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AbstractAbstractAbstractAbstract    

Multiple Myeloma (MM) is the second most common haematological cancer in the 

Western World, accounting for approximately 10% of all newly diagnosed blood cancers 

each year. Despite the recent advancements in its treatment, MM remains incurable. 

This is partly due to the protective niche in which it inhabits – the bone marrow 

microenvironment (BMM). MM cells have been shown to `re-program’ other cell 

populations within this milieu to produce the growth factors needed for its own 

development.  These factors initiate pro-survival pathways within MM cells, including 

the phosphatidylinositol 3-kinase (PI3K) pathway. The PI3K catalytic isoforms p110δ and 

p110γ are known to be specifically enriched by the haematopoietic system, providing a 

highly precise therapeutic target.  

In this thesis, the PI3K pathway was shown to be activated in response to both the BMM 

and IL-6 alone. Both p110δ/p110γ were found to be highly expressed in MM and were 

implicated in MM growth, survival and migration. p110γ only knockdown within  human 

MM cell lines caused a significant reduction in MM adhesion to fibronectin. In vivo, 

xenograft models showed that knockdown of either of these isoforms in the human MM 

cell line U266 increased overall survival (OS), as did dual inhibition of p110δ and p110γ 

(via the drug IPI-145).  

Cytokine array analysis of MM primary cells revealed extremely high levels of 

extracellular Macrophage Migratory Inhibitory Factor (MIF), a known stimulator of the 

PI3K pathway. Knockdown of MM cell MIF resulted in significantly increased OS and 

reduced tumour burden in secondary sites. MIF was found to stimulate the production 

of IL-6/8 from bone marrow stromal cells, and c-Myc was implicated in the regulation of 

this process. 

Taken together, the data presented here demonstrates that PI3K signalling is beneficial 

to MM disease progression. MM-derived MIF increases the availability of IL-6 within the 

BMM, causing activation of the PI3K pathway. Therapies targeting the PI3K isoforms or 

MIF (alongside conventional MM therapeutics) could therefore benefit MM patient 

treatment, and warrants clinical investigation. 
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1111 ––––    IntroductionIntroductionIntroductionIntroduction    

1.11.11.11.1 ––––    Multiple Multiple Multiple Multiple MMMMyelomayelomayelomayeloma    (MM)(MM)(MM)(MM)    

 – General Introduction 

Multiple Myeloma (MM) is a devastating and currently incurable type of blood cancer.  

Specifically, it is a cancer of the plasma cell (PC), the terminal differentiation stage of a B-

Lymphocyte cell (see Figure 1.1.1). These cancerous PCs (or MM cells) can no longer produce 

working antibodies, instead yielding monoclonal or light chain (Bence Jones protein) only 

immunoglobulins (Igs), most commonly referred to as ‘paraproteins’.  Paraproteins may be 

detectable via protein electrophoresis of the patient’s blood serum or urine – higher levels of 

which can be indicative of a more advanced disease stage [1].  

Accumulation of MM cells within the body can lead to many complications. As the disease 

develops, so too do the plasmacytomas and lytic lesions [2], causing bone pain and 

pathological fracture [3]. Decreased number of functional PCs results in immunodeficiency, 

whilst the ever increasing protein level damages the kidneys - typically resulting in a fatal 

infection (most commonly pneumonia) or kidney failure respectively [4, 5].  

MM is the second most commonly diagnosed blood cancer in the Western world with 

approximately 5,700 new cases in the UK annually and a 5-year survival rate of 51.6% [6]. 

Despite the recent advances in the treatment of MM, average life expectancy following 

diagnosis is still only 4 years [6]. Although current therapeutics are effective at reducing the 

bulk of the disease burden significantly, drug-resistant cells will always remain harboured 

within the bone marrow (BM). Here they are protected in an environment that is rich in the 

cytokines and chemokines that are critical to MM growth and metastasis [7, 8]. Indeed, MM 

cells have been shown to initiate the production of these soluble factors in the cells of the 

bone marrow microenvironment (BMM) [9-11], effectively adapting other cells within the 

milieu to benefit their own survival. Adhesion to the extracellular matrix (ECM) or BMM cells 

can also initiate cyto-protective signalling cascades within the MM cell further protecting and 

nurturing the cancer, as well as contributing to malignant cell drug resistance [12].  
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Figure 1.1.1 – Blood cell lineage.  

Simplified schematic of typical human haematopoiesis. Haem Multiple Myeloma is a cancer 

of the plasma cell (shown bottom right of the figure).  

 

 

The characterisation and obstruction of the symbiotic relationship between the tumour cell 

and its microenvironment is the next critical stage in cancer research in general, and this 

remains true in the treatment of MM. Complimentary therapies that negate the BMM’s 

protection could increase the efficacy of treatments already routinely used in the clinic – 

reducing symptoms, increasing duration until patient relapse, and, ultimately, extending 

survival time. 
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 – The Plasma Cell Immunoglobulin (Ig) 

A typical plasma cell produces and secretes thousands of Ig molecules over its lifetime (Figure 

1.1.2), initiating the destruction of specific antigens. The Ig created by plasma cells are 

classified by isotype, and there are five main groups in placental mammals: IgA, IgD, IgE, IgG 

and IgM. Isotype categorisation is based on the sequence of the Ig heavy chain (IgH), and can 

be further classified by determination of the light chain (κ or λ) (see Table 1.1.1). 

 

 

Figure 1.1.2 – Structure of a typical Immunoglobulin (Ig).  

Igs are present on the surface of both typical and malignant plasma cells and can be measured 

in the urine or blood of patients. 

 

Of all these subtypes, IgG (both κ and λ) is the most common in MM – accounting for 

approximately 52% of all diagnosed cases [13]. IgA is identified in approximately 21% of 

patients with all other subtypes totalling 27% of diagnosed cases (see Table 1.1.1). Ig / 

paraprotein isotype has been shown to correlate with the prognosis of disease and overall 

patient survival – with IgG patients, for example, surviving on average 1.6 times longer than 

IgA patients (median survival of IgG patients was 61.8 months vs. 38.5 months seen in IgA 

patients)[13]. The IgD sub-type, although rarer, is more aggressive still with average survival 

reduced to just 21 months [14].  
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IgM MM and Waldenström’s macroglobulinemia (WM) are malignancies both characterised 

by an IgM monoclonal gammopathy [15]. WM is a type of non-Hodgkin lymphoma and effects 

not only the plasma cells (as in MM) but the B-Cells as well [16]. However, where MM will 

classically present with lytic bone lesions and end organ damage, WM does not. IgM (as well 

as IgE and non-secretory) MM though has been shown to have higher instances of t(11;14) 

translocations, a feature not associated with WM [17]. This abnormality therefore has the 

potential be utilised as a differentiator between the diseases before organ damage occurs.  

IgE is so rare that only a handful of cases have been reported since it was first defined in 1967 

[18] - so statistically few conclusions can be drawn on the nature of this sub-type. In Light-

Chain MM, the malignant plasma cells can only produce the Light-Chain portion of the 

antibody and therefore diagnosis relies more heavily on the serum free light chain (FLC) assay 

to determine the ratio of κ : λ Ig Light Chains. In healthy subjects, there will be a presence of 

free light chains in the blood at low levels, with a κ : λ ratio of between 0.26 to 1.65. Anything 

outside this range is considered abnormal and in the case of MM may indicate monoclonal 

expansion. Non-secretory MM is where the malignant plasma cells produce or secrete little or 

no Ig at all, and therefore can be highly difficult to diagnose or to monitor disease progression 

[19].  

Heavy Chain Light Chain % of patients 

IgG κ 

λ 

34 

18 

IgA 

 

κ 

λ 

13 

8 

IgD 

 

κ 

λ 

1 

1 

IgM 

 

κ 

λ 

0.3 

0.2 

IgE 

 

κ 

λ 

None identified 

None identified 

None 

 

κ 

λ 

9 

7 

Bi-clonal (Two different  

heavy chains present) 

 2 

Non-secretory  7 

Table 1.1.1 –Table showing Immunoglobulin distribution in MM patients. 

Table adapted from data obtained by The Mayo Clinic, 2003, of 1027 patients with MM [13]. 
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 – The clinical stages of MM 

Approximately one third of all MM patients have been previously diagnosed with either 

monoclonal gammopathy of undetermined significance (MGUS) or smouldering multiple 

myeloma (SMM) prior to developing MM, although virtually all MM cases are thought to be 

preceded by one of these two conditions [20, 21]. All three of these disorders affect the 

plasma cells specifically, with the distinction between MGUS/SMM and MM fundamentally 

relying on the quantity of abnormal plasma cells within the bone marrow and the presence of 

tissue damage (see Table 1.1.2). Oncogenic studies have found no genetic mutations that are 

unique to a particular stage of malignancy [22], although a t(11;14)(q13;q32) translocation 

(and subsequent up-regulation of cyclin D1) is most frequently observed in symptomatic MM 

and is thought to be an early oncogeneic event [23]. Despite the fact that immunophenotypic 

analyses can discriminate between typical PCs and malignant cells [24, 25], there are currently 

no known markers that are completely unique to any one of these conditions. This essentially 

demonstrates that these malignancies can be classed as a spectrum of disease, ranging from 

MGUS to advanced MM and accumulating genetic insults along the way.   

 

1.1.3.1 – Monoclonal Gammopathy of Undetermined Significance (MGUS) 

MGUS is one of the most common plasma cell disorders, occurring in 1% of over 50 year 

olds [26] and 3% of over 70 year olds [27]. It is defined by the presence of paraprotein in 

patients, without the symptoms of MM (such as bone lesions) or other related disorders. 

Both genetic [28, 29] and environmental factors [30, 31] have been shown to affect MGUS 

prevalence, however the actual risk of progression from MGUS to MM is low (less than 

1% of patients per year [32, 33]). Just as with MM, MGUS incidence increases with age 

[29] and can also vary with race [34] (see Section 1.1.4). It can be classified based on the 

monoclonal Ig that is expanded, with IgA MGUS more likely to become malignant in 

comparison to the other isotypes [35-37]. The speed at which MGUS progresses to MM is 

highly variable between patients, with some patients rapidly progressing to MM while 

others take decades (or not at all in some cases). The risk of progression is effected by 

several factors, including the Ig type, the FLC ratio and the initial level of monoclonal 

immunoglobulin [33]. 
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1.1.3.2 – Smouldering MM (SMM) 

Smouldering MM (SMM), also known as a-symptomatic MM or indolent MM - has the 

same diagnostic criteria as MM, with the exception of no patient symptoms or tissue 

damage (see Table 1.1.2). ‘Tissue damage’ refers to the fulfilment of one or more of the 

CRAB criteria: Elevated serum Calcium, Renal insufficiency, Anaemia, and/or Bone 

lesions. It is instead defined by paraprotein levels  ≥ 30g/l or ≥10% monoclonal plasma 

cells within the bone marrow [38] and there is currently no treatment regimen for 

patients at this stage of disease. Instead, the disease is closely monitored for progression 

and treated at the first signs of tissue damage, when it can become classified as 

symptomatic MM. Although intervention at the precursor stage has not yet been 

approved, a recent study has shown that treatment of high-risk smouldering MM can 

significantly decrease disease progression time. In a study by Mateos et al., it was shown  

that treating this high-risk group with Lenalidomide plus Dexamethasone increased 3-

year progression free survival from 30% in the control group to 77% [39]. There are 

currently several active clinical trials [40-49] studying pharmacological intervention in 

SMM, however it remains to be seen if the benefits of early treatment outweigh the 

physical and emotional costs to the patients.   

 

1.1.3.3 – Symptomatic  MM   

Once the CRAB criteria (mentioned above) have been met, patients have officially 

progressed from MGUS/SMM to symptomatic MM. The immune dysfunction that is 

characteristic of this disease means that infection remains the major cause of morbidity 

[50]. Indeed, a Swedish population based study of MM patients revealed that they had an 

7 fold increased risk of developing any infection in comparison to matched controls [51], 

with risk of viral infections increasing by 10 fold.  Other identifying characteristics of MM 

include bone pain and pathological fractures, with 90% of MM patients exhibiting 

features of bone disease at some stage of the disease [52].  MM bone disease is driven by 

a disruption in the production of both osteoblasts [53, 54] and an increase in osteoclast 

creation [55-57] which creates an environment of bone weakness and, ultimately, 

destruction. This bone damage can also cause hypercalcemia which in turn leads to renal 

failure in up to half of all patients [58].    
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Critical to the diagnosis of MM is the presence of MM cells that have infiltrated the bone 

marrow and for a diagnosis of MM this must exceed 10%. These malignant cells are 

identified by first performing a bone marrow biopsy, which is immunohistochemically 

stained and analysed via microscopy. Throughout MM disease progression, malignant 

cells are dependent on their environment with circulating plasma cells only present in a 

more aggressive disease type (or indeed in Plasma cell leukaemia [59]) and is indicative 

of a poor prognosis for the patient. 

  

 

 
 

 MGUS Smouldering  

Myeloma 

Symptomatic 

Myeloma 

1 Serum 

Paraprotein 

 Ig < 30g/l Ig ≥ 30g/l,  

       Or 

IgA > 10g/l 

Ig ≥ 30g/l,  

       Or 

IgA > 10g/l  

2 Ig Light Chain  n/a >1g/24h  >1g/24h 

3 BM clonal 

plasma cells 

 <10% ≥10%  ≥10%   

4 Related tissue 

damage 

 None None CRAB criteria 

fulfilled1 

 

Table 1.1.2 – Diagnostic criteria for varying plasma cell disorders. 

Data obtained from criteria set by the IMWG, 1 CRAB criteria defined in report [60].  

In IgA MM, only >10g/l serum paraprotein is required for classification, due to aggressive 

nature of this subtype. The only measureable difference between Smouldering MM and 

Symptomatic MM is the presence of related tissue damage.  
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 – Epidemiology 

1.1.4.1 – Age and Gender 

Blood cancers account for approximately 10% of all newly diagnosed cancers in the 

Western world, of which Myeloma is the second most commonly diagnosed (see Figure 

1.1.4 for a breakdown of commonly diagnosed cancers).   

Primarily a disease of the elderly, MM has a median age of onset at approximately 73 

years in the UK [61]. The incidence of MM has a strong positive correlation with increasing 

age, which is evident when looking at the breakdown of instances recorded in the UK 

between 2012 and 2014 (see Figure 1.1.3), and there are very few cases diagnosed before 

the age of 40. These data are comparable to the numbers recorded in other Western 

populations. The USA and Australia, for example, have slightly lower median ages of 

diagnosis of 69 years [6] and 71 years respectively [62]. As the average life expectancy 

continues to increase in these countries, so too will the incidence of MM. These rates will 

seem to further increase with improvements in clinical testing and better disease 

monitoring. 

 

 

Figure 1.1.3 – MM age-specific incidence rates, UK, 2012-2014. 

Source: Cancer Research UK, cruk.org/cancerstats, Accessed Oct 2017. 
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Gender too is known to highly influence the incidence of certain cancers, and MM is no 

exception to this with a diagnosis of MM 40-50% more common in men than women 

(depending on age group assessed) [61]. The only age group for which this is not true is 

the 85+ group – most likely due to the higher number of women within this age group in 

general. Although it is universally accepted that the incidence is significantly higher in 

males, the reasons behind this are unclear – although the frequency of some genetic 

aberrations were identified in a study by Boyd et al. in 2011 [63]. They found that the 

incidence of IgH translations was significantly higher in women (50% of women vs. 38% 

of men) and hyperdiploidy prevalence higher in men (50% of women vs. 62% of men) – 

factors which could possibly influence further genetic events.        

Despite the significant gender differences observed in many different diseases [64-66], 

clinical trials are still overwhelmingly populated by Caucasian males. In a study by Geller 

et al. in 2011 [67] it was found that women only accounted for 37% of patients enrolled 

in clinical studies (with 15% of studies having lower than 20% women) and that 75% of 

studies did not report outcomes by gender at all. This is likely to influence the 

development of therapeutics and unfortunately may cause effective medicines to be 

disregarded prematurely. 
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Figure 1.1.4 – Newly diagnosed cancers by type in the UK (2014)  

Most frequently diagnosed cancers in Males (A) and Females (B). Raw data obtained from 

Cancer Research UK, cruk.org/cancerstats, accessed Oct 2017. 
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1.1.4.2 – Nationality and Race 

An aging population can be highly indicative of a strong economic country and an 

accessible healthcare system and it is pertinent to remember this when looking at the 

global prevalence of MM. When analysing data, both MM and MGUS occurrence seem to 

be significantly higher in North America, Australia and Europe but low in the traditionally 

weaker economic countries of Africa. However, these rates are more likely to reflect poor 

data ascertainment, the lack of access to a good standard of health care, and overall lower 

life expectancy. For example, although MM incidence appears to be lower in African 

countries, the average life expectancies of men in Chad, the Central African Republic and 

Sierra Leone are only 51.7 years, 50.9 years and 49.3 years respectively. Therefore, the 

chance of developing MM is much lower as the population is much younger as a whole. 

In the USA those of African descent are actually more than twice as likely to be diagnosed 

with MM [6] in comparison to those of European lineage. This increase remains significant 

upon normalisation for economic factors [68], suggesting there is an underlying biological 

reason for this difference. Similar studies have also highlighted the increased incidence in 

those of African descent, with the average age of onset also lower by approximately 4 

years [68].  

 

 

Figure 1.1.5 – Global Age-standardised rate of MM incidence per 100,000. 

Countries with higher life expectancies and stronger economies appear to have higher 

incidence of MM. Source: GLOBOCAN 2012 [69] 
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Asian populations currently have the lowest recorded incidence of MM of all the studied 

ethnicities (just 0.8% of newly diagnosed cancers) [69], however the occurrence of MM 

seems to be increasing in some Asian nations [70-72]. This has been attributed to the 

rapid industrialisation of some of these countries, resulting in an increase of wealth and 

consequently a longer life expectancy. All of the racial trends described are consistent 

across genders, however the reasons behind racial differences in MM are still not clear. 

IgH translocations have been shown to be 12% lower in African American populations 

[73], but no significant difference in high-risk disease were found.  A recent study by 

Greenberg et al. [74] showed differences in the cytogenetic profile between White and 

Black populations, however the cytogenetic subtypes studied were only present in a 

subset of patients (63.4% Black and 34.6% White).  

As mentioned previously, clinical trials in the UK and the USA are predominantly filled by 

Caucasian males, and minorities are far less likely to be enrolled in general [75, 76] (most 

likely due to socio-economic factors). Better representation of both women and minority 

populations needs to be addressed if new effective treatments are to be developed for 

all.  
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1.1.4.3 – Other factors 

Socio-economic status can have a large influence on the quality of medical treatment 

received and this has been shown to reduce overall life expectancy more than both 

obesity and high blood pressure [77]. For those that do not have access to universal 

healthcare (in the USA for example), uninsured adults have a 25% higher risk of mortality 

compared to those with private insurance [78], a figure which has been largely unchanged 

since the 1980s [79]. This has been shown to disproportionately affect younger MM 

patients (under 65) in the USA [80] – with 4-year survival rate declining alongside privilege 

(71.1%, 63.2%, 53.4%, and 46.5% respectively, for patients with 0, 1, 2, or 3 adverse 

sociodemographic factors). Early detection and monitoring of MGUS/MM has proved to 

be critical, and without access to routine blood tests and other forms of screening, poorer 

communities are far less likely to get the treatment they need in a timely manner.  

There has also been a familial element identified in MM, with several studies which show 

that people who have first degree relatives who have developed MGUS/MM are more 

likely to develop the malignancy themselves [29, 81, 82].  This, linked with the distribution 

of disease in different races and sexes, would imply a genetic susceptibility to MM. 

Indeed, there has been evidence that there is increased risk of MM in carriers of both the 

mutated BRCA1 or BRCA2 genes in Ashkenazi Jewish populations [83]. More recently, 

Genome-wide association studies (GWASs) have been performed in the attempt to 

identify risk variants for MM. In a study by Broderick et al., 1675 MM patients of European 

origin were genotyped and compared to 5903 healthy control individuals [84] and they 

found two SNPs that were associated with the risk of MM: rs4487645 (7p15.3) and 

rs1052501 (3p22.1). rs4487645 is particularly interesting as in the region to which it maps, 

the CDCA7L (cell division cycle-associated 7-like) gene also is present. CDCA7L has been 

shown to interact with MYC (a proto-oncogene that is critical in many growth promoting 

pathways [85]) through differential IRF4 binding, resulting in increased MM cell 

proliferation and reduced patient survival [86]. The following year, this group added four 

further variants that could confer MM risk, providing more evidence for the genetic 

contribution to this malignancy [87].   

 

 



Page | 32 

 

Obesity too has been associated with increased risk of MM, however there are other 

factors that may be influencing these data sets. African-Americans, for example, have a 

higher prevalence of extreme obesity in the USA [88] which could account for the higher 

rates of MM – however, higher rates of extreme obesity was also observed in all women 

vs. men, regardless of ethnicity.  

In summary, there are many factors that could influence an individual’s probability of a 

MM diagnosis. Based on the current literature, the most at risk group comprises of elderly 

males (>70 years) of African descent.  
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 – Treatment of Myeloma and its limitations 

The first well documented cases of Multiple Myeloma were first described by Solly in 1844 

[89] and later by Macintyre in 1850 [90]. Both of these cases reported fatigue and bone pain 

caused by multiple fractures in their patients, and attempts to treat the disease ranged from 

an ‘infusion of orange peel’ to ‘sea air and sea bathing’. Strangely, neither of these treatments 

proved effective and it was over 100 years later in 1958 that the first working treatment for 

MM was found.  

 

1.1.5.1 – Early treatments  

Melphalan was first synthesised in the early 1950s by Bergel and Stock [91].  It is a type 

of nitrogen mustard alkylating agent that was found to have beneficial effects in MM 

patients by Blokhin et al. in 1958 [92]. Melphalan works as an alkylating agent, inhibiting 

both RNA transcription and protein synthesis, causing cell growth arrest and apoptosis. 

This initial study was followed by several others [93-96], and melphalan soon became a 

routine treatment for MM – improving the condition of approximately 50% of Myeloma 

patients.  

In the 1960s, the corticosteroid prednisone was found to decrease serum Ig and increase 

the Red Blood Cell (RBC) count in MM patients [97, 98]. However, there was no significant 

increase in survival when compared to a control group. It was not until it was used in 

combination with melphalan that the benefits became truly apparent. A randomised trial 

conducted by Alexanian et al. in 1969 [99] showed that the melphalan with prednisone 

increased overall survival by 6 months when compared to melphalan alone. Over the 

following decades other therapeutic agents were trialled (such as cyclophosphamide  and 

vincristine [100]) but, despite promising responses, overall survival was not significantly 

increased [101]. The treatment regimen of melphalan-prednisone was used as the core 

therapy for decades. 
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1.1.5.2 – The past 20 years 

It was not until nearly 3 decades after the establishment of melphalan and prednisone 

that another effective drug for the treatment of MM was developed. Originally marketed 

as a sedative and a treatment for morning sickness in the 1950’s, thalidomide (an 

immunomodulatory drug) was shown to have severe teratogenic properties [102]. 

Throughout the late 1960’s to the 1980’s there was increasing evidence for the use of 

thalidomide in several diseases – including leprosy [103, 104], Behçet’s syndrome [105] 

and HIV related complications [106] – and was later shown to have significant anti-

angiogenic properties [107]. Based on these findings (and the increased awareness of the 

role of angiogenesis in MM), Singhal et al. produced a paper in 1999 showing the effects 

of thalidomide in MM patients [108]. They showed that 78% of patients showed a reduced 

level of paraprotein after two months, with decreased plasma cell infiltration into the 

bone marrow and patients reported a reduction of bone pain. In the subsequent years, 

thalidomide became an established therapeutic for the treatment of MM, most 

frequently used alongside melphalan and prednisone (mentioned previously). 

Whilst thalidomide was being clinically investigated, another potential cancer treatment 

was being developed – proteasome inhibitors (PI). The ubiquitin-proteasome pathway is 

the primary pathway for intracellular protein degradation [109], and as such plays a 

critical role in cell cycle control and tumour growth. The proteasome also plays a vital role 

in the activation of the transcription factor NF-κB (see Figure 1.1.6), via degradation of 

IκBα, NF-κB’s inhibitory protein [110]. Stabilisation of IκBα (and subsequent NF-κB 

inhibition) causes dividing cells to become more susceptible to apoptosis [111], as well as 

interfering with cell adhesion [112] and reducing angiogenesis [113].  Therefore, PI have 

the potential to arrest tumour metastasis and make malignant cells more susceptible to 

other therapeutics available.  
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Figure 1.1.6 – The role of the proteasome in NF-κκκκB translocation. 

Under typical conditions, NF-κB (p50/p65 heterodimer) is sequestered by IκB in the 

cytoplasm. Activated IκB is then ubiquitinated and subsequently degraded by the 

proteasome. This leaves NF-κB to translocate to the nucleus where it activates a variety 

of NF-κB target genes. PI cause a build-up of damaged proteins in the cell as well as 

preventing NF-κB target gene activation.  Canonical pathway shown. 

  

 

The first PI that was specific enough for clinical use was a boronic acid derived compound, 

Bortezomib (trade name of Velcade). The NF-κB transcription factor is known to be 

aberrantly activated in MM [12], and Phase 2 trials of this drug in MM patients showed 

promising results. For example, a study by Richardson et al. in 2003 [114] showed that 

35% of patients had a complete, partial or minimal response to bortezomib alone, some 

of who had been previously refractory to treatment. Addition of bortezomib to standard 

melphalan with prednisone treatment was shown to work synergistically with standard 

treatment, with time to progression increasing from a median of 16.6 months in the 

control group to 24.0 months in the bortezomib group [115] – and this soon became the 

established regimen for the first line treatment of MM, approved by the FDA in 2003. 
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Due to the success of bortezomib, other PIs were soon being developed and trialled in 

the treatment of MM, as well as other cancers. Ixazomib [116], Marizomib [117] and 

Carfilzomib [117], for example, have all completed clinical trials in varying stages and are 

yielding positive results – increasing progression free survival time and overall survival. 

The National Institute for health and Care guidance (NICE) guidelines now allow 

Carfilzomib as an option for treating relapsed myeloma, and other PI are likely to continue 

this trend in the future.  

 

1.1.5.3 – The future of MM treatment 

Currently, in the UK, NICE recommend a combination of dexamethasone (a 

corticosteroid) alongside thalidomide and bortezomib [118] as the first line treatment for 

MM (following an autologous stem cell transplantation if eligible). Autologous stem cell 

transplantation (ASCT is the process by which a fraction of the patients Haematopoietic 

Stem Cells (HSCs, see section 1.2.1.1) are collected, prior to high dose chemotherapy can 

be toxic to this cell population. Following this, the HSCs are returned to the patient 

intravenously and return to the BM where they can re-engraft. Unfortunately, the 

majority of patients with MM are not eligible for ASCT under NICE guidelines due to 

advanced age, frailty and renal impairment.    

Relapsed patients will be given bortezomib monotherapy, with subsequent therapies of 

lenalidomide (a thalidomide derivative) and dexamethasone, as appropriate. The 5 year 

survival rate of MM patients has nearly doubled since melphalan/prednisone became the 

first established treatment regimen (26.3% in 1975 vs. 52.7% in 2009 [6]) and the 

detection and monitoring of this disease has improved substantially. However, despite 

the wide array of therapeutics that are now available for the treatment of MM, all 

patients will eventually relapse or become refractory to treatment. This is due, in part, to 

a sub-set of MM cells that are resistant to therapeutics and are encouraged to proliferate 

and grow by the environment in which they develop. These cells are harboured in the 

BMM, and until the protective effects of this sanctuary are removed, the efficacy of 

current treatments will continue to be limited. 
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1.21.21.21.2 ––––    The Bone Marrow MicroenvironmentThe Bone Marrow MicroenvironmentThe Bone Marrow MicroenvironmentThe Bone Marrow Microenvironment    

 – Overview  

Bone marrow is a spongy, flexible tissue that occupies the cavities of bones. It is comprised of 

both yellow marrow and red marrow (which is also known as myeloid tissue). Platelets, RBCs 

and the majority of leukocytes are produced in the red marrow whereas the yellow marrow 

has a much larger proportion of adipocytes. In adults, the bone marrow is the primary site of 

haematopoiesis and it is comprised of blood vessels and a plethora of cell types that either 

are directly involved in this process or that support it. The ‘support’ system is known 

collectively as the bone marrow stroma and works to create and maintain an environment in 

which haematopoiesis can occur and be maintained [119]. Haematopoiesis begins with 

haematopoietic stem cells (HSCs, also known as Haemocytoblasts), which are the multipotent 

cells that reside within the haematopoietic niche. These cells are capable of self-renewal, as 

well as differentiation into either myeloid progenitor cells or lymphoid progenitor cells (which 

then differentiate further, see Figure 1.1.1).  

Bone Marrow Stromal Cells (BMSCs), on the other hand, give rise to cells specifically of the 

skeletal lineage [120] – that is cells that comprise the cartilage, bone, and marrow adipocytes. 

The definition and terminology used to describe these particular pluripotent cells has been 

thoroughly debated, and the terms ‘Bone Marrow Mesenchymal Stem Cell’ (BM-MSC) and 

‘Skeletal Stem Cell’ (SSC) have been used interchangeably in literature. Although both the 

haematopoietic and stromal systems have distinct lineages, they are thought to work 

symbiotically.   
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1.2.1.1 – Haematopoietic Stem Cells (HSC) 

In the wake of World War II, a proportion of the citizens of Horoshima and Nagasaki that 

survived the initial atomic bomb explosion experienced low radiation exposure and 

subsequently perished. Patients were found to no longer produce sufficient leukocytes to 

ward off infection, or adequate platelets needed for blood clotting. Mouse experiments 

could replicate this compromised haematopoietic system, but showed that the shielding 

of an individual bone or the spleen could prevent this failure [121]. It was later revealed 

that fully irradiated mice which were injected with suspensions of cells from the bone 

marrow also avoided haematopoietic failure [122] and that this could be directly 

attributed to the bone marrow cells themselves regenerating the haematopoietic system 

(rather than a secondary effect causing repair of radiation damage) [123, 124].  

Thanks to work by Till and McCulloch [125], we now know that the rejuvenation of 

haematopoiesis seen in these experiments was due to one population of cells, the 

haematopoietic stem cells (HSC). HSC are defined by their ability to differentiate into any 

blood cell lineage as well as their ability for self-renewal (which is required for the 

maintenance of the population). Under normal conditions approximately 75% of HSC are 

quiescent, with the remaining HSC in varying stages of the cell cycle [126]. Moreover, a 

study by Sugiyama et al. in 2006 showed that SDF-1/CXCR4 signalling is critical in the 

maintenance of this quiescent HSC pool [127]. They demonstrated how a deletion of 

CXCR4 in mice resulted in a significant reduction of HSC numbers as well as increased 

sensitivity to myelotoxic injury (using the anti-metabolite 5-fluorouracil, which only 

affects cycling haematopoietic cells) without the impaired expansion of mature 

progenitors. However, HSC are also highly responsive to changes in the environment and 

can be driven to self-renew under stress conditions [128, 129], showing their dynamic 

adaptability.   

HSC are an incredibly rare population, constituting approximately 0.005-0.01% of all bone 

marrow cells [130], and their isolation and identification is incredibly difficult. 

Morphologically similar to lymphocytes, HSC must be identified by the cell surface 

markers that they express (however no single marker can specifically identify an HSC). 

Cell surface markers and cluster of differentiation (CD) antigens are identified by flow 

cytometry with Fluorescence-activated cell sorting (FACS) allowing this population to be 

isolated. Currently, human HSC are recognised using the following markers: CD34+, CD59+, 
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CD90+, CD38low/-, c-Kit-/low, and are negative for mature cell lineage markers (although 

most HSC are primarily identified by CD34+ selection despite this marker encompassing 

cells at various stages of maturation) [131-133]. 

 

1.2.1.2 – Mesenchymal Bone Marrow Stromal Cells (BMSCs) 

The characterisation of BMSCs has always been a challenge, not least due to the rarity of 

the cell population - approximately 1 in 10,000 to 50,000. BMSCs are the source of all the 

cells that form the bone marrow environment itself, most notably marrow adipocytes, 

chondrocytes and osteocytes (see Figure 1.2.1).  

The concept of a BMSCs first originated in the 1960s, where studies showed that BM cell 

suspensions could produce their own ossicles in vivo – essentially mimicking the 

architecture of the BM [134, 135]. These cells were discernible for their ability to adhere 

to tissue culture plastic and their fibroblast-like appearance. Subsequent work by 

Friedenstein and colleagues showed that these cells were clonogenic, multipotent 

progenitors - the lineage of which was independent from HSC [136, 137]. It was not until 

2006, however, that the true “stem cell” nature of these cells was completed, when they 

were shown to self-renew [138, 139].  

When placed under different niche conditions, BMSCs have been shown to display 

remarkable plasticity in terms of their differentiation pathway, forming adipocytic, 

osteocytic and chondrocytic cell lines, and their full potential in medical applications is 

yet to be realised. As well as differentiating into cells of the mesodermal lineage, BMSCs 

have been shown to have the potential to form cells of other embryonic lineages. For 

example, a study by Orlic et al. in 2001 showed the how dead myocardium could be 

restored by the transplantation of Lin- c-kit+ BM cells into the contracting wall bordering 

the infarct [140]. Other studies have demonstrated how BMSCS can overcome their 

‘mesenchymal’ fate, and under specific conditions in vitro can differentiate into neural 

cells [141, 142], providing options for the treatment of a plethora of neurological diseases 

and spinal injuries [143].   
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Figure 1.2.1 – The potential of Mesenchymal BMSCs. 

The mesenchymal BMSC has the potential to differentiate into several cell types. 

Although most commonly committing to osteoblastic, adipocytic and chondrocytic 

lineages, mesenchymal BMSCs can also form muscle cells. Image taken from Firth and 

Yuan, 2012 [144] 
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1.2.1.2.1 – Osteocytes and Marrow Adipocytes 

Bone homeostasis is maintained by the continuous cycle of bone remodelling within 

the microenvironment - synthesis (via osteoblasts and subsequently osteocytes) and 

absorption (via osteoclasts). Imbalances in this axis can result in either net loss, as 

seen in diseases such as rheumatoid arthritis, Osteoporosis and MM. Alternatively, 

net gain can cause conditions such as osteopetrosis, which causes the bones to 

become harder and denser. Although osteoclasts (bone destroying cells) are often 

grouped with osteoblasts and osteocytes in literature, they are actually derived from 

macrophage lineage [145], and by extension HSC. Marrow adipocytes (MA), however, 

are derived from mesenchymal BMSCs and comprise approximately 15% of the bone 

marrow in young adults. The proportion of MA in the bone marrow has been shown 

to increase every year (up to 60% by the age of 65) [146]. Recently, MA have been 

shown to synthesis stem cell factor (SCF), promoting the regeneration of HSC after 

irradiation [147]. The lineage commitment of BMSCS into osteoblasts / osteocytes is 

known to be in delicate balance with marrow adipocyte differentiation, and is 

influenced by key transcription factors and signalling pathways. 

Wnt signalling, for example, has been shown to have a critical role in BMSCS 

differentiation. The activation of this large group of glycoproteins, specifically 

Wnt10b, has been shown to inhibit adipogenic differentiation by maintaining cells in 

a pre-adipoctye state via inhibition of the transcription factor CCAAT/enhancer 

binding protein α (C/EBPα) and proliferator-activated receptor γ (PPARγ) [148, 149]. 

In agreement with this, inhibition of Wnt signalling pathways has been shown to 

promote osteoblast maturation and subsequent bone formation [150] and the 

proportion of marrow adipocytes has been shown to be inversely correlated with 

bone quality [147]. 

The transforming growth factor β (TGFβ) superfamily have also been heavily 

implicated in BMSCS differentiation, with different members of this family provoking 

a variety of responses. Bone morphogenic proteins (BMPs) are a subset of TGFβ 

ligands and BMP4 has been shown to promote the adipocyte lineage in C3H10T1/2 

(murine mesenchymal) cells [151]. BMP2 (in combination with Rosiglitazone, a 

thiazolidinedione) can also induce adipogenic differentiation [152] – however the 

effects of BMP2 have been shown to be dose dependent, with higher doses 
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stimulating production of osteocyte and chondrocyte lineages [153]. Like the TGBβ 

family, the Notch signalling pathway has also demonstrated a dual role in BMSCS 

differentiation. Blocking of Notch signalling has been shown to inhibit osteoblast 

production by supressing the Wnt/β-catenin pathway [154], however Notch 

signalling has also been shown to promote adipogenic differentiation via the PI3K 

pathway [154]. Indeed, Notch signalling in combination with TGF-β have also been 

shown to stimulate myeogenesis [155] via Notch ligand Jagged 1 (JAG1), highlighting 

the complex network of signalling that is interwoven in BMSCS differentiation.  

 

 

Figure 1.2.2 – Factors effecting BMSC differentiation. 

Schematic showing several ways in which BMSC differentiation can be effected by 

signalling. Figure adapted from Katada and Kato, 2008 [156]. 
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1.2.1.2.2 – Chrondrogenic cells 

Chondrocytes are the cells that form cartilage, a tissue that in adults lacks the ability 

for self-repair [157] (most notably demonstrated in conditions such as osteoarthritis), 

and account for 1-5% of total cartilage tissue [158]. These cells are metabolically 

active and can synthesise a large volume of ECM components including collagen, 

proteoglycans and glycoproteins. In vitro, chondrocyte differentiation can be 

triggered using a medium containing ascorbate-2-phosphate, insulin, transferrin, 

dexamethasone, sodium pyruvate and TGFβ [159, 160]. The molecular events that 

regulate chondrocyte differentiation in vivo are still largely unknown, however some 

signalling molecules have been identified. Sox9 for example is a transcription factor 

that has been shown to critical in the establishment of chondrocytes and loss of Sox9 

has been shown to cause defective cartilage primordia and premature mineralisation 

of many skeletal elements [161]. 
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 – Signalling pathways in the Cancer BMM 

The cells located within the BMM are constantly secreting growth factors and cytokines, 

regulated by autocrine/paracrine loops and cell-cell adhesion or adhesion to the extracellular 

matrix. These interactions activate varying signalling cascades within the cells – controlling 

everything from cell differentiation to apoptosis. Many of these common signalling pathways 

can be hijacked by tumour cells – becoming de-regulated or constitutively activated within the 

malignant cell, benefitting disease progression.  

 

1.2.2.1 – MAPK/ERK pathway 

The MAPK/ERK pathway (also known as the Raf/MEK/ERK pathway) is pivotal in several 

fundamental cellular processes, including differentiation [162], proliferation [163] and 

apoptosis [164]. The primary route of MAPK signalling is via the activation of receptor 

tyrosine kinases (RTKs) that are embedded in the cell’s surface membrane. Stimulated 

RTKs prompt Ras-GTPase activation and subsequent Raf kinase recruitment. Raf kinases 

can then phosphorylate ERK (either at the plasma membrane, Gogli apparatus or 

endosomes) which is then available to stimulate a wide selection of both cytosolic and 

nuclear targets. The net effect of MAPK/ERK activation is cellular proliferation and 

growth.  

Abnormalities in all levels of the MAPK/ERK signalling cascade have been heavily 

implicated in many different types of cancer [165-167]. RAS mutations, for example, are 

highly frequent in pancreatic cancer [168], occurring in over 90% of all cases. There are 

three variations of Ras proteins (H-Ras, K-Ras and N-Ras) and of these, K-Ras mutations 

are the most frequently observed in oncogenesis [169, 170]. RAS mutations can cause Ras 

GTPase to become constitutively active – continuously binding GTP and activating the 

MAPK/ERK pathway leading to uncontrollable growth (as this pathway has been linked to 

the regulation of several key transcription factors, including c-Myc [171]).   

In MM, mutations in the MAPK pathway occur in over 50% of all newly diagnosed cases 

[172]. A study by Bezieau et al. [173] found that although mutations in N-RAS and/or K-

RAS2 are highly frequent in MM (approximately 55% at diagnosis or 81% at time of 

relapse), the frequency of this mutation in MGUS is significantly lower (12.5%). This could 

indicate a role for these mutations in the advancement of MM. Inhibition of MAPK has 
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been shown to increase the efficacy of PI-induced cell death [174], however the blockage 

of this pathway alone is not always sufficient to induce MM cell death in vivo. In most 

cases, the BMM is capable of stimulating compensatory pathways within the malignant 

cell. For example, Chatterjee et al. showed that in co-cultures of MM and BMSCS 

inhibition of both the MAPK and signal transducers and activators of transcription 3 

(STAT3) pathways was required to induce apoptosis in MM cells [175].  

 

1.2.2.2 – JAK/STAT pathway 

The Janus kinase (JAK) family consists of JAK1-3 and Tyk2 and can be activated by many 

of the cytokines found within the BMM – including IL-6 [176], IL-10 [177, 178], IL-12 [179] 

and interferon α (IFNα) [180]. Upon activation, the non-receptor tyrosine kinase JAK can 

subsequently phosphorylate Signal Transducer and Activator of Transcription (STAT) 

proteins, which are latent transcription factors. Phosphorylated STAT can translocate to 

the nucleus (via the importin α-5 / Ran nuclear import pathway) where it initiates the 

transcription of many key genes that are involved in the cell cycle maintenance and 

survival (such as MYC [181, 182], CCND1/2 [183-185] and BCL2[186]). 

Due to the crucial role of JAK/STAT signalling in cell growth and survival, abnormalities 

that cause the up-regulation in this pathway are indicative of poor outcome in cancer. 

This pathway has shown to play a role in several solid malignancies including colon cancer 

[187, 188], prostate cancer [189] and gastric cancer [190]. However, it is with 

haematological malignancies that this pathway is more traditionally associated. The 

JAK/STAT pathway plays a critical role in the haematopoietic system, and this has been 

demonstrated using varying in vivo knockout models. For example, a study by Witthuhn 

et al. in 1993 [191] showed that the mice lacking Jak2 expression die in utero due to fatal 

anaemia, and Buckley et al. demonstrated that Jak3 deficiency causes T-cell and B-cell 

loss (due to the absence of IL-7 receptor signalling). Genetic alterations to the JAK/STAT 

pathway are prevalent in blood cancers with JAK2 mutations the most frequently 

observed in diseases such as Hodgkin lymphoma [192, 193] and chronic 

myeloproliferative disorders [194].  
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With the cytokine IL-6 known to play a crucial role in MM disease progression (as well as 

its ability to stimulate the JAK/STAT pathway) it stands to reason that this pathway would 

be over-expressed in Myeloma. Indeed, this was found to be the case in MM cell lines 

including MDN [176] and U266 [195], and inhibition of JAK has been shown to have 

devastating effects on MM cells – even when cultured with BMSCS [196]. Phase 1b clinical 

trials of the drug OPB-111077 (a STAT inhibitor) are currently recruiting for acute myeloid 

leukaemia (AML) (NCT03197714) and solid tumours (NCT02250170), however its effects 

on MM still need to be investigated.   

 

1.2.2.3 – NF-κB  

The NF-κB transcription factor family (schematic shown in Figure 1.1.6) is known to 

regulate the transcription of over 100 cyto-protective genes within a cell and it consists 

of the following transcription factors: NF-κB1/p105, NF-κB2/p100 (which can produce 

p50 and p52 respectively, following proteolytic activity), RelA/p65, RelB and c-Rel. NF-κB 

mutations in solid tumours are extremely rare, but there more frequently found in 

haematological malignancies. For example, rearrangement (and subsequent 

amplification) of c-Rel are regularly detected in non-Hodgkin B-cell lymphomas and 

diffuse large cell lymphoma [197, 198]. NF-κB2/p52 chromosomal rearrangements or 

deletions (at position 10q24) can generate constitutively active p52 protein which has 

been linked to B-cell and T-cell lymphoma development and maintenance [199-201]. A 

study by Chapman et al. in 2011 that detailed the initial genome sequencing in MM found 

common mutations in 11 members of the NF-κB signalling pathway [22], confirming the 

findings made by earlier studies [202, 203].  

However, direct mutations to the genes that control the NF-κB transcription factors are 

not the only way that these proteins can become aberrantly activated. Cross-talk from 

other oncogenic pathways [204-206] are also known to play a contributing role to the 

activation of these transcription factors. 
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1.2.2.4 – PI3K pathway 

The PI3K pathway has been associated with many types of cancer – both solid [207-209] 

and haematological [210, 211]. Aberrant activation of this pathway can occur either by 

overexpression of the PI3K isoforms (such as the high frequency of PI3KCA mutations seen 

in breast and ovarian cancers [212, 213]) or by mutations in its negative regulator, 

Phosphatase and Tensin Homolog (PTEN) [214, 215]. In MM, although no common 

mutations in the PI3K pathway genes have been described, this pathway is constitutively 

activated. Inhibition of this pathway is therefore a potential therapeutic target for MM, 

and this will be explored in detail in Section 1.4.    
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1.31.31.31.3 ––––    The The The The MyelomaMyelomaMyelomaMyeloma    MicroenvironmentMicroenvironmentMicroenvironmentMicroenvironment    

Under typical conditions, a sub-set of plasma cells home to the bone marrow where they 

locate and adhere to a niche which is key in aiding their survival (and transition into long-lived 

plasma cells). Long-lived plasma cells can, as the name suggests, survive a much longer time 

that those plasma cells located in the spleen (3-4 weeks in the bone marrow versus 3 days in 

the spleen) [216]. Much in the same way, MM cells are critically dependent on their 

microenvironment for their longevity. The BMM shields and nurtures the MM cells, with 

removal of these malignant cells into ex vivo culture swiftly resulting in their death. Although 

malignant plasma cells have been detected in the peripheral blood of patients [217, 218], this 

is primarily at later stages of the disease when accumulating genetic alterations have 

produced a more independent clonal population. An overview of common ways the BMM can 

protect the MM cell is shown in Figure 1.3.1. 

 

 – MM-BMSC adhesion 

The adhesion of MM cells to either the ECM (such as vitronectin, laminin, collagen or 

fibronectin) or other cells within the milieu has long been known to infer drug resistance 

within the MM cell (cell adhesion mediated drug resistance, CAM-DR) [219, 220]. MM cells 

can express a wide array of adhesion receptors, including CD29, CD44, CD49d (also known as 

VLA-4), CD54, CD138 and CD184 as well as variable expression of CD49e (VLA-5), CD11a and 

CD18 [221, 222]. 

VLA-4 has been implicated in MM-BMSC adhesion, interacting with vascular cell adhesion 

molecule 1 (VCAM1) / integrin β1 (ITGB1) and intracellular adhesion molecule 1 (ICAM1) / 

integrin β2 (ITGB2). This has been shown to cause the activation of both the MAPK and NF-κB 

pathways in both the MM cell and the BMSC [220, 223]. Interestingly, Hatano et al. showed 

that exposure to the proteasome inhibitor Bortezomib has been shown to reduce MM VLA-4 

expression on MM cells, thereby reducing MM cell CAM-DR and sensitising the malignancy to 

common MM therapeutics such as dexamethasone [224].   

MM-BMSC adhesion has also been shown to cause the release of the MM critical cytokine IL-

6 [225] from the BMSCs, which causes both MAPK [226] and JAK/STAT [176] pathway 

activation within the malignant cells. Overexpression of the JAK/STAT pathway results in the 

upregulation of Bcl-xl and Mcl-1, known anti-apoptotic proteins [227, 228]. MM cells also 
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cause the BMSCs to produce stroma-modulating growth factors which stimulate angiogenesis 

[229, 230] and create a pro-inflammatory environment. 

 

 

 

Figure 1.3.1 – Role of the BMSC in MM pathogenesis.  

MM cells are critically dependent on their microenvironment, and adhesion of MM cells to 

either the BMSC or the different components of the ECM can stimulate pro-survival signals 

in the MM cell, some of which are shown above. MM cell shown in pink, BMSC shown in 

brown.  
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 – MM and Osteoclasts 

One of the clearest signs of MM disease is the appearance of lytic bone lesions within the 

patient – the severity of which increases with tumour burden. These symptoms are caused by 

a surge in osteoclast production that is initiated by the MM cells.  

Receptor activator of nuclear factor κB (RANK) is known to be expressed on the surface of 

osteoclast lineage cells and its ligand, RANKL, is commonly expressed on BMSC. The 

interactions between these proteins has been shown to play a key role in the activation and 

development of osteoclasts [231, 232]. After homing to the BM, MM cells can stimulate an 

increase in RANKL from the BMSC, whilst simultaneously reducing levels of osteoprotegerin (a 

decoy receptor for RANKL) [9]. This results in a gain of osteoclast activity and differentiation – 

leading to a net loss of bone that is detectable via radiography (as seen in Figure 1.3.2). 

IL-6 also has been implicated in the in the formation of osteoclasts, and has been shown to 

work in a RANKL independent manner [233, 234]. IL-6 serum levels are known to be 

abnormally high in MM patients, and levels increase alongside tumour burden [235].  This high 

concentration of IL-6 therefore also causes osteoclast populations to flourish, resulting in the 

net bone absorption that is synonymous with MM disease progression. 

 

Figure 1.3.2 – Radiographs showing osteolytic regions in the skull and humorous. 

Osteolytic lesions (shown with white arrows) are caused by an overproduction and activation 

of osteoclasts, initiated by the MM cells. Image taken from Walker et al. [236]. 
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 – MM and Endothelial cells 

In a tumorous environment, the cells that form the inner surface of blood or lymphatic vessels 

(the endothelial cells) can differ greatly from those found in a healthy environment. Highly 

increased levels of angiogenesis mean that these vessels are growing rapidly, to accommodate 

the rapidly proliferating malignant cells [237]. Because of this rapid expansion, these cells are 

often abnormally shaped and are more likely to be permeable (due to a discontinuous 

basement membrane) [238]. 

This is also the case in MM where endothelial cells have been shown to form thin, branching 

vessels [239]. As with solid tumours, angiogenesis is stimulated – this time due to increased 

levels of cytokines such as VEGF and matrix metalloproteinases (MMPs) that are secreted from 

the malignant plasma cells [8, 240, 241]. Osteopontin too (a protein secreted by osteoclasts) 

is known to be pro-angiogenic [242] and helps form a brutal cycle of angiogenesis and bone 

destruction.  
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1.41.41.41.4 ––––    The PI3K pathway overviewThe PI3K pathway overviewThe PI3K pathway overviewThe PI3K pathway overview    

Phosphoinositide 3-kinases (PI3K) are a family of intra-cellular lipid kinases that are 

ubiquitously involved in common cellular functions, including cell growth [243, 244] and 

survival [245, 246]. Activation of PI3K occurs downstream of both RTKs and G-protein 

coupled receptors (GPCRs) in response to various growth factors, cytokines and 

hormones. Once PI3K has been phosphorylated, Phosphatidylinositol-4,5-bisphosphate 

(PIP2) can be converted to Phosphatidylinositol-3,4,5-triphosphate (PIP3) at the plasma 

membrane. PIP3 can bind to proteins that contain pleckstrin homology domains, 

including 3-phosphoinositide-dependent protein kinase 1 (PDK1). Once bound, PDK1 is 

activated and can then phosphorylate Akt [247] (with dual phosphorylation at both its 

Serine 473 (Ser473) and Threonine 308 (Thr308) residues needed for full activation). 

Following phosphorylation, Akt is available to activate a large range of substrates – and 

therefore influences a wide array of cellular processes. An overview of the PI3K pathway 

is shown in Figure 1.4.1. 

In a study by Datta et al., PI3K/Akt activation was shown to contribute to cell survival via 

the phosphorylation of Bcl-2-associated death (BAD) promoter [248] – as only non-

phosphorylated BAD is able form a heterodimer with BCL-xl or Bcl-2 [249], thereby 

causing the suppression of apoptosis. Alternatively, PI3K / Akt activation can induce cell 

death via apoptosis. Under typical conditions, Caspase-9 is also to prevent apoptosis, 

however with Akt phosphorylation inhibiting the cascade of caspase activation, further 

cell death is observed [250]. Another inhibitor of apoptosis, the forkhead box class O 

(FoxO) transcription factor family, is negatively regulated by active Akt. Non-

phosphorylated FoxO is able to translocate to the nucleus and subsequently activate of 

a large set of genes that promote cell cycle arrest (such as the CDKN1A and CDKN1B 

genes [251-253]), apoptosis (via activation of the BCL2L11 gene [254])  and drug 

resistance [255]. However, upon phosphorylation via Akt, FoxO is confined to the 

cytoplasm where it is degraded by the ubiquitin-proteasome pathway. 
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Figure 1.4.1 – Schematic showing PI3K pathway stimulation. 

Adapted from Piddock et al. [256].  

 

Mammalian target of rapamycin (mTOR) is also a well-defined target of Akt, and the 

Akt/mTOR pathway has been implicated in many processes – from skeletal muscle 

hypertrophy [257] to glucose metabolism [258]. Upon activation, it is known to 

positively regulate cell metabolism and growth [259] and limit autophagy (via 
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phosphorylation of Ulk1 [260]). Overall, the stimulation of PI3K and its downstream 

targets results in a net increase in cellular proliferation, growth and migration – known 

hallmarks of cancer metastasis.  

 

 – PI3K and cancer 

Under typical conditions, PIP3 is moderated and returned to its inactive state by the 

negative regulator, phosphatase and tensin homolog (PTEN). However, in some tumour 

types, a mutation in the PTEN gene causes it to lose functionality – instigating a continual 

activation of the PI3K pathway upon stimulation. This mutation has been seen in many 

cancers, including prostate, breast and glioblastomas [214] – however PTEN mutations 

are uncommon in MM. Activating mutations in upstream regulators (such as the FLT3 

mutation seen in AML [261]), are also absent from the majority of MM patients. The a-

typical activation of this pathway is therefore more likely to be attributed to the 

microenvironmental stimuli received as well as the differential expression seen in the 

PI3K class I catalytic subunits. 

There are three classes of PI3Ks, which have differing structures and functions (see Table 

1.4.1), of which class I is the most well defined. Class I PI3Ks comprise of a regulatory 

subunit and one of four catalytic subunits (p110α/β/γ/δ). They are most commonly 

activated by Receptor Tyrosine Kinases (RTKs), however the G-protein coupled receptor 

(GPCR) subunit Gβγ has been shown to bind directly to the PI3K subunits p110β and 

p110γ, thereby bypassing the need for RTK activation [262, 263].  

 

1.4.1.1 – p110α 

p110α is expressed ubiquitously in mammalian tissues, and has been shown to 

contribute to insulin-like growth factor-1 (IGF-1) stimulation of Akt. It has also long 

been associated with a variety of cancers, with breast cancer one of the most highly 

connected [264-266]. Somatic activation of the gene that codes for p110α 

production (PIK3CA increased copy number / 3q26.3 amplification) has been found 

in a subset of primary breast [265], endometrial [267, 268] and colon [269, 270] 

tumorous tissues, and this mutation correlates with the loss of PTEN function and 

is a marker of poor prognosis. However, the inhibition of this isoform alone has 



Page | 55 

 

been shown to be insufficient to reverse the effects of PI3KCA mutations, with 

p110β compensating for the inhibition by producing vast amounts of PIP3 and 

maintaining partial PI3K activation [271].  

Despite the frequency of p110α activation in solid tumours, mutations in 

haematological malignancies are extremely rare [272, 273], and are therefore is not 

a potential target for MM. 

 

1.4.1.2 – p110β 

p110β has been shown to be activated by both RTKs and GPCRs [263], and is most 

frequently associated with platelet aggregation [274]. p110β signalling has been 

shown to be essential for the progression of prostate cancer [275], and can maintain 

PI3K signalling in PTEN-deficient cancer sub-types [276]. 

However, in blood cancers activating mutations or increased p110β expression are 

infrequent [277]. A study by Sahin et al. in 2014 [278] showed that p110β was highly 

expressed in a selection of MM cell lines and that knockdown of PIK3CB in vivo 

showed lower rates of tumour growth – however the levels of p110β expression in 

primary MM samples was not analysed in this investigation. 

 

1.4.1.3 – p110γ 

The PI3K enzyme p110γ is often put in its own sub-class (class IB), as it lacks a p85 

binding domain - instead binding to the regulatory units p101 or p84/87 [279]. This 

isoform is present only in mammals, and is expressed primarily by leukocytes. It has 

a crucial role in the production of PIP3 via GPCR activation [280], and subsequently 

macrophage motility, and has been shown to be critically involved in inflammation 

[281]. PI3KCG mutations have previously been associated with lung cancer [282] 

and idiopathic pulmonary fibrosis – where inhibition of p110γ resulted in a 

reduction in malignant cell proliferation [283].  
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1.4.1.4 – p110δ 

p110δ is expressed only in leukocytes [284] and, alongside p110α, plays a vital role 

in B-Cell development [285]. It has been linked to several immune disorders, 

including inflammatory bowel disease and PI3Kδ syndrome (caused by gain of 

function mutations in the PIK3CD gene). p110δ has also been shown to have an 

oncogenic role in several blood cancers including chronic lymphocytic leukaemia 

(CLL), acute lymphoblastic leukaemia (ALL), AML and MM [211, 286, 287] and the 

pharmacological inhibition of this subunit has beneficial effects in the treatment of 

both non-Hodgkin’s lymphoma and CLL [288]. Inhibition of p110δ has been shown 

to have a conservative effect on MM cell monocultures too, inhibiting proliferation 

[289] and inducing cytotoxicity [290]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.4.1 – Table of PI3K catalytic and regulatory subunit isoforms. 

Class I PI3K isoforms are most commonly linked with oncogenesis. 

Class Protein Gene 

 

I – Catalytic 

p110α PIK3CA 

p110β PIK3CB 

p110γ PIK3CG 

p110δ PIK3CD 

 

 

I – Regulatory 

p85α, p55α, p50α PIK3R1 

p85β PIK3R2 

p55γ PIK3R3 

p101 PIK3R5 

p84/87 PIK3R6 

 

II – Catalytic 

PI3K-C2α PIK3C2A 

PI3K-C2β PIK3C2B 

PI3K-C2γ PIK3C2G 

III – Catalytic Vps34 PIK3C3 

III – Regulatory Vps15 PIK3R4 
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1.51.51.51.5 ––––    Hypotheses and objectives Hypotheses and objectives Hypotheses and objectives Hypotheses and objectives     

MM is a debilitating and currently incurable disease due, in part, to the pro-oncogenic 

stimuli it receives from other cells within the BMM. MM-BMSC interactions have been 

shown to benefit the disease, causing the activation of signalling cascades that 

encourage proliferation, growth and drug resistance. Targeting these interactions 

provides us with an opportunity to not only learn more about the mechanisms of the 

disease, but to potentially increase the efficacy and tolerability of current therapeutics.   

This project aims to increase the current understanding of PI3K signalling within the MM 

microenvironment, and to provide novel insight into future therapeutic targets in MM.  

 

Objectives: 

1.  Investigate if PI3K p110δ and p110γ signalling within the malignant cell benefits 

MM disease progression. 

2. Determine if these PI3K isoforms are activated by the BMM and if they can be 

inhibited within this environment. 

3. Explore if MM cell signalling can re-model the BMM to benefit its survival. 
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2222 ––––    Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods    

2.12.12.12.1 ––––    MaterialsMaterialsMaterialsMaterials    

 – Buffers 

The composition of the common buffers made for use in this thesis are detailed below, 

written in alphabetical order. Solutions were made in deionised and sterilised water, 

unless otherwise specified. 

 

10X PBS (pH 6.8) 

NaCl  - 1.37 M 

KCl  - 27 mM 

Na2HPO4 - 119 mM 

KH2PO4 - 39 mM 

 

 

Blocking Solution  

Skimmed Milk Powder - 5% 

Or BSA     - 5%  

Suspended in TBST, protein 

used is dependent on antibody 

 

 

MACS Buffer (pH 7.2) 

BSA  - 0.5% 

EDTA  - 2 mM  

In sterile, filtered PBS 

 

 

RIPA Buffer 

Nonidet P-40 - 1% 

Sodium deoxydelate  - 0.5% 

SDS  - 0.1% 

In sterile, filtered PBS 

Tris-Buffered Saline Solution (TBST)  

Tris (pH 7.5) - 20mM  

NaCl  - 150mM 

Tween 20 - 0.1%   

 

 

 

Western Blot Running Buffer 

Tris-HCl - 25 mM  

Glycine  - 190 mM 

SDS  - 0.1% 

 

 

 

Western Blot Transfer Buffer 

Tris-HCl - 25 mM  

Glycine  - 190 mM  

Methanol - 20% 
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 – Reagents and cytokines 

PI3K inhibitors (CAL-101, CZC24832 and IPI-145) and MIF inhibitor (ISO-1) were 

purchased from Selleck Chemicals (Houston, TX, USA). Recombinant human Interleukin-

6 (IL-6) and Stromal cell Derived Factor-1 (SDF-1) were purchased from Miltenyi Biotec 

(Auburn, CA, USA). Recombinant human Macrophage Migratory Inhibitory Factor (MIF) 

was obtained from R&D Systems (Wiesbaden, Germany) respectively.   

All other reagents were obtained from Sigma-Aldrich (Dorset, UK), unless otherwise 

indicated in the text.

 

 – Antibodies   

 

Antibody Isotype MW (kDa) Product # Supplier 

Akt (Pan) Rabbit 60 4691  

 

 

Cell Signaling 

Technology 

(Cambridge, MA, 

USA) 

p110α Rabbit 110 4249 

p110ββββ Rabbit 110 3011 

p110γγγγ Rabbit 110 5405 

p44/42 MAPK 

(Pan) 

Rabbit 42/44 4695 

Phospho-Akt 

(Ser473) 

Rabbit 60 4060 

Phospho-p44/p42 

MAPK 

Rabbit 42/44 4370 

p110δδδδ Rabbit 110 MAB2687 R&D Systems 

(Oxford, UK) 

ββββ-Actin Mouse 42 A1978 Sigma-Aldrich 

(Dorset, UK) 

Table 2.1.1 – Antibodies used in Western Blots 
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Clone Order Number Supplier 

CD138-PE REA104 130-102-580  

 

Miltenyi Biotec 

(Paris, France) 

CD90-FITC REA879 130-095-403 

CD45-PerCP 30F11 130-095-182 

CD38-FITC REA616 130-109-254 

Table 2.1.2 – Antibodies used in Flow Cytometry 

 

 

 

 

 – PCR Primers  

 

Oligo Name 
 

Supplier Number Sequence (5'-3') 

GAPDH Forward SY170306937-069 CTTTTGCGTCGCCAG 
 

Reverse SY170306937-070 TTGATGGCAACAATATCCAC 

PIK3CD Forward SY150410444-024 CTTTCTGGGGAATTTCAAGAC 
 

Reverse SY150410444-025 GAACCGTTCAAATTTCTCAC 

PIK3CG Forward SY150410444-026 TCAGGACATCTGTGTTAAGG 
 

Reverse SY150410444-029 GCATCCCGGATATATTCAATG 

β-Actin Forward SY151136674-054 GACGACATGGAGAAAATCTG 
 

Reverse SY151136673-053 ATGATCTGGGTCATCTTCTC 

IL8 Forward SY150107089-035 GTTTTTGAAGAGGGCTGAG 
 

Reverse SY150107089-036 TTTGCTTGAAGTTTCACTGG 

IL6 Forward SY141004293-022 GCAGAAAAAGGCAAAGAATC 
 

Reverse SY141004293-023 CTACATTTGCCGAAGAGC 

Table 2.1.3 –Sequences of PCR primers used. 

All primers were obtained from Sigma-Aldrich (Dorset, UK). 
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2.22.22.22.2 ––––    Cell CultureCell CultureCell CultureCell Culture    

 – Cell lines 

The Myeloma cell lines (MM.1S, MM.1R, RPMI-8226, U266, LP-1 and H929) were all 

obtained from the European Collection of Cell Cultures, where they are authenticated 

by DNA fingerprinting. All cell lines were cultured in Roswell Park Memorial Institute 

(RPMI) 1640 medium (Gibco, Life Technologies), which was supplemented with 1% 

penicillin and streptomycin antibiotic solution (containing 50 units/mL penicillin and 50 

µg/mL streptomycin) as well as 10% heat inactivated foetal bovine serum (FBS).  

Cell suspensions were kept between 2.5 x 105 and 5.0 x 105 cells per mL to ensure 

optimal growth and fed every 2-3 days on average (as recommended by the supplier). 

Cells were maintained in a controlled atmosphere in a HERAcell 150 CO2 incubator, at 

5% CO2 and at a temperature of 37°C. After 6 weeks, cell lines were discarded and new 

aliquots previously stored at -80°C were put into culture to ensure cell authenticity.  

 

 – Patient derived samples 

Primary BMSC and MM cells were obtained from the patients’ bone marrow following 

informed consent, in accordance with the Declaration of Helsinki and under approval 

from the Health Research Authority (07/H0310/146) – the authority formally known as 

the United Kingdom National Research Ethics Service. Primary cells were isolated from 

heparinised bone marrow (obtained at the Norfolk and Norwich University Hospital), by 

Histopaque density gradient centrifugation (see Section 2.2.4) and flasked in Dulbecco’s 

Modified Eagle’s Medium (DMEM), containing 20% FBS and 1% pen-strep, in T-75 flasks. 

All cells were maintained in a controlled atmosphere in a HERAcell 150 CO2 incubator, 

at 5% CO2 at 37°C. Due to poor recovery rates of MM cells following -80°C storage, 

primary MM cells collected were not subject to cryopreservation/thawing in my study. 

After 24hrs, all non-adherent cells were removed and primary Myeloma cells were 

purified from supernatant using magnetic-activated cell sorting with CD138+ 

MicroBeads (see Section 2.2.5) and re-suspended in DMEM until use. Remaining 

adherent cells were classified as bone marrow stromal cells (BMSCs) and were grown in 

DMEM (with 20% FBS and 1% pen-strep) to 60-80% confluency after which they were 

routinely passaged and expanded for 6-8 weeks.    
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 – Cell passage 

All adherent cells used were cultured in T-75 flasks and passaged when confluency 

reached 60-80%. Briefly, to passage cells medium was removed from cells and 

discarded. Cells were rinsed with sterile Phosphate Buffered Saline (PBS) and treated 

with 2 mL of Trypsin at 37°C for 5 minutes. Flasks were agitated and 3 mL of PBS were 

added to aid in the detachment of cells. Cells were centrifuged at 300 x g for 5 minutes 

after which supernatant was discarded and cells were re-suspended in appropriate 

volume of medium and re-seeded into fresh T-75 flasks or tissue culture plates, as 

appropriate. 

 

 – Histopaque density gradient separation 

To separate the peripheral blood mononuclear cells (PBMCs) from other components in 

the patient BM sample (such as serum and red blood cells), the patient sample was 

subject to Histopaque density gradient separation. 

Histopaque is a solution comprising of polysucrose and sodium diatrizoate and is used 

as the medium for density gradient separation – where cells/particles of different 

densities in a suspension will travel through the medium at different rates. 20mls of 

primary sample was layered on to the surface of 10mls Histopaque-1077 (density = 

1.077 g/mL) in a 50mL falcon tube. The falcon tube containing the Histopaque and the 

patient sample was then centrifuged for 20 minutes at 300 x g (with the no brake setting 

applied on the centrifuge), resulting in distinct layers detailed in Figure 2.2.1.  
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Peripheral blood mononuclear cell (PBMC) layer was collected using a Pasteur pipette, 

with great care taken not to disturb the Histopaque layer located underneath. Once 

collected, the PBMC layer was centrifuged at 300 x g for 10 minutes after which the 

supernatant was discarded. Cell pellet was then subject to a red cell lysis (using red cell 

lysis buffer, Sigma-Aldrich) and washed twice in sterile PBS. Cells were then re-

suspended and stored in DMEM media containing 20% FBS and 1% pen-strep (conditions 

detailed in Section 2.2.2) in T-75 flasks. MM cells were purified after 24 hours in culture 

(see Section 2.2.5).     

 

 

 

 

Figure 2.2.1 – Layers achieved in Histopaque density gradient separation. 

PBMC layer is removed and purified using CD138+ magnetic bead selection. 
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 – Microbead selection 

As the PBMC layer obtained in the previous section only contains a fraction of MM cells, 

all non-adherent cells obtained in primary samples were subject to purification using 

Manual Cell Separation (MACS) columns and CD138 microbeads (Miltenyi Biotec, UK) 

following density gradient separation. This was done to positively select for the desired 

cell type. CD138 is routinely used as a marker for MM cells, and is expressed on both 

normal and malignant plasma cells [291].  

MACS microbeads are superparamagnetic particles, and a high gradient magnetic field 

is used to retain any labelled cells. All materials used in this purification were kept at 4°C 

in a refrigerator during the process wherever possible. A schematic of this protocol is 

shown in Figure 2.2.2. 

 

2.2.5.1 – Magnetic Labelling 

Cell suspensions were pelleted via centrifuge for 10 minutes at 300 x g and resulting 

supernatant was discarded. Cell pellets were then washed with sterile filtered PBS, 

and centrifuged to re-form the pellet. Pellet was then re-suspended in 80µL 

degassed MACS buffer (composition of buffer is detailed in Section 2.1) and 20µL of 

CD138 Microbeads were added (all volumes detailed are per 2 x 107 total cells).  

After a 15 minute incubation at 2-8°C with CD138 Microbeads, 2mLs of MACS buffer 

was added and cells were centrifuged again (300 x g for 10 minutes) and supernatant 

was removed (washing off any unbound CD138 microbeads). Cells were then re-

suspended in 500µL of MACS buffer. 

 

2.2.5.2 – Magnetic Separation, MS column 

MS column was placed into magnetic field of MACS separator, was rinsed with 

500µL MACS buffer (to remove a hydrophilic coating from the column), and elution 

was thrown away. Magnetically labelled cells were then added to the column, the 

column was rinsed another 3 times with MACS buffer (3 x 500µL) and elution was 

once again discarded (as it contained only unlabelled cells at this point). MACS 

column was then removed from MACS separator (and subsequently the magnetic 
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field) and was placed onto a 15mL falcon tube for collection. 1mL of MACS buffer 

was then immediately applied to the column and was forced through upon the 

application of a plunger. This 1mL contained the desired CD138+ cells. 

Cell population was then cultured in DMEM media + 20% FCS and 1% pen-strep for 

a maximum of 24 hours. 

 

 

 

Figure 2.2.2 – Schematic of MACS column CD138+ magnetic bead separation. 

Plasma cells are magnetically labelled with CD138 Microbeads and cell suspension 

is separated using a magnet and a MACs column. 
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2.32.32.32.3 ––––    Trypan Blue ExclusionTrypan Blue ExclusionTrypan Blue ExclusionTrypan Blue Exclusion    

Trypan Blue is an azo dye that is used to determine the number of viable cells that is 

present in a cell suspension [292]. Viable, or intact, cells possess complete membranes 

that prevent this dye from staining the cell’s cytoplasm. Cells which are no longer viable 

allow the dye to stain the cytoplasm blue.  

In all cases, 10µl of test sample was mixed with 10µl of Trypan Blue and viable / non-

viable cells were counted using a light microscope and a haemocytometer. 

 

2.42.42.42.4 ––––    Viability AssayViability AssayViability AssayViability Assay        

Cell viability was measured using a Cell Titre GloTM (CTG) assay (Promega, Southampton, 

UK). CTG is a luciferase based assay, which quantifies the amount of Adenosine Tri-

Phosphate (ATP) present within a cell suspension. The amount of ATP has been shown 

to be directly proportional with the amount of cells present within a culture [293]. 

Cells were seeded at 5 x 104 cells in 100µl (in quintuplicate) in 96-well opaque plates and 

incubated for varying time periods (24-72h depending on the experiment), with or 

without test conditions. In all cases, equal quantities (50µl) of cell suspension and CTG 

were combined on an opaque-walled multi-well plate and mixed to induce cell lysis. 

Samples were left to incubate for 5 minutes, after which luminescence was measured. 

Output of luminescence units was recorded and analysed as a percentage, relative to 

the control. 
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2.52.52.52.5 ––––    Apoptosis AssayApoptosis AssayApoptosis AssayApoptosis Assay    (PI (PI (PI (PI ––––    Annexin V staining)Annexin V staining)Annexin V staining)Annexin V staining)    

Flow cytometry was used to measure apoptosis (programmed cell death) using the 

CyFlow Cube 6 flow cytometer (Sysmex, Milton Keynes, UK). After initiation of apoptosis 

phosphatidylserine (PS) has been shown to translocate to the extracellular membrane, 

becoming an available target for Annexin V binding. Recombinant Annexin V conjugated 

with a green fluorescent FITC dye was used in this assay to make it detectable via flow 

cytometry. Propidium Iodide (PI) is a red fluorescent dye which binds to dsDNA and is 

membrane impermeable (and is therefore can only able to stain cells that are no longer 

viable). PI-Annexin V analysis was performed using the Annexin V apoptosis detection 

kit as per the manufacturer’s instructions. PI-Annexin V was used in conjunction with 

Trypan Blue exclusion (section 2.3) and CTG analysis (section 2.5) to confirm cell death 

and viability.  

Briefly, cells were spun down and re-suspended in 100µl PBS. 5µl of FITC Annexin V and 

1µl of Propidium Iodide (PI) at 100 µg/ml were then added to each sample and incubated 

away from direct light and at room temperature for 15 minutes. After this incubation, 

400µl of 1X annexin-binding buffer was added (5X buffer contains 50mM hepes, 700Mm 

NaCl, 12.5mM CaCl2 and was at pH 7.4) and stained cells were analysed by flow 

cytometry (on channels FL1 for Annexin V and FL3 for PI). Population forms 3 groups – 

live cells, dead cells and apoptotic cells (see Figure 2.5.1). A minimum of 10,000 events 

was recorded in each case. 

 

Figure 2.5.1 – Representative gating strategy for Apoptosis assay. 

FL1 measures Annexin V (FITC) and FL3 measures PI. Double negative cells are alive, 

double positive cells are dead and cells positive for Annexin V alone are positive for 

phosphatidylserine (indicating the intermediate stage of apoptosis). 
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2.62.62.62.6 ––––    Western Immunoblotting Western Immunoblotting Western Immunoblotting Western Immunoblotting     

 – Sample preparation 

Whole cell lysates were extracted using radio immunoprecipitation assay buffer method 

(RIPA). RIPA buffer was supplemented with protease and phosphatase inhibitor cocktail 

tablets (Roche) to aid in the prevention of protein degradation and phosphorylation. 

Briefly, 50µl RIPA buffer was added to cell pellets of samples, causing cell lysis and 

protein solubilisation. Samples were then incubated on ice for 15 minutes and were 

centrifuged at 4°C for 15minutes at 15000 x g. Supernatant containing protein was 

removed and kept on ice or alternatively stored at -20°C until use. Prior to running, 5x 

western blot loading dye (bromophenol blue based) was added to each sample and all 

samples were heat denatured at 100°C for 5 minutes.  

 

 – SDS-PAGE 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed on samples, using a 

12% polyacrylamide gel. This process is generally used to separate proteins based on 

their relative molecular mass – with smaller molecules migrating faster than larger ones. 

Gels were made to the specifications shown in Table 2.6.1. Once gels had set (process 

takes a minimum of 1 hour) they were loaded onto gel cassettes that were submerged 

in Running Buffer. 10µl of each sample (containing loading dye) was loaded into 

individual wells on the gel using specialised loading pipette tips, with one well containing 

10µL of a protein ladder (Precision Plus Protein All Blue pre-stained standards, Bio-rad). 

Gels were subject to a voltage of 200V for 1 hour. Electro-transfer was performed using 

the wet transfer method onto polyvinyladine fluoride (PVDF) membranes that had been 

activated in methanol. Transfer was run at 100V for 45 minutes in Transfer Buffer with 

an ice pack used to counteract heat generated. Once completed, PVDF membrane (now 

containing protein) was then blocked for 1 hour in 5% BSA or non-skimmed milk 

(depending on antibody guidelines from manufacturers). Blocking is performed to 

prevent the non-specific binding of detection antibodies. 
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Once blocking step was complete, PVDF membranes were incubated in diluted primary 

antibody at 4°C overnight. The following morning, membranes were washed 3 times (at 

10 minute intervals) in TBST buffer after which they were incubated for 1 hour in 

secondary antibodies (specific to the primary antibody used and conjugated with 

horseradish peroxidase) that are used for chemiluminescent detection.  

For probing of membrane, anti-p110δ antibody was purchased from R&D systems 

(Oxford, UK). Anti-phosphorylated and pan AKT (Ser473), p44/42 MAPK (Thr202/Tyr202) 

and anti-p110α/β/γ antibodies were purchased from Cell Signaling Technology 

(Cambridge, MA, USA). All other antibodies used were purchased from Miltenyi Biotec 

(Auburn, CA, USA). 

 

 – Chemiluminescent detection 

Membranes were activated using 1mL of enhanced chemiluminescence (ECL) reagent 

(GE healthcare, UK) after which excess reagent was removed and membranes were 

covered in plastic wrap. They were then imaged for 5-15 minutes (antibody depending) 

to collect the best luminescence signal possible. Light images were also taken to aid in 

protein identification. Membranes were imaged (following activation) on a Chemdoc-It2 

Imager (UVP, CA, USA). 
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 5% Stacker Gel 

(per mL) 

12% Gel 

(per mL) 

H2O 675µL 330µL 

30% Acrylamide-Bis, BioRad 180µL 400µL 

1.0M Tris (pH 6.8) 

1.5M Tris (pH 8.8) 

125µL 

- 

- 

250µL 

10% SDS 10µL 10µL 

10% Ammonium persulphate 10µL 10µL 

TEMED 0.5µL 0.5µL 

Table 2.6.1 – SDS-PAGE Gel composition. 

Quantities listed are per mL of gel made, average gel contained 6mL of standard 12% gel 

and 1mL of stacker gel. 

 

 

2.72.72.72.7 ––––    Cell Adhesion AssayCell Adhesion AssayCell Adhesion AssayCell Adhesion Assay    

BMSC were seeded in 96-well tissue culture plates at 2 x 104 cells in 200µl of DMEM 

media and left to adhere and grow for 24 hours (until confluent). In cases where 

Fibronectin (Fn) was used, 50µl was added to each well of a 96-well tissue culture plate 

(at 10µg / mL in sterile H2O) and incubated for 4 hours at room temperature, or 

overnight at 4°C. In all cases, supernatant was removed prior to the addition of MM 

cells. 

MM cells were fluorescently labelled with 2.5 µM Calcein AM fluorescent dye for 1 hour 

at 37°C and 5% CO2. Cells were then washed with PBS and re-suspended in fresh media. 

2 x 105 MM-Calcein cells were seeded into each prepared BMSC or Fn well (in 100µl 

volume) for the indicated time points. After incubations, non-adherent Calcein-labelled 

cells were removed by gently washing wells with PBS. Adherent cell signal was 

quantified using a FLUOstar Omega multi-well plate reader (BMG Labtech, UK). Calcein 

dye emission was read at 520nM wavelength and raw values were normalised to control 

samples.  
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2.82.82.82.8 ––––    Cell Migration AsCell Migration AsCell Migration AsCell Migration Assaysaysaysay    

All migration assays were performed in triplicate on transwell permeable tissue culture 

plates with 4.0µM pores (Neuroprobe, Gaithersburg, MD, USA). 5 x 104 MM cells were 

used for each well. MM cells were pelleted and re-suspended in serum-free media for 3 

hours. Lower chamber of assay (see Figure 2.8.1) contained 30µl of BMSC conditioned 

media or serum-free media supplemented with 100ng/mL of stromal cell derived factor 

1 (SDF-1). MM cells were applied to the upper chamber and allowed to migrate for 

4hours. After this incubation, viable cells in the lower chamber were quantified via 

Trypan Blue exclusion (see Section 2.3).  

 

 

 

 

Figure 2.8.1 – Schematic showing structure of transwell system. 

Suspended cells were applied to transwell insert (top section) and media with / without 

SDF-1 was applied to bottom well. In cases where BMSCs were used, these were grown 

in the bottom well compartment. 
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2.92.92.92.9 ––––    Gene expression analysisGene expression analysisGene expression analysisGene expression analysis    

 – RNA extraction 

Total RNA was extracted from cells using the ReliaPrepTM RNA Cell Miniprep System 

(Promega, Southampton, UK). Briefly, cell suspensions are pelleted, supernatant is 

discarded and cells are lysed using 250µl of BL+TG lysis buffer and manual agitation. 

Following this step, 85µl of isopropanol is added and samples are mixed thoroughly by 

vortexing for 10 seconds. 

RNA lysates are bound to a ReliaPrepTM minicolumn membrane by centrifugation. 

Membrane is washed by the addition of 500µl wash solution (EtOH based) and effluent 

is discarded after wash. All sample embedded membranes are subject to a DNAse I 

incubation by the application of 30µl DNAse I mix for 15 minutes at room temperature 

(mix contains 24µl Yellow Core Buffer, 3µl 0.09M MnCl2 and 3µl DNAse1 enzyme per 

reaction). DNase I is applied to digest contaminating DNA, and the bound RNA is 

purified. Membranes are washed again and 30µl of sterile nucleotide free H2O (Roche, 

UK) is used to elute the RNA from the membrane. RNA was either used immediately or 

stored at -20°C for future use. 

 

 – RNA quantification  

RNA was quantified using a Nanodrop 2000 Spectrophotometer (ThermoScientific, UK). 

Spectrophotometer was blanked using sterile nucleotide free H2O (the elution medium) 

before the measurement of any RNA. Quality was analysed using 260 / 230 and 260 / 

280 absorbance ratios. Measurements between the ranges of 2.0-2.2 (for 260 / 230 

ratio) and 1.9-2.1 (for 260 / 280 ratio) were indicative of “pure” RNA (i.e. not 

contaminated by RNA extraction reagents). Any samples found to be outside either of 

these ranges were discarded. Ranges were taken from Thermo Scientific T042 – 

Technical Bulletin. 
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 – cDNA synthesis 

Samples underwent reverse transcription (RT) using the pPCRBIO cDNA synthesis kit 

(PCR Biosystems, London, UK). As per the manufacturer’s instructions, 2µl of 5x cDNA 

synthesis mix and 0.5µl of 20x RTase was used in each 10µl reaction. Equal concentration 

of RNA was loaded into each reaction (based on Nanodrop readings) and volume was 

made up to 10µl using sterile nucleotide free H2O. Samples were incubated on a 

Thermocycler (Bio-Rad, UK) at 42°C for 30 minutes, followed by a denaturation at 85°C 

for 10 minutes and a holding temperature of 4°C. Following RT, cDNA was diluted 1:5 

using sterile nucleotide free H2O and stored at -20°C. 

 

 – qRT-PCR 

Quantitative real time PCR (qRT-PCR) was performed) on the Roche LC480 LightCycler 

using the following program settings:  

 

Pre-amplification  – 1 cycle  - 2 min at 95°C 

Amplification   – 40 cycles - 15 sec at 95°C, 10 sec at 60°C, 10 sec at 72°C 

Melt Curve analysis  – 1 cycle - 60–95°C, heating rate of 0.1°C per second  

 

Each reaction contained 4µl SyGreen mix (PCR Biosystems, UK), 4µl diluted cDNA 

template, 1µl reverse and forward primer mix (at 10 µM, for specific primer sequences 

see Table 2.9.1) and 1µl of PCR grade water. Samples were run on a 384 well lightcycler 

plate (Roche, UK) in triplicate to account for pipetting error. 

Melt curve analysis was performed with each run to assess if the assays produced 

specific products – if more than one peak was produced this could be indicative of gDNA 

contamination (in an RNA sample), primer-dimers that could affect the assay or 

potential splice variants. 

Sequences of the gene-specific primers used in the qPCR step are detailed in Table 2.9.1. 

Output was analysed using the ∆∆Ct method detailed by Livak and Schmittgen [294], 

with GAPDH and β-Actin used as housekeeping genes as appropriate.  
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2.102.102.102.10 ––––    LentivirLentivirLentivirLentiviral al al al RNAiRNAiRNAiRNAi    

RNA interference (RNAi) is a process by which double stranded RNA (dsRNA) is used to 

silence gene expression. Using a viral vector, short hairpin RNAs (shRNAs) can be 

incorporated into the target cell’s nucleus, where they are transcribed and subsequently 

processed by Drosha and exported into the cytoplasm. In the cytoplasm, they are 

cleaved by Dicer and TRBP/PACT and the hairpin is removed, creating small interfering 

RNA (siRNA) which can then be loaded onto the RNA-induced silencing (RISC) complex. 

The sense strand is cleaved by the enzyme Argonaute 2 (Ago2), and the antisense strand 

guides the RISC to the corresponding mRNA which is cleaved in the same manner – 

silencing the gene.  

  

 – Lentivirus production 

2.10.1.1 – Plasmid preparation  

Escherichia coli (E. coli) glycerol stocks for pLKO.1-amp vectors containing shRNA 

sequences of interest were purchased from Sigma-Aldrich (from the MISSION 

shRNA library), see Table 2.10.1 for details (Figure 2.10.1 shows pLKO.1-amp empty 

vector map). Luria Bertani (LB) agar plates containing 50 µg/mL ampicillin (due to 

presence of ampicillin resistant gene in desired bacteria) were streaked with gene 

specific MISSION E. coli glycerol stock and incubated, face-down, overnight at 37°C 

to grow. Single colonies were picked the following day and were incubated in 5 mL 

of sterile LB broth with 50 µg/mL of ampicillin for 16 hours, on a shaking platform 

at 240 RPM at 37°C. 

Following bacterial growth, colonies were centrifuged at high speed for 10 minutes 

and supernatant was discarded. Plasmid DNA was then purified using the 

NucleoSpin Plasmid kit (Macherey-Nagel), as per the manufacturer’s instructions. 

Briefly, pelleted bacteria are re-suspended in re-suspension buffer and plasmid DNA 

is liberated from the E.coli cells via SDS / alkaline lysis. This solution is then 

neutralised using neutralisation buffer causing plasmid DNA to bind to the silica 

membrane of the NucleoSpin Plasmid EasyPure Column. A centrifugation step 

removes any cell debris as well as precipitated protein and genomic DNA. Bound 

plasmid DNA can then be eluted.   
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 Plasmid concentration was measured using the Nanodrop Spectrophotometer 

(Thermo Fisher Scientific), and purity was confirmed by analysis of 260/230 and 

260/280 ratios. Purified plasmid DNA was stored at -20°C until needed. 

 

 

 

        Table 2.10.1 – pLKO.1-amp vectors containing shRNA sequences of interest. 

        All primers were obtained from Sigma-Aldrich (Dorset, UK). 

 

 

 

 

 

 

 

Gene of interest 
 

TRC# Sequence 

CMYC  

 

TRCN0000039640 CCGGCAGTTGAAACACAAACTTG

AACTCGAGTTCAAGTTTGTGTTTC

AACTGTTTTTG 

MIF 

 

TRCN0000056818 CCGGGACAGGGTCTACATCAACT

ATCTCGAGATAGTTGATGTAGACC

CTGTCTTTTTG 

PIK3CD 

 

TRCN0000033275 CCGGCCACAACGTGTCCAAAGAC

AACTCGAGTTGTCTTTGGACACGT

TGTGGTTTTTG 

PIK3GD 

 

TRCN0000033283 CCGGCCTGTGGAAGAAGATTGCC

AACTCGAGTTGGCAATCTTCTTCC

ACAGGTTTTTG 
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Figure 2.10.1 – Schematic showing pLKO.1-amp empty vector map. 

Image taken from Sigma-Aldrich website (accessed 10.11.17), from where E. coli glycerol 

stocks were purchased.  

 

2.10.1.1 – Plasmid precipitation  

A minimum plasmid DNA concentration of 180ng was required to proceed with 

lentiviral production. If this was not achieved from the growth of a single colony, 

plasmid DNA samples could be pooled and precipitated to increase the DNA 

concentration. 

To achieve this, sodium acetate (3M, pH 5.2) was added to pooled plasmid DNA at 

a ratio of 1:10. Three times the total volume of ice-cold Ethanol was then added and 

sample was stored at -20°C for a minimum of 4 hours. Supernatant was then 

discarded and pellet was re-suspended in 1mL of 75% Ethanol, after which it was 

centrifuged at high speed for 15 min at 4°C. Ethanol was removed and pellet is left 

to air dry for a minimum of 15 minutes (until all Ethanol had evaporated). Pellet was 

then re-suspended in 20µL of sterile H2O and measured via Nanodrop as before. 
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2.10.1.2 – Transfection of packaging cells 

Human embryonic kidney (HEK) 293T packaging cells were grown in DMEM media 

with 10% FCS, 0.01% L-Glutamine, and no pen-strep in 5% CO2 at 37°C. Cells were 

split 1:4 when confluent and passaged a minimum of 5 times. 24 hours before 

transfection, cells were split to ensure approximately 70% confluency the following 

day. Vesicular stomatitis virus glycoprotein (VSV-G) and cytomegalovirus promoter 

(pCMV) were used as envelope proteins and packaging protein promoter, 

respectively.  

Prior to transfection, media was changed on packaging cell plates. 1 µg of pCMV 

and 1 µg VSV-G were combined with 1.5µg of plasmid DNA in a total volume of 15 

µl TE buffer. DNA mix was then combined with the transfection vehicle (optimum 

media with Fugene-6 - Promega, WI, USA) and added, dropwise, to packaging cell 

plate. After a 24 hour incubation, media was removed, discarded, and replaced with 

fresh media. At 48, 72 and 96 hours media was collected and replaced, each aliquot 

was frozen at -80°C until needed. 100 µL from each time point was frozen 

separately in an Eppendorf tube for lentivirus quantification assay. 

 

 

 

 

 

 

 

 

 

 

 



Page | 78 

 

 – Lentivirus titre 

2.10.2.1 – Viral RNA isolation 

Viral RNA was isolated from aliquot of media collected in section 2.9.1.2, using the 

Nucleospin Dx Virus kit (Macherey-Nagel).  

50µl aliquots of media collected at 48, 72 and 96 hours were pooled and 600µl of 

lysis buffer RAV1 was added. Samples were vortexed thoroughly and incubated for 

5 minutes at 70°C. A further 600µl of 100% Ethanol was then added and lysates 

were loaded onto a NucleoSpin® Dx Virus Column and centrifuged at 8000 x g for 1 

minute. The empty column was then placed onto a new collection tube and 500µl 

wash buffer (RAW buffer) was added. Samples were centrifuged again at 8000 x g 

for 1 minute after which effluent was discarded.  

Samples contained on column membranes were then washed twice again using 

buffer RAV3 and membranes were dried by centrifuging the columns for 3 minutes 

at 11000 x g. RNA was eluted in 50µl RNAse free H2O (preheated to 70°C). Once 

RNA had been eluted, contaminating plasmid DNA was removed using DNAse and 

incubated at 37°C for 20 minutes.  

 

2.10.2.2 – qRT-PCR Amplification of Lentiviral Genomic RNA 

The Lenti-X qRT-PCR titration kit (Clontech) was then used to determine RNA 

genome copy number. Master reaction mix (detailed in Table 2.10.2) was prepared 

on ice with the RT enzyme mix added last. 10% excess of master mix was made in 

each titration to account for pipetting inaccuracies. 10 fold serial dilutions (using 

EASY dilution buffer) of Lenti-X RNA control template (standard 1 contained 5 x 107 

copies / mL) were used to create a standard curve. Viral RNA samples were also 

subject to 10-fold serial dilution, to a total of 4 different concentrations per sample.  
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Reagent Volume / well (µl) 

RNase-Free Water 6.0 

Quant-X Buffer (2X) 10.0 

Lenti-X forward Primer (10µM) 0.4 

Lenti-X reverse Primer (10µM) 0.4 

ROX Reference Dye (LMP) 0.4 

Quant-X Enzyme 0.4 

RT Enzyme Mix 0.4 

Total 18.0 

 

Table 2.10.2 – Master Reaction Mix for Lentiviral Titration qRT-PCR. 

 

 

2µl per well of control template, sample dilutions and negative control (in duplicate) 

were added to a 96-well Lightcycler plate (Roche) containing 18µl of master reaction 

mix. Plate was sealed and run on a Roche Lightcycler LC480 using the following 

program: 

 

RT Reaction - 1 cycle - 5 min at 42°C, 10 sec at 95° 

 

Amplification - 40 cycles - 5 sec at 95°C, 30 sec at 60°C 

 

Melt Curve - 1 cycle - 15 sec at 95°C, 30 sec at 60°C 
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2.10.2.3 – Lentiviral Titration Analysis 

Standard curve was made using generated Ct values and Roche Lightcycler software 

and was used to determine raw sample copy number. Actual copies per mL was 

calculated using the following equation: 

 

Copies / mL = 1000*(DNAse dilution factor)*(Raw copy number)*(Elution volume) 

(Purified sample volume)*(Sample volume) 

 

 

 

For example, a raw copy number of 1 x 107 copies would give the following 

copies/mL: 

Copies/mL = 1000*(2)*(1 x 107)*(50) 

                      (150)*(2) 

        = 3.33 x 109 

 

Once an acceptable concentration was determined (>1x108 copies/mL), remaining 

supernatant containing lentiviral particles was concentrated (typically 30-40 fold) 

using Ultra-15 centrifugal Filter Devices (Amicon). 

Media containing lentiviral particles was loaded into pre-cooled Filter Tubes in a 

tissue culture hood, 10mL at a time. They were then spun on a balanced centrifuge 

(set to -4°C) at top speed until only 500µL of undiluted lentivirus remained in top 

chamber (this took approximately 20 minutes). Remaining lentivirus was then 

added to the same tube and spun again with the same conditions.  

New copy number per µl was calculated based on remaining volume of lentivirus. 

All viruses produced were stored at -80°C and aliquoted into small volumes, to 

prevent freeze-thaw damage. 
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 – Transduction of target cells 

Prior to transduction, target cells were re-suspended in antibiotic free media at a 

concentration of 5 x 105 cells / mL and polybrene (hexadimethrine bromide) was added 

(10µg/mL). Cell suspensions were transduced at a Multiplicity of Infection (MOI) of 15 

and 30 in 100µl volume. After 24hours, replicates were combined and fed with fresh 

media. Adherent cells were subject to varying levels of MOI, in 12 or 24 well plates. 

Gene knockdown (KD) was confirmed at 96 hours using RT-qPCR, relative to the 

housekeeping genes β-Actin and GAPDH.  

 

2.112.112.112.11 ––––    Cytokine specific ELISACytokine specific ELISACytokine specific ELISACytokine specific ELISA    

 – ELISA method 

Enzyme-linked immunosorbent assays (ELISA) are designed to detect and quantify 

specific extracellular proteins. The MIF cytokine sandwich ELISA used (measuring 

antigen between capture and detection antibody) was purchased from R&D biosystems 

and Human / Murine IL-6 and Human IL-8 ELISA Ready-SET-Go kits were purchased from 

eBiosystems. MIF ELISA 96 well plates were coated with 100µl per well coating solution 

and incubated overnight at 4°C, prior to commencing the main ELISA protocol. 

All 96 well plates were coated with 100µl of the recommended concentration of capture 

antibody overnight at 4°C. Wells were then washed 3 times with 300µl wash buffer 

(containing 0.1% Tween in filtered PBS) and blocked with 300µl of reagent diluent at 

room temperature for one hour. Following another wash step, selected samples and 

standards were added in duplicate to the plate and incubated overnight at 4 °C to ensure 

maximum signal intensity.  

The next day after washing the wells again with wash buffer, 100µl of detection antibody 

solution was added and incubated at room temperature for 2 hours. The wells were then 

washed again. Conjugated secondary antibody solution was then added and left for 1 

hour at room temperature. Streptavidin - Horse radish peroxidase (HRP) was used for 

detection – 100µl was added to each well and incubated for 20 minutes. All wells were 

washed as before. 
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For detection, substrates A and B were combined in equal volume and 100µl of this 

solution was added to each well. The plate was incubated for 15 minutes (away from 

any direct light) and colour-change reaction was halted using 50µl of 2N H2SO4 (also 

known as stop solution). 

  

 – ELISA 

All plates were subject to measurement of absorbance at 450nm and 570nm (for 

wavelength correction) using the FLUOstar Omega plate reader. Wavelength correction 

adjusted results to account for any optical imperfections in the plate. All measurements 

occurred within 10 min of assay completion. Cytokine standards provided with each kit 

were used to produce standard curves and determine unknown concentrations. 

Standard curves were generated by plotting the log of mean absorbance for each 

standard against the log of its known concentration (to produce linearized data). 
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2.122.122.122.12 ––––    Human Cytokine ArraysHuman Cytokine ArraysHuman Cytokine ArraysHuman Cytokine Arrays    

Using the same principle as sandwich ELISA, the Proteome Profiler™ Human XL Cytokine 

Array Kit (R&D systems - Minneapolis, MN) can analyse a large range of cytokines 

simultaneously. These nitrocellulose membranes are pre-embedded with capture 

antibody spots that bind to specific target proteins present in the sample. Captured 

proteins can be detected with biotinylated detection antibodies and visualised using 

chemiluminescent detection reagents. Signal produced is proportional to the amount of 

protein bound. All cytokines available for analyses are detailed in Appendices A and B. 

MM and BMSC were incubated for 24 hours in mono- or co-culture, supernatants 

(1.5mL) were then collected. Array membranes were blocked using 2 mL of Buffer 6 on 

a rocking platform for 1 hour.  Membranes were then incubated (on a rocking platform) 

in sample supernatants overnight at 2-8°C. After this incubation, membranes were 

washed for 10 minutes with wash buffer, three times. Membranes were then incubated 

in detection antibody cocktail buffer (1.5mLs) for 1 hour at room temperature. Following 

another set of washes, membranes were incubated in 2mL of streptavidin-HRP for 30 

minutes on a rocking platform. Membranes were washed again.  

Excess buffer was removed from the membranes by blotting the lower corner on paper 

towel then 1mL of chemiluminescent reagent mix was spread evenly only to membrane 

and incubated for 1 minute. Membranes were then imaged using a Chemdoc-It2 Imager 

(UVP, CA, USA). Intensities of samples on the membrane (pixel density) were then 

quantified using HL++ image software (Western Vision Software, UT, USA). Raw output 

was given as mean pixel density. Assays were normalised to the pixel density of the 

reference spots (positions A1-2, A23-24 and J1-2) for consistency between membranes.   
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2.132.132.132.13 ––––    In VivoIn VivoIn VivoIn Vivo    

Non-obese diabetic (NOD) severe combined immunodeficiency (SCID) Il2rg knockout 

(NOD.Cg-Prkdcscid Il2rgtm1WjI/SzJ, NSG) mice were purchased from the Jackson 

Laboratory (Bar Harbour, ME, USA) and were housed in a containment level 3 laboratory 

at the University of East Anglia (pathogen free conditions) and bred. All animal 

experiments were performed in accordance with UK Home Office regulations under 

Project Licence: 70/8722 (Dr Robinson) and Project Licence: 70/8814 (Prof. Kristian 

Bowles). All animal work was performed by myself under UK Home Office Personal 

Licence (ICC440663, R Piddock) with the assistance of C Marlein (Norwich Medical 

School, UEA, UK - IBB43C002) and S Rushworth (Norwich Medical School, UEA, UK - 

ICD3874DB), using 6-8 week old mice. 

NSG mice are severely immunocompromised, and as such are ideal candidate for an MM 

xenograft model as they allow the bone marrow engraftment of primary human cells. 

These mice lack mature T cells, B cells and functional Natural Killer (NK) cells as well as 

being deficient in cytokine signalling. No irradiation was needed to allow MM 

engraftment in this model, meaning that the animals were in good health at the start of 

experimentation.  

All procedures (detailed below) were carried out following the relevant training, and all 

mice were humanely sacrificed at end point in accordance with the Animals (Scientific 

Procedures) Act, 1986. 

 

 – Modified cells 

MM.1S and U266 cell lines had been previously lentivirally modified with a pCDH-

luciferase-T2A-mCherry construct (a kind gift from Professor Dr. Irmela Jeremias, 

Helmholtz Zentrum München, Germany) prior to any other lentiviral modification (see 

section 2.10). These cells had been positively selected using a BD FACS ARIA II cell sorter 

(BD Biosciences, Switzerland). 
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 – Intravenous (IV) Injections 

To cause vein dilation (to aid in injections), mice were incubated at 37°C for up to 10 

minutes prior to injection. They were then restrained using a benchtop restrainer and 

injected using a 37G needle in the lateral tail vein after which they were allowed time to 

recover and returned to their original cage. Cell concentrations of either 1 x 106 or 0.5 x 

106 (experiment dependent) MM cells suspended in 200µl sterile filtered PBS were used. 

Disease was monitored with daily visual checks and frequent bioluminescent imaging 

(BLI). 

 

 – Intraperitoneal (IP) Injections 

Mice were manually restrained and injected with a 27G needle via the peritoneum with 

a maximum 200µl of either D-Luciferin, (15mg/mL suspended in sterile water with a final 

dosing of 150 mg/kg), JQ1 (50mg/kg suspended in PBS + 10% DMSO) or a vehicle control, 

depending on the particular experiment. In cases where daily IP injections were 

required, alternating flanks of mouse were used to minimise irritation to area.  

 

 – Blood Sampling 

As with IV injections, mice were incubated at 37°C in a small animal warming chamber 

for up to 10 minutes. After this they were and restrained in a bench top restrainer and 

a 27G butterfly needle was inserted into the lateral tail vein. Up to 200µl of blood was 

collected from vein into Eppendorf tubes containing 25µl of Monosodium Citrate (an 

anti-coagulant). Following collection, samples were centrifuged at high speed and serum 

(approximately 50µl) was collected and frozen at -25°C until needed. 
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 – Bioluminescent Imaging (BLI) 

After IP injection with 150 mg/kg D-Luciferin, mice underwent an incubation period of 

15 minutes to allow for a maximum luciferase signal plateau. Oxyluciferin production is 

detailed in Figure 2.13.1. During the incubation time mice were anaesthetised in a 

chamber using isoflurane at a flow rate of 3%.  At 15 minutes, mice were imaged (30s 

luminescence exposure, followed by an x-ray and light image) using an In-Vivo Xtreme II 

imager (Bruker, Coventry, UK) in which anaesthesia coµd be maintained by means of a 

nose cone. Following imaging, mice were recovered in their original cages, unless 

tumour burden had exceeded limits. In cases where tumour burden was deemed too 

severe, mice were sacrificed whilst unconscious.  After completion of an experiment, 

luminescence images were scaled appropriately using Bruker In-Vivo Xtreme II software. 

Using ImageJ software, luminescence images were then merged with x-ray images and 

false colour was applied. Representative images are shown in Figure 2.13.2. 

 

 

Figure 2.13.1 – Schematic showing the mechanism of Luciferase. 

Luciferase labelled tumour cells are injected into mice are detectable via BLI following 

the injection of Luciferin. Light is detectable emitted at 560 nm. 
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Figure 2.13.2 – In vivo image processing. 

Luminescence (top left) and X-ray (top right) images are merged to produce composite 

image (bottom). Images processed using Bruker MI software, false colour was applied 

using ImageJ software.   
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 – Murine sample collection 

At end point, mice were humanely sacrificed in accordance with institute guidelines (by 

rising CO2 gradient and neck dislocation to confirm). To dissect, spleens were first 

removed and femurs and tibiae were then stripped of soft tissues. Bone caps were then 

removed and individual bones were placed in 0.5ml Eppendorf tubes that had been 

perforated to allow expulsion of bone marrow. These perforated tubes were placed 

within 1.5ml Eppendorf tubes and centrifuged at high speed for 15 seconds.  

Bone marrow cells present in the lower tube following centrifugation were pooled for 

each animal and washed / re-suspended twice with PBS. These cells were then analysed 

for CD38 (FITC) and CD45 (PerCP) using flow cytometry to confirm human MM cell 

engraftment (see Figure 2.13.3). Cells were gated to exclude non-viable cells and debris.  

 

Figure 2.13.3 – Representative gating strategy for engraftment analysis. 

Live cells are gated and then CD38 (APC, FL4) and CD45 (FITC, FL1) expression is analysed 

using FCS express 5 software.  

 

 

2.142.142.142.14 ––––    Statistical analysisStatistical analysisStatistical analysisStatistical analysis    

For Western Blot experiments, all images shown are representative of at least three 

independent experiments. Kaplan-Meier survival curves were all analysed using the 

Mantel-Cox regression test (also known as the Log-rank test). The Mann-Whitney U test 

was used for all other analyses (unless stated otherwise), with error bars showing the 

standard deviation (s.d) of the mean. All statistical analyses were conducted using 

GraphPad Prism 7 software. ‘*’, ‘**’, ‘***’ correspond to p values less than 0.05, 0.01 

and 0.001 respectively.   
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3333 ––––    PI3K signalling in MM PI3K signalling in MM PI3K signalling in MM PI3K signalling in MM     

3.13.13.13.1 ––––    Introduction Introduction Introduction Introduction     

Aberrant activation of the PI3K pathway has long been associated with tumorigenesis in 

both solid and haematological malignancies. Mutations in PI3K (or indeed PTEN) are not 

frequently associated with MM, however PI3K signalling has shown to be highly 

activated in these tumorous cells. Although pan-PI3K inhibition has been shown to be 

effective at slowing MM metastasis [295], the off target effects would make this a non-

viable option for the majority of MM patients. 

The PI3K isoforms p110δ and p110γ are known to be specifically enriched by the 

haematopoietic system and have been shown to play a critical role in the development 

of several blood cancers [296-298]. The non-ubiquitous nature of these isoforms means 

that targeted therapies should be highly tolerable in MM sufferers.  

In this section, I investigate the role of the p110δ/p110γ PI3K isoforms in MM disease 

metastasis. I focused on MM cell survival, adhesion and migration using both 

pharmacological inhibition and isoform specific lentiviral knockdown.  
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3.23.23.23.2 ––––    ResultsResultsResultsResults        

 – p110δ and p110γ subunits are expressed in MM cell lines and primary MM 

samples. 

Before investigating the effect of inhibiting p110δ or p110γ subunits in MM, the 

expression of both of these isoforms in MM cells needed to be verified. To do this I used 

Western Blotting (see Section 2.6) to measure total protein in both MM cell lines (Figure 

3.2.1) and MM primary samples (Figure 3.2.2), with housekeeping protein β-Actin 

measured as a loading control. Further details on MM cell lines and MM primary samples 

are available in sections 2.2.1 and 2.2.2 respectively. 

 In all MM cell lines used, both isoforms were expressed strongly, with only RPMI-8226 

showing slightly lower levels of p110γ. p110δ levels also had some variation, with MM.1r 

and RPMI-8226 showing elevated expression in comparison to the other cell lines tested. 

 

 

Figure 3.2.1 – p110δδδδ and p110γγγγ are highly expressed in common MM cell lines. 

p110δ/γ total protein was measured by Western Blot in all available MM cell lines, blots 

were also probed with β-Actin to show sample loading. Image shown is representative 

of 3 independent experiments.  
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MM primary samples (n = 6) too all showed expression of p110δ and p110γ. However, 

the levels of expression were lower than that seen in the MM cell lines, which is typical 

of cells that are more dependent on their microenvironment. There was also arguably 

more variability in expression between samples with one of the samples showing a much 

higher level of expression, highlighting the highly diverse nature of the disease. An extra 

protein band at a higher molecular mass was observed in sample #4, which is most likely 

due to the sample not being fully denatured before loading. This would cause the sample 

to form dimers or multimers, causing a band at a higher molecular weight that still can 

bind to the antibody. A band at a lower molecular weight would have been indicative of 

protein degradation (perhaps due to protease inhibitors not being used during lysis).    

 

 

Figure 3.2.2 – MM primary cells show expression of both p110δδδδ and p110γγγγ subunits. 

p110δ/γ total protein was measured by Western Blot in 6 primary MM samples, blots 

were also probed with β-Actin to show sample loading.  
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 – Pharmacological inhibition of p110δ and p110γ decreases cell viability and 

survival in MM cell lines 

To investigate the significance of p110δ and p110γ expression in MM, I used a selection 

of PI3K isoform inhibitors and measured MM cell death. CAL-101 (a p110δ inhibitor), 

CZC24832 (a p110γ inhibitor) and IPI-145 (a p110δ and p110γ inhibitor) were used at a 

concentration of 1µM for 72h on MM cell lines MM.1s, RPMI-8226, LP-1 and U266 (n = 

5 per cell line). This concentration was chosen based on preliminary experiments, 

previous literature [299] and concentrations that are achievable in vivo.  

After this incubation, cells were assessed for viability using a CellTiter Glo assay (to 

measure levels of cellular ATP, see Section 2.4) and were normalised to a vehicle only 

control of 1% DMSO (results shown in Figure 3.2.3). IPI-145 (dual isotype inhibitor) 

significantly induced cell death in all of the cell lines tested (p < 0.05; Mann-Whitney 

test). Single isoform inhibition only significantly affected 2 out of 4 cell lines in each case, 

averaging 7% and 4.5% cell death respectively (compared to an average cell death of 

approximately 20% in dual inhibition assay). 

 

Figure 3.2.3 – MM cell viability decreases in response to p110δδδδ/γγγγ inhibitors. 

MM cell lines were treated with 1µM of CAL-101 (p110δ inhibitor), CZC24832 (p110γ 

inhibitor) or IPI-145 (p110δ/γ inhibitor) for 72 hours and then assessed for cell viability 

using CellTiter Glo. *p < 0.05 when compared to DMSO only control (Mann-Whitney U), 

error bars show S.D of the mean (n = 5). 

 

* * 
* 

*
* * * 

* 
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The CellTiter Glo assay was then repeated using 6 different patient derived samples (n = 

5 per sample, and average reading was taken) at the same concentration of p110 

isoform inhibitors described above (primary sample results shown in Figure 3.2.4). 

Statistically significant (p < 0.01, calculated using the Mann-Whitney test) cell death was 

achieved with dual p110δ / p110γ inhibition, at even greater levels than those seen in 

MM cell lines. No significant reduction in cell death was observed in either single 

inhibition groups (compared to the control) at the time points and concentrations used, 

although p110γ inhibition appeared to have a slightly more pronounced effect than 

p110δ inhibition.  

 

 

 

 

Figure 3.2.4 – MM cell viability decreases in response to combined p110δδδδ/γγγγ inhibition. 

MM primary cells were treated with 1µM of either CAL-101 (p110δ inhibitor), CZC24832 

(p110γ inhibitor) or IPI-145 (p110δ/γ inhibitor) for 72 hours and then assessed for cell 

viability using CellTiter Glo. Significant reduction in cell viability seen in IPI-145 group in 

comparison to DMSO control group, **p < 0.01 (Mann-Whitney U test), bars show 

mean. 
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As a reduced cellular ATP concentration (and subsequent lower CellTiter Glo signal) 

could potentially be attributed to an inhibition of proliferation and lower cell number, a 

further four primary samples (n = 4) were assessed for apoptosis via flow cytometry 

using PI/Annexin V staining (see Section 2.5). In all samples tested, results showed an 

increase in PI/Annexin V positive cells (and therefore increased levels of cell death) 

which was in agreement with the results seen in the CellTitre Glo assay (representative 

result of MM primary sample shown in Figure 3.2.5, percentage of Annexin V positive 

cells shown in Figure 3.2.6). 

 

 

Figure 3.2.5 – Dual p110δδδδ/γγγγ inhibition increases levels of apoptosis in MM cells. 

MM primary cells were treated with 1µM of either CAL-101 (p110δ inhibitor), CZC24832 

(p110γ inhibitor) or IPI-145 (p110δ/γ inhibitor) for 72 hours and then assessed for 

apoptosis using PI/Annexin V staining (Representative analysis shown, n = 4). Results 

showed increased levels of cell death upon dual inhibition. 
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Figure 3.2.6 – Dual p110δδδδ/γγγγ inhibition significantly increases levels of apoptosis in 

comparison to single isoform inhibitors. 

When compared to a DMSO only control, both CZC24832 and IPI-145 were shown to 

significantly increase the percentage of cells undergoing apoptosis (mean of 13.39% 

Annexin V positive cells in control vs 21.60% and 34.28% in CZC24832 and IPI-145 

respectively). The increase seen in apoptosis with CAL101 was not significant in these 

samples. IPI-145 was also showed significantly higher cell apoptosis than both CAL101 

and CZC24832 treatments. Error bars show mean and S.D; p < 0.05, Mann-Whitney U. 
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 – Lentiviral knockdown of PI3Kδ and PI3Kγ genes reduces survival and initiates 

apoptosis in MM cell lines. 

The MM cell lines MM.1s and RPMI-8226 were transduced with lentivirus (see Section 

2.10 for methods) targeted to PI3Kδ (PIK3CD gene) or PI3Kγ (PIK3CG gene) for 96 hours 

(control used was an empty vector, ShE). These cells lines were selected due to their 

varying expression of p110δ and p110γ to represent the varying levels of these isoforms 

in primary samples (MM.1S low p110δ, high p110γ and RPMI-8226 high p110δ, low 

p110γ). Following lentiviral knockdown, RNA was extracted and gene expression was 

measured using RT-qPCR (see Section 2.9, gene expression is shown relative to 

housekeeping gene GAPDH) to confirm gene knockdown (Figure 3.2.7). Lentivirus 

showed high specificity, with PIK3CD targeting lentivirus achieving a mean knockdown 

of approximately 75% and 85% in MM.1S and RPMI-8226 cells respectively, but not 

significantly affecting PIK3CG expression. When PIK3CG was targeted similar levels of 

knockdown were seen in both cell lines (~75% in each case). Dual knockdown was more 

effective in the RPMI-8226 cell lines (> ~85% in both cases), with MM.1S achieving a 

~65% reduction in PIK3CD expression and a ~70% reduction of PIK3CG. 

 

 

Figure 3.2.7 – Lentiviral Knockdown of p110δδδδ/γγγγ in MM cell lines. 

MM.1s and RPMI-8226 cells were transduced with lentivirus targeted to PI3Kδ and/or 

PI3Kγ or control shRNA for 72h. RNA was then extracted and analysed for PI3Kδ/PI3Kγ 

mRNA expression by RT-qPCR. GAPDH was used as a housekeeping gene. *p < 0.05 

Mann-Whitney U. Error bars show S.D of the mean (n = 3).  
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MM cell lines with isoform specific knockdown were then analysed for differences in cell 

viability. Following a 5 day monoculture incubation, cell survival was measured via 

CellTiter Glo and normalised to control (ShE) cells (Section 2.4). No significant difference 

in survival was found in the PIK3CD knockdown in either cell line (p > 0.05; Mann-

Whitney U). PIK3CG knockdown resulted in a decrease in viability in both cell lines, but 

this was only shown to be significant for MM.1S cells (greater than 30% decrease in cell 

viability, p < 0.05; Mann-Whitney U). Dual knockdown caused a significant decrease in 

both cell lines (p = 0.002 and p = 0.04 in MM.1s and RPMI-8226 respectively), with 

MM.1S cell viability reduction >90% (Figure 3.2.8). 

 

 

 

Figure 3.2.8 – Lentiviral Knockdown of PI3Kγγγγ or PI3K δδδδ/γγγγ reduces cell viability. 

MM.1s and RPMI-8226 cells were transduced with lentivirus targeted to PI3Kδ/PI3Kγ or 

control shRNA for 5 days, after which they were assessed for viability by Cell Titre Glo 

assay. *p < 0.05, **p<0.01 Mann-Whitney U. Error bars show S.D of the mean (n = 5).  
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To investigate if this decrease in cell viability was due to a reduction in cell proliferation 

or if it were due to an initiation of apoptosis, cells were stained with PI / Annexin V (see 

Section 2.5) and analysed via Flow Cytometry (Figure 3.2.9 – 3.2.10). I found that there 

was an increase in apoptotic markers in all knockdown cells (in comparison to the ShE 

control), and that this difference was in agreement with the results shown in Figure 

3.2.8. PIK3CD knockdown once again caused the least difference in cell apoptosis 

frequency, with PIK3CG knockdown causing a more pronounced effect in the MM.1S cell 

line. Dual knockdown showed the greatest efficacy in both cell lines, with MM.1S cells 

affected the most. 

 

 

Figure 3.2.9 – Lentiviral Knockdown of PI3Kγγγγ or PI3K δδδδ/γγγγ increases cell apoptosis. 

MM.1s and RPMI-8226 cells were transduced with lentivirus targeted to PI3Kδ/γ or 

control shRNA for 5 days. Cell apoptosis was then assessed using PI/Annexin V staining 

(n = 3, representative image shown). 
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Figure 3.2.10 – Cell apoptosis increases in response to dual PI3K isoform inhibition. 

Full results from Figure 3.2.9. Dual PI3K isoform knockdown showed the greatest 

increase in cell apoptosis (represented by Annexin V positive cells), followed by PI3Kγ 

inhibition. No significant results were achieved from these results, likely due to low 

replicate number (n = 3, Mann-Whitney U test). 

 

 

 – Dual PI3Kδ/γ knockdown works synergistically to inhibit Akt 

As the main target of the PI3K pathway is AKT, I analysed the phosphorylation of this 

protein (at the Serine 473 residue) in response to the PI3K isoform inhibitors previously 

used, at a concentration of 1µM (Figure 3.2.11) via Western Blot (Section 2.6). Both 

CAL101 and CZC24832 (p110δ and p110γ single isoform inhibitors respectively) failed to 

cause a noticeable change in the quantity of phosphorylated AKT available. Dual isoform 

inhibition using IPI-145 however, caused a visible decrease in both the U266 and MM1.S 

cell lines, almost completely blocking expression in the U266 cells (most likely due to its 

lower basal rate of expression). Total AKT was measured as a loading control and p44/42 

MAPK (also known as ERK1/2) protein was analysed at each stage as an indicator of 

pathway specificity. Cell lines were chosen due to their approximately equal expression 

of both PI3K isoforms. 
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Figure 3.2.11 – Inhibition of PI3Kδδδδ/γγγγ inhibits AKT phosphorylation in MM cell lines. 

MM.1S and U266 cells were incubated with 1µM of either CAL-101 (p110δ inhibitor), 

CZC24832 (p110γ inhibitor) or IPI-145 (p110δ/γ inhibitor) for 4h. Total protein was then 

extracted and analysed for phospho-AKT (Ser473) and p44/42 phospho-p44/42 MAPK 

(Th202/Tyr204) levels via Western Blot. Image shown is representative of 3 independent 

experiments. 

 

 

This experiment was repeated using primary MM cells obtained from two patient 

samples (Figure 3.2.12). IPI-145 was once again shown to be the most effective, with 

single isotype inhibition not sufficient to markedly inhibit AKT activation. In both cases 

the MAPK pathway was not affected. I then showed that the inhibition of activated AKT 

is dose dependent (Figure 3.2.13), with higher concentrations of IPI-145 correlating with 

the lowest pAKT activity. 

 

pAkt (Ser473) 

pMAPK (Thr202/ 

Tyr204) 
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Figure 3.2.12 – Inhibition of PI3Kδδδδ/γγγγ inhibits AKT phosphorylation in MM primary cells. 

Primary cells were incubated with 1µM of either CAL-101 (p110δ inhibitor), CZC24832 

(p110γ inhibitor) or IPI-145 (p110δ/γ inhibitor) for 4h. . Total protein was then extracted 

and analysed for phospho-AKT (Ser473) and p44/42 phospho-p44/42 MAPK 

(Th202/Tyr204) levels via Western Blot.  

 

 

pAkt (Ser473) 

pMAPK (Thr202/ 
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Figure 3.2.13 – IPI-145 inhibits pAKT in a dose-dependent manner. 

MM.1S cells were incubated with increasing concentrations of IPI-145 for 4 hours. Total 

protein was then extracted and analysed for phospho-AKT (Ser473) and p44/42 

phospho-p44/42 MAPK (Th202/Tyr204) levels via Western Blot. Image shown is 

representative of 3 independent experiments. 

 

 

I then used lentivirus to knockdown the specific PI3K isoforms (both alone and in 

combination, see Section 2.10 for lentiviral methods). Figure 3.2.14 shows that, in 

agreement with previous results, dual inhibition is more effective at inhibiting AKT 

phosphorylation than either isoform in isolation. In this case the MAPK pathway was 

also affected, showing potential cross-talk between pathways.  
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Figure 3.2.14 – PI3Kδδδδ/γγγγ lentiviral knockdown reduces pAKT in MM.1S cells. 

MM.1S cells were transduced with lentivirus targeted to PI3Kδ/γ or control shRNA for 

72h after which protein was extracted and probed for phospho-AKT and phospho-

p44/42 MAPK via Western Blotting. Total AKT and p44/42 MAPK levels were used as 

loading controls. Image shown is representative of 3 independent experiments. 
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 – Inhibition of both p110δ and p110γ isoforms decreases MM cell adhesion 

The adhesion of MM to its microenvironment is critical in the regulation of MM disease 

progression, survival and drug resistance [219]. To this end, I wanted to investigate the 

roles of p110δ and p110γ on the MM cell’s ability to adhere to primary BMSC, via the 

engagement of cell surface integrins. BMSC (seeded at 5 x 103 cells/ml) were co-cultured 

with MM cells for 4 hours. The MM cells used had been incubated with isoform specific 

inhibitors for 2h and stained with Calcein AM (see Section 2.7 for further details). 

Following supernatant removal, fluorescence was measured and normalised to a 

negative control (not shown).  

Figure 3.2.15 shows that in both cell lines tested (Figure 3.2.15 A), only dual inhibition 

was sufficient to significantly reduce adhesion in comparison to a DMSO only control 

(approximately  30% and 25% reduction for RPMI-8226 and MM.1S cell lines 

respectively; p < 0.05, Mann-Whitney U). This result was mirrored when analysing 

primary patient samples (Figure 3.2.15 B), with single isoform inhibition not able to 

significantly reduce adhesion to BMSCs. Dual inhibition using IPI-145 resulted in up to a 

40% reduction in adhesion, and was significantly reduced in the patient samples tested 

(p < 0.05; Mann-Whitney U) – suggesting a need for both isoforms in the regulation of 

MM cell adhesion. 

MM has previously been shown to adhere to Fibronectin (Fn) by both VLA-4 and VLA-5 

receptors and inhibition of this mechanism has been shown to cause increased tumour 

cell sensitivity to chemotherapy [219]. Because of this I next examined the effects of 

PI3K isoform inhibition on MM cell adhesion to Fn. Figure 3.2.16 (A) shows that the 

lentiviral knockdown of PIK3CG (but not PIK3CD) is sufficient to significantly inhibit the 

MM cell’s ability to adhere to Fn. Dual inhibition caused an almost identical reduction in 

adherence, suggesting that p110δ does not play a role in this process.   

As MM primary cells are not able to survive lentiviral knockdown (indeed MM primary 

cells start to die within days of culture with no interference at all [300]), PI3K isoforms 

were instead inhibited via pharmacological methods (Figure 3.2.16 B) at concentrations 

previously described. In this case single isoform inhibition was not sufficient to reduce 

MM cell adhesion to Fn, with only dual inhibition causing a significant reduction 

(approximately 20% and 30% in the samples tested; p < 0.05, Mann-Whitney U). 



Page | 105 

 

 

Figure 3.2.15 – MM cell adhesion to BMSC is reduced in response to IPI-145. 

MM cell lines (A) or primary cells (B) were treated with 1µM of either CAL-101 (p110δ 

inhibitor), CZC24832 (p110γ inhibitor) or IPI-145 (p110δ/γ inhibitor) for 4 hours and 

stained with Calcein AM. Stained cells were co-cultured with BMSC on 96 well plates for 

a further 4 hours. Non-adherent cells were removed and fluorescence was measured. 

*p<0.05, **p<0.01, Mann-Whitney U. Error bars show S.D of the mean, n = 4.  
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Figure 3.2.16 – Dual inhibition of p110δδδδ/γγγγ reduces MM cell adhesion to Fn. 

(A) MM cell lines underwent lentiviral knockdown of PI3K isoforms, and ability for cells 

to adhere to Fn was measured. (B) Pharmacological inhibition of PI3K isoforms in MM 

primary cells. *p<0.05, **p<0.01, Mann-Whitney U. Error bars show S.D of the mean, n 

= 4. 
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 – MM cell migration to SDF-1 is negated by p110δ and p110γ inhibition 

The migration of immune cells to the BM has previously been shown to be regulated by 

PI3K [301, 302]. It would therefore be logical to conclude that inhibition of the p110δ 

and p110γ subunits (that are most prevalently expressed within the haematopoietic 

system) would result in the inhibition of MM cell migration. Figure 3.2.17 shows that 

MM cell migration increases by approximately 20% in response to SDF-1 supplemented 

media in all cases (when compared to non-supplemented media control), apart from the 

IPI-145 treated group. Dual inhibition of p110δ and p110γ isoforms was shown to negate 

this effect, returning to the base level of 20%. Individual isoform inhibition, once again, 

had no effect when compared to the vehicle control. Migration assay methods are 

shown in Section 2.8. 

 

 

Figure 3.2.17 – Dual isoform inhibition counteracts SDF-1 induced MM migration. 

When migrating to control media (non-supplemented) approximately 22% of MM cells 

migrate into the bottom chamber of the transwell (control) and is not significantly 

increased upon treatment with PI3K inhibitors. SDF-1 supplemented media caused an 

increase in MM cell migration in all groups (approximately 20% increase), excluding cells 

treated with IPI-145 (which remained at approximately 25% migration. Error bars show 

S.D of the mean, n = 3. 
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3.33.33.33.3 ––––    SummarySummarySummarySummary    

The activation of the PI3K pathway is known to aid in the progression of several tumour 

types, both solid and haematological. Although the PI3K isoforms p110α/β/γ/δ have all 

shown to be expressed in various MM cell lines [303], p110δ and p110γ are known to be 

preferentially expressed within leukocytes [304]. This provides the potential for a viable 

and specific therapeutic target, limiting side-effects and increasing tolerability in a 

typically elderly patient demographic.   

In this section I have shown that both the p110δ and p110γ isoforms are expressed in all 

the MM cell lines used, as well as the six primary samples tested (albeit at lower levels 

than that seen in the MM cell lines). Data showed that both isoforms needed to be 

inhibited for significant reduction in PI3K pathway activation (shown via inhibition of Akt 

phosphorylation) and subsequent MM cell viability. Indeed, combined pharmacological 

inhibition of p110δ/γ acts synergistically – appearing to be more cytotoxic than the sum 

of single isoform inhibition.  

Lentiviral inhibition of PIK3CG (the p110γ gene) caused a significant reduction in MM 

cell adhesion to fibronectin, suggesting an independent role for this isoform in this case. 

Adhesion was less affected in the RPMI-8226 cell line, potentially reflecting the lower 

expression of p110γ protein initially seen in these cells (see Figure 3.2.1). In primary cells, 

a significant reduction in adhesion was only achieved upon dual p110δ/γ inhibition. This 

could be due to either the lower expression of the PI3K isoforms themselves, or inferior 

efficacy of CZC24832 when compared to the ~80% PIK3CG knockdown that was achieved 

in the MM cell lines. Migration of MM cells towards SDF-1α was also shown to be 

affected in response to dual p110δ/γ inhibition, suggesting a role for these isoforms in 

MM cell homing to the BMM.      

In summary, I have shown that both the p110δ/γ PI3K subunits are involved in the 

survival of MM cells and the suppression of these isoforms negatively impacts factors 

that are strongly associated with MM disease progression. The efficacy of this inhibition 

within the protective niche of the BMM, however, still needs to be investigated.  
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4444 ––––    PI3K activation inPI3K activation inPI3K activation inPI3K activation in    the BMMthe BMMthe BMMthe BMM    

4.14.14.14.1 ––––    IntroductionIntroductionIntroductionIntroduction    

The MM cell’s critical dependence on its microenvironment has long been known [7, 

219, 225, 305]. Once removed from the BM, the primary MM cell’s capability for self-

renewal and proliferation (that is not present in typical differentiated plasma cells) can 

only be extended via co-culture with other cells from the niche [306, 307] or 

supplementing the media with the necessary proteins. For example, in a study by Ludwig 

et al., the proportion of primary MM cells in S-phase was able to be increased (by 

approximately 20%) via cytokine and interferon stimulation in vitro [308]. In vivo, the 

soluble factors continually secreted from BMSCs stimulate signalling cascades within the 

malignant cell – ensuring its longevity [309]. 

The PI3K pathway can be activated by RTKs (a class of enzyme-linked receptors), GPCRs, 

or by crosstalk with other signalling cascades [310] - with both the JAK/STAT and MAPK 

pathways having been shown to activate PI3K [311]. One such route of PI3K activation 

is via IL-6 cytokine stimulation [312], a cytokine that is highly prevalent in the MM BMM 

and critical for MM pathogenesis. IL-6 has been shown to directly trigger both the 

JAK/STAT [176, 313] and MAPK [314] pathways via its receptor IL-6R. Even in cell types 

where IL-6R is absent from the cellular membrane, IL-6 is capable of binding with soluble 

IL-6R and activating gp130 homodimers.  

In this section I investigated the activity and targetability of the PI3K pathway in the 

context of the BMM. I then used an NSG mouse model with an MM-p110δ/γ knockdown 

xenoengraftment to determine the potential individualised roles for these isoforms in 

vivo.  
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4.24.24.24.2 ––––    ResultsResultsResultsResults    

 – PI3K pathway inhibition is achievable in the MM microenvironment 

4.2.1.1 – BMSC conditioned media 

Many key BM-microenvironmental factors have been shown to cause the activation 

of the PI3K pathway in previous literature [312, 315, 316], and as such its potential 

for overcoming PI3K inhibition needed to be investigated. MM.1S and RPMI-8226 

cells were incubated with IPI-145 for 6 hours, and subsequently activated with 

BMSC-conditioned media for 1 hour. Whole protein was then extracted and 

analysed via Western Blot (Figure 4.2.1, see Section 2.6 for methodology). As 

before, these cells lines were selected due to their varying expression of p110δ and 

p110γ to represent the varying levels of these isoforms in primary samples (MM.1S 

low p110δ, high p110γ and RPMI-8226 high p110δ, low p110γ). 

As expected, BMSC-conditioned media activated the phosphorylation of AKT in both 

cell lines, however MM.1S showed much higher levels of baseline activity when 

compared to the RPMI-8226 cells. IPI-145 inhibited both cell lines AKT activation in 

a dose-dependent manner. Phosphorylated MAPK levels were also shown to 

increase in response to BMSC conditioned media, and was unresponsive to IPI-145 

– indicating that this inhibitor does not have off target effects on this pathway. 
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Figure 4.2.1 – The MM microenvironment PI3K pathway activation is inhibited by 

IPI-145 in a dose dependent manner. 

MM cell lines were incubated with p110δ/γ inhibitor IPI-145 for 6h, and stimulated 

with BMSC-conditioned media (fresh media was incubated with confluent primary 

BMSC for 24 hours, normal media sample shown far left). Total protein was then 

extracted and analysed for phospho-AKT (Ser473) and p44/42 phospho-p44/42 

MAPK (Th202/Tyr204) levels via Western Blot. Densitometry was performed using 

ImageJ software and is normalised to 0nM IPI-145 BMSC-conditioned media 

sample. Image shown is representative of 3 independent experiments. 

 

 

Next, I wanted to determine if this inhibition in PI3K expression could increase MM 

cell death within the context of the BMM. MM primary cells (n=4) were co-cultured 

with BMSCs for 24 hours with and without PI3K isoform inhibitors. Whilst CAL101 

(p110δ inhibitor) and CZC24832 (p110γ inhibitor) had little effect on cell apoptosis 

in comparison to a control, IPI-145 (dual isoform inhibitor) had significantly 

increased apoptotic and dead cells (Figure 4.2.2).  Graphical representation of these 

results is shown in Figure 4.2.3, method in Section 2.5. 
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Figure 4.2.2 – Flow cytometry showing dual PI3K isoform inhibition can 

increase MM cell death in co-culture. 

Following co-culture with BMSC and PI3K inhibitors, MM primary cells were 

analysed using PI-Annexin V Flow Cytometry. Representative image shown (n=4). 

 

 

Figure 4.2.3 – Graphical representation of Figure 3.2.19. 

Annexin V positive MM primary cells (n = 4) following PI3K isoform inhibition and 

co-culture with BMSC. *p < 0.05; Mann-Whitney U. 
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4.2.1.2 – IL-6 mediated protection  

IL-6 activation of the PI3K pathway has previously been implicated in prostate 

cancer [317, 318] however its role in MM PI3K activation is less certain. In a paper 

by Pene et al. IL-6 was described as not phosphorylating Akt in MM cell lines 

(implying that it did not activate the PI3K pathway [319]), however these data were 

not shown. Instead, IGF-1 was proposed as the mechanism by which PI3K was 

activated and was shown to phosphorylate Akt at both the s473 and t308 residues 

– a result that has been confirmed in other studies [320, 321]. Conversely, other 

studies describe IL-6 activating the PI3K pathway in MM cell lines, alongside IGF-1 

stimulation [312, 322]. 

I therefore decided to analyse if IL-6 on its own could stimulate Akt activation in 

MM cell lines and primary samples. MM cells were cultured with an increasing level 

of IPI-145 for 6 hours, and subsequently activated with 100ng/mL recombinant IL-6 

for 30 minutes (control is untreated MM cells). Whole protein was extracted from 

samples and subject to Western Blot (Figure 4.2.4). 

Results showed that IL-6 caused the phosphorylation of both MM cell lines tested, 

and that this stimulation was partially reversible with the use of IPI-145 (despite the 

high concentration of IL-6 used). Substantial inhibition of AKT phosphorylation can 

be seen upwards from 500nM IPI-145, and this drug showed minimal effect on 

MAPK activation. 

To test if a single PI3K isoform inhibition was sufficient to reduce IL-6 PI3K 

stimulation, this MM cell lines and primary cells were cultured with CAL101, 

CZC24832 or IPI-145 (all at 1µM) and subsequently with 100ng/mL recombinant IL-

6 for 30 minutes (control is untreated MM cells). Western blot analysis showed that 

IL-6 also induced PI3K activation in primary samples, and that the greatest reversal 

of this effect was with IPI-145 treatment (Figure 4.2.5). Single isoform inhibition did 

not appear to reduce the stimulatory effects of IL-6 (on either Akt or 44/42 MAPK, 

Figure 4.2.5), whereas dual inhibition either completely reversed these effects or 

visibly reduced the amount of activated protein. 
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Figure 4.2.4 – IL-6 activation of the PI3K pathway can be inhibited by IPI-145 in 

a dose dependent manner.  

MM cell lines were incubated with p110δ/γ inhibitor IPI-145 for 6 hours, and 

stimulated with increasing concentrations of IL-6. Image shown is representative 

of 3 independent experiments. 

 

 

 

Figure 4.2.5 – IL-6 stimulation of PI3K pathway is reversible via p110δδδδ/γγγγ dual 

inhibition. 

Representative (n = 3) Western blot showing the pAKT levels in IL-6 stimulated 

MM cells. CAL101 (p110δ inhibitor), CZC24832 (p110γ inhibitor) and IPI-145 (dual 

p110δ/p110γ) were used to assess PI3K isoform involvement. Cell line image 

shown is representative of 3 independent experiments. 

MM.1S      MM#4       
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Finally, I used shRNA specific to PIK3CD and PIK3CG (the genes for p110δ and 

p110γ respectively) to knockdown expression of these genes and investigate if 

this affected IL-6 stimulation of this pathway. MM.1S cells were transduced with 

gene specific lentivirus for 72hours (methods Section 2.10), after which 

knockdown was confirmed via RT-qPCR (see Section 2.9). Remaining cells were 

stimulated with 100ng/mL recombinant IL-6 for 10 minutes, whole protein was 

extracted and samples were subject to Western Blot analysis (Figure 4.2.6, 

methods Section 2.6). Results showed that the only case in which IL-6 could not 

induce AKT phosphorylation was when both isoforms had been knocked down. 

MAPK pathway activation was partially inhibited upon PIK3CG knockdown, 

potentially indicating a role for p110γ in MAPK signalling.  

 

 

 

Figure 4.2.6 – Only inhibition of both PI3Kδδδδ and PI3Kγγγγ is sufficient for PI3K 

pathway inhibition in IL-6 stimulated cells. 

Lentiviral knockdown of PI3Kδ and PI3Kγ isoforms negated the effects of IL-6 – 

PI3K pathway activation. Image shown is representative of 3 independent 

experiments.   
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 – Inhibition of PI3Kδ/γ in vivo  

In order to truly represent how PI3K knockdown affects MM disease progression, a MM 

in vivo model was needed. As a human MM xenograft model was required, NSG mice 

were selected for their highly compromised immune system (meaning that no radiation 

or chemotherapy would be needed to prevent graft versus host disease). U266 cells had 

previously been lentivirally transduced for 72 hours with a luciferase construct. This 

modification makes the cells detectable via bioluminescent imaging in live animals upon 

the introduction of a luciferin substrate (using the Bruker In-Vivo Xtreme II). Cells were 

subject to either PIK3CD or PIK3CG knockdown, which was confirmed with RT-qPCR prior 

to any animal experimentation. Mice were injected with 0.5 x 106 U266 cells (n = 4 in all 

groups) via the lateral tail vein and monitored with frequent visual checks and weekly 

bioluminescent imaging. U266 were selected due to successful preliminary in vivo 

engraftment experiments (data not shown).  Female mice (n = 1 per group) were not 

imaged due to concerns over recovering these animals following anaesthesia due to 

their smaller size – however they were included in survival analysis. Further details on 

methodology can be found in Section 2.13.  

 

4.2.2.1 – Isoform specific KD resulted in reduced tumour burden and increased 

overall survival (OS) 

Figure 4.2.7 shows that by day 21, disease burden in all knockdown mice was 

considerably less in comparison to a knockdown control (ShE). Whereas multiple 

tumours are present in the control mice, tumours in knockdown mice (when 

present) tended to be more isolated. This was still true at day 28, with only one of 

the mice exhibiting a large tumour (group 2, PI3Kδ knockdown). Survival was shown 

using a Kaplan-Meier curve (see Figure 4.2.8) and statistically analysed using 

Mantel-Cox regression analysis (through GraphPad software). All PI3K isoform 

knockdown mouse groups were shown to have significantly increased survival in 

comparison to the control group (p < 0.05, Mantel-Cox regression), however specific 

isoform knockdowns did not statistically differ from each other.  
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Figure 4.2.7 – In vivo bioluminescent imaging of MM cells. 

U266-luciferase modified cells (1 x 106) were injected into NSG mice via the tail vein and monitored via BLI. Areas of high intensity 

indicates higher MM disease burden. Control mice (left) presented with advanced disease burden at day 21. MM cell burden was greatly 

reduced in all KD groups with luminescent cells only visible with a much longer exposure time (data not shown).    
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Figure 4.2.8 – Knockdown of PI3K isoforms results in increased survival in NSG mice. 

Kaplan-Meier curve showing survival of NSG mice following PI3K isoform knockdown. 

Mantel-Cox regression was used for statistical analysis. 

 

 

 

 
Control Delta 

KD 

Gamma 

KD 

Dual 

KD 

 Median Survival (Days) 

Control ~ 0.0091 0.0091 0.0091  Control 31.0 

Delta KD 0.0091 ~ 0.6446 0.0361  Delta KD 39.0 

Gamma KD 0.0091 0.6446 ~ 0.5812  Gamma KD 39.5 

Dual KD 0.0091 0.0361 0.5812 ~  Dual KD 40.0 

 

Table 4.2.1 – Table showing p-values and median survival. 

p-values (left) and median survival (right) for data shown in Figures 4.2.7 and 4.2.8 was 

calculated using Mantel-Cox regression and Graphpad Prism 7 software.  

 

 

 

 

p < 0.01 
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4.2.2.2 – PIK3CG KD cells showed decreased levels of engraftment 

Following disease endpoint, bone marrow was extracted from mice and stained for 

human CD45 and analysed by Flow Cytometry (see Section 2.13.6) to investigate 

the levels of MM cell engraftment. Figure 4.2.9 shows that PIK3CD knockdown had 

a highly variable effect on MM cell engraftment, but engraftment in PIK3CG 

knockdown cells was significantly reduced (p=0.029, Mann-Whitney U). Although 

dual knockdown also resulted in a reduction of MM cell engraftment (a mean value 

of 18.5%, compared to the control value of ~26%) this result was not statistically 

significant and a larger sample size may be needed to confirm results.  

 

 

 
Figure 4.2.9 – PI3K p110γγγγ knockdown correlates with a significant decrease in MM cell 

engraftment. 

Following end-point, murine bone marrow was analysed for CD45+ cells via flow 

cytometry (n = 4). *p = 0.029 in comparison to control; Mann-Whitney U. 
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4.2.2.3 – IPI-145 decreased rate of tumour growth and increased OS 

To ascertain if the effects of IPI-145 (dual PI3Kδ/γ inhibitor) seen in vitro were 

achievable in vivo, mice were injected with U266-luc cells as before (n = 12). MM 

cells were allowed a 5-day engraftment period before mice were randomly assigned 

into either control (n = 6) or IPI-145 (n = 6) treatment groups. Mice were treated 

every 24 hours from day 5-14 with 15mg/kg IPI-145 or the vehicle control (10% 

DMSO, 90% PBS) by IP injection and monitored via bioluminescent imaging (dose 

was selected based on previous literature and achievable plasma concentration of 

drug [323]).  

Figure 4.2.10 shows that at day 11, mice showed similar levels of tumour burden, 

however by day 18 (4 days after the complement of IPI-145 treatment) tumour 

burden in treatment group had reduced when compared to the control (p = 0.015; 

Mann-Whitney U). Densitometry analysis (using ImageJ software) showed that 

tumour burden growth was significantly retarded in the treatment group, despite 

the short treatment time. 

The reduced tumour burden seen in IPI-145 treated animals was reflected in animal 

survival, with treated animals surviving for a significantly longer period (27.5 days 

median survival vs 23.0 days control median survival - Figure 4.2.11, p < 0.001; 

Mantel-Cox regression).  
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Figure 4.2.10 – Relative fold change in tumour burden over a 7 day period. 

Tumour progression was inhibited when treated with IPI-145 versus control. 

Mice were imaged at day 4 (following MM engraftment period, data not shown 

as signal too low), then weekly at days 11 and 18 using Bioluminescent Imaging, 

BLI. *p = 0.015, Mann-Whitney U.  

 

 

 

 

 

 

 

 

Figure 4.2.11 – IPI-145 inhibition of p110δδδδ/γγγγ caused an increase in OS. 

Kaplan-Meier curve showing survival of NSG mice following p110δ/γ isoform 

inhibition following a 5 day engraftment period. Mice were treated from day 5-

14. Mantel-Cox regression was used for statistical analysis, ***p<0.001. Median 

survival control = 23.0 days, median survival treated = 27.5 days. 

*p = 0.015 
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4.34.34.34.3 ––––    SummarySummarySummarySummary        

When researching haematological malignancies, the importance of the BMM cannot be 

ignored [12, 307, 324]. Outside of this environment, MM cells are far more fragile and 

succumb to stressors far more easily [325, 326]. In this section I have shown how, even 

without adhesion to the structural components of the BM, cytokines secreted by the 

BMSCs can activate the PI3K pathway.  

The PI3K pathway was shown to be stimulated by both BMSC conditioned media and IL-

6 stimulation (a cytokine freely available in the MM-BMM). Inactivation of the PI3K 

pathway using isoform specific inhibitors was only achievable upon the inhibition of 

both p110δ and p110γ isoforms in both cases. This was reflected in MM-BMSC co-

cultures, where only IPI-145 (p110δ and p110γ inhibitor) was able to significantly 

increase levels of MM cell apoptosis. 

In vivo, knockdown of either isoform resulted in an increased survival time – however 

there was no observed difference in survival between isoforms in this case. I also 

showed that IPI-145 treatment resulted in retarded tumour growth, which also 

corresponded with an increase in survival duration. There are limitations to these in vivo 

studies however, not least the low subject number in each experiment (n = 16 and n = 

12 respectively). The lack of a functional immune system too, although necessary for 

xenograft experiments, undoubtedly affects MM cell interactions with its 

microenvironment potentially skewing results.     
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5555 ––––    MMMMMMMM----remodelling of remodelling of remodelling of remodelling of BMSCsBMSCsBMSCsBMSCs    to to to to activate malignant PI3Kactivate malignant PI3Kactivate malignant PI3Kactivate malignant PI3K    

5.15.15.15.1 ––––    IntroductionIntroductionIntroductionIntroduction    

How MM cells influence their environment has been the focus of studies for decades, 

with early work by Uchiyama et al. [225] showing that MM cell adhesion can influence 

the transcriptional and translational profile of BMSCs. MM-BMSC adhesion has been 

shown to promote the survival of MM cells and increase drug resistance within the 

malignancy (CAM-DR), as well as causing the release of many soluble factors from the 

BMSCs that benefit disease progression such as IL-6 [327]. However, it has also been 

shown that MM cells can influence the BMSCs prior to any cellular contact. In a study by 

Zdzisińska et al., the authors showed how direct binding of plasma cells to BMSCs was 

not required to induce BMSC cytokine secretion [328] (a finding that was in conflict with 

Uchiyama’s earlier work). 

In the previous section I showed how cytokines secreted from BMSCs could be 

responsible for the aberrant activation of the PI3K pathway in MM cells, however it is 

unclear if BMSCs consistently produce these cytokines or if MM cells adapt BMSCs for 

this purpose. In this section I investigate how BMSC cytokine production is influenced 

by MM cells and how MM cells could confer these changes prior to cellular adhesion.   
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5.25.25.25.2 ––––    Results Results Results Results     

 – BMSC IL-6 and IL-8 secretion is increased in co-culture 

To investigate what effect primary MM cells have on primary BMSCs, human XL cytokine 

arrays were used (cytokine arrays are capable of measuring 102 different cytokines 

simultaneously – see Section 2.12 for details). MM cells and/or BMSC were cultured for 

24 hours, after which the supernatant was taken and used for this assay (representative 

result shown in Figure 5.2.1, n = 3).  

 

Figure 5.2.1 – IL-6/8 extracellular protein levels increase in BMSC in response to MM. 

Supernatant from primary MM only, BMSC only and MM-BMSC co-cultures were 

analysed for 102 different cytokines using human XL cytokine arrays (section 2.12), with 

each pair of dots representing a different cytokine (density is proportional to cytokine 

concentration). Results showed increased levels of IL-6 and IL-8 in co-culture membrane 

in comparison to the sum of signals from monocultures. Representative Cytokine array 

shown (n = 3). 
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Densitometry analysis of the cytokine arrays was performed using HLImage++ software 

(Figure 5.2.2). Output from this software is given as ‘Mean Pixel Density (MPD)’ and all 

cytokine results were first normalised against reference spots (shown at positions A1 

and B1) for consistency between arrays. 

Co-culture outputs (MPD) were then normalised to the sum of their corresponding 

BMSC only and MM only outputs (MPD). Results are displayed as relative fold changes 

in MPD that reflect net changes in protein levels (sum of monoculture intensities vs. co-

culture intensity).  

As well as increases in IL-6 and IL-8, analysis revealed increases in several other cytokines 

– including epidermal growth factor (EGF), myeloperoxidase (MPO) and vascular 

endothelial growth factor (VEFG). IL-6 and IL-8 increases were the only statistically 

significant changes detected however, most likely due to the high variability between 

the primary samples. An increased sample size would have been beneficial to identify 

other potential cytokine changes. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.2 – Densitometry of co-culture cytokine array 

Densitometry analysis using ImageJ (n = 3) of selected cytokines from arrays described 

in Figure 5.2.1. Blue bars shows combined intensities of the monocultures, red bars 

show intensity of co-culture array only. Error bars show SD from the mean, no error bars 

are present on monoculture bars due to normalisation of each sample. Statistical 

analyses performed using student’s t-test, **p < 0.01, ***p < 0.001. 
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 – MM cells have higher levels of MIF protein secretion and gene expression. 

To determine the excretory cytokine profile of MM cells (and potential BMSC signallers), 

Human XL cytokine arrays were once again utilised (n = 3). Patient derived MM cells (1 

x 106 cells per assay) were cultured in fresh media for 24 hours following CD138+ 

purification. Cells were then pelleted and supernatant was used for assay. Analysis of 

densitometry revealed high levels of the cytokine Macrophage Migration Inhibitory 

Factor (MIF), detectable in all 3 cytokine arrays used (representative image shown in 

Figure 5.2.3). Other cytokines such as Chitinase 3-like 1 and MMP-9 were shown to have 

high levels, however the levels of these cytokines were far more variable in the samples 

tested, demonstrating the high levels of heterogeneity in MM disease.   

 

 

 

 

Figure 5.2.3 – High MIF levels detected in primary MM cell supernatants. 

Representative cytokine array showing secreted protein from primary MM cells. High 

levels of MIF (red box) were detected in each array used (n = 3). 
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It has previously been shown that MIF is overexpressed in many different cancers, 

including MM [329-332]. To confirm these observations, I examined expression of MIF 

in MM at both mRNA (RT-qPCR analysis, Section 2.9) and protein level (via ELISA, Section 

2.11). Figure 5.2.4 shows that in comparison to T cells, B cells and normal non-malignant 

plasma cells, primary MM cells (n = 5) had significantly increased MIF gene expression 

(approximately 1.8X higher than B-Cells) when analysed using RT-qPCR (p < 0.01; Mann-

Whitney U test). MIF gene expression was normalised to the housekeeping gene, β-

Actin.  

 

 

Figure 5.2.4 – MM primary cells have elevated levels of MIF gene expression. 

RT-qPCR analysis of MIF expression, normalised to β-Actin housekeeping gene (n = 5 for 

each group). Error bars show S.D from the mean, **p < 0.01; Mann-Whitney U. 
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Extracellular protein levels of MIF were then measured in B-Cells, T-Cells, primary MM 

and MM cell lines (MM-CL consisting of RPMI-8226, MM.1S, MM.1R, U266 and H929 

cells) by use of a cytokine specific ELISA (Figure 5.2.5). Results showed that both MM 

primary cells and MM-CL had elevated levels of MIF secretion, with MM cells lines 

showing the highest levels. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.5 – MM cell lines and primary cells have increased levels of MIF secretion. 

MIF ELISA results of MM cells. Concentrations calculated using MIF standard curve. 

Mann-Whitney U analysis is of standard error mean (SEM), n = 5. 
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 – MIF induces IL-6 and IL-8 production in BMSC  

To determine if elevated MIF signalling was responsible for the elevated levels of IL-6 

and IL-8 seen in MM-BMSC co-culture I used MIF to stimulate primary BMSCs and 

evaluate changes in the cytokine profiles (via Human XL cytokine array analysis, see 

Section 2.12 for details). 

MIF (100ng/mL) was added to BMSC (n = 3) in culture for 24 hours, after which 

supernatant was analysed using cytokine arrays (representative array shown in Figure 

5.2.6). As before, I saw an increase in IL-6 and IL-8 production (increasing approximately 

3-fold in each case - p < 0.05 for both cytokines; Mann-Whitney), densitometry analysis 

is shown in Figure 5.2.7. Concentration of MIF chosen was based on previous literature, 

to conservatively reflect conditions in early MM [330]. 

 

 

Figure 5.2.6 – Cytokine array showing increased levels of IL6/8 in response to MIF. 

Supernatant from primary MIF stimulated (100 ng/mL) BMSC showed increased levels 

of secreted IL-6 and IL-8. Representative Cytokine array shown (n = 3). 
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Figure 5.2.7 – Densitometry of MIF stimulated BMSC cytokine array. 

Densitometry analysis using ImageJ (n=3) of IL-6 and IL-8 from arrays described in Figure 

5.2.11.  *p < 0.05 (Mann-Whitney U). 

 

To quantify the increase in IL-6 and IL-8, I used cytokine specific ELISAs. Figure 5.2.8 

shows that, in response to MIF stimulation, primary BMSCs (n = 4) secrete a significantly 

higher amount of both cytokines, in agreement with previous results. 

 

 

Figure 5.2.8 – Quantification of BMSC IL-6/8 secretion in response to MIF. 

ELISA and standard curve were used to quantify cytokine concentration in BMSC 

supernatant following MIF (100ng/mL) stimulation. *p < 0.05 (Mann-Whitney U). 
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Furthermore, primary BMSC were pre-treated with the MIF antagonist ISO-1 at 10µg/mL 

(abcam, UK) and then were subject to MIF stimulation as before. ISO-1 inhibits MIF by 

binding to its tautomerase active site [333]. Figure 5.2.9 shows that MIF once again 

caused an increase in the transcriptional levels of IL-6 and IL-8 in BMSC (analysed by RT-

qPCR; p < 0.05, Mann-Whitney U) and that this response was decreased in response to 

ISO-1 (n.s, Mann-Whitney U). 

 

 

Figure 5.2.9 – Inhibition of MIF reverses transcriptional effects in BMSC. 

Primary BMSC were incubated with/without ISO-1 (10µg/mL) for 1 hour, after which 

they were stimulated with MIF (100ng/mL) for 6 hours. RNA was extracted and 

transcriptional changes were analysed via RT-qPCR. Error bars are shown as the SD of 

the mean, *p < 0.05, n = 4, Mann-Whitney U. 

 

To confirm that the increase seen in BMSC IL-6 and IL-8 production/secretion is 

achievable and comparable to the effect of primary MM cells, I cultured primary MM 

cells (n = 3) in a transwell insert with primary BMSC for 6 hours. The same BMSC samples 

were also stimulated with 100ng/mL MIF in parallel. After this time, conditioned media 

from the lower chamber was taken and subject to a cytokine specific ELISA.  

Results showed that IL-6 levels (shown in Figure 5.2.10 A) significantly increased in both 

MM contact (where the MM cells were allowed to adhere to the BMSCs) and MM 

secretory (transwell) profiles. These increases were not significantly different from each 

other, showing that adhesion is not required for IL-6 secretion.  IL-8 secretion also 
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increased in response to MM in both cases (Figure 5.2.10 B) – however this cytokine was 

shown to have more variability in response to adhesion (with one primary sample 

showing extremely high levels of IL-8).  

 

 

 

 

 

 

Figure 5.2.10 – BMSC IL-6 and IL-8 secretion is not dependent on MM cell adhesion. 

BMSC were cultured with MIF (100ng/mL) or co-cultured with MM cells suspended in a 

transwell system for 6 hours, after which media was collected and analysed for IL-6 (A) 

and IL-8 (B) using ELISAs. Mann-Whitney U test used for statistical analysis, error bars 

show the S.D of the mean. 
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 – MIF knockdown reduces MM cell survival in MM-BMSC co-culture.  

To determine the role of MIF in MM proliferation and metastasis within the BMM I used 

targeted shRNA KD of MIF mRNA. 96 hours after MM cell line transduction, cells were 

analysed for MIF expression using RT-qPCR normalised to β-Actin (see Sections 2.10 and 

2.9 for details on lentiviral and gene expression analysis methodology). Figure 5.2.11 

shows that significant knockdown of MIF was achieved in both MM.1S and RPMI-8226 

cell lines (approximately 80% and 95% respectively).  MM.1S and RPMI-8226 knockdown 

cells were incubated for 24 hours in fresh media, after which media was subject to ELISA 

analysis (Section 2.11). Results showed that this knockdown does indeed correspond 

with a reduction in IL-6 and IL-8 protein secretion (Figure 5.2.12). 

 

 

 

Figure 5.2.11 – Effective MIF knockdown achieved in MM cell lines. 

MM.1s and RPMI-8226 cells were transduced with lentivirus targeted MIF or control 

shRNA for 96h. RNA was then extracted and analysed for MIF mRNA expression by RT-

qPCR. β-Actin was used as a housekeeping gene. ***p < 0.001, Mann-Whitney U test. 
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Figure 5.2.12 – MIF knockdown causes a reduction in MIF secretion in MM cell lines. 

MIF secretion in MM.1S and RPMI-8226 control and MIF knockdown cells was measured 

using a cytokine specific ELISA. Mean values were subject to Mann-Whitney U test, *p < 

0.05, error bars show the S.D of the mean. 

 

To determine the effect of this knockdown on MM cell growth rates, MM control and 

knockdown cells were co-cultured with primary BMSC for 72 hours. After this time, MM 

cells were removed and measured for cell proliferation using a Cell-Titre Glo assay 

(Figure 5.2.13, see section 2.4 for methodology). Proliferation of MM cells was shown 

to be significantly lower in MIF-knockdown MM cells when compared to the control.  
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Figure 5.2.13 – MIF knockdown reduces MM cell survival in co-culture with BMSC. 

MM.1S control and MIF knockdown cells were co-cultured with primary BMSC for 72 

hours after which they underwent CellTitre Glo analysis to determine levels of 

proliferation. Mean values (n = 5) were subject to Mann-Whitney U test, *p < 0.001, 

error bars show the S.D of the mean. 

 

 – MIF is critical for MM disease progression in vivo. 

To analyse how MIF knockdown would affect MM disease progression, an NSG xenograft 

model was used. 1 x 106 MM.1S control or MIF knockdown cells (all containing the pCDH-

luciferase-T2A-mCherry and luciferin constructs) were injected into the tail vein of 6-8 

week old NSG mice (control knockdown n = 10, MIF knockdown n = 8) . Disease was 

monitored via bioluminescent imaging. Figure 5.2.14 shows that disease burden was 

highly reduced in the MIF knockdown group, most noticeable at day 28. This decrease 

in disease burden correlated with an increase in animal survival (Figure 5.2.15, p = 

0.0005; Mantel-Cox regression test). Mice receiving MM control knockdown cells had a 

mean survival of 28.1 days, whereas the MIF knockdown group has a mean survival of 

35.8 days.  

Although the rate of disease progression was comparable between both male and 

female mice, the initial disease burden in males was higher (seen one to two weeks after 

initial MM cell engraftment). This result highlights a difference in MM disease 

development between the sexes, and could potentially indicate one of the reasons why 

there is a higher incidence of MM in men. Unfortunately, the majority of murine studies 

use only male mice (to remove sex as a variable), and could therefore miss important 
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and relevant results in the female animals. Sex differences in disease development (seen 

in many diseases such as liver cancer[334] and autoimmune diseases [335]), as well as 

the differences in male and female drug metabolism [336], further shows the need to 

study both sexes both in vivo and in clinical trials.  

 

Figure 5.2.14 – MIF knockdown decreases MM disease burden in vivo. 

NSG mice were injected with 1 x 106 MM.1S ShE control or MIF KD cells via lateral tail 

vein IV injection. MIF KD animals showed decreased disease burden when compared to 

the control KD. Control group: n = 10, MIF knockdown group: n = 8. Disease burden was 

monitored weekly via bioluminescent imaging. Images from 6 representative mice 

displayed (3 per condition) to show progression of disease. 
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Figure 5.2.15 – MM MIF knockdown increases animal survival. 

Kaplan-Meier curve showing increased survival in MIF knockdown group. Mantel-Cox 

regression (Graphpad Prism software) was used for statistical analysis, n = 18.  

 

 

To confirm human MM cell engraftment, at endpoint mouse bone marrow was 

harvested and stained for human CD38 and CD45 and analysed using flow cytometry 

(see Figures 5.2.16 – 5.2.17). Two MIF KD samples were not available for analysis. 

As expected, no differences in MM BM engraftment was seen in the two groups at end-

point, suggesting mice humanely sacrificed at comparable disease burden. MM cell 

presence in the spleen was also analysed, as a marker for disease metastasis. In the 

control group, average presence of CD38/45+ cells in the spleen was approximately 70% 

(although in one case a very low proportion of malignant cells was observed). However, 

two thirds of the MIF knockdown group showed a much reduced engraftment to the 

spleen, with the whole group only achieving approximately 35% malignant cells – 

suggesting a role for MIF in the establishment of secondary tumour sites. 
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Figure 5.2.16 – Representative flow cytometry analysis of mouse BM showing levels 

of engraftment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.17 – MIF knockdown inhibits secondary site metastasis in NSG mice. 

Percentage of CD38/45+ cells engrafted in mouse, as analysed by flow cytometry. BM 

engraftment does not vary between groups, but metastasis to the spleen is reduced with 

MIF knockdown. Error bars show S.D of mean, **p = 0.0028; Mann-Whitney U test. 
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 – Mechanism of IL-6/IL-8 activation in BMSCs  

To identify the potential mechanism of action by which MIF causes IL-6 and IL-8 

activation in BMSCs a panel of common pathway inhibitors was used. Primary BMSC 

were pre-treated for 30 minutes with either a vehicle control, Bortezomib at 10nM (a 

proteasome inhibitor), PS1445 at 100nM (a NF-κB inhibitor), Lenalidomide at 500nM 

(inhibits various pathways, including the PI3K pathway), SP600125 at 10µM (JNK 

pathway inhibitor), or JQ1 at 500nM (shown to inhibit cMyc [337]). Following this, the 

BMSC were stimulated with 100ng/mL MIF for 2 hours (with the control group subject 

to vehicle control). RNA was extracted and transcriptional levels of IL-6 and IL-8 were 

analysed via RT-qPCR (Section 2.9, ∆∆Ct method used for analysis with a β-Actin 

control). Results from experiment (performed by S. Rushworth, UEA) are shown in 

Figure 5.2.18. 

When compared to the unstimulated control, BMSC IL-6 was shown to be highly 

upregulated in response to SP600125 (approximately 15X higher expression). This result 

was unexpected as inhibition of JNK has previously been shown to an increase in IL-6 

synthesis [338], however this result was shown in osteoclasts and no data was shown in 

BMSC. In response to Bortezomib, IL-8 levels were also dramatically increased. This 

effect has been shown previously in prostate cancer [339], and has been attributed to 

an increased IKKα-dependent p65 recruitment to the IL-8 promoter (as no other NF-κB 

genes appear to be affected). 
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Figure 5.2.18 – Common MM therapeutics used to identify possible MIF-stimulated 

pathways indicated a role for cMYC.  

MIF induces the transcription of both IL-6 and IL-8. Negation of this increase is only seen 

when using the c-Myc inhibitor JQ1. Bortezomib (BZ), PS1445 (PS) and Lenalidomide 

(Len), SP600125 (JNK) all show IL6/8 increase or decrease.  Experiment performed by S. 

Rushworth (Norwich Medical School, UEA, UK). 

 

 

In terms of MIF stimulation, the control group IL-6 and IL-8 levels were once again shown 

to be increased when incubated with MIF. IL-6 levels were shown to further increase in 

the Bortezomib, PS1445 and Lenalidomide (which also showed a large transcriptional 

increase in IL-8) treated groups, showing that these pathways are unlikely to be involved 

in MIF stimulated BMSC IL-6 production. In regard to IL-8 transcription, MIF stimulated 

effects appeared to be negated in several of the drugs tested, including Bortezomib, 

PS1445 and JQ1.  

From all of the inhibitors tested, only JQ1 showed negligible changes in IL-6/IL-8 

between control and MIF stimulated groups. This indicated a potential role for the 

transcription factor c-Myc in the regulation of IL-6 / IL-8 in the MIF stimulated BMSC. 
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 – cMYC inhibition in primary BMSC reverses MIF stimulated IL-6 and IL-8 

transcription 

Primary BMSC samples (n = 3) were stimulated with 100 ng/mL of MIF and subsequently 

treated with a vehicle control or the cMyc inhibitor JQ1 (at 1µM or 5µM) for 2 hours. 

Following this incubation, RNA was extracted from the BMSC and analysed using RT-

qPCR (Figure 5.2.19). At both JQ1 concentrations used (1µM and 5µM), IL-6 (A) and IL-8 

(B) inhibition was achieved, indicating a role for cMyc in the regulation of these 

cytokines. 

 

  

 

 

 

 

 

 

 

 

 

 

 

                

Figure 5.2.19 – Pharmacological inhibition of cMyc results in the reversal of MIF-

induced IL-6/8 transcription in BMSC. 

MIF stimulated primary BMSCs (n = 3) were incubated with JQ1 and analysed for relative 

IL-8 and IL-8 gene expression. Expression was normalised to β-Actin.  Error bars show 

S.D of the mean; Mann-Whitney U test, *p<0.05, ***p<0.001. 
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 – Lentiviral cMYC inhibition in BMSC 

To confirm results achieved using JQ1, lentiviral particles to target cMYC were generated 

and used to transduce primary BMSCs (see Section 2.10). BMSCs were seeded onto 12 

well plates and grown until approximately 50-60% confluent after which media was 

replaced and cells were subject to transduction at MOIX10. Despite many attempts, only 

a 20-30% knockdown of cMYC was achieved in the 7 primary BMSC samples that were 

transduced (with one sample not showing any significant reduction in expression at all). 

Even with this modest reduction in cMYC expression, both IL-6 and IL-8 transcriptional 

levels were shown to be affected. However, there is much variation between each 

sample and sample MM#1116 (which had no detectable change in cMYC expression) 

still showed a reduction in both IL-6 and IL-8 expression. All results are shown in Figure 

5.2.20. 

As c-Myc play such an essential role in the growth and proliferation of cells (including its 

essential role in DNA replication [222]) there is a possibility that cells which experience 

a more substantial knockdown cannot survive.  When trialling other MOIs, I found that 

higher MOIs actually resulted in a less effective knockdown of cMYC – further adding 

weight to this theory (preliminary MOI data shown in Table 5.2.1). 

 

 

 

 

 

 

 

 

 

Figure 5.2.20 – cMYC lentiviral knockdown in primary BMSC was highly variable 

between samples. 

Relative to a ShE control, cMYC knockdown was 20-30% over all primary BMSC samples 

tested (n = 7). IL-6 and IL-8 transcriptional levels were also reduced overall, however 

reduction was not proportional to cMYC knockdown.  
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S.D 0.16 0.18 0.15 
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#1113 0.77 0.63 1.14 

#1116 0.75 1.06 0.98 

#1091 0.56 0.85 0.94 

#1103 0.66 0.65 0.93 

 

Table 5.2.1 – Lower MOIs resulted in an improved knockdown in BMSCs.  

 

 

 – In vivo cMYC inhibition reduces BMSC IL-6 secretion 

Although only a modest knockdown of cMYC was achieved in primary BMSCs, a trend in 

IL-6 / IL-8 reduction was observed. To investigate this further, I decided to use the cMYC 

inhibitor JQ1 in the treatment of MM xenograft NSG mice and to measure murine IL-6 

(mIL-6) serum levels (IL-6 produced by the BMSC and not by the human disease). As IL-

8 is unfortunately not present in the murine genome, the effect of cMYC inhibition on 

the production of this cytokine from the BMSCs could not be tested.  

1 x 106 U266 luciferase modified cells were injected into the tail vein of 6-8 week old 

NSG mice and an engraftment period of 2 weeks was allowed. Mice were imaged to 

ensure equal disease burden and split into two groups, control and treatment (JQ1 at 

50mg/kg). Blood samples were taken from all mice at days 0, 14 (prior to any treatment) 

and 18. Blood serum was analysed using a mIL-6 specific ELISA. A schematic of the 

experimental design is shown in Figure 5.2.21. 

 

 

Figure 5.2.21 – Schematic detailing JQ1 in vivo experiment. 

U266 cells were injected into mouse lateral tail vein (n = 8). At day 14, treatment group 

received 50mg/kg of JQ1 once daily via IP injection. Bloods were taken at day 0, 14 and 

18. 
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ELISA results (Figure 5.2.22, see Section 2.11 for methodology) showed that prior to MM 

injection, no measureable level of mIL-6 was detected. Levels were shown to have 

increased slightly by day 14, as expected with MM disease. By day 18, the control group 

showed varying increases in mIL-6 – however JQ1 treated mice had levels similar to 

those seen at day 14. Control mIL-6 levels were shown to be significantly higher than 

those seen in the treated group.  

  

Figure 5.2.22 – Murine IL-6 serum levels significantly lower in the JQ1 treated group.  

Sera from blood samples (n = 8) was analysed for murine IL-6 content via ELISA, 

concentration was determined using a standard curve. Error bars show S.D of the mean, 

*p = 0.029; Mann-Whitney U. 

 

Mice were imaged prior to experiment end point, with no obvious difference identified 

between control and treatment group’s disease burden. 5 days of treatment with JQ1 

(at 50 mg/kg/day) was predicted to have no measurable effect on tumour burden (based 

on the work of Delmore et al. [337]), and was chosen to remove tumour burden as an 

experimental variable (as differences in tumour burden is likely to cause variations in 

MIF secretion and subsequent BMSC IL-6 expression). Figure 5.2.23 shows that tumour 

burden between control and treatment groups remains comparable over this time 

point. 

Following end point, mouse bone marrow was removed and BMSCs were sorted 

(CD105+) using a BD FACS Aria II cell sorter (courtesy of Dr Zhigang Zhou, Norwich 

Medical School, UEA, UK) to test for cMYC and IL6 transcriptional levels. Unfortunately 

sample volume did not yield large enough quantities of RNA following extraction, and Ct 

values for tested genes were too high to rule out the possibility of non-specific artefacts.
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Figure 5.2.23 – MM Disease burden was unaffected by JQ1 treatment 

Mice were injected with 1 x 106 U266 luciferase modified cells via the lateral tail vein. 

Following a 2 week engraftment period mice were imaged to ensure equal tumour burden 

and split into control and JQ1 treatment groups (50mg/kg via IP injection daily, for 5 days). 

Following treatment, tumour burden between groups was comparable. Changes in serum IL-

6 levels can therefore only be attributed to cMYC inhibition. Only males were imaged following 

treatment.
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5.35.35.35.3 ––––    SummarySummarySummarySummary    

Despite MIF’s prior association with cancers, previous work has investigated the effects 

of MIF on the malignant cell itself and not its effect on the BMSCs [330]. In this section I 

have shown how MIF expression and excretion is upregulated in primary MM cells (and 

further elevated in MM cell lines). I showed that this over-expression is pro-tumoural by 

its ability to induce both IL-6 and IL-8 secretion from the BMSCs.  

cMYC was identified as a potential regulator of this expression within these non-

malignant BMSCs with the cMYC inhibitor JQ1 shown to reverse MIF stimulated IL-6 and 

IL-8 secretion. In vivo use of JQ1 led to significantly reduced levels of mIL-6 in the serum, 

indicating that c-Myc regulates IL-6 level via BMSCs - the primary source of IL-6 

production in MM.    

In conclusion, the data shown in this section identifies a novel pro-tumoural mechanism 

that exists between malignant plasma cells and BMSCs, prior to any cell-cell contact. 

MM derived MIF stimulates the production of IL-6 from the BMSCs which in turn can 

cause PI3K pathway activation in the MM cell (shown in Section 4, figures 4.2.4-4.2.5). 

The data presented here provides evidence for a new potential therapeutic target - MIF. 
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6666 ––––    DiscussionDiscussionDiscussionDiscussion    

6.16.16.16.1 ––––    OverviewOverviewOverviewOverview    

Targeting the malignant cells in patients with Multiple Myeloma with the aim of 

eradicating the disease is not working. Current therapies are highly effective at 

removing the bulk of disease burden, however a small subset of MM cells will survive 

within the bone marrow microenvironment and continue to proliferate and grow, 

resulting in patient relapse. Within this environment, MM is protected by multiple 

mechanisms including protective cytokines provided by other cells within the milieu 

and via cell adhesion mediated drug resistance (CAM-DR) or by adhesion to the 

structural components of its surroundings. A deeper understanding of the MM cell’s 

interactions with its microenvironment is desperately needed to reduce, and 

ultimately negate, these protective effects. 

One of the major pathways that is known to contribute to MM cell proliferation is the 

PI3K/Akt pathway. This pathway has been implicated in a plethora of solid and 

haematological malignancies, including MM [303, 340]. Unlike many other cancers, 

however, MM PI3K activation is most likely caused by the continual signalling from 

the microenvironment, as the disease typically lacks PI3K pathway associated 

mutations. Isoform specific inhibition of PI3K (i.e. targeting of the p110α, p110β, 

p110δ or p110γ catalytic subunits) could provide a more tissue specific approach to 

treatment, reducing secondary effects. This is critical in MM as it is primarily a disease 

of the elderly and as such patients can lack tolerability and/or the general fitness 

needed to endure the adverse effects of some drug regimens. With the p110δ and 

p110γ isoforms known to be highly enriched in leukocytes, a novel opportunity is 

provided for the successful inhibition of this pathway in MM disease. The stimulation 

of PI3K signalling by the microenvironment, however, still remains a problem. It is 

therefore necessary to not only target the malignancy itself, but also the tumorous 

microenvironment – targeting the soil as well as the seed.  
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BMSCs within the BM niche are known to produce cytokines that can activate PI3K 

signalling. One such cytokine, IL-6, is not secreted in high levels under typical 

conditions, however the levels of IL-6 have been shown to increase alongside MM 

disease burden and is marker of poor prognosis. The adhesion of MM cells to the 

BMSCs has been shown to induce the production of BMSC IL-6 [12]. However, it is 

possible that MM cells can modify BMSCs even prior to cell-cell contact via cytokine 

signalling, re-modelling the niche to benefit MM disease progression. 

 

6.26.26.26.2 ––––    Key FindingsKey FindingsKey FindingsKey Findings    

 

 

Figure 6.2.1 – Schematic of key findings. 

1 – MIF is overexpressed in MM, causing the upregulation of IL-6 and IL-8 in BMSCs. 

2 – cMYC is involved in the regulation of IL-6 and IL-8 expression, and inhibition of 

cMYC results in lower levels of these cytokines. 3 – The PI3K pathway is critical in MM 

disease and is upregulated by IL-6. Inhibition of PI3K p110δ/γ isoforms results in 

increased overall survival (OS) in vivo and less invasive disease type. 
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1. MM derived MIF re-modelling of the microenvironment 

One of the primary objectives of this study was to determine if MM could influence 

its microenvironment, to benefit disease progression. The cytokine arrays I initially 

utilised to detect variations in primary MM-BMSC co-culture indicated a large net 

increase in several different cytokines, and of these both the IL-6 and IL-8 increase 

was shown to be statistically significant in the three primary MM samples tested. 

Macrophage migratory Inhibitory Factor (MIF) was identified as a possible 

mechanism by which MM cells could signal the BMSCs to initiate these changes, due 

to the aberrantly high levels found in MM monoculture and lack of production from 

primary BMSCs. Other proteins were also identified as potential BMSC signallers 

(such as MMP-9 and Chitinase-3-like-1), however expression of these proteins varied 

widely between the patient samples tested – unlike the consistently high secretion 

of MIF. Recombinant MIF was used to stimulate primary BMSCs and I observed an 

increase in both the transcriptional level and extracellular protein concentration of 

both IL-6 and IL-8 (confirming the results seen in co-culture cytokine array 

experiments). This increase was shown to be proportional to the stimulatory effects 

induced in a non-contact (transwell) MM-BMSC co-culture.  

MIF is a cytokine associated with various roles - including pro-inflammatory signalling, 

lymphocytic immunity, and endocrine functions [341]. It is a homo-trimer (see Figure 

6.2.2) and all mammalian MIFs (including human, mouse, rat and cow) have 

approximately 90% homology and it has been shown to promote B-cell chemotaxis 

via the co-operative efforts of its receptors [342]. MIF was one of the first cytokines 

characterised, during experiments investigating delayed type hypersensitivity 

reaction in the 1960s [343, 344], and over the following decades was described to be 

involved in a range of macrophage functions. Elevated levels of MIF have previously 

been detected in a selection of other cancers with high levels of MIF frequently 

associated with a poor patient prognosis [345-347]. However, the relationship 

between MIF and tumour progression is potentially more complicated than first 

realised, with MIF shown to work in both a paracrine and an autocrine fashion [348-

350]. Furthermore, in a study by Verjans et al. extracellular MIF was shown to be pro-

oncogenic (as found in other studies), however patients who had high levels of 

cytosolic MIF were actually shown to have a significantly improved OS [351]. 
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Unravelling the relationship of this cytokine with the BMM and tumorigenesis could 

provide a novel target for the treatment of haematological cancers, including MM.   

 

 

 

 

 

 

 

  

Figure 6.2.2 – Three dimensional structure of MIF. 

(A) Top view (B) Side view. Image adapted from Calandra and Roger, 2003 [352]. 

 

My results showed that, in vivo, MIF KD in MM cells resulted in a reduced tumour 

burden and increased survival time in NSG mice. Moreover, engraftment of malignant 

cells to the spleen (used as an example of secondary site metastasis) was significantly 

reduced upon MIF KD – identifying a potential role for MIF in MM cell migration. MIF 

has previously been identified as an activator of CXCR4 [353], and MIF produced by 

colon carcinoma cell lines has been shown to stimulate this GPCR on the colon cell 

itself, causing an increase in malignant cell invasion and metastasis [354]. With both 

MM cells and BMSCs known to express CXCR4, it is likely that MIF is working in both 

an autocrine and paracrine manner in MM disease – activating signalling cascades 

within the MM cell, whilst at the same time playing an active role in MM cell 

mobilisation and invasion (alongside CXCR4/SDF-1 signalling). In hindsight, testing 

the role of MIF in the migration of MM cells in vitro would have been of interest. 

Whilst the elevated MIF levels that I measured in Section 5 were in agreement with 

data collected by Zheng and colleagues [330], the decreased rate of tumour growth I 

observed was not. Zheng et al. observed that MM MIF KD cells had reduced levels of 

BM engraftment and retention with no real effect on MM cell proliferation, instead 

B A 
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forming large solid tumours within the abdomen. Despite my results also showing a 

difference in initial BM engraftment, I found (using the same cell line) that the growth 

of the tumour burden was retarded with no solid tumours located within the 

abdomen at end point. Although my findings differ to those in the study mentioned 

above, they are in fact in agreement with the trends observed in other cancer types, 

where MIF deficiency was associated with a decreased tumour burden [355, 356]. 

This potentially gives a more consistent description for the role of MIF in disease 

progression.  

MIF has previously been implicated in the regulation of IL-6 in severe inflammatory 

responses [357] as well as having been shown to induce IL-6 and IL-12 production in 

macrophages [358]. Therefore the association of these cytokines with MIF is not a 

new concept [359]. Despite this, the MIF stimulated production of IL-6 that I observed 

has not previously been described in BMSCs in any haematological malignancy. Given 

the importance of IL-6 in MM disease progression as well as its role in the production 

of osteoclasts (and subsequent osteolytic lesions), this result alone warrants further 

investigation into MIF’s role in the MM microenvironment. Chauhan et al. has 

previously shown that adhesion of MM cells to the BMSCs stimulates the secretion 

of IL-6, however no detectable increase was shown when measuring IL-8 [12]. Despite 

this, the production of IL-8 from MM patient BMSCs has been shown to be higher 

than that of BMSCs from healthy donors and increased serum levels of IL-8 have been 

reported in MM patients [360, 361]. IL-8 if most frequently associated with elevated 

levels of angiogenesis, and has also been shown to increase with MM disease [361], 

however the exact mechanism by which BMSCs IL-8 increase occurs is not clearly 

defined. My results showed that alongside IL-6, IL-8 was also stimulated by MM 

derived MIF, a result that is in agreement with a recent study by Abdul-Aziz et al. who 

showed that AML derived MIF was responsible for the increase in IL-8 from AML 

patient BMSCs [362].  

Since my data has shown that MIF induces both IL-6 and IL-8 in the MM BMM, I 

believe that it provides the rationale for the investigation of MIF inhibitors for MM in 

a clinical setting, potentially removing the need for separate anti-IL6/IL8 therapies. 

Furthermore, MIF has been shown to inhibit the cell cycle checkpoint protein p53 by 

directly stimulating the PI3K/Akt pathway in several different cell types [363, 364]. 
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Assuming that this is also true for plasma cells, targeting MIF is potentially a multi-

pronged attack; preventing MIF from stimulating PI3K directly in the malignant cell 

and also by reducing BMSC IL-6 secretion (and subsequent PI3K activation). In 

retrospect it would have been of interest to test the expression of p53 in both MM 

control and MIF kd cells. However, despite the established association of MIF and 

tumorigenesis and the MIF antagonist ISO-1 being highly utilised in pre-clinical 

studies, I found no record of this compound (or other MIF inhibitors) being tested in 

clinical trials. Anti-MIF monoclonal antibodies, however, have proven highly effective 

pre-clinically and clinical trials of these antibodies are currently underway with Phase 

I studies completed in 2016 [345]. Although in their infancy, these studies seem to be 

targeting solid tumours in patients (such as rectal adenocarcinoma and prostate 

cancer) and no current investigations into the benefits of anti-MIF antibodies for the 

treatment of haematological malignancies are being performed.   

Targeting the MIF receptor CD74 is another potential way in which the effects of MIF 

could be limited, and has shown promising results in pre-clinical investigations [365, 

366]. Phase I/II clinical trials of the anti-CD74 antibody milatuzamab (also known as 

hLL1) have already been completed in a variety of B-cell malignancies and has shown 

to have high tolerability [367]. However, it remains to be seen if these antibodies 

result in a reduced disease burden as MIF is known to have a variety of other 

receptors (including CD44 and the co-receptors CXCR2 and CXCR4 [368]). Considering 

the elevated MIF levels displayed in MM (as well as the benefits of MIF knockdown 

myself and others have shown) it would be pertinent to see if this treatment would 

benefit MM patients alongside current treatment regimens. 

MIF was not the only cytokine shown to be elevated in my cytokine array analysis of 

MM and therefore there is scope for other potential BMM effectors. Chitinase-3-like-

1 (CHI3L1, also known as YKL-40), monocyte chemoattractant protein 1 (MCP-1, also 

known as CCL2), MMP-9, osteopontin and Serpin-e1 were all shown to be highly 

expressed by MM cells at varying levels. All of these cytokines have previously been 

implicated in angiogenesis [242, 369, 370] and have also been associated with a 

variety of other disease beneficial mechanisms. For example, MM cells are known to 

secrete MCP-1 when stimulated by IL-6 [371], and MCP-1 has been shown to play an 
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important role in the recruitment of macrophages into the tumour 

microenvironment,  contributing to MM drug resistance [372].  

MMP-9 has previously been shown to degrade collagens and fibronectin [373] and 

the high levels of MM derived MMP-9 shown in this study potentially highlights the 

ability of these cells to invade both the stroma and the sub-endothelial basement 

membrane. Further to this, a study by Barillé et al. revealed that MMP-9 was 

produced consistently by MM cells (with no measurable levels detected from 

BMSCs), and this secretion was not effected by any cytokine or hormone tested [240], 

although it was slightly elevated in co-culture. Elevated levels of osteopontin have 

previously been reported in MM patients in a study by Standal et al. [374]. They found 

that not only was osteopontin produced by both MM cells and BMSCs but that MM 

cell lines actually adhered to osteopontin, implicating a role for this cytokine in the 

retention of MM cells to the bone marrow. 

Serpin-e1 (also known as plasminogen activation inhibitor-1, PAI-1) is a serine 

protease inhibitor, and the elevated levels found in my work are in agreement with 

previous studies in MM [375]. These increased levels of serpin-e1 may be due to 

genetic variants in the SERPINE gene, which have been associated with an increase in 

risk of MM [376], however no correlation was found in the cited study. Indeed, 

despite the known pro-cancerous effects of these cytokines, little has been done to 

investigate their interactions with the BMSCs. Perhaps of greater interest to myself 

and others are the cytokines that are upregulated in response to MM-BMSC co-

culture.   

In Section 5, I showed how co-culture of primary BMSC and MM cells changes the 

cytokine profile to increase the availability of both IL-6 and IL-8 in comparison to 

BMSC and MM cell monocultures – however these were not the only cytokines which 

were upregulated. EGF and VEGF were both shown to increase upon co-culture 

(however these results were not statistically significant with the sample size used). 

Increased VEGF has been synonymous with cancer for decades, upregulated by either 

oncogene expression, cytokine signalling, or hypoxia - and as such its increased level 

in co-culture was not unexpected. VEGF plays a crucial role in tumour vascularisation, 

with high levels of angiogenesis needed to maintain malignant cell growth. This 

remains true in Myeloma, where it is produced by the MM cell and has been shown 
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to not only increase levels of angiogenesis, but also stimulates microvascular 

endothelial cells to secrete IL-6 [377]. 

EGF showed a drastic increase in concentration (approximately a 7 fold increase), but 

this elevation was highly variable between patient samples. The EGF family have 

previously been implicated in MM disease progression, with heparin-binding EGF 

(HB-EGF) a known growth factor for malignant plasma cells [378]. Interestingly, HB-

EGF is not expressed by mesenchymal BMSCs however its receptor, EGFR-1, is 

expressed (receptor is also known as HER-1 or Erb-B1). Upon EFGR-1 stimulation, 

BMSCs have been shown to proliferate more rapidly without differentiating [379], in 

a dose dependent manner. The BMSCs inability to differentiate could also mean that 

the MM cell is effectively preventing the formation of osteoblasts and subsequently 

preventing bone repair (further exacerbating MM symptoms). As EGF also binds to 

the same receptor as HB-EGF, it would be logical to conclude that the increased 

production of EGF from either the MM cell or BMSC (as both were shown to have 

similar levels in co-culture), could also cause this increased arrest in BMSC 

differentiation and increase in proliferation. On reflection, it would have been of 

interest to see if there were similar increases in other members of the EGF family, 

unfortunately the cytokine arrays used only measure EGF from this particular group 

of proteins. 

 

2. cMYC regulation of MIF induced IL-6 and IL-8 

To determine the potential mechanism by which MIF acts to increase IL-6 and IL-8 

within the BMSCs, a panel of common pathway inhibitors were used (a proteasome, 

NF-κB, PI3K/AKT, JNK and c-Myc inhibitor were all tested). In these experiments, 

cMYC was identified as a potential instigator for these increases. Use of the cMYC 

inhibitor JQ1 resulted in the reversal of both IL-6 and IL-8 increased transcriptional 

levels seen in MIF stimulated BMSCs and this reduction was confirmed in 3 other 

primary BMSC samples. To confirm the role of cMYC, I attempted to KD cMYC RNA in 

primary BMSCs, however the KD achieved was too modest to be considered for 

experimentation. I believe that the lack of successful KD in these samples may have 

been due to the critical role that cMYC plays in the growth of the majority of cells. As 
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only a modest KD of cMYC was achieved in primary BMSCs, I instead chose to use an 

in vivo model to assess cMYC inhibitory effect on IL-6 levels. In vivo testing of JQ1 was 

unfortunately limited to IL-6 only analysis, due to the lack of IL-8 gene (and its 

receptor CXCR1) present in the murine genome [380]. cMYC inhibition via treatment 

with JQ1 was shown to significantly decrease murine IL-6 serum levels in established 

disease. Overall, I showed that MM derived MIF can stimulate IL-6 and IL-8 

production in BMSCs via cMYC, both in vitro and in vivo.     

Others have shown that JQ1 treatment reduces tumour burden and survival of NSG 

mice transplanted with MM cells [381]. Although BMSC are often cyto-protective in 

the context of anti-MM therapy, in this study the authors observed that the 

sensitivity of MM cell lines to JQ1 is largely unchanged by the presence of HS-5 cells 

(a BMSCs cell line). Furthermore, the authors show that less than 7 days of JQ1 

treatment (at 50 mg/kg IP daily) was predicted to have no measurable effect on 

tumour burden [381]. In my study, I designed the experiment so that this dosage was 

used to control for the effects that reduced tumour burden may have on MM MIF 

secretion and subsequent BMSC IL-6 expression. NSG mice were IV injected with 

U266 MM cells, and the treatment group was administered with JQ1 for 5 days. As 

expected, 5 days of JQ1 treatment showed little difference in MM disease burden (as 

measured by BLI) between the two groups of animals. However, despite similar 

tumour burden, murine IL-6 was significantly reduced in the JQ1 treated animals 

(carrying human MM) compared to vehicle control treated animals. This result shows 

that not only is the fall in murine IL-6 levels independent of the effects of tumour 

burden, but that the JQ1 c-Myc inhibition is exerting it’s anti MM activity by inhibiting 

BMSC IL-6 transcription. This result may also help to explain why BMSCs do not 

appear to offer MM protection from JQ1 therapy. 

Unfortunately, due to the non-elevated expression of cMYC coupled with its 

ubiquitous nature, targeting this transcription factor for therapeutic purposes would 

not be a simple option. This is perhaps why clinical studies investigating c-Myc 

inhibition are either very much in their infancy (with NCT02157636, NCT02757326 

and NCT01943851 only now recruiting for Phase I studies), or have been terminated 

prematurely (NCT02110563). Interestingly, there may already be a MM drug that 

helps to combat BMSC c-Myc. Bortezomib (BZ) is a highly effective drug in the 
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treatment of haematological malignancies, including MM. Until lately, the exact 

mechanism by which this drug works was poorly understood, although previous 

studies have shown that BZ can induce apoptosis by blocking of the NF-κB pathway 

(detailed in Section 1.1.5). As well as this, a recent study by Suk et al. showed that 

another way by which BZ can inhibit malignant cell proliferation is by the 

downregulation of c-Myc expression, and this was shown in Burkitt’s lymphoma cells 

[382]. It is therefore possible that BZ’s efficacy in MM is not only due to its effect on 

the malignant cell, but via the reduction of extracellular IL-6. Unfortunately, the 

effect of BZ on other cells within the microenvironment was not considered in this 

study and without the benefit of determining where the serum IL-6 originates in 

clinical trials (as I was able to do in a murine-human xenograft model) it will be 

difficult to determine which cell population cMYC inhibition is affecting.    

 

3. PI3K p110δ and p110γ isoforms are targetable in MM 

In Section 5 I showed how MIF stimulation of BMSCs significantly increased the levels 

of BMSC IL-6 production, which is pivotal in MM disease. In Section 4, I showed how 

both BMSC conditioned media and IL-6 on its own can stimulate previously low levels 

of activity in the PI3K pathway within MM cells. In the bone marrow 

microenvironment, MM cells will be continuously subjected to this stimulation, 

accounting for the increased levels of PI3K activity reported in other studies [303] 

(even when genetic abnormality in PI3K related genes is lacking). Aberrant PI3K 

signalling has long been a hallmark of cancer, however pharmacological attempts to 

reverse this oncogenic pathway have the potential to effect multiple tissue types, due 

to the ubiquitous nature of PI3K signalling. Recently, there has been significant 

progress made in the production of PI3K inhibitors that can differentiate between the 

four class I PI3K isoforms (which have been frequently linked with cancer). As the 

p110δ and p110γ PI3K isoforms are preferentially expressed by leukocytes, this 

provides the opportunity for a more targeted treatment which could have the 

potential to be highly effective in several blood cancers, including Multiple Myeloma 

[288, 290]. 
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IPI-145 (brand name Duvelisib) is one such drug that has shown high affinity for the 

treatment of haematological malignancies, as it targets both the p110δ and p110γ 

PI3K subunits. At present it is not used clinically, however Phase III trials are currently 

underway for the use of this drug in the treatment of diseases such as CLL and 

follicular lymphoma (NCT02004522, NCT02049515). It is currently unclear how 

effective IPI-145 will be in any form of advanced disease, as the only clinical trial that 

was specifically focused on this was prematurely terminated to ‘focus resources on 

studies which can potentially enable the registration of duvelisib’ (NCT01476657). 

The use of this drug for the treatment of MM patients is not currently being 

investigated. 

My data showed that not only are p110δ and p110γ expressed in patient derived MM 

samples, but that use of the dual inhibitor IPI-145 was more beneficial than single 

isoform inhibition in vitro. Single isoform inhibition was achieved using the drugs CAL-

101 and CZC24832. CAL-101 (also known as Idelalisib) is a selective p110δ inhibitor 

that has been shown to be highly effective at reducing downstream Akt activation in 

both CLL and Mantle Cell Lymphoma (MCL) at as little as 0.1µM concentration [211] 

and is already in clinical use for the treatment of CLL (according to current NICE 

guidelines). In MM, despite showing preclinical potential by Ikeda and colleagues 

[290, 303], the use of CAL-101 has not been taken forward to clinical trials – possibly 

as the prior in vivo experiments failed to take into account the effects of the BMM 

(with authors instead investigating sub-cutaneous tumours). Indeed, the 

concentrations of CAL-101 needed to produce a similar levels of inhibition in MM 

cells is far higher than that needed in CLL cells (greater than 10 fold increase).  

CZC24832 was the first p110γ inhibitor developed and shows great selectivity 

(greater than 10 fold over other isoforms), however the authors describe that further 

optimisation of the drug would be needed to take it to clinical trials. Since conducting 

my study, a new p110γ inhibitor has been developed [383] that is highly specific (with 

greater than 100-fold selectivity over the other p110 isoforms). This drug could have 

proven useful in clarifying the role of p110γ in primary MM cells, as lentiviral 

modification of these cells is not possible.    
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My results showed that in MM, the use of IPI-145 (in comparison to both a control 

and single isoform inhibition) resulted in significant reduction in cell viability as well 

as an increased level of cell apoptosis in both monoculture and when co-cultured 

with BMSCs. I also found that for the reduction of MM cell adhesion to BMSCs, both 

isoforms needed to be inhibited to produce a significant result. MM is not the only 

condition in which dual inhibition of these isoforms has been shown to be the most 

effective, with it also being shown in an antibody-induced arthritis model [384].   

Interestingly, lentiviral knockdown of p110γ was sufficient to significantly reduce 

MM-Fn adhesion in both of the MM cell lines tested. Although this result was not 

mirrored when measuring primary MM cell adhesion to Fn, this may be due to 

pharmacological inhibition not being as effective as lentiviral suppression of p110γ 

expression. Despite this, the data shows a potentially unique role for p110γ in MM 

cell adhesion and as such provides further evidence for the use of dual inhibitors over 

p110δ only inhibitors (such as CAL-101 or TGR-1202). Whereas MM cell adhesion 

results suggested a prominent role for p110γ, MM cell migration towards media 

containing SDF-1 was only reduced with dual inhibition showing that both of these 

isoforms play a critical role in this process. Although a role for p110α has previously 

been identified in ovarian cancer cell and endothelial cell migration [385, 386], this is 

the first time that the p110δ and p110γ isoforms have been implicated in the 

migration of MM cells. 

The expression of the differing PI3K isoforms in both MM cell lines and primary cells 

has been a contentious issue, with varying expression seen in the same cell lines 

between different studies [278, 340]. As such, I measured the expression of both 

p110δ and p110γ in all the MM cell lines and primary samples that I used and found 

that both isoforms are expressed in all cells tested at slightly varying levels. To test 

the roles of the isoforms in vivo, both p110δ and p110γ knockdown was performed 

on U266 cells (via the PIK3CD and PIK3CG genes respectively). This cell line was 

selected due to the similar levels of expression seen in both subunits, mirroring what 

was observed in the primary MM samples tested. At end point, results showed similar 

levels of reduction in tumour burden and increase in OS, in comparison to an ShE 

control. No extra benefit was seen with a double knockdown in terms of OS during 

this time frame. The increase in OS observed is in agreement with a recent study by 



Page | 159 

 

Sahin et al., who showed that only p110α knockdown had no effect on survival in vivo 

[278]. However, the highly reduced tumour burden I saw in my PIK3CG knockdown 

had not been observed before, and perhaps is instead indicative of its role in MM cell 

adhesion (seen in vitro) which would correlate with the reduced levels of MM cells 

engrafting to the bone marrow. Although the efficacy of IPI-145 in the treatment of 

CLL and AML [387, 388] has previously been shown, preclinical investigations for the 

use of this drug in MM have not been performed. Here, my data shows that with only 

7 days of IPI-145 treatment (at 15mg/kg via IP injection) the increase in MM tumour 

burden can be significantly reduced in established disease. This in turn led to a 

significant increase in overall survival, which could potentially be amplified further 

with an increase in treatment duration.  

Throughout my study, IL-6 has played a key role in MM disease and it would be 

reasonable to suggest that therapeutic targeting of this cytokine could prove highly 

effective. Unfortunately, all attempts to negate the effects of IL-6 in Myeloma have 

thus far proven ineffective with current clinical trials showing no difference in patient 

OS when an IL-6 inhibitor is used alongside the standard treatment regimen [389, 

390]. It may therefore be necessary to target the source of the IL-6 upregulation 

(using an anti-MIF antibody for example), as well as using the anti-IL-6 antibody that 

proved to be so effective in vitro [391].   
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6.36.36.36.3 ––––    Limitations Limitations Limitations Limitations     

This study had a number of limitations, one of which is undoubtedly the rarity of 

primary MM samples. Larger sample numbers would have been invaluable not only 

to aid with statistical analysis, but also to provide a more accurate representation of 

MM disease. Also with each primary sample obtained and purified, on average less 

than 0.5 x 106 CD138+ cells were isolated, limiting the number of assays that could be 

performed. Lack of patient history due to confidentiality agreements also meant that 

the treatment provided and the severity of disease of a patient was unknown, and it 

unclear how these factors could potentially influence MM’s dependency on its 

microenvironment.  

As no global gene expression profiling was undertaken during this work, the 

significance of the transcriptional changes that I observed throughout this thesis is 

limited. DNA microarray data or transcriptome sequencing of both the BMSCs and 

MM cells I used would have been of great benefit in this study. 

Cell lines are not ideal for investigations into the BMM, as they are ultimately 

independent from this system and can only be used as an indicator on how a highly 

advanced MM would progress. Unfortunately, attempts at engrafting primary MM 

cells into NSG mice were unsuccessful. This is most likely due to the MM cell’s 

dependency on its microenvironment making the cells highly susceptible to 

apoptosis. I do however believe that it is possible to get primary MM cells to engraft 

in NSG mice, but the procedure will be highly time dependent and will have better 

success rates with a more aggressive disease phenotype (due to secondary mutations 

causing the cells to be more independent of their microenvironment).  

In vivo work was subject to several limitations, not least the mouse model used. NSG 

mice are severely immunocompromised which allows for the engraftment of human 

cells without risk of rejection, which is why they were selected for this research. 

However, the lack of immune system for which they were selected undoubtedly has 

an impact on disease progression. To circumnavigate this issue a C57BL/KaLwRij 

mouse model in combination with the 5TGM1 cell line could be used (C57 

background which is predisposed to MM, 5TGM1 cells were originally isolated from 

a symptomatic KaLwRij mouse [392]), however this would lose the human disease 
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aspect from the model and, regrettably, neither of the models described allows for 

the direct manipulation of the BMM (instead we are limited to using pharmacological 

influence).   

The lack of IL-8 expression in particular has proved to be highly limiting in my 

research, however with no mice expressing this gene (or its receptor CXCR1) there is 

little that can be done to overcome this issue.  There are functional homologues of 

IL-8 (such as macrophage inflammatory protein 2 and liposaccharide-induced CXC 

chemokine) which could potentially work in the same manner however this would 

require further investigation [393]. The limitations of mouse models will continue to 

be an issue in all areas of medical research. However good a xenograft model is, it is 

a human MM cell interacting with a murine BMM. The continuing optimisation of 3D 

tissue culture models could in the future more accurately reflect human MM’s 

interactions with its microenvironment, as well as providing the cytokines (including 

IL-8) which are lacking from the murine system.  

 

6.46.46.46.4 ––––    Conclusions and Conclusions and Conclusions and Conclusions and Future Future Future Future WorkWorkWorkWork    

The work described in this thesis not only aids in the current understanding of MM’s 

relationship with its microenvironment, but also poses more questions and paves the 

way for future investigations. I have shown that MIF signalling from MM cells causes 

transcriptional changes in the BMSC (via cMYC) that are beneficial to disease 

progression. MIF stimulated BMSCs had significantly increased production and 

secretion of IL-6/IL-8 into the BMM, which in turn can cause the activation of the PI3K 

pathway. This pathway was shown to be targetable via the p110δ and p110γ inhibitor, 

IPI-145 which retarded tumour growth and increased overall survival in vivo. 

However, the question of if the inhibition of MIF or indeed PI3K could increase the 

efficacy of current therapeutics still remains. Further work is needed to see if 

targeting PI3K with IPI-145 is beneficial for MM patients, and I would recommend the 

clinical trialling of this compound alongside the current treatment regimens. In 

regards to MIF, we are only beginning to discover the potential of this cytokine in the 

re-modelling of its environment. If phase I studies of anti-MIF antibodies prove it to 
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be well tolerated, its use in the treatment of MM should be of great interest in the 

coming years.  

 

In conclusion, my thesis objectives were as follows: 

1. Investigate if PI3K p110δδδδ and p110γγγγ signalling within the malignant cell 

benefits MM disease progression. 

The combination of p110δ and p110γ activity was shown to benefit MM cell 

survival, adhesion and migration – in both cell lines and primary patient 

samples. 

 

2. Determine if these PI3K isoforms are activated by the BMM and if they can 

be inhibited within this environment. 

The PI3K pathway was shown to be stimulated in response to both BMSC-

conditioned media and recombinant IL-6. Inhibition of this pathway with the 

drug IPI-145 was shown to be possible both in vitro (even when co-cultured 

with BMSCs) and increased survival time significantly in vivo. 

 

3. Explore if MM cell signalling can re-model the BMM to benefit its survival. 

The cytokine MIF was shown to be secreted at high levels from MM cells (but 

not BMSCs). Recombinant MIF was shown to stimulate the production of both 

IL-6 and IL-8 from the BMSCs – contributing to a MM beneficial environment. 

Inhibition of cMyc in the BMSCs was shown to aid in negating these effects, 

indicating a role for cMYC in the regulation of MIF stimulated IL-6/8 

expression. 
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