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A B S T R A C T

High-field and low-field proton NMR spectroscopy were used to analyse lipophilic extracts from ground roast
coffees. Using a sample preparation method that produced concentrated extracts, a small marker peak at
3.16 ppm was observed in 30 Arabica coffees of assured origin. This signal has previously been believed absent
from Arabicas, and has been used as a marker for detecting adulteration with robusta. Via 2D 600MHz NMR and
LC-MS, 16-O-methylcafestol and 16-O-methylkahweol were detected for the first time in Arabica roast coffee and
shown to be responsible for the marker peak. Using low-field NMR, robusta in Arabica could be detected at levels
of the order of 1–2%w/w. A surveillance study of retail purchased “100% Arabica” coffees found that 6 out of 60
samples displayed the 3.16 ppm marker signal to a degree commensurate with adulteration at levels of
3–30%w/w.

1. Introduction

Coffee is a major tropical agricultural crop, and one of the most
widely traded global commodities (International Coffee Organization.,
2017b). Of the 124 species known to science (Davis, Govaerts, Bridson,
& Stoffelen, 2006; Davis, Tosh, Ruch, & Fay, 2011), only two are
commercially important: Coffea arabica L. (Arabica coffee) and C. ca-
nephora Pierre ex A. Froehner (robusta, or conilon) (Belitz, Grosch, &
Schieberle, 2009). Although generally more difficult to grow than ro-
busta, Arabica represents around 60% of global production.

Due to the superior organoleptic properties of the roasted beans,
Arabica coffees command a higher price than robusta. The opportunity
for fraudulent economic gain by substituting Arabica with robusta
beans is therefore obvious (Toci, Farah, Pezza, & Pezza, 2016). The
identity of intact beans can be verified by inspection (International
Coffee Organization, 2017b; Mendonca, Franca, & Oliveira, 2009), but
for ground roast products some form of chemical assay becomes ne-
cessary.

In a recent paper (Defernez et al., 2017), we reported the use of low-
field (60MHz) 1H NMR spectroscopy to screen lipophilic extracts from

ground roast coffees for the undeclared presence of robusta in products
labelled “100% Arabica”. Our work exploited a marker compound, the
diterpene 16-O-methylcafestol (16-OMC). When present in coffee, 16-
OMC is mostly present in esterified form and exhibits a resonance in the
1H NMR spectrum at 3.16 ppm that is well-resolved and isolated from
other signals even at 60MHz. Esterified 16-OMC is a well-documented
minor compound of robusta beans, and as long ago as 1989 was re-
ported as absent from Arabica coffee (Speer & Mischnick, 1989). Since
then the prevailing literature consensus has reiterated its absence from
Arabica coffees (Bonnlander, Wunnecke, & Winterhalter, 2007; de Roos
et al., 1997; Kamm et al., 2002; Kurzrock & Speer, 2001; Pacetti,
Boselli, Balzano, & Frega, 2012; Pettitt, 1987; Speer & Kölling-Speer,
2006). It has therefore been used as a marker for the presence of ro-
busta in coffee products, including in a recognized method for au-
thenticity testing (DIN 10779., 2011).

In our previous work, we described using the 3.16 ppm peak area as
a proxy for the amount of robusta coffee present in a sample. Our es-
timated detection limit was around 10%w/w robusta in Arabica. In our
new research, presented here, chloroform is again used to extract the
lipophilic phase from a sample of ground roast coffee, but in contrast to
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our previous approach, this is followed by a concentration step: the
chloroform is evaporated using a vortex evaporator and the residue
dissolved in a much smaller amount of relatively higher-cost deuterated
chloroform. This allows the use of much larger amounts of coffee and
solvent in the extraction step, without the method becoming prohibi-
tively expensive – an important consideration for a putative screening
technique. The concentrated extract produces an NMR spectrum with
larger peaks and greater signal-to-noise from a given set of acquisition
conditions. This is especially helpful with regards to detection of minor
compounds such as esterified 16-OMC. As a result of this improvement,
we are now attaining a detection limit of the order of 1%w/w robusta
in Arabica. This is an important milestone. Although there is no uni-
versal statutory definition, food fraud is generally accepted to mean
intentional substitution or adulteration of food products for economic
gain, rather than simply adventitious contamination during normal
processing. It has been proposed that for many products, 1%w/w of
adulterant is a reasonable cut-off for making this distinction (Food
Standards Agency., 2013), although this will depend on the commodity
and normal production practices in the sector. With regards to the
undeclared presence of robusta in Arabica, even substitution at a rate of
a few percent could yield substantial economic advantage, considering
the price differential between the two species and the amount of coffee
traded.

An unexpected result of the improvement in limit of detection was
the surprising discovery of low levels of 16-OMC in Arabica coffees, in
contrast to previous studies. Confirmation of this finding was sought
using a range of Arabicas of assured provenance. Throughout, the
60MHz results were cross-validated by comparison with 600MHz 1H
NMR. LC-MS and 2D NMR were also used to confirm the annotation of
the 3.16 ppm resonance.

Finally, the new preparation procedure was used to conduct a sur-
veillance exercise of declared “100% Arabica” ground roast coffee
samples sourced from a range of retailers around the world. The aim
was to look for evidence of samples adulterated with robusta or other
coffee species, and estimate the prevalence of this kind of fraud in the
sector.

2. Materials and methods

2.1. Samples

2.1.1. Samples used in method improvement and development work
Three samples of roast coffee beans (2 Arabica, 1 robusta) were

obtained locally (trusted UK commercial suppliers, British Coffee
Association). These samples were used in the development of the
sample preparation procedure.

Two of these (one Arabica, one robusta) were used to prepare a
series of 18 mixtures, with the proportion of robusta covering the range
0–16%w/w, to facilitate direct comparison with our previously re-
ported calibration results. The other Arabica was paired with the ro-
busta and used to prepare a further 9 samples, at robusta contents of
between 1 and 24%w/w. Both series were used in a simulated au-
thenticity test based on the samples of assured origin described below
(Full details of the mixture samples are included in Supplementary
Fig. 5).

2.1.2. Arabica and “non-Arabicas” of assured origin
Forty samples of green coffee beans were obtained by in situ col-

lection from coffee farms/farming districts, or from samples of known
provenance (Royal Botanic Gardens (RBG), Kew). Thirty of these were
Arabica coffees, of which 18 were wild types (17 Ethiopian, 1
Colombian). The Ethiopian wild types were collected directly from
coffee farms (by either A.P. Davis, or other staff at the RBG). Numerous
genetic analyses (Tadele, Mekbib, & Tesfaye, 2014; Tesfaye, Borsch,
Govers, & Bekele, 2007; Tesfaye, Govers, Bekele, & Borsch, 2014) show
that Ethiopian cultivated stock is derived directly from the wild C.

arabica genepool, with no indications of hybridization with robusta (C.
canephora), or Arabica cultivars backcrossed with robusta (e.g. Coffee
cv. ‘Catimoor’). Moreover, robusta coffee is essentially absent from
Ethiopia; it occurs in neighbouring countries (southern South Sudan,
and Kenya), but thousands of kilometers from wild or farmed Arabica in
Ethiopia. There is a very small amount of robusta grown in the far south
west in Bebeka (Bench Maji), but this is a considerable distance from
the origin of any of the samples examined here. The remaining 12
Arabica samples were cultivars from a range of commercially important
coffee producing countries. The final 10 assured origin samples were
“non-Arabica” species (6 C. canephora, 2 interspecies hybrids, 2 Lib-
erica).

The Arabica samples were from the harvest years 2014–2016; the
non-Arabica samples from 2013. All samples were roasted to a medium
roast profile (IKAWA Pro Sample Roaster, Ikawa Ltd., London) before
sample preparation. Complete details of these samples are given in
Supplementary Table 1.

2.1.3. Samples for quantitative work
One of the authentic Arabica samples (sample 12) was used to de-

termine limit of detection (LoD) and limit of quantitation (LoQ); for
this, a series of 8 extracts spiked with different amounts (0, 0.025, 0.05,
0.1, 0.2, 0.3, 0.4, 0.5mg/ml in chloroform-d) of 16-OMC (Sigma-
Aldrich, formula depicted in Fig. 3) was prepared. The LoD and LoQ
were also determined using a modification of a previously described
method (Schievano, Finotello, De Angelis, Mammi, & Navarini, 2014)
employing a series of mixtures in which the same Arabica sample was
spiked at different levels (25, 50, 80, 90%) with a commercial robusta
sample. The chloroform-d used to dissolve the dried extracts (Section
2.2) contained 2.5mM DMF as an internal concentration standard.

2.1.4. Survey of retail coffees sourced worldwide
60 samples of ground roast coffees were purchased by IFR staff,

students and collaborators from a range of outlets in 11 different
countries. All displayed the labelling claim “100% Arabica” or
equivalent, in the relevant local language. The geographic origins of the
coffees as stated on the labels covered 11 different coffee-growing
countries and represented all producing continents. Details of each
sample are given in Supplementary Table 2. All samples were supplied
to IFR's Analytical Sciences Unit in original unopened packaging.

2.2. Sample preparation

All whole bean coffee samples were ground using a Braun coffee
grinder which was thoroughly cleaned between the grinding of each
sample. Retail-purchased ground roast coffees were prepared directly
from the pack, with no further grinding step. Gradation tests (0.1, 0.3,
0.5 and 1mm sieves) determined that ground sample particle sizes were
typically distributed across the range 0.3–1mm for both purchased
ground roast and in-house ground coffees.

The lipophilic fraction was extracted by taking 10 g of ground
sample and stirring (600 rpm) with 30ml of chloroform for 5min. The
extract was filtered through filter paper (Whatman No. 1). It was then
put through an empty SPE cartridge (Bond Elut) configured for simple
filtration (20 μl polyethylene frits) into sovirel tubes. The extract was
dried using a vortex evaporator with heating at 30 °C and a pressure of
30 in Hg for 30min. The dried extract was redissolved in 800 µl of
chloroform-d and filtered through cotton wool directly into 5mm NMR
tubes. For the quantitative work, recovery of the lipophilic phase in
chloroform was recorded, amounting to 8 ± 0.5ml.

A duplicate extraction procedure was carried out for a number of
samples as indicated in the discussion.
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2.3. Spectral acquisition

2.3.1. Low-field 1H NMR spectroscopy
60MHz 1H NMR spectra were acquired on a Pulsar low-field spec-

trometer (Oxford Instruments, Tubney Woods, Abingdon, Oxford, UK)
running SpinFlow software (v1, Oxford Instruments). The sample
temperature was 37 °C, and the 90° pulse length was 13.28 μs as de-
termined by the machine’s internal calibration cycle. For each sample,
256 free induction decays (FIDs) were collected using a filter width of
5000 Hz, acquisition time of 6.55 s and recycle delay of 2 s, resulting in
a total acquisition time of approximately 40min per extract. These
parameters represent an acceptable compromise between speed and
spectral quality. FIDs were zero-filled to give spectra of 65,536 points.
The linewidth was maintained between 0.5 and 0.9 Hz by daily
checking of the chloroform FWHM and shimming as and when neces-
sary.

In all cases, the FIDs were Fourier-transformed, co-added and phase-
corrected using SpinFlow and MNova (Mestrelab Research, Santiago de
Compostela, Spain) software packages to present a single frequency-
domain spectrum from each extract. The chemical shift scale in all
spectra was referenced to the residual chloroform peak at 7.26 ppm.

2.3.2. High-field 1H NMR spectroscopy
600MHz 1H NMR spectra were collected from selected extracts

using a Bruker Avance III HD spectrometer running TopSpin 3.2 soft-
ware and equipped with a 5mm TCI cryoprobe. The probe temperature
was regulated at 27 °C. For each spectrum 64 scans were collected using
the zg30 sequence with P1=1 µs (pulse length 0.33 µs equivalent to a
pulse angle of 4°), a spectral width of 20.5 ppm, acquisition time of
2.67 s and relaxation delay of 3 s. Total acquisition time was 6 min. The
receiver gain was adjusted automatically for each sample prior to ac-
quisition to avoid receiver overload. FIDs were zero-filled and trans-
formed using exponential line broadening (0.3 Hz) to give spectra of
65,536 points. The spectra were referenced to the residual chloroform
peak at 7.26 ppm. For the quantitative spiking experiments the receiver
gain was fixed at 28.5 and the relaxation delay could be maintained at
3 s because of the extremely low pulse angle. It was found that the
intensity ratio of the 3.16 ppm signal to the DMF methyl signal
(2.95 ppm) was not changed by increasing the relaxation delay to 43 s,
the value used previously (Schievano et al., 2014).

Heteronuclear Single Quantum Coherence (HSQC) and
Heteronuclear Multiple Bond Coherence (HMBC) spectra were run
using standard Bruker pulse sequences with 2048 (t2)× 256 (t1) data
points, zero-filled to 2048×1024 points on Fourier transformation.
The 1H× 13C spectral widths were 12×165 ppm (HSQC) and
12×250 ppm (HMBC) and the number of scans per t1 increment (NS)
was for the Arabica sample NS=1152 (HSQC), NS= 960 (HMBC) and
for the robusta sample NS=4 (HSQC), NS= 128 (HMBC).

2.4. NMR data analysis

All data visualization and processing of the frequency-domain
spectra was carried out using Matlab (The Mathworks, Cambridge, UK)
installed along with the 'Statistics and Machine Learning' and 'Signal
Processing' toolboxes, making use of a range of inbuilt functions.

To visualize or quantify individual peaks or groups of peaks, the
relevant region was locally baseline corrected using second order
polynomial fitting.

Wherever direct comparisons were made between low-field and
high-field data, spectra were first internally normalized through divi-
sion by the integrated glyceride region (3.9–4.6 ppm) (Parker et al.,
2014). This mitigates for variations in overall intensity; this can arise
from slight changes in sample concentration due to evaporation be-
tween the time of acquisition of the low- and high-field spectra, and
also from differences in the receiver gain setting which was optimized
for each spectrum individually on the high-field instrument in order to

avoid baseline artefacts.
Simple linear regression with an intercept term was used to model

the sample robusta concentration as a function of integrated area of the
3.16 ppm peak, in both raw and normalized spectra as stated.

2.5. Mass spectrometry analysis

Ultra high performance liquid chromatography – time of flight mass
spectrometry was performed with a Waters Acquity UPLC interfaced to
a Waters Synapt G2-Si QTOF mass spectrometer (Herts, UK). The
chromatography column was a Waters HSS T3 C18 capillary column
(100× 2.1mm, particle size 1.7 µ) maintained at 40 °C with a flow rate
of 400 µl/min. The reversed phase gradient profile consisted of a binary
gradient initially of 95% A (water+ 0.1% formic acid (Greyhound
Chemicals, Merseyside, UK)) and 5% B (acetonitrile (Chromasolv LC-
MS grade, Fluka, Poole, UK)+ 0.1% formic acid) increasing to 95% B
at 41min (see Supplementary Fig. 3 for details). Water was in-house
Millipore ultra-distilled. The injection volume was 5 µl.

The mass spectrometer was run in positive ion electrospray mode
with a ‘single stage’ (zero collision energy) m/z selection. The scan time
was 0.3 scan/s and the mass range 50–1200 Da. The mass accuracy was
20,000 FWHM (±0.005 Da).

Ground powders (0.2 g) were saponified with 2ml of 2.5 M KOH in
EtOH (Fluka) at 80 °C for 1 h as set out in de Souza & Benassi, (2012).
Work-up was as described except that diethyl ether (Sigma, Poole, UK)
rather than t-butyl methyl ether was used to extract the organic phase.
The dried organic phase was resuspended in 1.5ml 20% MeCN.

3. Results and discussion

3.1. Development work: The effect of the revised sample preparation method

Fig. 1(a) shows the 60MHz spectra obtained from two lipophilic

Fig. 1. (a) 60MHz 1H NMR spectra obtained from two lipophilic extracts prepared from a
sample of robusta coffee beans. Spectrum A is of an extract prepared using the method
involving a concentration step; spectrum B is of an extract prepared using the previously
reported direct extraction method. Panels (b) and (c) show expansions around the
3.16 ppm and caffeine peaks (∼3.38, ∼3.58 ppm), for the concentrated and direct
methods respectively.
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extracts prepared from a sample of robusta coffee beans. The data are
presented as raw intensities, after co-addition and zero-filling but with
no further processing such as apodization. Spectrum A is of an extract
prepared using the method described herein, which involves a con-
centration step; spectrum B is of an extract prepared using the direct
extraction method we used in our previous work (Defernez et al., 2017).
The difference in overall spectral intensity reflects the concentration
difference resulting from the two preparation methods.

Fig. 1(b) and (c) show the region of interest around the 3.16 ppm
peak with and without the concentration step, respectively. This peak is
conventionally attributed to the H21 methyl protons in esterified 16-
OMC (Scharnhop & Winterhalter, 2009; Schievano et al., 2014). The
plot also shows neighbouring resonances from caffeine, included to give
a sense of scale. Here, the spectra have each been internally normalized
to the area of the glyceride peaks at 3.9–4.6 ppm, to allow plotting on
the same scale and direct side-by-side comparison. Fig. 1(b) and (c)
show that the concentration step gives an improved-signal-to noise. We
can conclude that this improvement is wholly due to the new sample
preparation method, specifically the concentration step, since the
spectra were collected using the same spectrometer and acquisition
conditions, and the extracts were prepared from the same original
coffee sample.

This revised procedure also leads to a substantial improvement in
the ability to calibrate for the robusta content in a series of robusta/
Arabica mixtures. The linear relationship between the robusta content
and the integrated area of the 3.16 ppm peak recorded at 60MHz is
demonstrated in Fig. 2(a) for the series of 18 mixture samples. Simple
linear regression yields an R2 value of 0.99, and a root-mean-square
error (RMSE) in the prediction of compositional values of 0.6%w/w.
This compares highly favourably with analogous experiments we re-
ported previously, which were carried out on mixture series prepared
without a concentration step, for which the RMSE values were 7%w/w
(Defernez et al., 2017).

Fig. 2(b) shows the 3.16 ppm region from the spectra of the entire
series of mixtures, again with the neighbouring caffeine peaks included,
and using a stacked plot for clarity. An unexpected finding is that the
spectra from the 100% Arabica samples (bottom three traces) contain a
tiny but consistent feature at 3.16 ppm. 600MHz NMR spectra were
acquired from the same series of extracts (Supplementary Fig. 1) which
confirmed these findings.

3.2. Further investigation of the 3.16 ppm peak in Arabica samples

From the perspective of a 1H NMR-based authenticity test, the
identity of the compound responsible for the 3.16 ppm peak is not as
important as the fact that the peak exists at all, since it challenges the

use of a simple ‘peak/no peak’ test for adulteration (Defernez et al.,
2017). Nevertheless, because the peak is unforeseen and because other
testing methodologies, for example HPLC or mass spectrometry, are
independent of NMR peaks, it is appropriate to investigate what com-
pounds could be responsible for this signal.

Detecting a peak at 3.16 ppm in Arabica is unexpected. One po-
tential cause could be cross-contamination (carryover) from robusta
samples to Arabica, particularly via the coffee grinder. To test for car-
ryover, a fresh Arabica sample was ground from beans using an entirely
new grinder. A 3.16 ppm peak consistent with earlier results on that
sample was detected (data not shown). A series of alternating Arabica-
robusta measurements, each time using freshly ground beans drawn
from the same two samples, showed 3.16 ppm peaks in the Arabicas
with a variation consistent with replicates without the interleaved ro-
busta samples.

To further examine the provenance of the residual peak at 3.16 ppm
in Arabica coffees, a number of experiments were conducted using 2D
high-field NMR. HSQC and HMBC experiments were carried out on a
pure Arabica sample with a weak 1H signal at 3.16 ppm and, for con-
firmation, on a robusta sample in which the equivalent signal was much
stronger. The HSQC experiment (data not shown) had a correlation
peak in both samples at 1H/13C chemical shifts of 3.16/49.2 ppm. This
is compatible with the assignments for H21/C21 signals in the spectrum
of 16-OMC (Scharnhop & Winterhalter, 2009; Schievano et al., 2014)
and of 16-OMK (Scharnhop & Winterhalter, 2009). In addition, in the
HMBC experiment (Fig. 3), both samples displayed a signal at 3.16/
84.2 ppm which is exactly as expected for the H21/C16 cross peak
transmitted via the 3JHC coupling in these two compounds (Scharnhop
& Winterhalter, 2009). Furthermore no other 13C signals could be de-
tected for the 1H trace passing through 3.16 ppm. This, together with
the fact the chemical shifts do not match the other main diterpenes such
as cafestol, kahweol or their dihydro versions, or other diterpenes that
have also been found in some coffee species (four diterpenes without a
H21-methyl group (de Roos et al., 1997)), make 16-OMC/OMK the
most likely contributors to the 3.16 ppm marker peak. For robusta
sample, inspection of the 3.16 ppm region in the 600MHz 1H spectrum
showed a very minor peak at 3.175 ppm in addition to the major peak
at 3.164 ppm. These signals were assigned to the free and esterified
forms of 16-OMC respectively (Schievano et al., 2014)). Additional
minor signals at 3.147–3.152 ppm have been attributed to decomposi-
tion products of 16-OMC (Monakhova et al., 2015). These were not
detectable in Arabica extracts where, of course, the main 3.164 ppm
peak was much weaker than in robusta (see Fig. 3 and Supplementary
Fig. 2). Identification of 1D-NMR signals which would distinguish be-
tween 16-OMC and 16-OMK is not possible in Arabica extracts; for in-
stance, H1 and C1, which would differ most in terms of chemical shift,
are hidden by other signals. It is also not easily feasible by 2D because
there are much larger amounts of (esterified) cafestol and kahweol
present, whose strong signals hinder the detection of signals from 16-
OMC and 16-OMK.

For these reasons, a concise LC-MS study was carried out to de-
termine whether 16-OMC, 16-OMK or a combination of the two was
responsible for the NMR signal at 3.16 ppm. Two Arabicas of assured
origin (wild type, Ethiopia samples 1 and 16) and, for comparison, one
robusta of assured origin (Vietnam sample 34) were selected for this
study. The analysis was carried out on saponified extracts (details in the
Supplementary Fig. 3).

Both cafestol and kahweol were detected in all 3 samples, as ex-
pected. Their presence was indicated by observation of peaks for mass
ions ([M+H]+=m/z 317, 299, 281, 147 and 133) for cafestol and
(315, 297, 279, 145, 131) for kahweol (Scharnhop & Winterhalter,
2009). Note the 2 Da mass difference due to the additional carbon-
carbon double bond in kahweol relative to cafestol. In addition we
detected ions (331, 299, 281, 147, 133) and (329, 297, 279, 145, 131)
which indicate the presence of 16-OMC and 16-OMK, respectively
(Scharnhop & Winterhalter, 2009), again in both Arabicas and in the

Fig. 2. (a) Robusta content of a mixture series versus the integrated area of the 3.16 ppm
peak in 60MHz spectra; simple linear regression line is indicated. (b) The 3.16 ppm re-
gion from the mixture series spectra shown as a stacked plot for clarity. The three bottom
traces are from repeat extractions of 100% Arabica beans.
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robusta coffee. These series are the same as cafestol and kahweol but
with additional ion masses at 331 and 329 Da due to the extra methyl
group. These two ions are therefore important for the identification of
16-OMC and 16-OMK. Extracted ion chromatograms show retention
times of 35.41min for cafestol and 37.10min for 16-OMC (m/
z=299.201 Da), and 35.26min for kahweol and 37.52min for 16-
OMK (m/z=297.18 Da). The LC-MS data also revealed the presence of
dehydrocafestol and dehydrokahweol in both Arabica and robusta.
However these two compounds do not contribute to an NMR peak at
3.16 ppm.

In summary, an NMR peak at 3.16 ppm, detected in both Arabica
and robusta ground coffees, is consistent with both 16-OMC and 16-
OMK, based on known 1H spectral peaks and on 2D NMR analysis.
Separately, LC-MS shows that both Arabica and robusta ground coffees
contain 16-OMC and 16-OMK. Therefore, we conclude that the Arabica
and robusta samples tested contain both 16-OMC and 16-OMK and that
these compounds contribute to the 3.16 ppm 1H NMR marker peak. We
hypothesise that all Arabicas and robustas displaying a 3.16 ppm peak
contain either 16-OMC or 16-OMK or a mixture of both, with other
candidate compounds very unlikely to satisfy the NMR and LC-MS
evidence presented here. For the remainder of the present work we
therefore assume that the 1H NMR 3.16 ppm peak is entirely due to 16-

OMC and 16-OMK (in esterified form in both robusta and Arabica, since
diterpenes are present in coffee almost exclusively in this form). Neither
of these assumptions invalidate our authenticity test based on the
3.16 ppm 1H NMR peak area. In contrast, attempts to quantify 16-OMC
on the basis of the 3.16 ppm 1H NMR peak area are likely to be a
quantification of both 16-OMC and 16-OMK in combination, since these
two compounds are indistinguishable at 3.16 ppm using 1H NMR at
field strengths up to 600MHz. Therefore quoted values of 16-OMC for
robusta determined by integration of the 3.16 ppm peak are likely to be
overestimates unless the contribution due to 16-OMK has been de-
termined and subtracted from the total integrated area. In addition,
comparisons of the level of 16-OMC determined via 1H NMR 3.16 ppm
peak areas are likely to be systematically larger than those derived from
the DIN method using only a 16-OMC chromatography peak and well-
resolved chromatography.

The presence of 16-OMC in robusta is well-known. 16-OMK was first
reported and quantified in robusta coffee by Kölling-Speer, Kurzrock,
and Speer (2001) and Kölling-Speer and Speer (2001)). However the
present work is the first to explicitly report the observation of the two
compounds 16-OMC and 16-OMK in Arabica roast coffee. It is therefore
useful to contrast the method set out in the DIN standard with our LC-
MS method. The work flow is comparable: extraction, liquid

Fig. 3. HMBC spectra of (a) an Arabica and (b) a robusta sample, together with the structure of 16-O-methylcafestol. The corresponding 1H spectra are shown above each plot with the
3.16 ppm peak indicated (H21 of esterified 16-OMC and 16-OMK). Note the difference in intensity: in (a) the peak immediately to the left of the 3.16 ppm signal, and slightly stronger, is
the 13C satellite of one of the caffeine peaks; in (b) this satellite is not visible on the scale plotted. The cross peak highlighted at 3.16/84.2 ppm in both plots is the 3JHC mediated
correlation between H21/C16. No other 1H/13C correlations were detected on the 3.16 ppm trace. The direct 1JCH correlation H21/C21 may also be seen (via the 13C satellites) in (b). The
corresponding signals were too weak to be seen in (a) although the correlation was detected in the HSQC spectrum of Arabica.
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chromatography and detection. However we have increased the ex-
tractable yield of 16-OMC available for detection. More importantly, we
are now using a mass spectrometer as the detector, which is more
sensitive than using UV detection at 220 nm as used for the DIN
method. This has the added benefit of giving additional information on
the species under the chromatography peaks, whereas a UV absorbance
quantitation method is sensitive to the presence of an unknown com-
pound that coelutes with the 16-OMC target.

3.3. The NMR marker in samples of assured origin

Spectra were collected from all 30 Arabica coffees of assured origin
(Supplementary Table 1, samples 1–30). The region of interest in the
60MHz and 600MHz spectral collections are shown in Fig. 4. The
presence of the 3.16 ppm marker peak was confirmed in every sample,
irrespective of genetic background and provenance. In view of these
results, we propose that 16-OMC and 16-OMK is likely to be present at
low levels in most if not all Arabica coffee beans, but in many previous
studies had not been detected (Bonnlander et al., 2007; de Roos et al.,
1997; Defernez et al., 2017; Kamm et al., 2002; Kurzrock & Speer,
2001; Pacetti et al., 2012; Speer & Kölling-Speer, 2006; Speer &
Mischnick, 1989). Indeed, our own ability to detect a peak has been
greatly improved by altering the extraction procedure, specifically, by
using a much greater amount of coffee to carry out the extraction. In
other work, 16-OMC was detected and quantified but its presence at
low levels in declared “100% Arabica” coffees dismissed on the grounds
that the relative integral of the 16-OMC peak areas were below a
threshold (Monakhova et al., 2015). It is also pertinent to note that 16-
OMC has previously been reported in other parts of the Arabica coffee
plant (Speer and Kölling-Speer, 2006) and 16-OMK in leaves (Kölling-
Speer & Speer, 2001).

Of particular note are four of the wild type samples (samples 1
[Bale], 13 [Konso], 14 [Jinka] and 16 [Western Harar]) which show
much larger 3.16 ppm marker than the other samples. The extraction
procedure and spectral acquisition at both field strengths was repeated
for these samples; these technical replicates are indicated by brackets
on Fig. 4. These samples are all from marginal coffee-growing areas,
either from the eastern side of the Great Rift Valley (Bale, Western
Harar), or from the Rift area (Jinka and Konso). However, the other
Ethiopian wild type samples from east of the Rift Valley (samples 2, 3,
17) and the Rift area (sample 15 [Gidole]) do not show elevated levels
of 3.16 ppm marker. The reasons for these differences are unclear.
There does not seem to be a relationship with climate or altitude.

Arabicas of this type could in principle show positive for robusta

contamination in a very sensitive test regime simply because they
naturally give rise to a large 3.16 ppm peak. However it is important to
emphasize that samples 1, 13, 14 and 16 are from low-producing, niche
coffee farming areas (i.e. the non-commodity sector). If traded, they
would be placed in the higher value ‘Speciality Coffee’ sector, with their
provenance known to the importer or coffee buyer. Furthermore,
Ethiopia only grows an extremely limited amount of this species (see
Methods), with no recorded production or export of robusta
(International Coffee Organization., 2017a).

The integrated area of the 3.16 ppm peak in each of the 60MHz
spectra is shown in Fig. 5(a). The technical replicates carried out on the
four samples from marginal coffee-growing areas give an impression of
the reproducibility of the method. The variation in peak area values
may reflect the greater genetic diversity of wild type Ethiopian Arabicas
in comparison to the cultivated Arabicas (Aga, Bekele, & Bryngelsson,
2005; Aga, Bryngelsson, Bekele, & Salomon, 2003; Anthony et al., 2001;
Lashermes, Trouslot, Anthony, Combes, & Charrier, 1996; Montagnon &
Bouharmont, 1996) originating from outside of the species indigenous
range of Ethiopia and South Sudan (Davis, Gole, Baena, & Moat, 2012).
It is also noteworthy that the two backcrossed Arabica× robusta <
Arabica samples do not show significantly larger 3.16 ppm peaks, de-
spite their genetic heritage.

The 600MHz spectra were similarly analysed and the same pattern
of results was found. Indeed, the correlation between the 60MHz and
600MHz peak area values in analogous experiments is remarkable (see
Supplementary Fig. 4). At this juncture, we conclude that for the ana-
lysis of a single, isolated resonance such as the 3.16 ppm peak, there is
no benefit in carrying out NMR spectroscopy at the higher field
strength. The 60MHz approach offers considerable advantages in terms
of ease-of-use, as well as lower capital and maintenance costs.

3.4. Methodology development for authenticity testing

A consequence of finding a measurable 3.16 ppm marker peak in
Arabicas is that any authenticity test has to be based upon the dis-
tribution of its naturally occurring level in authentic Arabica samples,
rather than relying on it as a simple ‘present/absent’marker compound.
Fortunately, the 26 Arabica coffees from typical coffee-growing regions
(samples 1–30, but excluding 1, 13, 14 and 16) form a well-behaved
normal population with regards to the 3.16 ppm peak (Fig. 5(b)). This
enables us to choose an upper threshold for the peak area, at an

Fig. 4. The region around the 3.16 ppm peak in spectra acquired from 30 Arabica coffees
of assured origin, by (a) 60MHz and (b) 600MHz NMR. In both cases the spectra have
been internally normalized to the glyceride peaks to facilitate side-by-side comparison on
the same vertical scale.

Fig. 5. (a) The integrated 3.16 ppm peak areas in 60MHz spectra from the assured source
Arabicas. Samples 1, 13, 14 and 16 originate from atypical coffee-growing locations.
Replicate measurements made on repeat extractions from these samples are indicated by
joined points. (b) Normal probability plot for the data in (a) (excluding the atypical
samples). (c) Empirical and fitted cumulative distribution functions for typical Arabica
coffees.
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appropriate probability level, for use in a test to verify the authenticity
of Arabica coffees. The value of the integrated peak area corresponding
to the 95th percentile is marked on Fig. 5(c), and also on 5(a). Working
at this level, we can expect 5% of authentic Arabicas to be wrongly
assessed as suspicious (Type I errors).

In contrast, the incidence of Type II errors (incorrectly accepting
suspicious samples as authentic) is harder to estimate as it depends on
the detection limits of any, unidentified non-Arabica in any declared
Arabica sample. To illustrate this issue, simple linear regression was
used to construct a universal calibration for the quantity of non-Arabica
in Arabica coffee, using the assured origin samples (the 26 typical
Arabicas and 10 non-Arabicas, see Supplementary Table 1). This cali-
bration was then used to estimate the level of adulteration in a range of
test samples, namely the mixtures prepared in-house. The chart and
details of the calibration construction are given in Supplementary
Fig. 5, and an expansion of the low-concentration region in Fig. 6(a).

The threshold value calculated in the paragraph above is marked on
the horizontal axis. For samples with a peak area below this value, the
null hypothesis (that the sample is an authentic Arabica) is accepted.
For peak areas above this value, the sample is considered suspicious,
and the calibration can be used to estimate its non-Arabica content.

The calibration line is marked on the chart, along with associated
confidence intervals. The main source of uncertainty in the calibration
is the variation in the magnitude of the 3.16 ppm marker of non-
Arabica coffees. This can be seen from the peak areas for these samples,
which are plotted in the full-range chart shown in Supplementary
Fig. 5. This is consistent with the literature, which suggests that the
concentration of 16-OMC in robusta coffees varies considerably (de
Roos et al., 1997; Finotello et al., 2017; Kurzrock & Speer, 2001; Mori
et al., 2016; Pettitt, 1987; Scharnhop & Winterhalter, 2009; Schievano
et al., 2014). By way of example, using NMR Finotello et al. quote the
level of 16-OMC as ranging from 1204 to 2236mg/kg for a selection of
roasted robustas from across the world (Finotello et al., 2017). Using
the traditional DIN HPLC-based method Kurzrock and Speer quote
600–1800mg/kg (Kurzrock & Speer, 2001). This variance notwith-
standing, comparison of the median peak areas for Arabica and robusta
coffees suggests that the combined 16-OMC and 16-OMK content of a
typical Arabica is approximately 1.5% that of a typical robusta.

To test the calibration, the peak areas from the mixture series were
plotted on the calibration chart against their known concentrations
(empty circles), Fig. 6. Applying the threshold to the peak areas, all
three “0%w/w robusta” extracts are accepted as authentic Arabicas.
Further, all the remaining mixture samples are flagged as suspicious,
including that with the lowest concentration of robusta (1.2%w/w).

The concentrations predicted by the calibration for these samples
are marked by filled circles, and the errors in prediction shown as
vertical lines. A table detailing the outcomes of the test samples (all in-
house mixtures) is included in Supplementary Fig. 5. The confidence
intervals for the predictions illustrate the unavoidable uncertainty that
arises from the adulterant non-Arabicas being of unknown (and un-
knowable) chemical composition.

More generally, the calibration chart suggests that Arabicas adult-
erated with robusta at the 1%w/w level will be flagged as suspicious in
around half of all cases. At 2%w/w robusta, this rises to 90%; and at
3%w/w, it is unlikely that an adulterated sample will pass undetected.

To ease comparison with the existing literature, quantitative NMR
analysis, using 600MHz spectroscopy only, was carried out by spiking a
sample of Arabica beans of assured origin with freeform 16-OMC. The
region of interest in the series of samples is shown in Supplementary
Fig. 6(a), along with the calibration curve (Supplementary Fig. 6(b)) for
the integrated 3.16 ppm peak area versus added 16-OMC content. From
this, the concentration of combined 16-OMC and 16-OMK in the un-
spiked Arabica is estimated to be at least 10mg/kg (± 4mg/kg) (re-
cognizing that the extraction efficiency is likely less than 100%). Details
of the calculations are given in the figure. Note that the sample selected
for this analysis (sample 12) was a typical wildtype Arabica, with a mid-
range 3.16 ppm peak area as assessed in the section above.

A plot showing the signal-to-noise ratio (SNR) for the integrated
peak in each case versus the estimated 16-OMC plus 16-OMK content is
shown (for the low level spiked samples only, in the interests of clarity)
in Supplementary Fig. 6(c). From this, we determined our LoD
(SNR=3 of combined 16-OMC and 16-OMK) in roast coffee beans to
be 1mg/kg, and our LoQ (SNR=10) to be 4mg/kg. These limits are
lower by a factor of 5 than those reported in (Schievano et al., 2014),
for instance, who quote 5mg/kg and 20mg/kg for the LOD and LOQ
respectively. They are also consistent with the estimates of the errors
involved in the calculation of the combined 16-OMC and 16-OMK
content of the sample. Near identical values of the LOD and LOQ (1 and
4mg/kg respectively) were obtained by the alternative method using
Arabica/robusta mixtures and an internal concentration standard, DMF
(Supplementary Fig. 7). By way of comparison, the DIN 10779 method
states it was tested for a mass fraction of 50mg to 300mg/kg of 16-
OMC in ground roast coffee. A limit of detection of 10mg/kg was stated
using DIN 10779 by Kölling-Speer et al. (2001).

3.5. Surveillance study

Finally, a surveillance study was conducted to look for instances of
fraud in premium “100% Arabica” ground roast coffees obtained from
the retail and catering sectors. The method outlined here can detect of
the order of 1%w/w robusta in Arabica, so if substitution has occurred
in a sample at this level or above, it will likely be discovered. The
probability of finding some instances of fraud in a surveillance exercise
then depends on the number of coffees examined and the prevalence of
fraud in the sector. It can be calculated using the binomial sampling
theorem for different survey sizes and prevalences (Supplementary
Fig. 8(a)).

Reported incidents of fraud involving substitution of Arabica with
robusta are few (Interpol., 2015). It is probable that many cases go
unrecognized (Toci et al., 2016), so the prevalence of fraud is a priori
unknown. This being so, we elected to use a survey size of 60, for which
the probability of finding at least one suspicious sample is at least 99%
if the sector-wide prevalence is> 7.5% (and respectively 95% and 90%
for prevalences of> 5% and>4%). We regard this as a reasonable
compromise between the effort required to source large numbers of
samples from a worldwide industry, and the chance of failing to find
any suspicious samples should the prevalence of fraud in the sector be
very low.

Each of the 60 survey samples were prepared following the protocol
described above. The integrated area of the 3.16 ppm peak in the

Fig. 6. (a) The low concentration region in a calibration chart developed to estimate the
concentration of adulterant (robusta or other non-Arabica) present in samples that fail to
be accepted as authentic Arabicas. The calibration line (black) indicates the median of the
regression lines obtained by simple linear regression onto all possible pair-wise combi-
nations of Arabica and non-Arabicas. Percentiles are as indicated (coloured lines). The
open and closed markers indicate the actual and predicted concentrations for the mixture
series, with the error indicated by vertical lines. (b) The integrated 3.16 ppm peak areas
for the 60 surveillance samples. The right-hand vertical axis is an equivalent concentra-
tion scale obtained from the calibration line in (a).

Y. Gunning et al. Food Chemistry 248 (2018) 52–60

58



60MHz spectra from each sample is shown in Fig. 6(b). It is im-
mediately obvious that there are several suspicious samples. Eight
samples have 3.16 ppm peak areas above the threshold value and are
rejected as authentic Arabicas (p < .05). Of these, 2 are only slightly
above the threshold value. The other 6, however, have estimated non-
Arabica contents ranging from 3 to 33%w/w. This can be seen by
reading values from the right-hand vertical axis, which indicates an
equivalent concentration scale obtained using the established calibra-
tion line.

These values are in excess of what could reasonably be claimed as
adventitious contamination. We suggest this is highly indicative of
fraudulent substitution, or at the very least, unacceptably poor quality
control. For three of these, sufficient sample was available to carry out
repeat extractions. The outcomes for these are also shown on the plot
and detailed in full in Supplementary Table 3, again illustrating the
reproducibility of the method.

The prevalence of fraud in the sector can be estimated from the
survey size and the number of cases discovered. Giving the two mar-
ginal cases the benefit of the doubt, we can say that 6 instances of fraud
have been found. This leads to an estimate of the sector-wide pre-
valence of between 5% and 20% (95% confidence interval; see
Supplementary Fig. 8(b) and (c)).

4. Conclusions

We have described an improved preparation procedure for ex-
tracting the lipophilic phase from ground roast coffees, which produces
a more concentrated extract and a resultant increase in NMR SNR. As a
consequence, we have been able to detect a peak at 3.16 ppm not only
in robusta, as has been described previously by several groups, but also
in Arabica coffees. This is a surprising and wholly unexpected result.
The Arabica peak is a small but well-resolved resonance at both 60MHz
and 600MHz field. Two-dimensional NMR experiments (HSQC and
HMBC) showed this could arise from 16-OMC or 16-OMK in both
Arabica and robusta, and that it cannot arise from the other major
coffee diterpenes. LC-MS carried out on Arabica samples (wild type,
Ethiopian, authenticity assured by in-situ collection), unequivocally
showed the presence of both 16-OMC and 16-OMK. A study of the levels
of these two compounds in the Arabica population is beyond the scope
of this manuscript, though may be the object of further work.

The 3.16 ppm peak was detected in all but one Arabica coffees of
assured origin that we examined (17 wild type Ethiopian, 1 wild-type
Columbian, 12 cultivars from various coffee producing countries). This
is a significant finding, as Arabica coffees had been presumed to contain
no 16-OMC (or 16-OMK), in contrast to other coffee species. Indeed,
this presumption underpins the recognized DIN method (DIN 10779,
2011) for authenticating Arabica coffee products. Beyond this being of
interest in terms of biology, one also should examine the practical
implications for authenticity testing. These depend entirely on the de-
tection limit of the approach used: in the present work, we were not
able to use the existence of the 3.16 ppm peak as a simple presence/
absence test for robusta (see below), as we and others had done in
previous work (note this peak was previously believed to only arise
from 16-OMC in robusta, whereas it likely arises from both 16-OMC and
16-OMK). However, the usage of other methods may not need to be
affected if their detection limit for 16-OMC is above the levels observed
in authentic Arabicas, as appears to be the case for the DIN method.

A normal range for the amount of combined esterified 16-OMC and
16-OMK, as expressed by the 3.16 ppm peak area, was established for
our collection of fully authenticated Arabica wild types and cultivars
(details above and in Supplementary Table 1). From comparison with
the peak areas measured in other coffee species, we estimate that a
typical Arabica coffee contains of the order of 1–2% the level of com-
bined esterified 16-OMC and 16-OMK of a typical robusta. This has an
important corollary: it is not possible to test for robusta adulteration in
Arabica coffee below the level of approximately 1% using the 16-OMC/

16-OMK marker, since it is present in pure Arabica at a level com-
mensurate with 1% robusta addition. Neither is it possible to express a
single, exact detection limit for robusta in Arabica, since the levels of
these compounds vary across different robustas and Arabicas.

Even though 16-OMC and 16-OMK occur naturally in Arabicas, the
3.16 ppm peak area can be used as a reasonable proxy for the robusta
content in mixture samples by defining a threshold marking the upper
limit of the normal Arabica range. Simple linear regressions relating the
area of this peak to the quantity of robusta in known mixture samples
demonstrated excellent linearity and precision at both field strengths.

Further, the correlation between the outcomes at 60 and 600MHz
was very high, from which we can infer that the source of error in the
separate regressions must derive from the sample preparation (normal
uncertainties associated with mass and liquid measurement) rather
than the spectroscopy. We conclude that for quantitation of a single,
well-resolved spectral peak, there is no advantage to using the higher
field strength. Due to the nature of the instrument design, a somewhat
larger volume of sample is examined in the low-field spectrometer.
Along with the experimental and acquisition parameters used, this has
enabled us to achieve a quantitative precision at 60MHz comparable to
that at 600MHz. The interest in using the lower field strength stems
from the advantages in affordability, robustness and ease-of-use of the
60MHz instrument. Commercially relevant sensitivity makes industry-
sited routine screening a reality for the first time.

Finally, the improved procedure was used to prepare extracts from
retail samples of “100% Arabica” coffees sourced worldwide. 60MHz
and 600MHz spectroscopy detected the 3.16 ppm peak in all 60 sam-
ples analysed, of which 52 had peak areas consistent with the naturally
occurring range in authentic Arabicas. Two samples were just above the
threshold value, but the remaining six display a 3.16 ppm marker peak
strength strongly suggestive of adulteration with another coffee species.
From standard sampling theory, we estimate that the sector-wide pre-
valence of fraud is in the range 5–20% of “100% Arabica” ground roast
coffee products.
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