succinate Energy TCA Cycle C0004
2 

HMDB
00254 

Succinylcarnitine Energy TCA Cycle   

Sucrose Carbohydra
te 

Disaccharides and 
Oligosaccharides 

C0008
9 

HMDB
00258 

Sulfate* Xenobiotics Chemical C0005
9 

HMDB
01448 

Taurine Amino 
Acid 

Methionine, 
Cysteine, SAM 
and Taurine 
Metabolism 

C0024
5 

HMDB
00251 

Theanine Xenobiotics Food 
Component/Plant 

C0104
7 

HMDB
34365 

Theobromine Xenobiotics Xanthine 
Metabolism 

C0748
0 

HMDB
02825 

Theophylline Xenobiotics Xanthine 
Metabolism 

C0713
0 

HMDB
01889 

Threonate Cofactors 
and 
Vitamins 

Ascorbate and 
Aldarate 
Metabolism 

C0162
0 

HMDB
00943 

Threonine Amino 
Acid 

Glycine, Serine 
and Threonine 
Metabolism 

C0018
8 

HMDB
00167 

Thymol sulfate Xenobiotics Food 
Component/Plant 

C0990
8 

HMDB
01878 

Tiglylcarnitine Amino 
Acid 

Leucine, 
Isoleucine and 
Valine 
Metabolism 

 HMDB
02366 

Trans-4-hydroxyproline Amino 
Acid 

Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0115
7 

HMDB
00725 



Appendix 2 

221 | P a g e  

 

BIOCHEMICAL SUPER_ 

PATHWA
Y 

SUB_ 

PATHWAY 

KEGG HMDB
_ID 

Trans-urocanate Amino 
Acid 

Histidine 
Metabolism 

C0078
5 

HMDB
00301 

Trigonelline (N'-methylnicotinate) Cofactors 
and 
Vitamins 

Nicotinate and 
Nicotinamide 
Metabolism 

C0100
4 

HMDB
00875 

Trimethylamine N-oxide Lipid Phospholipid 
Metabolism 

C0110
4 

HMDB
00925 

Tryptophan Amino 
Acid 

Tryptophan 
Metabolism 

C0007
8 

HMDB
00929 

Tryptophan betaine  Amino 
Acid 

Tryptophan 
Metabolism 

C0921
3 

HMDB
61115 

Tyrosine Amino 
Acid 

Phenylalanine and 
Tyrosine 
Metabolism 

C0008
2 

HMDB
00158 

UDP-
acetylglucosamine/galactosamine 

Carbohydra
te 

Nucleotide Sugar   

Uracil Nucleotide Pyrimidine 
Metabolism, 
Uracil containing 

C0010
6 

HMDB
00300 

Urate Nucleotide Purine 
Metabolism, 
(Hypo)Xanthine/I
nosine containing 

C0036
6 

HMDB
00289 

Urea Amino 
Acid 

Urea cycle; 
Arginine and 
Proline 
Metabolism 

C0008
6 

HMDB
00294 

Uridine Nucleotide Pyrimidine 
Metabolism, 
Uracil containing 

C0029
9 

HMDB
00296 

Uridine 5'-monophosphate (UMP) Nucleotide Pyrimidine 
Metabolism, 
Uracil containing 

C0010
5 

HMDB
00288 

Valine Amino 
Acid 

Leucine, 
Isoleucine and 
Valine 
Metabolism 

C0018
3 

HMDB
00883 

Valylleucine Peptide Dipeptide   

Xanthine Nucleotide Purine 
Metabolism, 
(Hypo)Xanthine/I
nosine containing 

C0038
5 

HMDB
00292 
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Appendix 3 Shared metabolites identified in the combined 
dataset of samples analysed through Metabolon® platforms 
(n=18 patients, n=72 tissue samples) 
 

BIOCHEMICAL SUPER_PATHWA
Y 

SUB_PATHWAY KEGG HMDB
_ID 

Glutamine Amino Acid Glutamate Metabolism C0006
4 

HMDB0
0641 

Tryptophan Amino Acid Tryptophan Metabolism C0007
8 

HMDB0
0929 

Beta-alanine Nucleotide Pyrimidine Metabolism, 
Uracil containing 

C0009
9 

HMDB0
0056 

Glutamate Amino Acid Glutamate Metabolism C0002
5 

HMDB0
0148 

Histidine Amino Acid Histidine Metabolism C0013
5 

HMDB0
0177 

Leucine Amino Acid Leucine, Isoleucine and 
Valine Metabolism 

C0012
3 

HMDB0
0687 

Cholesterol Lipid Sterol C0018
7 

HMDB0
0067 

Phenylalanine Amino Acid Phenylalanine and 
Tyrosine Metabolism 

C0007
9 

HMDB0
0159 

Spermidine Amino Acid Polyamine Metabolism C0031
5 

HMDB0
1257 

Creatinine Amino Acid Creatine Metabolism C0079
1 

HMDB0
0562 

Cytidine Nucleotide Pyrimidine Metabolism, 
Cytidine containing 

C0047
5 

HMDB0
0089 

Lactate Carbohydrate Glycolysis, 
Gluconeogenesis, and 
Pyruvate Metabolism 

C0018
6 

HMDB0
0190 

Adenine Nucleotide Purine Metabolism, 
Adenine containing 

C0014
7 

HMDB0
0034 

Adenosine Nucleotide Purine Metabolism, 
Adenine containing 

C0021
2 

HMDB0
0050 

Adenosine 5'-
diphosphoribose 
(ADP-ribose) 

Cofactors and 
Vitamins 

Nicotinate and 
Nicotinamide 
Metabolism 

C0030
1 

HMDB0
1178 

Caffeine Xenobiotics Xanthine Metabolism C0748
1 

HMDB0
1847 

Fructose Carbohydrate Fructose, Mannose and 
Galactose Metabolism 

C0009
5 

HMDB0
0660 

Mannose Carbohydrate Fructose, Mannose and 
Galactose Metabolism 

C0015
9 

HMDB0
0169 
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BIOCHEMICAL SUPER_PATHWA
Y 

SUB_PATHWAY KEGG HMDB
_ID 

Gluconate Xenobiotics Food Component/Plant C0025
7 

HMDB0
0625 

Hypotaurine Amino Acid Methionine, Cysteine, 
SAM and Taurine 
Metabolism 

C0051
9 

HMDB0
0965 

Nicotinamide Cofactors and 
Vitamins 

Nicotinate and 
Nicotinamide 
Metabolism 

C0015
3 

HMDB0
1406 

Spermine Amino Acid Polyamine Metabolism C0075
0 

HMDB0
1256 

Uracil Nucleotide Pyrimidine Metabolism, 
Uracil containing 

C0010
6 

HMDB0
0300 

Uridine Nucleotide Pyrimidine Metabolism, 
Uracil containing 

C0029
9 

HMDB0
0296 

Margarate (17:0) Lipid Long Chain Fatty Acid HMDB0
2259 

Inosine Nucleotide Purine Metabolism, 
(Hypo)Xanthine/Inosine 
containing 

C0029
4 

HMDB0
0195 

Isoleucine Amino Acid Leucine, Isoleucine and 
Valine Metabolism 

C0040
7 

HMDB0
0172 

Alanine Amino Acid Alanine and Aspartate 
Metabolism 

C0004
1 

HMDB0
0161 

Threonine Amino Acid Glycine, Serine and 
Threonine Metabolism 

C0018
8 

HMDB0
0167 

Tyrosine Amino Acid Phenylalanine and 
Tyrosine Metabolism 

C0008
2 

HMDB0
0158 

Lysine Amino Acid Lysine Metabolism C0004
7 

HMDB0
0182 

Malate Energy TCA Cycle C0014
9 

HMDB0
0156 

Palmitate (16:0) Lipid Long Chain Fatty Acid C0024
9 

HMDB0
0220 

Stearate (18:0) Lipid Long Chain Fatty Acid C0153
0 

HMDB0
0827 

Putrescine Amino Acid Polyamine Metabolism C0013
4 

HMDB0
1414 

Gamma-
aminobutyrate 
(GABA) 

Amino Acid Glutamate Metabolism C0033
4 

HMDB0
0112 

5-
methylthioadenosin
e (MTA) 

Amino Acid Polyamine Metabolism C0017
0 

HMDB0
1173 

Succinate Energy TCA Cycle C0004
2 

HMDB0
0254 
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BIOCHEMICAL SUPER_PATHWA
Y 

SUB_PATHWAY KEGG HMDB
_ID 

Ornithine Amino Acid Urea cycle; Arginine and 
Proline Metabolism 

C0007
7 

HMDB0
3374 

5-oxoproline Amino Acid Glutathione Metabolism C0187
9 

HMDB0
0267 

Pantothenate Cofactors and 
Vitamins 

Pantothenate and CoA 
Metabolism 

C0086
4 

HMDB0
0210 

Alpha-tocopherol Cofactors and 
Vitamins 

Tocopherol Metabolism C0247
7 

HMDB0
1893 

Citrate Energy TCA Cycle C0015
8 

HMDB0
0094 

3-aminoisobutyrate Nucleotide Pyrimidine Metabolism, 
Thymine containing 

C0514
5 

HMDB0
3911 

Glycerate Carbohydrate Glycolysis, 
Gluconeogenesis, and 
Pyruvate Metabolism 

C0025
8 

HMDB0
0139 

Guanosine Nucleotide Purine Metabolism, 
Guanine containing 

C0038
7 

HMDB0
0133 

Phosphoethanolam
ine 

Lipid Phospholipid 
Metabolism 

C0034
6 

HMDB0
0224 

Urate Nucleotide Purine Metabolism, 
(Hypo)Xanthine/Inosine 
containing 

C0036
6 

HMDB0
0289 

Arginine Amino Acid Urea cycle; Arginine and 
Proline Metabolism 

C0006
2 

HMDB0
0517 

Fumarate Energy TCA Cycle C0012
2 

HMDB0
0134 

Serine Amino Acid Glycine, Serine and 
Threonine Metabolism 

C0006
5 

HMDB0
0187 

Valine Amino Acid Leucine, Isoleucine and 
Valine Metabolism 

C0018
3 

HMDB0
0883 

Urea Amino Acid Urea cycle; Arginine and 
Proline Metabolism 

C0008
6 

HMDB0
0294 

Gamma-
glutamylcysteine 

Peptide Gamma-glutamyl Amino 
Acid 

C0066
9 

HMDB0
1049 

Proline Amino Acid Urea cycle; Arginine and 
Proline Metabolism 

C0014
8 

HMDB0
0162 

Glutathione, 
reduced (GSH) 

Amino Acid Glutathione Metabolism C0005
1 

HMDB0
0125 

Flavin adenine 
dinucleotide (FAD) 

Cofactors and 
Vitamins 

Riboflavin Metabolism C0001
6 

HMDB0
1248 

Serotonin Amino Acid Tryptophan Metabolism C0078
0 

HMDB0
0259 
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BIOCHEMICAL SUPER_PATHWA
Y 

SUB_PATHWAY KEGG HMDB
_ID 

Cytidine 5'-
monophosphate 
(5'-CMP) 

Nucleotide Pyrimidine Metabolism, 
Cytidine containing 

C0005
5 

HMDB0
0095 

Gamma-
glutamylglutamine 

Peptide Gamma-glutamyl Amino 
Acid 

C0528
3 

HMDB1
1738 

Guanosine 5'- 
monophosphate 
(5'-GMP) 

Nucleotide Purine Metabolism, 
Guanine containing 

C0014
4 

HMDB0
1397 

Adenosine 5'-
diphosphate (ADP) 

Nucleotide Purine Metabolism, 
Adenine containing 

C0000
8 

HMDB0
1341 

Hypoxanthine Nucleotide Purine Metabolism, 
(Hypo)Xanthine/Inosine 
containing 

C0026
2 

HMDB0
0157 

Xanthine Nucleotide Purine Metabolism, 
(Hypo)Xanthine/Inosine 
containing 

C0038
5 

HMDB0
0292 

2-aminoadipate Amino Acid Lysine Metabolism C0095
6 

HMDB0
0510 

4-acetamidophenol Xenobiotics Drug C0680
4 

HMDB0
1859 

Isocitrate Energy TCA Cycle C0031
1 

HMDB0
0193 

Glycerol Lipid Glycerolipid Metabolism C0011
6 

HMDB0
0131 

Kynurenine Amino Acid Tryptophan Metabolism C0032
8 

HMDB0
0684 

6-
phosphogluconate 

Carbohydrate Pentose Phosphate 
Pathway 

C0034
5 

HMDB0
1316 

Carnitine Lipid Carnitine Metabolism C0031
8 

HMDB0
0062 

Choline Lipid Phospholipid 
Metabolism 

C0011
4 

HMDB0
0097 

N1-
methyladenosine 

Nucleotide Purine Metabolism, 
Adenine containing 

C0249
4 

HMDB0
3331 

Hippurate Xenobiotics Benzoate Metabolism C0158
6 

HMDB0
0714 

Ribitol Carbohydrate Pentose Metabolism C0047
4 

HMDB0
0508 

Glycerophosphoryl
choline (GPC) 

Lipid Phospholipid 
Metabolism 

C0067
0 

HMDB0
0086 

Sphingosine Lipid Sphingolipid Metabolism C0031
9 

HMDB0
0252 

Dihomo-linoleate 
(20:2n6) 

Lipid Polyunsaturated Fatty 
Acid (n3 and n6) 

C1652
5 

HMDB0
5060 
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BIOCHEMICAL SUPER_PATHWA
Y 

SUB_PATHWAY KEGG HMDB
_ID 

Theobromine Xenobiotics Xanthine Metabolism C0748
0 

HMDB0
2825 

Biochemical SUPER_PATHWAY SUB_PATHWAY KEGG HMDB_
ID 

Acetylcholine Lipid Neurotransmitter  

1-oleoyl-GPS (18:1) Lipid Lysolipid   

1-stearoyl-GPI 
(18:0) 

Lipid Lysolipid  HMDB6
1696 

Stearoyl 
sphingomyelin 
(d18:1/18:0) 

Lipid Sphingolipid Metabolism C0055
0 

HMDB0
1348 

Glucose Carbohydrate Glycolysis, 
Gluconeogenesis, and 
Pyruvate Metabolism 

C0003
1 

HMDB0
0122 

1,5-anhydroglucitol 
(1,5-AG) 

Carbohydrate Glycolysis, 
Gluconeogenesis, and 
Pyruvate Metabolism 

C0732
6 

HMDB0
2712 

N-acetylaspartate 
(NAA) 

Amino Acid Alanine and Aspartate 
Metabolism 

C0104
2 

HMDB0
0812 

1-linoleoylglycerol 
(18:2) 

Lipid Monoacylglycerol  

3-indoxyl sulfate Amino Acid Tryptophan Metabolism HMDB0
0682 

Creatine Amino Acid Creatine Metabolism C0030
0 

HMDB0
0064 

Glutathione, 
oxidized (GSSG) 

Amino Acid Glutathione Metabolism C0012
7 

HMDB0
3337 

Threonate Cofactors and 
Vitamins 

Ascorbate and Aldarate 
Metabolism 

C0162
0 

HMDB0
0943 

Nicotinamide 
adenine 
dinucleotide 
reduced (NADH) 

Cofactors and 
Vitamins 

Nicotinate and 
Nicotinamide 
Metabolism 

C0000
4 

HMDB0
1487 

Androsterone 
sulfate 

Lipid Steroid  HMDB0
2759 

Acetylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

C0257
1 

HMDB0
0201 

Hexanoylcarnitine Lipid Fatty Acid Metabolism(Acyl 
Carnitine) 

HMDB0
0705 

Adenosine 5'-
monophosphate 
(AMP) 

Nucleotide Purine Metabolism, 
Adenine containing 

C0002
0 

HMDB0
0045 
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BIOCHEMICAL SUPER_PATHWA
Y 

SUB_PATHWAY KEGG HMDB
_ID 

Guanine Nucleotide Purine Metabolism, 
Guanine containing 

C0024
2 

HMDB0
0132 

N-
acetylneuraminate 

Carbohydrate Aminosugar Metabolism C0027
0 

HMDB0
0230 

Butyrylcarnitine Lipid Fatty Acid Metabolism 
(also BCAA 
Metabolism) 

C0286
2 

HMDB0
2013 

Dehydroisoandrost
erone sulfate 
(DHEA-S) 

Lipid Steroid C0455
5 

HMDB0
1032 

Propionylcarnitine Lipid Fatty Acid Metabolism 
(also BCAA 
Metabolism) 

C0301
7 

HMDB0
0824 

Docosapentaenoate 
(n3 DPA; 22:5n3) 

Lipid Polyunsaturated Fatty 
Acid (n3 and n6) 

C1651
3 

HMDB0
1976 

Phenol sulfate Amino Acid Phenylalanine and 
Tyrosine Metabolism 

C0218
0 

HMDB6
0015 

1-linoleoyl-GPE 
(18:2)* 

Lipid Lysolipid  HMDB1
1507 

2-
hydroxyacetamino
phen sulfate* 

Xenobiotics Drug   

1-palmitoleoyl-
GPC (16:1)* 

Lipid Lysolipid  HMDB1
0383 

Isobutyrylcarnitine Amino Acid Leucine, Isoleucine and Valine 
Metabolism 

HMDB0
0736 

Pseudouridine Nucleotide Pyrimidine Metabolism, 
Uracil containing 

C0206
7 

HMDB0
0767 

Glutamate, 
gamma-methyl 
ester 

Amino Acid Glutamate Metabolism 

Eicosenoate (20:1) Lipid Long Chain Fatty Acid HMDB0
2231 

Octanoylcarnitine Lipid Fatty Acid 
Metabolism(Acyl 
Carnitine) 

C0283
8 

HMDB0
0791 

1-palmitoyl-GPC 
(16:0) 

Lipid Lysolipid  HMDB1
0382 

1-stearoyl-GPC 
(18:0) 

Lipid Lysolipid  HMDB1
0384 

1-arachidonoyl-
GPI (20:4)* 

Lipid Lysolipid  HMDB6
1690 

3-(cystein-S-
yl)acetaminophen* 

Xenobiotics Drug   
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BIOCHEMICAL SUPER_PATHWA
Y 

SUB_PATHWAY KEGG HMDB
_ID 

Choline phosphate Lipid Phospholipid 
Metabolism 

C0058
8 

HMDB0
1565 

Glycylleucine Peptide Dipeptide C0215
5 

HMDB0
0759 

Isovalerylcarnitine Amino Acid Leucine, Isoleucine and Valine 
Metabolism 

HMDB0
0688 

Stearoylcarnitine Lipid Fatty Acid Metabolism(Acyl 
Carnitine) 

HMDB0
0848 

Cytidine-5'-
diphosphoethanola
mine 

Lipid Phospholipid 
Metabolism 

C0057
0 

HMDB0
1564 

Cytidine 5'-
diphosphocholine 

Lipid Phospholipid 
Metabolism 

C0030
7 

HMDB0
1413 

1-linoleoyl-GPC 
(18:2) 

Lipid Lysolipid C0410
0 

HMDB1
0386 

4-hydroxybutyrate 
(GHB) 

Lipid Fatty Acid, 
Monohydroxy 

C0098
9 

HMDB0
0710 

Ophthalmate Amino Acid Glutathione Metabolism HMDB0
5765 

Phenylacetylgluta
mine 

Amino Acid Phenylalanine and 
Tyrosine Metabolism 

C0414
8 

HMDB0
6344 

Cysteine-
glutathione 
disulfide 

Amino Acid Glutathione Metabolism HMDB0
0656 

Oleoylcarnitine Lipid Fatty Acid Metabolism(Acyl 
Carnitine) 

HMDB0
5065 

1-arachidonoyl-
GPE (20:4)* 

Lipid Lysolipid  HMDB1
1517 

2-palmitoyl-GPC 
(16:0)* 

Lipid Lysolipid  HMDB6
1702 

1-palmitoyl-GPI 
(16:0)* 

Lipid Lysolipid  HMDB6
1695 

4-
hydroxyhippurate 

Xenobiotics Benzoate Metabolism HMDB1
3678 

1-oleoyl-GPE 
(18:1) 

Lipid Lysolipid  HMDB1
1506 

1-palmitoyl-GPE 
(16:0) 

Lipid Lysolipid  HMDB1
1503 

Lidocaine Xenobiotics Drug D0035
8 

HMDB1
4426 

N-acetyl-aspartyl-
glutamate (NAAG) 

Amino Acid Glutamate Metabolism C1227
0 

HMDB0
1067 

Dihomo-linolenate 
(20:3n3 or n6) 

Lipid Polyunsaturated Fatty 
Acid (n3 and n6) 

C0324
2 

HMDB0
2925 
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BIOCHEMICAL SUPER_PATHWA
Y 

SUB_PATHWAY KEGG HMDB
_ID 

P-cresol sulfate Amino Acid Phenylalanine and 
Tyrosine Metabolism 

C0146
8 

HMDB1
1635 

1-oleoyl-GPI 
(18:1)* 

Lipid Lysolipid   

Gamma-
glutamylglutamate 

Peptide Gamma-glutamyl Amino 
Acid 

C0528
2 

HMDB1
1737 

Deoxycarnitine Lipid Carnitine Metabolism C0118
1 

HMDB0
1161 

Succinylcarnitine Energy TCA Cycle  

Methylphosphate Nucleotide Purine and Pyrimidine Metabolism HMDB6
1711 

Tryptophan 
betaine  

Amino Acid Tryptophan Metabolism C0921
3 

HMDB6
1115 

4-androsten-
3beta,17beta-diol 
disulfate (1) 

Lipid Steroid C0429
5 

HMDB0
3818 

2-hydroxyglutarate Lipid Fatty Acid, 
Dicarboxylate 

C0263
0 

HMDB0
0606 

Glycerophosphoeth
anolamine 

Lipid Phospholipid 
Metabolism 

C0123
3 

HMDB0
0114 

4-acetaminophen 
sulfate 

Xenobiotics Drug C0680
4 

HMDB5
9911 

Docosapentaenoate 
(n6 DPA; 22:5n6) 

Lipid Polyunsaturated Fatty 
Acid (n3 and n6) 

C1651
3 

HMDB0
1976 

N-acetylputrescine Amino Acid Polyamine Metabolism C0271
4 

HMDB0
2064 

Palmitoyl 
sphingomyelin 
(d18:1/16:0) 

Lipid Sphingolipid Metabolism 

1-(1-enyl-
palmitoyl)-GPE (P-
16:0)* 

Lipid Lysoplasmalogen  

1-(1-enyl-stearoyl)-
GPE (P-18:0)* 

Lipid Lysolipid   

6-sialyl-N-
acetyllactosamine 

Carbohydrate Aminosugar Metabolism HMDB0
6584 

Heme Cofactors and 
Vitamins 

Hemoglobin and 
Porphyrin Metabolism 

C0003
2 

HMDB0
3178 

3-
hydroxybutyrylcar
nitine (1) 

Lipid Fatty Acid Metabolism(Acyl 
Carnitine) 

HMDB1
3127 

1-(1-enyl-oleoyl)-
GPE (P-18:1)* 

Lipid Lysolipid   
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BIOCHEMICAL SUPER_PATHWA
Y 

SUB_PATHWAY KEGG HMDB
_ID 

1-stearoyl-GPS 
(18:0)* 

Lipid Lysolipid   

 

1-palmitoyl-GPG 
(16:0)* 

 

Lipid 

 

Lysolipid 
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