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Introduction 

Iron deficiency is a global health burden. Despite sustained efforts to 

eradicate iron deficiency, it remains the number one nutritional deficiency in the 

world, affecting over two billion people [1]. One of the main causes of iron 

deficiency is insufficient dietary intake and/or low bioavailability. Public health 

approaches to eradicate iron deficiency include supplementation and food 

fortification. The aims of my PhD project were to investigate the bioavailability 

and mechanisms of apical uptake of novel iron forms using cell culture models 

and thereby provide insight toward improving iron deficiency.  

Chapter 1 is an introduction to the importance of iron to human health, 

strategies to alleviate iron deficiency, our current understanding of dietary 

intestinal iron absorption, and methods for measuring iron bioavailability, with a 

particular emphasis on the in vitro digestion / Caco-2 cell model. Chapter 2 

provides an outline of the basic methods used to study iron uptake in Caco-2 and 

Hutu-80 cells. Chapter 3 investigates the use of ferric phosphate nanoparticles 

(NP-FePO4) as a source of iron fortification. NP-FePO4 was kindly donated by 

Michael Zimmerman’s group based at ETH Zurich. Chapter 4 focuses on the use 

of plant-derived ferritin (phytoferritin) as a potential iron supplement. Phytoferritin 

was extracted and purified from marrowfat peas by Janneke Balk’s lab group, 

based at the John Innes Centre. Chapter 5 examines the use of the commercially 

available iron ingot, Lucky Iron Fish©, as a source of home iron fortification. 

Chapters 3, 4, and 5 are the basis of 3 separately submitted manuscripts; one of 

which has been accepted, and the other two currently under peer review. Lastly, 

a general discussion of the experiments undertaken and recommendations for 

future work are outlined in Chapter 6.  

All three iron sources used in this thesis comprise the newest strategies 

for iron therapeutics. By assessing iron bioavailability, and more importantly the 
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mechanisms of iron uptake, it is hoped that the work will prove insightful and can 

be used in the design of future prospective human trials.  
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1. Literature Review 

1.1 Iron  

Iron is an essential nutrient required by the human body to support life. 

Dietary iron is absorbed primarily in the upper gastrointestinal tract (duodenum 

and part of the upper jejunum), where approximately 1-3 mg iron is absorbed per 

day. The majority (80-90%) of absorbed iron is incorporated into haemoglobin 

(for oxygen transport to tissues and carbon dioxide removal) in red blood cells 

(RBC) or myoglobin (for oxygen binding in muscle tissue) [2]. The remainder of 

absorbed iron is incorporated into iron-sulfur clusters, as a substrate of the 

tricarboxylic acid cycle, cytochromes for oxidative phosphorylation, as a cofactor 

for various enzyme-catalyzed reactions, and stored in the liver as ferritin. Active 

excretory mechanisms for iron do not exist; only minor losses of iron occur 

through urine, sweat, and desquamation of intestinal cells, except in cases of 

blood loss, such as menstruation. Iron requirements are balanced by dietary iron 

absorption; iron-replete individuals absorb less iron and iron-deficient individuals 

absorb more iron. Within the body, iron is recycled in a state of constant turnover. 

Iron is transported from the intestine using transferrin and directed toward the 

bone marrow, where new synthesis of haemoglobin occurs. After approximately 

120 days, senescent erythrocytes become degraded by macrophages of the 

reticuloendothelial system found in the liver and spleen. A diagram of iron 

turnover is depicted in Figure 1.1. 
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Figure 1.1 Iron circulation, transport, and percentage found in body 
tissues.  

Dietary iron is absorbed in the duodenum and transported around the 
body by the protein, transferrin. Iron is stored within liver or skeletal muscle for 
physiological function or directed to bone marrow for synthesis of haemoglobin in 
RBC. Senescent RBC’s are degraded by macrophages of the liver and exported 
out for circulation to synthesise new RBC’s. For more detail, see Andrews et al 
2000 [3]. 
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1.2 Mechanisms of iron absorption 

This literature review will be primarily focused on intestinal iron absorption. 

Dietary iron is categorised as either haem or non-haem. The mechanisms 

involved in intestinal non-haem iron absorption have been elucidated over the 

last 20 years, and forms the majority of this section. The mechanisms of haem 

iron absorption are distinct from non-haem iron, and while this distinction has 

been recognised for over half a century, little information exists on the 

mechanisms regulating its absorption. The uptake of haem will be discussed 

within this section, while a stand-alone section on ferritin structure/function and 

uptake will be presented in Chapter 4. All forms of iron, regardless of origin, 

absorbed in the intestine join the labile iron pool (LIP) within the enterocyte prior 

to export into the blood [4].  

1.2.1 Important factors regulating iron absorption 

The homeostatic mechanisms coordinating iron absorption are highly 

controlled, involving several levels of regulation. Central to iron absorption is the 

expression of the iron transport proteins in the intestine (DMT1, DcytB, ferritin, 

ferroportin, hephaestin) which facilitate iron entry, storage, and export to and 

from the enterocyte. Post-transcriptional regulation involving the iron response 

proteins (IRP) and their interaction with iron response elements (IRE), 

transcriptional regulation involving hypoxia-induced factor 2 alpha (HIF-2α), and 

systemic regulation through hepcidin expression all control the expression of the 

iron transport proteins of the intestinal cell, which are fundamental to iron 

absorption. 

In general, under iron-deficient conditions, DMT1, Dcytb, and TfR1 protein 

expression is increased, and simultaneously, ferroportin, ferritin (H and L chain), 

and hepcidin expression is decreased. This results in increased cellular iron 

concentrations. The converse occurs when intestinal cells are iron-replete. 
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1.2.2 Iron response proteins (IRP): Post-transcriptional regulation 

The two iron response proteins, IRP1 (ACO1) and IRP2 (IREB2), regulate 

the protein expression of several duodenal iron proteins [5-8]. Under low, or iron-

deficient cytosolic conditions, IRP1 and IRP2 are expressed and bind to cis, 

regulatory hairpin untranslated regions (UTR) of mRNA found in several iron 

proteins (discussed below). The location of the binding determines whether the 

mRNA transcript is stabilised or degraded. IRP binding to the 5’ UTR results in 

mRNA degradation by blocking transcriptional initiation while binding to the 3’ 

UTR confers mRNA stability (and protein expression) by protecting the transcript 

from endonuclease activity.  

In iron-replete or iron-overloaded enterocytes, both IRP1 and IRP2 are 

inactivated. The formation of a [4Fe- 4S] cluster induces a conformational change 

to IRP1, switching its function as a post-transcriptional iron regulator to a 

mitochondrial aconitase enzyme of the citric acid cycle. The conformational 

changes, in addition, inhibit IRP1-IRE binding. 

IRP2 is also inactivated by iron using a different regulatory mechanism to 

IRP1. Iron (and oxygen) stabilises the expression of FBXL5 (F box and leucine-

rich repeat protein 5). FBXL5 binds to IRP2 (and to some extent IRP1), leading to 

the active recruitment of SCF-type ubiquitin ligase (E3) to the complex [9, 10], 

and subsequent ubiquitination and proteasomal degradation of IRP2 [7, 9, 10]. In 

FBXL5-/- knockout mice, IRP2 over accumulates resulting in iron overload and 

embryonic lethality [11].  

Interestingly, DMT1, Dcytb, and ferroportin mRNA and protein levels were 

unaltered in IRP2-/- knockout mice. Moreover, the mice display a mildly microcytic 

phenotype, indicating that IRP1 and IRP2 can functionally replace one another 

[12]. Double intestinal knockout IRP1-/- and IRP2-/- mice resulted in 10-fold 

decreased DMT1 expression, 4-fold increased ferroportin expression, and 
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significantly increased serum hepcidin. Mice body weights were half that of wild 

type and knockout mice survived less than 30 days. This model reflects the 

importance of the IRP system to intestinal iron absorption [13].  

 

Figure 1.2 IRP-IRE system.   

Iron response proteins are activated under iron-deficient conditions and 
bind to UTR IRE’s of several iron proteins to drive increased cellular iron 
concentrations. Iron response proteins are inactivated under iron-replete 
conditions to decrease cellular iron concentrations.  

 

1.2.3 HIF2α: Transcriptional regulation 

The mechanisms involved in transcriptional regulation of duodenal iron 

proteins have recently become unraveled. HIF2α is a transcriptional factor of 

several duodenal iron proteins. Under iron-deficient cellular conditions, HIF2α 

binds directly to the DNA promoters of both DMT1 and DcytB to drive 

transcription [14] and protein expression. Iron-replete or oxygenated cellular 
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conditions increase VHL-E3-ligase complex expression, which leads to the 

ubiquitination of HIF2α and its degradation [15].  

In an elegant example of this regulation, researchers showed that the 

expression of DMT1 and Dcytb in iron-replete VHL-/- knockout mice was similar to 

iron-deficient WT mice [16]. Conversely, HIF-/- knockout mice failed to express 

DMT1 or Dcytb during iron depletion. Both knockout models provided importance 

evidence that HIF2α is an important physiological regulator of iron absorption. 

Furthermore, intestine-specific HIF2α-/- knockout mice resulted in decreased 

dietary iron uptake and iron status [16]. Interestingly, a feedback loop has been 

shown to exist between transcriptional and translational regulation of iron 

metabolism. Recently, it was discovered that HIF2α also contains an mRNA 5’ 

UTR IRE and is also post-transcriptionally regulated by the IRP’s [17]. It is 

important to note that HIF2α inhibitors are currently being investigated as a 

therapeutic target for clinical iron overload conditions.  

1.2.4 DMT1  

DMT1 (DCT1/NRAMP2/SLC11A2) is currently the only identified intestinal 

iron importer. DMT1 spans 12 transmembrane domains, is localised mainly in the 

brush border membranes, and is an exclusive transporter of ferrous iron (Fe2+) 

into the enterocyte [18]. DMT1 functions as a proton-coupled (H+) co-transporter 

and thereby functions optimally within more acidic conditions (proximal intestine) 

generated from the Na+/H+ exchanger [18, 19].  

Alternative splicing of the DMT1 transcript results in 4 different isoforms; a 

3’UTR IRE that is highly expressed in the duodenum (exon 1b, DMT1 +IRE) [18], 

a non-IRE isoform (exon 1b, DMT1 –IRE) [20], and two other (-/+) IRE transcripts 

containing conserved 21-23 amino acid sequences extended within the 5’ open 

reading frame (exon 1a, ±IRE) [21, 22].   
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DMT1 is essential to intestinal non-haem iron absorption. It was 

discovered using extracted RNA and the generation of cDNA libraries from rat 

duodenal segments [18]. Cloning and expression of DMT1 in Xenopus oocytes 

resulted in a 200-fold increase in ferrous iron uptake [18]. Subsequent studies 

found that DMT1 was translocated to brush border microvillae and highly 

upregulated in iron-deficient rats [23, 24].  

The mk mouse and the Belgrade rat are two murine models of iron 

deficiency that result from DMT1 abnormalities. Positional cloning techniques 

identified that iron deficiency in these models resulted from a missense gene 

mutation located at G185R in the DMT1 transcript of both the mk mouse [25] and 

Belgrade rat [26]. Transfection of the G185R mutant into HEK293 cells 

decreased non-haem uptake compared to WT due to the loss of function in the 

DMT1 protein [27]. DMT1-/- knockout was embryonically lethal to mice and 

intestine-specific DMT1-/- knockout resulted in severe iron deficiency, growth, loss 

of weight, and eventually lethality at 7 days [28].  

The identification of patients exhibiting DMT1 mutations is a strong 

indicator of its physiological importance. Patients exhibiting DMT1 mutations 

displayed symptoms of both microcytic anaemia and liver iron overload [29, 30]. 

These symptoms resulted in iron loading anaemia, which is thought to be the 

result of increased iron absorption resulting from low plasma hepcidin levels [31]. 

In other cases of DMT1 mutations, severe anemia resulted without iron overload 

[31]. The differing phenotypes exhibiting several DMT1 mutations are probably 

reflective of differences in human duodenal iron absorption and erythroid iron 

utilization, unveiling unknown functional complexities of DMT1 [31].  

1.2.5 IMP pathway 

A mechanism of iron uptake has been proposed for ferric iron as well. 

Conrad and Umbreit, thorough a succession of several publications, has 
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proposed a model for ferric iron uptake existing separately from DMT1. This 

model was termed the integrin-mobilferrin-paraferritin (IMP) pathway, which is 

exclusive for ferric iron, and is not associated with other metals [32]. The group 

observed that mucins lining the gastrointestinal tract of mice had strong affinity 

for ferric iron at gastric pH and prevented the precipitation of iron to insoluble 

complexes at neutral pH [33]. They hypothesised that ferric iron binds to mucins 

and proceeds to bind with luminal surface β-3-integrins prior to enterocytic 

uptake [34]. Ferric iron is then proposed to bind to the cytosolic protein, 

mobilferrin [35, 36]. Whether mobilferrin binds exogenous ferric iron prior to cell 

entry is unknown. Intestinally absorbed ferric iron is reduced by the membrane 

bound, intracellular ferrireductase, paraferritin using NADPH [37]. The paraferritin 

complex (520 kDa) contains β-3-integrin, mobilferrin, and flavin monoxygenase 

[37] and DMT1 [38], which allows ferrous iron to be exported into the cytosol.  

The physiological importance of the IMP pathway is currently unknown. 

Confocal studies revealed that the IMP pathway is upregulated in mucin 

secreting goblet cells and extracellularly with mucin during iron deficiency [39]. 

Knockdown of calreticulin, the homologue of paraferritin, in mice caused severe 

abnormalities in cardiac development [40-42] resulting in lethality.  

Conrad et al [32] demonstrated that excess Mn2+ inhibited Fe2+ but not 

Fe3+, suggesting that Mn2+ and Fe2+, but not Fe3+, both compete for DMT1 

transport in K562 cells. They also demonstrated that antibodies targeting DMT1 

blocked Fe2+, but not Fe3+, uptake. Furthermore, cDNA expression of DMT1 in 

HEK-293 cells resulted in the transport of Fe2+ but not Fe3+. Given the 

identification and subsequent characterisation of DMT1 and ferrireductases such 

as Dcytb, the IMP pathway may contribute to, but is likely not essential, to iron 

absorption until proved otherwise.  
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1.2.6 Dcytb 

Duodenal cytochrome B reductase (Dcytb/Cybrd1) is the only identified 

brush border membrane ferrireductase identified to date. The enzyme catalyses 

the reduction of Fe3+ to Fe2+ prior to DMT1 transport. McKie et al identified Dcytb 

from subtractive hybridisation using the hypotransferrinaemic hpx/hpx iron-

deficient mouse model [43]. The method compares hypotransferrinaemic mice, 

which upregulates the expression of iron transporters, such as Dcytb, with wild 

type mice.  In parallel with DMT1, Dcytb was upregulated during hypoxia and iron 

deficiency. Dcytb has been shown to increase iron absorption from Fe3+. cRNA 

Dcytb injected into Xenopus oocytes resulted in a 6-fold increase in iron uptake 

from 59Fe(III)-NTA [43]. Moreover, Caco-2 cells and MDCK cells transfected with 

Dcytb cDNA showed a 2.5-fold increase in iron uptake [44, 45]. In the 

haemochromatosis overload mouse model, HFE-/- knockout resulted in 

significantly upregulated levels of Dcytb [46].  

Dcytb ferrireductase activity is likely driven by intracellular ascorbic acid. In 

either Caco-2 cells loaded with ascorbic acid [44] or iron-deficient mice 

stimulated to produce increased intracellular ascorbic acid levels Dcytb 

expression and reductase activity was upregulated [47]. These examples of 

Dcytb function in cellular and in vivo models are strongly suggestive of its 

physiological importance as an intestinal ferrireductase. However, in Dcytb-/- 

knockout mice fed either a normal or iron deficient diet short term (4 weeks) or 

long term (12 weeks) showed no differences in haemotological parameters, such 

as iron liver stores, compared to wild type [48], providing compelling evidence 

that Dcytb is not essential to iron absorption. The study indirectly implied the 

existence (and/or presence) of other reductases that functionally compensate for 

Dcytb. One major limitation of the study was that the mice were fed a normal 

chow (containing Fe2+ and Fe3+); thus it is not possible to fully distinguish 

whether Dcytb is essential to intestinal iron uptake. Furthermore, mouse models 
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naturally synthesise endogenous ascorbic acid in the liver [49] which may 

compensate for the Dcytb-/- knockout. Further studies are required to determine 

the importance of Dcytb in intestinal iron absorption. 

1.2.7 HCP1 

The mechanisms of intestinal haem absorption still remain unresolved. 

HCP1 (SLC46A1) is the only identified candidate transporter to date. HCP1 has 

structural homology with the bacterial tetracycline transporters. Identified by 

Shayageshi et al [50] using suppression subtractive hybridisation (a technique to 

amplify differing cDNA fragments of the transcriptome), HCP1 protein expression 

in mice was induced in iron deficiency and hypoxia. Expression of HCP1 in 

Xenopus oocytes and HeLa cells increased haem transport 2.5 and 6-fold, 

respectively. HCP1 knockdown in Caco-2 cells also significantly reduced haem 

iron absorption (50%) in a time and concentration-dependent manner [51, 52].  

A separate group disputed the importance of HCP1 as the haem 

transporter. Using data mining techniques, HCP1 was later identified as a 

candidate folate transporter (PCFT) [53]. In fact, PCFT was the same protein as 

HCP1 identified by the group of Shayageshi [50]. Folate incubated with Xenopus 

oocyte expressed PCFT generated Km values of 1.3-6.0 μM [53], 20 to 100-fold 

higher binding affinities than haem (125 μM) [50]. Other researchers have 

validated these results. PCFT/HCP1 transiently expressed in HEK-293 cells 

resulted in Km values of 1.76 μM from folate [54] and knockdown of PCFT/HCP1 

in Caco-2 cells inhibited folate uptake two-fold greater than haem [51].   

Furthermore, a PCFT1/HCP1 mutation was observed in siblings with 

hereditary folate malabsorption. Qiu et al [53] discovered that a single nucleotide 

polymorphism resulting in an in-frame deletion of 28 amino acids in PCFT1/HCP1 

resulted in the disease. It is currently accepted that PCFT1/HCP1 is a folate 

transporter, and possibly a low affinity transporter for haem. Knockout mice 
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models of PCFT1/HCP1 are required distinguish whether PCFT1/HCP1 is 

indispensable for haem iron absorption. It is likely that other haem transport 

mechanisms exist.  

1.2.6 Poly r(C)-Binding Protein 1 

Once transported from the intestinal lumen into the cell, non-haem iron 

joins the labile iron pool (LIP) and is directed toward the physiologic requirements 

of the cell, stored within ferritin, or exported to the blood for body iron needs. 
Haem iron is also thought to join the LIP. Haem oxygenase-1 (HO-1) catalyses 

the rapid, oxidative degradation of haem to bilirubin, CO2 and free iron [52, 55]. 

The mechanism behind iron shuttling to its various physiological functions in the 

cytosol, and whether it’s mediated by protein chaperones, has recently been 

elucidated.  

Poly r(C)-Binding Protein 1 (PCBP1) is a cytosolic iron chaperone recently 

identified by Shi et al [56]. Co-expression of ferritin and PCBP1 in yeast resulted 

in ferritin-PCB1 binding and ferritin-iron loading. Targeting of siRNA to PCBP1 

increased the labile iron pool, suggesting that PCBP1 chaperones iron directly to 

ferritin. PCBP1 and PCBP2 also activated HIF-prolyl hydroxylase, an enzyme 

hydroxylating and mediating HIF degradation [57], providing evidence that that 

these iron chaperones are functionally important in intestinal iron absorption. 

However, more evidence is required to prove that PCBP1 is the iron chaperone 

involved in enterocytes and the existence of other functional analogues remains 

to be demonstrated. 

1.2.7 Ferritin 

Ferritin is a 24-mer globular protein that functions as an iron storage 

protein. The human protein consists of structurally homologous H and L subunits. 

The H subunit has ferrioxidase activity (initiating the oxidation of Fe2+ to Fe3+ for 
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storage), while the L subunit contributes to iron nucleation [58-60]. A detailed and 

comprehensive review of ferritin regarding its role in iron nutrition will be 

presented in section 1.8.  

In the intestine, ferritin protein expression responds directly to labile iron 

pool concentrations. In order to regulate cell iron concentrations, ferritin is 

expressed highly in iron-replete conditions, functioning as an ‘iron sink’ while its 

expression is inhibited when cytosolic iron concentrations are low. This switching 

is regulated by iron and IRP’s. In iron-deficient cells, ferritin protein expression is 

repressed by IRP binding to its mRNA 5’ UTR IRE [61, 62]. Under these 

conditions, ferritin is also degraded after delivery to endosomes using the cargo 

receptor NCOA4 [63, 64]. This has the effect of increasing iron 

absorption/transport to systemic tissues.  

Although ferritin was thought to play a ‘passive’ role in iron regulation, e.g. 

its expression responding only to cell iron concentration, recent evidence 

suggests that its function is much more complex than first thought. Intestine-

specific knockout Ftn-/- mice exhibited severe inhibition of duodenal DMT1 

expression [65] and iron overload, even in the presence of elevated serum 

hepcidin levels. These results demonstrate that ferritin may play other 

physiological roles other than iron storage. 

1.2.8 Ferroportin 

Ferroportin (FPN/MTP1/IREG1/SLC40A1) is the only identified iron 

exporter in the intestine. Ferroportin is localised exclusively in the basolateral 

membrane and exports ferrous iron for transferrin-iron loading prior to systemic 

iron circulation. Several researchers discovered Ferroportin independently [8, 66, 

67]. The hypochromatic phenotype in the zebrafish mutant, weissherbst, is 

caused by a ferroportin mutation. Positional cloning comparing weissherbst to 

wild-type identified a defective mutation in the ferroportin gene (L167F), resulting 
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in reduced iron export to systemic tissues. Functioning wild-type ferroportin 

expressed in weissherbst reversed the hypochromatic phenotype [67]. 

Ferroportin was also identified in the mouse model. McKie et al [8] identified 

ferroportin using the same strategy as with Dcytb [43]. Ferroportin localised to the 

basolateral membrane when transfected into Caco-2 and MDCK cells, increased 

iron export when expressed in Xenopus oocytes, and was upregulated (2.5-fold) 

in iron deficiency.  

Similar to ferritin, ferroportin expression is also regulated by a 5’IRE in its 

mRNA [66]. In contrast to ferritin, ferroportin expression is also inhibited by 

hepcidin [68], and therefore has a significant role in regulating systemic iron 

homeostasis. Donovan et al [69] demonstrated the essentiality of ferroportin to 

iron metabolism. Systemic Fpn-/- knockout was embryonically lethal to mice and 

intestinal-specific Fpn-/- knockout mice resulted in iron overload in duodenal 

tissues and severe hypochromic, microcytic anaemia. 

1.2.9 Hephaestin 

Transferrin-Fe loading after ferroportin driven iron export requires iron 

oxidation from Fe2+ to Fe3+. The ceruloplasmin analogue, hephaestin (Heph), is 

an extracellular ferrioxidase that is a candidate for this role. Hephaestin was 

discovered in the sla (sex-linked anaemia) mouse, a model of iron deficiency, 

which is caused by enterocyte blockage of iron export. Using gene mapping 

techniques, Vulpe et al [70] discovered a mutation in the previously 

uncharacterised hephaestin, a multi-copper ferrioxidase that provides a novel 

interaction between iron absorption and copper. Hephaestin (and ferroportin) 

expression is iron regulated in animal models [71] and its overexpression in cells 

has shown to increase iron efflux [72]. Interestingly, while systemic and/or 

intestine-specific Heph-/- knockout mice were intestinally iron overloaded and 

suffered from hypochromic, microcytic anaemia, they still remained viable, 
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indicating that hephaestin is one of, but not the only functionally important 

ferrioxidase regulating intestinal iron efflux [73].   

 

Figure 1.3 Cartoon illustration depicting the current mechanisms of iron 
absorption.  

Non-haem iron uptake in intestinal cells is absorbed using Fe2+ mediated 
DMT1, with aid of the ferrireductase, DcytB. Iron absorbed in the cell joins the 
LIP and is directed, likely by a member of the PCBP family, to various organelles 
or stored as ferritin. During increased body iron needs, iron exported out of the 
cell to other tissues by Fpn and oxidized by the ferrioxidase, Heph prior to 
transferrin loading.     
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1.2.10 Hepcidin 

Hepcidin (Hepc/LEAP1/Hamp) is a liver derived, cysteine-rich, 25 amino 

acid polypeptide [74] that regulates systemic iron homeostasis by inhibiting 

duodenal (and macrophage) iron export. The expression of hepcidin, a type-II 

acute phase protein, increases during iron overload, infection, or inflammatory 

disease [75-77]. As such, anaemia of chronic disease (ACD) is a result of 

hepcidin overproduction, which occurs in response to infections. This condition 

frequently arises in developing countries as well as in patients with chronic 

inflammation induced by cancer, diabetes, obesity, arthritis, and old age [78].  

Hepcidin is considered the ‘master controller’ of iron absorption. It was first 

identified in blood and urine using mass spectrometry and first attributed with 

antimicrobial properties. Hepcidin inhibited the growth of pathogenic microbes 

such as S. cerevisiae, S. aureus, and S. typhimurium [74, 79]. The discovery of 

hepcidin as the key regulator of iron homeostasis was made rather 

serendipitously. Researchers investigating the mechanisms of glucose 

metabolism by the transcriptional regulator, USF2 using USF2-/- knockdown mice 

found that USF2-/- knockdown also resulted in severe iron overload [80]. By 

happenstance, USF2 is also a transcriptional regulator of hepcidin. 

Hepcidin cDNA, separately identified using subtractive hybridisation from 

mice genomes, was significantly upregulated in mice fed a high iron diet [75]. Its 

effect on iron absorption has shown to be dose-dependent [81]. An inverse 

relationship was found between hepcidin and the protein expression of DMT1, 

DcytB, ferroportin, and transferrin when mice were switched from an iron-replete 

diet to an iron-deficient diet. In this same study, rats injected with synthetic 

hepcidin decreased intestinal iron uptake but iron liver stores or haemoglobin 
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levels remained unchanged, providing compelling evidence that the inhibitory 

effects of hepcidin on iron absorption are intestine-specific.  

The inhibitory mechanism of iron absorption mediated by hepcidin was 

discovered by Nemeth et al [68]. Hepcidin binds directly to ferroportin dimers, 

resulting in subsequent JAK2-activated phosphorylation of ferroportin [82] and its 

subsequent internalisation and lysosomal degradation [68] thereby inhibiting 

duodenal iron export. In iron-replete or iron-overloaded intestinal cells, hepcidin 

expression is stimulated by the binding of bone morphogenic protein-6 (BMP6) to 

its co-receptor haemojuvelin in the liver, resulting in a cascade of phosphorylation 

of SMAD proteins that initiate HAMP transcription [83]. In iron-deficient intestinal 

cells, erythropoietin suppresses hepcidin expression through a pathway involving 

matripase-2 [84], resulting in the cleavage of haemojuvelin from the cell surface 

of liver cells [85]. This mechanism of hepcidin regulation is supported in several 

knockout mice models. In TMPRSS6-/- knockout mice, which inhibits the 

transcription of matripase-2, hepcidin was overproduced, ferroportin protein 

levels were decreased, and severe iron deficiency resulted [86]. In the mask 

mutant mouse model, microcytic anaemia is caused by the overproduction of 

hepcidin which is a result of defects in the TMPRSS6 gene [87]. TMPRSS6 gene 

mutations cause the clinical condition, iron refractory iron deficiency anaemia 

(IRIDA), which cannot be corrected by oral iron therapeutics [88]. Moreover, the 

importance of hepcidin in iron regulation is evident in cases of juvenile 

haemochromatosis. Gene mutation analysis of two separate families with 

haemochromatosis revealed separate point mutations on the exons of hepcidin 

cDNA [89], resulting in non-functional hepcidin and insufficient iron blockage. In 

summary, current knowledge strongly indicates that hepcidin is the most 

important factor regulating iron absorption. 
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Figure 1.4 Hepcidin regulation on iron metabolism. 

Hepcidin inhibits intestinal iron absorption and systematically regulates 
iron status by binding and inducing ferroportin degradation during iron-replete 
conditions. Under these conditions, BMP6 is activated and binds to its co-
receptor HJV in the liver, resulting in the cascade of SMAD protein 
phosphorylation activating the transcription of hepcidin. Under iron-deficient 
conditions, erythropoiesis is increased and EPO is stimulated. EPO activates 
matripase-2, which actively degrades HJV, resulting in the inhibition of hepcidin. 
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1.3 Iron deficiency 

As recent as 2010, the prevalence of anaemia was estimated to affect 

one-quarter to one-third of the world’s population [90]. Half of the cases of 

anaemia is a result of iron deficiency [91]. Despite sustained efforts, iron 

deficiency remains the number one nutritional deficiency in the world, affecting 

over two billion people [1]. Improvements to alleviate iron deficiency over the last 

twenty years have been modest at best despite nutritional interventions and 

increased awareness [92]. Iron deficiency usually results when body iron 

physiological demands are not matched by dietary iron intake. This results in 

several conditions, such as decreased work productivity, poor pregnancy 

outcomes, decreased immune response, and cognitive developmental decline 

[93-95]. The economic burden of iron deficiency has been estimated to represent 

about 4% of the gross domestic product (GDP) in developing countries [96]. 

Inherently linked with either inadequate iron intake and/or diets that are 

predominately plant based [1], low-income and developing countries are 

especially prone to iron deficiency. The most vulnerable groups include women of 

childbearing age and children. These groups are predisposed and at risk for iron 

deficiency even in developed countries due to their increased iron demands. The 

WHO estimates that iron deficiency anaemia occurs in 40% of women of 

reproductive age and 50% of children (5-14 years old) in non-industrialised 

countries [97].  

Contemporary dietary habits and viewpoints may have significant effects 

on iron status into the future. There is a growing societal effort to reduce meat 

consumption, based upon sustainability, ethics, and health effects [98-100]. This 

may have an impact on iron nutrition as meat is an important source of 

bioavailable iron and also increases the absorption of non-haem, an enhancing 

effect often referred to as the ‘meat factor’ [101-103].  
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While the scope of this thesis is to address iron deficiency from a dietary 

perspective, it is important to note a causal relationship between infection and 

iron deficiency. Iron deficiency is exacerbated in populations afflicted with chronic 

disease states, such as H. pylori infection or malaria. This form of iron deficiency, 

known as anaemia of chronic disease, has also been associated with cancer, 

obesity, inflammatory bowel disease, heart failure and kidney disease [104]. 

1.4 Iron bioavailability 

Iron bioavailability is defined as the proportion of dietary iron that is 

absorbed and utilised for haemoglobin synthesis [103, 105]. Dietary iron is 

generally classified into two distinct categories; haem and non-haem. As briefly 

discussed previously, iron-containing foods of non-animal origin (in which the iron 

is free or chelated to proteins, organic acids, phytates, or polyphenols), soluble 

iron salts, and insoluble iron fortificants all are generally categorised as non-

haem iron. Non-haem iron in foods exists in both the ferrous (Fe2+) and ferric 

(Fe3+) oxidation state, but the majority of iron is Fe3+ [106]. These foods include 

plants, cereals, and grains. Non-haem iron is the usual form of iron supplements 

and fortificants.  

Haem iron, found almost exclusively in animal tissues, exists in the ferric 

state, centrally bound within the porphyrin ring of haemoglobin and myoglobin. 

Haem represents 10% percent of total iron intake, but despite the fact that plant 

foods can contribute equivalent amount of total iron as haem, absorption of haem 

iron is much more efficient [107]. Haem iron absorption in the diet is estimated to 

be 15-35% compared to 1-10% observed for non-haem iron [103]. The 

differences in iron absorption between haem and non-haem iron is attributed to 

the chemical species of iron, the divergent and discriminate routes of absorption 

into the intestinal epithelium [106], and the absence of effects of dietary inhibitors 

on haem iron [108].  
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Human trials measuring haemotological indices is the direct measurement 

of iron bioavailability. The gold standard measurement utilises radio or stable iron 

isotopes and measures its incorporation into haemoglobin. Other surrogate 

measurements of iron bioavailability include murine models (such as the 

haemoglobin repletion technique), cellular models (Caco-2 cells are the most 

extensively used), and measures of iron solubility and/or dialysability. These 

methods can be thought of as hierarchal, ranging from the most to the least 

predictive of human iron bioavailability.  

 

Figure 1.5 Hierarchical representation of the methods to assess iron 
bioavailability. 

At the bottom of the pyramid, solubility is provides the lowest cost to 
measure iron bioavailability but is the least predictive. Meanwhile, human trials 
are the gold standard to measure iron bioavailability but costs are prohibitive. 
Animal models are shown as more predictive than in vitro digestion / Caco-2 cells 

Solubility / Dialyzability!

In vitro digestion / Caco-2 cells!

Animal models !
(eg. rat, chicken)!

Human models!
(isotope tracers) !

Predictivity ! Cost!
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because they represent an in vivo response, but this is not true under all 
circumstances, such as the effect of enhancers and inhibitors on iron 
bioavailability. 

While iron bioavailability is strictly defined as iron utilisation, it can also be 

described as a series of sequential stages [109].  

(1) Availability: the effect of digestion on the release of iron from the food 

matrix, and the presence of soluble iron (sometimes referred to as 

bioaccessibility).  

(2) Uptake: iron transport into the enterocyte. 

(3) Absorption: basolateral transfer of iron into the blood. 

(4) Utilisation: functional iron usage (e.g. RBC incorporation). 

Although each step can be considered a proxy of bioavailability, the term 

bioavailability in the strictest sense refers to utilisation. In practical terms, each 

method has its merits depending on experimental objectives and, ultimately, cost. 

In vitro simulated digestion techniques can be used to measure the first stage, 

and Caco-2 cells the second and third stages.  

Gastrointestinal transit contributes a minor role in iron bioavailability 

relative to the effects of digestion. Salivary enzymes such as amylase initiate the 

digestion of food. The low pH conditions (2-4) and the stimulated release of 

pepsin in the stomach result in protein degradation and the release of iron. In 

some individuals, achlorydia, a condition that leads to reduced or no hydrochloric 

acid production, results in iron deficiency [110, 111]. Once food is digested in the 

stomach, chyme is transported into the small intestine. The neutral pH (6.8-7.4) 

environment in the small intestine results in iron precipitation unless chelated to 

organic acids or other dietary components. The duodenum is the main site for 

iron absorption.  
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Iron status is one of the most important determinants of iron absorption. 

Iron-deficient individuals increase iron absorption and hence, measured dietary 

iron bioavailability is higher, even when the properties of the food are unchanged. 

This illustrates the difficulties of attempting to quantify dietary iron bioavailability. 

There is a need for reference materials to be used for comparison so that results 

from different experiments can be compared.  

Since the thesis is based strictly upon in vitro cell culture techniques, a 

thorough and detailed review of the usefulness of Caco-2 cells to predict human 

iron bioavailability will be presented later in the chapter.  

1.4.1 Ascorbic acid 

Ascorbic acid (AA) is the most potent dietary enhancer of non-haem iron. 

AA has been shown to offset the inhibitory effects of dietary inhibitors, such as 

phytates [112, 113], polyphenols [112, 114] and calcium [115] in a dose-

dependent manner. The use of AA is strongly recommended at 2:1 AA:Fe molar 

ratios in the presence of low to medium dietary inhibitors and 4:1 in the presence 

of high dietary inhibitors when introduced for food fortification [116, 117]. Other 

acids found in the diet, such as citric acid, also enhance iron absorption to some 

extent but to a lesser degree compared to AA. Gillooly et al [118] found that 

adding citric acid (1 g) and 3 mg Fe to vegetables increased iron absorption to 

the same degree as AA (15 mg), thus highlighting the potency of AA as an 

enhancer of non-haem iron absorption.  

Single meal studies have consistently demonstrated the potent enhancing 

effects of AA on iron bioavailability, but mixed-meal and longer-term studies 

indicate that its enhancing effects are subtler. In a 10-week human trial, Hunt et 

al [119] found that the addition of 1500 mg AA / day had no effect on iron 

absorption in women with low iron stores. Similarly, only modest improvements in 

iron bioavailability (35% increase) were shown in a complete diet study over 5 
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days comparing low AA and high AA meals (51 vs. 247 mg / day), respectively 

[120]. Cook et al [120] hypothesised that a portion of undigested, luminal 

contents from successive meals, and/or the inherently varied composition of the 

diets between individuals may blunt the effects of AA long-term.  

The mechanism underlying the interaction between AA and increased iron 

bioavailability is well understood. Conrad et al [121] demonstrated that AA is a 

strong chelator of Fe3+ at gastric (acidic) pH. The chelation of solubilised Fe3+ 

(and Fe2+) to AA at gastric pH prevents the formation of insoluble ferric 

hydroxides [Fe(OH)3] at intestinal pH [121-123]. Separately, AA also is a potent 

reductant that is able to catalyse the reduction of Fe3+ to Fe2+ [124], resulting in 

increased rates of DMT1 transport.   

To a lesser degree, AA may also increase Fe bioavailability by an 

intracellular effect. Researchers using Hutu-80 cells demonstrated that AA 

donates electrons intracellularly to DcytB to drive ferrireductase activity [125]. 

Moreover, Scheers et al [126] was also able to demonstrate that short-term 

incubation of AA (16 hrs) increased protein expression of DMT1 and DcytB while 

long-term exposure (38 hrs) decreased its expression in Caco-2 cells, possibly 

providing a mechanistic explanation for the differences in AA-mediated iron 

bioavailability between single meal and multiple meal studies [119, 120]. Overall, 

it is generally well-accepted that AA increases non-haem iron bioavailability, but 

its added cost and instability in food matrices makes it less effective for improving 

iron bioavailability at the population level [127, 128] 

1.4.2 Calcium 

Calcium is the only iron inhibitor that has been shown to inhibit both haem 

and non-haem iron [129-131]. Given that calcium inhibits both forms of iron, it 

has been suggested that its mechanism of inhibition occurs during basolateral 

iron export [129].  
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The inhibitory effects of calcium on iron absorption have been 

demonstrated in single meal, short-term studies. The initial study by Hallberg et 

al [130] showed that its inhibitory effect is dose-dependent, with maximal 

inhibition of iron absorption (33-50%) at concentrations of 300 mg calcium (as 

CaCl2) when introduced into bread rolls [130]. Similar to Hallberg, Dawson-

Hughes et al [132] found that 500 mg calcium (as CaCO3) introduced into a 

single meal inhibited iron absorption by 50%. Hallberg et al [129] also found that 

high doses of CaCl2 (800 mg) were required to inhibit iron from FeSO4 or haem 

when given as supplements without a food vehicle, suggesting that their initial 

study design may have overestimated the inhibitory effects of calcium on iron 

absorption. Cook et al [133] showed that a calcium supplement at 600 mg 

decreased iron absorption only when the supplement was taken with food. The 

form of calcium supplement (chloride, carbonate, etc) may also have an effect on 

iron absorption [133]. 

The long-term inhibitory effect of calcium on iron absorption has not been 

demonstrated. In a study examining the effect of high calcium supplementation 

on iron absorption over multiple meals (5 consecutive days) [134], no change in 

iron absorption was observed. Surprisingly, iron absorption with high calcium 

supplementation was similar to diets consumed ad libitum. In a study 

investigating calcium supplementation over 6 months (1200 mg / day), iron status 

was not different compared to participants without calcium supplementation 

[135].  

The inhibitory effects of calcium on iron absorption may be relevant in 

cases of food fortification, in which populations are commonly deficient in both 

calcium and iron and thus given multiple mineral formulations. Similar to calcium 

supplementation, the effects of calcium fortification on iron absorption have been 

marginal. In one study, low (39 mg / serving) and high (156 mg / serving) 

calcium-fortified breakfast cereals (as CaCO3) had no effect on the absorption of 



 

 

 

46 

7.5 mg iron [136]. In another study, an iron-fortified casein drink with added 

calcium (100 and 200 mg) modestly inhibited iron absorption, and the effect was 

reversed by low doses of AA at 2:1 and 4:1 AA:Fe molar ratios [115]. Calcium 

inhibition of iron absorption is hypothesised to be a result of high calcium dosage 

rather than high Ca:Fe molar ratios [131].  

The differences between short-term and long-term effects of calcium on 

iron absorption may reflect individual adaptation to iron uptake after an initial, 

short-term high dose of calcium [137]. The mechanisms underlying how calcium 

inhibits iron absorption are mixed and remain inconclusive. Several studies have 

suggested that calcium inhibits iron absorption through DMT1. Calcium non-

competitively inhibited non-haem iron transport through DMT1 in DMT1 RNA 

expressed Xenopus oocytes [138]. In Caco-2 cells, calcium inhibited iron uptake 

from ferric ammonium citrate (FAC) by decreasing DMT1 protein concentration at 

the apical surface [139]. Conversely, it has also been shown that 500:1 and 

1000:1 Ca:Fe molar ratios increased iron uptake but decreased basolateral 

decrease in Caco-2 cells [140]. Differences in iron compound (FeCl3 vs FAC), 

incubation time (1 hr vs 4 hr), and iron uptake measurements (radioisotope tracer 

vs ferritin formation) may explain the disagreement between results obtained by 

Thompson [43] and Gaitan [44]. In summary, while the inhibitory effects of 

calcium on iron absorption remain unresolved, calcium has only demonstrated a 

modest effect on iron absorption and iron status [141].  

1.4.3 Phytic acid 

Phytic acid (PA) is present in many staple foods and as such is the 

predominant inhibitor of non-haem iron in plant-based diets [142]. In cereals and 

legumes, the majority of phosphate (60-80%) constitutes PA [143]. PA 

concentrations in cereals and legumes vary depending on plant species, but 

range between approximately 0.5-2% of the total plant [144]. PA decreases iron 
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bioavailability in a dose-dependent manner. Hallberg et al [113] demonstrated 

that increasing PA concentrations from 2 to 250 mg in radioisotope iron-labeled 

bread rolls decreased iron absorption from 82% to 18%. In a separate study, 

increasing PA levels (14 mg to 58 mg) in a bread meal decreased iron absorption 

ratios (AR) from 1.21 to 0.54 [112].  

The inhibitory effect of PA on iron bioavailability is not the result of the 

fibre content. Several studies have demonstrated that the PA content of wheat-

bran, irrespective of fibre content [145, 146], is solely responsible for its low iron 

bioavailability [145, 147]. 

Many vegetables also contain high levels of PA, such as beans and lentils. 

In a human study using radiolabeled iron, the addition of exogenous FeSO4 (3 

mg) to beans and lentils did not improve iron absorption compared to beans and 

lentils alone [118], demonstrating the potent inhibitory effects of PA on non-haem 

iron.  
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Table 1.1 Phytic acid content of staple foods.   

Table adapted from Frontela et al [148]. 

There are several strategies used to improve iron bioavailability from PA 

containing foods. Consuming cultivars of foods with lower PA concentrations is a 

relatively straightforward solution. Using Caco-2 cells, Eagling et al [149] 

compared iron bioavailability of white flour from two cultivars of wheat differing in 

iron content. Iron bioavailability was higher in the lower iron content cultivar 

despite having half the amount of endogenous iron. After measuring the PA 

Common%names Taxonomic)names Phytic%acid
g/100g%(DW)

Cereals
Maize Zea$mays 0.72./.2.22

germ 6.39
Wheat Triticum$spp. 0.39./.1.35

bran 2.1./.7.3
germ 1.14./.3.91

Rice Oryza$glaberrima/sativa 0.06./.1.08
bran 2.56./.8.7

Barley Hordeum$vulgare 0.38./.1.16
Sorghum Sorghum$spp. 0.57./.3.35
Oat Avena$sativa 0.42./.1.16
Rye Secale$cereale 0.54./.1.46
Millet Pennisetum$sp. 0.18./.1.67
Triticale Triticale$secale 0.50./.1.89
Wild.rice Zizania$sp. 2.20
Legumes
Kidney.beans Phaseolus$vulgaris 0.61./.2.38
Haricot.beans
Pinto.beans
Navy.beans
Blackeye.beans
Broad.beans Vicia$faba 0.51./.1.77
Peas Pis$sativum$ 0.22./.1.22
Dry.cowpeas Vigna$unguiculata 0.37./.2.90
Black/eyed.peas
Chickpeas Cicer$arietinum 0.28./.1.60
Lentils Lens$culinaris 0.27./.1.51
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content, the higher PA concentration of the higher iron content cultivar inhibited 

non-haem iron to an extent that the lower iron content cultivar was more 

bioavailable. 

Another strategy to improve iron bioavailability is the reduction of PA 

levels. The levels can be reduced or completely degraded using fermentation. In 

Caco-2 cells, sourdough (fermented) breads [148] and lacto-fermented 

vegetables [150] were more bioavailable compared to their non-fermented 

controls. Similar to these studies, our laboratory recently demonstrated that iron 

uptake in Caco-2 cells was higher in FeSO4 supplemented sourdough bread 

compared to other bread making processes as a result of complete degradation 

of PA [151].  

The use of exogenous phytase is another strategy to reduce PA levels. 

Phytase added to infant complementary foods and then exposed to an in vitro 

digestion at infant gastric conditions (pH 4) increased iron bioavailability in Caco-

2 cells compared to foods without phytase [152]. In a human stable iron isotope 

study, phytase added to cereal porridges increased iron bioavailability 2-12 fold 

compared to control. In a similarly designed human trial using phytase, 

Davidsson et al [153] did not observe increases in iron bioavailability even with 

an 88% reduction in PA, demonstrating that PA is a potent inhibitor of iron 

bioavailability at even relatively low concentrations. In our study, only full 

degradation of PA increased iron bioavailability in Caco-2 cells. Given that low, 

basal levels of PA can exert potent inhibitory effects on iron absorption, current 

recommendations suggest that PA levels are reduced to below 1:1 Fe:PA molar 

ratios [142], considering that 1 mol of phytate can bind up to 6 mol of ferric iron 

[117].  

PA inhibits non-haem iron bioavailability at the stage prior to apical uptake. 

At intestinal pH, PA is negatively charged, and its affinity for positively charged 
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Fe results in the formation of highly insoluble PA-Fe complexes. These insoluble 

complexes are unavailable for absorption as humans lack phytase specific 

enzymes that cleave PA-Fe complexes [154]. 

1.4.4 Polyphenols 

Polyphenols (PP) are a group of compounds with variable hydroxyl groups 

bound to aromatic rings (phenolic structures). As a potent inhibitor of iron 

bioavailability, PP functions as secondary metabolites for host defense 

mechanisms [155]. Tea, coffee, and wine are among the most prevalent PP 

containing foods [118, 156]. Total PP content of foods was inversely correlated 

with iron bioavailability [118] and iron bioavailability was decreased dose-

dependently with increasing PP [156]. In a human trial, Tuntawiroon et al [157] 

demonstrated that increasing the serving size of a native Southeast Asian 

vegetable high in PP from 0-20 g per meal (0-600 mg tannic acid (TA) equivalent) 

dose-dependently reduced iron absorption from 12.8 to 1.7%. Similarly, 

Siegenberg et al [112] found a dose-dependent relationship with increased TA 

(12-833 mg) and decreased iron absorption ratios AR (0.7 to 0.21).  

Tea is one of the most well-known dietary iron inhibitors [158]. It contains 

the hydrolysable form of tannic acid (TA) containing multiple gallic acid subunits 

[155]. Among polyphenol beverages, Hurrell et al [156] observed that black tea 

was the most potent iron inhibitor at the lowest PP concentration, with 50 mg PP 

inhibiting up to 70% iron. Tea consumed with breakfast meals reduced iron 

absorption from ferrous ascorbate by 60% [159]. Coffee is also an inhibitor of iron 

bioavailability [160], albeit to a lesser extent than tea, and its mechanism of 

inhibition is thought to be due to either the presence of TA or chlorogenic acid, 

which constitutes the majority of PP in coffee. In a human study, iron absorption 

from semi-synthetic meals was reduced by 72% when consumed with a cup of 
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coffee [160]. TA is thought to inhibit iron bioavailability by forming non-absorbable 

complexes with iron prior to apical uptake [161]. 

Since PP constitutes hundreds of phenolic compounds, the inhibitory 

mechanism and potency of iron bioavailability from PP is likely type-specific. In 

Caco-2 cells, epigallocatechin gallate (ECGC) [found in green tea] and quercetin 

[the most abundant flavanol in the diet (apples, grapes, tea)], inhibited iron 

bioavailability at the step of basolateral export [162, 163]. Also in Caco-2 cells, 

quercetin inhibited miRNA regulation on the 5’ UTR of ferroportin, resulting in its 

decreased protein expression [163]. The modulatory effect of quercetin on 

ferroportin may partially explain its effect on iron absorption. 
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Figure 1.6 Schematic cartoon depicting the predominate enhancer and 
inhibitors of non-haem iron absorption found in the diet.  

Ascorbic acid reduces ferric to ferrous iron and forms soluble complexes in 
the stomach to enhance iron absorption. Phytate and polyphenols bind iron in the 
stomach, which results in insoluble complex formation in the intestinal lumen, 
inhibiting iron absorption.  
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1.5 Strategies to reduce iron deficiency 

1.5.1 Iron supplementation 

Iron deficient individuals that cannot meet their iron requirements through 

dietary intervention are usually prescribed iron supplements. Soluble ferrous salts 

are the most commonly prescribed supplements. Ferrous sulfate, gluconate and 

fumurate, are inexpensive, well-absorbed and normally correct anaemia [164]. 

Intakes of 150-200 mg / day elemental iron are usually recommended (e.g. 300 

mg FeSO4 which is 60 mg elemental iron 3x per day) [165, 166]. 

Soluble ferrous salts may be cheap and well absorbed but recent evidence 

has highlighted several health concerns. Short-term supplementation trials have 

routinely demonstrated to correct anaemia and improve iron status, but the 

benefits of routine supplementation have not been demonstrated [107]. Routine 

supplementation is also not particularly useful or sustainable in many public 

health settings. Furthermore, routine supplementation can decrease the 

absorption of dietary non-haem iron [167], possibly through the mucosal block 

theory.  

FeSO4 is considered the ‘gold standard’ of iron supplementation. Testing 

of other iron compounds for iron bioavailability is measured relative to FeSO4. 

Iron bioavailability of FeSO4 is estimated to be between 10-15% [168], but 

depends greatly on the presence or absence of inflammation and iron status of 

the individual. In non-anaemic women, Lonnerdal et al [169] and Harrington et al 

[170] both reported ca. 20% bioavailability from FeSO4. While highly bioavailable, 

FeSO4 is not well-tolerated in individuals and can induce multiple, adverse 

gastrointestinal conditions such as nausea, diarrhoea, and constipation (see 

review by Cancelo-Hidalgo et al [171]). During these cases, lower or less 

frequent dosages are prescribed. For example, in one study, 20 mg / day 

decreased ID during pregnancy and post-partum without side effects [172]. 
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Difficulties in poor palatability and digestibility caused by FeSO4 

supplementation are common, resulting in less than 50% compliance [173]. The 

adverse gastrointestinal conditions caused by FeSO4 have been attributed to 

excess, unabsorbed iron in the lumen, which can participate in Fenton-based 

redox reactivity [174]. The effects of iron supplementation (and particularly 

FeSO4) on health outcomes and clinical significance have so far not been fully 

evaluated. In animal models, FeSO4 has been shown to induce and exacerbate 

carcinogenesis in patients with irritable bowel disease (IBD) [175]. Lund et al 

[174] found that routine iron supplementation for 2 weeks increased fecal free 

radical generation. Moreover, human supplementation trials have demonstrated 

that iron supplementation resulted in changes to gut microbial populations, 

favouring iron sequestering negative bacteria over positive bacteria such as 

lactobacilli [176, 177].    

1.5.2 Iron biofortification 

The WHO defines biofortification as ‘the process by which the nutritional 

quality of food crops is improved through agronomic practices, conventional plant 

breeding, or modern biotechnology.’ The three current methods for the 

biofortification of food crops in increasing iron concentrations are (a) agronomical 

(increasing soil iron content and / or foliar spray of plants), (b) selective breeding 

and (c) genetic engineering. HarvestPlus, an organisation that funds the majority 

of biofortification research, has set out specific guidelines for successful nutrient 

biofortification. These guidelines are termed: discovery, development, and 

delivery. In general, biofortification strategies to improve the iron content in plants 

are tested. If the first stage is successful, human bioavailability trials are 

conducted to assess efficacy. If the second stage is successful, scaled-up 

approaches to grow sufficient quantities for local communities are implemented 

[178].  
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The simplest biofortification approach is agronomic. Direct addition of iron 

to soil (fertilisation) or foliar application (spray) has been shown to increase the 

iron content of plants. Mixed results have been generated using this approach. 

Wheat fertilised with soluble iron resulted in the increase in iron concentration in 

the roots and shoots, but the rapid conversion to ferric unavailable forms blocked 

its transport to the edible grain [179]. Iron foliar application has resulted in either 

marginal increases [180] or no effect [181] on the iron content of wheat. In one 

study, similar to the fertiliser approach, foliar application did not result in 

increased iron transport to the endosperm of wheat [180], demonstrating the 

limitation of this technique on certain food crops. The effect of agronomic 

approaches on the iron content and bioavailability is likely crop dependent, as the 

difficulties in agronomic approaches to wheat may be due to its complicated 

genome. Foliar spray has been effective for P. sativum and V. umculada [182]. 

There are numerous concerns with agronomic approaches. Agronomic 

methods may be unsuitable in the long-term and/or sustainable due to the 

requirements for constant application. Furthermore, associated costs and 

environmental concerns may hinder its use in developing countries [178, 183]. 

Increasing the iron content in crops can also be accomplished using 

conventional breeding. Using this strategy, iron-biofortified rice contained 4-5 fold 

increases in iron content compared to conventional rice and improved iron status 

in non-anaemic Filipino women [184]. In another example of biofortified rice, co-

overexpressed soybean ferritin and nicotiniamine synthase genes using 

transgenic approaches resulted in 5-fold increases in iron (15 μg/g vs 2 μg/g) in 

polished grains and when applied to the in vitro digestion / Caco-2 model, 

significantly increased iron bioavailability compared to wild-type rice [185]. 

Another iron biofortification strategy is cultivating crops low in PA. This 

approach has recently had some success, but these strains low in PA suffered 
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from low yield [186, 187], which greatly limits its potential. Moreover, iron 

bioavailability in low PA biofortified beans was higher than normal PA, low PP, 

and high PP beans in women with low iron status, suggesting that, at least in 

beans, PA is the more potent inhibitor of iron bioavailability [188]. Unfortunately, 

women on the low PA bean diet reported adverse gastrointestinal distress, which 

may severely limit its consumer acceptability and consumption [189]. Recent 

studies in both the short [189] and long-term (4 months) [190] have shown that 

iron-biofortified beans improved the iron status of iron-deficient women. These 

studies suggest, given the ability to grow sufficient quantities that the best 

strategy for biofortification is breeding for high iron, irrespective of antinutritional 

factors.  

1.5.3 Iron fortification  

Food fortification is the most effective strategy to alleviate iron deficiency 

for large-scale populations. Iron is added exogenously to various 

foodstuffs/matrices such as cereals, condiments (soy / fish sauce), meal 

replacements, infant foods, etc. Iron fortificants are categorised based upon their 

acid dissolution profile: (a) water-soluble, (b) water-insoluble, but soluble in dilute 

acid, and (c) insoluble. Choice of iron fortificant is a compromise between soluble 

iron fortificants that are well absorbed but are highly reactive, unstable, may 

cause organoleptic changes when introduced to foods, and insoluble iron 

fortificants which are unreactive and stable in food matrices, but have low iron 

bioavailability. Many iron formulations exist, but stability, foodstuff application, 

and ultimately costs are important drivers of its implementation.  
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Table 1.2 Iron compounds used for food fortification.  

Reproduced using World Health Organisation, Iron deficiency anaemia: 
assessment, prevention, and control [116]. 

Iron fortificants, either soluble in water or dilute acid, enter the non-haem 

iron pool in the gastrointestinal tract and are absorbed to the same extent as 

native non-haem iron compounds in the meal. As previously described, insoluble 

iron fortificants, such as electrolytic iron and ferric pyrophosphate, are poorly 

Key characteristics of Fe compounds commonly used for food fortification
Compound Relative Relative cost

bioavailabilitya (per mg Fe)
Water soluble
Ferrous sulfate 7!H2O 100 1.0
Ferrous sulfate, dried 100 1.0
Ferrous gluconate 89 6.7
Ferrous lactate 67 7.5
Ferrous bisglycinate >100C 17.6
Ferric ammonium citrate 51 4.4
Sodium iron EDTA >100C 16.7

Poorly water soluble, soluble in dilute acid
Ferrous fumarate 100 2.2
Ferrous succinate 92 9.7
Ferric saccharate 74 8.1

Water insoluble poorly soluble in dilute acid
Ferric orthophosphate 25-32 4.0
Ferric pyrophosphate 21-74 4.7
Elemental iron:
H-reduced 13-148d 0.5
Atomized -24 0.4
CO-reduced (12-32) <1.0
Electrolytic 75 0.8
Carbonyl 5-20 2.2

Encapsulated forms
Ferrous sulfate 100 10.8
Ferrous fumarate 100 17.4
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absorbed. Hurrell et al [117] suggested that these insoluble iron fortificants 

should be added to the food vehicle at twice the amount of iron as FeSO4 since it 

is absorbed half as well as FeSO4. Other insoluble iron fortificants such as 

atomised and hydrogen-reduced iron powders have been shown to have such 

poor iron bioavailability that they are not recommended at any level [191]. 

Particle size reduction of poorly soluble iron compounds is one strategy 

that has been shown to increase iron absorption [192-194]. Harrison et al [194] 

found that the relative biological value (RBV) increased by 2-3 fold and 5-fold 

when the particle size was reduced for electrolytic iron (27-40 micron to 7-10 

micron) and FePO4 (12-15 micron to 1 micron), respectively. RBV was positively 

correlated to iron solubility at 0.1 N HCl and human iron bioavailability. In another 

study, particle size reduction of ferric pyrophosphate (FePP) from 21 microns to 

0.5 microns improved RBV from 59% to 95% compared to FeSO4 in rats [195]. 

Recently, a dispersible micronised FePP (mean particle size 0.3 μM) has been 

developed (commercialised as SunActive®, Taiyo Japan) and in a human trial 

was as equally bioavailable as FeSO4 when introduced in infant cereal and 

yoghurt food matrices [196]. Its addition in fortified salt and extruded rice has also 

been demonstrated to improve iron status and decrease iron deficiency in 

anaemic children [197].  

NaFeEDTA (sodium iron ethylenediaminetetraacetic acid) is a well-

absorbed iron compound and is recommended in the presence of high PA foods. 

Iron bioavailability of NaFeEDTA is 2-3x higher than FeSO4 in high PA foods 

[116], likely because EDTA has a high affinity for iron and prevents its binding to 

PA [198, 199]. NaFeEDTA introduced into meals containing corn masa flour and 

black beans was 2x more bioavailable than FeSO4 (9.0 vs 5.5%) in young girls 

[200]. In another study, sugar fortified with NaFeEDTA improved iron stores in 

community based trials in Guatemala [201]. One particular benefit of NaFeEDTA 

is its stability in liquids. It’s introduction into sauces, such as soy and fish, is 
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advantageous for iron fortification. In a 6 month community trial, NaFeEDTA 

fortified soy sauce and fish sauce improved iron status and reduce iron deficiency 

by 50% in studies conducted in Vietnam [202]. In a separate clinical study, 

NaFeEDTA fortified soy sauce and fish sauce was as bioavailable as FeSO4 

fortified soy sauce (3.3 vs 3.1%) and fish sauce (6.1 vs 5.6%) given as rice-

based meals [203]. Given these results, China and Vietnam have introduced 

NaFeEDTA fortified soy sauce and fish sauce into their national fortification 

programs [116]. 

Amino acid chelates (e.g. ferrous bisglycinate) are another promising form 

of iron but their bioavailability requires further investigation [204, 205]. Each 

molecule of amino acid chelate has Fe2+ forming heterocyclic ring structures with 

two glycines bound on each side. This theoretically protects Fe2+ from chelation 

with iron inhibitors. The iron bioavailability from 59Fe-bisglycinate was 3-4 fold 

increased compared to 55FeSO4 (10.8% vs 2.7%) in iron deficient men consuming 

high phytate whole-meal maize porridge [206]. Similarly, iron bioavailability from 

ferrous bisglycinate was 2-fold greater than FeSO4 in meals containing corn flour, 

margarine, and cheese consumed by non-anaemic individuals [207]. 
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Figure 1.7 Flow chart representing the strategies for alleviating iron 
deficiency.  

 

1.6 Methods to estimate iron bioavailability 

1.6.1 In vitro techniques for estimating iron bioavailability 

Much of our understanding in iron metabolism has been generated using 

in vivo rodent models. While an invaluable resource in investigating the 

mechanisms of iron metabolism, its ability to recapitulate human iron 

bioavailability has been questioned. For example, when identical test meals were 

given to human volunteer subjects (18-40 yr old) and rats and iron isotope 

incorporation was measured after 14 days, Reddy et al [208] showed that rats fed 

mixed diets containing various dietary factors (enhancers: AA and meat, 

inhibitors: tea and bran) had little to no effect on iron bioavailability. The iron 

absorption ratio (test: control) for rats was 1.23 and 0.92 for AA and tea, 

significantly less than the potent effects observed from volunteer subjects (3.77 
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and 0.17, respectively). The results of this study are in part due to differences in 

intestinal physiology between species. Rats endogenously synthesise AA [49], 

whereas humans must obtain AA from the diet. Moreover, rats upregulate the 

synthesis of AA under conditions of iron deficiency [47]. While dietary factors 

tend to underestimate their effects in rats, in general, iron bioavailability from 

whole meals in rats tends to overestimate that of humans [209]. These results 

have led to the suggestion that iron bioavailability as determined in animal 

models is ‘of little to no use’ in assessing dietary iron bioavailability in humans 

[209].  

The majority of recent studies have used stable isotopes [210, 211], such 

as 57Fe and 58Fe, to simultaneously determine iron absorption from 2 test meals 

(or one test meal and one reference meal). Older methods, such as those of 

Hallberg [212], used radioisotopes to establish much of our understanding of iron 

bioavailability, but due to ethical constraints, its use of limited to cellular and 

animal models. Human trials are, however, time-consuming and expensive [213] 

and cannot be used to study the mechanisms of iron absorption at the cell or 

molecular level. 

In vitro methods are relatively rapid, inexpensive and can provide 

surrogate measures of iron bioavailability. These methods utilise a simulated in 

vitro digestion with food components, single foods, or complex meal matrices to 

simulate human in vivo conditions. In vitro digestion is categorised as either static 

or dynamic; static models use fixed pH digestions with HCl, digestion enzymes, 

and incubation times. They are rapid, inexpensive, and easier to use than 

dynamic models but lack the comprehensiveness and refinement that occurs 

naturally in in vivo digestion. Dynamic models, such as the Dynamic Gastric 

Model (Institute of Food Research, Norwich) and TIM models (TNO, Netherlands) 

are more precise and refined. These models are based on data obtained from 

human in vivo digestion and offer a more representative model of in vitro 
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digestion compared to static models, but require more user-training, are difficult 

to replicate, and are not well adapted for high throughput comparison studies. 

Most in vitro digestion models measuring iron bioavailability are based on 

variants of the established static procedure of Miller et al [214]. Iron-containing 

foods and/or components are exposed to a gastric digestion step at pH 2 with 

pepsin. After a period of time (normally 1 to 2 hr), the pH of the ‘digest’ is raised 

to intestinal conditions, followed by the addition of a pancreatin-bile solution. The 

‘digest’ is then applied to a molecular weight cut off (MWCO) dialysis membrane 

to screen for soluble, dialysable iron, and fractional iron ‘availability’ is quantified. 

The digestion enzymes concentrations were calculated from data obtained from 

prior human studies.  

The model is relatively quick, simple, and straightforward but has several 

drawbacks. For example, it does not fully replicate the dynamic changes in pH, 

rates of gastric emptying, and peristaltic movements naturally occurring in vivo. 

The method also assumes that either all insoluble or soluble large molecular 

weight complexes (such as NaFeEDTA) are unavailable, and that all soluble iron 

is bioavailable [213]. Pynaert et al [215] found that processed complementary 

foods, containing more soluble iron than the unprocessed variety, did not improve 

iron status in field trials. Subsequently, they showed in Caco-2 cells that the 

processed food contained less bioavailable iron than the unprocessed food. 

In an improvement over the solubility/dialysability technique, Garcia et al 

[216] demonstrated that Caco-2 cells could be used to predict iron bioavailability 

from foods. The group observed that iron absorption from foods increased in the 

presence of AA or meat using extrinsic isotope tagging methods. Garcia relied 

solely on pH changes and omitted the pancreatin-bile enzymes and the dialysis 

membranes of Miller et al [214], likely because these enzymes are damaging to 

cell monolayers. The lab of Ray Glahn developed the widely accepted technique 
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for iron bioavailability used currently. His lab adapted the in vitro digestion 

methods of Miller et al [214] coupled to Caco-2 cells. The iron bioavailability from 

in vitro digested foods either radiolabeled with iron [217] or more commonly 

unlabeled using cell ferritin formation as a proxy for iron bioavailability [218] is 

measured in Caco-2 cells. 

 

Figure 1.8 Representative schematic diagram of the in vitro digestion / 
Caco-2 cell model to assess iron bioavailability of iron containing foods and 
compounds developed by the Glahn lab [218].  

The in vitro digestion protocol was essentially adapted from Miller et al 
[214]. FAC, pea ferritin, and NP-FePO4 are examples of iron compounds that can 
be used with this technique. Iron compounds are exposed to gastric digestion 
(with 0.1 M HCl) at pH 2 for 1 hr. After 1 hr, the pH is increased to pH 5.5-6.0 
(with 0.1 M NaHCO3) and digestive enzymes added. Finally, the pH of the 
digests are increased to pH 7.0 and placed on top of cells, which are protected 
by a 15 kDa MWCO dialysis membrane. Cell ferritin formation, a surrogate 
marker of iron uptake, is measured after 24 hrs post cellular exposure. 
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1.6.2 Caco-2 cell line 

The Caco-2 (Colon Adenocarcinoma) cell line is the most extensively used 

cellular model for investigating dietary iron absorption and bioavailability. Caco-2 

cells were originally cultured from a cancer patient in the 1970’s [219]. They form 

polarised monolayers [220] resulting in its spontaneous differentiation into a 

heterogeneous cell line [221, 222] and morphological features representative of 

the mature intestinal epithelium. These features include the formation of tight 

junctions, brush-border microvilli, enzymes, and differentiation markers [220, 

222-224]. The rate of Caco-2 cell differentiation is highly dependent on culturing 

conditions, such as time and passage number [225], which is why strict 

adherence to passage number between experiments is usually advised. 

1.6.2.1 Caco-2 cells and iron absorption 

Many of the features of human iron absorption and bioavailability are 

similarly replicated in Caco-2 cells. For example, Caco-2 cells regulate iron 

absorption in response to cell iron stores. Researchers observed that Caco-2 

cells doubled their rate of non-haem iron absorption when incubated in iron-

deficient compared to iron-replete media [223, 226]. Moreover, Caco-2 cells 

preferentially absorb Fe2+ compared to Fe3+. Cells incubated in Fe2+-ascorbate 

increased iron uptake 100 to 200-fold compared to Fe3+-NTA [226, 227]. 

Subsequent studies revealed that Caco-2 cells could also import Fe2+ iron, not 

Fe2+. It was speculated that Fe3+ was reduced to Fe2+ by AA [124, 228] and/or a 

putative surface bound ferric reductase [228], offering a mechanistic hypothesis 

regarding the reduced rates of iron uptake observed for Fe3+ compared to Fe2+.  

The identification of the iron transporter DMT1 by Gunshin et al [18] and 

recently discovered insights on the mechanisms of iron absorption have validated 

the use of Caco-2 cells for iron bioavailability studies. Han et al [229] first 

reported the presence of DMT1 on the apical surface of Caco-2 cells. They found 
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that DMT1 mRNA expression increased with cell differentiation time and when 

grown in low-iron medium. In another study, DMT1 mRNA and protein expression 

increased as a function of differentiation time (7-21 days) in the subclone Caco-2 

TC7 cell line [230]. Moreover, DMT1 protein expression is also regulated in 

response to cell iron concentrations. It was reduced in cells incubated in high-iron 

medium (100 - 200 μM Fe) for 24 – 72 hrs [230, 231]. Incubation of 100 μM FAC 

with cell surface biotinylated DMT1 cells resulted in DMT1 internalisation and 

lysosomal degradation without affecting total DMT1 protein levels [232].  

Non-haem iron absorption in Caco-2 cells and pH are also inversely 

correlated. Tandy et al [233] and Bannon et al [234] demonstrated that rates of 

iron uptake of ferrous ascorbate were 1.5-fold and 3-fold higher at pH 5.5 

compared to pH 6.5 and 7.5 respectively, consistent with the function of DMT1 as 

a proton coupled transporter functioning best at lower pH [18, 230]. Short hairpin 

RNA (shRNA) knockdown of DMT1 in Caco-2 cells decreased 55FeCl3 

(solubilised in 4-fold NTA and 10-fold AA) uptake by more than 50% [235], 

suggesting that similar to rat and human studies, DMT1 is the major transporter 

of non-haem iron absorption in the cell line.  

Caco-2 cells also express other important iron transport proteins essential 

for iron absorption. Confocal imaging and GFP tagging of ferroportin in Caco-2 

cells demonstrated that ferroportin is also expressed and is colocalised with 

hephaestin at the basolateral surface [236]. Furthermore, mRNA expression of 

ferroportin was also down regulated by 50% after 72 hrs in iron-replete (200 μM 

Fe3+-NTA) compared to control (without iron) cells [231].  

In comparison to in vivo [237, 238], hepcidin also inhibits iron absorption in 

Caco-2 cells but uses different mechanisms compared to current knowledge. 

Caco-2 cells incubated with hepcidin for 24 hrs had no effect on ferroportin 

protein expression [237, 239-241]. Interestingly, hepcidin decreased iron 
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absorption by inhibiting DMT1 mRNA [237] and protein [232, 240, 241] 

expression. Brasse-Lagnel et al [241] demonstrated that hepcidin mediates the 

ubiquitin-conjugated proteasome degradation of DMT1 in Caco-2 cells using the 

ubiquitin inhibitors MG132 and PYR41. Whether hepcidin also inhibits iron 

absorption through DMT1 in vivo remains to be answered. Regardless, the Caco-

2 response reveals another inhibitory and regulatory mechanism of iron 

absorption by hepcidin.  

While the IRP system has been shown to actively regulate the expression 

of iron proteins in Caco-2 cells, evidence also supports HIF2α is a transcriptional 

regulator. Investigators used luciferase reporter constructs tagged to the 

promoter of DMT1 to show that HIF2α directly activates DMT1 in the Caco-2/TC7 

line [16]. Thus, similar to in vivo, HIF-2α appears to be a transcriptional regulator 

of iron absorption in Caco-2 cells. Overall, the Caco-2 cell line recapitulates all of 

the identified iron regulatory proteins and responds accordingly to external stimuli 

(iron status, pH, hepcidin, etc) in a similar fashion to in vivo. 

1.6.2.2 Caco-2 cells and iron bioavailability  

There are a large number of studies using the in vitro digestion / Caco-2 

model to investigate iron bioavailability. A recent PubMed search (1.3.2017) with 

the keywords ‘iron bioavailability’ and ‘Caco-2’ revealed 175 journal citations. 

Three general themes emerge using these keywords; (a) the effect of dietary 

promoters and inhibitors on iron bioavailability (b) iron bioavailability of staple 

food crops, and (c) comparison of iron bioavailability between different iron 

species as either supplements or fortificants.   

The response of Caco-2 cells to the effects of dietary promoters and 

inhibitors of iron bioavailability are similar to those published in human studies 

[242]. Animal proteins have an enhancing effect on non-haem iron bioavailability, 

but specific proteins such milk and eggs have not been demonstrated as 
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enhancers in iron bioavailability in human models [243, 244]. Similarly, Glahn et 

al [245] reported that beef, chicken, and fish all enhanced the iron bioavailability 

of 59FeCl3 4-5 fold relative to casein, which did not show any enhancing effects. 

The ‘meat factor’ enhancing effect in animal proteins may be related to its amino 

acid composition. Using Caco-2 cells, the amino acids cysteine and cysteine-

glycine promoted non-haem iron solubility and increased non-haem iron uptake 

from FeCl3 and Fe3+-NTA [246]. In another study, low molecular weight meat 

fractions containing a large percentage of histidine content [247] also promoted 

non-haem iron bioavailability in Caco-2 cells.   

Phytic acid and polyphenols are potent inhibitors of non-haem iron 

absorption in Caco-2 cells. The response in Caco-2 cells appears to be more 

sensitive to the inhibitory effects of tannic acid compared to phytic acid. In one 

study, the maximum inhibition of FeCl3 absorption occurred at 1:1 Fe:TA molar 

ratios (up to 95% inhibited) compared to 1:10 Fe:PA (up to 70% inhibited) [248]; 

only with phytic acid was this inhibitory effect offset by 1:10 and 1:20 Fe:AA 

molar ratios [249]. In another study comparing the relative iron bioavailability 

among fruit juice beverages, red grape and prune juice, beverages with the 

highest polyphenol content among those tested, had the highest inhibitory effects 

whereas the other beverages (apple, orange, and pear) had no effect on iron 

bioavailability despite similar amounts of endogenous AA [250].  

The specific polyphenol structures responsible for inhibiting iron 

bioavailability have also been investigated using Caco-2 cells. Certain classes of 

polyphenols found in black beans have shown to be either inhibitory (myricetin, 

quercetin) or enhancing (epichatechin, gallic acid) [251]. Within the seed coat of 

red beans, kaempferol also had a strong inhibitory effect on iron bioavailability 

[252]. Using Caco-2 cells in order to identify and screen for particular inhibitors of 

iron bioavailability within certain polyphenols classes has the potential to inform 

the future direction of plant iron biofortification.  
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The in vitro digestion / Caco-2 cell model is routinely used as a screening 

tool to determine which genotypes of staple crops have the highest iron 

bioavailability. This shows the power of the model, as similar studies in vivo 

would be expensive. The model can identify and predict the most promising 

genotypes suitable for eventual human trials. For example, 15 rice varieties 

grown at the International Rice Research Institute were tested for relative iron 

bioavailability compared to control rice varietal. The results showed that all rice 

varieties had similar iron bioavailability despite 2-fold differences in iron content 

[253]. In another example, 15 maize varieties were identified as having 

significantly higher iron bioavailability (up to 1.4-fold) compared to a commercially 

available control variety despite similar iron content [254]. In examining the iron 

bioavailability from beans, white beans were more bioavailable than red beans 

with similar iron content and the investigators concluded that red bean genotypes 

were in general poorly bioavailable; only two of the eight red bean genotypes 

examined had iron bioavailability above blank controls [255, 256]. Polyphenol 

concentration localised in the seed coat was considered the dietary factor most 

responsible for affecting iron bioavailability in all investigated staple crops (rice, 

maize, and beans).  

While iron biofortification can result in increased iron concentration of 

staple crops, the in vitro digestion Caco-2 cell model is able to determine whether 

the increase in iron content also results in a concomitant increase in iron 

bioavailability. In one example, the model predicted that phytase-expressed 

maize was 3-fold more bioavailable than control maize [257]. In newly developed 

biofortified beans, the model predicted that iron biofortified beans (71 μg/g) were 

4-fold more bioavailable than control beans (49 μg/g) [258]. The in vitro model’s 

prediction was validated in in vivo models (chicken [258] and human [189, 190]). 

The model also measures iron bioavailability from supplements and 

fortificants. In a study comparing the relative bioavailability from Fe2+ 
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supplements, ferrous sulphate, ferrous fumurate, and ferrous gluconate had 

similar iron bioavailability, which was 3-fold higher than a polysaccharide-iron 

complex [259]. NaFeEDTA, in the presence of non-haem inhibitors, is well 

absorbed in humans, which has led to the speculation whether its uptake is 

different than for other non-haem iron forms. Using the model, iron bioavailability 

of NaFeEDTA was similar to FeSO4 and FeCl3 and its absorption was inhibited 

by ferrozine, a Fe2+ chelator. It was concluded that NaFeEDTA was absorbed 

similarly to other soluble iron compounds, using Fe2+ mediated DMT1, in Caco-2 

cells [260].  

The method is not always predictive of human bioavailability. Specifically, 

several studies have suggested that certain iron compounds are not well 

predicted by in vitro digestion Caco-2 cell model. In one study, iron bioavailability 

of NaFeEDTA was significantly less than electrolytic iron [261], even though 

NaFeEDTA has consistently been shown to be well-absorbed and electrolytic 

iron poorly absorbed in humans. In screening to identify the most bioavailable 

iron fortificants, iron bioavailability from bread [262] and cereal [263] fortified 

foods were generally not informative. Iron bioavailability from these studies was 

not correlated to iron form, iron content, or phytic acid concentration. Lynch et al 

[264] concluded that the Caco-2 response to elemental iron powders is not an 

accurate predictor of human iron absorption. Currently, the only validated in vitro 

model for iron powders as a predictor of human iron absorption is iron dissolution 

at pH 1 [127, 194, 264], which correlates well with rat and human models [265]. It 

is important to note, however, that Caco-2 cells were able to accurately predict 

the increased iron bioavailability from small particle powders compared to larger 

powders [266, 267], thus may be able to distinguish iron bioavailability from 

nano-sized compounds. 
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1.6.2.3 Usefulness of Caco-2 cells and iron bioavailability 

Researchers have examined whether the in vitro digestion Caco-2 cell 

model is an accurate predictor of iron bioavailability in humans. Caco-2 cells 

were exposed to matching meal compositions as previous human trials and its 

iron bioavailability was compared with prior absorption data. Au et al [268] 

measured the ferritin response of Caco-2 cells to the effects of dietary enhancers 

and inhibitors on semi-purified meals [269]. Phytates, bran, and tea responded 

similarly in the Caco-2 model as previous published human absorption data; iron 

absorption ratios in Caco-2 cells correlated well with human iron absorption ratios 

(r=0.97, p < 0.0001). In a similar study, Caco-2 absorption ratios generated from 

a dose-response of AA and TA added to meals also correlated well (r=0.986 and 

0.927) with human iron absorption. Both studies validate the use of Caco-2 cells 

to predict human iron absorption [242].   

In other studies, the response of Caco-2 cells to accurately predict iron 

bioavailability of staple food crops in comparison to human absorption data has 

also been examined. The absorption ratio generated from maize in Caco-2 cells 

was similar to the results of women volunteers consuming the same diets. The 

ability of Caco-2 cells to accurately predict human bioavailability may be crop or 

genotype dependent. Caco-2 cells predicted the iron bioavailability from Great 

Northern (white) beans, but overestimated human absorption data from pinto 

(red) beans [270].  

Certainly more studies are required to characterise the response of Caco-

2 cells to different forms of iron and iron-containing foods and examine if the 

estimated iron bioavailability is an accurate predictor of human iron absorption. 

The precision of the model could be optimised in several ways. Standardised 

digestion protocols between labs, such as the protocol proposed by the COST 

framework [271], and standardised culturing conditions would help to alleviate 
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some of the inconsistencies in Caco-2 cell data found among labs. Moreover, 

since the intestinal epithelium is representative of many cell types, co-cultures of 

Caco-2 cells (which includes mucin-secreting cells) may be better predictors of 

iron bioavailability [272]. Further research is required to develop a reproducible 

and robust co-culture model. Furthermore, comparisons with in vivo data could 

be strengthened with careful recapitulation of the diets used in prior in vivo trials. 

Overall, the in vitro digestion Caco-2 cell model is predictive but tends to 

overestimate iron bioavailability relative to human trials [273]. It is accepted that 

Caco-2 cells are able to predict the direction [109] but not necessarily the 

magnitude of iron bioavailability. As such, the data provided by Caco-2 cells 

provides data generating hypothesis, which requires follow-up in human trials. 

More importantly, they can be used for mechanistic research (at the cellular and 

molecular level), which is not possible in vivo. Caco-2 cells provide an invaluable 

resource for improving our understanding of human iron absorption and iron 

bioavailability. 

1.7 Nanoparticles 

1.7.1 Nanoparticles and cellular routes of gastrointestinal uptake 

Nanoparticles (NP) are broadly classified as particles between 1 to 100 

nm in size with altered and unique physio-chemical properties that differ from 

their larger or bulk constituents [274]. Iron NP’s have been synthesised physically 

[275, 276], chemically [277, 278], or are naturally occurring in nature [58]. For an 

in-depth review, see Hilty and Zimmerman [279]. The unique property of iron 

NP’s is that they may be absorbed more efficiently than their larger counterparts 

because the uptake of particles, in general, has been shown to be inversely 

proportional to particle size [280]. The important characteristics of nanoparticles 

are their synthesis / characterisation and behavior in biological systems; usually 

the former informs the latter. Particle behavior of ingested nanoparticles in 
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physiological fluids and alterations in the gastrointestinal tract are important 

features of the nanoparticle–intestinal dynamic, and likely determine whether 

particles can be internalised in tissues. Four possible mechanisms of absorption 

have been proposed for nanoparticles in the gastrointestinal tract [281]:    

a. Transcytosis in the M-cell layer of Peyer’s Patches within the gut 

associated lymphoid tissue (GALT)  

b. Enterocyte absorption through endocytosis 

c. Enterocyte absorption through persorption 

d. Paracellular uptake 

Transcytosis uptake of nanoparticles in the lymphatic system is the most 

widely understood route. Nanoparticles have been found to be highly 

concentrated in Peyer’s Patches [282] and interestingly in one study, have been 

shown to disrupt iron bioavailability [283]. The evidence for enterocytic 

translocation of nanoparticles in the GALT emerges from previous work using 

Caco-2 cells differentiated to an M cell-like phenotype (co-culture with Raji B-

lymphocyte cells). Des Rieux et al [284] observed increased rates of 

translocation from latex nanoparticles 200 nm and 500 nm in size. In comparison, 

Caco-2 monocultures were not able to translocate these same particles. In a 

separate study, they also found that Caco-2 co-cultures increased the transport 

of 50 nm polystyrene particles by 1.25-fold and increased the transport of 200 nm 

particles by 8-fold compared to monocultures [283].  

1.7.2 Evidence of iron nanoparticles and absorption / bioavailability  

Non-haem iron absorption has predominately focused on Fe2+ uptake 

using the DMT1 transporter, the only identified intestinal iron importer to date. As 

previously discussed, a Fe3+ uptake mechanism has been proposed by Conrad 
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and Umbreit [35-37] but has yet to be confirmed and fully characterised. For iron 

nanoparticles, an endocytosis uptake pathway distinct from DMT1 may exist. 

Several studies have showed evidence of the process in Caco-2 cells. 

Iron oxide NP’s solubilised in negatively-charged carbohydrate shells 

(gluconic acid, sucrose, polyacrylic acid) [285], iron oxide NP’s coupled to hemin 

[277] or iron hydroxide adipate tartrate (IHAT) NP’s [286] are all examples of 

chemically synthesised iron nanoparticles that have been shown to be 

transported and visually detected in the cytosol of Caco-2 cell monolayers using 

TEM. In the case of IHAT, researchers exploring it’s uptake in Caco-2 cells more 

in-depth showed that its absorption followed an endocytosis-like pathway [286]. 

The possibility that iron from IHAT can be transported in vivo using endocytosis 

still remains to be demonstrated but in iron deficient women, IHAT showed good 

iron bioavailability (80%) compared to FeSO4 [287]. Currently, iron 

supplementation trials in the MRC Gambia using IHAT are being conducted 

(personal correspondence with Dr. Pereira) 

Novel iron phosphate and iron oxide nanoparticles for use as iron 

fortificants have recently been developed using flame spray pyrolysis (FSP) [275, 

276]. For these particles, there has not been evidence to suggest that they are 

translocated in the intestine in rat studies. In fact, the evidence from in vitro 

solubility tests suggests that these nanoparticles are absorbed more efficiently as 

a result of its improved solubility at gastric pH. The exact mechanism of 

absorption has not been fully characterised, but its enhanced solubility compared 

to larger precursors suggests that the mechanism of iron uptake is mediated by 

DMT1. Irrespective of the mechanism uptake, these nanoparticles have similar 

relative bioavailability (RBV) as FeSO4 in rats without any indication of mucosal 

toxicity [288, 289].  
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TEM and SAED images. (a) FePO4 large particle, (b) FePO4 medium 
particle, and (c) FePO4 small particle.  

The SAED insets reflect non-crystalline amorphous structures. Image 
obtained from Rohner et al [288] with permission from the American Society for 
Nutrition. 

 

Figure 1.10 Relative biological value (RBV) of different iron nanoparticles 
compared to FeSO4.  

Bar graph obtained from Hilty et al [289] with permission from the Nature 
Publishing Group. 

 

(Digitana AG). TBARS were measured in plasma in duplicate with a
commercially available test (TBARS assay kit, ZeptoMetrix); normal
plasma concentrations are ,1.5 malondialdehyde units.

Histological examination. From 3 of the rats in each of the following 6
groups: control (Fe-sufficient), Fe-def, the 3 FePO4 compounds fed at 20
mg Fe/kg, and the FeSO4 fed at 20 mg Fe/kg (total n¼ 18), tissue samples
of the stomach, duodenum, jejunum, ileum, colon, liver, spleen, kidney,
pancreas, lymphatic tissue, and sternum were excised immediately after
killing. For light microscopy, tissues were fixed by immersion in 4%
buffered formaldehyde, dehydrated with xylene and a descending
alcohol row (Tissue Tek VIP), paraffin embedded, and subsequently
stained with hematoxylin-eosin, Prussian Blue for detection of Fe31, and
Turnbull Blue for detection of Fe21. TEM (CM10 Philips) was used to
examine sections of duodenal mucosa from a single rat from each group
(n ¼ 6). Tissues were fixed in 2.5% glutaraldehyde and embedded in
epoxy before further processing into ultrathin sections. The veterinary
pathologists and microscopists were unaware of the group assignment.

Statistical analysis. Data processing and analyses were done using
SPLUS-2000 (Release 3, Insightful Corporation), SPSS (version 13.0;
SPSS) and EXCEL (Enterprise Edition; Microsoft). Values in the text are
means 6 SD. Using the slope-ratio method, the bioavailability (RBV) of
each Fe compound relative to FeSO4 was calculated by comparing the
change in Hb [g/(L"15 d)] with the measured Fe intake (mg/d) (33,34).
The slope of the responses for each dietary Fe compound was calculated
by using a common-intercept multiple linear regression model with the
Fe-def group serving as the blank. Linearity of the regression curves was
determined for each Fe compound separately and tests were conducted
to determine whether the mean of the blank differed significantly from
the common intercept for the 4 Fe compounds. Tukey’s method was
applied to test whether the slopes of the 3 FePO4 compounds were
significantly different from that of FeSO4 and from each other. Using
Fieller’s method (35), [95% CI] for the RBV to ferrous sulfate were
obtained. To compare means between the treatment groups, 1-way
ANOVA was done with post-hoc t tests adjusted for multiple compar-
isons (Bonferroni). Independent sample t tests were used to compare the
in vitro solubility results, and adjusted for multiple comparisons
(Bonferroni). Percentages were compared using chi-square tests. Differ-
ences were considered significant at P , 0.05.

Results

Material characterization. The SSA of the 3 FePO4 com-
pounds and their calculated dBET are shown in Table 1. The 2
FSP-made FePO4, medium and small particles, were dense
spherical particles and the dBET matched well the observation
from TEM (Fig. 1B,C). The TEM image of the commercial
powder, FePO4 large particle (Fig. 1A), shows irregular and
highly porous particles. For all 3 FePO4 compounds, the SAED
images were characteristic of an amorphous substance (Fig. 1).
Handling characteristics of the fine powders were similar to
commercially available small particle size Fe compounds, such

as ground micronized ferric pyrophosphate (Dr. Paul Lohmann
GmbH KG, Emmerthal, Germany).

For the FSP-made FePO4 medium and small particles, ICP-
MS demonstrated a Fe:P ratio of 1.93 as opposed to the expected
1.80 for anhydrous FePO4. Including hydrates in the ratio
calculation, best fit with the expected ratio was obtained with
FePO4"2H2O (ratio ¼ 1.80). Raman spectroscopy confirmed the
presence of Fe phosphate (data not shown). Using the Fe
speciation assay, there were no detectable ferrous ions, indicat-
ing that .95% of the Fe was in the ferric state (data not shown).
AAS analysis revealed Fe contents of the FePO4 large, medium,
and small particles of 25.6 6 0.4%, 33.8 6 0.8%, and 33.2 6
0.5%, respectively.

In vitro solubility. In the tests of in vitro solubility, all 3 FePO4

compounds were very poorly soluble at pH 2; solubility was
,5% at all time points, with no significant differences among
the compounds (data not shown). In contrast, at pH 1, a sol-
ubility dependence on SSA was observed during the first 30 min
of the measurement (Table 1); the higher the SSA, the higher the
dissolution rate. At pH 1, the FePO4 small particle was more
soluble than FeSO4"H2O (P , 0.05) after 5 min and there was no
difference between the solubility of the FePO4 small particle and
FeSO4"H2O at the other time points (Fig. 2).

RBV. The results of the Hb repletion study, including diet
fortification level, rat number per group, daily Fe intake, body
weight gain, and Hb change over the repletion period are shown
in Table 2. Dose-response curves were calculated based on daily
Fe intake (Fig. 3). In this model, the regression lines for the 4 Fe
compounds did not significantly deviate from linearity and the
mean of the blank (circles) was not significantly different from
the common intercept (data not shown). The RBV of FePO4

large and FePO4 medium particles did not differ from each other,
but both were lower than the RBV of the FePO4 small particle

TABLE 1 Compound characteristics: SSA, calculated MPS (dBET), physical structure, stochiometry
(chemical composition), and in vitro solubility after 15 and 30 min in 0.1 mol/L HCl (SOL)
and RBV in rats1

SSA Calculated MPS2 Structure3 Stochiometry SOL 15 SOL 30 RBV

FePO4 m2/g Nm % % % [CI]
Large 32.6 (64.2) A, IP 37.8a* 73.4a* 60.9a* (52.6, 69.3)
Medium 68.6 30.5 A, S FePO4"2H2O 56.8b* 79.2a,b* 69.5a* (61.1, 78.4)
Small 194.7 10.7 A, S FePO4"2H2O 82.5c 84.7b 95.7b (85.7, 107.0)

1 Percentages in a column without a common letter differ, P , 0.05. *Different from the reference substance (100%), P , 0.05.
2 Assuming dense spherical particles (not the case for FePO4 large).
3 From TEM: A (amorphous), S (spherical), IP (irregular porous).

Figure 1 TEM and SAED (insets) images of the 3 FePO4 compounds: (A)
FePO4 large particle, (B) FePO4 medium particle, and (C) FePO4 small particle.
The 2 compounds made by FSP, medium and small FePO4 particles, were dense
and spherical (Fig. 1B,C). The FePO4 large particle (Fig. 1A) exhibited irregular and
highly porous particles. For all 3 compounds, the SAED images were character-
istic of an amorphous substance.

616 Rohner et al.
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There were no indications of translocation of the nanostructured
compounds. The mild histological changes in the myocardium were
most likely due to hypoxic damage, as these changes were mainly
seen in the Fe-deficient rats. These rats were severely anaemic,
with haemoglobin values ,42 g l21. Also, the rats showing mild
myocardial fibre necrosis at the end of the repletion period were
still Fe-deficient (haemoglobin level, ,92 g l21) and had lower hae-
moglobin values than the control group animals (haemoglobin level,
.144 g l21). Moreover, although the large specific surface areas of
the nanostructured compounds might promote the formation of
reactive oxygen species40, there was no significant increase in thio-
barbituric acid reactive substances in the groups receiving nano-
structured compounds (Table 2). Although these results are

reassuring, only low doses of iron were given for a short period.
Certainly, more systematic research on the safety of these and
other nanostructured compounds is required.

Sensory performance
The sensory performance of potential Fe fortificants is important, as
many well-absorbed compounds cannot be used because they cause
colour changes in foods. Important food staples that can be useful
fortification vehicles, such as refined wheat flour, milk or extruded
rice, are light-coloured. An advantage of the nanostructured com-
pounds with the highest RBV, such as FePO4/Zn3(PO4)2 (1) and
Fe2O3/ZnO/MgO (2), is that they are also light-coloured
powders. In contrast, ferrous fumarate, a commonly used fortificant,

Fe intake ( g d–1)

H
ae

m
og

lo
bi

n 
ch

an
ge

 (g
 l–1

)

100 200

a

100
FeSO4

50

Fe
PO

4
/Z

n 3(
PO

4)
2

Fe2O3/ZnO/CaO

FePO4/Fe2O3

Fe2O3/ZnO/MgO

Fe2O3/ZnO

FePO4/Zn3(PO4)2
Fe-deficient

FeSO4

Slopes
1.03

0.98

1.25

0.75

1.14

0.97

1.20

Individual R2

R2 = 0.88

R2 = 0.95

R2 = 0.95

R2 = 0.86

R2 = 0.91

R2 = 0.92

R2 = 0.94

Overall R2 = 0.97Electrolytic Fe

Fe
2O

3/
Zn

O
/M

gO

Fe
2O

3/
Zn

O
/C

aO

Fe
PO

4
/F

e 2O
3

El
ec

tr
ol

yt
ic

 F
e

Fe
2O

3/
Zn

O

RB
V

 (%
)

0
RBV
CI%

96%
86.5−100.6

91%
81.8−100.1

82%
72.4−92.6

77%
68.0−87.5

78%
69.0−87.4

60%
51.5−69.4

ab *ab *b *b *c

300 400 500

0

20

40

60

a

b

Figure 3 | Impact of different Fe-containing compounds on changes in haemoglobin concentration and their relative bioavailability compared to FeSO4.
a, Dose–response curves for the haemoglobin repletion assay: regression lines were calculated based on daily Fe intake (mg d21) and change in haemoglobin
concentration (g l21) over 13 days for each fortificant. The R2 value of the overall model is 0.97. b, Relative bioavailability values (RBVs) and their confidence
intervals (CI) for nanostructured Fe-containing fortificants and elemental iron compared to the ‘gold standard’ FeSO4 (100%). RBVs with a common letter
(a, b or c) are not statistically different from one another, and RBVs labelled with * are statistically different from FeSO4 (P , 0.05). RBVs of
FePO4/Zn3(PO4)2 and Fe2O3/ZnO/MgO are not statistically different from that of FeSO4 (P¼0.05).
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1.8 Ferritin 

1.8.1 Ferritin structure and content 

Ferritin is ubiquitously conserved in animals, plants, and bacteria. Serving 

as an iron storage protein, it consists of 24 protein subunits arranged into a 

spherical shell surrounding a ferrihydrite (ferric oxyhydroxide, (Fe3+)2O3)-like 

mineral core [58, 290, 291]. As stated earlier, ferritin synthesis is regulated by 

labile iron concentrations in the cytosol. Specifically, ferritin is expressed in 

response to high levels of cellular iron to balance cellular iron requirements and 

sequester labile free iron; this prevents the formation of reactive oxygen species 

(ROS) [292] and cellular iron toxicity. 

 

Figure 1.11 Graphical representation of the ferritin structure.  

(a) X-ray crystallography of soybean ferritin viewed axially (top down) (b) 
Outer and inner diameter of the ferritin shell. (c) Iron core (blue) housed within 
ferritin shell. Images were obtained from Yang et al [293] with permission from 
Elsevier. 

 

1.8.2 Plant ferritins 

Plant ferritin (phytoferritin) is localised within the plastids of leaves and the 

amyloplasts of tubers and seeds [294]. The legume family, such as beans, peas, 

and lentils are considered rich sources of phytoferritin. Concentrations and iron-

sequestration into phytoferritin differs widely among several legumes [295]. Ambe 
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et al [296] estimated that 90% of the iron in soybeans is mineralised within ferritin 

iron core using Mossbaüer spectroscopy. Similarly, semi-quantitative Western 

blotting of phytoferritin from peas suggests that 92% of its iron is mineralised 

within its core [297]. These results differ greatly from more recent studies. Newer 

estimates quantifying the amount of iron-sequestered ferritin in plants, using 

isotope dilution mass spectrometry (ID-MS) and a recombinant ferritin spike, 

showed that only 10-40% of iron in various legumes was found stored within 

ferritin [298, 299]. The highest percentage of iron-sequestered ferritin (40%) was 

found in dried peas. The disparity in estimates of iron-sequestered ferritin among 

studies is most likely related to differences in analytical technique.  

1.8.3 Iron bioavailability of ferritin 

Phytoferritin is currently being investigated for its possible use as a source 

of bioavailable iron [300, 301]. Theoretically, ferritin can sequester up to 4500 

iron atoms in its iron core [60] but generally plants contain between 2000-2500. 

Insights into the bioavailability of phytoferritin are particularly relevant given that it 

is concentrated source of iron and naturally-derived. With ongoing efforts to 

promote plant-based diets, phytoferritin could be promoted as a well-accepted 

form of iron to consumers. Developments in biofortification, such as breeding for 

high ferritin crops [302, 303], have recently have come into view. Given all these 

information, the bioavailability and mechanisms of absorption from ferritin-iron 

still remains controversial. 

Several recent human trials have suggested that ferritin is a highly 

bioavailable source of iron. Soybeans labeled with 59Fe, consumed as either 

muffins or soup [296], were well-absorbed (27%) and comparable to FeSO4 in 

marginally anaemic women as measured by whole body counting techniques 

after 14 days [304]. Given the estimation that the majority of iron in soybeans is 

sequestered in ferritin [296], these researchers concluded that phytoferritin was 
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bioavailable. In a subsequent trial to show that ferritin was indeed bioavailable, 

purified (animal) ferritin fed to non-anemic women was similarly bioavailable and 

as well absorbed (21.9%, 21.4%) as FeSO4 [169], showing that ferritin was 

bioavailable regardless of animal or plant origin. The same researchers showed 

that reconstituted soybean ferritin fed to non-anaemic women also had similar 

iron bioavailability as measured by RBC incorporation (29.9%, 34.3%) or whole 

body counting techniques (33.0%, 35.3%) as FeSO4 [305]. 

 

Figure 1.12 Comparison of iron absorption from soybean ferritin and 
FeSO4 in iron-deficient women.  

Soybean ferritin has similar iron bioavailability as FeSO4 as measured by 
whole-body counting techniques and incorporation into red blood cells. Bar graph 
obtained from Davila-Hicks et al [169] with permission from the American Society 
for Nutrition. 

 

Human trials investigating ferritin-iron bioavailability from this group is 

contradictory to the results of many earlier studies. These earlier studies, in fact, 

have shown that ferritin has low bioavailability. In one study, Fe-ascorbate was 4-

fold more bioavailable than ferritin (rabbit) [44.2 vs. 11.5 %] when a 2.5 mg 59Fe 

similar results. For the untransformed data, the main effects of
iron type (P ! 0.42) and diet (P ! 0.30) were not significant,
whereas the main effect of method was (P! 0.0157). The inter-
actions between iron type anddiet (P!0.0032) andbetween iron
type and method (P ! 0.0249) were significant, whereas the
interaction between diet and method (P ! 0.41) and the 3-way
interaction (P! 0.30) were not. Thus, whereas on average there
were significant differences between the 2 methods, these dif-
ferences depended on the type of iron that was given (Figure 1).
For ferrous sulfate, the P value for the test of difference between
methods was 0.0002, and, for ferritin, the P value was 0.22. It is
interesting to note that, when the 2 methods of measuring iron
absorption were compared for ferrous sulfate only, which is
usually given as a reference dose for both methods, the mean
percentage of absorption derived fromwhole-body counting and
that derived from RBC incorporation were significantly (P !
0.0005) different—19.7 " 3.0% and 39.4 " 3.6%, respec-
tively—whereas there was no difference between the methods
for ferritin (P ! 0.46).

DISCUSSION
Matching the most efficacious form of dietary iron to specific

nutritional states is thegoal of nutritional genomics for health and
disease, especiallywith respect to such genetic diseases as hemo-
chromatosis, sickle cell disease, and the thalassemias (1), in
which iron absorption is altered by the disease. Understanding
the availability of different chemical forms of iron in the diet will
allow advances in diet design to ameliorate the variations in
genetic background related to iron absorption. Inorganic iron
salts and iron complexes found in foods with phytate, oxalate,
and heme have received themost attention (21). Ferritin is, how-
ever, an abundant form of nonheme iron in many plant foods,
such as legumes, that has been little considered as a nutritional
iron source until recently.
Our study shows that iron from ferritin was well utilized in a

group of young women with varied iron status but without ane-
mia (Tables 1 and 2). Absorption of iron from ferritin did not

differ significantly from that of iron from ferrous sulfate—a form
of iron with high bioavailability when given in meals with a low
content of inhibitors (21). Ferrous sulfate, however, cannot be
used for iron fortification in most foods because it causes ran-
cidity (oxidation) and discoloration (12), which make the prod-
uct inedible. Thus, ferritin iron represents a form of iron that is
highly bioavailable to humans and that is not likely to affect the
food in which it is consumed. Further studies are needed to
evaluate the effects of inhibitors and enhancers of nonheme-iron
absorption on the absorption of iron from ferritin.
Plant ferritins are more likely than animal ferritins to be the

source of ferritin in natural foods, and their mineral has a higher
ratio of phosphate to iron (usually#4:1) than does that of animal
ferritins (usually #1:8). The chemical difference in the plant
ferritin mineral leads to a more disordered iron mineral structure
(18, 19) in plant ferritins that might influence the bioavailability
of iron from ferritin.However, in our study comparing both types
of ferritin iron mineral, we observed no difference in iron bio-
availability (Tables 1 and 2). Similar results were also obtained
when comparing iron-deficient and iron-replete subjects.
We used a highly sensitive whole-body counter with very low

background radiation (pre–World War II steel) and were there-
fore able tomeasure iron retention very precisely. The results for
iron absorption from ferrritin using the direct measure of whole-
body retention or the more indirect RBC incorporation method
that reflects assumptions made for blood volume and the per-
centage of iron incorporation into RBCs, led to the same conclu-
sion—ie, that iron from ferritin is absorbed by humans as well as
is iron from ferrous sulfate (Tables 1 and 2)—and confirmed the
results obtained with intrinsically labeled soybeans, in which
part of the label was in ferritin in whole soybeans (7). However,
whenwecompared the 2methods, the results variedwith the type
of iron. The RBC incorporation method showed that iron from
ferritinwas incorporated into hemoglobin less thanwas that from
ferrous sulfate, and these results are similar to those obtained in
an earlier study in rats (15). Thus, it appears that the metabolic
fate of iron absorbed into the body (whole-body counting) may
be different for ferritin iron and iron from ferrous sulfte, which
potentially suggests different absorptive pathways.
A quantitative comparison of the 2methods of measuring iron

absorption,whole- body retention andRBC incorporation, found
that the values for RBCs were considerably higher when ferrous
sulfate was given. Thus, the RBC-incorporation method overes-
timates iron absorption and reflects the differentially higher up-
take of absorbed iron by the erythron than by other tissues in the
body. In the previous study in humans, which used intrinsically
labeled soybeans, only the RBC-incorporation method was used
(7). The mean absorption value from that study was lower than
that in the present study, which used the same method and sub-
jects with similar iron status. This difference is likely due to the
fact that only 48% of the radiolabeled iron was bound to ferritin
in the previous study and the remainder was bound to other
ligands, eg, phytate, that have an inhibitory effect on iron ab-
sorption (21).
The mechanism behind iron absorption from ferritin is not yet

known, whereas iron as ferrous sulfate will be absorbed via
DMT1 (5). Ferritin is very stable to low pH and resists denatur-
ation by heat (temperatures up to 85 °C), urea, and many proteo-
lytic enzymes (10, 22). Ferritin also appears resistant to in vitro
digestion (23). Furthermore, ferritin in seeds is inside plastids
that are inside plant cells, which makes the ferritin even more

FIGURE 1. Mean ("SD) iron absorption from dietary ferritin (p) and
ferrous sulfate (o) ascertained by whole-body counting or red blood cell
(RBC) incorporation. The interactions between iron type and diet (P !
0.0032) and between iron type and method (P ! 0.0249) were significant,
whereas the interaction between diet and method (P ! 0.41) and the 3-way
interaction (P ! 0.30) were not (repeated-measures 3-way ANOVA). Bars
with different letters are significantly different between groups (P $ 0.05;
Tukey-Kramer test); the 2 iron-absorption methods were significantly dif-
ferent (P ! 0.0005) for ferrous sulfate.
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dose was fed to iron-deficient subjects [306]. In a follow-up study, 10-fold 

differences in iron bioavailability were found (21.1 vs. 1.9%) between Fe-

ascorbate and ferritin, which has been attributed to differences in the food 

vehicles from the previous study [307]. Similarly, 3 mg of ferritin given to healthy 

or iron-deficient individuals resulted in low iron bioavailability (0.9-1.1%) [308]. In 

another study, iron bioavailability from ferritin was 3.8% compared with 24.1% 

from FeSO4 [309] in healthy volunteers.  

The contrasting results for ferritin iron bioavailability have been attributed 

to the differences in iron labeling techniques [294, 305] and the source of ferritin 

i.e. animal or plant. In earlier studies, iron labeled ferritin was generated using Fe 

radioisotope injections into animals. This procedure has been criticized as not 

appropriately labeling the iron core in ferritin, and causing inflammatory/stress 

responses that result in changes to the ferritin protein structure. In newer studies, 

iron purified from ferritin was removed using thioglycolic acid and a radioisotope 

iron tracer was reincorporated to label the iron core. According to these 

researchers, this method of radio labeled Fe-ferritin is indistinguishable from non-

labeled ferritin [169].  

1.8.4 Non-haem uptake of iron absorption from ferritin 

The mechanism of iron absorption from ferritin is also controversial. The 

traditional viewpoint is that ferritin is digested and that iron joins the non-haem 

iron pool; thus this viewpoint assumes that ferritin-Fe is absorbed using similar 

mechanisms of non-haem iron absorption. In support of this viewpoint, iron 

bioavailability in subjects consuming vegetables with purified phytoferritin was 

reduced by one-third [310], suggesting that the presence of non-haem iron 

inhibitors in vegetables inhibit the iron from ferritin. In another study, iron 

absorption increased from 0.7 to 12.1% when 100 mg AA was added to 3 mg 

ferritin in human volunteers [308]. Both studies strongly indicate ferritin is 
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degraded, the iron released, and likely to join the non-haem iron pool prior to 

absorption.  

In vitro studies are in agreement with this hypothesis. In vitro gastric 

conditions at pH 2 resulted in the rapid and complete degradation of the ferritin 

protein over 1 hr as measured by SDS-PAGE, Western blot [311-313] and gel 

filtration [298]. The rate of degradation occurred as fast as 15 min at pH 2 

solution [298].  

In Caco-2 cells, iron bioavailability of digested ferritin was enhanced by AA 

3-10-fold compared to controls [311, 312] and inhibited by PA, TA and calcium, 

suggesting that the ferritin protein shell and its protection from non-haem dietary 

inhibitors is lost [311, 312]. The effect of enhancing and inhibiting dietary factors 

on in vitro digested ferritin indicates that its iron is likely mediated by DMT1. From 

a practical perspective, ferritin has also been shown to be temperature-sensitive. 

Ferritin is degraded in foods using normal cooking methods [298, 314]. 

Given these data, it still remains unclear and difficult to prove whether 

ferritin can survive gastric digestion. One hypothesis is that the ferritin protein 

coat remains stable and is resistant to digestive enzymes and pH changes [60]. 

In previous studies, ferritin protein degradation was more influenced by pH than 

time. This was most evident at pH 4, which reflects the stomach pH of infants 

[298, 313]. Intact ferritin was detectable at pH 4 after 1 hr digestion (50-80%) 

[311, 313, 315] and was found to be stable at pH 3.5 to 7 after 2 hrs [298]. This 

would indicate the possibility that ferritin can survive gastric conditions depending 

on infant pH, the consumption of a mixed-meal (where ferritin can be protected 

by the bolus), or differing rates of gastric emptying. 
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1.8.5 Endocytosis uptake of ferritin-iron 

The main reason why ferritin resistance to degradation is important is 

because an independent route of iron absorption for ferritin has been 

hypothesised. Three possible states of ferritin are thought to exist in the intestinal 

lumen prior to absorption [294]:  

a. Intact ferritin resistant to low pH and proteolytic digestive enzymes.  

b. Ferrihydrite iron-core released after ferritin dissociation.  

c. Ferrihydrite iron-core hydrolysed to Fe3+ and Fe2+. 

Depending on the final ferritin state after digestion, iron absorption 

pathways likely differ.  

Several studies have strongly suggested that the absorption of intact 

ferritin is not influenced by dietary inhibitors of non-haem iron [60, 313]. This 

provides a basis for which a route of ferritin absorption distinct from non-haem 

iron may exist and also helps to explain its high bioavailability relative to FeSO4 in 

human trials. The intestinal uptake of ferritin is thought to occur using an 

endocytosis-like mechanism. Soybean ferritin incubated with Caco-2 cells (1 μM 
59Fe as the mineralised core) showed saturable kinetics and temperature-

dependency [316], properties which are indicative of receptor-mediated uptake. 

In this same study, Mas-7, a stimulator of endocytosis, increased iron uptake 

whereas hypertonic sucrose, an inhibitor of endocytosis, decreased iron uptake. 

An endocytosis pathway for soybean ferritin was further validated in Caco-2 cells 

by San Martin et al [317]. They demonstrated that soybean ferritin was 

internalised in Caco-2 cells as evidenced by confocal microscopy, and its uptake 

was inhibited with hypertonic sucrose and cytosol acidification, two chemical 

methods that inhibit endocytosis. Further characterisation of an endocytosis 

pathway using shRNA gene knockdown suggested that adaptor protein 2 (AP2), 
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which mediates the formation of clathrin-coated vesicles [318], is involved in the 

uptake of soybean ferritin. In a later study, ferritin endocytosis in Caco-2 cells 

was confirmed using confocal microscopy. The internalisation and colocalisation 

of horse spleen ferritin was tracked with the endocytosis antigen markers: 

clathrin, early endosome antigen 1 (EEA1) and lysosome marker lysosomal-

associated membrane protein 2 (LAMP2) [319]. This study also provided 

evidence that exogenous, internalised ferritin likely uses the same pathway for 

lysosomal degradation as endogenous ferritin [63, 64, 320].  

Competitive studies in human volunteers demonstrated that a 9-fold 

excess of FeSO4 or haem did not inhibit the absorption of iron from ferritin, 

providing indirect in vivo evidence of a separate iron uptake pathway for ferritin 

[321]. These findings warrant further investigation on ferritin bioavailability and 

the importance of DMT1 on its absorption. 

1.9 Aims 

The purpose of this thesis is to investigate the potential of NP-FePO4, pea 

ferritin, and the Lucky Iron Fish™ to deliver bioavailable forms of iron and the 

optimal conditions for this to occur. The three main themes of this thesis will be 

(1) the extent of in vitro digestion on the state of iron, (2) iron bioavailability, and 

its modulation with non-haem iron promoters and inhibitors, as assessed in 

Caco-2 cells, and (3) mechanisms of iron absorption [specifically the 

physiological importance of the iron transporter, DMT1] in Caco-2 cells.  This 

information will hopefully be informative for the future direction of these novel iron 

forms. 
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Chapter 2: Methods  
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2. Methods 

2.1 General methods 

2.1.1 Colorimetric iron assays 

(a) Ferene-S  

Ferene-S [3-(2-Pyridyl)-5,6-bis(5-sulfo-2-furyl)-1,2,4-triazine disodium salt 

hydrate] was used to determine the total iron content of samples. Ferene-S binds 

ferrous iron, forming a deep blue complex, which can be measured using 

spectrometry. Samples (100 μL) were digested in 100 μL 1% HCl for 10 min (300 

rpm, 80°C). Once cooled, the following reagents were added sequentially and 

mixed after each addition: 500 μL 7.5% ammonium acetate, 100 μL AA, 100 μL 

2.5% sodium dodecylsulphate (SDS), and 100 μL 1.5% ferene. Samples were 

centrifuged for 5 min (12,000 rpm). The absorbance of samples was measured at 

593 nm against an iron standard curve (0-20 nmol Fe as ammonium iron (II) 

sulfate).  

(b) Bathophenanthroline 

Bathophenanthroline (4,7-diphenyl-1,10-phenanthroline), BPDS, was also 

used to determine the total iron content of samples. BPDS binds to ferrous iron, 

forming a red complex, which can be measured using spectrometry. Iron samples 

(380 μL) were digested in 20 μL hydroxylamine hydrochloride (HH) solution (0.1 

g/mL dissolved in 10 M HCl). 100 μL aliquots of the digested sample were 

pipetted into 96-well microplates. 50 μL BPDS solution (15.64 mg 

bathophenanthroline disulfonic acid disodium salt in 50 mL 2 M sodium acetate) 

was added and the plate was incubated on a microplate shaker for 10 min (500 

rpm). The absorbance of samples was measured at 535 nm using an iron 

standard curve (0-1.6 μg Fe as pure ferrous iron [High-Purity Standards, USA]). 
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Table 2.1 Iron chelators used for iron quantification 

 

2.1.2 Simulated digestion 

The simulated gastrointestinal digestion followed the methods of Glahn et 

al [218] with modifications. The method has been widely used to determine the 

bioavailability of iron samples. For each digestion, digestion enzymes were 

removed of contaminant iron using Chelex-100 (Bio-Rad, USA)*. All solutions 

were made fresh on the day of the experiment. Ferric ammonium citrate (FAC) 

diluted in H2O was included in each experiment as a positive control. FAC is a 

well-absorbed form of iron in Caco-2 cells and used as the reference for DMT1 

uptake [139, 322, 323]. Reference blanks (cells not treated with iron) were 

included in each experiment to ensure low baseline levels of cell ferritin. Using 50 

mL-sized polypropylene tubes, 10 mL 140 mM NaCl, 5 mM KCl (pH 2) solution 

was added to samples (collectively referred to as ‘digests’) to initiate the gastric 

digestion phase. Digests were vortexed, readjusted to pH 2 with 0.1 M HCl, and 

0.5 mL pepsin solution was added. The digests were placed onto a rotating table 

(100 rpm) and incubated for 1 hr at 37°C. After 1 hr, the digests were readjusted 

to pH 5.5-6.0 with 1 M NaHCO3 and 2.5 mL pancreatin-bile solution was added to 

the digests.  

 

Table 2.2 Enzymes used for in vitro digestion 

Iron chelator
MW 
(kDa) Product

Ferene-S 494.37 Sigma (P4272) 
BPDS 536.49 Sigma (B1375)

Reagent Concentration Product
Pepsin 20 mg/mL Sigma (P-7000)
Pancreatin 1.4 mg/mL Sigma (P-1750) 
Bile 8.6 mg/mL Sigma (B-8631) 
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The pH of the digests were further readjusted to 6.9-7.0 with 1 M NaHCO3, 

placed onto a rotating table (100 rpm), and incubated for 30 min at 37oC 

(intestinal digestion phase). The digests were readjusted to normalise for equal 

volumes (15 mL) with 140 mM NaCl, 5 mM KCl pH 7.0 solution. 1.5 mL of the 

digest was applied to each well, affixed with a 15 kDa molecular weight cut off 

(MWCO) dialysis membrane** (Spectrum Labs, USA) fitted to a Transwell upper 

chamber. The digests were incubated for 2 hrs at 37oC, carefully removed from 

the plates, and 1 mL additional MEM was added to each well. The plates were 

incubated for a further 22 hrs to allow for cell ferritin formation.   

• Pepsin solution: 0.8 g pepsin was diluted in 20 mL 0.1 M HCl. 10 g of 

Chelex-100 was added and mixed for 30 min. The mixture was placed 

in a flex column (VWR, UK) and an additional 20 mL 0.1 M HCl was 

added.  

• Pancreatin-bile solution: .25 g pancreatin and 1.5 g bile extract were 

diluted in 125 mL 0.1 M NaHCO3. 62.5 g of Chelex-100 was added and 

mixed for 30 min. The mixture was placed in a flex column and an 

additional 50 mL 0.1 M NaHCO3 was added. The filtered enzymes 

were stored at RT prior to use. 

** Dialysis membranes were prepared the day before iron treatments. The 

membranes (tubular) were cut into approximately 5 cm in size and rinsed 3x with 

milli-Q H2O. The membranes were fastened onto modified Transwells using 

silicone O-rings, and stored in milli-Q H2O overnight (4oC). On the day of 

experiment, the milli-Q H2O was replaced with 0.5 M HCl for 30 min. The 

membranes were removed of 0.5 M HCl and washed 3x with sterilized milli-Q 

H2O prior to fitting on top of the cells.  

The simulated digestion was primarily used for experiments carried out 

using LIF. In experiments for NP-FePO4 and phytoferritin, simulated in vitro 
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digestions were carried out without digestion enzymes or dialysis membranes. 

The methodology (incubation solutions, times, pH changes, etc) of these “mock” 

in vitro digestions, collectively referred to in this thesis as pH treatments, were 

the same as stated above aside from these omissions.  

2.1.3 Cell culture 

Caco-2 cells (HTB-37® VA) were obtained from American Type Culture 

Collection at passage 20 and stored in liquid nitrogen or -80°C. Cells were grown 

in Dulbecco’s Modified Eagle Medium (DMEM) containing 25 mM HEPES (Gibco, 

UK) supplemented with 10% foetal bovine serum, 1% MEM non-essential amino 

acid solution (Sigma, UK), 1% penicillin/streptomycin, and 1% L-glutamine. Cells 

were grown in 75 cm2 cell culture flasks (Greiner, UK) and maintained at 5% 

carbon dioxide/95% air atmosphere at constant humidity. The media was 

replaced every 2-3 days. Hutu-80 cells (HTB-40 ® VA), obtained at passage 41, 

were kindly donated by Dora Pereira, PhD (Medical Research Council, Human 

Nutrition Research, Cambridge UK). These cells were cultured using the same 

growth media, and under the same conditions, as stated for Caco-2 cells.  

(a) Subculturing      

Both cell lines were cultured until 70-80% subconfluent (approx. 3-4 days). 

T-75 flasks were washed 1x with PBS and 1 mL trypsin-EDTA 10x (Sigma, UK) 

was added. Cells were placed in the incubator for 3-5 min until detached from the 

plastic substrate. Detached cells were diluted in DMEM and counted using the 

trypan blue exclusion method [324]. Cells were seeded at a density of 3x104 

cells/cm2 in new 75cm2 cell culture flasks.  

Prior to seeding for cell culture experiments, cell culture plates (Greiner, 

UK) were coated with type 1 collagen [rat tail] (Gibco, UK). 50 μg/mL collagen 

solution diluted in 20 mM acetic acid was placed in each well and incubated for 1 
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hr. Plates were washed 3x with PBS and cells were immediately seeded onto the 

substrate or plates were stored at 4°C for up to 1 week. Plates using Hutu-80 

cells were left uncoated.  

 

Table 2.3 Cell seeding densities 

 

Caco-2 cells were grown for 12 days post-seeding for monolayer formation 

and used at passages 25-40. Hutu-80 cells were grown at 70% subconfluent 

(approx. 2-3 days) and used at passages 45-50. 

(b) Serum starvation of cells 

24 hrs prior to iron treatments, cells were removed of DMEM, washed 1x 

in PBS, and replaced with serum-free MEM (Gibco, UK) supplemented with 19.4 

mM D-glucose, 26.2 mM NaHCO3, 10 mM PIPES (piperazine-N,N-bis-[2-

ethanesulfonic acid]), 1% antibiotic-antimycotic solution, 4 mg/L hydrocortisone, 5 

mg/L insulin, 0.02 μM Na2SeO3, 0.05 μM triiodothyronine and 0.2 mg epidermal 

growth factor. 

Plate format Cell density

Media 
volume 
(mL)

6 well 475,000 2
12 well 200,000* 1
24 well 100,000 0.5
96 well 25,000 0.1

*Hutu-80 cells were seeded at 100,000 
cells/well
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Table 2.4 MEM formulation 

 

2.1.4 Protein isolation 

After iron treatments, CelLytic® M protein extraction buffer (Sigma, UK) 

containing cOmplete mini protease inhibitor cocktail (Roche, UK) was added (200 

μL per 6 well plate). Plates were placed onto a rocking chamber (20 rpm/min) for 

15 min (4°C). Monolayers were scraped from the plastic substrate using inverted 

200 μL pipette tips. Cell lysates were collected into 1 mL microcentrifuge tubes, 

stored at -20 oC, thawed on ice, and centrifuged for 15 min (14,000 x g, 4°C). 

Supernatants were collected and analysed. 

2.1.5 BCA protein  

Cellular supernatants were quantified for total protein using the 

bicinchoninic (BCA) protein assay kit (Pierce, UK) following manufacturer’s 

instructions. 10 μL samples were pipetted into a 96-well microplate followed by 

200 μL BCA working solution. The plate was mixed for 1 min (250 rpm) and 

incubated for 30 min (37°C). The absorbance was measured at 562 nm against 

the bovine serum albumin protein standard (0-2000 μg/mL). 

Reagent Product
MEM powder Gibco (41500-067)
D-gluose Sigma (G-7528)
PIPES Sigma P-3768 
NaHCO3 Sigma (S-6014) 
Hydrocortisone Sigma (H-00395) 
Antimicrobial / Antibiotic Gibco (15240-062) 
Insulin Sigma (I-1882) 
Na2SeO3 Sigma (S-5261) 
Tri-iodothyronine Sigma (T-6397) 
Epidermal growth factor Sigma (E-4127) 
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2.1.6 Ferritin ELISA  

Cellular supernatants were quantified for cell ferritin using the 

Spectoferritin ELISA kit (Ramco, USA) following manufacturer’s instructions.  10 

μL of samples were pipetted into a 96-well microplate pre-coated with rabbit anti-

human spleen ferritin. 200 μL conjugated anti-human ferritin was added to each 

well and incubated on a microplate shaker for 2 hrs (250 rpm). After 2 hrs, the 

plate was washed 3x with milliQ H2O. 100 μL substrate solution was added to 

each well, and the plate was incubated for 30 min. 100 μL potassium ferricyanide 

was placed in each well, and the plate was mixed for 1 min (250 rpm). The 

absorbance was measured at 490 nm (using a subtraction correction of 630 nm) 

against pre-calibrated human ferritin standards (6-2000 ng/mL). 

2.1.7 Chemical targeting iron uptake 

For digestion experiments, AA (1:20 Fe:AA molar ratio, 600 μM), an 

enhancer of non-haem iron bioavailability, was added at the beginning of the 

gastric phase. 2.5 mM CaCl2 (final concentration in MEM after dilution with 

digests) was used as an inhibitor of non-haem iron bioavailability. Stock solutions 

for AA and CaCl2 were made fresh the day of. Stock solutions of AA were diluted 

in milliQ H2O and CaCl2 in 0.1 M HCl. When AA and CaCl2 were used, treatments 

were incubated with cells for 24 hrs.  

  

Table 2.5 Endocytosis inhibitors used in Caco-2 cells 

Inhibitor Stock solution
Working 
solution Product

Chlorpromazine 
hydrochloride 0.5 M in DMSO 100 μM Sigma (C8138)
Sucrose 10 M in H2O (fresh) 0.45 M Fisher Scientific (S5) 
Filipin III 500 mg/L in DMSO 5 mg/L Sigma (F4767)
5-(N,N-Dimethyl) 
amiloride hydrochloride 0.5 M in DMSO 200 μM Sigma (A4562)
Calcium chloride 
dihydrate 1 M in HCl (fresh) 2.5 mM Fisher Scientific (C79) 
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Uptake  

Stock solutions were diluted in MEM (containing iron treatments) to 

working solutions and incubated on Caco-2 cells for 1 hr. After 1 hr, endocytosis 

– iron treatments were removed and cells were washed 3x with PBS. Cells were 

incubated in MEM for a further 23 hrs.  

pH treated 

The methods were similar to uptake experiments, except that stock 

solutions were diluted in MEM to 2x working solutions. pH treated iron 

compounds were diluted 1:1 in MEM to achieve 1x working solutions of 

endocytosis inhibitors.   

2.1.8 Short interfering RNA (siRNA) transient knockdown 

Caco-2 

Cells were seeded in collagen coated 12-well plates (200,000 cells/well) 

for 10 days. Cell monolayers were transfected according to the manufacturer’s 

protocol for 24 hrs. On the day of transfection, cells were washed 1x with PBS. 1 

mL Opti-MEM™ (Gibco) was added to each well and plates were placed into the 

incubator. Silencer® Select siRNA targeting SLC11A2 or Negative control no. 1 

was diluted in Opti-MEM. Separately, Lipofectamine® 3000 transfection reagent 

(Invitrogen) was diluted in Opti-MEM. The siRNA dilution was added to the 

transfection reagent dilution and the siRNA/transfection mixture was incubated 

for 10 min to allow for complex formation. 100 μL siRNA/transfection mix was 

added drop wise to each well and the plates were incubated for 24 hrs. Each well 

contained a final concentration of 200 nM siRNA and 6 μL transfection reagent. 

After 24 hrs, cells were washed 1x PBS, and incubated for 24 hrs in MEM (and 

iron treatments for 2 hrs). Cells were analysed for gene knockdown efficiency by 

RTPCR 48 hrs post-transfection. 
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Hutu-80 

Cells were seeded in 12-well plates (100,000 cells/well) for 24-48 hrs. 

Cells (50-70% confluent) were transfected similarly to Caco-2 cells, except that 

each well contained a final concentration of 10 nM siRNA and 3 μL transfection 

reagent.  

 

Table 2.6 siRNA sequences 

 

2.1.9 RTPCR 

(a) RNA extraction 

RNA was extracted from cells using the RNeasy Mini Kit (Qiagen) 

according to manufacturer’s suggestions. Cells were washed 1x with PBS and 

lysed in 350 μL Buffer RLT per well. 350 μL 70% EtOH was added and lysates 

were transferred to silica spin columns fitted onto collection tubes for sequential 

centrifugation steps. The columns were centrifuged for 15 sec (10,000 x g). The 

flow through was discarded and 700 μL Buffer RW1 was added. The columns 

were centrifuged for 15 sec (10,000 x g). The flow through was discarded, 500 μL 

Buffer RPE was added, and centrifuged for 15 sec (10,000 x g). The flow through 

was discarded, 500 μL Buffer RPE was added, and centrifuged for 2 min (10,000 

x g). The spin columns were placed into new collection tubes and centrifuged for 

15 sec (16,000 x g) to remove traces of remaining EtOH. Spin columns were 

placed into new 1.5 mL collection tubes and 30 μL RNase free H2O was added. 

Spin columns were centrifuged for 1 min (10,000 x g) to elute the RNA. The 

Silencer® Select siRNA
SLC11A2 Negative control #1

Catalogue 4390825 4390844
ID s9708 -

Sequence Sense GGAUUUAAGUUGCUCUGGAtt -
5' → 3' Antisense UCCAGAGCAACUUAAAUCCag -
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process was repeated with a further 30 μL RNase free H2O and the RNA was 

stored at -80°C. RNA concentrations were determined using the UV-Vis 

NanoDrop 2000 spectrophotometer. 1 μL samples were analysed for RNA using 

H2O as the reference blank. RNA quality was determined using the A260/280 ratio 

for protein contamination and A230/260 ratio for solvent (EtOH) contamination. 

(b) cDNA synthesis 

Complementary DNA (cDNA) was synthesized using the qPCRBIO cDNA 

Synthesis Kit (PCR Biosystems, UK). A master mix was generated containing 2 

μL 5x cDNA synthesis mix, 0.5 μL 20x Rtase, and 6.5 μL PCR grade water per 

reaction. 1 μL RNA was added into each PCR microtube (Bio-Rad) and 9 μL 

master mix added for a total well volume of 10 μL. Samples were vortexed, 

briefly centrifuged, and placed into a PCR Thermocycler (BioRad T100) using the 

following settings: 

  

Table 2.7 Settings used for cDNA synthesis using the Bio-Rad 
thermocycler. 

 

The newly reverse transcribed cDNA was diluted 1:5 in nuclease-free 

H2O.  

(c) Instrumentation 

A master mix was generated using 4 μL 2x SYBR Green Mix Lo-ROX 

(PCR Biosystems), 1 μL (forward and reverse primers), and 1 μL nuclease-free 

cDNA settings
Application Temperature Time
Incubation 42°C 30 min
Denaturation 85°C 10 min
Cooling 4°C -
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H2O. 4 μL cDNA was added to each well of a polymerase chain reaction (PCR) 

microplate (Roche), followed by 6 μL master mix.  

 

Table 2.8 DNA primers used for RTPCR.  

 

Samples were briefly vortexed, centrifuged and placed into the RTPCR 

instrument (Roche LightCycler 480). The settings for each real time PCR reaction 

were as follows:  

 

Table 2.9 RTPCR settings 

 

DMT1 was normalised to the housekeeping gene, 18S. Relative gene 

expression was assessed using the ∆∆Ct method [325]. 

2.1.10 Cell proliferation assay 

Cell proliferation in Caco-2 cells was measured using the CellTiter 96® 

Aqueous One Solution Cell Proliferation Assay (MTS) (Promega). Cells 

metabolize MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium) in the presence of the electron-coupling reagent, 

phenazine ethosulfate (PES), to a formazan product using NADP or NADPH. The 

blue formazan product is detected using an absorbance maximum at 

KiCqStart® SYBR® Green Predesigned Primers
Gene Forward (5’ → 3’) Reverse (5’ → 3’)
SLC11A2 GAGTATGTTACAGTGAAACCC GACTTGACTAAGGCAGAATG
18S ATCGGGGATTGCAATTATTC CTCACTAAACCATCCAATCG

RTPCR Settings
Application Cycles Temperature 
Pre-incubation 1 95°C
Amplification 45 95°C (denature), 58°C (annealing), 72°C (extension)
Melt curve 1 95°C, 65°C, 97°C
Cooling 1 40°C
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490 nm. The assay was conducted according to manufacturer’s instructions. 

Cells were washed 1x with PBS and replaced with fresh MEM. 20 μL CellTiter 

reagent was added to each well (96-well plate) containing 100 μL cell culture 

medium and incubated for 3 hrs (37°C). Sample absorbance was recorded at 490 

nm relative to positive (1% Triton X-100) and negative (no treatment) controls.   

2.2 Ferric phosphate nanoparticle methods 

Ferric phosphate nanoparticles (NP-FePO4) were donated by Florentine 

Hilty, PhD (Laboratory of Human Nutrition, ETH Zürich). Their synthesis, 

chemical composition, and physicochemical properties have been previously 

described [288, 289]. 

2.2.1 Dispersion 

NP-FePO4 suspensions were prepared in MEM. When diluted in MEM, 

NP-FePO4 rapidly agglomerated and sedimented in solution. This necessitated 

using probe sonication, which uses ultrasonic cavitation, for proper dispersion. 1 

mg/mL NP-FePO4 was diluted in MEM and placed in 15 mL centrifuge tubes. 

Tubes were placed on ice and samples were probe sonicated (MSE Soniprep 

150, UK) for 15 min (amplitude: 16.1 A, 150 W). Immediately after sonication, 

NP-FePO4 was either characterised (see below) or further diluted in MEM to 

achieve working iron concentrations for cell culture. 

2.2.2 Dynamic light scattering 

Dynamic light scattering (DLS) is a widely used technique for the 

characterisation of nanoparticles in solution. The rate of particle diffusion in the 

medium as a result of Brownian motion is measured by the scattering of laser 

light. Smaller particles tend to move faster in solution, and scatter more light 

relative to larger particles. The hydrodynamic diameter (based on a sphere) of 

nanoparticles can be determined using the Stokes-Einstein equation:  
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d(H) = κT / 3πηD, where κ is Boltzmann’s constant, T is the absolute 

temperature, η is the viscosity of the dispersant, and D is the translational 

diffusion coefficient.  

This method was used to measure the particle size distribution of 

sonicated NP-FePO4 in MEM. Measurements were taken 3 times, on 3 separate 

days. The refractive index of NP-FePO4 relative to the sodium d line (589 nm) 

was estimated as 1.680 using the Becke line test. The viscosity of the medium 

was considered 0.890 cP at 25°C. The refractive index of the dispersant was 

1.330. Particles were measured after a 30 sec equilibration time over 10 cycles.  

2.2.3 Transmission electron microscopy 

Transmission electron microscopy (TEM), a high-resolution (limit of 

detection 0.2 nm) imaging technique, is also used routinely to characterise the 

size of nanoparticles. The technique uses a beam source of high velocity 

electrons that are accelerated under vacuum. The electrons are focused directly 

onto the nanoparticle using condenser lenses. As the electron beam collides with 

particles, they scatter (or reflect) the electrons more frequently. The electrons are 

‘transmitted’ and detected as darker areas in a CCD camera in contrast to the 

bright background (TEM grids absorb electrons from the beam).  

10 μL NP-FePO4 samples were deposited onto TEM copper grid supports 

(Electron Microscopy Sciences, USA). The grids were covered to protect the 

sample from environmental contamination, and incubated for 1 hr to allow for 

evaporation. Grids were rinsed in milli-Q H2O 5 consecutive times (10 sec each), 

and dried overnight (covered). Deposited particles were imaged using a Jeol 

1200EX fitted with a LaB6 filament and a Gatan Orius charged-coupled device 

(CCD) camera.  
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2.2.4 Disc centrifugation sedimentation 

Differential centrifugal sedimentation (DCS) is a sensitive, high-resolution 

analytical technique for analysing the size distribution of particles in solution. The 

wide dynamic range (10 nm to 50 microns) makes it particularly useful for 

determining the size distribution of polydispersed particles (such as those found 

in aggregates and agglomerates).  

DCS works on the principle of particle sedimentation. Particles injected 

into the instrument sediment at different rates depending on their size. The rate 

of sedimentation is accelerated using centrifugation to create higher g-force. 

Particle sedimentation time (detected by a laser) is converted to particle size 

using a modification of Stokes’ law: 

D = [ (18η*ln(Rf/R0)) / ((ρp-ρf)ω2t) ]0.5, where D = particle diameter, η is the 

fluid viscosity, Rf is the final radius of rotation, R0 is the initial radius of rotation, ρp 

is the particle density, ρf is the fluid density, ω is the rotational velocity, and t is the 

time required to sediment from R0 to Rf. The particle density was considered 2.87 

g/cm3 and the fluid density was 1 g/cm3. 

The CPS disc centrifuge 2400 (CPS Instruments, UK) was run at 5000 

rpm (20°C). After a 10 min warm-up period, a sucrose gradient was established. 

Two separate sucrose solutions (24% and 8% w/v) were prepared and injected 

into the system. 100 μL dodecane was added to prevent gradient evaporation. 

Once the gradient was set, the instrument was calibrated using 100 μL 

polystyrene standard (0.239 μM) followed by 100 μL of the sample. The settings 

for size detection were 50 nm to 10 μM. A typical run time lasted approximately 

30 min.   
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2.2.5 Atomic force microscopy 

Atomic force microscopy (AFM) is another nanoparticle characterisation 

technique determining particle size. Complementary to TEM data, AFM 

measures nanoparticle size relative to x, y and z axis, essentially providing an 

added dimension for 3-D topology of the nanoparticles. After depositing 

nanoparticles on a substrate, a cantilever is scanned over the surface of the 

substrate. As the cantilever approaches the surface of the substrate, the force 

between the cantilever and the nanoparticles can be detected from deflection. In 

essence, the larger the size of the nanoparticle, the greater the deflection of the 

cantilever. The force is translated into size determinations.  

NP-FePO4 samples for AFM were prepared in parallel with TEM 

experiments. The protocol for AFM preparation was also similar to TEM. 10 μL 

NP-FePO4 was spotted onto freshly cleaved AFM grade mica (Agar Scientific), 

covered, and incubated for 1 hr to allow for evaporation. Micas were rinsed in 

milli-Q H2O 5 consecutive times (10 sec each), and dried overnight (covered). 
Micas were fixed onto stainless-steel metal specimen discs and examined using 

AFM (XE-100, Park instruments) in non-contact mode.  

2.2.6 Supernatant iron during in vitro gastric digestion 

Supernatant iron from NP-FePO4 was determined using established 

methods [265, 326] with minor adaptations. Supernatant iron was determined 

after sonication and after pH treatment. For pH treatment, 40 mM NaCl, 5 mM 

KCl solution was titrated to either pH 1, 2, or 4 using 1 M HCl. 4 mg NP-FePO4 

was diluted in 50 ml pH solution, placed onto a rotating table (100 rpm), and 

incubated (37°C). At 15 min intervals, sample aliquots were removed (1 mL) and 

centrifuged for 5 min (10,000 x g). After centrifugation, 500 μL supernatant 

aliquots were collected and analysed for iron content using colorimetric reagents. 
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The iron content of the supernatant was compared to the total iron content of the 

sample.  

2.2.7 Phase distribution of iron during in vitro gastric and intestinal 

digestion. 

The phase distribution of iron was determined using a modification of the 

method from Pereira et al [286]. Similar to 2.2.6, the supernatant iron was 

obtained during in vitro digestion. The supernatant iron was further distinguished 

from soluble and nanoparticulate iron using 3 kDa MWCO ultrafiltration columns 

(Vivaspin, UK). The supernatant iron was placed in a column and centrifuged for 

10 min (10,000 x g). Iron in the supernatant and in the ultrafiltrate was 

determined. The calculation to determine iron fractions as microparticulate 

(agglomerate fractions and ferric hydroxides), nanoparticulate (< 100nm), and 

soluble iron (< 1 nm) was as follows: 

% Soluble = [(Fe ultrafiltrate / total Fe)] x 100 

% Nanoparticulate = [(Fe supernatant – Fe ultrafiltrate) / total Fe] x 100 

% Microparticulate = [Total Fe – Fe supernatant / Total Fe] x 100 

These are expressed in bar graphs as a percentage of total Fe.  

2.2.8 Confocal reflectance microscopy  

Caco-2 cells were grown on coverslip embedded 35 mm glass bottom 

dishes (Mattek, USA). Cells were treated with sonicated NP-FePO4 (200) [30 

μg/mL] for 1 hr. After 1 hr, cells were washed 3x with PBS and fixed in 4% 

paraformaldehyde (PFA) for 15 min. After removal of PFA, cells were washed 1x 

with PBS, washed 1x in ddH2O, counterstained with DAPI (Vector Laboratories, 

USA) and stored at 4°C until analysis. NP-FePO4 (200) was visualised in Caco-2 

cells using a Nikon A1R laser scanning confocal microscope equipped with a Ti 
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inverted microscope and a wide field detector in reflectance mode. 3-D 

projections were generated with 2 μM optical slices on the z-axis courtesy of Dr. 

Christine Elgy. 

2.2.9 TEM for Caco-2 cell uptake 

Cells were grown on Thermanox coverslips (Nunc) placed in 12 well 

plates. Caco-2 cell monolayers were treated with iron for 2 hrs and washed 3x 

with PBS. Cells were fixed and embedded by Kim Findlay at the John Innes 

Centre Bioimaging facility. Cells were washed 2x in 0.05 M sodium cacodylate (2 

min), and primary fixed in 2.5% glutaraldehyde in 0.05 M sodium cacodylate for 

20 min. Cells were washed 3x in 0.05 M sodium cacodylate (10 min) and post 

fixed in 1% osmium tetroxide (OsO4) for 20 min. Cells were washed 3x in ddH2O 

(10 min) and placed at 4°C overnight. 2% uranyl acetate in ddH2O was added to 

the cells (20 min). Cells were washed 3x in ddH2O (10 min) and dehydrated in 

increasing EtOH concentrations; 70%, 80%, 90%, 95%, 100% for 10 min each. 

Cells were replaced with fresh 100% EtOH for 30 min, and replaced with fresh 

100% EtOH for a further 10 min. Coverslips were transferred into polythene cups 

and embedded in 1:1 (EtOH:LR white resin) for 2 hrs on a rocking platform. Cells 

were replaced with 100% LR White for 90 min followed by fresh 100% LR White 

for 3.5 hrs. Finally, cells were replaced with fresh 100% LR White overnight at 

60°C. Samples were removed and left at RT overnight to harden. Cells were 

removed from the polythene cups and left at RT (> 12hrs) for the final cure prior 

to sectioning.  

Cells were sectioned and mounted by Paul Stanley, University of 

Birmingham. Approx. 100 μM sections were cut using a Diatome diamond knife 

(EMS, PA, USA) and collected onto 200 mesh copper grids prior to analysis. 

Sections were analysed using a Jeol 2100 electron microscope at 200 kV. 
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2.3 Pea ferritin  

2.3.1 Pea ferritin purification 

Dry marrowfat peas (Pisum sativum cv Sakura) were obtained from 

Wherry and Sons (Lincolnshire, UK). Phytoferritin (pFer) was extracted and 

purified from the peas according to the methods of Laulhere et al [327] with slight 

modifications. 200 g dry marrowfat peas were coarsely ground using a coffee 

grinder. The coarsely ground peas were diluted in 680 mL of cold phosphate 

buffer (50 mM, 1% polyvinylpyrroldione [PVP], pH 7) and finely ground into a 

slurry using a Polytron® probe homogenizer (Kinematica, Switzerland). The 

slurry was centrifuged for 10 min (10,000 rpm, 4°C). The supernatant was 

collected, 50 mM MgCl2 was added, and the solution was immediately 

centrifuged for 5 min (5,000 rpm, 4°C). The supernatant was collected, 70 mM 

trisodium citrate was added, followed by 40 mg RNase A. This solution was 

incubated for 2 hrs (4°C). After 2 hrs, the solution was centrifuged for 40 min 

(13,000 rpm, 4°C). The pellet, containing the crude ferritin fraction, was removed 

and centrifuged for 2 min (14,000 rpm, 4°C). 2 mL milliQ water was added to the 

pelleted ferritin and the solution was centrifuged for another 2 min (14,000 rpm, 

4°C).  

Phytoferritin was further purified using size-exclusion chromatography. 

Phytoferritin was separated using a Superose 12 10/300 GL column (GE 

Healthcare) with PBS as the running buffer, which eluted in the void volume. 

Purity of phytoferritin was confirmed using Coomasie stained gels. Polyclonal 

antibodies were generated in rabbits (Agrisera, Sweden). Phytoferritin was stored 

at -20°C until use. 
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2.3.2 pH treatment 

100 μL purified phytoferritin was diluted in 1 mL 140 mM NaCl, 5 mM KCl 

salt solution and titrated to pH 2, 4 or 7 using 0.1 M HCl (100 rpm, 37°C). At 15 

min intervals, 100 μL aliquots were removed and/or: 

(a) Immediately spin-filtered 

(b) Snap-frozen in liquid nitrogen and stored at -20°C prior to analysis by 

Western blot. 

2.3.3 Ultrafiltration 

The effect of pH treatment on the soluble iron released from phytoferritin 

was determined using ultracentrifugation. Phytoferritin was ultracentrifuged using 

3 kDa MWCO spin filters (Vivaspin®, GE Healthcare). The iron in the filtrate 

represents the soluble iron released from phytoferritin. By calculation, the 

difference between total iron and soluble iron in the filtrate equals the iron in the 

retentate (ferritin iron core). Phytoferritin digests were placed in spin filters and 

centrifuged for 5 min (15,000 x g). The iron content of the filtrate was measured 

using the Ferene-S colorimetric assay and expressed relative to total iron 

content.  

2.3.4 SDS-PAGE  

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

was used to separate proteins based upon charge to mass ratio. 15% separating 

gels were used to identify ferritin monomers (23 kDa). Samples were diluted in 4x 

SDS loading buffer containing β–mercaptoethanol (BME), denatured for 5 min 

(95°C), and loaded onto 10 well gels, including 3 μL PageRuler™ Prestained 

Protein Ladder (ThermoFisher Scientific) in the first well. 100 ng of protein was 

loaded into each well for pure phytoferritin for experiments determining its 

degradation when exposed to pH treatment. 40 μg of protein were loaded into 
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each well in experiments using Caco-2 cell lysates. Samples were run at 100 V 

for 15 min and 200 V for 45 min, or until the loading buffer migrated to the bottom 

of the gel.  

  

Table 2.10 Reagents used to generate SDS-PAGE gels 

 

2.3.5 Native-PAGE  

The protocol for Native-PAGE was similar to SDS-PAGE, but proteins 

were electrophoresed under non-reducing and non-denaturing conditions (no 

BME or SDS) to preserve its secondary and tertiary structures. 6% gels were 

used to visualise native ferritin (552 kDa) exposed to pH treatment. Samples, 

buffers, and electrophoresis were used at 4°C. 100 ng samples, diluted in 4x 

native loading buffer (containing only bromophenol blue), were loaded into 10 

well gels, including horse-spleen ferritin (Sigma, F4503) in the first well for 

comparison. Samples were run at 100 V for 3-4 hrs, or until the loading buffer 

migrated to the bottom of the gel.  

 

Table 2.11 Reagents used to generate NATIVE-PAGE gels 

SDS-PAGE formulation

Reagent per gel Reagent per gel
30% Acrylamide (w/v) 37.5:1 (mL) 2.5 30% Acrylamide (w/v) 37.5:1 (mL) 0.53
1.5 M Tris-HCl, pH 8.8 (mL) 2.5 1.5 M Tris-HCl, pH 6.8 (mL) 1
ddH2O (mL) 2.45 ddH2O (mL) 2.47
10% APS (μL) 50 10% APS (μL) 25
TEMED (μL) 5 TEMED (μL) 2.5

15% Resolving gel 5% Stacking gel

Native-PAGE formulation

Reagent per gel Reagent per gel
30% Acrylamide (w/v) 37.5:1 (mL) 1.2 30% Acrylamide (w/v) 37.5:1 (mL) 0.25
1.5 M Tris-HCl, pH 8.8 (mL) 1.5 1.5 M Tris-HCl, pH 6.8 (mL) 0.5
ddH2O (mL) 3.265 ddH2O (mL) 1.23
10% APS (μL) 25 10% APS (μL) 15
TEMED (μL) 10 TEMED (μL) 6

6% Resolving gel 4% Stacking gel
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2.3.6 Western blot 

Proteins were transferred from gels to nitrocellulose membranes (GE 

Healthcare) using a semi-dry transfer system. Gels were washed with ddH2O to 

remove detergent, placed on top of the nitrocellulose membrane, sandwiched in 

between 4 layers of presoaked filter paper (in transfer buffer). Protein transfer 

was set for 30 min (200 mA). Protein transfer efficiency was visualised using 

Ponceau-S solution. 

Membranes were placed in blocking solution (tris-buffered saline [TBS] 

containing 0.1% [v/v] Tween 20 and 5% [w/v] dried skimmed milk) for 1 hr (20 

rpm). After 1 hr, the blocking solution was removed and membranes were 

incubated with primary antibodies diluted in blocking solution overnight (20 rpm, 

4°C). The membrane was washed 3x with blocking solution (5 min each) then 

incubated with horseradish peroxidase HRP-conjugated anti-rabbit IgG 

secondary antibodies (Abcam) for 40 min (20 rpm, rocking). Proteins were 

washed 2x with blocking solution (5 min) and 2x with TBS-tween before protein 

visualisation.  

 

Table 2.12 Western blot antibodies 

 

Immunolabeled proteins were detected using enhanced chemiluminescent 

reagents. Equal volumes solution 1 (1 mL) and solution 2 (1 mL) were mixed 

together, added to the membrane, and incubated for 1 min. The membrane was 

Antibody
MW 
(kDa) Dilution Product

1° Pea ferritin 23 1:5000 Agrisera (AS15 2898) 
1° β-actin 42 1:1000 Sigma (A2066)
2° Goat Anti-Rabbit IgG (HRP) 1:5000 Abcam (ab6721)
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briefly dried using filter paper, then scanned using the ImageQuant™ LAS 500 

CCD imaging system (GE Healthcare).  

 

Table 2.13 Enhanced chemiluminescence reagents 

 

2.3.7 Confocal fluorescence microscopy 

Caco-2 cells were grown on coverslip embedded 35 mm glass bottom 

dishes (Mattek, USA). Cells were treated with 20 nmol/L phytoferritin in MEM for 

1 hr. After 1 hr, cells were washed 3x with PBS and fixed in 4% 

paraformaldehyde (PFA) for 15 min. After removal of PFA, cells were 

permeabilised in 0.2% Triton X-100 for 10 min, washed 1x with PBS, and blocked 

in 1% BSA for 30 min. After 30 min, cells were incubated in primary antibodies 

against phytoferritin (1:1000) overnight (4°C). Cells were washed 3x with PBS (5 

min each), and incubated with Alexa Fluor™ 488-conjugated anti-rabbit IgG 

secondary antibodies (1:1000) (ThermoFisher Scientific) for 30 min. Cells were 

washed in ddH2O, counterstained with DAPI (Vector Laboratories, USA) and 

stored at 4°C until analysis. Pea ferritin was visualised in Caco-2 cells using the 

Nikon A1R laser scanning confocal microscope equipped with a Ti inverted 

microscope and a wide field detector with DIC for simultaneous detection of 

confocal and transmitted light images. 3-D projections generated with 2 μM 

optical slices on the z-axis were generated by Dr. Christine Elgy. 

ECL solutions Reagents
Solution 1 88.5 mL ddH2O

10 mL 1 M Tris-HCl pH 8.5
1 mL luminol stock
0.44 mL coumarate stock

Solution 2 89 mL ddH2O
10 mL 1 M Tris-HCl pH 8.5
0.06 mL 30% H2O2



 

 

 

105 

2.4 Work attributions 

The multi-disciplinary work presented in this thesis could not have been 

conducted without the expertise of many individuals.  

In Chapter 3, nanoparticle characterisation by TEM, AFM, DCS, and 

confocal microscopy was conducted at the University of Birmingham under the 

supervision of Dr. Christine Elgy.  

In Chapter 4, phytoferritin purification, protein/iron quantification, and 

synthesis of pea ferritin polyclonal antibodies from marrowfat peas were 

conducted by Dr. Jorge Celma-Rodriguez at the John Innes Centre. Western 

blots quantifying holo-ferritin, monomers, iron stain and in vitro digestion of 

marrowfat peas after boiling and microwaving were conducted by Dr. Emily 

Jones at the John Innes Centre. The in vitro digestion of marrowfat peas and 

ROS generation was conducted by Dr. Ildefonso Ramiro-Rodriguez at UEA. 

Confocal microscopy was conducted under the supervision of Dr. Elgy.  

In Chapter 5, iron concentrations determined by ICP-OES in Caco-2 cells 

and ROS generation were conducted by Dr. Ramiro-Rodriguez.  

In Appendix B, Caco-2 cells monolayers were treated for TEM analysis by 

Dr. Kim Findlay at the John Innes Centre. TEM micrographs were conducted 

under the supervision of Dr. Elgy. 

I would like to personally thank Dr. Anna Wawer for training in the in vitro 

digestion Caco-2 cell culture technique, Dr. Florentine Hilty for providing the NP-

FePO4, Dr. Janneke Balk for providing technical expertise and lab space for 

Western blots, Dr. Dora Pereira for her technical advice in nanoparticle 

characterisation and donation of Hutu-80 cells, Dr. Mohamad Aslam for siRNA 

training, Dr. Stuart Rushworth and Ms. Amina Abdul-Aziz in RT-PCR training, and 

Dr. Paul Sharp for PhD mentorship.  
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Chapter 3: Ferric phosphate nanoparticles  
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3. Ferric phosphate nanoparticles 

This chapter is based upon the manuscript entitled ‘Mechanisms of iron 

uptake from ferric phosphate nanoparticles in human intestinal Caco-2 cells; 

submitted and accepted in the journal, Nutrients (DOI: 10.3390/nu9040359) 

[328]. 

3.1 Introduction 

Decreasing particles to the nano scale has recently gained attention as a 

technique to improve iron absorption. Chemically synthesised 5 nm iron 

hydroxide nanoparticles (named IHAT) have been recently developed by the 

Powell lab at MRC Cambridge. These nanoparticles were well absorbed (80%) in 

animal and human subjects [287] relative to FeSO4. They also provided 

compelling evidence in cell culture models that their nanoparticles were absorbed 

independently from DMT1 [329] using an endocytosis like pathway [286]. A 

separate group provided evidence for the presence of hemin-coupled iron 

nanoparticles internalised in Caco-2 monolayers [277], which also indicates the 

presence of an endocytosis pathway. In these prior studies, the effect of 

gastrointestinal digestion was not measured. Whether dietary iron nanoparticles 

are absorbed using clathrin-mediated endocytosis pathways after exposure to in 

vitro digestion has not been demonstrated.  

Previous studies examining the bioavailability of elemental iron powders 

have shown an inverse relationship between particle size and iron absorption. 

Harrison et al [194] found that decreasing the particle size of FePO4 from 12-15 

μm to 1 μm increased iron solubility and improved RBV 5-fold. Decreasing 

particle size to the nano scale could be a strategy to improve iron bioavailability. 

Recently, FePO4 synthesised to the nano scale (NP-FePO4) by flame spray 

pyrolysis (FSP) was reported to have similar iron bioavailability to FeSO4 in rat 

models [288], and it was proposed that this was a function of higher surface area 
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and increased solubility relative to its larger precursors. However, further studies 

are required to confirm that these findings in rats can be extrapolated to humans 

[209] given that rodents endogenously synthesise AA [49] and are less affected 

by dietary inhibitors of iron absorption than humans [208].  

In this study, the effects of in vitro simulated gastrointestinal digestion on 

the size distribution of NP-FePO4, iron solubility, iron uptake into Caco-2 cells, 

and mechanisms of iron absorption were examined. The overall aim of this 

chapter is to understand how iron is absorbed from NP-FePO4 in Caco-2 cells 

after exposure to pH treatment. 

3.2 Materials and Methods 

Samples of NP-FePO4, previously characterised for crystalline structure, 

phase distribution, chemical composition, and specific surface areas (SSA, 100 

and 200 m2/g) [288, 289], were kindly donated by ETH Zurich.  

3.2.1 Sonication 

NP-FePO4 was diluted to a concentration of 1 mg/mL in water or minimum 

essential media (MEM) and was sonicated for size characterisation and cell 

culture studies. For detailed methodology, see section 2.2.1.  

3.2.2 In vitro simulated gastrointestinal (GI) digestion 

NP-FePO4 was exposed to in vitro simulated gastrointestinal digestion (GI) 

[149, 218, 248]. Briefly, 10 mL of 40 mM NaCl and 5 mM KCl pH 2 solution 

containing 0.4% pepsin was added to NP-FePO4 in a 50 mL polypropylene tube. 

The mixture was placed on a rotating table (100 rpm) and incubated for 1 hr at 

37°C. After 1 hr, the pH of the digests was readjusted to 5.5-6.0 and a 

pancreatin-bile solution (0.25%) added. The pH was further adjusted to 6.9-7.0 

with 1 M NaHCO3 and incubated for a further 30 minutes at 37°C.   
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3.2.3 Transmission electron microscopy (TEM) 

TEM micrographs were generated for visualisation of NP-FePO4 (200) 

during GI digestion. For detailed methodology, see section 2.2.3. 

3.2.4 Disc centrifugal sedimentation (DCS) 

The CPS disc centrifuge model 2400 (CPS Instruments, UK) was used to 

measure the total particle distribution given the heterogeneity, polydispersity, and 

aggregated/agglomerated particle dispersions during GI digestion. For detailed 

methodology, see section 2.2.4. 

3.2.5 Dynamic light scattering (DLS) 

The hydrodynamic particle size of NP-FePO4 in cell culture media was 

measured using dynamic light scattering (DLS) with the Zetasizer Nano-ZS 

(Malvern Instruments, UK). For detailed methodology, see section 2.2.2. 

3.2.6 Caco-2 cell culture 

Caco-2 cells (HTB-37® VA) from American Type Culture Collection were 

used as the representative model of iron uptake. For detailed methodology, see 

section 2.1.3. 

3.2.7 Supernatant iron during gastric pH treatment  

Supernatant iron from NP-FePO4 (soluble and < 100 nm fractions) was 

quantified using similar methods [265, 289] for iron dissolution at low pH. For 

detailed methodology, see section 2.2.6. 

3.2.8 Phase distribution of iron during gastric and intestinal pH treatment 

The phase distribution of iron was determined using a modification of the 

method from Pereira et al [286]. For detailed methodology, see section 2.2.7. 
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3.2.9 Measurement of iron uptake into Caco-2 cells  

Iron uptake into Caco-2 monolayers was determined using the surrogate 

marker, cell ferritin formation (ng cell ferritin / mg cell protein). The effects of pH, 

time, and dietary factors on iron uptake were measured. For detailed 

methodology, see sections 2.1.5 and 2.1.6. 

3.2.10 Chemical inhibitors targeting iron uptake 

All chemicals, unless otherwise stated, were from Sigma. For pH 

treatment experiments, ascorbic acid (1:20 Fe:AA molar ratio, 600 μM) was 

added at the beginning of the gastric phase and 2.5 mM CaCl2 was added 

directly to MEM (final concentration in MEM after dilution with digests). For 

sonicated NP-FePO4 (200), chlorpromazine hydrochloride (CPZ, 100 μM), 

sucrose (0.5 M), filipin (5 mg/L), and dimethyl amiloride (DMA, 200 μM) were 

used to inhibit endocytosis [286, 316, 317, 330-332]. Caco-2 cells were co-

incubated with iron treatment and endocytosis inhibitors for 1 hr, removed from 

cells, and incubated for a further 23 hrs in MEM. For detailed methodology, see 

section 2.1.7. 

3.2.11 siRNA knockdown of DMT1 in Caco-2 and Hutu-80 cells 

For Caco-2 cells, cell monolayers were transfected with Silencer® Select 

siRNA targeting SLC11A2 (the gene encoding DMT1) or Negative control no. 1 

(200 nM, Life Technologies) using Lipofectamine 3000 in Opti-MEM (Gibco) for 

48 hrs. Pre-confluent Hutu-80 cells were transfected following similar methods as 

for Caco-2 cells. For detailed methodology, see section 2.1.8. 

3.2.12 RT-PCR  

RNeasy Mini Kit (Qiagen) was used for RNA extraction. Complementary 

DNA (cDNA) was synthesised using the qPCRBIO cDNA Synthesis Kit (PCR 
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Biosystems). Real time PCR (RTPCR) was conducted using the Roche 

LightCycler 480. Relative expression of SLC11A2 (DMT1) was normalised to the 

housekeeping gene, 18S and assessed using the ∆∆Ct method [333]. For 

detailed methodology, see section 2.1.9. 

3.2.13. Statistical analysis 

Statistical analysis was performed using GraphPad Prism v.6.0 (San 

Diego, CA). Particle size was calculated using Feret’s diameter and particle size 

distributions expressed using the median particle size (d50) with d10 and d90 

representing 10% and 90% of the particle sizes, respectively. One-way repeated 

measures ANOVA with Tukey’s multiple comparisons test was used to compare 

differences in iron uptake or one-way repeated measures ANOVA with Dunnett’s 

test were used to compare differences between NP-FePO4 (200) and NP-FePO4 

(200) treated with chemical inhibitors. Cell culture experiments were repeated 2-3 

times, with n = 3 per experiment. Differences were considered significant at p < 

0.05. 

3.3 Results 

3.3.1 Characterisation of sonicated and in vitro digested NP-FePO4 

Particles synthesised to the nano-scale are novel technologies. While iron 

nanoparticles have been shown to be absorbed directly into enterocytes, these 

studies have used stabilised particles in solution with defined particle sizes, 

which may not be physiologically representative in humans. Our aim, therefore, 

was to characterise its exposure to gastrointestinal digestion. Furthermore, 

nanoparticle agglomeration is a well-described phenomena occurring in cell 

culture media [334-336]. To prevent large agglomerates, ultrasonic cavitation was 

used as it produces sufficient energy to stabilise particles in solution as 

demonstrated below.  
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Figure 3.1 (a) Size determination of sonicated NP-FePO4 as measured by 
dynamic light scattering (DLS) and (b) Particle-size distribution assessed using 
DLS.  

1 mg/mL NP-FePO4 dispersions in MEM were measured using probe 
sonication (MSE Soniprep 150, UK) for 15 min (amplitude: 16.1 A, 150 W). 3 
independent determinations were taken on separate days.  

 

Particle size characterisation using DLS was conducted with NP-FePO4 

(200) and NP-FePO4 (100) in MEM (Figure 3.1). Although the mean particle size 

(MPS) of the dried precursor NP-FePO4 was 10 and 20 nm respectively, in MEM 
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the MPS was in the 300-500 nm size range. The mean particle size generated 

with sonicated NP-FePO4 (200) was less than sonicated NP-FePO4 (100). 

Sonicated NP-FePO4 (200) hydrodynamic diameter averaged 341 nm (d10, d90: 

190, 459) and NP-FePO4 (100), 458 nm (d10, d90: 342, 532).  

 

Figure 3.2 Histogram representing the particle distribution based upon 
total particle population during stages of GI digestion as measured by DCS. 

 

Particle size distributions investigating the total particle population during 

GI digestion were conducted using CPS (Figure 3.2). After 60 min digestion at pH 

2, 50% of the particles were ≤1000 nm, and 30% of the particles were ≤ 400 nm. 

At pH 7, rapid agglomeration of the particles led to an 80% increase in micron-

sized fractions, and the proportions of the 100-400 nm and 400-1000 nm 

fractions were reduced to < 10%. Overall, about 15% of the particles were ≤ 400 

nm after digestion. Dilution 1:1 in MEM caused further agglomerate formation, 

resulting in < 5% of the particles in the ≤ 400 nm range.  
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Figure 3.3 Size determination of NP-FePO4 (200) during different stages 
of GI digestion using TEM.  

(a) Scatter bar plot of NP-FePO4 (200) sizes (in nm), measured using 
Feret’s diameter, and calculated using ImageJ software analysis. Representative 
TEM micrographs used in the analysis of size and size distributions at (b) 
sonicated, (c) unsonicated, (d) pH 2, t = 0 min, (e) pH 2, t = 60 min, and (f) pH 7, 
t = 30 min with scale bar set at 0.5 μM.  

 

 

b c d e f

a

Treatment Measured particle sizes (nm)

dv10 dv50 dv90
Particle 
count

Sonicated 138 312 1264 59
Undigested 264 1996 10354 38
pH 2, t=0 260 771 1606 47
pH 2, t=60 135 348 1602 55
pH 7, t=30 142 413 1694 48
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Table 3.1 Particle-size distribution analysis of NP-FePO4 (200) during 
different stages of GI digestion from TEM analysis.  

 

Particle size of NP-FePO4 (200) during GI digestion was visualised using 

TEM and particles analysed for size with ImageJ software. First, the size 

distribution of non-sonicated NP-FePO4 (200) was compared with sonicated NP-

FePO4 (200) in milliQ H2O. Large, agglomerated, electron dense particles formed 

without sonication in the micron range (Figure 3.3c) with d50 = 1996 nm (Table 

3.1). Sonication of NP-FePO4 (200) resulted in particle dispersal of similar size 

range to the DLS data, d50 = 312 nm. After exposure initially to gastric digestion 

(pH 2), the large, agglomerated particles shifted to a reduced size (d50 = 771 

nm). Longer exposure time in pH 2 (60 min) caused further reduction of particle 

size to d50 = 348 nm. After the GI digest was neutralized to intestinal conditions 

(pH 7, t = 30) with 0.1 M NaHCO3, the particle size slightly agglomerated to d50 = 

413 nm (Table 3.1). 
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Figure 3.4 Representative AFM micrograph depicting sizes of NP-FePO4.  

The x and y-axis represent the scan size used for each micrograph 
examined. The scale bar (right) represents the size of NP-FePO4 as measured in 
the z-axis. 
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Figure 3.5 Size determination of NP-FePO4 (200) during different stages 
of GI digestion using AFM.  

(a) Scatter bar plot of NP-FePO4 (200) sizes (in nm) using XEI software 
(Park Systems) and (b) Particle-size distribution analysis of NP-FePO4 (200) 
during different stages of GI digestion using AFM data.  

 

Similar to the TEM data, particle size was significantly larger in undigested 

NP-FePO4 (200) compared to sonicated NP-FePO4 (200). Particle sizes were not 

altered at pH 2 (t=0) but after 30 min were greatly reduced (d50 = 9). Mean 

particle size was 2x larger when the digest was neutralised at pH 7, t=30 (d50 = 

25). Overall, particle sizes determined by AFM were less than for TEM. 
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3.3.2 Effect of gastric time and pH on supernatant iron, soluble iron, and 

uptake into Caco-2 cells   

These sets of experiments determined how factors of gastric digestion 

affect iron solubility and bioavailability from NP-FePO4 in comparison with fully 

soluble, FAC. The effects of exposure time and pH on supernatant iron 

concentration and Caco-2 cell uptake were examined. At pH 2, NP-FePO4 (100 

and 200) was digested for 30, 60, and 120 min and aliquots were taken to 

determine supernatant iron. The remaining digestion solution was neutralised at 

pH 7 and incubated for a further 30 min for cellular iron uptake. 
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Figure 3.6 Effect of gastric digestion on supernatant iron and iron uptake 
in Caco-2 cells.  

FAC or NP-FePO4 were (a) digested at pH 2 for varying times [30, 60, 120 
min] or (b) varying pH [1, 2, 4] for 1 hr and supernatant iron determined at the 
end of gastric digestion. Iron treatments were also exposed to Caco-2 cells and 
measured for cell ferritin formation (c, d). Data are expressed as the means of 
two independent experiments (n = 3 per experiment, ± SEM).  

 

Supernatant iron was increased with longer gastric digestion times, but no 

significant difference was observed between the two particle sizes. Compared to 

FAC, supernatant iron of NP-FePO4 reached 70% after 2 hrs digestion. In 

contrast, the pH of the gastric digest had a large effect on supernatant iron from 

NP-FePO4. The entire iron fraction was exclusively found in the supernatant 

fraction when NP-FePO4 was digested at pH 1 for 1 hr, whereas only 5-10 % of 

iron was in the supernatant at pH 4 for both particles. 

Iron uptake was significantly increased 2-fold when NP-FePO4 was 

digested for 120 min compared to 30 min for both particle sizes. Iron uptake 

between two particle sizes evaluated over 30, 60, and 120 min was not different. 

In comparison to FAC, in which the ferritin formation was not affected by time, the 

two particle sizes were only half as absorbed. Iron uptake of FAC was 

significantly greater at pH 1 than pH 4. NP-FePO4 was not taken up (compared to 

controls not containing iron) after digesting both particles at pH 4 for 1 hr. While 

iron uptake of both particles was not different when digested at pH 2 or 4, a 

significant increase was found in NP-FePO4 (200) compared to NP-FePO4 (100) 

when digested at pH 1. At pH 1, iron uptake of NP-FePO4 (200) was similar to 

FAC digested at every pH. 
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Figure 3.7 Total iron determination of NP-FePO4 after pH gastric digestion 
(pH 2) and intestinal digestion (pH 7).  

NP-FePO4 was digested at pH 2 for varying times and: (a) NP-FePO4 
(200) or (c) NP-FePO4 (100) phase distribution determined. NP-FePO4 was 
digested for 1 hr, neutralised to pH 7 with 1 M NaHCO3, incubated for 30 min 
and: (b) NP-FePO4 (200) or (d) NP-FePO4 (100) phase distribution determined. 
Data are expressed as the means of two independent experiments (n = 2 per 
experiment, ± SD).  
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soluble fraction also increased concurrently from both NP-FePO4. The 

nanoparticulate iron percentage from NP-FePO4 (200) increased from 4.7% to 

10.6% and NP-FePO4 (100) from 5.3% to 14.1% when the gastric digestion was 

extended from 30 min to 120 min.   

Phase distributions were also determined after pH treatment when NP-

FePO4 was neutralised to pH 7, t=30. The percentage of nanoparticulate iron was 

not significantly altered in NP-FePO4 when the digest was neutralised from 

gastric to intestinal digestion. The percentage of microparticulate iron increased 

from 42.3% and 44.5% in the gastric digestion after pH 2, t=60 to 68.2% and 

72.6% at pH 7, t=30 min for NP-FePO4 (200) and NP-FePO4 (100), respectively.  

3.3.3 Effect of AA and calcium on supernatant iron and iron uptake in Caco-

2 cells  

Supernatant iron at gastric pH is an important determinant of iron 

bioavailability; AA is a potent enhancer of non-haem iron bioavailability, and 

calcium is an inhibitor of non-haem iron bioavailability. We wanted to assess 

whether these dietary components had an effect on iron solubility and 

bioavailability from NP-FePO4. We also measured supernatant iron at neutral pH 

to understand whether iron from NP-FePO4 precipitated out of solution to iron-

hydroxides similar to other insoluble iron fortificants. 
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Figure 3.8 Supernatant iron of digested NP-FePO4 after pH treatment.  

NP-FePO4 was digested at pH 2 for 1 hr, neutralised to pH 7 with 1 M 
NaHCO3, incubated for 30 min and supernatant iron measured relative to total 
iron. Data are expressed as the n = 3 ± SD.  

 

Supernatant iron at neutral pH (pH 7) was similar among FAC, NP-FePO4 

(200) and NP-FePO4 (100) when AA (1:20 Fe:AA) was added to the gastric step 

of each digest. In the absence of AA, supernatant iron from FAC was not different 

from with AA. In contrast, supernatant iron from NP-FePO4 without AA was 

reduced by 50% at pH 7 in comparison with AA. No differences in supernatant 

iron was found between NP-FePO4 (200) ad NP-FePO4 (100) at neutral pH. 
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Figure 3.9 Effect of AA and CaCl2 on iron uptake from pH treated FAC or 
NP-FePO4 

Iron uptake of pH treated FAC or NP-FePO4 after incubation with (a) AA 
(1:20 AA molar ratio, 600 μM) or (b) CaCl2 (2.5 mM, final volume in MEM after 
dilution) in Caco-2 cells after 24 hrs. Data are expressed as the means of two 
independent experiments (n = 3 per experiment, ± SD).  

 

AA added to the digest (1:20 AA molar ratio) during the gastric phase 

increased iron uptake from FAC 2-fold and both forms of NP-FePO4 3-4 fold. The 

increase in iron uptake from NP-FePO4 with added AA was similar to FAC and 

FAC with AA, which correlates well with the increased supernatant iron from NP-

FePO4 with AA at neutral pH. 

NP-FePO4 was digested and added to MEM containing a final 

concentration of 2.5 mM CaCl2 after dilution (Figure 3.9). Calcium (as CaCl2) 

inhibited iron uptake from FAC and NP-FePO4 (200) by 50%. Iron uptake from 

NP-FePO4 (100) was marginally decreased with CaCl2 but the effect was not 

statistically significant. This might be due to the low basal levels of iron uptake 

observed from NP-FePO4 (100) without CaCl2.  
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3.3.4 Mechanisms of iron uptake from sonicated NP-FePO4 (200) 

To provide evidence that NP-FePO4 is directly translocated into Caco-2 

cells, particles were visually detected using confocal techniques. Using RCM and 

enhanced contrast to remove spurious NP detection [337], high intensity 

reflection spots were detected (Figure 3.10, top panel, 3rd column), indicating NP-

FePO4 internalisation in Caco-2 cells. Z-stack projection of Caco-2 cell 

monolayers confirmed that NP-FePO4 was, in fact, internalised and not simply 

representative of cell surface interaction with NP-FePO4, as this phenomena 

occurs with NP-FePO4 (Florentine Hilty, personal communication). The green 

fluorescence, indicative of NP-FePO4, was clearly evident on the cell surface 

(Figure 3.11, 1st panel) and on the z-axis (Figure 3.11, 4th panel). 

 

Figure 3.10 RCM images representing the interaction of NP-FePO4 (200) 
with Caco-2 cells.  
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Caco-2 cells were treated with sonicated NP-FePO4 (200) [top panel] or 
control (blank) sample [bottom panel]. Left panels depict cells stained with 
nucleus stain (DAPI). Middle panels depict unaltered (raw) reflection images. 
Right panels depict edited reflection images, with high contrast to distinguish 
particles (top) from artifacts (bottom).    

 

 

Figure 3.11 RCM images and z-stack projection of Caco-2 cells and 
internalised NP-FePO4 (200). 

Caco-2 cells were treated with sonicated NP-FePO4 (200) and images 
were at different rotations on the z-axis. The first image depicts NP-FePO4 (200) 
on the cell surface (particles are in light blue [aqua] against the DAPI 
background). The final image depicts internalisation of NP-FePO4 (200) into cells. 
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Figure 3.12 Iron uptake of sonicated NP-FePO4 (200) co-incubated with 
chemical inhibitors targeting endocytosis uptake pathways in Caco-2 cells.  

Data are expressed as the means of two independent experiments (n = 3 
per experiment, ± SEM). Asterisks denote significant differences compared to 
control at p < 0.05. 
 

Using sonicated NP-FePO4 (200), CaCl2 did not inhibit iron uptake, 

suggesting that DMT1 is not required for uptake of sonicated NP-FePO4 (200). 

However, iron uptake was reduced by 30% compared to control when sonicated 

NP-FePO4 (200) was incubated in the presence of CPZ and sucrose, both 

clathrin-mediated endocytosis inhibitors. Sonicated NP-FePO4 (200) with DMA, 

an inhibitor of macropinocytosis, also resulted in reduction of iron uptake by 20%. 

 

 

Figure 3.13 RTPCR measuring the effect of siRNA knockdown of DMT1 in 
Caco-2 and Hutu-80 cells.  

DMT1 expression levels in (a) Caco-2 or (b) Hutu-80 cells determined in 
control (non-transfected cells), non-targeting siRNA (negative control cells) and 
SLC11A2 siRNA treated cells as measured by RT-PCR and normalised to 18S 
housekeeping gene after 72 hrs. Data are expressed as the means of three 
independent experiments (n = 3 per experiment, ± SEM). Differences indicated 
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with one, two, or three asterisks are considered significant at p < 0.05, 0.01, and 
0.001 levels, respectively. 

Under experimental conditions, DMT1 gene expression was reduced by 

20% in Caco-2 cells following exposure to SLC11A2 siRNA. DMT1 gene 

expression of siRNA non-targeting (Negative control 1) cells was not different 

than control cells (cells with transfection reagent but without siRNA) [shown in 

Figure 3.13]. Transfection of Hutu-80 cells with DMT1 siRNA resulted in a 50% 

decrease in DMT1 gene expression compared to control and siRNA non-

targeting siRNA cells. The transfection efficiency of Hutu-80 cells was greater 

than for Caco-2 cells (20%). 



 

 

 

129 

 

Figure 3.14 Effect of siRNA targeting DMT1 on iron uptake in Caco-2 and 
Hutu-80 cells. 

Iron uptake of (a, c) sonicated NP-FePO4 (200) and FAC or (b, d) pH 
treated NP-FePO4 (200) and FAC in non-targeting siRNA or SLC11A2 siRNA 
treated Caco-2 and Hutu-80 cells after 2 hr exposure followed by incubation in 
MEM for a further 22 hrs. Data are expressed as the means of three independent 
experiments (n = 3 per experiment, ± SEM). Different letters indicate statistically 
significant differences (p < 0.05). 

 

Iron uptake from FAC was significantly reduced by 20% in cells treated 
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uptake from sonicated NP-FePO4 (200) was slightly reduced but not significantly 

different in cells treated with siRNA DMT1 relative to cells treated with non-

targeting siRNA. In contrast to sonicated NP-FePO4 (200), iron uptake from pH 

treated NP-FePO4 (200) was significantly reduced (30%) in cells treated with 

siRNA DMT1 compared to cells treated with non-targeting siRNA. Iron uptake 

from pH treated FAC was reduced by 20% in cells treated with siRNA DMT1 

compared to cells with non-targeting siRNA, similar to FAC without pH treatment.  

Iron uptake of sonicated NP-FePO4 (200) was significantly inhibited in cells 

treated with siRNA DMT1 compared to non-targeting cells (24%), which was 

similar to the inhibitory effect of iron uptake in FAC (25%). Iron uptake was 30% 

lower from sonicated NP-FePO4 (200) compared to FAC. Similar to sonicated 

NP-FePO4 (200), iron uptake from pH treated NP-FePO4 (200) was significantly 

decreased in cells treated with siRNA DMT1 compared to cells treated with non-

targeting siRNA (33%). pH treated FAC was also significantly decreased in cells 

treated with siRNA DMT1 compared to cells treated with non-targeting siRNA 

(40%). Overall, while inhibitory effects of iron uptake were observed for both 

sonicated and pH treated NP-FePO4 (200) in siRNA DMT1 cells, the effect was 

larger when NP-FePO4 (200) was pH treated compared to sonicated.  
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Figure 3.15 Viability of Caco-2 cells measured 4 and 24 hrs after 
incubation with chemical inhibitors or NP-FePO4 treatments.  

Chemical inhibitors with concentrations used in the experiments described 
were incubated with Caco-2 cells for 1 hr and cells were measured for viability 
after (a) 1 hr or (b) 24 hrs. Iron compounds were incubated with Caco-2 cells for 
either (c) 1 hr (100 μM Fe) or (d) 24 hrs (30 μM Fe). 1% Triton X-100 was used 
as the positive control; 10-40% cell viability was assessed between experiments. 
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Data values are expressed as the n = 3 ± SD. One-way ANOVA with Dunnett’s 
multiple comparison test was used to distinguish differences between untreated 
cells with chemical inhibitor or iron compound. Different letters indicate 
statistically significant differences (p < 0.05). 

 

Cell viability was unaffected by either NP-FePO4 dose or chemical 

inhibitors, suggesting that ferritin formation is due to iron uptake and not a 

response to cell damage or inflammation.  

3.4 Discussion 

The bioavailability of NP-FePO4 has been shown to be similar to FeSO4 in 

rats using the haemoglobin repletion assay [288, 289]. Rohner and Hilty 

suggested that increased iron solubility of the particles at low pH was responsible 

for increased iron absorption, indicating that iron uptake in the intestine is 

facilitated through gastric dissolution, hydrolysis of Fe3+ from the particle, 

reduction to Fe2+, and absorption via the DMT1 transporter. The present study 

aimed to elucidate the mechanisms involved in iron uptake from NP-FePO4 using 

cellular models. 

Characterisation of particle size and the size distribution of nanoparticles 

are very important determinants for understanding the mechanisms of iron 

uptake in the duodenum and also given the growing concern over nanoparticle 

toxicity. Along with surface characteristics, charge, and cell type interactions, 

particle size directly correlates with whether nanoparticles are able to be 

absorbed directly into tissues [284, 338-340]. 

In terms of duodenal iron absorption, gastrointestinal digestion strongly 

influences iron bioavailability and nanoparticle translocation [341]. In this chapter, 

a validated in vitro digestion technique was used that mimics in vivo conditions 

[218, 342] in order to understand the changes in NP-FePO4 size and size 
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distribution. The analysis was conducted to determine whether direct transcytosis 

of particles is physiologically relevant. Although many versions of simulated in 

vitro digestion exist, this particular method was selected as it estimates iron 

bioavailability when coupled to the Caco-2 cell model and has been shown to 

correlate well with data from human trials [242, 268].  

The nanoparticle characterisation described in the chapter is 

complimentary and includes DLS and DCS, which measures the particles in 

solution, and TEM and AFM, which measure the non-aquated particle core.  

DLS is one of the most widely used techniques to characterise 

nanoparticles due to its ease of use. The hydrodynamic sizes of sonicated NP-

FePO4 were 341 and 458 nm, which were 30x and 20x larger in magnitude than 

its dried precursors. Unsonicated NP-FePO4, and the effects of in vitro digestion 

on the size of particles cannot be used with DLS because the technique is unable 

to cope with rapidly sedimenting particles in solution. In addition, because DLS 

calculates particle sizes to the 6th power, larger particles tend to mask smaller 

particles within solution. 

To address the size heterogeneity of NP-FePO4 in solution, we used DCS 

to model particle behavior of NP-FePO4 during in vitro GI digestion. Particle sizes 

decreased with time during gastric digestion. At pH 2, t=60, 50% of the particles 

were < 400 nm but at pH 7, t=30 min, only 15% of the particles were < 400 nm. 

This indicated that the majority of NP-FePO4 (200) agglomerated (75% particles 

> 1 μM) when exposed to GI digestion. The agglomerated particle fractions also 

suggest that NP-FePO4 (200) is likely non-toxic to the intestinal epithelium as its 

size is probably not predictive of uncontrolled absorption [11, 21, 27]. 

Nonetheless, 15% of the total particle distribution < 400 nm was still a significant 

amount and warranted further investigation whether these sized particles 

undergo transcytosis. It is important to note that the DCS data indicated that the 
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dilution of the in vitro digest with MEM resulted in very few particles < 400 nm (< 

5%). This suggests that the in vitro digestion method cannot measure particle 

transcytosis and sonication would be required.    

Similarly to DCS, the TEM data indicated that particle size of NP-FePO4 

decreased with respect to time at gastric pH. Neutralisation of the digest to pH 7 

resulted in d50 = 413 nm with 10% of the particle distribution less than 142 nm. 

Unlike DCS, particle agglomeration was not observed using TEM, which is likely 

due to technical differences in microscopy and laser diffraction [28].  

It is important to note several important points about using TEM for 

nanoparticle characterisation. Systematic selection bias of the images is always 

a concern with this technique. To address this issue, at least 15 separate images 

(and grid areas) were calculated for each treatment and particles less than 50 nm 

were excluded from analysis to avoid any artifacts. One major disadvantage of 

using TEM to characterise nanoparticles is that drying effects tend to increase 

particle agglomeration [343]. If this were the case, the measurements obtained 

most likely overestimated the size of particles.  

The AFM technique uses a cantilever and its displacement after particle 

contact results in a measurement of force that is converted and calculated to 

particle size on the z-axis (top of the particle, as opposed to x and y). The AFM 

data was less conclusive regarding the size of NP-FePO4. Likely this resulted 

because it was not possible to obtain a sufficient quantity of particles for proper 

analysis due to time constraints and the length of instrumentation time required 

per run. Particles counted were overall < 200 nm in size, not unsurprising as and 

the drying of particles on the mica substrate most likely leads to spreading of the 

particles. The general size patterns GI digested NP-FePO4 (200) as measured by 

AFM was qualitatively similar to that of DCS and TEM. Using AFM, the size of 

NP-FePO4 (200) decreased with time, and slightly agglomerated at neutral pH.  
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Given these data on the size of NP-FePO4 (200) during GI digestion, two 

separate mechanisms of iron uptake from NP-FePO4 into Caco-2 cells were 

investigated. These were (a) iron uptake via DMT1 as a result of higher 

supernatant iron of NP-FePO4 at low gastric pH, and (b) uptake of non-

hydrolysed NP-FePO4 via endocytosis.  

To measure iron uptake of NP-FePO4 via DMT1, the effect of pH treatment 

on iron uptake of NP-FePO4 in Caco-2 cells was examined. The term supernatant 

iron is used in the majority of these experiments, rather than soluble iron, as it 

more accurately describes the aqueous layer, which contains the combination of 

soluble iron and nanoparticles < 100 nm [286, 341]. Gastric digestion at pH 1 (1 

hr) significantly increased supernatant iron and iron uptake compared to pH 2 

and pH 4. Gastric digestion at pH 2 for 30 min, 60 min, and 120 min led to 

increases in supernatant iron and uptake with time, but the effect of time was 

much less pronounced than pH. Coupling gastric digestion at pH 1 to Caco-2 

cells resulted in increased iron uptake from NP-FePO4 (200) compared to NP-

FePO4 (100). Iron uptake of NP-FePO4 (200) was similar to FAC. Rohner et al [6] 

and Hilty et al [7] observed similar iron uptake of NP-FePO4 (200) compared to 

FeSO4 in rats and suggested that its high iron uptake is a result of increased iron 

particle dissolution compared to FePO4. We found similar results in Caco-2 cells.  

To ensure that iron uptake at low pH was a function of increased soluble 

iron, the supernatant iron obtained was fractionated further using 3 kDa spin 

filters to distinguish soluble iron from nanoparticulate iron. As a control, this 

technique was used on undigested NP-FePO4 in water; as expected, all the iron 

was in the microparticulate fraction as these particles free agglomerate in 

solution. Nanoparticulate iron (from 5 to 10-15%) increased as a function of time 

at pH 2, but the rate was less than the increase in soluble iron. After the digest 

was neutralised to pH 7, t=30, the phase distribution was also examined. While 

the amount of soluble iron decreased to 25% total iron, most likely due to the 
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formation of ferric hydroxides, the amount of nanoparticulate iron was slightly 

reduced to the same amounts found at pH 2, t=30 (~5%). It is likely that NP-

FePO4 < 100 nm was a minor contribution to iron uptake in these experiments.  

The iron bioavailability of foods and the effects of dietary factors using the 

in vitro digestion / Caco-2 cell model has been shown to correlate well with 

human absorption data [242, 268]. However, the usefulness of the in vitro 

digestion / Caco-2 cell model for elemental iron powders as a predictor for human 

bioavailability has been questioned [127, 264]. In Caco-2 cells, breads fortified 

with H-reduced iron had improved iron bioavailability with particle size of 8 micron 

compared to 45, and a linear relationship was found between solubility and iron 

bioavailability [266]. Similarly, 40-60 nm H-reduced iron particles had improved 

iron bioavailability compared to its larger precursors [267]. Others found that the 

Caco-2 cell model could not consistently predict iron bioavailability of iron 

fortificants in different food matrices that were observed in humans [262, 263]. 

The current recommended in vitro test for iron bioavailability of iron fortificants is 

iron dissolution at pH 1 [4,39]. This low pH is not physiological, as it does not 

represent the pH found within the stomach, but has been shown to be a 

predictive model of human iron bioavailability [326]. It was observed in these 

experiments that the supernatant iron concentration from NP-FePO4 at pH 1 was 

equal to that of FAC, and that there was a positive correlation with Caco-2 cell 

ferritin concentration. Iron uptake of NP-FePO4 (200) was equal to that of FAC at 

pH 1. Thus, NP (and other insoluble fortificants) exposed to in vitro digestion at 

pH 1 and coupled to Caco-2 cells may better predict human bioavailability. 

The role of DMT1 transport in iron uptake from pH treated NP-FePO4 in 

Caco-2 cells was examined. Two to 4-fold increases in ferritin formation were 

observed when AA was added to the gastric digest with NP-FePO4, similar to 

FAC. AA is a potent enhancer of non-haem iron absorption which is thought to 

occur via reduction of Fe3+ to Fe2+ and the prevention of insoluble iron hydroxides 
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[49, 344]. The data suggests that AA increases iron uptake of NP-FePO4, similar 

to FAC and FAC + AA in Caco-2 cells, by facilitating Fe2+ DMT1 mediated 

uptake. It was further confirmed that iron uptake from NP-FePO4 occurred via 

DMT1 by incubating Caco-2 cells with 2.5 mM CaCl2. Calcium has been shown 

to inhibit non-haem iron uptake in Caco-2 cells by decreasing apical protein 

expression of DMT1 [139]. Iron uptake from pH treated FAC and NP-FePO4 was 

reduced when incubated with CaCl2, providing evidence that DMT1 is required for 

iron uptake. Similarly, using siRNA targeting DMT1 in both Caco-2 and Hutu-80 

cell lines, it was demonstrated that iron uptake was decreased in DMT1 

knockdown cells compared to negative control cells in both cell lines, thereby 

confirming the role of DMT1 in iron uptake from NP-FePO4.  

It is important to note that a significant difference was observed in iron 

uptake when Caco-2 cells were treated with DMT1 siRNA even though only a 

20% knockdown in gene expression was observed using RTPCR. It is 

acknowledged that several other housekeeping genes should have been run 

simultaneously to verify whether the knockdown measured was underestimated. 

18S rRNA was used as our housekeeping gene but is usually highly expressed in 

tissues. Its Ct values are much higher relative to DMT1, thus actual differences in 

gene expression between siRNA treated cells may be difficult to distinguish.  

The effects of long-term exposure and potential toxicity of NP-FePO4 

requires further investigation. Health concerns have been raised about the 

toxicological effects of daily consumption of nanoparticles found in various 

consumer products (see review by Nel et al [338]). NP-FePO4 was non-toxic to 

Caco-2 cells when incubated for 24 hrs, but recent studies have shown that 

chronic exposure of Caco-2 / HT-29 MTX co-cultures to polystyrene or TiO2 

nanoparticles can markedly remodel the intestinal epithelium and affect iron 

absorption [272, 283].  This requires further investigation. 
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DMT1 transport is most likely the predominant mechanism of iron uptake, 

but an alternative route of iron uptake may also be operational, since ~15% of the 

particles were between 50 and 400 nm. Gastric pH in rats is considerably higher 

than pH 1 [345, 346] and the experiments showed that a large amount of iron 

(25-50%) from NP-FePO4 remained insoluble at pH 2, with very little iron in the 

supernatant fraction at pH 4. This suggests that a significant fraction of iron 

bound to NP-FePO4 could be directly transported into the epithelium by 

endocytosis, given particle translocation of 200 and 500 nm particles seen in 

Caco-2 cells co-cultured with M-cell like phenotype [284, 347]. Sonicated NP-

FePO4 was used to investigate this possibility. The particle size range of 

sonicated NP-FePO4 (200) was similar to the range expected for the non-

agglomerated fraction of GI digested NP-FePO4 (200). Iron uptake from 

sonicated NP-FePO4 (200) was inhibited with CPZ and sucrose, and to a lesser 

extent DMA. The chemical inhibitors used have been shown to be successful in 

inhibiting endocytic pathways in Caco-2 cells [286, 331, 332]. Since the size 

distribution of sonicated NP-FePO4 (200) was unimodal, consisting of non-

uniform particles with a wide range (150 – 500 nm), it is possible that the smaller 

sized particles may be absorbed using clathrin-mediated endocytosis and the 

larger sized particles by macropinocytosis.  

Evidence of particle transcytosis by NP-FePO4 is not unsurprising as 

recent reports have shown nanoparticle uptake for iron compounds 10–100 nm 

size in Caco-2 cell TEM micrographs [285, 286, 319]. Moreover, in support of our 

findings, a number of previous studies have also shown that nano-sized iron 

compounds are absorbed using endocytic pathways in Caco-2 cells [286, 316, 

317]. In comparison to these other studies, the chemical inhibitors used did not 

inhibit iron uptake to the same extent. This is most likely due to decreased 

particle transport of NP-FePO4 given the relatively large particle sizes in solution. 

Regardless, the siRNA data provided compelling evidence that DMT1 is not a 
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requirement for iron uptake from sonicated NP-FePO4 (200). It was surprising to 

observe that DMT1 knockdown in Hutu-80 cells also decreased iron uptake from 

sonicated NP-FePO4 (200). The reason for the effect might be due to differences 

in cell physiology between polarised Caco-2 cells and non-polarised Hutu-80 

cells.  

The future use of NP-FePO4 as an iron fortificant is to some extent 

dependent on factors other than nutritional considerations. Food fortification for 

large-scale populations requires that the iron compound is cost-effective and 

scalable. Although inherent disadvantages exist in the use of FeSO4 as a 

fortificant, namely its rancidity / instability during storage and colour induced 

changes to the matrix [127, 194], its use meets the criteria described above 

compared to other iron compounds, such as NaFeEDTA and FePP [116]. 

Advances in nanotechnology necessitate decreasing the cost and increasing the 

scalability of production for NP-FePO4 prior to its use as an iron fortificant. 

3.5 Conclusions 

The experiments in the Caco-2 model system described in this chapter 

show that iron uptake from NP-FePO4 occurred predominately through iron 

solublisation and entry via the DMT1 transporter. Some NP-FePO4 (200) may be 

absorbed intact into Caco-2 cells, independently from DMT1, but most likely this 

mechanism contributes a minor role in iron uptake. This conclusion is based on 

the fact that the digestion experiments showed that less than 15% of NP-FePO4 

(200) remained as particles < 400 nm, and with sonicated NP-FePO4 (200), CPZ 

and siRNA DMT1 treated cells inhibited 20% of iron uptake. These results 

suggest that NP-FePO4 (200) endocytosis in Caco-2 cells is dependent on 

particle size, with clathrin-mediated endocytosis (CME) as the predominant 

mechanism of particle internalisation. This is the first paper to suggest a 

mechanism of particle transcytosis for iron compounds that could be used for 
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food fortification. However, one of the assumptions made in these experiments is 

that sonicated particles were similar to the nanoparticle fractions after GI 

digestion, which illustrates the difficulties in translating the relatively novel field of 

nanotechnology to biological systems. Nevertheless, the results demonstrate that 

iron uptake from NP-FePO4 (200) results from both DMT1 transport and particle 

transcytosis, which should be taken into consideration when assessing the 

potential of iron nanoparticles for food fortification.  
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Chapter 4: Phytoferritin 
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4. Phytoferritin 

This chapter is based upon the manuscript entitled ‘Native pea 

phytoferritin is taken up by intestinal Caco-2 cells via a non-DMT1 dependent 

mechanism.’ The manuscript has been submitted and is currently under peer 

review. 

4.1 Introduction 

The majority of the world’s population depends on plant-based foods as 

the main source of dietary iron despite the fact that iron absorption from plants is 

generally considered low (1-10%) [103, 348]. Given the importance of decreasing 

meat consumption due to concerns over health, sustainability, and global 

warming [98-100], investigating plant foods and novel dietary forms of iron that 

are potential sources of bioavailable iron is of particular importance. Peas, beans, 

soybeans and other pulses are rich sources of plant ferritin (phytoferritin) [58, 

305]. Recent studies have suggested that soybean phytoferritin is as bioavailable 

as FeSO4 [169, 304]. One reason for its bioavailability is that it may be absorbed 

separately from non-haem iron using endocytosis [316, 317], yet the role of the 

non-haem iron transporter, DMT1, in phytoferritin-iron uptake remains unclear. 

This chapter’s aim is to investigate the bioavailability of iron and mechanisms of 

absorption from phytoferritin extracted from marrowfat peas. 

4.2 Materials and Methods 

4.2.1 Phytoferritin purification 

Pisum sativum cv Sakura, sold as ‘marrowfat’ peas in the UK, was 

donated by Wherry and Sons (Rippingale, UK). Phytoferritin extraction and 

purification were according to the methods of Laulhere et al [327]. For detailed 

methodology, see section 2.3.1. The enriched ferritin fractions were further 

purified by gel filtration using a Superose 12 10/300 GL column (GE Healthcare) 
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using PBS as the running buffer. Proteins were quantified using the Bradford 

method (BioRad); iron was quantified using the colorimetric iron chelator, Ferene-

S. The iron content averaged 2360 ± 20 Fe atoms (n = 3 purification extracts) 

based on a calculated molecular mass of 552 kDa from the 24-mer protein. 

Purified phytoferritin was used to generate rabbit polyclonal antibodies (Covalab, 

Cambridge, UK). This work was conducted by Dr. Jorge Celma-Rodriguez under 

the JIC Innovation grant entitled “Pea ferritin as a nutritional iron supplement” 

within the Balk lab. 

4.2.2 Caco-2 cell culture 

Caco-2 cells (HTB-37® VA) were grown and cultured as described 

previously. For detailed methodology, see section 2.1.3. 

4.2.3 Phytoferritin treatments on differentiated Caco-2 cell monolayers 

Uptake by DMT1 

The extent of DMT1 mediated iron uptake from phytoferritin was 

determined using (a) chemical enhancement/inhibition of the DMT1 pathway and 

(b) small-interfering RNA (siRNA) targeting of SLC11A2, the gene encoding 

DMT1. FAC was used in parallel as a positive control of DMT1 uptake. 

Phytoferritin (30 μM Fe) was co-incubated with AA, an enhancer of non-haem 

iron uptake, BPDS, an Fe2+ chelator [260], or calcium (as CaCl2), an inhibitor of 

DMT1 protein expression [139] in MEM for 24 hrs. The concentrations of AA, 

CaCl2, and BPDS were 600 μM, 2.5 mM, and 50 μM, respectively. Liposomal 

transfections with siRNA, targeting the knockdown of DMT1 gene expression in 

the Caco-2 and Hutu-80 cell lines, were carried out as previously published [328]. 

For detailed methodology, see section 2.1.8. 

Uptake by endocytosis 
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 Chemical inhibitors were used at previously described concentrations 

[286, 316, 328, 332] that were found to disrupt endocytosis in Caco-2 cells. To 

investigate clathrin-mediated endocytosis (CME), cells were pre-incubated with 

100 μM CPZ, washed 3x with PBS, and incubated with phytoferritin (30 μM Fe) 

for 24 hrs. To probe for specificity of CME, phytoferritin was co-incubated with an 

array of endocytosis inhibitors targeting various pathways. CPZ (100 μM), 

sucrose (0.5 M), filipin (5 mg/L), or DMA (200 μM), were each co-incubated with 

phytoferritin (100 μM Fe) for 1 hr, washed 3x with PBS, and cellular proteins 

harvested immediately or after 23 hrs incubation.  

4.2.4 Measurement of iron uptake in Caco-2 cells 

Cells were lysed, centrifuged, and the supernatants collected. 

Supernatants were analysed for cell ferritin and total protein. For detailed 

methodology, see sections 2.1.5 and 2.1.6. 

4.2.5 Western blotting 

Western blots were used for several determinations. They were used to 

(a) measure the integrity of phytoferritin in peas after cooking and in vitro 

gastrointestinal digestion, (b) measure the integrity of purified phytoferritin after 

pH treatment and (c) identify phytoferritin in Caco-2 cell monolayers. The 

amounts loaded onto gels were 10-20 μg of pea protein, 0.1 μg of purified 

phytoferritin, and 40 μg of Caco-2 cell protein. SDS-PAGE, NATIVE-PAGE, and 

Western blot methodologies were described in sections 2.3.4-2.3.6. 

4.2.6 Reactive oxygen species 

Cellular free radical generation in Caco-2 cells was determined using the 

2ʹ,7ʹ-dichlorofluorescein (DCFH) assay as previously described [349] with minor 

modifications. 5 μM DCFH was added to each well for 30 min (37°C). Cells were 

washed with 1x PBS. Phytoferritin or FeSO4 (100 μM Fe) was added and free 
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radical generation measured over time (up to 2 hrs) using an excitation of 485 nm 

and an emission of 530 nm.   

4.2.7 pH treatment  

The pH treatment protocol was similar to that of Glahn et al [218, 248] 

except that the digestive enzymes and MWCO membranes were omitted to allow 

for passage of soluble and nanoparticulate iron. For detailed methodology, see 

section 2.3.2. Digested phytoferritin was diluted 1:1 in MEM prior to cell 

incubation.  

4.2.8 Soluble iron determination 

The percentage of iron released from the iron core during pH treatment 

was quantified. For detailed methodology, see section 2.3.3. 

4.2.9 Statistical analysis 

Statistical analysis was performed using GraphPad Prism v.6.0 (San 

Diego, CA). Data are presented as mean values with standard error (SEM). Two-

way repeated measures ANOVA with Tukey’s multiple comparisons test was 

used to evaluate differences in iron uptake between phytoferritin and FAC when 

pH and time variables were studied together. One-way repeated measures 

ANOVA with Tukey’s multiple comparisons test was used to compare differences 

in iron uptake between phytoferritin and FAC. One-way repeated measures 

ANOVA with Dunnett’s test were used to compare differences between 

phytoferritin and phytoferritin treated with chemical inhibitors. Differences were 

considered significant at p < 0.05. 
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4.3 Results 

4.3.1 Phytoferritin purification, antibody cross-reactivity, and ELISA cross-

reactivity 

Marrowfat peas were used as the source of phytoferritin because of its 

naturally high ferritin concentration and low-cost/economical price per kg. 

Combined with the low cost of phytoferritin extraction (per communication with 

Dr. Balk), if scaled-up approaches are used, the use of pea ferritin as a nutritional 

iron supplement is feasible. 

Extracted phytoferritin from dried marrowfat peas as the crude fraction 

(CF) and its subsequent purification using gel filtration is shown below (Figure 

4.1). Phytoferritin is a large protein (552 kDa) and does not interact with the 

packed column; thus it elutes at the beginning in the void volume. Fractions of 

purified phytoferritin (F1-F5) are also shown and the majority eluted at F2 and F3. 

All fractions were pooled together for in vitro digestibility and cell culture studies. 

The purified phytoferritin contained ca. 2360 ± 20 Fe atoms per protein shell. 
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Figure 4.1 SDS-PAGE of purified phytoferritin from peas (Pisum sativum).  

The gel was stained with Coomassie blue to detect total proteins. Lane 1 
represents the crude fraction (CF). After gel filtration, purified phytoferritin was 
collected in the flow through (F1-F5) found within the void volume. 
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Figure 4.2 Western blot of purified phytoferritin from peas (Pisum 
sativum).  

The immunoblot was stained with Ponceau-S for total protein (left panel) 
and labeled with anti-pea ferritin antibodies (right panel). The immunosignal from 
5 and 0.5 ng of purified pea ferritin was compared to the signal in the total pea 
extract. 

 

Antibodies (Ab) raised against pea ferritin showed high specificity. As 

shown in Figure 4.2 (right panel), Ab was also sensitive and could detect 0.5 ng 

pea ferritin. Gel and blot are courtesy of Dr. Jorge Celma-Rodriguez.  
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Figure 4.3 Cross-reactivity of the human ferritin ELISA kit (Ramco) with 
purified phytoferritin from P. sativum.  

A standard curve was generated with pre-calibrated human ferritin 
standards (6, 20, 200, 600, 2000 ng/mL) provided by the manufacturer. Separate 
wells were incubated with 20, 200, and 2000 ng/mL phytoferritin.  

 

 

Figure 4.4 Viability of Caco-2 cells exposed to increasing concentrations 
of FAC and phytoferritin. 
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Cells were treated (a) 1% Triton X-100 (positive control), (b) FAC, and (c) 
phytoferritin at increasing dose concentrations for 24 hrs. After 24 hrs, cell 
viability was assessed using the MTS cell proliferation assay (CellTiter® 96 MTS, 
Promega) using manufacturers instructions. 

 

The commercial human ferritin ELISA kit was tested for cross-reactivity 

with phytoferritin. This experiment was conducted to address concerns that 

measuring cell ferritin formation would underestimate iron uptake if phytoferritin 

were in fact absorbed intact in cells and not lysosomally degraded by the time of 

measurement. A signal was not detected for phytoferritin at low, medium, or high 

protein concentrations of the standard curve. The maintenance of healthy cells 

after phytoferritin and FAC treatments was also measured. Using the MTS cell 

proliferation assay (CellTiter® 96 MTS, Promega), cell viability compared to non-

treated cells was the same across increasing iron concentrations (30, 100, 250, 

and 500 μM Fe) for phytoferritin and FAC. 

4.3.2 An endocytosis pathway is involved in iron uptake from phytoferritin 

Confocal images were generated to provide evidence that phytoferritin is 

directly absorbed in Caco-2 cells. In Figure 4.5, green fluorescence, indicative of 

phytoferritin, was associated with the cell monolayer after 1 hr incubation. Further 

detailed analysis using optical slices generated across the z-axis (Figure 4.5) 

revealed that phytoferritin is localised intracellularly (bottom panel, green 

fluorescence).  
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Figure 4.5 Confocal microscopy of phytoferritin interaction with Caco-2 
cells at the cell surface.  

The left panel depicts untreated cells and the right panel depicts 
phytoferritin-treated cells. Cell fixation, permeabilization, and staining were 
identical for both images. Blue signifies the DAPI nuclear stain; green for 
phytoferritin. 
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Figure 4.6 Z-axis projection of internalised pea ferritin in Caco-2 cells.  

Caco-2 cells were untreated (top panel) or phytoferritin-treated (bottom 
panel) and images from left to right were derived from rotation on the z-axis. The 
first column depicts Caco-2 cells on the x and y axis; bottom image contains 
green fluorescence- associated cells. The last column depicts the z-projection of 
Caco-2 cells; the bottom image displays green fluorescence indicative of 
phytoferritin internalisation.  

 

 

Figure 4.7 Iron uptake of phytoferritin after incubation with Fe2+ enhancer 
or inhibitors after 24 hrs.  

Caco-2 cells were incubated with phytoferritin or FAC (30 μM Fe) and (a) 
AA (in the digest), (b) BPDS (in MEM), or (c) CaCl2 (in MEM) for 24 hrs. Cell 
ferritin formation was normalized relative to FAC treatments. Data are expressed 
as the means ± SEM of two independent experiments (n = 3 per experiment). 
Different letters indicate statistically significant differences (p < 0.05). 
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absorption were used. AA catalyses the reduction of Fe3+
 to Fe2+, BPDS is a 

chelator of Fe2+, the iron oxidation state required for DMT1, and calcium inhibits 

iron uptake by removing DMT1 cell surface receptors. Iron uptake from 

phytoferritin with AA was increased 2-fold compared to control when incubated 

for 24 hrs (1:20 Fe:AA molar ratio).  This increase in iron was less than for FAC, 

which had a 3-fold increase in iron uptake in the presence of AA.  

Incubation of phytoferritin with BPDS for 24 hrs did not affect iron uptake 

compared to phytoferritin alone, which contrasts with FAC. Iron uptake from FAC 

was significantly reduced in the presence of BPDS (60%). Iron uptake from 

phytoferritin incubated with BPDS was significantly greater than FAC incubated 

with BPDS (50%).  

Similar to BPDS, CaCl2 (2.5 mM) co-incubated with native phytoferritin for 

24 hrs did not affect iron uptake compared to phytoferritin alone. In contrast, iron 

uptake from FAC incubated with CaCl2 was reduced by 40%. Although iron 

uptake as phytoferritin was significantly less than FAC, when both iron 

treatments were incubated with CaCl2, iron uptake was similar.   

 

Figure 4.8 Iron uptake of phytoferritin after cellular transfection with siRNA 
targeting DMT1 or Negative control 1.  

a b

FAC phytoferritin

0

50

100

150

ce
ll 

fe
rr

iti
n 

fo
rm

at
io

n
(n

or
m

al
is

ed
 to

 F
A

C
)

Non targeting siRNA

siRNA DMT1

a

b bb

FAC phytoferritin

0

50

100

150

ce
ll 

fe
rr

iti
n 

fo
rm

at
io

n
(n

or
m

al
is

ed
 to

 F
A

C
)

Non targeting siRNA

siRNA DMT1

a
b

c
c



 

 

 

154 

Cells were treated with phytoferritin or FAC for 1 hr (100 μM Fe). 
Knockdown of the DMT1 transcript was conducted in (a) Caco-2 or (b) Hutu-80 
cells. Cell ferritin formation was normalised relative to FAC treatments. Data are 
expressed as the means ± SEM of three independent experiments (n = 3 per 
experiment).  

BPDS and CaCl2 co-incubation with phytoferritin demonstrated that DMT1 

was not required for the uptake of phytoferritin-Fe. To verify this observation, 

siRNA silencing of the DMT1 transcript was used. Caco-2 and Hutu-80 cells In 

Caco-2 cells, siRNA transfection resulted in 20% knockdown of DMT1 gene 

expression and a 20% decrease in iron uptake from FAC. Iron uptake from 

phytoferritin was not inhibited when incubated in knockdown DMT1 Caco-2 cells 

compared to phytoferritin in non-targeting siRNA cells. 

Hutu-80 cell transfection with siRNA resulted in the reduction of DMT1 

gene expression by 50%. Similar to Caco-2 cells, siRNA targeting DMT1 did not 

have an effect on iron uptake from phytoferritin, but did reduce iron uptake from 

FAC. Surprisingly, we found that phytoferritin uptake relative to FAC was more 

efficient in transfected Hutu-80 cells compared to Caco-2 cells. 

 

Figure 4.9 Iron uptake of phytoferritin in Caco-2 cells with endocytosis 
inhibitors.  
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Caco-2 cells were either (a) pre-incubated with CPZ for 1 hr, which was 
replaced with phytoferritin (100 μM Fe) for 1 hr or (b) co-incubated with 
phytoferritin (100 μM Fe) and endocytosis inhibitors for 1 hr. Cell ferritin formation 
was normalized relative to (a) FAC treatments or (b) control (cells treated without 
inhibitors). Data are expressed as the mean ± SEM of two independent 
experiments (n = 3 per experiment). Different letters indicate statistically 
significant differences (p < 0.05). 

 

To investigate alternative pathways of iron uptake that are distinct from 

DMT1, Caco-2 cells were pretreated with CPZ, an inhibitor of clathrin-mediated 

endocytosis. Cells treated afterwards with phytoferritin (30 μM Fe) for 24 hrs 

resulted in a 50% decrease in iron uptake. Conversely, cell pretreatment with 

CPZ had no effect on iron uptake from FAC.  

Chemical inhibitors targeting specific endocytosis pathways were also 

used to explore mechanisms of iron uptake from phytoferritin. Similar to the 

previous result, clathrin endocytosis inhibitors, CPZ and sucrose, decreased iron 

uptake from native phytoferritin by 25 and 20 percent, respectively. In contrast, 

incubating Caco-2 cells with clathrin-independent endocytosis inhibitors, filipin or 

DMA, did not affect iron uptake from phytoferritin. 
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Figure 4.10 Western blot detection of phytoferritin associated with Caco-2 
cells.  

Phytoferritin (100 μM Fe) was co-incubated with endocytosis inhibitors in 
MEM for 1 hr and cells were immediately lysed for protein extraction. Phytoferritin 
was detected in cell lysates using Western blot analysis. Data are expressed as 
the means ± SEM of two independent experiments (n = 2 or 3 per experiment). 
Differences indicated with an asterisk are considered significant at p < 0.05. 

 

Cell extracts were analysed by Western blot analysis for direct detection of 

phytoferritin uptake. Using the same conditions as for Figure 4.9, CPZ 

significantly inhibited phytoferritin uptake. To a lesser degree, sucrose inhibited 

phytoferritin uptake but the difference was not statistically significant. Similar to 

Figure 4.8, filipin and DMA did not inhibit phytoferritin uptake.   
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Figure 4.11 Free radical generation from phytoferritin in Caco-2 cells.  

Cells were treated with 100 μM Fe as phytoferritin or FeSO4 (combined 
with bovine serum albumin [BSA] to normalise protein concentrations) for 0, 30, 
60 and 120 min and measured for free radical generation. Data are expressed as 
the means ± SEM of two independent experiments (n = 4 per experiment). 
Different letters indicate statistically significant differences at each time point (p < 
0.05). Experiments were conducted by Dr. Ildefonso Rodriguez-Ramiro, 
Fairweather-Tait lab. 

 

To evaluate phytoferritin as a supplemental iron source, it was tested for 

its ability to generate reactive oxygen species, relative to FeSO4, in Caco-2 cells. 

After 30 min, free radical generation was 60% higher in FeSO4 compared to 

phytoferritin treated cells. The differences in free radical generation between the 

2 iron sources were sustained over time. Free radical generation in phytoferritin 

treated cells was not significantly different from control cells. 
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4.3.3 Phytoferritin, either from whole foods or purified, is not resistant to 

cooking and/or gastric digestion, and its iron uptake occurs through DMT1. 

Phytoferritin has been suggested to be a target for crop biofortification. In 

this study, it was examined whether the protein, as the whole food, is resistant to 

breakdown when subjected to different states representative of a consumed food, 

such as cooking or gastric digestion.  

 

Figure 4.12 Western blots displaying the effect of cooking and in vitro 
digestion on phytoferritin monomers, holo-ferritin, and iron-sequestered ferritin in 
marrowfat peas.  

Phytoferritin protein from dry marrowfat peas was determined after 1 hr 
boiling, 5 min microwaving, or in vitro digested. The protein load was 10 or 20 
mg. Images courtesy of Dr. Emily Jones, Balk lab. 
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Phytoferritin extracted from dried marrowfat peas were intact and detected 

in the monomers (23 kDa) and holo-ferritin (552 kDa). Staining of iron in the 

protein was clear when 10 and 20 mg of protein were loaded onto gels using the 

modified Perls’ reaction. In contrast, boiling, microwaving, and in vitro digestion 

resulted in the degradation of the monomers, holo-ferritin, and release of iron-

sequestered ferritin.  

 

 

Figure 4.13 Western blots of phytoferritin digested at pH 2 ± pepsin with 
time.  

Phytoferritin was digested for up to 120 min. The MW marker used for 
reference in the NATIVE gels (and WB) was horse-spleen ferritin, which stains at 
440 kDa.  

 

The degradation of phytoferritin was evident using time-course gastric 

digestion. Both holo-ferritin and the ferritin monomers degraded rapidly when 

pepsin was added at pH 2. Phytoferritin was not detected in either blot after 15 
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min. The rate of holo-ferritin degradation was reduced without pepsin, but after 

45 min, the majority was completely degraded.  

 

Figure 4.14 Time-course degradation of phytoferritin exposed to pH 2 and 
4.  

Phytoferritin was incubated at pH 2 or pH 4 (37°C) and analysed using 
Western blots at 15, 30, 45, 60, and 120 min. Data are expressed as the means 
± SEM of three independent experiments (n = 3). Different letters indicate 
statistically significant differences (p < 0.05). 

 

The effect of gastric pH on phytoferritin protein stability was examined to 

understand whether the protein is broken down in the stomach. Furthermore, 

because 3 states of phytoferritin are thought to exist in the intestinal lumen, the 

pH 2

pH 4

Undiges
ted

15
 m

in

30
 m

in

45
 m

in

60
 m

in

12
0 m

in
0

20

40

60

80

100

120

Time at gastric pH

D
en

si
to

m
et

ry
 u

ni
ts

(%
 o

f u
nd

ig
es

te
d)

pH 4
pH 2

c

c,d d

aa

b

c,d
d d n.d.



 

 

 

161 

fraction of soluble iron, and indirectly the iron core was also measured. 

Phytoferritin was incubated at low (pH 2) and less acidic (pH 4) conditions and its 

protein levels semi quantified. Comparatively, the rate of phytoferritin degradation 

was faster at pH 2 compared to pH 4. After 15 min at pH 2, 70% of phytoferritin 

was degraded, compared to 50% at pH 4. At 60 min, the levels of phytoferritin 

incubated at pH 2 were below the limit of detection. 

 

 

Figure 4.15 Time-course release of iron from phytoferritin exposed to pH 
2 and 4.  

Phytoferritin was incubated at pH 2 or pH 4 (37°C) and analysed for 
soluble iron at 30, 60, and 120 min. Data are expressed as the means ± SEM of 
three independent experiments (n = 3). Different letters indicate statistically 
significant differences (p < 0.05). 

 

The effect of gastric pH on soluble iron (released iron), hydrolysed from 

the phytoferritin iron core, was assessed. Soluble iron increased over time as a 
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result of lower pH. At pH 2, 80% of the iron was solubilised after 120 min 

compared to 25% at pH 4. As a control, phytoferritin was also assessed for 

soluble iron at pH 7. This resulted in ca. 10% soluble iron independent of time.  

 

Figure 4.16 Time-course determining the Fe3+/Fe2+ ratio during gastric pH 
treatment. 

 Phytoferritin was pH treated at (a) pH 4 or (b) pH 2 and the iron 
determined using the Ferene assay with and w/o AA. These values were used to 
calculate Fe3+/Fe2+ ratios. The Fe3+/Fe2+ ratio was also determined in (c) 
undigested phytoferritin. Data are expressed as the means ± SD of two 
independent experiments (n = 2).   

 

Fe2+ and Fe3+ iron species were measured during gastric pH treatment at 

pH 2 and pH 4. Undigested phytoferritin (diluted in PBS) contained the majority of 

its iron as Fe3+, consistent with its ferric oxyhydroxide core. After 30 and 60 min 

of pH treatment, the percentage of iron as Fe2+ increased to 25-30% of the total 

iron at pH 2 and pH 4. Differences in iron species between pH digestions and 
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different pH values were evident with longer digestion times. At 120 min, 80% of 

the total iron at pH 2 was Fe2+ while only 50% was Fe2+ at pH 4. 

 

Figure 4.17 Iron uptake of pH treated phytoferritin with Fe2+ enhancer or 
inhibitors in Caco-2 cells. 

Caco-2 cells were incubated with pH treated phytoferritin or FAC (30 μM 
Fe) and (a) AA (in the digest), (b) BPDS [in MEM], or (c) CaCl2 [in MEM] for 24 
hrs. Cell ferritin formation was normalised relative to FAC treatments. Data are 
expressed as the means ± SEM of two independent experiments (n = 3 per 
experiment). Different letters indicate statistically significant differences (p < 
0.05). 

 

We found that BPDS and CaCl2 had no effect on iron uptake from native 

phytoferritin. Thus, we also investigated whether these non-haem iron inhibitors 

would affect gastric pH treated phytoferritin. Iron uptake from pH treated 

phytoferritin was increased over 2-fold in the presence of AA. This increase was 

similar to the increase observed with pH treated FAC with AA. In contrast with 

undigested phytoferritin (Figure 4.7), where iron uptake was less responsive to 

incubation with AA, iron uptake was higher in pH treated phytoferritin with AA. 

The iron uptake of pH treated phytoferritin was inhibited when was 

incubated with BPDS. This inhibition was not to the same extent as pH treated 

FAC (50%). For both undigested and pH treated FAC, BPDS inhibited iron 
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uptake. These results are in contrast to undigested phytoferritin, where BPDS 

had no effect on iron uptake.  

Similar to BPDS, CaCl2 incubated with pH treated phytoferritin inhibited 

iron uptake after 24 hrs. The effect of CaCl2 on iron uptake from pH treated 

phytoferritin differed from undigested phytoferritin, in which iron uptake was not 

inhibited. In both pH treated and undigested FAC, CaCl2 significantly inhibited 

iron uptake. 

 

Figure 4.18 Iron uptake of pH treated phytoferritin after celluar 
transfection with siRNA targeting DMT1 or Negative control 1.  

Cells were treated with pH treated phytoferritin or FAC for 1 hr (100 μM 
Fe). Knockdown of the DMT1 transcript was conducted in (a) Caco-2 or (b) Hutu-
80 cells. Cell ferritin formation was normalised relative to FAC treatments. Data 
are expressed as the means ± SEM of three independent experiments (n = 3 per 
experiment). 

 

To confirm that gastric pH treatment of phytoferritin would result in iron 

uptake using DMT1, Caco-2 and Hutu-80 cells were also transfected with siRNA. 

Iron uptake from pH treated phytoferritin in Caco-2 cells transfected with siRNA 

targeting DMT1 was significantly decreased (40%) compared to non-targeting 

siRNA controls. A decrease in iron uptake for pH treated FAC was also observed. 
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These data are in contrast to undigested phytoferritin. While iron uptake from pH 

treated and undigested FAC were equally inhibited in DMT1 siRNA treated cells, 

no effect was seen in undigested phytoferritin.   

Similar to the Caco-2 cell data, iron uptake from pH treated phytoferritin 

was significantly inhibited in Hutu-80 cells treated with siRNA DMT1. This 

inhibition did not occur when cells were incubated with undigested phytoferritin. 

Iron uptake was inhibited to a great extent in Hutu-80 cells treated with siRNA 

DMT1 (40%) compared to Caco-2 cells treated with siRNA DMT1 (20%), likely 

due to differences in siRNA transfection efficiency. 

 

Figure 4.19 Iron uptake of pH treated phytoferritin in Caco-2 cells with 
endocytosis inhibitors.  

Caco-2 cells were either (a) pre-incubated with CPZ for 1 hr and replaced 
with pH treated phytoferritin (100 μM Fe) for 1 hr or (b) co-incubated with pH 
treated phytoferritin (100 μM Fe) and endocytosis inhibitors for 1 hr. Cell ferritin 
formation was normalised relative to (a) FAC treatments or (b) control (cells 
treated without inhibitors). Data are expressed as the mean ± SEM of two 
independent experiments (n = 3 per experiment). Different letters indicate 
statistically significant differences (p < 0.05). 
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CPZ pretreatment of Caco-2 cells had no effect on iron uptake from pH 

treated phytoferritin, whereas CPZ had a large inhibitory effect (50%) on iron 

uptake from native phytoferritin. The other endocytosis inhibitors did not effect 

iron uptake from either phytoferritin or FAC.  

4.4 Discussion 

Findings of studies reporting iron bioavailability from phytoferritin using 

animal models have been mixed [307-310]. This is likely because different 

methods were used to label the iron core of phytoferritin between studies [169, 

305]. In these current experiments, cell ferritin formation in Caco-2 cells was 

measured as a surrogate marker of iron absorption [31] to eliminate the 

requirement for isotopic labeling. Despite the variability of phytoferritin-iron 

uptake in Caco-2 cells, on average iron uptake was 70% of FAC, suggesting that 

its potential bioavailability is comparable. 

To investigate the mechanisms underlying iron uptake of phytoferritin, 

chemicals targeting either DMT1 transport or endocytosis pathways were used. 

An increase in iron uptake from phytoferritin with AA was observed, which has 

been shown to induce iron mobilisation from phytoferritin via its strong reducing 

properties [350-352]. Incubation of phytoferritin with BPDS, an inhibitor of DMT1-

mediated Fe2+ transport in Caco-2 cells [46], had no effect on iron uptake. These 

results concur with Kalgaonkar et al [353], who reported that phytates (1:10 

Fe:PA) and tannins (1:50 Fe:TA), potent inhibitors of non-haem iron absorption, 

had no effect on iron uptake from soybean ferritin in Caco-2 cells.  

Additionally, CaCl2, an inhibitor of non-haem iron uptake [47-49], was used 

to further investigate Fe2+ dependent-mechanisms. Thompson et al [25] 

demonstrated that incubation of Caco-2 cells with CaCl2 resulted in the 

internalisation of DMT1 from brush border microvilli, thereby inhibiting FAC 

uptake. Similar to this study, incubation of FAC with CaCl2 in these experiments 
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inhibited iron uptake by 50%. CaCl2 did not affect iron uptake from phytoferritin. 

To firmly establish the role of DMT1 on iron uptake from phytoferritin, siRNA was 

used to knockdown gene expression in Caco-2 and Hutu-80 cells. Hutu-80 cells 

were used in addition to Caco-2 cells for further validation; they also express 

DMT1 and its transfection efficiency is much higher [125, 329, 354]. There was 

no effect of DMT1 siRNA treatment on iron uptake from phytoferritin in either cell 

line, suggesting that DMT1 is dispensable for phytoferritin-iron uptake.  

Confocal microscopy was used and provided evidence for the presence of 

intact phytoferritin in Caco-2 cells. Cells were labeled with primary antibodies 

against pea ferritin and secondary Alexa-Fluor 488 conjugated antibodies 

showed green fluorescent patches indicative of phytoferritin uptake.  

In previous studies, soybean phytoferritin uptake in Caco-2 cells has been 

shown to occur via endocytosis [316, 317, 319]. In this study, iron uptake from 

phytoferritin was inhibited in cells treated with CPZ [286, 331, 332]; iron was not 

inhibited with filipin or DMA treatment. Pretreatment of cells with CPZ had a 

greater inhibitory effect on iron uptake than CPZ and phytoferritin co-treatment, 

which could reflect the slow absorption profile of phytoferritin [316]. To validate 

the effects of CPZ inhibition on both iron uptake and phytoferritin uptake, 

phytoferritin in cell lysates were detected using the same chemical endocytosis 

inhibitors listed previously. Bands detecting phytoferritin in Western blots were 

significantly decreased compared to control. The data generated strongly 

indicates that intact native phytoferritin is taken up by Caco-2 cells via clathrin-

mediated endocytosis, which is in agreement with previous findings [317]. 

The benefits of phytoferritin as an iron supplement are three-fold; a 

sustainable iron source, well absorbed comparatively to soluble iron salts, and an 

inability to be affected by dietary inhibitors of non-haem iron absorption such as 

phytates and tannins. Biofortification of staple crops to increase phytoferritin 
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concentrations has been suggested as a strategy to increase bioavailable iron in 

large-scale populations [294, 300]. The data suggests that phytoferritin 

biofortification is unnecessary. In agreement with Hoppler et al [298], the Western 

blots indicated that cooking processes would likely degrade phytoferritin prior to 

consumption. Moreover, any remaining phytoferritin in the food will likely be 

degraded by digestion. In turn, dietary iron inhibitors, such as polyphenols in 

marrowfat peas, will likely prevent the absorption of released iron from 

phytoferritin. Thus, as suggested by Hoppler et al [299], crop breeding for 

improvement in total iron may be a better strategy than breeding for high ferritin 

crops, per se.    

We investigated the effect of gastric digestion in greater detail. Chenyan et 

al [315] recently reported that more than 40% of phytoferritin protein derived from 

soybeans remained intact 45 min after in vitro digestion. In the present study, the 

degradation of phytoferritin at pH 2 and pH 4 was monitored using antibodies 

specific for phytoferritin; about 90% of phytoferritin was degraded after 45 min. 

The addition of pepsin (0.4% w/v) at pH 2 fully degraded phytoferritin after 15 

min, similar to the results of Hoppler et al [298]. While the absolute rates of 

phytoferritin protein digestion have been shown to be variable at differing pH 

levels [298, 311, 312, 315, 353], significant degradation occurred at pH 2 in this 

study and suggests that phytoferritin is broken down under gastric conditions.  

In addition, dissolution to Fe2+ and Fe3+ was investigated in pH treated 

phytoferritin. Ultrafiltration [286] was used to partition soluble iron (containing 

Fe2+ and Fe3+ species) from the phytoferritin core and protein at low pH. More 

soluble iron was released at pH 2 compared to pH 4, and a time dependent effect 

was observed. Moreover, in comparison to the phytoferritin control, Fe2+ 

formation increased significantly at both pH 2 and 4. These experiments suggest 

that phytoferritin exposure to gastric pH solubilises a large percentage of iron to 

Fe2+ or Fe3+.  
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Similar cell culture experiments and conditions were undertaken for pH 

treated phytoferritin for comparison to undigested phytoferritin. The Caco-2 cell 

model to assess iron bioavailability from phytoferritin under in vitro conditions 

[218, 342] was used except that dialysis membranes were omitted. This was a 

requirement as it screens for soluble iron and thereby would theoretically inhibit 

phytoferritin uptake [213]. The removal of dialysis membranes necessitated the 

use of pH treatments, as pancreatic/bile enzymes are destructive to the 

unprotected cell monolayer. The cell culture experiments showed that iron uptake 

from pH treated phytoferritin followed the same pathway as FAC. Thus, these 

comprehensive studies examining the effects pH treatment on iron uptake from 

phytoferritin are strongly suggestive that its exposure to gastric pH not only 

solubilises a large percentage of its iron to either Fe2+ or Fe3+, but also that its 

iron is absorbed using the DMT1 transporter.  

4.5 Conclusion 

Phytoferritin is a promising, alternative source of supplemental iron. 

Protection of phytoferritin from gastric pH exposure to maintain its stability is 

important if consumed with non-haem iron inhibitors. Phytoferritin generated less 

free radicals than FeSO4 when co-incubated with Caco-2 cells, suggesting that 

not is it bioavailable and likely to cause less toxicity compared to commonly 

prescribed FeSO4 (which typically causes gastrointestinal distress). 

Encapsulation to enhance phytoferritin stability and human absorption studies are 

required to validate our findings.  
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Chapter 5: Lucky Iron Fish  
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5. Lucky iron fish 

This chapter is based upon the manuscript entitled ‘Iron bioavailability of 

the Lucky Fish iron ingot determined in Caco-2 cells.’ The manuscript is currently 

in preparation.  

5.1 Introduction 

Global iron deficiency continues to be a public health burden, affecting 

over 2 billion people [91]. The highest incidences of iron deficiency occur in 

predominately low-income communities within developing countries [355], where 

largely plant-based diets lacking bioavailable iron are consumed [107]. Iron 

deficiency in these vulnerable groups is largely targeted using one or more 

strategies: iron supplementation, fortification of staple foods, and/or home 

fortification with micronutrient powders (MNP) [97, 117, 356, 357]. However, 

these approaches, while efficacious in many situations, suffer from problems 

associated with cost, bureaucracy, and distribution. For these reasons, simple, 

practical, and sustainable approaches to obtain iron without reliance on external 

factors would be particularly useful in remote communities with a high prevalence 

of iron deficiency.   

Cooking in iron pots and its consequent leaching of iron is a sustainable 

strategy to increase the iron content of cooked foods [358-362]. The quantity of 

iron leached from pots has shown to be largely dependent on the pH and organic 

acid content of the cooked food [363]. There is evidence to suggest from several 

studies that cooking in iron pots results in improved iron status. Haemoglobin 

status of iron-deficient Wistar rats fed low-iron meals cooked in iron pots were 

greatly improved; these levels were similar to iron-deficient and iron-replete rats 

fed high-iron meals [364]. In several human intervention trials, the use of iron 

pots was efficacious in improving the iron status in adults [365], children [366], 

and infants [367]. Despite its benefits, the adoption and implementation of iron 
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pots in these communities is difficult. They are expensive, heavy, and vulnerable 

to rusting. Often this rusting leads to unacceptable discoloration of the food. All 

these factors diminish its acceptability, compliance and ultimately its usefulness 

for their intended communities [368, 369].  

The Lucky Iron Fish™ (LIF), an iron ingot placed in a cooking vessel 

during the cooking process, has recently been commercialised and marketed as 

a small and affordable alternative iron source that is similar in principle to iron 

pots. A rather simple solution, results from clinical trials based in Cambodia 

investigating the efficacy of LIF to improve iron status in women have been 

mixed, which may, in part, be due to study design [370, 371]. Discrepancies in 

these trials necessitate further investigation into the determinants of iron 

bioavailability from LIF.  

The aims of the present study were to characterise the potential 

bioavailability of iron from LIF in order to evaluate its utility as an alternative 

source of iron for human nutrition. Iron bioavailability was assessed using the 

Caco-2 cell model, a representative model of the intestinal epithelium [218] that 

correlates well with human absorption data [242, 268]. We examined oxidative 

stress to the cell monolayer, the optimal levels of AA required to increase iron 

solubility and iron uptake from LIF, and the effects of a food source and dietary 

iron inhibitors on iron bioavailability. 

5.2 Methods and Materials 

5.2.1 Samples and reagents   

The LIF was purchased from its e-commerce online shop 

(www.luckyironfish.com/shop). After each iron extraction, the LIF was rinsed with 

copious amounts of milliQ H2O, dried using paper towels and stored covered at 

room temperature. Frozen mangetout peas were purchased from a nearby 
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supermarket (Sainsbury, UK). These were used for inclusion in the food matrix 

because of their high iron content. 100 g peas were microwaved in an acid 

washed beaker with 9.5 mL milliQ H2O for 2.5 min at 900 watts. The peas were 

removed from the water, frozen and lyophilised before use. Prior to digestion 

experiments, its iron concentration was determined using ICP-OES according to 

the methods of Rodriguez-Ramiro et al [151]. 

All chemical reagents were purchased from Sigma unless otherwise 

stated. Stock solutions of ascorbic acid (AA), phytic acid (PA), and tannic acid 

(TA) were diluted in H2O and freshly made prior to each experiment.  

• In the first set of experiments, AA, a potent enhancer of non-haem iron 

uptake [122, 128], was used to determine the concentrations required to 

increase iron uptake from LIF-extracted iron. AA was added at the gastric 

step (pH 2) and molar ratios were relative to iron concentrations leached 

from LIF (ca. 1 mM Fe); AA was added at 1 and 10 mM to achieve a molar 

ratio of Fe:AA 1:0, 1:1, and 1:10, respectively. 

• In the second set of experiments, PA and TA were added after AA at the 

gastric step [249]. AA, PA and TA molar ratios were relative to the iron 

concentration of FeSO4 or peas (50 μM Fe); AA was added at 500 μM to 

achieve a molar ratio of Fe:AA 1:10, PA was added at 50, 250, 500, and 

1000 μM to achieve molar ratios of Fe:PA 1:1, 1:5, 1:10, and 1:20, and TA 

was added at 5, 25, 50, and 500 μM to achieve molar ratios of Fe:TA 

1:0.1, 1:0.5, 1:1, and 1:10.  

5.2.2 LIF iron release   

Depending on the experiment, 1 L of milliQ H2O or 40 mM NaCl, 5 mM KCl 

solution (acidified to pH 2 with HCl) was heated in an acid-washed beaker to a 

rapid boil. The LIF ingot was placed in the boiling solution for 10 min and then 

removed, closely approximating the manufacturer’s instructions. Aliquots of 25 



 

 

 

174 

mL were removed and allowed to cool at room temperature. AA was added, and 

the pH of the LIF solution was gradually increased to 7 with 0.1 M NaHCO3. 

Samples were diluted 1:10, 1:3, or 1:1 in MEM depending on the experiment 

undertaken.  

5.2.3 MTS Cell Proliferation  

Differentiated Caco-2 cells were grown in 96-well plates. Cells were 

incubated with LIF for 24 hrs. After 24 hrs, the MTS cell proliferation assay 

(CellTiter® 96 MTS, Promega) was used according to manufacturer’s 

instructions. For detailed methodology, see section 2.1.10. 

5.2.4 Reactive Oxygen Species 

Cellular free radical generation in Caco-2 cells was determined using the 

2ʹ,7ʹ-dichlorofluorescein (DCFH) assay as previously described [349] with minor 

modifications. For detailed methodology, see section 4.2.6. 

5.2.5 Iron solubility  

Iron solubility was determined using similar methods to Swain et al [265]. 

For detailed methodology, see section 2.2.6. 

5.2.6 Iron bioavailability in Caco-2 cells  

Caco-2 cells (HTB-37), used at passages 30-40, were cultured as 

described for iron bioavailability assays. For detailed methodology, see section 

2.1.3. 

10 mL aliquots of LIF solution (with added AA) were placed either alone or 

in combination with 1 g dried mangetout peas and/or dietary inhibitors (see 

section 5.2.1), mixed and readjusted to pH 2. Pepsin (0.04 g/ml) was added to 

the samples and incubated for 1 hr at 37 °C to simulate gastric conditions. After 
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completion of the gastric phase, samples were gradually adjusted to pH 5.5-6.0 

with 1 M NaHCO3. Chelex-treated bile (0.007 g/ml) and pancreatin (0.001 g/ml) 

digestive enzymes were added to the samples, the pH was further adjusted to 7 

with 0.1 M NaHCO3, and LIF 'digestates' incubated for 30 min at 37 °C. 1.5 ml of 

the digestate was placed on top of a Transwell insert fitted with a 15 KDa 

molecular weight cut-off dialysis membrane (Spectra/Por 7 dialysis tubing, 

Spectrum laboratories, Europe) suspended over Caco-2 cells. The digestate was 

incubated with the cells for 2 hrs at 37 °C (5% CO2 and 95% air). After 2 hrs, the 

inserts were removed, an additional 1 ml of supplemented MEM was added to 

each well, and cells were incubated for a further 22 hrs. 

After 24 hrs post-treatment, cells were extracted and analysed for ferritin 

and total protein concentrations. For detailed methodology, see sections 2.1.5 

and 2.1.6. 

5.2.7 Statistical analysis 

Statistical analysis was performed using GraphPad Prism v.6.0 (San 

Diego, CA). Data are presented as mean values with standard error (SEM). One-

way ANOVA with Tukey’s multiple comparisons test on log-transformed data was 

used to evaluate differences in iron uptake from LIF. Differences were considered 

significant at p < 0.05. 

5.3 Results 

The variability in iron extraction from LIF was tested to see whether the 

amount of leached iron was consistent from experiment to experiment, since the 

same LIF was used for every experiment. Any large differences in the amount of 

iron leached during each extraction may also explain some of the inconsistent 

data observed in previous human trials. Minor variability in iron extraction was 

observed after each use (Figure 5.1). As shown in the figure, the average iron 
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concentration per extraction was 946 ± 60 nmol/mL (SEM). AA concentrations 

were added to LIF solutions assuming ca. 1000 nmol/mL Fe.  

 

Figure 5.1 Total iron concentration in LIF solution at pH 7 with 1000 μM 
AA.  

Iron concentrations from 7 separate LIF extractions were determined to 
assess iron variability during each usage. The dotted regression line is for 
reference (r = 0.002), showing that the iron concentration did not vary 
significantly over extraction number.  

 

5.3.1 ROS generation in Caco-2 cells from LIF is similar to FeSO4 at 

equimolar iron concentrations. 

FeSO4 is known to cause gastrointestinal distress and one reason may be 

its ability to generate reactive oxygen species (ROS) through the Fenton reaction. 

We compared the generation of ROS from FeSO4 to LIF. The ability of LIF to 

induce reactive oxygen species when incubated on Caco-2 cells was thus 

measured. Compared to the blank (cells without iron treatment), LIF or FeSO4 

treated cells generated significantly more ROS. The increase in ROS generation 
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from LIF (1:10) was equivalent to the ROS generation from FeSO4 at the same 

iron concentration (100 μM Fe). This relationship held at each time point (30, 60, 

and 120 min). 

 

Figure 5.2 Free radical generation from LIF and FeSO4 in Caco-2 cells. 

Caco-2 cells were treated with LIF 1:10 (100 μM Fe) or FeSO4 (100 μM 
Fe) for up to 2 hrs. Free radical generation was evaluated at 0, 30, 60 and 120 
min. Data are expressed as the means ± of three independent experiments (n = 
16). One-way repeated measures ANOVA with Bonferroni’s test was used to 
compare differences in iron treatments at each time point. Different letters 
indicate statistically significant differences at each time point (p < 0.05). 
Experiments were conducted by Dr. Ildefonso Rodriguez-Ramiro, Fairweather-
Tait lab. 
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Figure 5.3 Viability of Caco-2 cells incubated with FeSO4 + AA or LIF + 
AA over 24 hrs.  

Cell viability was measured using the MTS assay. FeSO4 concentrations 
were 50 μM Fe. LIF concentrations were 500 μM Fe (1:1 dilution with MEM). 1% 
Triton-X 100 was used as the positive control. Data are expressed as the means 
± of two independent experiments (n = 3). Different letters indicate statistically 
significant differences (p < 0.05). 

  

 Cell viability was measured to ensure that the resulting iron bioavailability 
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no effect on cell viability at the concentrations of iron and AA used. Similar 

experiments using 1:10 dilutions of LIF in MEM with varying AA concentrations 

were also measured for cell viability (data not shown). There was not any 

significant difference in cell viability from each treatment compared to baseline 

(no treatment).  

5.3.2 Iron solubility and cellular uptake is highest at 1:10 LIF-Fe:AA molar 

ratios  

Iron solubility is a general indicator of iron bioavailability; therefore we 

decided to test the concentrations of AA required to fully solubilise LIF. The iron 

from LIF extraction was fully solubilised at pH 2, irrespective of AA concentration 

(Figure 5.5). As the pH of the solution increased to pH 7, mimicking intestinal pH 

conditions, the majority of the iron precipitated out of solution (> 90%) unless AA 

was added. Iron solubility of LIF was dose-dependent on increasing AA 

concentrations; at 1:10 LIF-Fe:AA molar ratios, iron was nearly completely 

solubilised. 
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Figure 5.4 Solubility of released iron from LIF with AA.  

LIF at pH 2 released about 1 mM Fe in the experimental conditions. AA 
was added at increasing AA concentrations (0, 1, and 10 mM) to achieve the 
indicated Fe:AA molar ratios and diluted 1:10 in MEM. Data are expressed as the 
means of three independent experiments (n = 7, ± SEM).  
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Figure 5.5 AA on iron bioavailability from FeSO4 and LIF-Fe.  

Caco-2 cells were treated with FeSO4 or LIF-Fe for 24 hrs and measured 
for (a) iron uptake or (b) total iron. Data for ferritin formation are expressed as the 
means of 3-5 independent experiments (n = 6-18, ± SEM). Data for total iron are 
expressed as the means of n = 3 or 4. One-way repeated measures ANOVA with 
Tukey’s multiple comparisons test was used to compare differences in iron 
uptake between treatments. ICP-OES determinations were conducted by Dr. 
Ildefonso Rodriguez-Ramiro, Fairweather-Tait lab. 

 

A positive correlation was found between iron solubility and ferritin 

formation in Caco-2 cells with increasing AA concentrations; thus solubility is a 
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concentrations had a dose-response effect on iron uptake from LIF, with the 
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blanks (no iron added), iron from LIF was not bioavailable unless additional AA 

was added. Iron bioavailability at 1:1 LIF-Fe:AA molar ratios was similar to 1:10 

and 1:20 FeSO4:AA molar ratios despite the treatment having a significantly 

higher iron concentration (20x). Ferritin formation in Caco-2 cells was validated 

by directly measuring iron uptake (Figure 5.6b). Similar to ferritin formation, 
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increasing AA concentrations to LIF-Fe significantly increased iron uptake in 

Caco-2 cells.  

5.3.3 Peas increased iron bioavailability from LIF-Fe 

Peas were added to the digests with LIF + AA to mimic a food matrix that 

is more representative of LIF consumption. Although stated on the instructions 

that LIF in water could be consumed, it is more likely that LIF would be 

consumed in combination with other food components as part of a meal. Despite 

over a 10-fold increase in iron content in the digest (667 vs 50 μm Fe), iron 

bioavailability from LIF was the same as FeSO4 and pea when AA concentrations 

were normalised among iron treatments (Figure 5.6). When estimating 30% iron 

solubility from 1:0.5 LIF-Fe:AA molar ratio (Figure 5.4), 200 μm Fe is soluble. 

Nonetheless, 4x more soluble iron provided by LIF resulted in similar 

bioavailability as FeSO4. Unexpectedly, pea and LIF digested together with AA 

resulted in a 10-fold increase in iron bioavailability compared to pea or LIF alone. 

The large increase in iron bioavailability from 1:10 Pea-Fe:AA + LIF was 

validated by measuring the iron content of the cell lysates by ICP-OES. The 

results of ICP-OES were qualitatively similar to ferritin formation; the iron content 

of 1:10 Pea-Fe:AA + LIF was the highest among all treatments, and 5x more than 

either pea or LIF alone. 
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Figure 5.6 Pea food matrix increased iron bioavailability from LIF. 

(a) The combination of pea and LIF (50 + 1000 μM Fe) resulted in a 10-
fold increase in iron bioavailability compared to pea (50 μM Fe) or LIF (1000 μM 
Fe) alone. FeSO4 (50 μM Fe) was used as the positive control, blank was used 
as the negative control (digests without iron), and AA (500 μM) was added to 
each iron-containing digest. (b) Cellular iron concentration (using ICP-OES) was 
determined and is positively correlated with cellular ferritin formation.  

Data are expressed as the means of 3-5 independent experiments (n = 
12-19, ± SEM). One-way repeated measures ANOVA with Tukey’s multiple 
comparisons test was used to compare differences in iron uptake between 
treatments. 

 

5.3.4 Tannic acid is a potent inhibitor of iron bioavailability from LIF 

Staple foods, containing high amounts of non-haem dietary inhibitors such 

as phytates and tannins, represent a large portion of the daily diet in developing 

countries. Thus, it was important to investigate whether these inhibitors had an 

effect on iron bioavailability from LIF. An experiment was initially conducted to 

understand the inhibitory effects of TA and PA on iron bioavailability from FeSO4, 

pea, and LIF. The concentrations of TA and PA chosen were based on previously 

published data [249]. TA, at 5x lower concentrations than PA, significantly 
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inhibited iron bioavailability from all 3 iron sources in the presence of AA. PA had 

no significant effect on iron uptake from all 3 sources, although it appears that it 

may have an effect on FeSO4. The largest inhibitory effect of TA was with LIF-Fe; 

despite a relatively high ratio of iron to TA (1:0.05), a 6-fold decrease in iron 

bioavailability was observed (to baseline levels) compared to LIF-Fe without TA.  

 

 

Figure 5.7 PA and TA on iron bioavailability from FeSO4 + AA, pea + AA, 
and LIF + AA.  

FeSO4 (50 μM Fe) + AA (500 μM), pea (50 μM Fe) + AA (500 μM), and 
LIF (1000 μM Fe) + AA (500 μM) were in vitro digested with PA and TA and iron 
bioavailability measured in Caco-2 cells. PA was added at 50, 250, 500, and 
1000 μM to achieve molar ratios of Fe:PA 1:1, 1:5, 1:10, and 1:20, and TA was 
added at 5, 25, 50, and 500 μM to achieve molar ratios of Fe:TA 1:0.1, 1:0.5, 1:1, 
and 1:10. Data are expressed as means (n = 3, ± SD). One-way ANOVA with 
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Tukey’s multiple comparisons test was used to compare differences in iron 
uptake between treatments. 

 

 

 

Figure 5.8 Effect of PA and TA on iron uptake from pea + LIF + AA.  

Pea (50 μM Fe) + LIF (1000 μM Fe) were in vitro digested with increasing 
concentrations of PA and TA and iron bioavailability measured in Caco-2 cells. 
PA was added at 50, 250, 500, and 1000 μM to achieve molar ratios of Fe:PA 
1:1, 1:5, 1:10, and 1:20, and TA was added at 5, 25, 50, and 500 μM to achieve 
molar ratios of Fe:TA 1:0.1, 1:0.5, 1:1, and 1:10. AA was added to each digest at 
500 μM. Data are expressed as the means of 3 independent experiments (n = 3 
per experiment, ± SEM). One-way repeated measures ANOVA with Tukey’s 
multiple comparisons test was used to compare differences in iron uptake 
between treatments. 
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PA at 1:5, 1:10, and 1:20 significantly decreased iron bioavailability (~ 15-

25%) in Caco-2 cells compared to Pea-Fe + LIF without PA. Similar to what was 

observed for LIF (Figure 5.7), TA was a more potent inhibitor of Pea-Fe + LIF in 

comparison to PA. Iron bioavailability at 1:10 and 1:20 Pea-Fe:PA + LIF was 

similar to 1:1 Pea-Fe:TA + LIF. At 1:10 Pea-Fe:TA + LIF, iron bioavailability was 

decreased by 70%. 

5.4 Discussion 

The LIF ingot is marketed as a simple home strategy to address iron 

deficiency based on the principle of cooking in iron pots, but with the added 

benefit of smaller size, ease of use, and maintenance. Charles et al [370, 371] 

carried out two studies in Cambodia investigating whether the effects of using the 

LIF ingot in food and drinking water could improve iron status. In both studies of 

similar methodology, the efficacy of the LIF ingot was assessed using 

haemoglobin as the primary biomarker of iron status in a cohort of Cambodian 

women over 3 month intervals. The results of the trials differed. In the first trial, 

the use of LIF improved haemoglobin concentration after 3 months, but reverted 

back to baseline after 6 months. In the follow-up trial, haemoglobin and serum 

ferritin were both measured. LIF improved haemoglobin (120 vs 130 g/L) and 

serum ferritin (66 vs 102 ng/mL) stores after 12 months, despite the fact that the 

prevalence of iron deficiency was only 11%. A complicating factor in both studies 

is the high prevalence beta-thalassemia in this population.  

 In order to understand whether LIF could improve iron status, the amount 

of LIF iron contributing to daily intake and the estimated increase in iron intake 

resulting from using LIF could have been measured. Taking into account both of 

these measurements may partially explain the differences in iron status from both 

studies, but still would not explain iron bioavailability from LIF. 
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The aims of the work described in this chapter were (a) to examine the 

effect of AA and pH on solublisation of iron from the LIF ingot in order to generate 

information that could be incorporated into guidance for users of the LIF ingot, 

and (b) to determine the effect of dietary inhibitors of iron absorption (phytic and 

tannin acids) on iron uptake by Caco-2 cells from digestates of LIF ingot boiled in 

water +/- AA in the absence and presence of a food (cooked peas).  

The first experiments measured the quantity of iron released from LIF. We 

chose to extract LIF-Fe at pH 2 in order limit dilution effects when lowering to 

gastric pH and to maximise iron solubility (Figure 5.4). While this pH is much 

lower than manufacturer’s instructions, the efficiency of iron extraction has been 

shown not to vary from pH 6.5 and below [372]. We then investigated the optimal 

levels of AA required to increase solubility and iron uptake from LIF at pH 7. 

LIF is reported to be mainly composed of elemental iron; the majority of 

the interior of the ingot is in the ferrous state but the proportion of Fe3+ to Fe2+ is 

higher on the surface, likely due to oxidation [372]. Elemental iron is generally 

regarded as having low bioavailability [326, 373, 374], which can be increased 

with the addition of AA, a potent enhancer of iron absorption [49, 120]. High AA 

concentrations (1:10 Fe:AA molar ratio) were required to maintain iron solubility 

and increase iron uptake into Caco-2 cells from LIF. Moreover, despite 4x more 

soluble iron in the digest (Figure 5.6), LIF had similar bioavailability compared 

with FeSO4; LIF-Fe has poor bioavailability when consumed without a food 

matrix. In a review on iron fortification, Hurrell [127] noted that at least 1:4-1:6 

Fe:AA molar ratios were required to increase the absorption of insoluble iron food 

fortificants with low bioavailability. Insufficient addition of AA (in the form of lemon 

juice) to counteract the low bioavailability of LIF may partially explain why 

improved haemoglobin status was not maintained in the first clinical trial. 
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 Iron bioavailability from LIF combined with a food matrix was also 

examined as this closely reflects its real world application. Peas were chosen as 

an appropriate dietary iron source because of their relatively high iron 

concentration. Despite the high content, iron in the legume family is not very 

bioavailable (reported as low as 1-2% [375]), which has been mostly attributed to 

the phytic acid content [144, 376, 377]. 

A large (and unexpected) increase (10-fold) in ferritin formation was 

observed when pea and LIF were digested together in the presence of AA. One 

hypothesis is that the response was due to added endogenous AA provided in 

the peas [118, 378], resulting in a more favorable Fe:AA molar ratio. Using 

values generated from the USDA National Nutrient Database and Widdowson & 

McCance food composition tables, frozen, boiled peas contain ca. 10 mg AA per 

100 g. Converted to the concentration of dry material in our studies, these 

calculated levels of AA only contribute 0.01% of the total AA added exogenously. 

It is therefore unlikely that endogenous AA in the pea explains the synergistic 

effect of peas and LIF. 

An alternative hypothesis is that mono/disaccharides in the peas promoted 

the increase in iron bioavailability from LIF. Mangetout (immature) peas have a 

high sugar content (4.4 g sugar per 100 g), which is converted to starch during its 

maturation [379]. Pollack et al [380] found that rats fed fructose with FeCl3 

increased iron absorption 1.5-fold more than FeCl3 alone (10.1% vs 15.7%). 

Fructose is thought to increase non-haem iron absorption by forming soluble 

complexes with iron at neutral pH [381] and/or promoting iron reduction to Fe2+ 

[382] for increased DMT1 transport [18]. In Caco-2 cells, fructose promoted 

ferrous iron formation and increased uptake non-haem iron [383]. While sugars in 

the pea may explain the enhancing effect, the estimated sugar content in our 

digestates was 10 μM, 100-fold less than that used by Christides and Sharp 

[383]. It is possible that the combination of AA and sucrose was sufficient to 
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promote iron bioavailability from LIF. Considering the high levels of iron from LIF 

in our digests (1 mM Fe), with a small effect of promoters it is theoretically 

possible in enhanced iron uptake.   

The in vitro digestion / Caco-2 cell model is a validated assay for 

measuring the effect of the non-haem iron inhibitors, PA and TA [118, 142, 156], 

on iron bioavailability from foods. Yun et al [242] found that the Caco-2 response 

correlated well with in vivo human iron absorption data using the same diets with 

increasing AA and TA levels. In these experiments, both PA and TA significantly 

reduced iron bioavailability from LIF digestates. Similar to previous findings using 

the Caco-2 bioassay [248-250], it was observed that TA was a more potent 

inhibitor of non-haem iron than PA in the presence of AA. PA is found in relatively 

high amounts in staple foods such as cereals and legumes [144] and TA is 

present in tea, coffee, fruit [157, 384]. It would appear from the in vitro data that 

the large quantities of iron provided by the LIF ingot are able to mitigate (to some 

extent) the negative effects on bioavailability from non-haem iron inhibitors; this is 

likely dependent on the concentration range of enhancers and inhibitors found in 

a typical meal. This may be one reason why LIF has been shown to be 

efficacious in improving the iron status of Cambodian women in the latter trial 

[371]. 

In the Charles et al [371] study, they calculated that the daily use of LIF in 

slightly acidified water would provide nearly 75% of the daily iron requirements 

for women aged 10-49 years. They concluded that safety concerns were 

negligible when compared to oral iron supplements, which is supported by the 

results of the cell proliferation assays in which LIF had no effects on cell viability 

except at very high AA concentrations, and the pro-oxidative capacity of LIF was 

similar to FeSO4.  
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5.5 Conclusion 

The LIF ingot can be a potentially bioavailable source of iron under certain 

conditions. The addition of AA to foods (peas) cooked with LIF increased iron 

bioavailability and mostly prevented the inhibitory effect from food matrix iron 

inhibitors such as PA and TA. However, consumption of foods high in 

polyphenols, such as red beans [252, 256], may need to be avoided when using 

LIF. Overall, the results provided by this chapter could be used as a guideline to 

improve LIF efficacy. 
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Chapter 6: Final discussion, main conclusions, 
and future research  
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6. Final discussion and main conclusions 

6.1 Final discussion 

Three of the most common strategies to alleviate iron deficiency and iron 

deficiency anaemia include iron fortification of staple foods, iron supplementation, 

and home iron fortification. The thesis’ aims were to understand the mechanisms 

of iron absorption and bioavailability from novel sources of iron using the Caco-2 

cell model. These novel sources of iron include: (a) NP-FePO4, intended for use 

in the fortification of staple goods; (b) phytoferritin, a form of iron 

supplementation; and (c) LIF, a simple device for use as a home iron fortificant. 

From a biochemical perspective, the better we understand how iron from these 

sources are absorbed in the intestine, the more informed we will be regarding its 

implementation in human efficacy trials. 

In Chapter 3, iron uptake from NP-FePO4 in Caco-2 cells was 

investigated. The results overall strongly suggest that its high absorption profile, 

comparable to FeSO4, observed in rat models is due to increased solubilisation 

at low pH and iron uptake via DMT1. Using sonicated NP-FePO4, a method to 

disperse particles in solution, it was found that particles ~ 400 nm could be 

absorbed using an independent pathway of DMT1, possibly through clathrin-

mediated endocytosis. This pathway was verified as physiologically relevant by 

exposing NP-FePO4 to an in vitro gastrointestinal digest and determining the size 

distribution of particles during each stage. A small percentage of the particles 

were within the nano-size range for particle uptake and thus may contribute, to 

some extent, in the high bioavailability of NP-FePO4 seen in previous studies. 

Conducting cell culture experiments with nanoparticles was a challenging 

process. The major difficulty is that using nanoparticles does not necessarily 

translate well with the classical in vitro digestion / Caco-2 cell model. For 
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instance, we excluded the use of dialysis membranes in our experiments 

because they prevent the exposure of nanoparticles to cells. For this reason, we 

also omitted digestion enzymes in our digests, which may modulate NP 

dispersion (formation of protein corona) and uptake in cells. Moreover, ‘nano’ 

sized NP-FePO4 digested fractions agglomerated when incubated with MEM; 

therefore its exposure to cells would not be a true NP exposure. While it is 

apparent that sonicated particles are not representative of true physiological 

exposure, and may not be the most accurate representation of digested particles, 

this was one of the unavoidable limitations encountered when combining very 

different disciplines (i.e. nanotechnology and nutrition).  

In hindsight, because particle transcytosis has been hypothesized to occur 

in Peyer’s patches, the use of Caco-2 / HT-29 MTX co-cultures may have been 

preferable to monocultures. In previous studies, co-cultures were more sensitive 

to transporting large size particles (200-500 nm) [284, 347]. The primary aim of 

this study was to determine whether DMT1 was required for iron uptake from NP-

FePO4; for this reason, monocultures were chosen, as it is the validated model 

for iron bioavailability studies. Co-cultures require further development before 

they can be considered useful for iron bioavailability studies. Mahler et al [272] 

found that the in vitro digestion cell ferritin response in Caco-2 / HT-29 MTX co-

cultures did not correlate with the Caco-2 monoculture response, and in fact its 

responses were dampened significantly.   

Iron homeostasis is a tightly regulated process. Given the concerns over 

nanoparticle toxicity, a process that may circumvent iron homeostatic 

mechanisms, baseline experiments in Caco-2 cells were conducted to measure 

the effect of NP-FePO4 on cell viability. These experiments validated (a) the use 

of healthy cells and (b) that cell ferritin responded to iron uptake, rather than a 

by-product of toxicity/inflammation (ferritin is an acute phase protein). Using 

similar methods, Von Moos et al [385] also did not find any evidence of 



 

 

 

194 

cytotoxicity when Caco-2 cells were incubated with NP-FePO4 at increasing 

particle concentrations and time (24-72 hrs). While NP-FePO4 is a promising 

novel iron fortificant, cost and consumer acceptance will be difficult obstacles to 

overcome for its implementation. 

In Chapter 4, the feasibility of using pea ferritin (phytoferritin) as a 

nutritional iron supplement was explored. The absorption of iron from phytoferritin 

still remains controversial; therefore experiments undertaken were aimed to 

investigate these mechanisms more in-depth. The results of this chapter strongly 

suggest that phytoferritin from marrowfat peas, either bound within peas or 

extracted, will likely degrade under gastrointestinal conditions. Similar to previous 

studies using undigested, native phytoferritin, its uptake appears to involve a 

clathrin-mediated endocytosis pathway that is independent of DMT1. Protection 

of phytoferritin from gastric digestion is ultimately the key to its bioavailability, as 

dietary non-haem iron inhibitors have no effect on iron uptake.  

While the phytoferritin experiments indicated that a clathrin-mediated 

endocytosis pathway exists for phytoferritin, time restrictions prevented the 

exploration of these mechanisms further. Toward the end of the project, 

preliminary investigations were conducted to identify possible phytoferritin 

receptors in Caco-2 cells using co-immunoprecipitation and mass spectrometry; 

this was not completed due to time constraints. The identification/characterisation 

of receptors on the surface of enterocytes would definitively prove the existence 

of an alternative pathway for phytoferritin. Gene knockdown studies in mice 

would determine whether this pathway is physiologically important in iron 

nutrition. For the project at hand, the next experiments could examine different 

strategies to protect phytoferritin from gastric digestion. In addition, pilot studies 

should be conducted to determine its bioavailability relative to FeSO4. 
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For Chapters 3 and 4, the data obtained provide strong evidence that an 

iron uptake route independent of DMT1 exists for both iron forms. In the near 

future, intestinal DMT1-/- knockout mouse models should be used to provide in 

vivo evidence whether this is indeed the case.  

In Chapter 5, the dietary factors regulating iron uptake from LIF were 

examined. While some in vitro work has been conducted with LIF, there are no 

studies to date that have investigated iron bioavailability from LIF using the Caco-

2 cell model. 1:10 Fe:AA ratios were required to optimally increase the solubility 

and iron bioavailability from LIF. The large quantity of AA required should be 

highlighted, as small doses of AA did not increase iron bioavailability from LIF 

despite high quantities of LIF-Fe released; this is one plausible explanation why 

LIF might have been ineffective in improving haemoglobin status of women in 

Cambodia in recent trials. The effect of food and dietary inhibitors on LIF iron 

uptake was also investigated. LIF was able to significantly increase iron uptake in 

the presence of peas; this effect is likely food matrix dependent, and its 

bioavailability was inhibited greatly in the presence of tannic acid. While it seems 

that LIF is a promising and sustainable iron source, understanding the factors 

that enhance and limit its bioavailability are essential to its effectiveness. 

In the current chapter, peas were used to give an approximation of the 

synergistic effect LIF-Fe would have on iron bioavailability. The effect of LIF-Fe 

on whole-meal bioavailability would be more representative of the in vivo 

condition. The next set of experiments could address this. Carefully reproduction 

of representative meals used in prior clinical trials and its iron bioavailability with 

and without LIF using Caco-2 cells might explain some of the previous results. 

The meal compositions cited by previous studies include the use of fish, a protein 

that has shown to improve iron bioavailability. Subsequent experiments could 

also examine the in vivo relevance of the pro-oxidative capacity observed for LIF. 
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6.2 Main conclusions 

Chapter 3 

! NP-FePO4 has comparable bioavailability to FAC. 

! The majority of iron from NP-FePO4 is absorbed using DMT1. 

! Solubility at pH 1 increases iron bioavailability of NP-FePO4 to the 

same levels as FAC, which validates results from in vivo rat 

studies. 

Chapter 4 

! Phytoferritin is easily broken down at low pH conditions of the 

stomach. 

! Native phytoferritin is absorbed using clathrin-mediate endocytosis; 

pH treated phytoferritin is absorbed using DMT1. 

! Phytoferritin may be a well-tolerated form of oral iron 

supplementation in comparison to FeSO4. 

Chapter 5 

! LIF-Fe is generally not bioavailable unless large concentrations of 

AA are added.  

! Certain foods (e.g. peas) may also improve iron bioavailability from 

LIF. 

! TA is a potent inhibitor of LIF-Fe at low concentration; limiting TA 

(and polyphenol) concentrations, such as coloured beans, during its 

use may improve its efficacy.  

6.3 Future research 

While the in vitro data presented in this thesis shows the promise of novel 

iron supplements and fortificants to reduce the burden of iron deficiency, human 



 

 

 

197 

studies are needed to confirm whether NP-FePO4 and phytoferritin are well 

absorbed in humans relative to FeSO4. Concerns over the use of nanoparticles 

will be a difficult regulatory hurdle to overcome with regards to its safety. 

Currently, the use of IHAT as a nanoparticulate iron supplement is undergoing 

clinical trials in the Gambia. Depending on the outcome of these trials, other iron 

nanoparticles, such as NP-FePO4, could be employed. Given external funding, 

conducting human trials for phytoferritin as a nutritional supplement should be 

much easier as it is naturally occurring in peas. Delivery systems, such as enteric 

coating and targeted release in the intestine, are being discussed.  

In Chapters 3 and 4, we provide evidence that NP-FePO4 and phytoferritin 

can both undergo direct uptake via endocytosis in Caco-2 cells. This uptake 

mechanism is dependent on the extent of gastrointestinal digestion, which is very 

difficult to recreate under in vitro conditions. Furthermore, while Caco-2 cells 

display a duodenal-like phenotype, they are originally of colonic origin, and are 

not completely representative of the many subtypes of cells found in the intestine. 

To investigate and confirm an endocytic pathway, DMT1-/- intestinal knockout 

mice are required to determine whether nanoparticles are translocated into the 

intestine independent of DMT1.  

In Chapter 5, we found that the addition of peas with LIF greatly enhanced 

iron bioavailability from LIF alone and conversely, the addition of TA markedly 

reduced its bioavailability. These results strongly suggest that iron bioavailability 

from LIF is inherently dependent on the food matrix. Thus, in order to understand 

whether the LIF can improve iron status, the meal composition of a potential 

clinical trial could be replicated and its bioavailability determined with LIF. For 

example, replicating the traditional diets that were consumed in the previous two 

Cambodian trials and measuring bioavailability from meals with and without LIF 

using Caco-2 cells might help to explain the results of these trials. 
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8. Appendices 

Appendix A Optimisation of Caco-2 transfection 

The optimal levels of transfection reagent (Lipofectamine® 3000) were 

determined in Caco-2 cells seeded at different days in culture. Caco-2 cells were 

seeded in 96-well plates and transfected according to manufacturer’s 

instructions. Briefly, 0.1 μg GPF plasmid (donated by the Rushworth lab, UEA) 

was mixed with either 0.35 or 0.5 μg TR. Transfections were carried out 4, 7, and 

10 days post seeding and analysed for GFP integrated into cells (using 

fluorescence microscopy) after 48 hrs.  

 

As shown in the graph, transfection efficiency was highest in cells after 4 

days post seeding. This was to be expected as cell transfections are usually 

conducted in pre-confluent cells. Evidence of cellular toxicity occurred with 2 μL 

TR. The best transfection efficiency occurred with either 0.75 or 1 μL TR. Since 

all cell culture experiments were conducted at 12 days post confluence, 

conditions for siRNA treatments were 0.75 μL TR at 10 days post-seeding 

(scaled up appropriately for 12 well plates). 
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Appendix B TEM of Caco-2 cell monolayer  

Representative TEM images depicting the apical layer of Caco-2 cells 

(with microvilli) are shown below.  

 

As shown in the images, cells were either left (a) untreated or (b, c) 

treated with sonicated NP-FePO4 (200). There is evidence of NP uptake in Figure 

c, signified with blue arrows. The blue arrow is possible evidence of clathrin coat 

formation and particle internailsation. The red arrows indicate particles within 

clathrin-coated vesicles. Scale bars represent 200 nm.  
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The Rank Prize Funds: Mini-symposium on The Role of Crops in Providing 
Micronutrients (Fe, Zn, Se) for Human Health, Grasmere UK, May 2016. 
Oral presentation. 

• Perfecto, Antonio P. “Size characterizations of food fortificant grade ferric 
phosphate nanoparticles during simulated in vitro digestion and its 
absorption in a Caco-2 cell model.” 

1st FENAC Academic Workshop: Biological and Environmental Impacts of 
Nanomaterials, University of Birmingham, Birmingham UK, March 2016. 
Oral presentation. 

• Perfecto, Antonio P., Rodriguez-Ramiro, I., Rodriguez-Celma, J., Balk, 
S., Shewry, P., Fairweather-Tait, S. “The availability of iron in peas.” 

Diet and Health Research Industry Club (DRINC), Oxford UK, September 
2015. Poster Presentation. 

• Perfecto, Antonio P. “Uptake and in vitro digestion of pea ferritin in Caco-
2 cells.” 

FMH Postgraduate Research Student Conference, UEA, Norwich UK, 
March 2015. Oral Presentation  

• Perfecto, Antonio P. “Uptake and in vitro digestion of pea ferritin in Caco-
2 cells.” 

Diet and Health Tea Club, UEA, Norwich UK, June 2014. Oral 
Presentation. 
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! Facility for Environmental Nanoscience Analysis and Characterisation 
(FENAC) Award Recipient 2014-2015. Award amount: £ 9000. Project 
Title: Imaging of iron nanocompounds in Caco-2 cells using confocal and 
TEM. 

! Facility for Environmental Nanoscience Analysis and Characterisation 
(FENAC) Award Recipient 2014-2015. Award amount: £ 10000. Project 
Title: Size characterization of iron nanocompounds during an in vitro 
digestion. 

! Harvest Plus (CIAT/IFPRI) Challenge Award Recipient (2013-2016). 
Project code R22850. Award amount: $ 31241. Project Title: Mechanisms 
of uptake of different forms of iron using a Caco-2 cell model.  

! International Studentship Award Recipient, University of East Anglia 
(2013-2016). 

 

 


