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Abstract

There are many applications where multiple images are fused to form a single summary

greyscale or colour output, including computational photography (e.g. RGB-NIR), diffu-

sion tensor imaging (medical), and remote sensing. Often, and intuitively, image fusion is

carried out in the derivative domain (based on image gradients). In this thesis, we propose

new derivative domain image fusion methods and metrics, and carry out experiments on a

range of image fusion applications.

After reviewing previous relevant methods in derivative domain image fusion, we make

several new contributions. We present new applications for the Spectral Edge image fusion

method, in thermal image fusion (using a FLIR smartphone accessory) and near-infrared

image fusion (using an integrated visible and near-infrared sensor). We propose extensions

of standard objective image fusion quality metrics for M to N channel image fusion -

measuring image fusion performance is an unsolved problem.

Finally, and most importantly, we propose new methods in image fusion, which give

improved results compared to previous methods (based on metric and subjective compar-

isons): we propose an iterative extension to the Spectral Edge image fusion method, pro-

ducing improved detail transfer and colour vividness, and we propose a new derivative

domain image fusion method, based on finding a local linear combination of input images

to produce an output image with optimum gradient detail, without artefacts - this mapping
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can be calculated by finding the principal characteristic vector of the outer product of the

Jacobian matrix of image derivatives, or by solving a least-squares regression (with regu-

larization) to the target gradients calculated by the Spectral Edge theorem. We then use our

new image fusion method on a range of image fusion applications, producing state of the

art image fusion results with the potential for real-time performance.
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Glossary

• POP - Principal characteristic vector of the Outer Product

• SW - Socolinsky and Wolff

• LLC - Local Linear Combination

• SE - Spectral Edge

• DWT - Discrete Wavelet Transform

• ROLP - Ratio of Low-pass Pyramid

• DOLP - Difference of Low-pass Pyramid

• NIR - Near Infrared

• LUT - Lookup Table

• MEF - Multi-exposure Fusion
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Mathematical Notation

• J - Jacobian matrix of image derivatives.

• Z - inner product of the Jacobian matrix of image derivatives (JTJ).

• H - input high-dimensional image.

• ∇D - derived gradients of fused image.

• O - output fused image.

• R - input RGB guide image.

• P - local linear combination (LLC) weights.

• Pn - polynomial expansion of order n.

• A, B, F - for image fusion metrics: A, B - input images, F - fused image.

• w - sliding image window.

• W - the set of windows across the image plane.

• Q - image quality.

• Jx - compact superscript notation used to indicate a particular x, y image location

(in this case the Jacobian matrix at that location).
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1

Chapter 1

Introduction

Image fusion can have many definitions, but in this thesis it is the task of combining the

most salient details of two (or more) input images into one composite image - saliency

can be measured in many ways, such as image derivatives, wavelet coefficients, image

Laplacian coefficients, and many more. Compressing high-dimensional image data into a

smaller number of dimensions will always involve a loss of information, but minimizing

this loss is the task of image fusion algorithms - as well as, in many cases, optimizing the

output image in terms of subjective quality and lack of artefacts.

The topic of this thesis is exploring new ways of doing this, focusing on image fusion

techniques based on first order image derivatives, and then assessing the performance of

these methods.

There are various uses of image fusion, but the classic examples involve two greyscale

images being fused into a single summary greyscale image. As shown in figure 1.1 the

‘UN Camp’ image pair [18] consists of thermal IR and visible images, in which a person is

clearly visible in the thermal image, but not in the visible image, while the terrain is more

detailed in the visible image. In a surveillance setting, the fusion of these images is clearly

advantageous, to see both the figure and the background in maximum detail. Another



2

Figure 1.1: Introduction: visible-thermal image fusion (“UN Camp”) - (a) thermal IR (b)
visible (c) and (d) two fusion results (images and results from [20])

popular image fusion example involves two greyscale images of clocks, shown in figure

1.2, in each of which approximately half of the image is in focus. Multifocus image fusion

can be used to create an image in focus at every point from images with different depths of

focus [52]. New results for this task are shown in section 6.3 of this thesis, in which our

proposed method performs better in a majority of cases, on standard image fusion metrics.

More recently, colour image fusion has become more of a topic of interest. Remote

sensing produces visible colour images with lower resolution and multispectral greyscale

images with higher levels of detail - image fusion can be used to produce a colour image

with maximum detail. Visible and near-infrared (RGB-NIR) colour image fusion involves

fusing a colour image taken in the visible spectrum with a greyscale near-infrared image,
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Figure 1.2: Introduction: multifocus image fusion (“clocks”) - (a) right-side focus (b) left-
side focus (c), (d) and (e) various fusion results (images and results from [52])

to produce a colour output image with combined details. Near-infrared light can penetrate

haze, allowing the RGB-NIR image fusion to be used for dehazing [79], and skin, leading

to the application of skin smoothing [33]. New results for RGB-NIR fusion, as well as

metric and psychophysical assessments, are shown in sections 4.3, 4.5 and 6.1 of this thesis.

Multispectral image fusion has also been used to analyze medieval manuscripts [48]. Multi-

exposure image fusion is also an image fusion application taking as input colour images

with different exposure levels, and producing an output colour image which is well-exposed

and detailed in all parts of the image [62] - new results for this task are shown in section

6.4 of this thesis.

Standard image fusion techniques include the ratio of low-pass pyramid [87] (ROLP)

technique, which represents detail as the ratio between levels of a scale-space pyramid, and

discrete wavelet transform (DWT) fusion, which encodes image detail as wavelet coeffi-

cients at different scales [66]. A common way of fusing using these methods is to take
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the maximum detail coefficients from each input image channel, before undoing the multi-

scale decomposition to produce an output image. These common methods, as well as other

image fusion methods not based on image derivatives, are surveyed in Chapter 2.

First order image derivatives - the change in pixel intensity between one pixel and the

next, measured in the x and y directions - are a natural and intuitive image detail representa-

tion, and have been strongly linked to image saliency in human perception [88]. However,

it is not immediately obvious how to combine input image gradients into a single output

gradient, and how to go from these output gradients to an output image. To solve the first

part of this problem, Di Zenzo proposed the structure tensor, a way of combining gradients

from any number of input image channels [22]. The structure tensor is defined as the in-

ner product of the Jacobian matrix of derivatives across all image channels in the x and y

directions. The eigendecomposition of this matrix produces an eigenvector pointing along

the line of maximal gradient variation, and the square root of the corresponding eigenvalue

represents the magnitude of that gradient - this produces a gradient which best captures the

detail of all the input gradients. Unfortunately, this square root is ambiguous in its sign - the

gradient could point either direction along the line defined by the eigenvector. Socolinsky

and Wolff chose to assign a sign to the gradient by looking at the direction of the gradient

in the mean input channel, or luminance channel [83], but no definitive method has been

found.

To go from the gradients produced by the structure tensor to an output fused image, the

standard method is gradient field reintegration. This involves solving a Poisson equation,

which can be accomplished through iteration or Fourier deconvolution. Unfortunately,

some gradient fields are inherently non-integrable, meaning there is no possible image with

their exact gradients - in these cases, the reintegration finds a least-squares optimal output
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image, which may produce halo or bending artefacts (see section 3.3 for examples of these

artefacts). There has been much research in trying to solve this problem [5] [63], but a

definitive solution has not been found. Chapter 3 of this thesis presents previous derivative

domain image fusion methods (and their problems) in more detail.

Spectral Edge image fusion is a derivative-based image fusion method which avoids

reintegration artefacts [16]. It does this using lookup-table-based gradient field reconstruc-

tion, a method which find a global lookup-table between the N input image channels and

a 3-dimensional output image, which produces an artefact-free output image which best

matches the target gradients of the structure tensor in a least-squares optimal way [31].

The other key idea of the Spectral Edge method is that it maintains the colour of a given

putative RGB image, by producing target RGB colour gradients, which have a structure

tensor at every pixel which is simultaneously exactly equal to the input N -dimensional

input image channels, and as close the putative RGB image as possible, combining input

detail and colour.

Chapter 4 of this thesis explains the Spectral Edge image fusion method in detail, and

presents an iterative extension to the method. It compares the Spectral Edge image fusion

method with the methods of Fredembach and Süsstrunk [34] and Schaul et al. [79], for

the application of RGB-NIR image fusion. The goal of this image fusion method is photo-

graphic enhancement, so the best way to compare the methods is a forced choice pairwise

psychophysical preference experiment - in this experiment, the Spectral Edge method is

the most preferred, followed by the method of Schaul et al. Attempts are also made to

produce an objective image fusion metric which will produce similar results to the exper-

iment. Previous metrics have been for 2 to 1 channel image fusion, so they are extended

to M to N channel fusion (in this case 4 to 3 channels), and their quality assessments are
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compared to the psychophysical experiment. Colourfulness and contrast-based metrics are

also considered. In the end, a combination of metrics based on gradient and colourfulness

gives the result closest to the psychophysical experiment. New applications of Spectral

Edge image fusion are also presented, using a combined visible and near-infrared sensor

to create inputs for RGB-NIR image fusion, and a thermal smartphone camera to create

inputs for both natural and false colour RGB-thermal image fusion.

In chapter 5, a new image fusion model is proposed, based on a local linear combina-

tion (LLC) of the input images, which avoids problems and artifacts inherent in previous

gradient reintegration techniques, by transforming the task of gradient reintegration into a

simple local linear combination of the input image channels. Two methods of calculating

local linear combination coefficients are explained: the first is based on the Principal char-

acteristic vector of the Outer Product (POP) of the Jacobian matrix of derivatives, which

produces a mapping that creates an output image with derivatives equal to those calculated

by Socolinsky and Wolff, and the second is based on finding a mapping by fitting a least-

squares regression (with regularization) from the input image derivatives to the Spectral

Edge calculated colour derivatives.

Various applications of the new image fusion model are explored in chapter 6, and the

results presented and compared with existing image fusion methods. These applications

are RGB-NIR image fusion, RGB-thermal image fusion, colour to greyscale conversion,

flash and no flash image enhancement, multifocus image fusion, multi-exposure image

fusion, and image fusion for astronomical visualization. The sheer variety of applicable

image fusion tasks for our method is unusual - most image fusion methods are designed to

perform well at one or two specific tasks.

There are several potential areas of future work. Firstly, it would be useful to create an
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RGB-NIR image set, with high-quality, well-registered images of a variety of scenes and

types - these could be obtained from dual RGB and NIR sensors (requiring registration),

or a single RGB-NIR sensor. The EPFL RGB-NIR data set [8] has been very useful, but

has problems with registration, and not many of its images are photographically pleasing.

Secondly, more work could be done to find a definitive objective metric to measure the

performance of image fusion tasks. Finally, the local linear combination image fusion

methods presented here could be further refined, and other coefficient diffusion techniques

used. The mathematics behind the method could also be explored in more depth.
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Chapter 2

An Overview of Image Fusion

This chapter presents a short survey of the field of image fusion, excluding derivative do-

main image fusion methods, which are described in the next chapter. It then goes on to

cover image fusion quality assessment, through psychophysical experiments and objective

metrics.

2.1 Definition

Standard definitions of image fusion include: “the objective of image fusion is to com-

bine information from multiple images of the same scene. The result of image fusion is a

new image which is more suitable for either human perception or machine perception and

further image-processing tasks such as segmentation, feature extraction and object recog-

nition,” [66], and “the goal in pixel level image fusion is to combine and preserve in a

single output image all the important visual information that is present in a number of in-

put images.” [93]. The input images may be, for example, the bands of a multispectral or

hyperspectral image[64], medical images captured with different scanning modalities [16],

multifocus images with different points of focus [52], or images with different illumination
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[25]. Blum and Zheng define image fusion as fusing images from different sensors (multi-

sensor image fusion) [7]. If we define image fusion more widely, as any task involving

image dimensionality reduction, we can include colour to greyscale conversion (although

it is not commonly considered an image fusion problem in the academic literature) [37]. In

all these cases, one image, traditionally a greyscale image, but now also commonly a colour

image, must be produced as an output. This output image should in some way capture the

detail and structure of the input images in a way which summarizes them most fully - as

defined by some measure of image detail or saliency.

2.2 Advantages

In most cases, different input images (from different sensors or times) will have information

which is shared and repeated across the images. This redundant information is unnecessary,

and image fusion can produce a single image with less redundancy. In other cases, the

input images contain different salient information, This complementary information can

(hopefully) be fused to produce an image with all (or as many as possible) of the salient

details from each input image [7]. However, image fusion will always result in some loss

of complementary information - dimensionality reduction is a problem with no perfect

solutions - the task is to minimize this loss.

Image fusion can improve the efficiency of human operators - if human operators are

monitoring image streams, their workload increases with the number of images that must be

monitored. Image fusion can reduce this workload, by combining images and thereby re-

ducing the number of images necessary [7]. The RGB-thermal image fusion results shown

in sections 4.5 and 6.2 of this thesis could be used by security camera operators, for exam-

ple, to reduce the number of image streams it is necessary to monitor.
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Subjective image quality can be improved by image fusion. Near-infrared (NIR) images

can be used to enhance visible spectrum colour images to produce a superior fused colour

image, as shown in sections 4.3-5 and 6.1 of this thesis. Multi-exposure image fusion

produces an output image with a greater subjective image quality than any of the single

input images, as shown in section 6.4 of this thesis. Flash and no-flash image enhancement,

shown in section 6.7, produces an output image of higher subjective quality than either the

flash or no-flash images alone. Image fusion can also be used on astronomical images, to

produce a more pleasing image for astronomical visualization.

2.3 Techniques

In this section we briefly cover the background of widely-used image fusion techniques,

such as pyramidal approaches, methods based on the discrete wavelet transform, optimization-

based methods, and sparse representations - several of these methods are compared to our

proposed methods in later chapters. Neural networks are also beginning to be used for

image fusion, but are not covered here.

2.3.1 Pyramidal Approaches

The Gaussian scale space is the most basic and fundamental way of representing infor-

mation in an image at different scales[55]. To see information at different scales within

an image, the image is convolved with a Gaussian filter kernel with different standard

deviations[68]:

I(x, y, t) = I0(x, y) ∗G(x, y, t). (2.1)

Where I0(x, y) is the original image at a certain x and y pixel location, and G(x, y, t)
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represents the Gaussian kernel with scale space parameter t, corresponding to its variance.

The ratio of low-pass pyramid (ROLP)[87], and the difference of low-pass pyramid

(DOLP)[10] create a pyramid of input image channels at different scales:

I(x, y, k) = I0(x, y) ∗G(x, y, tk). (2.2)

Where tk is the appropriate scale parameter for level k. The standard deviation is dou-

bled at each level, and as high frequency information has been removed, the image can be

downsampled by half.

The ratio components of the ROLP pyramid are defined as a ratio of two levels of the

pyramid:

R(x, y, k) = I(x, y, k)/I(x, y, k + 1). (2.3)

This ratio is equal to the Weber contrast plus one (contrast is centred around zero be-

cause where the background and foreground are equal there is zero contrast, whereas ratios

are centred around one):

C(x, y, k) = I(x, y, k)/I(x, y, k + 1)− 1. (2.4)

The difference components of the DOLP pyramid are defined as a difference of two

levels of the pyramid:

D(x, y, k) = I(x, y, k)− I(x, y, k + 1). (2.5)

The original image can be reconstructed from the top level of the pyramid by multiply-

ing (for ROLP) by or adding (for DOLP) it to the ratio or difference coefficients per pixel
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at each level.

The fusion step comes from choosing ratio or difference coefficients across several

input channels using some selection rule - typically picking the coefficients with the largest

magnitude (max selection)[11]. One is taken away from the ratio coefficients before the

selection takes place, as the largest contrast will be selected. For ROLP:

ROUT(x, y, k) = Rλ(x, y, k) (2.6)

where

λ = arg max
{∀n∈N:1≤n≤N}

(|Rn(x, y, k)− 1|) , (2.7)

And for DOLP:

DOUT(x, y, k) = Dγ(x, y, k) (2.8)

Where

γ = arg max
{∀n∈N:1≤n≤N}

(|Dn(x, y, k)|) , (2.9)

Where Rn and Dn are the ratio and difference coefficients for the nth input image

channel, out of N total input image channels. The top level images are typically averaged:

IOUT(x, y,K) =

∑N
n=1 In(x, y,K)

N
, (2.10)

Where K is the number of levels in the pyramid, and then the output image is produced

using the new ratio or difference coefficients at each level:
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IROLP (x, y) = IOUT(x, y,K)
K∏
k=1

ROUT(x, y, k) (2.11)

IDOLP (x, y) = IOUT(x, y,K)
K∑
k=1

DOUT(x, y, k) (2.12)

This image should have the maximum detail across all the input images at each scale.

Another variation of image fusion using a pyramid decomposition is based on mean

filtering instead of Gaussian filtering. The detail coefficient combination method is also

more complex [50]: first a Laplacian filter is convolved with the input images to produce a

saliency map, then weight maps are constructed by setting the weight for the input image

with maximum saliency at a particular pixel to 1 and the others to 0. These weight maps

(coefficient images) are then diffused and smoothed by using a guided filter, with the input

corresponding source image used as the guide image.

2.3.2 Discrete Wavelet Transform

The discrete wavelet transform (DWT) is another multiscale representation of an image

[59]. Wavelets are waves (or functions) with compact support, i.e. waves only defined for a

certain domain of input values. Wavelets are comprised of scaling and wavelet functions -

the scaling function changes the scale of the input signal (often similar to a low-pass filter),

then the wavelet function describes the input signal at that scale (somewhat analogous to a

high-pass filter). The scaling and wavelet functions are also known as approximation and

detail functions. These wavelets are used to calculate coefficients at different scales, of

which the approximation coefficients represent low-frequency information, and the detail

coefficients represent high-frequency information.
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The Haar wavelet is defined as a step function:

Ψ(x) =


1 if 0 ≤ x < 1

2

−1 if1
2
≤ x < 1

0 otherwise.

(2.13)

This, in practical terms, translates to a
(

1/
√

(2)
)

[1− 1] image filter, which must be

convolved with the input image signal at the appropriate scale to obtain high-frequency

information. The corresponding low-frequency wavelet filter is
(

1/
√

(2)
)

[1 1]. These

filters must be applied in both x and y directions - first x, then y, in all sequential combi-

nations of the high- and low-frequency wavelet filters. After each application of the filter,

the image is downsampled by a factor of 2 in the corresponding direction. This process

begins at the largest (raw input) image scale, then the image obtained from convolving

low-frequency filters in both directions and downsampling is used as the input for the next

scale. Figure 2.1 shows a diagram illustrating one level of this process, where H represents

high-frequency wavelet filtering, and L low-frequency filtering.

The inverse process is used to reconstruct an image from wavelet coefficients. The

coefficient images are first upsampled by a factor of 2 in the y direction, then inverse L or

H filters are applied (depending on which filters were used to create the current coefficient

image). The same is done is the x direction, and then the coefficients are summed to

produce the output image. This must be done at every scale before the final image is

reconstructed. Figure 2.2 shows an illustration of one level of this process.

Image fusion is performed by using a selection rule to combine the coefficients from

multiple input image channels[66]. A simple selection rule might be to take the mean of

the approximation coefficients at the largest scale, and the detail coefficients at every scale
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Figure 2.1: Overview of image fusion: DWT Image Fusion - process of obtaining wavelet
coefficients (from [66]).

with the greatest magnitude, this is known as the Choose Max (CM) selection rule. More

complex selection rules are also used, using activity measures (such as variance) either in

a local window in the image, or in the set of coefficients.

Further steps can be added, such as consistency verification, in which nearby image

regions are assumed to contain the most salient image details from the same input image.

This can be accomplished by, for example, smoothing the decision map of which input

image to take coefficients from using a majority filter. Consistency can also be extended

between scales, enforcing coefficients from a similar image area at different scales to use

input information from the same image.

Once the output coefficients are combined from the selection of input coefficients, the

output image is then formed by inverting the wavelet decomposition from the fused coeffi-

cients.
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Figure 2.2: Overview of image fusion: DWT Image Fusion - process of reconstructing an
image from wavelet coefficients (from [66]).

Image fusion has also been implemented with complex wavelets [39], and curvelets

[64], which reduce the artefacts inherent in wavelet image fusion.

2.3.3 Optimization-based Methods

Many recent methods in image fusion are based on the optimization of one or more key

variables to fit an objective function.

One method based on optimization is that of Laplacian colourmaps [25]. In this method,

they define an image Laplacian, creating a sparse matrix representation of the image struc-

ture. The commutativity of two images’ Laplacians is proposed as a measure of image

similarity. This is then used as the primary target of minimisation, to find a global M -to-N

channel mapping - the Laplacian of the output of the mapping should be as similar to the
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Figure 2.3: Overview of image fusion: Laplacian colourmaps image fusion - RGB-NIR
(from [25] - [LHM11] is the method of [47]).

input image’s Laplacian as possible, as judged by their commutativity. Figure 2.3 shows

the Laplacian colourmap result for RGB-NIR colour image fusion of the NIR and RGB

images,

Lau et al. use a clustering approach to define information loss between the original in-

put images and the output fused image [47]. They create a graph that whose nodes represent

clusters of similar pixels, and whose edges represent the difference between spatially sim-

ilar clusters. They then formulate a minimization which seeks to create a mapping which

creates an output image with as similar a graph as possible to that of the input images,

which also being as similar as possible to an initial mapping.

x = arg min
x

EΥ + wEM (2.14)
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Where x are the optimal output cluster colours, EΥ is the term that preserves contrast,

and EM is a constraint to keep the mapping close to the original image mapping, and w is

a parameter weight.

The target term is

EΥ =
∑

(i,j)∈ε

Υij((xj − xi)− tij)2, (2.15)

Where ti,j are the target vectors for all edges (i, j) in the graph edge structure ε, and

Υij is a weight on edge (i, j).

An application-specific optimization method is that of Feng et al. [30] uses a general-

ized haze model, defined by Fattal [27] as:

I(x) = t(x)J(x) + (1− t(x))A, (2.16)

where I is the image captured by the camera, J is the dehazed scene image, t is the

transmission map, and A is the airlight colour. It then utilises the NIR image to help

determine the amount of haze at each location in the RGB image. They then formulate

dehazing as an optimization problem, simultaneously finding the original colour image

and the transmission map which best fit the RGB and NIR images. They solve this using

iteratively reweighted least squares (IRLS) - the optimization problem is defined as

(Ĵ, t̂) = arg min
(J,t)

||tJ+(1−t)A−IRGB||2+λ1w|∇J−∇INIR|α+λ2|∇J|β+λ3||∇t||2 (2.17)

The first part of the minimization is based on the single image dehazing model. The

second term uses the NIR detail as a constraint for the calculated original dehazing image,
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as the NIR image should be more detailed in hazy areas. The last two terms are smoothness

constraints for the dehazed image and the transmission map. The NIR detail is weighted

by w to be more significant at lower values of t - i.e. where the objects are further away.

Optimization-based methods can often produce excellent output results with minimal

artefacts, but in our experiments they often take a large amount of computational time. This

is due to the nature of optimization, which demands computational complexity, in contrast

to a closed-form solution.

2.3.4 Sparse Representations

A sparse representation of an image describes the image in terms of sparse coefficients of

an overcomplete dictionary of prototype signal atoms. Overcompleteness means that the

number of basis atoms in the dictionary exceeds the number of pixels in the image (number

of image dimensions). Sparseness means that number of descriptors required to describe

the image is less than the number of pixels[94].

If we describe a signal as γ ⊂ Rn, sparse representation theory proposes a dictionary

D ∈ Rn×T , where T is the number of prototype signals, referred to as atoms. For a given

signal x ∈ γ, there is a linear combination of atoms from D that approximates it closely.

Formally, ∀x ∈ γ, ∃s ∈ RT such that x ≈ Ds. Usually T > n, meaning the dictionary

is overcomplete. Finding s, which is usually not unique, involves solving this optimization

problem:

min
s
||s||0 subject to ||Ds− x|| < ε (2.18)

Where ||s||0 is the number of nonzero components in s. This optimization is NP-hard,

so an approximate solution is found. The typical algorithms used to select the dictionary
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are matching pursuit (MP) or orthogonal MP.

The input images are first decomposed into patches, from which dictionaries of atoms

are calculated. Next, the patches are decomposed by prototype signal atoms into their

corresponding coefficients. A larger coefficient means more salient features are present.

The coefficients are combined between the input images by the choose-max (CM) selection

rule. Finally, the output fused image is created by applying the fused coefficients to the

dictionary.

Image fusion using sparse representations has been used for applications including mul-

tifocus image fusion [94], remote sensing [53], and hyperspectral image fusion [91].

2.4 Applications

The image fusion applications in this section are all widely explored in the academic liter-

ature, and typically image fusion algorithms are designed to solve a specific one of these

problems. In Chapter 6 of this thesis, we show how the proposed LLC method can be used

for a wide variety of these applications.

2.4.1 Multifocus Image Fusion

In digital photography, when a lens is focused on a certain object in a scene (using a certain

focal length), at a certain distance from the camera, parts of the scene that are at different

distances can become out of focus.

Multifocus image fusion involves fusing images taken with different focal lengths. Fig-

ure 1.2 shows a classic example, in which two greyscale images are each in focus in around

half the scene. The fused result is in focus at every point [52]. Many of the standard image

fusion methods have been used for this task, such as the discrete wavelet transform [49]
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and complex wavelets [39], as well as other methods such as neural networks [51].

Plenoptic photography involves using a microlens array to measure not only the total

amount of light arriving at each pixel, but also the amount from each light-ray direction.

This provides various refocusing options of color images, allowing images with different

depths of focus to be created from a single exposure [65]. These can be fused to produce

a color image in focus at every point, for example using Laplacian colourmaps [25], as in

fig. 6.7.

2.4.2 RGB-NIR Colour Image Fusion

The goal of RGB-NIR colour image fusion is to combine the detail of the input colour RGB

and greyscale NIR images, while maintaining or even improving the colour of the original

image. This can be done for purposes such as dehazing or photographic enhancement.

Fredembach et al. introduced the idea of decomposing the input RGB image into its

luminance and chrominance, in a colour space such as HSV or CIELUV, and then replacing

the luminance channel with the input NIR image, before converting the image back to

RGB colour space [34]. This method provides high levels of detail transfer, but gives very

unnatural and strange looking results. A logical next step is to take an average of the

RGB luminance channel and the NIR input image, and use this as a luminance channel

replacement. If we define V as the RGB luminance channel, and N as the NIR image, the

new luminance image is (V +N)/2.

Schaul et al. developed this idea of combining the RGB luminance channel and NIR

image, by fusing them using an undecimated pyramidal image fusion technique. Pyramidal

image fusion techniques, of which Toet’s ratio of low-pass pyramid (ROLP) is the standard

example [87], obtain a pyramid of approximation images by blurring at different scales (see
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section 2.1.1). In the case of Schaul et al. this filter is an edge preserving filter, as proposed

by Farbman et al. [26].

Their fusion works by taking the maximum detail coefficient at each level and at each

pixel, across the two input images (the RGB luminance and NIR), and then undoing the

pyramid transform, to produce the output luminance image:

F0 = V a
n

n∏
k=1

(max(V d
k , N

d
k ) + 1) (2.19)

where V d
k is the detail image of the RGB luminance channel, andNd

k is the detail image

of the NIR image, both at scale k. Only the approximation coefficients from the RGB

luminance channel are used, in order to maintain natural low-frequency image details. This

luminance channel is then used as a replacement luminance channel for the RGB image to

produce an output image.

RGB-NIR image fusion methods which do not use a replacement luminance chan-

nel include the Spectral Edge image fusion method (see chapter 4 of this thesis), and

optimization-based methods such as Laplacian colourmaps [25] and cluster-based colour

space optimizations [47].

Skin smoothing is another use of RGB-NIR image fusion. Near-infrared light pene-

trates further into skin than visible light, so the skin appears smoother, with fewer blem-

ishes. Fredembach et al. use an image fusion technique based on using a bilateral filter

to separate images into their base and detail layers, and combining the visible base layer

with the NIR detail layer [33]. Figure 2.4 shows an example of the method’s input and

output, along with two other possible methods, using luminance transfer (NIR image used

as replacement luminance channel) and DWT fusion of the two luminance channels.



2.4. APPLICATIONS 23

Figure 2.4: Overview of image fusion: RGB-NIR Image Fusion for skin smoothing: a)
visible RGB, b) luminance transfer, c) DWT fusion, d) method of [33] (from
[33]).

2.4.3 Multi-exposure Image Fusion

Multi-exposure fusion (MEF) fusion is a simple and practical alternative to high dynamic

range (HDR) imaging. HDR in typical consumer cameras (e.g. smartphone cameras) usu-

ally involves taking multiple exposure images, converting these to an HDR radiance image,

then converting this HDR image to a low dynamic range (LDR) image. MEF fusion avoids
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the step of creating an HDR image by going directly from a set of input images with differ-

ent exposures to an output fused image. This method assumes all input images are perfectly

registered, and is widely used in consumer photography [77].

A comparison of MEF algorithms [58] poses MEF fusion as a weighted average prob-

lem:

O(x) =
N∑
n=1

Wn(x)In(x) (2.20)

Where O is the fused image, N is the number of multi-exposure input images, In(x)

is the luminance (or other coefficient value) and Wn(x) the weight at the x-th pixel in the

n-th exposure image. The weight factor Wn(x) may be spatially varying or global.

In a subjective comparison, based on assessing 8 MEF algorithms by their mean opinion

score (MOS), rated from 1 to 10 [58], the best performing algorithm was that of Mertens

et al.[62] (as explained in section 2.5 of this thesis, paired comparisons are a superior

method of subjective quality comparison, so this result is questionable). This is based on a

multiscale Laplacian pyramid decomposition of the input images, with the coefficients from

each image weighted by a combination of contrast, saturation and well-exposedness, and

then reintegrated to produce a fused image. The next best performing was the method of

Li et al., which takes the results of Mertens’ method and applies extra detail enhancement.

Closely behind the top two methods is an image fusion method based on guided filtering

[50], in which approximation and detail coefficients are calculated using an averaging filter,

then a weight map to combine these coefficients is calculated from taking the difference

between saliency measures at each pixel between the different input images, then using

a guided filter (with the input images using as the guide images) to smooth the resulting
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weight maps. Another method for MEF fusion is that of Shen et al., who perform multi-

exposure image fusion using generalized random walks [80].

2.4.4 Colour to Greyscale Conversion

Colour to greyscale conversion is the process of converting a color RGB image to a sum-

mary greyscale, which should represent all of the intensity and colour details of the original

as closely as possible. This is a dimensionality reduction problem, from three dimensions

to one, and therefore it is impossible to preserve all the input information. Therefore, the

most important information must be selected in some way, and transferred without artefacts

- a difficult task.

There have been various methods proposed to accomplish this goal. The “color2gray”

method of Gooch et al. converts the colour input image into a luminance-chrominance

colour space, then sets up an optimization problem, to find an output greyscale image

which captures the most significant luminance and chrominance differences. This is then

solved using conjugate gradient iterations [36].

Another colour to greyscale conversion method is that of Rasche et al. [74]. This

method sets up an optimization problem, in which colour contrasts and luminance consis-

tency are the two components in the objective function. It then uses a constrained, multi-

variate optimization to solve this function and produce a greyscale output image. Figure

2.5 shows some examples of their method’s results, compared to the original luminance

channels. Colour contrasts are maintained much more in their output images.

Grundland and Dodgson proposed the “decolorize” method for colour to greyscale con-

version [37]. They claim this to be superior to previous methods, due to fulfilling their de-

sign objectives, which include global consistency, greyscale preservation, and luminance
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Figure 2.5: Overview of image fusion: colour to greyscale conversion: a) original colour
image, b) luminance channel, c) result of [74].
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ordering. Their method is based on a unique dimensionality reduction technique, which

aims to preserve a maximal amount of chrominance contrast in the output greyscale image.

These methods and others were presented and compared in the work of Eynard et al.

[25], and their proposed method was found to be the best performing, based on the root

weighted mean square RWMS metric [45] (described in section 2.5 of this thesis) and a

psychophysical experiment.

2.4.5 Other Applications

Medical image fusion involves registering and fusing several images from a single or mul-

tiple medical imaging modalities, to produce a single image with the combined salient

details. A review of the field shows that all the common image fusion methods are used

for medical image fusion [41]. Magnetic resonance imaging (MRI) can be processed using

image fusion, particularly for 3D conformal radiation therapy and prostate studies. Com-

puterized tomography (CT), positron emission tomography (PET), single photon emission

computed tomography (SPECT) and ultrasound are other common medical image modali-

ties which can be fused. The brain is the most common organ which benefits from medical

image fusion, for such purposes as segmentation of brain tissues, image guided neuro-

surgery, and decoding brain visual states.

Concealed object or weapon detection is an application of image fusion, in which a

visible image is fused with an infrared (IR) image. In the visible image, realistic details

are present, while in the infrared image the concealed object or weapon is apparent. Xue

and Blum detect concealed weapons by fusing the visible RGB luminance channel with

the greyscale IR image, as well as its negative (in case the concealed weapon is more

visible in the negative image) [92]. In the fused results, concealed weapons are visible in
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Figure 2.6: Overview of image fusion: concealed weapon detection by image fusion - from
[92]

a naturalistic colour image, as shown in figure 2.6 - the advantage of this is that one video

feed can simultaneously provide both identification and concealed object detection.

An artistic application of image fusion is presented by Raskar and Yu [75], in which

gradient domain image fusion is used to stitch together different scenes. The input gra-

dients are linearly combined based on image saliency into desired output gradients, and

then reintegrated using an alternative to Poisson gradient reintegration. Fig. 3.8 shows an

example result, in which the foreground figure is added to a different background scene.

2.5 Image Fusion Quality Assessment

2.5.1 Psychophysical Experiments

Psychophysical experiments are widely used in image fusion and image processing, as a

means of identifying the best method from a choice of several. Single stimulus categorical

rating involves asking an observer to rate a single image on a scale of 1 to 5, from excellent

to bad. Double stimulus categorical rating is similar, but two images are shown and then

rated at a time, a reference image and a test image. Pairwise similarity judgements involve

rating the relative quality of two images. The observer can decide that the images are
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equal in quality, or that one is of higher quality by any amount on a continuous scale. The

problem with these methods is that different observers may have different internal scales

by which they measure quality.

Forced-choice pairwise comparison involves a pair of images being displayed to the ob-

server, who picks the image with the highest perceived quality. The forced-choice element

is that they must pick one of the images, even if they cannot discern any difference in qual-

ity. The theory behind this is Thurstone’s law of comparative judgment, which assumes

that the quality of each image is a random variable with Gaussian distribution (different

observers may rate the quality of a single image differently) [85]. If we denote two arbi-

trary images as having quality distributions QA and QB, then we seek to find the difference

between their means, which is an approximation to the ‘true’ quality difference between

them. Given many pairwise comparisons, each of which is a comparative observation of

which image is of greater quality, we can estimate the quality difference QA −QB.

The general case of the model requires the standard deviation of these Gaussian quality

distributions, and the correlation between them, to be estimated. Case 5 of Thurstone’s

Law is often used to simplify the model, in which the discriminal dispersions are specified

to be uniform and uncorrelated.

To calculate the quality difference QA − QB from a set of comparisons of multiple

images, we use the equation

QA −QB = H−1(P (QA > QB)). (2.21)

where H is the normal cumulative distribution function. To find P (QA > QB), the

probability that image A is of higher quality than B, we first create a frequency matrix.

In this matrix, each element ij is a tally of the number of times image i is preferred over
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image j. We then normalise this by dividing by the total number of observers to produce

(in the case of comparing the perceived quality of three image categories)

P =


P (Q1 > Q1) P (Q1 > Q2) P (Q1 > Q3)

P (Q2 > Q1) P (Q2 > Q2) P (Q2 > Q3)

P (Q3 > Q3) P (Q3 > Q2) P (Q3 > Q3)

 (2.22)

Our quality matrix is then created by applyingH−1 to P , and the final estimated quality

differences are calculated by summing the rows of the quality matrix.

The study of Mantiuk et al. [61] found that the forced-choice pairwise comparison pro-

duced the most accurate and efficient results, compared to three other types of psychophys-

ical experiment (single stimulus, double stimulus and similarity judgments) - therefore we

use this method in the experiments in this thesis. Connah et al. provide a practical example

of a forced-choice pairwise comparison psychophysical experiment, in which they compare

several methods of colour to greyscale conversion [17].

2.5.2 Objective Metrics

Image fusion quality metrics can be divided into two main types - metrics with a reference

image and non-reference metrics. Both types are based on measures of image similarity,

but they are used in different ways depending on whether a reference image is available.

In some cases, a reference image is available - for example in multifocus image fusion,

an image with everything in focus may have been taken of the same scene as the input

images.

With a reference image available, the metric is simply a measure of similarity between

the output fused image and the reference image. This measure could be root mean squared
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error (RMS) [89], signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), mutual

information (MI), the structural similarity image measure (SSIM) [90], or another measure.

We examine non-reference metrics here. These are common metrics used for image

fusion tasks, as no reference image is typically available for tasks such as RGB-NIR image

fusion. They typically consist of some measure of the image similarity between each input

image and the fused image, often weighted by a measure of image salience. These metrics

make the assumption that an ideal fused image will transfer maximum detail from all input

images - as shown in later chapters of this thesis, this is not the case for all image fusion

applications.

Xydeas and Petrovic defined a metric based on gradient similarity [93]. This metric

measures the amount of gradient detail transferred from each of the input images to the

output image. Its first part is a gradient similarity measure

QAF (x, y) = QAF
g (x, y)QAF

α (x, y) (2.23)

which measures the gradient similarity between images A and F , at pixel location with

a particular x and y coordinate. The first part, QAF
g (n,m), measures the similarity in

gradient magnitude, and the second part, QAF
α , measures the similarity in gradient angle.

These gradient similarity measures are added up across the image plane (with dimen-

sionsX and Y ), and calculated between both input images and the fused image. The results

are weighted by the gradient magnitude at that pixel, |G(x, y)|.

QG =

∑X
x=1

∑Y
y=1 Q

AF (x, y)|GA(x, y)|+QBF (x, y)|GB(x, y)|∑X
x=1

∑Y
y=1(|GA(x, y)|+ |GB(x, y)|)

(2.24)

Where A and B are the two input images, and F is the fused image.
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Several measures have been proposed based on the structural similarity image measure

(SSIM), defined by Wang et al.[90] as

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2))

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2.25)

Where µx is the mean of image x, σ2
x is the variance of image x, σxy is the correlation

coefficient between images x and y, and C1 and C2 are constants to provide stability for the

division. The SSIM combines measures of luminance, contrast and structure similarity.

Piella defined several similar metrics based on SSIM: Q, QW , and QE [70]. The Q

metric is an average of the SSIM values between the input images and the fused image,

in all possible windows of a certain size across the image plane, weighted by the salience

of the input images. The QW metric adds a weighting per window location based on its

local saliency, and the QE metric adds SSIM values between the edge images of the input

images and the edge image of the fused image.

Q(a, b, f) =
1

|W |
∑
w∈W

(λA(w)Q0(A,F |w) + λB(w)Q0(B,F |w)) (2.26)

QW (a, b, f) =
∑
w∈W

c(w) (λa(w)Q0(a, F |w) + λb(w)Q0(b, F |w)) (2.27)

QE(A,B, F ) = QW (A,B, F )1−αQ̇W (A′.B′.F ′)α (2.28)

Where Q0(A,F |w) is the SSIM between a certain window of A and F , s(A|w) is a

measure of image saliency of the window w in image A, C(w) = max(s(A|w), s(B|w)),

and c(w) = C(w)/(
∑

w∈W C(w′)). The images A′, B′, F ′ are defined as edge images, the

norm of the gradient of the images. The weight λA(w) is defined as
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λA(w) =
s(A|w)

s(A|w) + s(B|w)
(2.29)

The parameter α in QE can be varied to change the influence of the edge images.

Cvejic et al. added a correlation measure to the metric, defined as

QC =
∑
w∈W

sim(A,B, F |w)Q(A,F |w) + (1− sim(A,B, F |w))Q(B,F |w), (2.30)

where sim(A,B, F |w) is

sim(A,B, F |w) =


0, if σAF

σAF +σBF
< 0,

σAF

σAF +σBF
, if 0 ≤ σAF

σAF +σBF
≤ 1,

1, if σAF

σAF +σBF
> 1.

(2.31)

and

σuv =
1

N − 1

N∑
i=1

(ui − ū)(vi − v̄) (2.32)

The metric is defined as

QC =
∑
w∈W

sim(X, Y, F |w)Q0(X,F |w) + (1− sim(X,F, F |w))Q0(Y, F |w) (2.33)

Where X and Y are the input images, F is the fused image, w is the current window,

and W is the set of windows across the image plane [19].

Yang et al. proposed a variant with a threshold based on the similarity between the
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two input images. Where they are similar (SSIM ≥ 0.75) the metric is the same as Piella’s

Q metric, and where they are different (SSIM < 0.75) the maximum similarity between

the input images and the fused image is taken as the result [95]. The intuition behind this

method is that where the input images are very different, output image details should be

taken mostly from only one input image - the value of 0.75 is chosen arbitrarily.

QY =



λ(w)SSIM(A,F |w) + (q − λ(w)SSIM(B,F |w),

SSIM(A,B|w) ≥ 0.75

max{SSIM(A,F |w),SSIM(B,F |w)},

SSIM(A,B|w) < 0.75

(2.34)

Mutual information (MI) has been used in objective metrics, first by Qu et al.[73], and

then an updated metric proposed by Hossny et al. [40], who add normalisation by image

entropy.

MAB
F = 2

[
I(F,A)

E(F ) +H(A)
+

I(F,B)

E(F ) + E(B)

]
A (2.35)

Where I(A,B) is the mutual information between images A and B, and E(A) is the

entropy of image A.

Liu et al. performed a large-scale comparison of objective metrics for use in measur-

ing the performance of image fusion for context enhancement in night vision [56]. They

compared 12 image fusion metrics, as used to measure the performance of 6 image fusion

algorithms. They concluded that no one metric was universally useful and reliable, but

gave several recommendations, which included the gradient metric QG, and two SSIM-

based metrics.



2.5. IMAGE FUSION QUALITY ASSESSMENT 35

Kuhn et al. proposed a metric to measure the performance of colour to greyscale map-

pings [45]. This metric, which they term the root weighted mean square (RWMS) metric,

calculates the error at each pixel between the distance between it and its neighbours in the

input image in CIE L*a*b* colour space, and the corresponding distances in the output

greyscale image. This is based on the idea that the output image should maintain the same

image structure, and luminance and colour details as the input colour image. It is calculated

as

rwms(i) =

√
1

||K||
∑
j∈K

1

δ2
ij

(δij − |lum(ci)− lum(cj)|)2 (2.36)

where rwms(i) is the RWMS error at pixel i of the input colour image I , K is the set of

all pixels in I , ||K|| is the number of pixels in I , δ2
ij = (Greyrange/Colourrange)||ci− cj|| is

the target difference in grey levels for a pair of colours ci and cj , and lum is the function that

returns the component L∗ of a colour. This form of the equation measures the error for the

L∗ luminance channel, to measure the error of an output greyscale image, it is substituted

into the equation instead of the lum function.

We have seen that there are a variety of methods used for image fusion, applications for

these methods, and ways of measuring their levels of success. In the next chapter, we will

focus specifically on derivative domain image fusion in detail, and then go on to propose

new methods based on image derivatives.
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Chapter 3

Derivative Domain Image Fusion

Derivative domain image fusion is the set of image fusion methods based on image gradi-

ents (derivatives). These gradients are typically calculated from an image using a [1−1]

filter (for ∂I/∂x gradients, where I is the image, for ∂I/∂y gradients a [1−1]T filter would

be used). In this thesis we use this filter, as it provides the derivative with the smallest scale

(a single pixel), but other filter types are possible, such as [1 0−1].

An early image fusion method using gradients was that of Burt and Kolczynski [12],

which used a fusion of the gradients (including in this case diagonal gradients) of the levels

of a pyramid transform. The gradients are combined based on salience and match measures

- in regions where the input images are similar, the pyramid coefficients are averaged, and

where they are different, the most salient input image coefficients are used in the output

image. The combined gradients are then used to produce an output pyramid transform,

which is then inverted to produce an output fused image.

In this thesis, we focus on gradient-based image fusion methods which are not pyra-

midal, but instead use only the first-order x and y gradients at a single scale. This scale

is generally the scale of the input image, but some of the methods described in this the-

sis can operate at a smaller (thumbnail) scale to reduce the computational complexity and
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therefore speed up the fusion process. The starting point for these methods is the structure

tensor, which encodes gradient information from any number of input image channels in a

2× 2 inner product matrix.

Structure tensor based methods have many applications in computer vision [6], includ-

ing in image segmentation [38], edge and junction detection [44], evaluating the liveness

of face images [42], corner detection [96], denoising [24] and, relevant to this paper, for

image fusion [57].

3.1 The Structure Tensor

Let us denote as I(x) the multichannel image: I(x) : D ⊂ R2 → C ⊂ RN (x is a 2-

dimensional image coordinate and I(x)an N -vector of values). The Jacobian of the image

I is defined as the N × 2 matrix of derivatives:

J =



∂I1
∂x

∂I1
∂y

∂I2
∂x

∂I2
∂y

... ...

∂IN
∂x

∂IN
∂y


(3.1)

The Di Zenzo structure tensor[22], which in differential geometry is known as the First

Fundamental Form[15], is defined as the inner product of the Jacobian:

Z = JTJ (3.2)

If c = [α β]T denotes a unit length vector then the squared magnitude of the multi-

channel gradient can be written as: ||Jc||2 = cTZc. That is, the structure tensor neatly
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summarizes the combined derivative structure of the multichannel image.

3.2 Socolinsky and Wolff

Socolinsky and Wolff present a method of image fusion based on first-order image deriva-

tives [83]. They focus on visualization of high-dimensional images in a single dimension -

greyscale.

Figure 3.1 illustrates the meaning of the direction of maximal contrast. It is the line in

the high-dimensional image space of s(p) (also known as the spectral map) along which

there is maximal contrast (maximum image gradient magnitude). This is done by solving

for c in the equation

JTJ − λIc = 0 (3.3)

meaning we must solve

det(JTJ − λI) = 0 (3.4)

so if we define

JTJ =

g11 g12

g12 g22

 (3.5)

then the two eigenvalues are

λ±(JTJ) =
1

2

(
g11 + g12 ±

√
(g11 − g22)2 + 4g2

12

)
(3.6)

The corresponding eigenvector to λ± is the line of maximal contrast in the image at that
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Figure 3.1: Derivative domain image fusion: Socolinsky and Wolff first-order image fusion
- photometric line of maximal contrast (from [83]).

pixel, and choosing a positive or negative sign for the eigenvalue corresponds to choosing

a direction to face along that line.

In their work, Socolinsky and Wolff use the eigendecomposition of the inner product

JTJ to find the direction of maximal gradient contrast, but the singular value decompo-

sition (SVD) of J itself uncovers structure that is useful both for the understanding of

Socolinsky and Wolff’s image fusion method and also the POP variant of the local linear

combination image fusion method presented in section 5.2.1 of this thesis.
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J = USV T (3.7)

In Eq. 3.7, U , V and S are respectively N × N and 2 × 2 orthonormal matrices and a

N × 2 diagonal matrix. In the SVD decomposition - which is unique - the singular values

are the components of the diagonal matrix S and are in order from largest to smallest. The

ith singular value is denoted Sii and the ith columns of U and V are respectively denoted

Ui and Vi.

We can use the SVD to calculate the eigen-decomposition of the structure tensor Z:

Z = V S2V T (3.8)

The most significant eigenvalue of Z is S2
11 and the corresponding eigenvector is V1.

This eigenvector defines the direction of maximal gradient contrast in the image plane and

S11 is the magnitude of this gradient.

In the Socolinsky and Wolff method [83], the 2-vector S11V1 is the basis of their equiv-

alent gradient i.e. the derived gradient field that generates, per pixel, structure tensors that

are closest to those defined from the multichannel image (Eq. 3.2). The per-pixel gradient

field is written:

G(x) = Sx
11V

x
1 (3.9)

In eq. 3.9 the superscript x also denotes the x,y image location. We adopt this notation

to make the equations more compact. Respectively, Jx, Zx, Ux, Sx and V x denote the

per-pixel Jacobian, Di Zenzo tensor and the per-pixel SVD decomposition.

At this stage G(x) in eq. 3.9 is ambiguous in its sign. Socolinsky and Wolff set the
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Figure 3.2: Derivative domain image fusion: Socolinsky and Wolff first-order image fusion
- fusion of two contrast windows of chest CT scan - a) DWT fusion, b) SW
(from [83]).

sign to match the brightness gradient (i.e. (R+G+B)/3). The sign can also be optimized to

maximize the integrability of the derived gradient field [23]. Once we fix the sign, we write

G̃(x) = sign(x)Sx
11V

x
1 (3.10)

Figure 3.2 shows an example of their algorithm’s output, for the task of fusing two

contrast windows of a CT scan, in the field of medical image fusion. The SW fusion result

displays clearer details and more contrast than the DWT fusion output.

One limitation of this first-order gradient-based fusion, is that pixels in the image which

are not immediately adjacent cannot affect each other. The example they give is of an

Ishihara plate, in which the coloured circles are separated by white space. The first-order

fusion method may assign the same greyscale value to differently-coloured circles because
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they are not adjacent. Our proposed method in chapter 5 solves this problem through large-

scale coefficient diffusion.

3.3 Gradient Reintegration and Integrability

In general the derived gradient field G̃(x) is not integrable (the curl of the field is not

everywhere 0). In a generic vector field V = (Vx, Vy), V is integrable if and only if its curl

is zero:

curl(V ) =
∂Vx
∂y
− ∂Vy

∂x
= 0. (3.11)

So, Socolinsky and Wolff calculate the output image O(x) in a least-squares sense by

solving the discrete Poisson equation:

G̃xx + G̃yy = ∇2O(x) (3.12)

where [G̃xx G̃yy] denotes the divergence of the gradient field.

The iterative solution to this equation is

Ot+1
x = Ot

x +
1

4

[
∇Ot

x − (div V )x
]

(3.13)

Where O0 is any initial estimated output image, and div V is the divergence of the

vector field.

This Poisson gradient field reintegration is used for many other image processing tasks,

as well as for image fusion. Pérez et al. present many uses for what they describe as Pois-

son image editing, which involves combining gradient fields and reintegrating [67]. These

include seamless object insertion, as shown in fig. 3.3. It has also been used for high
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Figure 3.3: Derivative domain image fusion: seamless object insertion using Poisson image
editing (from [67]).

dynamic range (HDR) image compression - the HDR gradients are reduced, then reinte-

grated to produce a low dynamic range (LDR) image citefattal2002gradient. Figure 3.4 is

an example of how the HDR image gradients are attenuated and reintegrated to produce an

output LDR image, shown using one-dimensional signal comparisons.

Unfortunately, the derived gradient field of Socolinsky and Wolff is often non-integrable.

Because the gradient field reintegration problem (of non-integrable fields) is inherently ill-

posed, derivative domain techniques will always hallucinate detail in the fused image that

wasn’t present in the original image.
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Figure 3.4: Derivative domain image fusion: high dynamic range (HDR) image compres-
sion using Poisson reintegration - gradient attenuation, a) scanline of input
HDR signal, b) H(x) = log(scanline), c) derivatives H ′(x), d) attenuated
derivatives G(x), e) reconstructed output LDR signal O(x), f) output scanline
exp(O(x)) (from [28]).

Figure 3.5 shows an example of an non-integrable colour image. It is clear that no

greyscale image can maintain all gradient changes present in this colour image. In cases

like this, the gradient reintegration techniques previously mentioned will try to find a least-

squares optimal approximation. This approximation introduces artifacts, which visually

look like haloes or bending (as shown in figure 3.6e).

Figure 3.5: Derivative domain image fusion: gradient reintegration and non-integrability -
an example of non-integrability (from [63]). It is clear that a greyscale repre-
sentation of this image can not preserve all of the colour gradients, as no set of
scalar values can match these colour gradients.
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Another illustrative example of non-integrability that demonstrates these artifacts, using

different image fusion methods, is shown in figure 3.6, where there are two uniform white

images with respectively the top left and bottom left quarters removed. The discrete wavelet

transform (DWT) images were produced using a wavelet-based method which merges the

coefficients of the two images at different scales (as described in chapter 2). We ran a

standard DWT image fusion implementation using the CM (choose maximum) selection

method, which is simple and one of the best performing in a comparison [66]. The input

images are small so there is only a 7 level wavelet decomposition. In 3.6c and 3.6d we

show the outputs using Daubechies 4 and Biorthogonal 1.3 wavelets, the best wavelet types

as found in [66]. Clearly neither the basic wavelet method nor the Socolinsky and Wolff

method (3.6e) work on this image fusion example. However the POP variant of the LLC

image fusion method (3.6f) - explained in chapter 5 of this thesis - succeeds in fusing the

images without artifact. The intensity profile of the green line in 3.6f, shown in 3.6h has

the desired equiluminant white values, whereas the Socolinsky and Wolff intensity profile

3.6g shows substantial hallucinated intensity variation.

A further example of non-integrability is shown in figure 3.7. Here the fusion task is

that of horizontal and vertical white bars, on a black background. The central portion of

the images, where the bars overlap in different directions, is particularly problematic. As

shown in 3.7c, the SW result has clear bending artefacts around the overlapping corners,

where the target gradients are highly non-integrable. The look-up-table reintegration result,

shown in 3.7d, produces no artefacts but does not transfer all input details (the two output

intensity levels become one). The POP variant of the LLC method in 3.7e (explained in

chapter 5 of this thesis), produces an output image which transfers all relevant details while

avoiding artefacts.
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Figure 3.6: Derivative domain image fusion: gradient reintegration and non-integrability
- image fusion non-integrability example 1. (a) and (b) are fused by wavelet-
based methods (c) and (d), resulting in severe image artifacts. The Socolinsky
and Wolff gradient-based method (e) works better, but intensity gradients are
hallucinated (g) where none appear in the input images. The LLC method (f)
captures all input detail with no artifacts or hallucinated detail (see chapter 5).
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Montagna and Finlayson suggest reducing image saturation as a way to decrease the

unintegrability of the resulting gradient field, and therefore improving the quality of the

output image. They use contrast enhancement to compensate for detail loss due to this

saturation reduction. This method shows improved results, but the fundamental problem

of integrability remains [63]. Other recent techniques which apply additional constraints

to the reintegration problem can sometimes mitigate but not remove these artifacts include

using anisotropic weights to reduce the effect of target gradient noise [5], changing the

SW sign assignment to reduce non-integrability using a Markov relaxation approach [23],

error correction using L1 minimization [76] and [71]. In other work [82], the fused image

is post processed so that connected components - defined as regions of the input multi-

spectral image that have the same input vector values - must have the same pixel intensity.

Unfortunately, this additional step can produces unnatural contouring and edge effects.

Another approach to reducing non-integrability artefacts is that of Fattal et al. [28].

This is used by Raskar and Yu [75] to stitch together the foreground of one scene with the

background of another. The claim is that this alternative reintegration approach will avoid

reintegration artefacts, but it is clear from the fused output, shown in the bottom-right of

figure 3.8, that severe halo and bending artefacts are still present, particularly above the

book and above the man’s head.
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Figure 3.7: Derivative domain image fusion: gradient reintegration and non-integrability -
image fusion unintegrability example 2. SW gradients are calculated from (a)
and (b) (30 x 30 pixels)[83]. (c) Poisson reintegration result, (d) LUT reinte-
gration result[31], (e) POP variant of proposed local reintegration method.
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Figure 3.8: Derivative domain image fusion: gradient reintegration and non-integrability -
image fusion of different scenes using the alternative to Poisson reintegration
of [28] (comparison from [75]).
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Lookup-table-based reintegration is an alternative reintegration method, which finds a

global lookup-table (LUT) mapping from the input multichannel derivatives to the desired

derivatives, and then applies this LUT to the input image channels to form an output image

[31]. This is guaranteed to be free of artifacts, but may not provide maximal detail due

to its global nature. This reintegration method is used in Spectral Edge (SE) image fusion

[16]. The SE image fusion theorem is a way to create desired output RGB image gradients

which adds the extra constraint of a desired output color for each pixel. The SE theorem

allows gradients to be found which simultaneously capture the detail of all input image

channels, and maintain the desired color. Often the look-up-table reintegration theorem

delivers surprisingly good image fusion (it looks like the Socolinsky and Wolff image but

without the artifacts). Yet, sometimes the constraint that the output image is a simple global

function of the output can result in a fused image that does not well represent the details

in the individual bands of the multichannel image. The proposed LLC method in chapter 5

has the same desirable property of avoiding the hallucinated artifacts inherent in traditional

gradient reintegration as the global look-up-table mapping of Finlayson et al. [31], but has

far higher levels of detail transfer due to its locality.
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Chapter 4

Spectral Edge Image Fusion: Experiments and

Applications

Spectral Edge (SE) image fusion is a derivative domain image fusion method proposed by

Connah et al. [16], which extends gradient-based image fusion into the realm of colour,

and underpins one of the variants of LLC fusion set out in chapter 5 of this thesis. It finds

equivalent gradients similar to those of Socolinsky and Wolff [83], but instead of solving

for a 1-dimensional (greyscale) set of gradients, it finds a 3-dimensional (colour) set of

gradients, which simultaneously transfer the gradient detail of any number of input im-

age channels while remaining as close as possible to a guide colour image (often a visible

spectrum RGB image) - the mathematics holds for any number of input and output im-

age channels, but we focus on the instances with a 3-D colour output. These gradients

are reintegrated using lookup-table-based gradient reintegration [31], which finds a global

least-squares optimal mapping from N to 3 image channels.

Sections 4.1 and 4.2 review the previous Spectral Edge image fusion theorem used to

calculate equivalent gradients and the lookup-table-based gradient reintegration technique

used to create an output fused image from them.
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A psychophysical preference experiment is conducted in section 4.3, comparing the

Spectral Edge image fusion method to naive luminance channel replacement, the ratio

of low-pass pyramid (ROLP) method (as explained in section 2.3 of this thesis), and the

method of Schaul et al.. The results of the experiment show that the SE method is clearly

superior to the input visible RGB image, the naive luminance channel replacement method,

and the ROLP method, but the SE and Schaul et al. methods are not different to a statisti-

cally significant margin.

Section 4.3 also introduces new image fusion metrics, which are extensions of existing

2 to 1 channel image fusion metrics for a higher number of input and output channels.

Metrics based on output image colourfulness and contrast are also proposed. The results

of these are combined and compared to the results of the psychophysical experiment - a

combination of gradient-based and colourfulness metrics gives the closest predicted quality

ordering to that of the psychophysical experiment.

Next, section 4.4 introduces a new iterative extension to Spectral Edge image fusion, in

which the equivalent gradients calculated by the SE theorem are used as the colour guide

gradients for another iteration of gradient calculation - this increases the strength of the

detail transfer of the method, as shown with example results for RGB-NIR image fusion,

and a psychophysical experiment - more experiments are needed for a conclusive result,

but there are tentative indications that using more than one iteration of the Spectral Edge

image fusion method may produce superior results, as judged by objective and subjective

metrics.

Finally, section 4.4 presents example results of new applications of the Spectral Edge

image fusion method: image fusion from a single sensor with an RGB-NIR Bayer pat-

tern, and both natural and false colour RGB-thermal image fusion using the FLIR ONE
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smartphone thermal camera.

4.1 Spectral Edge Theorem

Spectral Edge image fusion is a derivative domain image fusion method. It uses the struc-

ture tensor, but instead of finding a one-dimensional set of desired gradients from a high-

dimensional set of input gradients, to produce a single output channel with maximum detail

(as in SW), it finds output derivatives which simultaneously have maximum detail transfer

while also remaining as close as possible in color to the input RGB image (or other color

guide image) [16]. This allows, instead ofN to 1 channel image fusion with maximum gra-

dient transfer, N to 3 channel image fusion which simultaneously has maximum gradient

transfer while preserving the desired image colours.

The Spectral Edge theorem, as defined by Connah et al., is as follows (the notation has

been changed to match that used in this thesis):

Given a multi-dimensional image H and a putative RGB “guiding” image

R, we can generate a new RGB gradient matrix ∇D that is as close as possi-

ble to the gradient of the RGB image, and whose contrast matches that of H

exactly.

If we define J as the image Jacobian at a pixel (see equation 3.1), and the inner product

of the Jacobian (the structure tensor) as Z, the aim of the SE method is to find an image

whose structure tensor exactly matches that of the high-dimensional input image, termed

ZH , while simultaneously keeping the gradients as close as possible to the input RGB

gradients JR. We define the final derived image gradient as∇D, and is of the form
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∇D =


∂D1

∂x
∂D1

∂y

∂D2

∂x
∂D2

∂y

∂D3

∂x
∂D3

∂y

 (4.1)

To accomplish this,∇D must lie within the span of JR, therefore

∇D = JR A (4.2)

Now ZR ≡ ZH , therefore ATZRA ≡ ZH . The complete set of A which satisfies this

condition is given by

A =
(√

ZR

)+

B
√
ZH , s.t. BTB = I2 (4.3)

Where the matrix square root is the unique symmetric root of the real positive semi-

definite symmetric matrices ZR and ZH , + indicates the Moore-Penrose pseudo-inverse,

and I2 is the 2× 2 identity matrix.

Thus far the matrix A will produce a result with equivalent high-dimensional detail, but

the second condition is to remain as close to the colour guide image gradients as possible,

so
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JD ' JR (4.4)

=⇒ JD A ' JR (4.5)

=⇒ A ' I2 (4.6)

=⇒
√
ZR

+
B
√
ZH ' I2 (4.7)

=⇒ B
√
ZH '

√
ZR (4.8)

The last line of 4.4 means that B must rotate
√
ZH so that it is as close as possible to

√
ZR. This is the Orthogonal Procrustes Problem - the solution in the least-squares sense

is to firstly use a singular value decomposition to express the product of the square roots of

ZR and ZH :

√
ZR

(√
ZH

)T
= D Γ ET (4.9)

Then the solution B is given by

B = D ET (4.10)

This B is then substituted into equation 4.3 to produce A, which is applied to the guide

image gradients JR to produce our final SE equivalent gradients JD. In this chapter, the out-

put image is created from these gradients using lookup-table-based gradient reintegration,

as explained in the following section - in the following chapter, we will show an alternative

method of reintegrating these gradients.
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4.2 Look-up-table Gradient Reintegration

Let us denote the derived gradient field, which could be calculated via Socolinsky and

Wolff[83], or via the Spectral Edge theorem, as∇D. It could be that there is no image that

has derivatives exactly equal to the ones we seek. After all, for every pixel we have an x

and y derivative yet the reintegrated image has a single pixel value - the gradient field may

be non-integrable, as described in section 3.3 of this thesis. Thus, the typical away to solve

this reintegration problem is to solve the Poisson equation to find an output image O with

gradients as close as possible to the derived gradients in a least-squares sense:

arg min
O

||∇O −∇D|| (4.11)

As explained in more detail in chapter 3, in finding the image O it is often the case

that the Poisson reintegrated image has details not in any of the original N-image planes

H . Indeed O will typically have halos and/or bending artifacts. If the gradient field is

not integrable, in solving for O (in a least-squares sense) the error manifests itself in these

visible artifacts.

One way to remove artifacts from the reintegrated image is to place a constraint on O.

Let us denote all images that are a global linear combination of H as

O ∈ P1(H) (4.12)

Or, if we also allow second order polynomial terms (i.e. for an RGB image this would

be R2, G2, B2 and RG, GB and BG) we write

O ∈ P2(H) (4.13)
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where Pn denotes the order of the polynomial expansion. Finlayson et al. [31] proposed

solving for O as

arg min
O∈P2(H)

||∇O −∇D|| (4.14)

The advantage of ensuring that the output image is a function of the input is that bending

and halo artifacts cannot occur (a unique N -pixel in H maps to a unique greyscale in

O). Further, adopting a low order polynomial ensures the function is smooth and that

the computational process is rapid. The disadvantage of this reintegration method is that a

global function of the input image channels can only approximate the target gradients (there

will be considerable error, more so than with Poisson reintegration), so a sub-optimal level

of detail will be transferred.

4.3 Image Fusion Quality Assessment

In this section, we use a forced choice pairwise psychophysical experiment to compare the

perceived subjective image quality of the Spectral Edge image fusion method with other

image fusion methods, for the purpose of RGB-NIR image fusion. We then try to find

an objective image fusion quality metric which will give the same quality ranking of the

methods.

4.3.1 Psychophysical Experiment

In the psychophysical experiment, five classes of image are compared: the original RGB

input image, the Spectral Edge image fusion method output, and the results of three other

methods based on fusing the RGB luminance channel and the NIR image (using a simple

average, ratio of low-pass pyramid (ROLP) image fusion [87], and the dehazing method



4.3. IMAGE FUSION QUALITY ASSESSMENT 58

of Schaul et al.[79]) and substituting the result as a new luminance channel (i.e. replacing

the V channel in HSV colour space, or the L channel in CIELAB). As it is a forced choice

pairwise comparison, there are 10 comparisons per test image - with 10 test images, and 2

repetitions, this adds up to a total of 200 comparisons per observer. A total of 8 observers,

naive to the research, took part in the experiment. Figure 4.1 shows a comparison of all of

the methods compared in the experiment used on one of the test images.

The psychophysical experiment is a forced choice pairwise comparison test (Thurstones

law case V), as used by Connah et al. [17]. In each comparison test subjects have to select

the image they prefer according to personal taste (through forced-choice, i.e., there is no “I

dont know” option). All pairs of images (for the different algorithms and the same scene)

are presented twice (each pair is presented as a left-right pair and as a right-left pair),

in a random order. 10 images from the EPFL RGB-NIR data set are used [8]. We also

adopt ISO 3664:2009 recommendations for carrying out image preference experiments.

The pairwise preferences for multiple observers are counted in a score matrix and then

using Thurstone’s method we convert the scores into algorithm ranks and then to preference

scores (as explained in section 2.5 of this thesis). Significantly, the Thurstone method also

returns confidence intervals (and so it is possible to conclude whether one algorithm is

significantly better than another). As the number of comparisons is relatively high (200),

each experiment is split into two sessions of 100 comparisons each, to reduce fatigue in

volunteers.

The results, with 8 observers naive about the experiment, are shown in figure 4.2. Ac-

cording to this figure we can conclude that the ranking of mean perceived image quality

is that the Spectral Edge method is the leading algorithm, second is the dehazing method,

third is the ROLP fusion, fourth is the original RGB image, and the luminance channel and
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Figure 4.1: Spectral Edge image fusion: psychophysical experiment - example image com-
parison (top row: RGB, NIR. Middle row: luminance average, ROLP. Bottom
row: Schaul et al, SE.
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NIR average is in last place. Although this is the indicated ranking, the only statistically

significant difference (as indicated by the error bars not overlapping), is between the SE

method and the original RGB image. More observers are required to confirm the rest of the

ranking.

The Spectral Edge method - which provides less detail transfer than some of the com-

peting methods - is, it can be theorized, preferred because of the lack of artefacts, because

it is closer to what is expected (from a normal photographic diet), and because the color

aspect of image fusion is integral to the method (it is not based on luminance fusion). The

dehazing method is also indicated to be possibly preferred over the original RGB image, as

it includes large amounts of detail, but with fewer artifacts than the ROLP method, due to

its use of edge-preserving filters. The top two methods, SE and Schaul et al., do not differ in

subjective quality by a statistically significant margin, but the mean quality result is higher

for SE. The other three methods, including the original RGB image, are not significantly

different in their preference results, but are significantly lower in subjective image quality

than those of SE.

4.3.2 Objective Image Fusion Quality Metrics

Image fusion quality metrics can be divided into two main types - metrics with a reference

image and non-reference metrics. As we do not have a reference image, showing the ideal

fusion, we examine non-reference metrics here. These typically consist of some measure

of the image similarity between each input image and the fused image, often weighted by

a measure of image salience.

In our metric testing, we calculate the ranking that each metric gives to our RGB-NIR

image fusion algorithms based on a Borda count, which has been used for classifier fusion
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Figure 4.2: Spectral Edge image fusion: psychophysical preference ranking

[78], and in the metric comparison of Liu et al. [56] - the metric scores for the fusion result

of one image, with each algorithm, are ranked. The lowest performing algorithm receives

1 point, which increases up to 5 points for the best performing. These points are added up

over the 10 images, to obtain a final point total for each algorithm. These point totals are

used to rank the algorithms - we can then compare this ranking to the one obtained from

our psychophysical experiment. This scoring method is purely based on the ranking of the

metric results, not their absolute values, which are often meaningless - if one algorithm has

a score of double that of another algorithm, it is not necessarily twice as effective.

Existing metrics are often based on measuring the performance of 2 to 1 channel image

fusion, as described in section 2.3.2. To use these metrics for RGB-NIR image fusion, we
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could use the RGB luminance channel and NIR image as two greyscale inputs, and the

output RGB luminance channel as the single greyscale output, but this would ignore the

colour aspects of the input and output images. Therefore we propose extensions of these

metrics to M to N channel image fusion, and then compare their results to those of our

psychophysical experiment.

The first metric we extend is based on mutual information, a measure of the mutual

dependence of two random variables, in this case two images. Hossny et al. defined an

image fusion metric based on mutual information [40], and we extend this metric to M to

N channel image fusion. We propose

QMI =
M∑
m=1

N∑
n=1

MI(Im, On)

E(Im) + E(On)
(4.15)

where Im is the mth input channel, On is the nth output channel, MI(X, Y ) is mu-

tual information, and E(X) is image entropy. The normalisation step of dividing by the

entropies of the current channels is important, to avoid channels with higher entropy dom-

inating the result.

Another measure of image similarity is the structural similarity image measure (SSIM),

which is based on similarity in luminance and contrast, and the correlation between images

[90]. Piella proposed several similar image fusion metrics based on the SSIM [70]. We did

preliminary testing using extended versions of each variation, and the best performing was

an extension of the Q metric. We propose

QSSIM =
1

N

1

|W |
∑
w∈W

M∑
m=1

N∑
n=1

λm(w)SSIM(Im, On|w) (4.16)

where Im is the mth input channel and On is the nth output channel. A sliding window
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w is moved across the images, and the local regions’ SSIM is calculated. The weight λm is

calculated based on a measure of local image saliency s(Im|w) such as variance:

λm(w) =
s(Im|w)∑
s(I|w)

(4.17)

Image gradients are a natural way of representing image detail, and their similarity is

used in the image fusion metric of Xydeas and Petrovic [93]. Our extended version of their

metric is defined as:

QG(x, y) =

∑M
m=1

∑N
n=1Q

m
n (x, y)Gm(x, y)∑M

m=1 G
m(x, y)

(4.18)

where Qm
n is the edge information preservation value between channels m and n at the

pixel location of x and y as defined by Xydeas and Petrovic, which measures how much

gradient information has been transferred, and Gm is the gradient magnitude of the input

channel at the same pixel location, which acts as a weighting. If we collect the results for

each pixel into a vector QG, the final metric result is the median value of this vector - we

have replaced the mean of the original metric with a median, as the median is more stable

to asymmetric and/or skew distributions.

QG = median(QG) (4.19)

Table 4.1 shows the algorithm ranking given by the three proposed metrics, compared to

the ranking of the psychophysical experiment. Note here that the SE and dehazing rankings

may be swapped in order in the prediction, as well as the rankings between the bottom three

methods, as they are not statistically different in the psychophysical experiment. The metric

based on mutual information gives a ranking uncorrelated to the psychophysical ranking,
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while the SSIM-based metric gives a ranking that is completely the reverse. The gradient-

based metric gives a ranking the most similar, with only the SE result as an anomaly. We

are not certain why the SE method is such an anomaly with this metric, but our conjecture

is that the SE method creates gradients which are not equal to either the RGB or NIR

gradients, but which nonetheless represent a detail and color synthesis. As the QG metric

measures gradient similarity, it would not score these new synthesized gradients highly.

The lookup-table-based gradient reintegration technique used in the SE method may also

be a factor, as its global mapping may not transfer maximum detail.

The other three RGB-NIR fusion methods, which are ranked correctly by the gradient-

based metric, are all based on luminance fusion. Therefore we suggest that this metric may

be useful for RGB-NIR fusion based on luminance channel fusion and replacement.

It may be the case that something other than just detail is causing the SE method to

rank so highly in our experiment. The SE method is the only method to try to integrate the

NIR information into the colour of the image, therefore colour is a likely area to explain

its result. Colourfulness, as measured by chroma in CIELUV color space (as defined in

[86]), has been linked to observer preference [29], as has image contrast [14], as measured

by root mean square (RMS) contrast. Furthermore, after completing the psychophysical

experiment, we interviewed the participants, and they explained that colorfulness was a

major factor in their preference decisions, with increased colourfulness being generally

preferred.

It may not be true that higher colourfulness and contrast are always preferred (in some

cases the reverse could be true), but for the purposes of calculating metrics, we make the

assumption that our input RGB images are below the optimum for these values, so we

create metrics QCol and QCon, which consist of a sinusoidal function, for which a value
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of 50% more than the original colorfulness or contrast (defined as
∑

(u2 + v2) and pixel

intensity standard deviation, respectively) is the optimum, giving a result of 1, and which

drops to 0 when the colorfulness or contrast drops to 0 or reaches three times its original

value. Note we are not saying images should be always have more colorfulness, but that

some increased colorfulness is preferred. We recognize that this is a somewhat arbitrary

assumption, but as we are conducting initial experiments we feel it is justified - in future

research it would be useful to examine this question further.

Table 4.2 shows the algorithm ranking, calculated from a Borda count of the ranking

of the algorithms for each image, using the raw colorfulness and contrast values of the

fused images for each method. Using raw colorfulness and contrast values, the SE method

is accurately predicted as the best method by these metrics, but the rest of the ranking

does not match the psychophysical experiment. However, the colorfulness metric gives a

ranking quite close to that of the experiment, with only the original RGB and the dehazing

method as anomalies.

The metric results so far imply that the SE method does not transfer a maximal amount

of detail from the NIR into the output color image, but that instead observer preferences

are linked to the increased colorfulness and contrast of its output images.

As none of the measures tested so far gives results entirely consistent with the psy-

chophysical experiment, our next step is to combine the results of several metrics. The

metric QG gives good results except for the ranking for SE, and the colorfulness metric

gives an opposite result, accurately placing SE as the leading algorithm, but misranking

two others. Therefore we combine the two metrics, with a weighted combination:

Q = αQG + (1− α)QCol (4.20)



4.3. IMAGE FUSION QUALITY ASSESSMENT 66

Metric SE Dehazing ROLP RGB Lum. Av.
Psychophysical experiment 1 2 3 4 5

QMI 2 4 3 1 5
QSSIM 5 3.5 3.5 2 1
QG 5 1 2 3 4

Table 4.1: Spectral Edge image fusion: comparison of metric rankings

Metric SE Dehazing ROLP RGB Lum. Av.
Psychophysical experiment 1 2 3 4 5

Colorfulness 1 5 4 2 3
Contrast 1 4.5 4.5 2 3
QCol 1 3 4 2 5
QCon 1 4.5 4.5 2 3

Table 4.2: Spectral Edge image fusion: comparison of rankings by colorfulness and con-
trast

Table 4.3 shows the results of combining the two metrics, with several values of α.

Through preliminary testing we have found the optimal value of α to be approximately

0.6 - with this value the correct ranking is achieved, with the exception of the RGB and

ROLP rankings being swapped - however, the three bottom methods are very close in the

experiment, with highly overlapping error bars. The ranking of the Spectral Edge and

dehazing methods are the most important, and these two are correctly ranked.

Metric SE Dehazing ROLP RGB Lum. Av.
Psychophysical experiment 1 2 3 4 5

α = 0.5 1 2.5 3 2.5 5
α = 0.25 1 3 4 2 5
α = 0.75 4 1.5 3 1.5 5
α = 0.6 1 2 4 3 5

Table 4.3: Spectral Edge image fusion: comparison of rankings by combined gradient and
colorfulness metrics
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4.4 Iterative Spectral Edge Image Fusion

As described previously, Spectral Edge image fusion finds an RGB image O from an n-

dimensional image H for which a guide RGB image R is known. The nature of the global

function used to calculate the output image in this previous version of the method places

limits on the levels of detail transfer that can be achieved, and therefore how closely the

output image can approximate the desired structure tensor at all pixel locations. In this sec-

tion, we propose an iterative version of the algorithm, which can come closer to maximum

detail transfer and to the desired structure tensor values.

We can think of the SE fusion process as a function,

O = SE(R,H) (4.21)

The output image O has a gradient structure similar to H but has colours similar to R.

The main idea of this section is to apply the Spectral Edge algorithm in iteration

Oi = SE (Oi−1, H) (4.22)

where

O0 = SE (R,H) (4.23)

By construction the Spectral Edge algorithm forces the integrated edge to be a function

of the global polynomial expansion of the input images. This constraint is applied to avoid

the reintegrated gradient field having artifacts and it also makes the whole gradient field

reintegration very rapid. However, the gradient field of O0 (∇O0) may be quite far from

the SE derived gradient field ∇D (especially compared to Poisson reintegration). But, if
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we run the algorithm in iteration we should move to a better approximation, because the

need to be close to the original RGB image is relaxed.

We produced 15 iterations of outputs from 16 RGB-NIR image pairs from the EPFL

RGB-NIR data set [8]. Figure 4.3 shows the mean structure tensor error across the 16

images, measured as the L2 norm of the difference between the structure tensor of the

high-dimensional input and the structure tensor of the output image, with the mean taken

across all pixel locations.

1

|X||Y |
∑
x∈X

∑
y∈Y

||ZH(x, y)− ZO(x, y)||2 (4.24)

Where X and Y are the sets of possible x and y coordinates in the image.

Figure 4.4 shows the RGB error, measured as the L2 norm of the difference between

each guide RGB pixel value R and that of the output image O,

1

|X||Y |
∑
x∈X

∑
y∈Y

||R(x, y)−O(x, y)||2 (4.25)

Where R(x, y) and O(x, y) are length 3 vectors of the R, G and B pixel values at that

x and y location.

As the number of iterations increases, the result has a structure tensor closer and closer

to that of the high-dimensional input, meaning more of the gradient information is present

in the output image. This trend continues up to 6 iterations, after which the tensor error

slowly increases. However, the result also differs more and more from the original RGB

image, and appears to be approaching an asymptote. This may at some point lead to a

less natural and pleasing output image - the images also appear more colourful with more

iterations and there should be a point after which subjective preference decreases with
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Figure 4.3: Spectral Edge image fusion (iterative): structure tensor error by iteration

increasing colourfulness[29] and detail.

We performed a psychophysical experiment, comparing the standard SE method to the

result after 2, 4 and 8 iterations, for RGB-NIR colour image fusion. 16 test images from

the EPFL RGB-NIR data set were used [8].

In the previous section of this thesis, we compared the standard SE method to the orig-

inal RGB image several image fusion methods - in this section we only compare the SE

method with its iterative version.

Psychophysical results with 8 observers indicate a preference ranking, as shown in fig.

4.5, where Q is perceived image quality. All the error bars are overlapping, which means

that the differences are not statistically significant with this number of observers - however,

the order of the mean quality values indicates that the SE method with 2 iterations may

be the most preferred, followed by 4 iterations, then the original method, then 8 iterations.

Results were not obtained for 3 iterations, but from the ranking it looks like either 2 or 3
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Figure 4.4: Spectral Edge image fusion (iterative): RGB error by iteration

iterations may be the peak for preference.

If the experiment ranking is correct (more observers would be required to prove this),

then it would seem that the first few iterations produce extra detail and colour which is

beneficial for subjective preference, but then with successive iterations, the output image

becomes too extreme and unnatural. Figures 4.6, 4.7 and 4.8 demonstrate this tendency.

In figure 4.6, the vegetation becomes increasingly green, and the water increasingly blue

with each iteration. At first this is an enhancement, as the colour vividness and contrast is

increased, but eventually it becomes too much and unnatural. Figures 4.7 and 4.8 follow

a similar pattern with regards to vegetation, and also in figure 4.8 the road’s contrast is at

first improved, but then it becomes unnaturally purple after 4-8 iterations.
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Figure 4.5: Spectral Edge image fusion (iterative): psychophysical experiment results



4.4. ITERATIVE SPECTRAL EDGE IMAGE FUSION 72

Figure 4.6: Spectral Edge image fusion (iterative): RGB-NIR Image Fusion - ‘Country04’
comparison (top row: RGB, NIR. Middle row: SE, SE-2. Bottom row: SE-4,
SE-8)
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Figure 4.7: Spectral Edge image fusion (iterative): RGB-NIR Image Fusion - ‘Country08’
comparison (top row: RGB, NIR. Middle row: SE, SE-2. Bottom row: SE-4,
SE-8)
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Figure 4.8: Spectral Edge image fusion (iterative): RGB-NIR Image Fusion - ‘Street42’
comparison (top row: RGB, NIR. Middle row: SE, SE-2. Bottom row: SE-4,
SE-8)
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4.5 New Applications of Spectral Edge Image Fusion

4.5.1 Image Fusion Using An RGB-NIR Bayer pattern

We have implemented Spectral Edge image fusion using raw sensor data, captured from

an Omnivision OV4682 sensor [4], as shown in figure 4.9. This 4–megapixel sensor has a

modified Bayer pattern, with one of the green pixels in each 2 x 2 region replaced with a

near–infrared pixel (creating the pattern:

 R G

NIR B

 (4.26)

This sensor allows the acquisition of perfectly-registered RGB and NIR image data –

previous RGB–NIR image fusion research has used images captured using a standard cam-

era with the hot mirror removed, and different filters placed in front of the camera (the

largest data set of this kind is the EPFL RGB–NIR data set [8]). Taking non-simultaneous

RGB and NIR images has the problem of objects and the camera moving between the sep-

arate acquisitions, resulting in problems with registration, leading to artifacts in the fused

images. A single RGB–NIR sensor avoids these problems. However, it poses additional

challenges.

The Omnivision sensor only provides RAW sensor data or an output RGB image, so

to perform image fusion we created our own custom image pipeline. We first created

a demosaicing algorithm based on Pixel Grouping[54] (one of the demosaicing methods

available in the open source raw image reader ‘dcraw’), but customized for the different

RGB–IR Bayer pattern.

We took images of an X–rite ColorChecker Digital SG (140 colour patches) with the

OV4682 sensor at different exposure levels, and then acquired rendered sRGB images of
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Figure 4.9: Spectral Edge image fusion (new applications): Omnivision OV4682 sensor
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Figure 4.10: Spectral Edge image fusion (new applications): X–rite ColorChecker Digital
SG – colour correction images

the same scene using a Canon Powershot G11 camera, two examples of which are shown in

figure 4.10 to serve as a reference for correct colour sRGB rendering. We registered these

images, and used them to create a custom colour correction matrix which simulates the

processing done inside the Canon camera. We recognise that this procedure was somewhat

arbitrary, but it is a fast way to simulate the effects of a full image signal processor (ISP).

White balance is an important element of an image processing pipeline, which has

been the subject of much research. The key difficulty of white balancing an image is

estimating the illuminant colour, which is then used to create a matrix to correct the image
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colours. Two of the most well–known algorithms for white balance are the Max–RGB [46]

and Grey–World [9] algorithms. In Max–RGB, the maximum RGB values are assumed

to correspond to the scene white, which is used to derive the estimated illuminant. In

Grey–World, the average RGB values (which should represent grey), provide the estimated

illuminant.

In our pipeline, we used the Shades of Grey algorithm [32], which combines the Max–

RGB and Grey–World algorithms to find an optimal mid–point between the two extremes.

Another possibility would be to use the NIR to help illuminant estimation, as in [35], but

that is left to future work.

Finally, we create a colour RGB image, which uses only the visible spectrum informa-

tion, and a greyscale NIR image, which only uses the near–infrared sensor data. Once we

form full–resolution RGB and NIR images, we then apply the Spectral Edge image fusion

algorithm to fuse them, and produce a new RGB image with additional detail and superior

image quality.

We understand that in real digital camera pipelines the RGB and NIR images may be

combined at an earlier stage, in order to combine unprocessed and therefore physically

predictable image information, but we chose to fuse them at the end for the sake of demon-

strating the fusion process clearly.

Figures 4.11 and 4.12 shows example outputs of our image pipeline. The RGB im-

age (a) is constructed using only visible spectrum information, and can be considered an

approximation of the image a typical camera would produce of the scene, while the NIR

image (b) only uses the near–infrared intensity to construct the image. The central bush

in figure 4.11 appears dark and lacking in detail in the RGB image, but additional details
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Figure 4.11: Spectral Edge image fusion (new applications): image fusion using an RGB–
IR Bayer pattern - Cambridge street scene 1 (top to bottom: RGB, NIR, SE
fusion)



4.5. NEW APPLICATIONS OF SPECTRAL EDGE IMAGE FUSION 80

Figure 4.12: Spectral Edge image fusion (new applications): image fusion using an RGB–
IR Bayer pattern - Cambridge street scene 2 (top to bottom: RGB, NIR, SE
fusion)
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are visible in the near–infrared – the chlorophyll present in vegetation has a far higher re-

flectance in the near–infrared than in the visible spectrum. A similar effect is visible in

figure 4.12. The SE fusion result (c) is superior in both cases to the original RGB image,

as the near–infrared details are transferred, while maintaining natural colours. These ex-

amples show quite a typical image scenario in which SE fusion can dramatically improve

image quality.

We can easily see this being used to improve images from digital cameras which have

RGB–NIR capability, which have been previously primarily used for machine vision appli-

cations.

Further work could be done in this area to create a more sophisticated image signal

processor (ISP) for RGB-NIR sensors, and to integrate image fusion earlier in the image

pipeline.

4.5.2 RGB–thermal Image Fusion Using the FLIR ONE

The FLIR ONE is a thermal camera accessory for smartphones, with 160 x 120 thermal

resolution[1]. It has both visible RGB and thermal cameras, and is capable of exporting

both modalities separately as well as fusing them with its own patented method [84].

We used the FLIR ONE to capture visible and thermal images, and then applied the

Spectral Edge algorithm to produce a colour output image. For this application we used

the iterative Spectral Edge variant from section 4.4, which produces stronger results. In the

FLIR fusion patent, they assert that standard fusion methods such as SE are not preferred

because “results are generally difficult to interpret and can be confusing to a user since tem-

perature data from the IR image, displayed as different colours from a palette or different

greyscale levels, are blended with colour data of the visual image”, but we show here that
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the results of combining visible colours and thermal detail can interestingly portray thermal

details with natural colours. As an alternative fusion result, one more similar to the MSX

technology used by FLIR, we take the false colour from the thermal image, and use this as

the colour input for SE fusion, with the luminance channel of the RGB image used as an

additional detail input.

In figures 4.13, 4.14, and 4.15, we show three example scenes. In each scene, we

show the RGB image taken by the FLIR ONE visible spectrum camera in (a), the greyscale

thermal image in (b), and the SE fusion result, the RGB image enhanced with the thermal

image information in (c). We then show the false color thermal image in (d), the fused

false colour image produced by FLIR MSX technology in (e), and our alternative fused

false color image in (f), with the false colour thermal image used as our RGB input, and

the visible spectrum image used to enhance its detail.

The first result, figure 4.13, shows a scene of several parked cars. The nearest car is

considerably warmer than the other cars, perhaps having been recently used, and this heat

is transferred into the natural colour SE fusion result (c) as extra brightness compared to the

original. There is a chromatic artefact caused by brightening very dark pixels, which makes

the car appear purple - this could be solved by desaturating dark areas before performing

image fusion, so they would become grey instead of creating artificial colours. The water

cooler in figure 4.14 shows high thermal readings in the center of the cooler, due to the heat

of the cooling mechanism. This heat is effectively shown in the natural colour fusion result

(c), as a warm glow. The third scene is a night scene, with a boat full of rowers hidden

in the darkness in the visible image, but their body heat is visible in the thermal image.

The natural colour fusion result shown in figure 4.15c shows somewhat unnatural colours,

due to the extremely dark visible RGB image, lacking colour information, but nevertheless
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Figure 4.13: Spectral Edge image fusion (new applications): RGB-thermal image fusion
using the FLIR ONE - scene 1 (cars)

effectively transfers the thermal detail of the rowers in the center of the image.

The false colour SE fusion results in (f) of each figure transfer virtually all RGB details

while keeping the false color intact. The details are more natural and subtle than the FLIR

MSX fusion results of (e), which appear to use direct edge transfer and possible edge

sharpening, in comparison with the milder lookup–table–based gradient reintegration used

in the SE fusion method. Each of the two methods has their merits, and a judgment of the

preferred method would have to be made depending on the specific application.

The RGB–thermal fusion shown in (c) of these figures could be integrated into a se-

curity camera for a surveillance application. A single fused image could simultaneously

give a human observer both visible and thermal details, possibly requiring less attention

and leading to faster object or person detection. The false color fusion shown in (f) of these

figures may be a possible alternative to the current FLIR MSX fusion method used in the
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Figure 4.14: Spectral Edge image fusion (new applications): RGB–thermal image fusion
using the FLIR ONE - scene 2 (water cooler)
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Figure 4.15: Spectral Edge image fusion (new applications): RGB–thermal image fusion
using the FLIR ONE - scene 3 (rowers at night)

FLIR ONE.
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Chapter 5

Local Linear Combination Image Fusion

In this chapter, local linear combination (LLC) image fusion is introduced. First, a general-

ized derivative domain image fusion scheme based on local linear combination coefficients

is described, then two instantiations of the model: the first calculates LLC coefficients us-

ing the principal characteristic vector of the outer product (POP) of the Jacobian matrix of

derivatives, and the second finds a least-norm regression from input derivatives to Spectral

Edge (SE) derivatives (with regularization). Finally, optimization steps and experiments

are conducted with the image fusion model.

5.1 Local Linear Combination Image Fusion Model

Unlike previous image fusion methods, which use complex minimizations and nonlinear

optimization [81] to produce good results, but are computationally cumbersome, or pre-

vious gradient reintegration methods which produce artifacts (see chapter 3), we aim to

propose a simple but effective framework for the problem of image fusion to produce state-

of-the-art results at high speed.

We reduce the problem to finding a smoothly-varying local linear mapping from N to

M image channels (dimensions), in other words a local linear combination of the input
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channels with different coefficients for each pixel. We can formulate this in a similar way

to that of Ma et al. [58],

O(x) =
N∑
n=1

Pn(x)Hn(x) (5.1)

WhereO is the fused image,N is the number of input images,Hn(x) is the input image

intensity value at the x-th pixel in the n-th input image and Pn(x) the weight at the x-th

pixel in the n-th input image. This formulation will do for N to 1 channel image fusion, for

which at each pixel location there will be an N × 1 vector of weights - for N to M channel

fusion the set of weights will become an N ×M matrix at each pixel location.

This formulation has two benefits: firstly, providing we maintain a smooth mapping,

we guarantee that no new artefacts will be introduced to the output fused image (if arte-

facts or sensor noise are present in the input images they may be transferred) - secondly,

the model’s simplicity leads to large performance benefits compared to many other image

fusion methods. The process of applying the coefficients is a simple per-pixel dot prod-

uct, while the calculation of coefficients may be reduced in complexity by operating on a

thumbnail resolution and upsampling (see section 5.3).

We propose two methods for calculating these weights, for two different image fusion

tasks. For N to 1 channel image fusion, we propose using the Principal characteristic

vector of the Outer Product (POP) of the image Jacobian to calculate a projection which

provides our local linear combination coefficients P , and for N to 3 channel image fusion,

we propose using the Spectral Edge (SE) image fusion theorem to calculate target gradi-

ents at each pixel, and then using a least-norm regression from the input gradients (with

regularization) to find the local linear combination coefficients P that we require.

Our two fusion variants can be thought of as instances of a general gradient-based local
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image fusion model:

1. For all input image locations x calculate the Jacobian Jx.

2. Calculate per-pixel linear combination coefficients P(x) using Jx.

3. diffuse(P(x)).

4. Apply P(x) to produce output image.

The first step of calculating the input image derivatives, and the last step of applying the

linear combination coefficients to produce an output image, are always the same. The POP

variant and the SE variant manifest step 2 in different ways. Whereas the POP variant uses

the POP image fusion theorem to calculate an N to 1 set of linear combination coefficients

based on the projection of the input derivatives which matches the Socolinsky and Wolff

equivalent gradient, regularized by assuming the projection vector must be positive, the SE

variant first calculates target RGB gradients using the Spectral Edge image fusion theorem,

and then finds an N to 3 linear combination using a least norm regression, regularized by

the constraint that the output image should not diverge too far from the input RGB image.

Step 3, the diffusion of linear combination coefficients, can be implemented in a variety of

ways, as explained later in this chapter.

Our image fusion method makes assumptions common to most image fusion methods:

firstly, we assume that the input images are well registered, and secondly that they contain

no significant noise or artifacts - any noise or artifacts present in the input images will be

detected as gradient information and transferred into the fused output image.
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5.2 Calculating Linear Combination Coefficients

5.2.1 POP variant

The derived gradient in the Socolinsky and Wolff (SW) method is a mathematically well

founded fusion of the all the available gradient information from a multichannel image.

However, reintegrating these gradients is an unsolved problem, which leads to hallucinated

artefacts in the output fused images. The POP variant of our method avoids these problems

by avoiding gradient reintegration entirely - instead we find a local linear combination of

the input images which has the desired gradients.

The basic premise of the POP variant of our method is that we can find a per-pixel

linear combination of the input channels such that if we differentiated the output image we

would generate the equivalent gradients as found by SW, by finding a projection direction

from the principal characteristic vector of the outer product of the Jacobian.

We begin by defining Úx as the principal (i.e. first) characteristic vector of the outer

product of the Jacobian matrix of derivatives (equation 3.1) at location x, where the super-

script x is shorthand for a certain x, y pixel location.

POP Image Fusion Theorem: The scalar formed by the projection by the first charac-

teristic vector of the outer product of the Jacobian at a single discrete location x (denoted

P (x) = Úx.I(x) =
∑N

k=1 Ú
x
k Ik(x)) has, assuming the functions Ik(x) are continuous, the

property that [ δ
δx

(P (x)) δ
δy

(P (x))]T = sxG(x) (where sx = −1 or 1)

Proof: Because differentiation and summation are linear operators, and because we are

assuming the underlying functions are continuous,

δ
δx

(P (x)) =
∑N

k=1 Ú
x
k
δ
δx

(Ik(x))

δ
δy

(P (x)) =
∑N

k=1 Ú
x
k
δ
δy

(Ik(x))
(5.2)
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Remembering that Ux is part of the singular value decomposition of the Jacobian - see

Equation 3.7 - and that, accordingly, Ux and V x in this decomposition are orthonormal

matrices and that Sx is a diagonal matrix, it follows directly that

[
δ

δx
(P (x))

δ

δy
(P (x))] = [Sx

11V
x

1 ] (5.3)

Of course just as we have an unknown sign when we derive G(x) from inner product

tensor analysis the sign ambiguity remains here. We set sx to 1 or -1 so that [ δ
δx

(P (x)) δ
δy

(P (x))]t =

sxG(x).

�

While the sign in the proof is chosen to map the derived gradient of the Socolinsky and

Wolff method we need not set it in this way. Indeed, because we are ultimately wanting

to fuse an image that has positive image values we do not adopt the Socolinsky and Wolff

[83] heuristic method. Rather we choose the sign so that the projected image is positive (a

necessary property of any fused image):

sx = sign(Úx.I(x)) (5.4)

Equation 5.4 always resolves the sign ambiguity in a well defined way (and as such is an

important advance compared to Socolinsky and Wolff).

The POP image fusion theorem is for a single image point and assumes the underlying

multichannel image is continuous. We wish to understand whether we can sensibly apply

the POP image fusion theorem at all image locations and even when the underlying image

is not continuous.

First, we remark that we can write Ux as
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Ux = JxV x[Sx]−1 (5.5)

that is, Ux is the product of the Jacobian and the square root of the Di Zenzo structure

tensor. Because the structure tensor is positive-semidefinite the eigenvalues are always real

and positive and, assuming the underlying multichannel image is continuous and that the

eigenvalues are distinct then Úx - the principal characteristic vector of the outer product

matrix - will also vary continuously.

If we divide the image plane into 2× 2 pixel sections, and calculate a single projection

for each section at the upper-left pixel, the output fused gradients at that pixel will equal

the Socolinsky and Wolff equivalent gradients exactly.

From this we can imagine we can sample P at every second pixel exactly, which means

we could interpolate between these sampled coefficients and reconstruct a band limited

version of the optimal set of P .

However, we wish to extract the maximum frequency of projection information. Also

we must deal with image areas with discontinuities or which lack meaningful gradient

information, therefore we use the coefficient diffusion set out in the previous section to

combine projection information between neighboring similar pixels.

Aside: There is another side effect of coefficient diffusion, which can eliminate a poten-

tial mathematical problem. Previously, we proved that the derivative of the output image

O = PI (5.6)

equals the SW gradient for a single pixel. However, when dealing with a continuous

surface, the Product Rule must be used, giving
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∂xO = (∂xP)I + P(∂xI) (5.7)

This means that the derivative of O will not match exactly the desired derivative, be-

cause of the extra term (∂xP)I created from the Product Rule.

We can think of coefficient diffusion as (in part) eliminating this extra and unwanted

result, through combining and averaging results from a large number of pixels.

Algorithm for calculating POP variant coefficients

Initialize P(x) = 0 (initialize the weights to 0 at every pixel location).

1. For all image locations x calculate the Jacobian Jx

2. If min(Sx
11, S

x
22) > θ1 and |Sx

11|/ (|Sx
11|+ |Sx

22|) > θ2 then P(x) = Úx (at this stage

P(x) is sparse).

3. P(x) = diffuse(P(x)).

4. P(x) = P(x)/||P(x)||.

5. P(x) = spread(P(x)).

The POP variant of our method is an instance of the general scheme defined in section 3.

It has an extra conditional element in step 2, by which only coefficients in image locations

with significant gradients and projection structure are used (typically we set θ1 to 0.01, and

θ2 to 0.8 - these values have been chosen by experimentation), and has two extra steps:

after the bilateral filtering, P is dense, but each linear combination coefficient vector is

not a unit vector. This is remedied by normalizing the length of each vector. Finally, we
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Figure 5.1: Local linear combination image fusion: illustration of the POP variant of our
method - in (a) we show an Ishihara plate. The initial linear combination coef-
ficient image derived in the POP variant of our method is shown in (b) - note
how edgy and sparse it is - and after bilateral filtering and normalization (steps
3 and 4) in (c). The spread function is applied giving the final coefficients in
(d). The per-pixel dot product of (a) with (d) is shown in (e). For comparison
in (f) we show the output of the Socolinsky and Wolff Algorithm.

apply a spreading function spread() to move each of the coefficient vectors a fixed multiple

of angular degrees away from the mean (the diffusion step pulls in the opposite direction

and results in coefficient vectors closer to the mean compared with those found at step 2

in the algorithm). By default, we simply compute the average angular deviation from the

mean before and after the diffusion. We scale the post-diffusion vectors by a single factor

k (k ≥ 1) so that the average angular deviation is the same as prior to the diffusion step. If
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the spread function creates negative values we clip to 0. This scaling factor k can be varied

according to the requirements of each application.

Fig. 5.1 shows an example of this coefficient calculation process - in 5.1b-d the 3-

dimensional coefficients are visualised by assigning their values to the corresponding RGB

channels. In this example, the previous method of Socolinsky and Wolff fails to create an

output greyscale image of this Ishihara plate with a readable number, because its Poisson

equation-based gradient reintegration does not consider details which are not immediately

adjacent to each other - our proposed method solves this problem thanks to its large-scale

coefficient diffusion.

Global POP Variant

Instead of the local linear combination previously explained, the POP image fusion

theorem may also be used to implement a global image fusion scheme. We project the

input image Jacobian J by the sign-normalized first characteristic vector U at each pixel,

G(x) = Úx.J(x) (5.8)

This creates a set of target gradients G without the sign problems inherent in previous

structure tensor methods. From these gradients we form the target Laplacian (∇O) from

their second derivatives - from here we could solve the Poisson equation to find an output

image, but instead we use the LUT-based reintegration method from Finlayson et al. [31].

To do this, we find a least-squares regression from a polynomial function (the poly function)

of the Laplacian of the input channels (∇I) to the target Laplacians,

Z = (poly(∇I)Tpoly(∇I))−1poly(∇I)T∇O (5.9)
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This set of weights is equivalent to a lookup-table, and can be applied to a polynomial

function of the input images to produce an output fused result (O = poly(I) ∗ Z).

This has the advantage of guaranteeing a lack of artifacts, and dramatically increasing

the algorithm’s efficiency.

5.2.2 SE variant

In the Spectral Edge (SE) variant of our proposed method, we use the SE image fusion

theorem to calculate 3-dimensional target derivatives, and use these to calculate an N x 3

matrix of linear combination coefficients, where N is the number of input image channels.

The principle of our method is to find the per-pixel linear combination of the input deriva-

tives which best matches the target derivatives at each pixel, and then apply this to the input

image pixels to form an output image. In this section we assume we are working at a single

pixel location x, but the minimizations will be calculated ∀x ∈ I , where I is the image

plane.

Algorithm for calculating SE variant coefficients

1. For all input image locations x calculate the Jacobian Jx.

2. Calculate target Jacobian Ĵx using Spectral Edge image fusion theorem (see section

4.1).

3. Calculate per-pixel linear combination coefficients P(x) to match target derivatives

(eq. 5.10).

4. P(x) = diffuse(P(x)).
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For the three-dimensional RGB gradients provided by the SE theorem and four input

image channels (e.g. RGB-NIR), P becomes a 4 x 3 projection matrix (this can also be

thought of as three vectors of length 4, 3 simultaneous regressions of the previous type),

and the target is the M2 ∗ 2 x 3 matrix of gradients ∇R in a window of width M around

the current pixel, calculated from the SE theorem. We also add regularization to the min-

imization, constraining the solution so that the projection matrix P , when applied to the

original input image channels I , should produce pixel values close to the RGB values of

the guide RGB image R̃. The parameter λ controls the strength of the regularization, our

default value is ||Ĵ || ∗ 101.

arg min
P

||(∇(ĴTP)−∇R) + λ(ITP − R̃)|| (5.10)

With this regularization (assuming a nonzero λ value), in smooth image regions with

zero derivatives, the chosen projection coefficients will produce an output image equal to

the input guide image.

After this regression is calculated at each pixel (or on a thumbnail as explained in

section 3.2), the 12 values (in the case of 4 to 3 channel image fusion) of P are known at

every location. The diffuse() function (in our implementation using a cross bilateral filter) is

then applied to ensure a continuous linear mapping across the image plane. Unlike the POP

variant, normalization and spreading of the coefficients are not required, due to the greater

degree of stability caused by calculating the regression in a window and regularization. The

output image is a simple per-pixel matrix multiplication:

O(x) = I(x) . P(x) (5.11)
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Fig. 5.2 shows the entire image fusion process of the SE variant of our method. Gra-

dients are calculated from the high-dimensional and guide images, and from these target

SE gradients are calculated. Using a per-pixel least-norm regression, linear combination

coefficients are found which best map the input gradients to the target SE gradients (with

regularization). The upper-right output image is that produced the previous global lookup-

table-based image fusion reintegration method (see section 4.2), and the lower-right output

image is the fused image of the proposed method.

Structure tensor error is a meaningful measure of detail transfer in derivative domain

image fusion, measured as the L2 norm of the difference between the structure tensor of

the high-dimensional input and the structure tensor of the output image, summed across the

image, normalized by the L2 norm of the high-dimensional tensor,

∑
x∈X

∑
y∈Y

||(ZH(x, y)− ZRi
(x, y) + Ω)||2 / (||ZH(x, y)||2 + Ω) (5.12)

Where X and Y are the sets of possible x and y coordinates in the image, and Ω is set

to 0.01 to stabilize the division.

Table 5.1 shows the mean structure tensor errors for the original RGB images, the pre-

vious SE method, and the new local reintegration applied to the SE method, averaged over

10 images from the EPFL RGB-NIR data set [8]. Our method has a lower error, meaning it

transfers detail more effectively than the previous SE method, while simultaneously being

preferred by human perception, as shown in section 6.1.

RGB SE Proposed
0.7960 0.7784 0.7693

Table 5.1: Local linear combination image fusion: structure tensor error - image fusion
detail transfer error averaged over 10 RGB-NIR image pairs.
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Figure 5.2: Local linear combination image fusion: Spectral Edge variant of the proposed
method - flow diagram.
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5.2.3 Diffusion of linear combination coefficients

In image regions with zero derivatives or where the image Jacobian has coincident eigen-

values (e.g. corners) there may be no meaningful gradient information, or a large change

in the linear mapping direction found at one image location compared to another (discon-

tinuity). We can generalize this to say that the coefficients will always have a certain level

of error in real-world conditions. It follows then that we must interpolate, or diffuse, the

linear combination coefficients that are well defined across the image. We can achieve this

in a number of ways, as shown in fig. 5.3.

The image fusion task in figure 5.3 is colour to greyscale conversion, in this case

Monet’s ‘Impression, soleil levant’ - this image is often chosen to demonstrate colour to

greyscale conversion, because the sunrise, easily visible in the colour image, has much

lower contrast in standard luminance channel conversions such as 5.3b. We show the

CIELAB luminance channel in figure 5.3b, and the Socolinsky and Wolff fused output

in figure 5.3c. Figure 5.3d shows the POP variant of the LLC method without any co-

efficient diffusion - clearly there are artefacts and gaps in the projection, in regions with

discontinuities or without meaningful gradient information. Figure 5.3e and figure 5.3f use

Gaussian filtering to diffuse the projection coefficients, with a Gaussian kernel of size and

standard deviation 20 and 160 respectively, while figure 5.3g and figure 5.3h use cross bi-

lateral filtering for coefficient diffusion (the guide edge image is the corresponding input

image channel) - the domain standard deviation is 20 and 160 pixels, and the range standard

deviation is fixed at 0.4. We have also experimented with using guided filtering to diffuse

our coefficients, as in [50], but we found this to work less effectively.

Table 5.2 shows the results of comparing these diffusion methods with the results of

Socolinsky and Wolff’s approach for colour to greyscale conversion [83]. The metric used
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Figure 5.3: Local linear combination image fusion: comparison of coefficient diffusion
methods - colour to greyscale conversion of ‘Impression, soleil levant’ image
(a), LAB luminance (b), Socolinsky and Wolff result (c), POP without coeffi-
cient diffusion (d), (e-h) POP with various diffusion methods.



5.2. CALCULATING LINEAR COMBINATION COEFFICIENTS 101

is structure tensor error - the norm of the difference between the RGB structure tensor

and the output greyscale structure tensor is averaged across the image (therefore lower is

better). The results are averaged across the 25 images of the Ĉadı́k data set [13]. With no

diffusion, the error is higher than that of Socolinsky and Wolff, as there remain some pixels

where the image does not contain meaningful gradient information, or discontinuities, so

the projection information is incorrect or not present. The other errors are all lower than

Socolinsky and Wolff, indicating that the output image’s structure tensor (and therefore

detail) is closer to the input colour image. A larger scale diffusion produces lower error, and

bilateral filtering produces lower error than Gaussian filtering. Our assumption is that cross

bilateral filtering works better for coefficient diffusion because it is sensitive to the input

image structure - the coefficients are blended more between pixels with similar intensity

values.

Method: SW No diffusion Bilateral (20)
Error: 0.1392 0.1762 0.1051

Method: Bilateral (160) Gaussian (20) Gaussian (160)
Error: 0.0865 0.1163 0.0940

Table 5.2: Local linear combination image fusion: structure tensor error - colour to
greyscale conversion detail transfer error averaged over 25 RGB images from
the Ĉadı́k data set[13].

Therefore we define a diffuse() function, which represents the diffusion of linear com-

bination coefficients to infill missing values where edge information is not significant. In

our default implementation this uses a cross bilateral filter with the range term defined by

the original image I . The filtering is carried out independently per channel with a Gaussian

spatial blur with standard deviation σd and the standard deviation on the range parame-

terised by σr. With σd = σr = 0, no diffusion takes place. As σd → ∞ and σr → ∞, the

diffusion becomes a global mean, and the linear combination tends to a global weighted
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sum of the input channels. If σd → ∞ and σr = 0 each distinct vector of values in the

image will be associated with the same set of coefficients and so the bilateral filtering step

defines surjective mapping which could be implemented as a look-up table [31]. Except-

ing these boundary cases the standard deviations in the bilateral filter should be chosen to

provide the diffusion we seek, but we also need to make sure the spatial term is sufficiently

large to avoid spatial artifacts.

5.3 Optimization

To speed up the technique, the input images may be downsampled and P calculated only

for the thumbnail image. In this case, a method must be chosen to upsample the resulting

P values to provide a linear combination at every pixel of the full-size image plane. The

cross bilateral filter used in the case of full-resolution linear combination coefficient im-

ages becomes joint bilateral upsampling, and is used on the thumbnail coefficient image to

upsample it, using the corresponding input image channel as a full-resolution guide image

[43]. The global version of the POP variant also works using a thumbnail version of the

input images. The linear combination coefficient vectors, target gradients and Laplacians

are first calculated at the small scale. The set of weights Z is calculated, and applied to a

polynomial function of the full-resolution input images to produce the fusion result.

With this thumbnail implementation, the POP variant of our method becomes extremely

fast. Using the example of color to greyscale conversion of one of the images from the

Kodak data set, a 3 to 1 channel fusion problem on an image of 768 x 512 pixels, the global

and local variants take 5.13s and 5.16s respectively at full resolution (using a MATLAB

implementation). If we use thumbnails of a quarter resolution (1/2 in each dimension)

this drops to 1.31s and 1.41s, and to 0.35s and 0.49s at a 1/16 downsampling level (1/4
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in each dimension). Thumbnails of an even smaller size can be used, with corresponding

performance gains, while maintaining a high-quality output image. We remark that this

thumbnail computation also has the advantage that the coefficient image can be computed

in tiles i.e. we never need to calculate the full resolution coefficient image.

5.4 Experiments

5.4.1 POP variant

Figures 3.6 and 3.7, shown in chapter 3 of this thesis, show experiments using the POP

variant of the LLC method on extreme image fusion cases that present problems to many

existing image fusion techniques. Unlike the previous derivative domain method of Socol-

insky and Wolff (SW), and the discrete wavelet transform (DWT) method, our proposed

method produces output images which transfer all salient image details without artefacts.

The POP variant of the LLC method provides several parameters which may be tuned

for optimal image fusion performance. The domain and range standard deviations of the

cross bilateral filter used for coefficient diffusion can be varied. To test this, we used 10

images from the EPFL RGB-NIR data set, and fused the luminance channel of the RGB

image with the NIR image. We then assessed the fusion quality using the standard 2 to 1

metricsQG (based on image gradients),QMI (based on mutual information) andQY (based

on SSIM) defined in section 4.3. The mean metric result over 10 images is presented in the

following graphs.

Figure 5.4 shows the results of varying the domain (spatial) standard deviation, on a

logarithmic scale, from 20 to 214 pixels, with the range standard deviation fixed at 0.2. The

performance improves with a greater domain standard deviation for the QMI metric, as

well as the mean of the metric results (although the meaning of this mean metric result is
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questionable), as the local linear mapping becomes smoother, and reaches its maximum

at a standard deviation of 28 pixels - above this the graph is almost flat, and appears to

be reaching an asymptote. However, the QG and QY metrics show peak results at lower

domain standard deviations, of 22 and 23 respectively. As the metrics are in disagreement

on the optimal domain standard deviation, we use the larger result of 28 pixels in the rest

of our experiments, as a larger domain standard deviation is more likely to guarantee fused

outputs free of artefacts.

Figure 5.5 shows the results of varying the range standard deviation, on a logarithmic

scale from 1/20 to 1/214 with the domain standard deviation fixed at 28 pixels. Again, the

metrics disagree in the optimal standard deviation - QG sets it at 1/2, QY at 1/8, and QMI

at 1/28. The mean metric result peaks at a range standard deviation of 1/4, and we use

this in our further experiments; again we err on the side of greater diffusion (with a higher

standard deviation), as this is more likely to guarantee a lack of artefacts.

Figure 5.4: Local linear combination image fusion (POP variant): QG, QMI , QY metrics,
and mean of the three metrics - results with varying domain standard deviation.
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5.4.2 SE variant

The SE variant of the LLC method provides several parameters which may be tuned for

optimal image fusion performance, depending on the image fusion task. The window size

M on which the least-squares regression is calculated can be varied, as well as the regular-

ization parameter λ. The domain and range standard deviation of the cross bilateral filter

used for coefficient diffusion can also be varied.

To tune these parameters, we tested the fusion results on RGB-NIR image fusion, using

10 images from the EPFL RGB-NIR data set [8]. The quality of the fusion results is

calculated using the M to N channel QG metric defined in section 4.3 of this thesis.

First, we tested various values for the regularization parameter λ, with a fixed window

size of 1 pixel, and found that increasing this value gives higher quality output images,

and that at all values equal to or above 10−10, the output is the same. The bilateral filter

parameters were fixed, with a domain standard deviation of 40 pixels, and a range standard

deviation of 0.1 ∗ (max(I)−min(I)).

Next, we tested different window sizes from 1 to 15 for the least-squares regression,

with a fixed λ value of 10−10, and the bilateral filter parameters fixed as in the previous test.

QG metric results are averaged over the 10 images, and the peak result is at a window size

of 9. However, all the results are within a narrow range, the difference between the highest

and lowest results is just over 0.02.

The same procedure is repeated, with the variable this time being the domain standard

deviation. Figure 5.6 shows the results - domain standard deviations of 8 and 16 had the

joint best metric results, and the performance decreases with increasing standard deviation

above this, although the difference is not dramatic. The graph for range standard deviation

looks similar, with a peak metric result with a standard deviation of 0.25 ∗ (max(I) −



5.4. EXPERIMENTS 106

min(I)).

In this chapter, we have proposed a new framework for image fusion, based on a local

linear combination of the input images. We have proposed two ways of calculating local

linear combination weights, explained how the method can be optimized, and experimented

with coefficient diffusion parameters.

In the next chapter, we will show the versatility of the proposed method, demonstrating

state-of-the-art results on a wide variety of applications - most image fusion methods are

designed specifically for a single application.
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Figure 5.5: Local linear combination image fusion (POP variant): QG, QMI , QY metrics,
and mean of the three metrics - results with varying range standard deviation.

Figure 5.6: Local linear combination image fusion (SE variant): mean QG metric result
with varying domain standard deviation.
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Figure 5.7: Local linear combination image fusion (SE variant): mean QG metric result
with varying range standard deviation.
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Chapter 6

Local Linear Combination Image Fusion: Applications

In this chapter, various applications of the local linear combination image fusion method are

presented - these disparate applications are chosen to show the flexibility of the proposed

method. The POP or SE variants of the method are used depending on the individual

application. In all cases, the input images are assumed to be registered.

6.1 RGB-NIR Image Fusion

In figure 6.1 we wish to fuse the conventional visible spectrum colour RGB image (6.1a)

with a greyscale near-infrared (NIR) image (6.1b), to produce a colour output image with

details from both input images, but also with natural colours. NIR images can often see

through haze, correct for overexposure, or reveal greater detail in vegetation, among other

properties [60].

Of course, this fusion can be done with the goal of maximum detail (for technical

applications such as machine vision, security, surveillance etc.), or for photographic en-

hancement for human perception (i.e. creating a pleasing, subjectively improved image).

In this section, we are attempting the latter. In chapter 4 of this thesis, it was found that the

fusion results of the Spectral Edge method are clearly preferred to the input RGB image by
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observers in a psychophysical experiment.

We compare the results of RGB-NIR fusion using both variants of our LLC image

fusion model with the previous Spectral Edge method using global look-up-table reintegra-

tion [31], using images from the EPFL RGB-NIR data set [8], as well as some provided

by Spectral Edge Ltd. Figures 6.1, 6.2 and 6.3 show examples of the RGB and NIR input

images, and the fusion results for each method.

In figure 6.1, the NIR image shows much more detail in the sky, which is overex-

posed and hazy in the RGB image. All three methods transfer this detail effectively into

the fused image, but the LLC (SE) method most effectively combines detail transfer and

colour enhancement. Figure 6.2 is an example of the NIR-reflecting properties of vegeta-

tion (chlorophyll). Vegetation appears very bright in the near-infrared due to its high NIR

reflectance, and therefore more detailed and less noisy in areas which are dark in the visi-

ble spectrum. Again the LLC(SE) method provides the best balance of detail transfer and

colour faithfulness. Figure 6.3 similarly shows the vegetation properties of NIR imaging,

but also displays its dehazing abilities. In the background of the landscape, the NIR image

captures much more detail, whereas the RGB image is hazy in these areas. In this case,

the LLC(POP) method transfers more of this haze detail, but produces an inferior overall

colour vividness and image quality.

Table 6.1 shows the results of a psychophysical experiment, with 6 observers. The SE

variant of the LLC method is by far the most preferred, followed by the POP variant of

the LLC method, then the previous SE method, and finally the original RGB image is the

least preferred. This shows that all of the image fusion methods tested are a useful form of

image enhancement, but the SE variant of the LLC method is the best performing on this

task.
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Figure 6.1: Local linear combination image fusion applications: RGB-NIR image fusion
(image courtesy of Spectral Edge Ltd.) - original RGB and near-infrared input
images, fusion result of Spectral Edge [16], and proposed results of the SE and
POP variants of our LLC method.

Method: RGB SE LLC(POP) LLC(SE)
zscore: -0.733 0.142 0.139 0.452

Table 6.1: Local linear combination image fusion: RGB-NIR image fusion - psychophysi-
cal experiment results.
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Figure 6.2: Local linear combination image fusion applications: RGB-NIR image fusion
(image from Zhang et al. [97]) - original RGB and near-infrared input images,
fusion result of Spectral Edge [16], and proposed results of the SE and POP
variants of our LLC method.
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Figure 6.3: Local linear combination image fusion applications: RGB-NIR image fusion
(image from EPFL RGB-NIR data set [8]) - original RGB and near-infrared
input images, fusion result of Spectral Edge [16], and proposed results of the
SE and POP variants of our LLC method.
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6.2 RGB-thermal Image Fusion

Often, greyscale visible spectrum images are fused with thermal images to produce a

greyscale output, as seen in fig. 1.1. It is increasingly common for security and surveillance

cameras to capture a colour visible spectrum image, as well as the thermal infrared image

of the same scene, for applications such as security and surveillance imaging. The RGB

image often shows more detail in bright parts of the scene, but may miss details (particu-

larly people) in dark areas. Image fusion can be used to create an image with all salient

details, as well as realistic colours. Figure 6.4 shows an example of this fusion, operating

on a frame taken from registered visible and thermal videos from the OTCVBS data set

[21]. The RGB luminance channel and the thermal image are fused using the POP variant

of the LLC method, and then the RGB luminance channel is replaced with the fused output.

The figure in the shadows is clearly visible in the fused output image, and this may prove

useful for the human observers of a security camera system.

In chapter 4, the FLIR ONE smartphone thermal camera was used to capture visible

and thermal images for image fusion. We can also fuse these results using the POP variant

of the LLC fusion method. Figure 6.5 shows the results, compared to the iterative Spectral

Edge image fusion method used in the previous chapter. The bright heat in the centre of the

water cooler is visible in both results, but the POP result avoids artefacts caused by thermal

detail transferred into the lower portion of the cooler.
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Figure 6.4: Local linear combination image fusion applications: RGB-thermal image fu-
sion - Thermal (7-14 µm) + RGB fusion - video frame 1 (a-c) and frame 400
(d-f), from OTCVBS data set [21]. Fused using the POP variant of the proposed
LLC method.
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Figure 6.5: Local linear combination image fusion applications: RGB-thermal image fu-
sion using the FLIR ONE camera - a) visible RGB, b) thermal, c) SE result
(see chapter 4), d) LLC (POP variant).
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6.3 Multifocus Image Fusion

Multifocus image fusion is another application of image fusion - standard multifocus image

fusion involves fusing two greyscale input images with different focal settings [51] [52]. In

each input image approximately half the image is in focus, so by combining them an image

in focus at every point can be produced.

Table 6.2 shows a comparison of the performance of the POP variant of the proposed

image fusion model on this task, on several standard multifocus image pairs, using standard

image fusion quality metrics. The QG metric is based on gradient similarity [93], the QY

metric is based on the structural similarity image measure (SSIM) [90] [95], and the QMI

metric is based on mutual information [40]. These metrics are reviewed in section 2.5 of

this thesis. The results are compared to the method of Zhou and Wang, based on multi-scale

weighted gradient-based (MWGF) fusion [98], as well as a standard DWT fusion, using a

Daubechies wavelet and CM (choose max) coefficient selection - the POP variant result

comes out ahead in the majority of cases.

Figure 6.6 shows the input images and results on the ‘Pepsi’ image pair - there are

visible artifacts around the lettering in the DWT result, while the other two results have no

visible artifacts. For this application we use a downsampling ratio of 0.5 and a k stretching

parameter of 2.5.

Plenoptic photography provides various refocusing options of color images, allowing

images with different depths of focus to be created from a single exposure [65]. The POP

variant of the proposed method can be used to fuse these differently focused images into a

single image wholly in focus. Our method can be fine tuned for this application, due to the

knowledge that only one of the images is in focus at each pixel. Here we apply a large k

scaling term in the spread function, and we use a downsampling ratio of 0.5. This allows
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Image Pair Metric DWT MWGF POP
Book QG 0.8208 0.8327 0.8332

QY 0.8053 0.8027 0.8008
QMI 0.9738 1.227 1.057

Clock QG 0.7860 0.7920 0.7956
QY 0.8008 0.7955 0.7910
QMI 0.7475 1.142 1.248

Desk QG 0.7907 0.8287 0.8242
QY 0.7933 0.7978 0.7979
QMI 0.7261 1.072 1.248

Pepsi QG 0.8648 0.8800 0.8820
QY 0.7950 0.7725 0.7792
QMI 0.8751 1.196 1.210

Table 6.2: Local linear combination image fusion applications: multifocus fusion - table of
metric results.

Figure 6.6: Local linear combination image fusion applications: multifocus Fusion - two
greyscale input images with different points of focus, and the fusion results of
the DWT, MWGF[98] and POP variant of the proposed LLC method.

a crystal clear output image, in focus at every pixel, to be created.

Figure 6.7 shows an image (from Ng et al. [65]), in which four different refocused

images are created from a single exposure. The POP variant of our method is used to fuse

these differently focused images into a single image in focus at every point by finding a

replacement luminance channel - in comparison the result of the method of Eynard et al.

does not show perfect detail in all parts of the image, and has unnatural colour information

(we created this output using code provided by Davide Eynard, experiments with this code
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Figure 6.7: Local linear combination image fusion applications: multifocus Fusion - four
color input images with different points of focus captured with one exposure
using a plenoptic camera, and the fusion results of Eynard et al. and the POP
variant of our proposed LLC method. The POP variant of our method brings
details across the image into sharper focus with natural colour.

often lead to unnaturally coloured results).

6.4 Multi-exposure Image Fusion

Multi-exposure fusion (MEF) fusion is a simple and practical alternative to high-dynamic

range (HDR) imaging, which avoids the step of creating an HDR image by going directly

from a set of input images with different exposures to an output fused image. This method
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assumes all input images are perfectly registered, and is widely used in consumer photog-

raphy [77].

A comparison of MEF algorithms [58] poses MEF fusion as a weighted average prob-

lem:

O(x) =
N∑
n=1

Wn(x)In(x) (6.1)

Where O is the fused image, N is the number of multi-exposure input images, In(x)

is the luminance (or other coefficient value) and Wn(x) the weight at the x-th pixel in the

n-th exposure image. The weight factor Wn(x) may be spatially varying or global.

In a subjective comparison, based on assessing 8 MEF algorithms by their mean opinion

score (MOS), rated from 1 to 10, the best performing algorithm was that of Mertens et al.

[62]. This is based on a multiscale Laplacian pyramid decomposition of the input images,

with the coefficients from each image weighted by a combination of contrast, saturation

and well-exposedness, and then reintegrated to produce a fused image.

Another powerful method for multi-exposure image fusion is that of Shen et al. [80],

which aims to achieve an optimal balance between local contrast and color consistency,

while combining details from different exposures. A globally optimal solution is calcu-

lated subject to the two quality measures by formulating the fusion problem as probability

estimation.

Figures 6.8, 6.9 and 6.10 show the results of using the LLC image fusion method on

this task, compared to the methods of Mertens et al. and Shen et al.. We use the Spectral

Edge variant of our proposed method to calculate a spatially varying set of linear weights

W from the input multi-exposure images. However, our method also requires a guide

image, to provide the desired output color at each pixel - we use the output of the method
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Figure 6.8: Local linear combination image fusion applications: multi-exposure fusion -
‘Balloons’ image sequence courtesy of Erik Reinhard.

Figure 6.9: Local linear combination image fusion applications: multi-exposure fusion -
‘Lighthouse’ image sequence courtesy of HDRsoft.
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Figure 6.10: Local linear combination image fusion applications: multi-exposure fusion -
‘Cave’ image sequence courtesy of Bartlomiej Okonek.

of Mertens et al. as our guide image in the results shown here.
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6.5 Colour to Greyscale Conversion

Colour to greyscale conversion is the process of converting a colour RGB image to a sum-

mary greyscale, which should represent all of the intensity and colour details of the original

as closely as possible. There have been various previous methods proposed to accomplish

this goal, such as [36], [74] and [37]. These methods and others were presented and com-

pared in the work of Eynard et al. [25], and their proposed method was found to be the best

performing, based on the RWMS metric [45] and a psychophysical experiment.

The problem of converting from colour to greyscale, although not generally thought

of as an image fusion task, is an N to 1 dimensionality reduction problem - exactly what

the POP variant of the LLC image fusion method effectively does. Therefore, for this task

we can use the POP variant of our proposed method. To produce optimal performance

for colour to greyscale conversion, a spread parameter of 2 is used on the LLC vectors to

rotate them away from the mean mapping vector - it is important to have highly separated

mapping vectors in this task as 3 input dimensions must be compressed into 1 output di-

mension. Another optimization for this task is to use the hue in CIE LUV colour space as

the guide image for cross bilateral filtering/bilateral upsampling - this helps to ensure that

image areas with different hues have a different projection, and therefore are more likely to

have a different output greyscale value.

Table 6.3 shows a comparison of colour to greyscale conversion performance for all

images from the Ĉadı́k data set [13]. The POP method is compared with CIE L (luminance)

and the results of Eynard et al. [25]. The metric used is the root mean weighted square

(RWMS) error metric of Kuhn et al. [45], which compares colour differences between

pixels in the input RGB image with differences in intensity in the output greyscale image,

and is the metric used in [25]. The POP method is the best performing in a plurality of the
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Image CIE L Eynard et al. POP
155 5572 jpg 1.18 1.45 1.53

25 color 0.853 0.459 0.601
34445 0.746 0.634 0.701

C8TZ7768 1.36 1.22 1.31
ColorWheelEqLum200 5.41 1.98 3.12

ColorsPastel 7.70 4.43 5.62
DSCN9952 1.00 1.36 1.37
IM2-color 4.58 0.918 0.835

Ski TC8-03 sRGB 1.07 1.06 1.03
Sunrise312 1.78 1.32 1.37
arctichare 0.815 0.599 0.570

balls0 color 1.15 1.21 1.21
butterfly 0.746 0.578 0.549

fruits 1.02 0.865 0.839
girl 0.8347 0.8364 0.8346

impatient color 1.116 1.113 0.945
kodim03 1.10 1.16 1.07
monarch 1.10 1.03 0.902

portrait 4v 0.645 0.613 0.521
ramp 8.30 1.30 3.71

serrano 1.29 1.31 1.36
text 4v 0.749 0.683 0.968

tree color 0.672 0.565 0.571
tulips 1.13 1.06 1.04
watch 0.639 0.610 0.714

Table 6.3: Local linear combination image fusion applications: color to greyscale qualita-
tive comparison. Mean RWMS error metric values (to 3 s.f, except where more
are necessary) for CIE L (luminance), Eynard et al. and the POP method. All
values are ×10−3.

test images.
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Figure 6.11: Local linear combination image fusion applications: color to greyscale
conversion (Ĉadı́k data set[13]) - ‘155 5572 jpg’, ‘25 color’, 34445’,
‘C8TZ7768’ and ‘ColorWheelEqLum200’. Input RGB, CIE L, results of Ey-
nard et al.[25] and POP variant of the proposed LLC method.
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Figure 6.12: Local linear combination image fusion applications: color to greyscale con-
version (Ĉadı́k data set[13]) - ‘ColorsPastel’, ‘DSCN9952’, ‘IM2-color’,
‘Ski TC8-03 sRGB’, ‘Sunrise312’ and ‘arctichare’. Input RGB, CIE L, re-
sults of Eynard et al.[25] and POP variant of the proposed LLC method.
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Figure 6.13: Local linear combination image fusion applications: color to greyscale con-
version (Ĉadı́k data set[13]) -‘butterfly’, ‘balls0 color’, ‘fruits’, ‘girl’ and ‘im-
patient color’. Input RGB, CIE L, results of Eynard et al.[25] and POP variant
of the proposed LLC method.
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Figure 6.14: Local linear combination image fusion applications: color to greyscale con-
version (Ĉadı́k data set[13]) -‘kodim03’, ‘monarch’, ‘portrait 4v’, ‘ramp’,
‘text’ and ‘serrano’. Input RGB, CIE L, results of Eynard et al.[25] and POP
variant of the proposed LLC method.
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Figure 6.15: Local linear combination image fusion applications: color to greyscale con-
version (Ĉadı́k data set[13]) -‘tree color’, ‘tulips’ and ‘watch’. Input RGB,
CIE L, results of Eynard et al.[25] and POP variant of the proposed LLC
method.

6.6 Flash and No-flash Image Enhancement

Flash and no-flash image pairs can be used to create an improved final image. The flash

image captures high levels of detail, while the no-flash image captures ambient illumination

and natural color. Petschnigg et al. use these image pairs to transfer detail from the flash

to the no-flash image and denoise the no-flash image[69]. They denoise the no-flash image

using a joint bilateral filter, with the flash image used as the edge image. Additional detail

is transferred by adding in high-frequency bilateral filter coefficients from the flash image.
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Figure 6.16: Local linear combination image fusion applications: flash and no-flash image
enhancement example - flash and no-flash images (a) and (b), (c) result of
Petschnigg et al.[69], (d) result of SE variant of LLC method.

These changes are not applied to all parts of the image - a shadow mask prevents flash

artifacts or specular highlights from being transferred into the output image.

We can create similar results in a simpler way using our LLC method. Fig. 6.16 shows

an example result using the SE variant of our method. We first use a spatial blur to reduce

the noise of the no-flash image, before using it as the RGB guide image in our fusion

process, together with the flash image as the high-dimensional input. Compared to the

result of Petschnigg et al. we transfer more of the derivative information of the flash image

for improved contrast and detail. However, we would need to add something (such as a

shadow mask) to prevent problems in scenes with greater flash artifacts.

6.7 Image Fusion for Astronomical Visualization

Space and ground-based telescopes provide a rich source of image data. These telescopes

often have multi-band imaging capabilities, but often a false color visualization is con-

structed by a simple assignment of three bands as the red, green and blue image channels,

along with manual postprocessing in programs such as Adobe Photoshop [2].

We have used the Spectral Edge variant of our method to improve astronomical vi-

sualization. We performed manual postprocessing on each of 8 multiband images of the
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Figure 6.17: Local linear combination image fusion applications: astronomical fusion for
visualization (Hubble image of M83 galaxy) - (a) false color image composed
of 3 out of 8 multiband images, (b) output of SE variant of LLC method.

M83 galaxy captured by the Hubble space telescope [3] in MATLAB, and then arbitrarily

assigned 3 channels as a false color RGB. We then used this as the guide image for the

proposed image fusion method, with all 8 multiband images as the high-dimensional input.

Figure 6.17 shows the results, with an increase in detail transfer and contrast in the fused

output image.
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Chapter 7

Summary and Conclusions

7.1 Summary

This thesis has presented several new contributions:

Firstly, the Spectral Edge image fusion method is compared to other image fusion meth-

ods for RGB-NIR image fusion in a psychophysical experiment, and its results shown to be

preferred to the input RGB images - a tentative preference order between the other methods

ranks the SE method highest, but not to a statistically significant degree. The ranking given

by several proposed objective image fusion quality metrics is then compared to that of the

experiment.

Secondly, an iterative extension to the Spectral Edge image fusion method has been

proposed, and compared to the previous method. Extra iterations give the fusion greater

detail and colour vividness, but can also lead to unnatural colours. Using between 2 and

4 image fusion iterations may give the most preferred results, but more investigation is

needed for a definitive answer.
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Thirdly, new applications of the Spectral Edge image fusion method have been pre-

sented: RGB-NIR image fusion from a single sensor which captures both visible and near-

infrared image information, and RGB-thermal image fusion using the FLIR ONE smart-

phone thermal camera. In both cases, useful results are demonstrated from the image fusion

process, giving improved image quality and detail as measured by psychophysical and met-

ric experiments.

Finally, a new image fusion model is proposed - local linear combination image fusion.

In our model, the problem of image fusion is reduced to finding linear combination co-

efficients, different for each pixel, which map the input images to an output image. Two

methods of calculating local linear combination coefficients are explained: the first is based

on the Principal characteristic vector of the Outer Product (POP) of the Jacobian matrix of

derivatives, which produces a mapping that creates an output image with derivatives equal

to those calculated by Socolinsky and Wolff, and the second is based on finding a mapping

by fitting a least-squares regression (with regularization) to the colour derivatives calculated

from the Spectral Edge theorem. This produces highly local and detailed image fusion re-

sults, without artifacts, with low computational complexity. We show it to produce state of

the art results on a wide range of applications.

7.2 Future Work

There is far more potential work to be done on creating reliable image fusion quality metrics

which work on any number of input images and a colour output fused image - almost all

previous metrics are based on fusing two greyscale images. Psychophysical experiments

will remain the best way of measuring subjective image fusion quality, but metrics are

useful where time or money is limited. Little previous work has looked at metrics for any
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image fusion cases other than 2 to 1 channel image fusion, so there is tremendous potential

for research in this area.

More work could be done to compare the Spectral Edge image fusion method (either

in its original form, or with iteration) with other methods - some of the psychophysical

experiments in this thesis failed to show which method is preferred to a statistically signif-

icant degree. The experiments in this thesis focused on RGB-NIR image fusion, but there

are a wide variety of image fusion applications which could be tested and compared, and a

large number of image fusion methods to compare against. There are recent image fusion

methods using deep learning (such as [72]), and it would be interesting to compare these

with our method.

Our new local linear combination model of image fusion contains a great deal of scope

for future research. Different ways of calculating coefficients for LLC fusion could be

considered. Any method of image analysis or decomposition could potentially provide the

basis for calculating LLC coefficients - for example the coefficients used in DWT fusion.

Other methods for diffusing the coefficients across the image plane could also be considered

- any method of image smoothing or filtering could potentially be applicable here. The

model is so versatile and open to experimentation that any number of different permutations

could be tried to improve its speed and performance. It can also be applied to other image

fusion tasks, such as image fusion for medical imaging or manuscript analysis.

More work could be done on the mathematical basis of the LLC image fusion model

and the POP and SE coefficient calculation variants proposed. Although proofs have been

presented here, it is still not fully clear, at all steps, why the image fusion model works so

well. In particular, the mathematics of going from proving that POP gradients are equal to

SW gradients at a single pixel up to the gradient field of a whole image could be developed
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further.

7.3 Conclusions

Derivative domain image fusion is an area of great research, with various methods using

the structure tensor to provide greyscale output gradients, and then using gradient reintegra-

tion methods used to produce an output image. However, despite many efforts, the output

images suffer from artefacts due to the non-integrability of gradient fields.

The Spectral Edge image fusion method integrates colour into its mathematics in an

elegant and effective way, producing colour output gradients which simultaneously transfer

maximum detail and retain natural colours based on a guide image. The previous approach

used global look-up-table based gradient reintegration to avoid artefacts, but this does not

transfer maximum detail. The output images of this method are preferred to other methods

in psychophysical experiments and can be applied to various applications. An iterative

extension of this method has the potential to create output images with higher levels of

detail transfer than the original method.

Our proposed local linear combination method applies different combination coeffi-

cients to each pixel, allowing greater detail transfer and output image quality than global

methods can achieve. The POP theorem can produce linear combination coefficients for an

output greyscale image, or we can reintegrate the colour gradients produced by the Spectral

Edge theorem - other ways could also be considered to calculate its coefficients. It is a ver-

satile and powerful method - as shown in Chapter 6 of this thesis, it can be applied to a wide

variety of applications producing excellent fusion results. Its computational complexity is

also low, making it suitable for real-time implementation.
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