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Abstract

This thesis consists of three studies that relate to search behaviour and procedural fairness.

Chapter 2 investigates experimentally whether the search-deterring effect of time-limited offers

is intensified by behavioural factors – specifically, feedback-conditional regret, reduced decision

quality due to time pressure, and aversion to small-scale risk. The conclusion is that the

search-deterring effect is intensified, particularly (and surprisingly) when consumers are not

subject to high time pressure. There is no evidence of regret effects. Overall, individuals show

aversion to small-scale risk. Chapter 3 proposes a new concept of fairness: strategy fairness.

The conjecture is that inequalities will tend to be seen as acceptable if they come about

through the workings of fair rules, even though they are the result of self-interested intentions.

A model of strategy fairness is provided to show how the concept of strategy fairness can be

incorporated into a more complete model. The concept of strategy fairness is tested using an

experiment. It turns out that subjects are more willing to accept inequalities that are the

result of fair procedures. The surprising result emerges that procedural unfairness makes both

disadvantaged and advantaged players more likely to take. Chapter 4 introduces a new search

competition game. The search competition takes the form of parallel searches without recall.

This is related to two theoretical and experimental literatures: contest and search. However,

no work has been done on analysing this type of game. A theoretical analysis of the search

competition game is provided. Subjects’ actual play in the experiment is compared with both

the subgame perfect Nash equilibrium solution and the empirical best response. It shows that,

relative to the implications of a rational-choice analysis, subjects tend to search too little.
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Chapter 1

Introduction

During my training to be a behavioural and experimental economist, I became interested in
topics on search behaviour and procedural fairness in competition. My thesis is developed to
make contributions to these two research areas both theoretically and experimentally.

The second chapter1 of the thesis investigates whether the search-deterring effects of time-
limited offers are intensified or mitigated by behavioural factors. Time-limited offers have
become one of the most frequently applied sales tactics worldwide. Once presented a time-
limited offer, a buyer needs to make a quick decision on whether to take it or leave it, as it will
be withdrawn unless accepted immediately. Time-limited offers discourage consumer search
by making it more costly to search for alternatives. Previous studies have found that the
presence of search costs makes markets less competitive and induces higher prices (Diamond,
1971; Salop and Stiglitz, 1977). Armstrong and Zhou (2016) present a range of theoretical
models in which profit-maximising monopolistic or oligopolistic firms use time-limited offers
to deter search. They find that time-limited offers have similarly anti-competitive effects, i.e.
increasing prices and/or reducing the degree of match between consumers and products. In
Armstrong and Zhou’s models, consumers are assumed to be rational and risk-neutral who
choose strategies that maximise their expected utility. It is natural to consider whether the
search-deterring effects that their models describe are intensified or mitigated by properties of
consumers’ choice behaviour that have been identified by behavioural research but which do
not feature in traditional decision theory.

Chapter 2 is concerned with three behavioural mechanisms that might be expected to make
real consumers more likely than their counterparts in models of rational risk-neutral search
to choose time-limited offers – anticipated regret, time pressure, and extreme risk aversion.
First, a consumer who rejects a time-limited offer and continues to search may find that the
rejected offer was in fact the best available, and this may induce painful feelings of regret. A

1Chapter 2 is based on the working paper Sugden, Wang, and Zizzo (2015). I have made significant
contributions to this working paper, which includes having the original research idea, working on the
experimental design, experimental implementation, data analysis and writing up the original draft.
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decision to accept the offer and stop searching can be a method of avoiding feedback that
could cause regret. Second, consumers’ choices between accepting and rejecting time-limited
offers may be affected by the pressure of having to make a decision in a short period of
time. The psychological literature suggests that people may respond to this pressure by using
simplifying decision heuristics, such as relying on the ‘affect heuristic’ (Finucane et al. 2000),
attending more to negative dimensions of gambles (Ben Zur and Breznitz 1981), focusing on
less information (Payne et al 1988), or searching less in search tasks (Ibanez et al 2009). This
body of evidence suggests that time pressure might make consumers more likely to accept
time-limited offers. Third, experimental evidence often reveals high degrees of risk aversion
in decisions that involve very small stakes. If individuals are significantly averse to small
risks, time-limited offers may be more attractive to consumers than is implied by models of
risk-neutral search.

The experiment contains two parts. In the first part of the experiment, subjects face simple
and intuitive problems of price search, in which time-limited offers appear occasionally and
without warning. In the second part, subjects face what appear to be completely different
binary choice problems between lotteries and certainties, but which in fact are reframings of
choices about time-limited offers that faced by subjects in price search tasks.

I find no evidence that the tendency for consumers to choose time-limited offers is intensified
by desires to avoid regret. Surprisingly, time-limited offers are less likely to be chosen at high
levels of time pressure. Overall, individuals show aversion to small-scale risk; this is stronger
in price search than lottery choice. Allowing for this, at the individual level, and particularly
at high levels of time pressure, responses to the time-limited offer and lottery tasks are very
consistent.

Chapter 3 introduces a new concept of fairness: strategy fairness. Conventional economic
theories assume that people are self-interested and make choices that maximize their own
monetary payoffs. However, many studies have shown that theories with this self-interest
assumption are not always sufficient to explain people’s decisions in the real world. In many
real world situations, social preferences have a significant impact on individual decisions. Both
theoretical literature and experimental evidence suggest that people not only care about their
own income, but are also concerned about the distribution of payoffs, intentions signalled by
other people’s actions, entitlements, desert, randomisation of the procedure which determines
the payoff distribution, and social welfare.

Although the existing theories of social preferences can solve many seemingly puzzling
behaviours for which conventional economic theories cannot give an explanation, there are
still some behaviours that cannot be fully explained. For instance, Isoni et al. (2014) find
that in their bargaining games, subjects are more willing to settle on efficient but unequal
allocations rather than equal but inefficient allocations when they have equal opportunity to
compete. In fact, there are many real world competitions in which participants are willing
to take the unequal outcomes even if all participants reveal self-interest intentions of trying

2



to win. The literature of social preferences has neglected a type of procedural fairness that
may be particularly important in market environments and in public choice: fairness of a
framework of rules within which individuals pursue self-interest. To fill in this gap of literature
on social preferences, I propose a new concept of fairness: strategy fairness. This is tested
using an experiment.

I provide a model of strategy fairness. In the model, strategy fairness is defined as equalities of
opportunities between players in the competition. The theoretical analysis and its implication
give suggestions about how to incorporate the concept of strategy fairness into a more complete
model.

The design of the experiment was partially inspired by the price search task used in Chapter
2. In the first part of the experiment, pairs of subjects play a simple card game that has
some similarities with the time-limited offer task in the first experiment. Each player is dealt
a numbered card and is allowed a fixed number of opportunities to reject it and be dealt
another card. The player who ends up with the highest-numbered card wins. The number of
replacement opportunities may be the same for both players (procedural fairness) or different
(unfairness). In the second stage, each subject is endowed with a number of lottery tickets;
the winner receives three times as many as the loser. The same pair of subjects then play a
‘vendetta game’ in which they have alternating opportunities to take tickets from one another;
in each taking move, the taker gains one ticket but the other subject loses three. This game is
based on a design used by Bolle et al. (2014), but changes were applied to make the game
more intuitive for subjects and the interfaces more engaging. The idea of the experiment is to
measure players’ attitudes to inequality by the propensity for them to ‘take’.

I find that subjects are more willing to accept inequalities that are the result of fair procedures;
the fair version of the card game induces roughly the same degree of acceptance of inequality
as a control treatment in which inequality is generated by a real effort task. A surprising
result emerges when the propensity to take is measured separately for the two players. It
turns out that procedural unfairness makes both advantaged and disadvantaged players more
willing to take.

In Chapter 3, the card game is used as a simple game to create equality in the first stage
of the experiment. In fact, the card game is a search competition game which has not been
investigated. Chapter 4 provides a detailed analysis of play in the game in Chapter 3. The
search competition game is similar to games in contest literature, as in both games players
compete for a fixed prize. The competition takes the form of parallel searches without recall.
There are many real world examples of this kind of situation, such as competing firms searching
for managers. Surprisingly, although search without recall as a problem for an individual
agent is often investigated in the search literature, no previously study has been done on this
type of game.

Existing research on contests and search behaviour suggests opposite intuitions about actual
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behaviour in the search competition, relative to Nash equilibrium predictions. Overbidding
is one of the main phenomena observed in contest experiments, i.e. the average effort level
is significantly higher than the risk-neutral Nash equilibrium prediction (Dechenaux et al.
2015. It suggests that contestants in contests may try too hard to win. Experimental evidence
on search problems shows that people tend to search too little compared to the risk neutral
prediction of the optimal strategy, which suggests that people may not try hard enough to find
the best offer. The experiment in Chapter 4 is designed to find out which of these intuitions
applies to the search competition.

A theoretical analysis of the search competition game is provided. The subgame perfect Nash
equilibrium solution to the card game is a cut-off value for each card, which depends on the
replacement opportunity (e.g. first, second, third for a player with three opportunities), the
total number of replacement opportunities, and the number of replacement opportunities for
the co-participant. I identify the subgame perfect Nash equilibrium solution to card games
for a range of parameters. The actual play is analysed econometrically and compared with
both the subgame perfect Nash equilibrium prediction and the empirical best response. The
estimation of actual play is econometrically difficult as I cannot observe the distribution
of cut-offs directly from the sample.2 The data only tells whether the subject accepted or
rejected a given card. The decisions on second and third cards can be observed only if the
subject rejected the previous cards.

Relative to the implications of a rational-choice analysis, the results show that subjects have a
strong bias against replacing cards. Because payoffs are tickets in binary lotteries, this effect
is not simple risk aversion. It is interestingly analogous with the bias that I found in choices
about time-limited offers.

In the process of developing my thesis, I learned how to design experiments to which subject
can relate intuitively. The design principle for experiments in all my three chapters was not
only to mimic situations described in theories, but also to create problems in which the subject
has a real experience. My experiments are simplified representations of real world situations.
At the same time, they provide subjects with all the information that, according to the theory,
they need for the problem, such as numerical probabilities. I aimed to make my experimental
tasks simple, easy to understand, engaging, and with vivid interfaces. For instance, the price
search task in chapter 2 creates a price search problem which is similar to the situation faced
by consumer. In the card tasks which are used in chapter 3 and chapter 4, subjects can
feel vividly the influence of having different numbers of replacement opportunities on their
probability of winning. In the vendetta game, subjects take lottery tickets from one another
rather than (as in the original version of the game) changing one another’s probabilities
of winning. This gave subjects a vivid sense of the cost of stealing behaviour, which was
represented by the waste of lottery tickets.

My thesis opens new avenues for exploration. First, one of the surprising findings in chapter 2

2Prof. Peter Moffatt provided suggestions for the creation of the econometric model.
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is the degree of consistency between consumers’ decisions about time-limited offers, made even
under intense time pressure, and their responses to problems of binary choice between lotteries.
The context-dependence of preferences is a recurring theme in behavioural economics, but this
is a case in which the context-independence of preferences require a psychological explanation,
and its implications for consumer decision making need thinking through. Second, chapter 3
reveals that procedural unfairness tends to make both advantaged players and disadvantaged
players more willing to take. As the experiment is designed to mainly investigate people’s
willingness to accept inequalities that result from fair/unfair competition, I focus more on the
behaviour of disadvantaged players. Therefore, the experiment does not provide sufficient data
to conduct more in-depth analysis of advantaged players’ behaviour. In future studies, it would
be interesting to explore the behaviour of advantaged players in the competitions. Third, in
chapter 4, I compare subjects’ decisions not only with the subgame perfect Nash equilibrium
solutions, but also with the empirical best response. The result shows that subjects’ choices
are more close to the prediction of the empirical best response than to the subgame perfect
Nash equilibrium. Many studies show that Perfect Bayesian Equilibrium solutions are often
inaccurate descriptions of behaviour in games, as they are derived under the assumption that
all other players obey a given model solution. Compared to Perfect Bayesian Equilibrium,
empirical best response provides a better measurement of success of social learning, as it
reflects the true behaviour of other players in the same situation. In future studies that
measure the success of individual reasoning in games, it would be useful to compare actual
play with empirical best response.
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Chapter 2

Take it or leave it: experimental
evidence on the effect of
time-limited offers on consumer
behaviour

2.1 Introduction

A common tactic by salespeople is to make offers that (it is claimed) will be withdrawn unless
accepted immediately. Familiar examples include the doorstep seller who claims that he is
currently ‘in the area’ but will not be returning, the telephone seller who makes a ‘special offer’
that can be accepted only during that phone call, the internet site which offers a buy-now
discount, and the seller of a used car who claims that another buyer has shown great interest
in it and will be returning shortly. Writers who have infiltrated businesses report that sales
staff are routinely instructed to use such tactics (Cialdini, 2003, p. 208; Bone, 2006, p. 71-73).
There is growing concern that, by using cookies to track the identities of website visitors,
internet sellers may remove low-price offers between a potential buyer’s first and second visit.
Viewed in the perspective of competition regulation, such time-limited (or exploding) offers
create barriers to the search processes by which consumers compare prices.1

It has long been known that the presence of search costs makes markets less competitive
and induces higher prices (Diamond, 1971; Salop and Stiglitz, 1977). Armstrong and Zhou
(2016) present a range of theoretical models in which opportunities to make time-limited

1Evidence about these sales strategies is reviewed by Office of Fair Trading (2010) and Armstrong
and Zhou (2016). Armstrong and Zhou refer to current controversies about the alleged misuse of
cookies by websites selling airline tickets, but take no view about the truth of these allegations - perhaps
because it is not clear that sellers would benefit by imposing time limits that are not announced in
advance.
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offers have similarly anti-competitive effects. In these models, profit-maximising monopolistic
or oligopolistic firms use time-limited offers to deter search, with the result that there is an
increase in prices and/or a reduction in the degree of match between consumers’ preferences
and the products they buy. For a time-limited offer to have these search-deterring effects,
consumers’ opportunities to investigate alternatives during the offer period must be significantly
constrained, which will typically be the case only if that period is quite short and is determined
separately for each consumer. In this paper, we will be concerned with time-limited offers
that have these properties.2

In Armstrong and Zhou’s models, consumers are risk-neutral agents who choose search
strategies that maximise expected utility, given knowledge of the distributions from which
prices are drawn. As Armstrong and Zhou (2016, p. 50) point out, it would be useful to
investigate whether the search-deterring effects that their models describe are intensified
or mitigated by properties of consumers’ choice behaviour that have been identified by
behavioural research but which do not feature in traditional decision theory. Given the
multiplicity of potentially relevant behavioural mechanisms that need to be disentangled in
such an investigation, the methodology of controlled experiments has obvious advantages. We
report an experiment that was designed with that objective.

We know of two previous experimental investigations of the effects of time-limited offers on
buyers’ search behaviour. Huck et al. (2010) report an experiment in which subjects played
the role of consumers buying a homogenous product sold by two shops at prices that were
independently drawn from a common distribution. Each visit to a shop incurred a cost. In the
baseline condition, each shop quoted a simple per-unit price, which was revealed only when
the shop was visited. These were free-recall offers – that is, a consumer who returned to a
previously-visited shop would find the original price (and no other) still available. Five other
conditions represented different and more complex ‘price frames’. In the ‘time-limited offer’
frame, the offer at the first shop visited had to be accepted or rejected at that visit; the second
shop’s offer was made with free recall. If the consumer returned to the first shop, a different
price would be generated (also with free recall). The experiment found oversearch in the
baseline condition (i.e., the frequency with which the first offer was accepted was lower than
would have been the case for rational risk-neutral agents) but undersearch in the time-limited
offer frame. This observation suggests that time-limited offers may be more attractive to
real consumers than to their rational counterparts. However, Huck and Wallace (p. 79) note
that many subjects behaved as if they did not realise that the first shop’s second offer could
be lower than its initial time-limited offer. This misunderstanding may have induced a bias
towards the choice of time-limited offers.

2A contrasting type of time-limited offer is exemplified by special promotions in supermarkets and
by ‘sales’ periods in department stores. Such offers, which are made available to all consumers for
periods of several days or even weeks, may be components of a strategy of varying prices over time
in order to discriminate between consumers with different propensities to search (Varian, 1980), to
manipulate consumers’ reference points (Heidhues and Kőszegi, 2014), or to counteract consumers’
tendencies to procrastination (O’Donoghue and Rabin, 2001).
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Brown et al. (2014) report an experiment that implemented a variant of the Armstrong and
Zhou (2016) duopoly model, but using incentivised human subjects to represent firms. Firms
could choose whether or not to make their offers time-limited or free-recall. In one treatment,
consumers were represented by human subjects; in another, they were computer programs
that implemented optimal search strategies. The experiment found oversearching: at the first
firm visited, time-limited offers were chosen less frequently by human subjects than by optimal
search programs. Brown et al.’s interpretation of this result is that that buyers recognise and
dislike search-deterring tactics when used by sellers, and express this dislike by rejecting even
relatively good time-limited offers (p. 24).

Our investigation is concerned with three behavioural mechanisms that do not depend on
consumers’ interpretations of sellers’ intentions, and that might be expected to favour the
choice of time-limited offers. Each of these mechanisms makes use of the fact that choosing
between accepting and rejecting a time-limited offer is a choice between a certainty (paying
the known offer price) and an uncertain prospect (continuing to search, without the option of
recall). In the Armstrong and Zhou models, rational buyers are represented as risk-neutral.
Under plausible assumptions about utility functions and if the value of the relevant purchase is
low relative to a consumer’s wealth, risk-neutral models closely approximate the implications
of expected utility theory. However, there are a number of behavioural reasons for expecting
consumers’ responses to time-limited offers to be significantly risk-averse, favouring the choice
of such offers. First, a consumer who rejects a time-limited offer and continues to search
may find that the rejected offer was in fact the best available, and this may induce painful
feelings of regret. Choosing the offer and terminating the search process can be a method of
avoiding regret. Second, a decision to accept or reject a time-limited offer may be made under
time pressure, and consumers may respond to this pressure by using simplifying decision
heuristics that favour certainties. Third, experimental evidence often reveals high degrees of
risk aversion in decisions that involve very small stakes.

We begin by explaining these mechanisms, outlining the basic principles of our experimental
design and stating the main hypotheses that we will test (Section 2.2). We then describe the
implementation of our experiment in more detail (Section 2.3), report our results (Section 2.4),
and discuss their implications (Sections 2.5 and 2.6). To anticipate our conclusions, we find no
evidence that the tendency for consumers to choose time-limited offers is intensified by desires
to avoid regret. Surprisingly, time pressure made time-limited offers less likely to be chosen.
However, our subjects’ behaviour was predominantly risk-averse. In the absence of time
pressure, choices between accepting or rejecting time-limited offers were systematically more
risk-averse than when the same decision problems were framed as choices between lotteries.
The implication is that rationality-based models understate the attractive force exerted by
time-limited offers.
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2.2 Basic principles of experimental design and hy-
potheses to be tested

Our experiment had two parts. In Part 1, each subject faced thirty price search tasks, of which
fifteen (randomly positioned in the series of tasks, and not announced in advance) involved
time-limited offers. In Part 2, each subject faced fifteen lottery tasks requiring binary choices
between lotteries. In the price search tasks, the price offers between which subjects had to
choose were random draws, made independently for each subject, for each task and for each
offer, from pre-specified distributions which remained constant across the thirty tasks. Lottery
tasks were constructed separately for each subject, to match the specific distributions of offers
that that subject had faced in the fifteen price search tasks with time-limited offers. Viewed in
the framework of expected utility theory, each lottery task was equivalent to the corresponding
price search task. Subjects were not told about this correspondence and, because the frames
were so different, it would have been very difficult to detect.3 To allow between-subject
tests of the effects of regret, each experimental session was randomly assigned to one of two
treatments, which differed in terms of the feedback provided after a time-limited offer had
been accepted in a price search task. To allow within-subject tests of the effects of time
pressure, both treatments incorporated variation in the time allowed for making a decision
about a time-limited offer.

The price search tasks were designed to provide a controlled and stylised representation of
environments in which consumers engage in price search and in which time-limited offers
appear relatively infrequently and without prior notice. In each task, the subject was given a
‘budget’ and instructed to buy a ‘good’ by spending from this budget; any unspent surplus
constituted her earnings from the task. The subject was able to see six price offers, which
appeared sequentially on a computer screen with short time gaps between them. In most
cases, offers were free-recall. Although free-recall offers could be accepted at any time, the
subject was free to wait until all such offers had appeared and then choose whichever of these
she judged best (presumably the lowest). In fifteen of the tasks, however, one of the first three
offers to appear would be flagged as time-limited. In this case, the subject was able to accept
the offer only in the interval before the next offer appeared.

We gave subjects full information about the random processes that generated the six price
offers in each task. These processes were given an intuitive interpretation in terms of ‘deals’ of
‘cards’ (see later) and were held constant throughout the experiment. Thus, the actual values
of the offers in any task provided no information about offers in later tasks. In this sense,
repetition did not provide any opportunities for learning. However, although we expected

3The random draws of offer prices were represented to subjects as ‘deals’ of cards, made at the
start of each task. That representation reflected the actual sequence of operations by the computer
program: offer prices for each task were determined only as that task appeared on a subject’s screen.
Given this feature of the experiment, price search tasks necessarily preceded lottery tasks. As we
explain later, it seems unlikely that our main results are affected by the order of the two types of task.
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that subjects would understand how the offers were generated, we did not expect that they
would be able to calculate optimal solutions to the problems they faced: such calculations
would be mathematically challenging even in the absence of the time constraints our design
imposed. Our design strategy was to give each Part 1 task the ‘feel’ of a natural price search
problem rather than to mimic the properties of theoretical models of search. By framing the
structure of the task in simple terms and repeating it many times, we tried to ensure that
subjects would gain an intuitive understanding of it and converge on patterns of response
similar to those that they would use in natural price search problems. We take it that the
theories of search that we test are intended to predict the behaviour of ordinary consumers in
everyday settings.4

The experiment was designed to investigate three behavioural mechanisms that might be
expected to make real consumers more likely than their counterparts in models of rational
risk-neutral search to choose time-limited offers.

2.2.1 Feedback-conditional regret

The hypothesis that decision-making behaviour is influenced by anticipated regret was proposed
by Bell (1982) and Loomes and Sugden (1982). Cues which prompt individuals to anticipate
possible future regret have been found to make individuals less likely to take risks in consumer
choice (Simonson, 1992) and in sexual behaviour (Richard et al., 1996). In the context of
time-limited offers, the dependence of regret on feedback about the outcomes of non-chosen
options, theorised by Humphrey (2004), is particularly significant.

Consider a choice between two lotteries with monetary outcomes, defined on the mutually
exclusive and exhaustive events E1, ..., En. The ‘safe’ lottery S pays s in every event; the ‘risky’
lottery R pays r1, ..., rn, depending on which event obtains. First suppose that, whichever
lottery is chosen, the true state will be revealed. Then, according to regret theory, when the
decision-making agent considers choosing S, she will anticipate feelings of regret in those
events Ei where si < ri; these anticipations have a negative impact on the expected utility of
S. Conversely, when she considers choosing R, she will anticipate regret in those events Ej
where rj < sj ; these anticipations have a negative impact on the expected utility of R.5 Now
suppose instead that the true state will be revealed only if R is chosen. In this case, as before,
choosing R exposes the agent to the possibility of regret-inducing feedback; but now choosing
S cuts off such feedback. Thus, a regret-averse agent might choose S if there will be feedback
but R if there will not be. Zeelenberg et al. (1996) find evidence of this pattern of behaviour.

The Dutch Postcode Lottery provides an extreme example of how this tendency can be
exploited by sellers. By drawing a winning postcode rather than a winning ticket number,

4This general methodological strategy is explained and defended by Sitzia and Sugden (2011).
5For simplicity, we ignore anticipated feelings of ‘rejoicing’ (the opposite of regret). In the regret

literature it is common to assume that regret is a much stronger emotion than rejoicing.
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this lottery design exposes individuals who do not bet to the possibility of extreme regret
if their neighbours bet and win. Zeelenberg and Pieters (2004) find that anticipated regret
is positively correlated with preferences for participating in a postcode lottery rather than
a conventional alternative. Time-limited offers may exploit a similar tendency. Rejecting a
time-limited offer exposes a consumer to the possibility of regret, but if offers are discovered
only by active search, a decision to stop searching cuts off feedback that could cause regret
about having accepting such an offer.

To investigate this possibility, we allocated each subject to one of two different feedback
treatments. In the No Feedback treatment, if an offer was accepted before all six had been
shown, the remaining offers were not revealed. Thus, in accepting a time-limited offer, a
subject cut herself off from feedback that could reveal that she would have done better if
she had rejected it. In the Regret Feedback treatment, whenever an offer was accepted, any
remaining offers were immediately displayed. We tested the following hypothesis:

Hypothesis 1: Other things being equal, the probability with which time-limited offers
are chosen is greater when feedback is absent than when it is present.

2.2.2 Time pressure

Consumers’ choices between accepting and rejecting time-limited offers may be affected by the
pressure of having to make a decision in a short period of time, rather than being able to think
about the decision more carefully. The psychological literature suggests that people respond
to time pressure by using relatively simple heuristics that are adapted to maintaining decision
accuracy with reduced cognitive effort, rather than by using truncated forms of reasoning
processes that would generate correct decisions in the absence of time constraints. Payne
et al. (1988) find that, under severe time pressure, experimental subjects focus on a subset
of the available information and change their information-processing strategies. Finucane
et al. (2000) find that time pressure increases subjects’ reliance on the ‘affect heuristic’, which
induces a negative correlation between judgements of risk and benefit (for example, a tendency
to underestimate the radiation risk from the use of x-rays in hospitals). In an investigation of
choices between pairs of gambles under different levels of time pressure, Ben Zur and Breznitz
(1981) find that subjects spend proportionately more time attending to negative dimensions of
gambles under high time pressure and so make more risk-averse decisions. Kocher et al. (2013)
find that time pressure has no effect on risk attitudes revealed in choices between prospects
offering gains, but increases risk aversion in choices between prospects which may impose
losses. In a costly search task with free recall, Ibanez et al. (2009) find that participants
tend to search less when each decision about whether to terminate search is subject to time
pressure, but that this effect dissipates as participants gain experience of the task. Taken
together, this body of evidence suggests a psychological mechanism by which time pressure
would make consumers more likely to accept time-limited offers. We investigated the effect of
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time pressure by randomising the time gap between the appearance of offers, and hence the
length of time for which time-limited offers were available. The time gap (which was constant
within a task) could be either 4s or 12s. Given the simplicity and repetitive nature of the tasks,
we expected that 12s would be sufficient for most subjects to make a considered (although
not necessarily optimal) decision, but that 4s would be perceived as creating significant time
pressure. We tested the following hypothesis:

Hypothesis 2: Other things being equal, the probability with which time-limited offers
are chosen is greater when time pressure is greater.

2.2.3 Risk aversion

In experiments involving choice among lotteries with low-value consequences, subjects often
reveal high degrees of risk aversion. Rabin (2000) shows that, if conventional expected-utility
models are fitted to the patterns of behaviour typically observed in such experiments, these
models imply manifestly unrealistic degrees of risk aversion for decisions involving higher (but
still modest) stakes. This inconsistency can be eliminated if, as in prospect theory, utility
is defined as a function of changes in wealth relative to a reference point, rather than as a
function of wealth itself, since this allows there to be particularly high degrees of risk aversion
in the neighbourhood of any reference point (Kahneman and Tversky, 1979). If individuals
are significantly averse to small risks, time-limited offers may be more attractive to consumers
than is implied by models of risk-neutral search. Hence the following hypothesis:

Hypothesis 3: In choosing whether or not to accept time-limited offers, experimental
subjects tend to reveal risk aversion.

Given the degree of risk aversion typically observed in experiments, confirmation of Hypothesis
3 might be thought unsurprising, particularly as there is a good deal of existing evidence that
in search tasks, both with and without recall, experimental subjects tend to search less than
would be optimal for risk-neutral agents (e.g. Rapoport and Tversky, 1970; Sonnemans, 1998;
Seale and Rapoport, 1997; Schunk and Winter, 2009a).6 It is perhaps more interesting to
ask whether individuals display the same attitudes to risk when deciding whether to reject a
time-limited offer as they do when choosing whether to enter a risky lottery. The equivalence
between these two choice problems might be less salient to most people than it is to decision
theorists. Thus, if individuals use simplifying heuristics, the heuristics primed by price search
problems might not be the same as those primed when decision problems are explicitly
framed as choices between lotteries. The lottery tasks allow us to investigate this issue.

6Schunk and Winter find no significant relationship between search behaviour and a measure of
risk attitude. They suggest that observed under-searching may be due to loss aversion rather than risk
aversion.
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Since behavioural theory does not provide unambiguous predictions about the direction that
differences between the two tasks might take, we tested the following directionless hypothesis:

Hypothesis 4: Risk attitudes revealed in decisions about accepting or rejecting time-
limited offers are systematically different from those revealed in binary choices between
certainties and lotteries.

2.3 Design details and implementation

2.3.1 Overall structure of experiment

As explained above, each session of the experiment was randomly assigned to one of the two
treatments (No Feedback or Regret Feedback). Part 1 of each session consisted of thirty price
search tasks; Part 2 consisted of fifteen lottery tasks. At the beginning of each part, each
subject received a copy of the instructions for that part; these instructions were read aloud
by the experimenter. These instructions are reproduced in Appendix 1. Each subject then
completed a computerised questionnaire which tested her understanding of the tasks. If a
subject made a mistake, the computer would show her the correct answer and the relevant
part of the instructions. Subjects were invited to ask the experimenter for clarification.

In the price search tasks, subjects’ budgets and offer prices were expressed in an experimental
currency unit, experimental points (EP). Each subject’s earnings from each task (conditional
on the task being selected for payment: see later) were equal to the budget (always 10EP)
minus the price of the accepted offer (never greater than 10EP). Thus, the subject had an
incentive to choose the offer with the lowest price. Each lottery task was a binary choice
between two lotteries with outcomes expressed in experimental points. ‘Lottery 1’ gave a
stated outcome for sure. ‘Lottery 2’ had five possible outcomes, each with a probability of 0.2.

At the end of each session, the computer randomly selected two price search tasks and one
lottery task for each subject. Each subject’s earnings were the sum of her earnings from the
two selected price search tasks and the outcome of the lottery she had chosen in the selected
lottery task. If she had chosen Lottery 2, its outcome was determined by a random process,
using the stated probabilities. Subjects were paid at the exchange rate of £1 for every 2.5EP.

2.3.2 Price search tasks

The basic structure of these tasks was described in Section 1 above; here we fill in the details.
Offers were represented on subjects’ screens by pictures of ‘cards’. As with a pack of playing
cards, all cards looked identical when viewed face down. When viewed face up, each card
showed a price offer. At the start of a task, a subject saw a row of six cards, all face down. In
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terms of the prices they might offer, there were two types of card, red and blue. In all tasks,
one of the cards was red and five were blue. The red card had been randomly assigned to
one of the first three positions in the row, but the subject was not told which position this
was. The offer on each blue card was a price drawn independently and randomly from the set
{0.00EP, 0.01EP, ..., 10.00EP}. The offer on the red card was a price drawn at random from
the set {0.00EP, 0.01EP, ..., 4.00EP}. Thus, the red card was particularly likely to show a
low-price offer. Subjects were fully informed about the distributions of offers on the two types
of card. Our reasons for using these particular parameters will be explained later.

During each task, the cards were turned over by the computer, one by one and working from
left to right. The time interval between cards being turned over was fixed within each task at
either 4s or 12s. Which interval was used in each task was randomised, independently for
each participant, subject to the constraint that each participant faced each interval in fifteen
tasks. There was no time limit for completing the task as a whole. Subjects could not move
on to Part 2 of the experiment until everyone in the session had completed Part 1. Thus, an
individual subject who chose not to see all six offers was unlikely to save time by doing this.

The offers on blue cards were always free-recall. Whenever a free-recall card (of either colour)
was turned over to display its offer, a button appeared below it on the screen, labelled ‘Click
to choose this offer’, together with the message ‘This offer will stay available throughout the
task’. The card remained turned over until the end of the task. The subject was free to choose
that offer at any time from then on, by clicking on the button. Thus, it was possible for a
subject to wait until all cards had been turned over and then to choose from the complete
set of free-recall offers, with no time constraint. The offer on the red card could be either
free-recall (described to subjects as a ‘standard red card’) or time-limited (a ‘time-limited red
card’). We will classify tasks as ‘free-recall’ or ‘time-limited’ according to the properties of
the red card. Whether the red card offer was free-recall or time-limited was randomised for
each task, independently for each participant, subject to two constraints: that each subject
faced fifteen free-recall tasks and fifteen time-limited tasks; and that in each of these sets
of fifteen tasks, the split between 4s and 12s time intervals was either 7:8 or 8:7. Subjects
were not told which type of offer the red card would make until it was turned over. If the
offer was time-limited, a ‘Click to choose this offer’ button appeared below the card, together
with the message ‘This offer will stay available for 4 seconds’ or ‘This offer will stay available
for 12 seconds’. A countdown clock showed the number of seconds remaining. At the end of
this time interval, if the offer had not been accepted, the card was turned back, making the
offer price no longer visible, and its choice button, availability message and countdown clock
disappeared. Simultaneously, the next card in the sequence was turned over.

In price search tasks, the only difference between the two treatments occurred after an offer
was accepted. In the No Feedback treatment, the offer price that the subject had chosen was
shown on the screen, and the task ended at that point. Thus, if the subject chose an offer
before all the cards had been turned over, she could not get any information about the offers
on the remaining cards. In the Regret Feedback treatment, any remaining cards were turned
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over, revealing their prices. The subject was not allowed to change her decision at this stage.

Figure 2.1 shows a typical screen shot for a time-limited task. In this example, the third card
has just been turned over. It is a time-limited offer with a price of 1.75EP. The subject has
3s remaining in which to choose whether to accept this offer. The two preceding free-recall
prices are 2.27EP and 4.09EP.

Figure 2.1: Screen shot of a typical time-limited task

Viewed in the framework of standard decision theory, free-recall price search tasks are trivial.
In such a task, a rational subject would wait until all prices had been revealed and then
choose the lowest. A time-limited task is also trivial if the time-limited price is greater than
or equal to any preceding free-recall offer: in such a case, the time-limited offer would always
be rejected. A significant decision problem occurs only when a time-limited offer is better
than any preceding offer and (as was always the case in our design) other offers remain to
be revealed. In this case, there are only two relevant options for a rational subject: either
to accept the time-limited offer; or to reject it, wait until all offers have been revealed, and
then choose the best free-recall offer. Time-limited tasks which present such problems will be
called consequential.

For reasons of statistical power, we needed to use parameters that would ensure that, in
the experiment as a whole, approximately equal numbers of subjects would accept and
reject time-limited offers in consequential tasks. We therefore chose the parameters so that,
conditional on facing a consequential task, there was a 0.5 probability that a risk-neutral
expected-utility-maximising subject would accept the time-limited offer. For similar reasons,
we needed that, in a significant proportion of consequential tasks, the expected values of
‘accept’ and ‘reject’ would be relatively close to one another, so that subjects could be expected
to find the decision problem relatively difficult. In order to achieve these objectives, it was

15



necessary that time-limited offers appeared early in the offer sequence and, on average, had
lower prices than free-recall offers. The fact that the time-limited offers in our design were
relatively attractive mirrors the logic behind the use of such offers in retail markets. If,
after rejecting a time-limited offer, a consumer can continue to search in a market in which
free-recall offers exist, she is unlikely to be induced to accept a time-limited offer unless she
perceives it as attractive in relation to the distribution of offers in the market as a whole. We
used equal numbers of free-recall and time-limited tasks because we wanted the appearance of
time-limited offers to be relatively infrequent and unpredictable. The presence of red cards
in the free-recall tasks ensured that free-recall and time-limited tasks had exactly the same
ex ante distribution of offers, and made salient to subjects that favourable distributions of
offers (i.e. offers on red cards) were not necessarily time-limited. As we will explain later, the
free-recall tasks were also useful for testing subjects’ understanding of the structure of the
experiment.

2.3.3 Lottery tasks

As explained in Section 2.3.1, in Part 2 each subject faced fifteen lottery tasks, each requiring
a choice between two lotteries. The parameters of these tasks were set separately for each
subject, so that for each subject there was a one-to-one correspondence between the fifteen
lottery tasks and the fifteen time-limited tasks from Part 1.7 In defining this correspondence,
we consider two alternative ways in which the subject might have responded to the relevant
price search task. (These are not the only possible responses, but all other responses would
be non-rational according to the criteria presented in Section 2.3.2.) Response 1 is to accept
the time-limited offer. Response 2 is to reject the time-limited offer, not to accept any offer
until all have been revealed, and then to choose the lowest free-recall offer. Lotteries 1 and 2
represent the distributions of earnings implied by Responses 1 and 2 respectively. That is, the
certainty offered by Lottery 1 represents the earnings that the subject would have made in
the matched price search task, had she accepted the time-limited offer. The risky prospect
offered by Lottery 2 represents the distribution of possible earnings for the subject, conditional
on the information that would have been available to her when the time-limited offer was
visible, had she rejected that offer, waited until all free-recall offers had been revealed, and
then chosen the lowest of these. Notice that the specification of each lottery task varied only
according to the randomly-determined parameters of the corresponding time-limited task; it
was independent of the subject’s behaviour in that task. Notice also that if a price search task
is non-consequential, the corresponding lottery task is one in which Lottery 1 is stochastically
dominated by Lottery 2. Conversely, if there is stochastic dominance in the lottery task, the

7Each subject faced the lottery tasks in the same order as she had faced the corresponding time-
limited price search tasks. Recall, however, that the latter tasks were randomly distributed among the
thirty price search tasks.
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price search task is non-consequential.8

For example, consider the price search task that generates the screen shot shown in Figure 2.1.
In this task, the time-limited price is 1.75EP. Since each task had a budget of 10EP, Response
1 gives earnings of 8.25EP with certainty. Thus, the outcome of the corresponding Lottery
1 is 8.25EP. The earnings from Response 2 are given by 10EP minus the lowest of the five
free-recall prices. Two of these prices (2.27EP and 4.09EP) are already known; each of the
others will be a random draw from the set {0.00EP, 0.01EP, ..., 10.00EP}. Thus, earnings from
Response 2 are described by a well-defined probability distribution over {0.00EP, 0.01EP, ...,
10.00EP}. The corresponding Lottery 2 is a discrete approximation of that distribution. For
each quintile of the actual distribution of Response 2 earnings, this approximation preserves
the expected value of earnings conditional on earnings falling into that quintile. It therefore
also preserves the unconditional expected value of earnings. Figure 2.2 shows a screen shot of
the lottery task that corresponds to the price search task of Figure 2.1. It should be apparent
from a comparison of the two figures that, although the two tasks are conceptually connected,
there is no superficial resemblance between them that might facilitate memory connection or
between-tasks learning.9

Figure 2.2: Screen shot of a typical lottery task

8This statement is subject to a technical qualification. Because each Lottery 2 is a discrete
approximation to the true distribution of possible earnings in the relevant card task rather than that
distribution itself, there is not an exact correspondence between non-consequential problems in card
tasks and stochastic dominance in lottery tasks.

9Zizzo (2005) contains a summary of empirical evidence demonstrating how transfer of knowledge
is easy when superficial features match but hard when they do not.
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Each subject completed all fifteen lottery tasks before receiving any information about the
actual outcome of any Lottery 2. At the end of the experiment, one lottery task was selected
at random for payment. If the subject had chosen Lottery 2 in this task, the computer selected
one of the five outcomes of that lottery at random, and this outcome determined the subject’s
earnings from Part 2. As far as Part 2 is concerned, the only difference between the two
treatments occurred at this stage, and then only if the subject had chosen Lottery 1. In the
No Feedback treatment, Lottery 2 was not resolved in this case. In the Regret Feedback
treatment, the computer determined an outcome for that lottery and this was displayed on
the subject’s screen. In each treatment, the Part 2 instructions made clear what information
would be provided at the end of the experiment. This difference between the two treatments
maintained the correspondence between price search tasks and lottery tasks.

2.3.4 Implementation

The experiment was conducted in fourteen sessions at the Centre for Behavioural and Ex-
perimental Social Science laboratory at the University of East Anglia during the summer
of 2014. The experiment was programmed and conducted with the experimental software
z-Tree (Fischbacher, 2007). Participants were recruited from the general university population
by email, using the Hroot online recruitment system (Bock et al., 2014). Altogether there
were 209 participants (101 male and 108 female), of whom 105 took part in the No Feedback
treatment and 104 in the Regret Feedback treatment. Most of the participants were students
from a wide range of academic disciplines and with an age range from 18 to 55. The experiment
lasted about 50 minutes. Payments to participants ranged from £6.31 to £11.82, with an
average of £10.43.

2.4 Results

2.4.1 Subjects’ understanding of tasks

We begin by checking that subjects’ behaviour showed a basic understanding of the tasks. In
this section, we give an overview of the relevant findings; full details are given in Appendix 2.

One simple test is whether subjects chose dominated options. We will say that a subject chose
a dominated option in a price search task if, at the moment at which she accepted an offer,
another offer with a strictly lower price was visible and available. In the 6270 (= 209× 30)
responses to price search tasks, there were only 107 cases (1.7 per cent) in which dominated
offers were chosen. This percentage was exactly the same for 4s and 12s tasks. As explained in
Section 2.3.3, the lottery tasks included cases in which Lottery 1 was stochastically dominated
by Lottery 2. Of the 3135 (= 209 × 15) cases of lottery tasks, 595 were choices between
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dominating and dominated lotteries; the dominated lottery was chosen in only 22 of these cases
(3.7 per cent). We interpret these data as evidence that subjects had a basic understanding of
both types of task.

In the price search tasks, as explained in Section 2.3.2, a subject incurred no money cost and
almost no time cost by delaying a choice of a free-recall offer. One might reasonably claim that
a fully rational subject would never accept a free-recall offer until she had seen all six offers.
However, behaviour contrary to this principle does not necessarily reveal misunderstanding of
the tasks. For example, it could result from a short-sighted desire to avoid immediate delays
even though the total time spent on the experiment would be unaffected. Or it could result
from subjects using satisficing heuristics that accept offers that are ‘good enough’.

We classify a response to a price search task as impatient if the subject accepted a free-recall
offer (whether red or blue) before all offers had been revealed, and if that offer had a non-zero
price and was not dominated (as defined above). Because choices of time-limited offers are
never classified as impatient, observations of impatience should be expected to be more
frequent in free-recall tasks. In fact, 9.5 per cent of all responses in time-limited tasks and
23.3 per cent of all responses in free-recall tasks were impatient.

Because impatience is a property of responses to free-recall offers, it can be analysed more
cleanly by using the data from free-recall tasks. (An analysis of the data from time-limited
tasks leads to similar conclusions, but is more convoluted: see Appendix 2 for details of this
analysis.) Impatient responses were more frequent in 12s free-recall tasks (where they made
up 26.7 per cent of all responses) than in 4s free-recall tasks (19.8 per cent). This difference is
highly significant (z = −4.442, p< 0.001).10 This effect is not surprising: the longer the delay
between each offer, the more patience is required if a subject is to see all of them.

It is useful to subdivide impatient responses according to the number of offers (from one to
five) that were visible when the subject accepted an offer. Impatient responses were distributed
fairly evenly over these five stages of the tasks. For any given subject who made an impatient
response at any given stage of a free-recall task, we define the loss due to impatience as the
difference between (i) the price the subject actually paid and (ii) the expected value of the
price she would have paid, had she waited until all six offers had been revealed and then chosen
the lowest price.11 These values are remarkably low. Averaging over all five stages, the average
loss per instance of impatience was only 0.13EP in 4s free-recall tasks and 0.18EP in 12s
free-recall tasks; even at the first stage (i.e. when the first offer was accepted without any other
offer having been seen), average losses were only 0.22EP and 0.29EP respectively. To provide
a scale of reference: the ex ante expected value of the price to be paid by a fully rational
subject was 1.11EP; random choice would imply an expected price of 5.00EP. The implication
is that, even when making impatient responses, most subjects were using decision-making

10For each subject, we calculated the total number of impatient responses, separately for 4s and 12s
tasks, and then ran a two-tailed Wilcoxon signed-rank test.

11This expected value is conditional on the subject’s information at the relevant stage. The derivation
of such expectations is explained in Appendix 3.
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heuristics that were approximately rational. This in turn implies that impatient subjects
typically terminated the search process only when they were able to accept very favourable
offers.

2.4.2 The data to be analysed

From now on, we will be concerned only with subjects’ decisions between accepting and rejecting
time-limited offers in consequential tasks, and with subjects’ choices in the corresponding
lottery tasks. Thus, the price search choice data that we analyse exclude the 19 per cent
of cases in which the time-limited price was greater than or equal to the lowest preceding
free-recall price. These data also exclude the very few cases in which a subject accepted a
free-recall offer before seeing the time-limited offer.12 To maintain a one-to-one relationship
between observations from price search tasks and lottery tasks, we also exclude the data
from the corresponding lottery tasks. (By virtue of the principles used to construct lottery
tasks, almost all of the excluded lottery tasks were ones in which Lottery 1 was stochastically
dominated by Lottery 2.)

In testing Hypotheses 1 to 4, we compare the frequencies with which time-limited offers were
chosen in different treatments or at different levels of time pressure. Recall that, in each
time-limited task faced by each subject, the price on each of the six cards was determined
randomly, as was the position (first, second or third) of the time-limited offer in the sequence
of cards. Therefore, the consequential tasks faced by a subject often included tasks in which
the time-limited offer was worth much more than the expected value of the best free-recall
price, and/or tasks in which it was worth much less. In comparing responses across treatments,
it is important to control for this variation.

We do this by calculating, separately for each subject and for each relevant task, the expected
value of the lowest free-recall price, conditional on the subject’s information at the stage at
which the time-limited offer appears – that is, conditional on the actual values of offers that
had already been revealed but using ex ante expectations of the others. From this expected
value we subtract the actual time-limited price, to arrive at the expected value difference
for that subject/task combination. (The derivation of expected value difference is explained
in more detail in Appendix 3). The zero point on the scale of expected value difference
corresponds with cases in which a fully rational, risk-neutral expected-utility-maximising
individual would be indifferent between accepting and rejecting a time-limited offer. In our
analysis, however, this variable serves primarily as a one-dimensional summary statistic of the
net advantage of accepting rather than rejecting a time-limited offer. A subject’s response to
any given consequential time-limited task can be summarised by the expected value difference
in that task and her decision to accept or reject.

For any given category of time-limited tasks and aggregating across all subjects, we can
1214 of the 3135 responses to time-limited tasks (0.04 per cent) were of this kind.
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investigate the relationship between the expected value difference and the relative frequency
with which the time-limited offer is accepted. It is natural to expect that different subjects
will have different attitudes to risk, and that the attitudes to risk revealed by any given
subject will be subject to stochastic variation. Thus, one would expect this relationship – the
choice frequency function – to be upward-sloping, with the S-shape that is characteristic of
logistic functions. Throughout the paper, we show Lowess-smoothed plots of choice frequency
functions. To provide a convenient summary statistic of the attitudes to risk revealed in
any given category of time-limited task, we estimate the choice frequency function for that
category using a logit model with subject-level clustering and then report the estimated
probability with which the time-limited offer is chosen when the expected value difference is
zero. We will call this the standardised probability of the choice of the time-limited offer in
the relevant category of tasks.

2.4.3 Feedback effects

Figure 2.3 shows Lowess-smoothed choice frequency functions for the No Feedback and Regret
Feedback treatments. It is clear from this diagram that, contrary to Hypothesis 1, time-limited
offers were slightly less likely to be chosen in the No Feedback treatment. The standardised
probability of choosing the time-limited offer is 0.590 for the No Feedback treatment and
0.645 for the Regret Feedback treatment. To test whether behaviour in the two treatments
is significantly different, we estimate a logit model with a dummy variable to represent the
differential effect of the Regret Feedback treatment. The coefficient of this variable is positive
but not quite significant at the 10 per cent level (p = 0.104) (see Appendix 4, section 1). As
far the hypothesis that we set out to test is concerned, our first main result is clear:

Result 1 : There is no support for Hypothesis 1, i.e. the hypothesis that time-limited
offers are more likely to be chosen when feedback is absent than when it is present.
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Figure 2.3: Comparison between responses in No Feedback and Regret Feedback
Treatments

In Sections 2.4.3 and 2.4.4, we pool the data from the two treatments. Because the treatments
are identical in all respects other than the provision of feedback, this pooling cannot induce
systematic biases in our results; it merely introduces a small amount of additional noise.

2.4.4 Time pressure

We now use the same method as in Section 2.4.2 to test Hypothesis 2 about the effect of time
pressure. Figure 2.4 plots Lowess-smoothed choice frequency functions for the 4s and 12s
time-limited tasks.
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Figure 2.4: Comparison between responses to 4s and 12s tasks

It is immediately obvious that, in direct opposition to Hypothesis 2, time-limited offers are
less likely to be chosen in 4s tasks than in 12s tasks. The standardised probability of choosing
the time-limited offer is 0.551 for 4s tasks and 0.691 for 12s tasks. To test whether behaviour
is significantly different at the two levels of time pressure, we estimate a logit model with
subject-level clustering. A dummy variable takes the value 0 for 4s tasks and 1 for 12s tasks.
The coefficient of this variable is positive and strongly significant (p < 0.001) (see Appendix
4, section 2).

Choice frequency functions can also be used to show the degree of dispersion in responses,
controlling for variation in expected value difference. It is clear from Figure 2.4 that the
degree of dispersion is similar at the two levels of time pressure. Thus, there is no evidence to
suggest that individual decision-making was subject to more stochastic variation when the
time available was shorter, as would be implied by many psychological theories of decision
processes (e.g. Busemeyer and Townsend, 1993; Stewart et al., 2006). It seems that the
tendency for time-limited offers to be chosen less frequently in 4s tasks was not an artefact of
decision error or imprecision.

Another possibility is that this unexpected effect was an artefact of impatience. As shown
in Section 2.4.1 and Appendix 2, subjects were more impatient in the 12s tasks, possibly
because of boredom with the relatively long delays between the appearance of successive
free-recall offers. Accepting a time-limited offer rather than waiting to see more free-recall
offers could be an expression of impatience. To test for such an effect, we calculated, for each
subject, the number of impatient choices in free-recall tasks and the number of time-limited
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offers accepted in time-limited tasks. Figure 2.5 shows a jittered scatterplot of these data.
The correlation coefficient is only 0.065, and is not significantly different from zero (p =
0.345). The implication is that impatience and the propensity to choose time-limited offers
are essentially orthogonal.

Figure 2.5: Jittered scatterplot of relationship between impatience and choice of
time-limited offers

Postponing to Section 2.5 the discussion of other possible explanations, we state our second
main result:

Result 2 : Contrary to Hypothesis 2, time-limited offers are less likely to be chosen when
time pressure is high than when it is low.

For both 4s and 12s tasks, the standardised probability of choosing the time-limited offer was
significantly greater than 0.5 (p = 0.028 for 4s tasks, p < 0.001 for 12s tasks). Hence:

Result 3 : Consistently with Hypothesis 3, subjects’ choices between accepting and
rejecting time-limited offers reveal an overall tendency towards risk aversion. This
tendency is much stronger when time pressure is low than when it is high.

2.4.5 Comparisons between price search tasks and lottery tasks

We now consider subjects’ responses to the lottery tasks. Analogously with our treatment
of price search tasks, we define expected value difference for any given lottery task as the
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(certain) value of Lottery 1 minus the expected value of Lottery 2. Recall that, for each
<subject, task> pair that is included in our analysis, there is a corresponding lottery task.
Payoffs in this lottery task correspond with potential earnings in the price search task. Our
definition ensures that every lottery task has the same expected value difference as the price
search task to which it corresponds. Aggregating over all subjects and all (non-excluded)
lottery tasks, we can plot the relative frequency of Lottery 1 choices as a function of the
expected value difference.13 Figure 2.6 shows the Lowess-smoothed choice frequency function
for lottery tasks, superimposed on the 4s and 12s time-limited offer functions from Figure 2.4.

Figure 2.6: Comparison between choices in lottery tasks and price search tasks

The standardised probability of choosing Lottery 1 is 0.577. This is significantly different
from 0.5 (p < 0.001), indicating an overall tendency towards risk aversion. To test whether
attitudes to risk revealed in the lottery tasks are significantly different from those revealed in
the price search tasks, we estimate a logit model with subject-level clustering. We use two
dummy variables. One takes the value 1 in 4s price search tasks, 0 otherwise; the other takes
the value 1 in 12s price search tasks, 0 otherwise. The 4s dummy variable is negative but
not significant (p = 0.959); the 12s dummy variable is positive and highly significant (p <
0.001) (see Appendix 4, section 4). Since lottery tasks were faced later in the experiment
than price search tasks, differences in risk aversion between the two types of tasks might in
principle be an artefact of gradual changes in risk aversion over the course of the experiment.
But we found no trend in risk aversion over the thirty price search tasks (see Section 2.4.6).

13If the lottery choice data are disaggregated between the No Feedback and Regret Feedback
treatments, the choice frequency functions for the two treatments are almost identical. Plots of these
functions are shown in Appendix 4, section 3.
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We conclude:

Result 4 : When time pressure is low, decisions about accepting or rejecting time limited
offers are more risk-averse than are binary choices between certainties and lotteries. At
high levels of time pressure, there is no significant difference between attitudes to risk
in the two types of decision problem.

Notice that the tests that support Result 4 do not take account of differences in dispersion of
attitudes to risk. It is clear from inspection of Figure 2.4 that there is less such dispersion in
lottery tasks than in price search tasks. This is perhaps not surprising. In a lottery task, the
probability distributions of payoffs for the two options are described explicitly to subjects. In
a price search task, in contrast, it is a difficult problem to work out from first principles the
distribution of payoffs implied by a rejection of the time-limited offer. If subjects’ beliefs about
this distribution are wholly or partly derived from experience, or if they use experience-based
decision heuristics which bypass the formation of such beliefs, the random elements and time
lags of the learning process will introduce additional noise into their responses.

Figure 2.6 shows a broad pattern of similarity between aggregate responses to time-limited
tasks (particularly at 4s) and aggregate responses to lottery tasks. But it is also useful to
investigate consistency between responses to the two types of task at the level of the individual
subject. For each subject and for each consequential time-limited price search task faced by
that subject, we can compare her response to that task with her response to the matched
lottery task. We will say that these responses show acceptance consistency if the subject chose
the time-limited offer in the price search task and Lottery 1 in the lottery task, and rejection
consistency if the time-limited offer is rejected and Lottery 2 is chosen. Aggregating across
subjects and task pairs, the relative frequency of the two types of consistency can be plotted
as functions of expected value difference.

Figure 2.7 shows the Lowess-smoothed frequency functions for the two types of consistency for
4s tasks. The sum of these relative frequencies (the consistency rate) is also plotted. Figure
2.8 shows the corresponding plots for 12s tasks.
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Figure 2.7: Consistency of individual choices between 4s price search tasks and
lottery tasks

Figure 2.8: Consistency of individual choices between 12s price search tasks and
lottery tasks

In interpreting consistency rates, it is useful to have a benchmark. Previous experimental
research has generated data about how subjects respond when exactly the same problem
of choosing between two lotteries is faced twice in the same experiment. These choice
problems have normally been designed so that neither option is obviously better than the
other. Consistency rates in such problems have typically been found to lie in a range from
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70 to 82 per cent.14 Intuitively, one might expect much less consistency when, as in our
experiments, the two decision problems are framed very differently. A further reason for
expecting inconsistencies arises from the distinction between decisions from description (that
is, problems of choice under uncertainty in which decision-makers are given explicit information
about probabilities) and decisions from experience (problems that are repeated several times
and for which probabilities have to be inferred from experience). Our lottery tasks are clearly
decisions from description, while (for reasons explained in Section 2.2) subjects might treat our
price search tasks as decisions from experience. It is known that behaviour is systematically
different in the two environments. In particular, when individuals are making decisions by
description, they tend to over-weight small probabilities (Kahneman and Tversky, 1979),
but when decisions are made by experience, small probabilities tend to be under-weighted
(Hertwig et al., 2004).

Viewed against the benchmark of repeated identical decision problems, consistency rates in
our experiment are remarkably high. In both 4s and 12s tasks, the consistency rate reaches
a minimum in the region of expected value difference at which each option is chosen with
approximately the same frequency; in both cases, the minimum value of this rate is just below
70 per cent. Hence:

Result 5 : At the level of individual subjects, the rate of consistency between time-limited
offer choices and corresponding lottery choices is similar in magnitude to previously-
observed consistency rates between identical lottery choice problems.

This degree of consistency between price search tasks and lottery tasks suggests that, for a
typical subject, both tasks tapped into some common body of attitudes to risk: preferences
were not simply constructed in response to specific decision problems. Further, it suggests that
subjects’ capacity to make considered decisions about such offers was not greatly impaired by
time pressure, even in the 4s tasks. Nevertheless, they made systematically different decisions
when time pressure was relaxed.

2.4.6 Learning

Finally, we consider how subjects’ responses evolved over the course of the experiment. To
investigate this, we regress subjects’ decisions in time-limited tasks on a set of explanatory
variables, some of which capture possible learning mechanisms. All the regressions we report
are estimations of logit models in which subject-level random effects are controlled.

Results for our three main models are presented in Table 2.1. In these models, the dependent
variable is the probability that a subject chooses the time-limited offer in a consequential time-
limited task. Because subjects in the No Feedback and Regret Feedback treatments received

14Loomes et al. (2002) report an experiment with a consistency rate of 82 per cent and cite four
other studies which found consistency rates between 70 and 80 per cent.
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different information, the distinction between these treatments is potentially significant in
explaining learning. Model 1 uses data from all time-limited tasks; Models 2 and 3 respectively
use only data from the No Feedback and Regret Feedback treatments.

Table 2.1: Regression results using expected value difference
Overall NF RF
(1) (2) (3)

β ME β ME β ME

Treatment 0.329 0.078
(0.200) (0.047)

Expected value difference 2.399∗∗∗ 0.572∗∗∗ 2.692∗∗∗ 0.662∗∗∗ 2.139∗∗∗ 0.496∗∗∗

(0.104) (0.026) (0.168) (0.043) (0.128) (0.030)
Available time 0.692∗∗∗ 0.164∗∗∗ 0.634∗∗ 0.154∗∗ 0.715∗∗∗ 0.164∗∗∗

(0.130) (0.030) (0.195) (0.047) (0.175) (0.039)
Good offers rejected 2.105∗∗∗ 0.502∗∗∗ 2.960∗∗∗ 0.728∗∗∗

(0.272) (0.065) (0.450) (0.111)
Good offers seen 1.430∗∗∗ 0.331∗∗∗

(0.351) (0.082)
Period 0.003 0.001 0.005 0.001 0.004 0.001

(0.008) (0.002) (0.012) (0.003) (0.011) (0.002)
Constant −0.548∗∗ −0.728∗∗ −0.386

(0.201) (0.276) (0.245)

Observations 2456 1246 1210
LR chi2 536.210 256.673 280.878
Prob > chi2 0.000 0.000 0.000
Baseline predicted probability −0.794 −1.061 −0.643

Notes: ∗ 5% level, ∗∗ 1% level, ∗∗∗ 0.1 %. Standard errors in parentheses. The dependent
variable in these three models is a dummy equal to 1 if the subject chose the time-limited
offer and 0 if the subject rejected the time-limited offer in the task. We used panel data to
estimate all these models. The data used to estimate model 2 contains 1246 observations
from 105 subjects. The data used to estimate model 3 contains 1210 observations from
104 subjects. For each model, the left column contains coefficients, and the right column
report marginal effects. Results for all three models are based on random effects logit
estimations in which subject-specific random effects are controlled.

Treatment in Model 1 is a dummy that takes the value 1 if subjects are in the Regret Feedback
treatment. Expected value difference is as defined in Section 2.4.2. Available time is a dummy
which takes the value 1 in 12s tasks. Period represents the position of the task in the sequence
of price search tasks faced by the subject; 1 is the first task and 30 is the last. This variable
picks up overall trends in learning.

We define two additional variables to pick up the effects of experience of the realisations of
offer values. For each consequential time-limited task faced by each subject, we define the
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time-limited offer as good if its price is strictly less than the lowest price in the set of five
free-recall offers and bad otherwise.15 Notice that the good/bad distinction is based on ex
post realisations of offer values, not ex ante expectations, and is unaffected by whether or not
the time-limited offer was chosen. At the end of each time-limited task in the Regret Feedback
treatment, subjects always knew whether the time-limited offer was good or bad. For subjects
in this treatment, experiential learning might be mediated by memories of good and bad
offers observed in previous tasks. Such memories might be interpreted as experiences of regret
(if a good offer was rejected or a bad offer accepted) or rejoicing (in the opposite cases).
Alternatively, they might be interpreted as encoding information about the distribution of the
difference in value between the time-limited offer and the best free-recall offer. The variable
Good offers seen is defined (for Model 3 only) as the proportion of previous time-limited tasks
in which the time-limited offer was good. (In a subject’s first time-limited task, this variable
takes the value zero.)

For Models 1 and 2, we are forced to use a less clean measure of a subject’s experience of
good and bad offers. To maintain as close a parallel as possible with Good offers seen, we
define Good offers rejected as the number of previous tasks in which good time-limited offers
were not chosen as a proportion of the total number of previous tasks in which time-limited
offers were not chosen. (In the first task in which a subject did not choose the time-limited
offer, this variable takes the value zero.) Although subjects who made impatient decisions in
the No Feedback treatment did not see all five free-recall offers, the value of the best of these
offers is a good approximation to the value of the best free-recall offer actually seen by the
subject (see Section 2.4.1). A further confound needs to be taken into account. For subjects
who (independently of experience) have a relatively strong propensity to accept time-limited
offers, the proportion of rejected offers that are found to be good will be relatively low. This
mechanism induces a tendency for the choice of time-limited offers to vary negatively with
Good offers rejected. Thus, finding a positive effect would be particularly strong evidence of
reinforcement or regret-based learning.

Table 2.1 shows the results of these regression models, including the coefficients and the
marginal effects. In all three regressions, unsurprisingly, the coefficients for Expected value
difference are positive and highly significant (p < 0.001 in all cases). Available time has a
positive and highly significant effect in all three regressions, in line with the findings reported
in Section 2.4.4. In Model 1, the coefficient for Treatment is positive but not quite significant
at the 10 per cent level (p = 0.100), paralleling the findings reported in Section 2.4.3. Period
is insignificant in all three regressions, indicating the absence of any trend in the probability
with which time-limited offers are chosen.16

15The random realisation of the value of each card in each task was determined before the subject
made any decisions about turning over cards. Thus, ‘good’ and ‘bad’ cards are well-defined even if the
subject never saw them turned over.

16As an additional check, we compared the Lowess-smoothed choice frequency functions for the
choice of the time-limited offer (i) using data only from the first fifteen card tasks faced by each subject
and (ii) using only the last fifteen card tasks. We made these comparisons separately for 4s and 12s
tasks. In each case, there was no significant difference between the functions. See Appendix 4, section
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In Model 3, Good offers seen has a positive and highly significant effect, indicating rein-
forcement or regret-based learning. Similarly, Good offers rejected has a positive and highly
significant effect in Models 1 and 2. The parallel between the effects of these two experience
variables strongly suggests that, despite the confounds discussed in the previous paragraph,
reinforcement or regret-based learning is at work in both treatments. To investigate whether
this learning mechanism was affected by time pressure, we tried adding variables to pick up
interactions between Available time and Good offers seen (in Model 3) or Good offers rejected
(in Models 1 and 2). We found no significant interaction effects (see Appendix 4, section 6).

In our analysis so far, we have used Expected value difference as a summary measure of the net
advantage to be expected from choosing rather than rejecting the time-limited offer. However,
it is also useful to investigate how subjects used specific items of information about the offers
in a task. We therefore estimated three additional models in which Expected value difference
was replaced by three offer variables that were directly observed by subjects: the price of the
time-limited offer (Red card), the position of that offer in the sequence of cards (Position),
and the lowest free-recall price revealed before the appearance of the time-limited offer (Best
blue card). Because Best blue card is undefined if the time-limited offer is the first in the
sequence, we restrict the analysis to cases in which that offer appeared second (Position = 0)
or third (Position = 1). Notice that the distribution of outcomes resulting from the rejection
of a time-limited offer is unambiguously better, the lower the values of Best blue card and
Position (i.e., the more free-recall offers remain to be revealed). These models are reported in
Table 2.2.

5.

31



Table 2.2: Regression results using offer variables
(1) (2) (3)

β ME β ME β ME

Treatment 0.307 0.064
(0.224) (0.047)

Red card −2.146∗∗∗ −0.452∗∗∗ −2.461∗∗∗ −0.514∗∗∗ −1.895∗∗∗ −0.403∗∗∗

(0.128) (0.028) (0.215) (0.050) (0.155) (0.033)
Position 0.829∗∗∗ 0.175∗∗∗ 0.762∗∗∗ 0.159∗∗∗ 0.860∗∗∗ 0.183∗∗∗

(0.178) (0.038) (0.264) (0.056) (0.237) (0.050)
Best blue card 0.097∗∗ 0.020∗∗ 0.074 0.015 0.129∗∗ 0.028∗∗

(0.040) (0.008) (0.061) (0.013) (0.052) (0.011)
Available time 0.673∗∗∗ 0.143∗∗∗ 0.681∗∗∗ 0.143∗∗∗ 0.647∗∗∗ 0.139∗∗∗

(0.169) (0.036) (0.255) (0.054) (0.226) (0.049)
Good offers rejected 1.866∗∗∗ 0.393∗∗∗ 2.780∗∗∗ 0.580∗∗∗

(0.338) (0.071) (0.566) (0.117)
Good offers seen 1.232∗∗∗ 0.262∗∗∗

(0.461) (0.098)
Period −0.001 −0.000 −0.013 −0.003 0.011 0.002

(0.010) (0.002) (0.016) (0.003) (0.014) (0.003)
Constant 1.190∗∗ 2.089∗∗ 0.469

(0.595) (0.900) (0.770)

Observations 1444 738 706
LR chi2 292.027 134.373 155.455
Prob > chi2 0.000 0.000 0.000
Baseline predicted probability −0.197 −0.224 −0.212

Notes: ∗ 5% level, ∗∗ 1% level, ∗∗∗ 0.1 %. Standard errors in parentheses. The dependent
variable in these three models is a dummy equal to 1 if the subject chose the time-limited
offer and 0 if the subject rejected the time-limited offer in the task. We used panel data to
estimate all these models. The data used to estimate model 2 contains 1444 observations
from 105 subjects. The data used to estimate model 3 contains 706 observations from
104 subjects. For each model, the left column contains coefficients, and the right column
report marginal effects. Results for all three models are based on random effects logit
estimations in which subject-specific random effects are controlled.

In all three models, Red card, Position and Best blue card have their expected signs. The
first two variables are highly significant in all three models. Best blue card is significant at
the 5 per cent level in Model 1 (using data from both treatments) and Model 3 (using only
data from the Regret Feedback treatment). As in the models reported in Table 2.1, Good
offers seen and Good offers rejected are highly significant; there are no significant interactions
between these variables and Available time (see Appendix 4, section 7). Nor are there any
significant interactions between the offer variables and Available time (see Appendix 4, section
8).
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2.5 Discussion

In this section, we discuss three unexpected features of our results.

The first of these is the absence of a regret feedback effect in the predicted direction. Previous
experiments and surveys have found a tendency for individuals to choose options that reduce
their exposure to regret (Zeelenberg et al., 1996; Zeelenberg and Pieters, 2004). Our No
Feedback treatment was set up so that choosing a time-limited offer would eliminate the
feedback that could otherwise induce regret, but we found no evidence that this contributed
to the attractiveness of such offers.

One possible explanation of this difference in findings is that the regrets that our time-limited
tasks were likely to induce were relatively mild. Consider any consequential task in which the
time-limited offer was rejected and in which this offer was lower than the lowest free-recall
offer. We define the associated ‘regret’ as the lowest free-recall offer minus the time-limited
offer. Using data only from cases that gave rise to regret, the mean (median) regret from
rejecting time-limited offers was 1.13EP (0.70EP) in the Regret Feedback treatment and
1.46EP (1.07EP) in the No Feedback Treatment. In the Regret Feedback treatment, if the
time-limited offer was accepted and if this offer was higher than the lowest free-recall offer,
‘regret’ is defined as the time-limited offer minus the lowest free-recall offer. In this case,
the mean (median) regret was 0.93EP (0.75EP). In contrast, the experiments reported by
Zeelenberg et al. involve hypothetical choices between binary lotteries in which the worse
outcome is always winning nothing. The case studied by Zeelenberg and Pieters is particularly
extreme: a person who chooses not to buy a ticket in the Dutch Postcode Lottery is exposed
to the possibility of massive regret. Such extreme cases are obviously relevant in some natural-
world cases. That said, if exposure to regret is measured in relative terms (i.e. based on the
comparison in value between ‘what is’ and ‘what might have been’), the modest exposure to
regret in our experiment is typical of a number of natural-world price search problems.

Although our subjects seem not to have been influenced by anticipations of regret, their
willingness to accept time-limited offers was affected by their previous experience of offer
realisations (as explained in Section 2.4.5). Since this experience took different forms in the No
Feedback and Regret Feedback treatments, small differences in choice frequencies between the
two treatments (such as those evident in Figure 2.3) are not particularly surprising. However,
the absence of a regret feedback effect suggests that the mechanism by which experience was
encoded and recalled was not driven by the aversive effects of regret.

The second unexpected feature of our results is the high degree of consistency, at both the
aggregate and individual levels, between time-limited offer choices made even under high time
pressure and the corresponding lottery choices. This consistency is particularly noteworthy
given the very different presentation of the two decision problem. It is also noteworthy as
subjects’ decisions about time-limited offers were strongly influenced by realisations of offer
prices in previous tasks. That influence suggests that price search tasks were treated as
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decisions from experience. In contrast, since no lottery risk was resolved until the end of the
experiment, lottery tasks were necessarily decisions from description.17

It is clear from the results reported in Section 2.4.6 that, in choosing whether or not to accept
a time-limited offer, subjects took account of the value of that offer and of its position in
the sequence of offers. The evidence also suggests that they took account of the value of the
best previous free-recall offer. The implication is that subjects were using quite sophisticated
heuristics that were capable of identifying the main determinants of the distributions of
earnings implied by the two options they faced. Even so, if our findings are viewed in the
perspective of behavioural economics, the individual-level consistency of attitudes to risk
between even 4s price search tasks and lottery tasks is a striking regularity that needs to
be explained. Part of the explanation may be that the risky options in our experiment (i.e.,
rejecting the time-limited offer or choosing Lottery 2) had relatively low variance. Thus, these
tasks did not give much scope for the under- and over-weighting of small probabilities that is
a major cause of the description-experience gap (see Section 2.4.5).

The final unexpected feature of our results is that time-limited offers were more likely to be
chosen when the time available for decision-making was 12s than when it was 4s. Contrary
to our prior expectations, we found no direct evidence that subjects used simpler decision
heuristics when time pressure was greater. At both time intervals, subjects took account of the
same three items of task-specific information (the position and price of the time-limited offer
and the value of the best preceding free-recall offer) and ignored the same fourth item (the
nature of the feedback they would receive). At both intervals, they adapted their decisions
in the light of realisations of offer values in previous tasks. At both intervals, the degree
of dispersion in responses and the (very low) frequency of choices of dominated offers were
almost the same. Impatient choices were more common in 12s tasks, but impatience was not
correlated with the acceptance of time-limited offers. The only systematic difference we have
been able to find is that decisions were more risk-averse at 12s than at 4s. This difference was
highly significant.

The most natural interpretation of this finding is that the 12s time interval allowed subjects to
take account of some additional factor, not present in lottery tasks, that favoured the choice
of the time-limited offer. To put this another way, if one models the choice between accepting
and rejecting a time-limited offer in terms of the corresponding probability distributions of
outcomes, one is neglecting some force of attraction that is exerted by time-limited offers but
which decision-makers tend to neglect under time pressure. We conjecture that this attraction
is associated with the certainty of the time-limited offer price and with the salience of this
certainty in a price-search problem. The 12s interval may have allowed subjects time to think

17To check whether subjects’ lottery choices might have been influenced by realisations of offer
values in the preceding card tasks, we estimated logit models in which the dependent variable was the
choice of Lottery 1 and the independent variables included Good offers seen (in the Regret Feedback
treatment) or Good offers rejected (in the No Feedback treatment). We found no significant effects.
See Appendix 4, section 9. This is further evidence that comparisons between responses to price search
and lottery tasks are not distorted by order effects.
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about – and perhaps to worry about – the distinction between certainty and uncertainty.

2.6 Conclusion

Existing industrial organisation models of the effects of time-limited offers assume that,
in their search behaviour, consumers are rational and risk-neutral. Our main objective
was to investigate whether the search-deterring effects of time-limited offers was intensified
or mitigated by behavioural factors. Our conclusion is that these effects are intensified,
particularly (and surprisingly) when consumers are not subject to high time pressure. If
one is thinking about why a ‘behavioural’ consumer might be particularly attracted by a
time-limited offer, the most obvious source of that attraction is the perception that to reject
such an offer is to accept uncertainty rather than certainty. Our findings call into question the
generality of the assumption that, under time pressure, individuals use heuristics that impart
a bias towards certainty. One should be wary of extrapolating too directly from laboratory
behaviour to real markets, but our results raise the possibility that time-limited offers may be
less likely to be accepted if they are presented in ways that subject consumers to extreme
time pressure.

Also surprising was the degree of consistency between consumers’ decisions about time-limited
offers, made even under intense time pressure, and their responses to problems of binary
choice between lotteries. The context-dependence of preferences is a recurring theme in
behavioural economics, but this is a case in which the context-independence of preferences
require a psychological explanation, and its implications for consumer decision making need
thinking through.
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2.7 Appendix

2.7.1 Appendix 1: Instructions for experiment

Welcome to today’s experiment and thanks for coming. In this experiment, you will need to
make a series of choices. You will receive your earnings from this experiment at the end.

I shall say more about what will be involved in the experiment soon. Before I do this, I need
to set some ground rules, which you must all observe. There must be no talking during the
experiment unless you want to ask a question. In this case, simply raise your hand and I will
come to you. You must not attempt to look at what other people are doing.

Please keep to these simple rules, because anyone breaking them may be asked to leave the
experiment without payment.

I will now describe the nature of the tasks within the experiment.

Tasks

This experiment contains two parts. In both parts, you can earn a certain number of
experimental points depending on the decision you made. At the end of the experiment, these
points may be converted to money earnings. Details will be given later. You will be paid the
sum of your money earnings in these two parts.

Part 1

In Part 1, there are 30 tasks. In each task, you will be given 10 points as your initial budget,
and your job is to buy a good with these points. You will have the chance to see 6 offer prices
for this good. All these prices range from 0.00 to 10.00 points. Therefore, none of them will
exceed your initial budget.

During the task, you need to choose one of these offer prices. The price of your chosen offer is
what you will pay. Your point earnings will be equal to 10 points minus this price. Please
remember that you cannot keep all these 10 points as your earnings, because you always have
to choose one offer price in each task.

Now, I am going to describe the offer prices in detail.

In each task, these 6 offer prices will be presented on 6 separate cards, 5 blue and 1 red. The
offer price on each blue card will be in the range from 0.00 to 10.00 points. The actual price
for each blue card will be generated randomly by the computer. Each price in the range will
be equally likely. The offer price on the red card will be in the range from 0.00 to 4.00 points.
The actual price will be generated randomly by the computer. Each price in the range will be
equally likely.
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At the beginning of each task you will only be able to see the backs of these 6 cards. You will
not know which card is the red card. The picture below shows you how the screen will look.

As time goes on, cards will be turned over one by one in order from left to right. The time
interval between cards being turned over will be fixed within each task, but may vary between
tasks.

Once a blue card is turned over, it will stay turned over. This means that the offer on the
card will stay available throughout the task.

There are two types of red card. One is called a standard red card. Once a standard red card
is turned over, it will stay turned over, in the same way that a blue card does, and so the offer
on the card will stay available throughout the task. The other type of red card is called a
time-limited red card. The offer on a time-limited red card will be available only for a certain
number of seconds. When this time is out, the card will be turned back. Once it is turned
back, you cannot choose that offer any more.

Until the red card is turned over, you will not know whether it is a standard red card or a
time-limited red card. You will discover this only when the card is turned over. As shown in
the example below, the message under the red card will tell you which type of card it is.

If the message below the red card says ‘offer available throughout the task’, this means that
it is a standard red card. The picture below is an example of this type of red card and the
corresponding message.

The picture below is an example of how the standard red card looks if you wait until the very
end of the task before choosing an offer.
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If the message under the red card says ‘offer available for x seconds’, this means that it
is a time-limited red card and will be turned back after these x seconds. There will be a
countdown clock below the message reminding you how many seconds are left before it will
be turned back. The picture below is an example of this type of red card, the message, and
the countdown clock.

The picture below shows how the time-limited red card looks after it is turned back, if you
wait until the very end of the task before choosing an offer.

So if you meet a time-limited red card, you need to decide whether to choose the offer on the
card before it is turned back.
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[For NF (No feedback) treatment]

To choose an offer, you need to click the grey button with the words ‘Click to choose this
offer’ on it below the card that you want to choose. If you accept an offer, the task ends. The
offer price on the card you picked will then be shown on the screen. This is the final price you
have chosen to pay for the good in the task. After you click the ‘Next task’ button below this
price, the computer will move on to the next task.

[For RF (Regret feedback) treatment]

To choose an offer, you need to click the grey button with the words ‘Click to choose this offer’
on it below the card that you want to choose. If you accept an offer, the task ends. If you
chose an offer before all the cards are turned over, the remaining cards will then be turned
over to show you the offers on these cards. You will not be able to change your decision at
this stage. The offer price on the card you picked will then be shown on the screen. This is
the final price you have chosen to pay for the good in the task.

At the end of the experiment, two tasks will be picked at random from these 30 tasks by the
computer. Your final point earnings in Part 1 will be the sum of the points you earned in
these two selected tasks. Finally, your point earnings will be converted to money earnings at
the exchange rate of £1 for every 2.5 experimental points. Please raise your hand if you have
any questions. Before starting to take decisions, we ask you to answer some questions in the
next several screens. The purpose of these questions is to check whether you have understood
these instructions. Any mistake you may make in doing these questions will not affect your
final money earnings. When you have finished Part 1, please remain seated. I will distribute
the instruction for Part 2 after everyone has finished Part 1.

Part 2

In this part of the experiment, you will have the opportunity to earn an additional amount of
experimental points according to the decisions you make.

There are 15 lottery tasks, each of which will require you to choose between two lotteries.
At the end of the experiment, one of these lottery tasks will be picked by the computer at
random and played out for real. Your point earnings in Part 2 will be determined by your
decision in this lottery task.

For each lottery, the boxes beside the option label represent the possible outcomes. Points you
can earn from each outcome are shown in the box. For each lottery and outcome, the number
of chances out of 100 that you will get this outcome if you choose this lottery is shown at the
bottom of the outcome box as a percentage. The picture below is an example of how these
lottery tasks look.

In every lottery task, Lottery 1 has only one outcome, as in this example. So there is only
one box beside the lottery label, and the percentage chance shown below the box is 100%.
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This means that, if you choose Lottery 1, you are certain to earn the number of points shown
in the box.

In every lottery task, Lottery 2 has five outcomes, all of which are equally likely, as in this
example. So there are five boxes beside the lottery label, and the percentage chance shown
below each box is 20%. This means that if you choose Lottery 2, there are 20 chances out of
100 that you will earn the number of points shown in the first box, 20 chances out of 100 that
you will earn the number of points shown in the second box, and so on.

To choose a lottery, you need to click ‘Choose Lottery 1’ or ‘Choose Lottery 2’. After you
click the ‘Next task’ button at the bottom of the screen, the computer will move on to the
next task.

[For NF (No feedback) treatment]

At the end of the experiment, one lottery task will be picked at random from these 15 tasks
by the computer. If you chose Lottery 1, your point earnings will be the number of points
shown in the box for Lottery 1, and this will be the end of Part 2 of the experiment. If you
chose Lottery 2, the computer will then determine the outcome of that lottery by picking one
of the five boxes in that lottery at random. The box that the computer has picked will be
highlighted on the screen. Your point earnings will be the number of points shown in the
highlighted box. The picture below is an example of how the outcome of Lottery 2 is shown.

[For RF (Regret feedback) treatment]

At the end of the experiment, one lottery task will be picked at random from these 15 tasks
by the computer. The computer will then determine the outcome of Lottery 2 in that task by
picking one of the five boxes in that lottery at random. The box that the computer has picked
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will be highlighted on the screen. You will always see which box the computer has picked, but
this will affect your earnings only if you chose Lottery 2 in this task. If you chose Lottery
1, your point earnings will be the number of points shown in the box for Lottery 1. If you
chose Lottery 2, your point earnings will be the number of points shown in the highlighted
box. The picture below is an example of how the outcome of Lottery 2 is shown.

Finally, your point earnings will be converted to money earnings at the exchange rate of £1
for every 2.5 experimental points. These will be added to your earnings from Part 1.

Please raise your hand if you have any questions. Before starting to take decisions, we ask
you to answer some questions in next several screens. The purpose of these questions is to
check whether you have understood these instructions. Any failure you may make in doing
these questions will not affect your final money earnings. When you have finished Part 2,
please remain seated and wait patiently until you are paid.
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2.7.2 Appendix 2: Impatience and dominance violations in
card tasks

We define a response as the behaviour of a specific subject in a specific task. In a price search
task, every possible response involves a decision to accept one of the six cards presented in
that task. Each task has possible stages s = 1, ..., 6, some of which may not be reached. Stage
1 starts when the first card is turned over and ends when an offer is accepted or when the
second card is turned over (whichever comes first). Stages 2, ..., 5 are defined similarly. Stage
6 starts when the last card is turned over and ends when an offer is accepted. Thus, for each
response there is exactly one stage in which an offer is accepted.

Table 2.3 reports responses separately for four types of task, classified according to whether
the task is free-recall or time-limited, and whether the time interval is 4s or 12s. We use
the following mutually exclusive and exhaustive classification of responses, which is slightly
different for free-recall and time-limited tasks.

Table 2.3: Dominance violations, impatient responses and rational responses
Number of responses Average loss

time-limited tasks free-recall tasks time-limited tasks free-recall tasks
4s 12s 4s 12s 4s 12s 4s 12s

Rational responses

free-recall offer accepted at stage 6 771 630 1221 1116 – – – –
49.27% 40.13% 78.12% 70.99%

time-limited offer accepted 650 749 – – – – – –
41.53% 47.71%

Impatient responses

free-recall offer accepted at stage 1 23 35 68 99 0.121 0.459 0.223 0.286
1.47% 2.23% 4.35% 6.30%

free-recall offer accepted at stage 2: (i) free-recall tasks – – 81 88 – – 0.127 0.154
5.18% 5.60%

(ii) time-limited offer seen at stage 1 18 19 – – 0.074 0.196 – –
1.15% 1.21%

(iii) time-limited offer not seen at stage 1 11 22 – – 0.113 0.269 – –
0.70% 1.40%

free-recall offer accepted at stage 3 23 22 81 107 0.15 0.128 0.108 0.17
1.47% 1.40% 5.18% 6.81%

free-recall offer accepted at stage 4 28 33 32 67 0.13 0.112 0.054 0.116
1.79% 2.10% 2.05% 4.26%

free-recall offer accepted at stage 5 21 42 47 59 0.086 0.085 0.063 0.111
1.34% 2.68% 3.01% 3.75%

Dominance violations

Accepted offer dominated by previous offer 20 18 33 36 2.551 2.033 2.947 3.173
1.28% 1.15% 2.11% 2.29%

Total 1565 1570 1563 1572

Notes:Percentages do not always add up to 100% due to rounding.

Classification of responses to free-recall tasks
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Starting with the set of all responses to the relevant class of free-recall tasks, we first pick
out dominance violations. A response is classified as a dominance violation if, at the stage at
which the subject accepted an offer, another offer with a strictly lower price was visible.

Considering only responses that are not dominance violations, we then pick out impatient
responses. A response is classified as impatient if the subject accepted an offer (with non-zero
price) at any of the stages 1, ..., 5. Impatient responses are then disaggregated according to
the stage at which the offer was accepted.

Responses that are neither dominance violations nor impatient are classified as rational. These
are responses in which the best (or an equal-best) of the six offers was accepted at stage 6,
or if zero-price offer was accepted at any stage. Notice that if a response is consistent with
expected utility theory for some attitude to risk, it is classified as rational.

Classification of responses to time-limited tasks

Starting with the set of all responses to the relevant class of time-limited tasks, we first pick
out dominance violations. A response is classified as a dominance violation if, at the stage at
which the subject accepted an offer, another offer with a strictly lower price was visible.

Considering only responses that are not dominance violations, we then pick out impatient
responses 18. A response is classified as impatient if at any of stages 1, ..., 5, the subject
accepted a free-recall offer. Impatient responses are then disaggregated according to the stage
(1, ..., 5) at which an offer was accepted. Notice that if an impatient response was made
at stage 1, the subject ended the task before seeing the time-limited offer. If an impatient
response was made at stages 3, 4 or 5, the subject ended the task after seeing the time-limited
offer. But impatient responses at stage 2 can be further disaggregated according to whether,
at this stage, the subject had seen the time-limited offer (i.e. the time-limited offer was the
first or second card) or had not seen it.

Responses that are neither dominance violations not impatient are classified as rational. These
responses are then subdivided according to whether the accepted offer was free-recall (in
which case, by our definitions, it was the best or equal-best free-recall offer and was accepted
at stage 6) or time-limited.

Average loss

For each response that was a dominance violation or was impatient, we find the expected value
of the price that the subject would have paid if, instead of behaving as she did, she had waited
to stage 6 and then chosen the best available offer. This expectation is the counterfactual
price. In free-recall tasks, the counterfactual price is always the price that the subject would
have paid, had she behaved in a fully rational way. In these tasks it is therefore natural to
define the subject’s loss (i.e., the loss resulting from dominance violation or impatience) as

18As noted in Section 2.4.1, a response is also classified as impatient if the subject chose a time-limited
offer with a price exactly equal to the best previous offer. This possibility was never observed.
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the price she actually paid minus the counterfactual price. For each of our classifications of
dominance-violating or impatient responses to free-recall tasks, Table 2.3 shows the average
loss to subjects who made the relevant responses.

Now consider time-limited tasks. Consider impatient responses made at stages 3, 4 and 5, and
impatient responses made at stage 2 when the time-limited offer had been seen (necessarily,
at stage 1). In all these cases, the subject has chosen to reject the time-limited offer. The
counterfactual price is therefore the expected value of the price that the subject would have
paid, conditional on rejecting the time-limited offer, had her behaviour been fully rational.
For each of these classifications of responses, the difference between actual and counterfactual
prices can be interpreted as a loss resulting from impatience. The corresponding average losses
are shown in Table 2.3. For completeness, the ‘average loss’ column for time-limited tasks
also shows the average differences between actual and counterfactual prices for (a) impatient
choices made before the time-limited offer was seen and (b) choice of dominated offers. In
case (a), the entries in the table may understate the true loss from impatience, as they do not
take account of the option of choosing the time-limited offer. In case (b), the entries can be
interpreted as losses resulting from impatience and dominance violation.

In Section 2.4.1, we noted that in free-recall tasks, impatient responses were more common in
12s tasks than in 4s tasks, and that average losses due to impatience were very low. Table 2.3
shows the same regularities in time-limited tasks.
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2.7.3 Appendix 3: Expected value difference

First consider the following abstract lottery. An individual will make m independent draws
from a uniform distribution of values with support [0, k]. She will then receive the maximum
of (i) the highest-valued of these draws and (ii) some constant value z. The expected value of
this lottery is:

k(m+ zm+1)
m+ 1 (2.1)

Now consider a subject in the experiment who faces a consequential time-limited task. Assume
that she does not accept any offer before the stage s ∈ 1, 2, 3 at which the time-limited offer
is revealed. If s > 1, let b be the lowest free-recall price so far revealed. If s = 1, define b ≡ 10
(i.e., the highest possible price, in EP units). Let p be the time-limited price. Since the task
is consequential, p < b. Suppose the subject rejects the time-limited offer and waits until all
offers have been revealed. She will see 5− s additional free-recall offers. The payoff associated
with each of these offers is an independent random draw from a uniform distribution with
support [0, 10]. (Recall that the subject has a budget of 10EP for each task; her payoff is the
budget minus the price of the offer she accepts.) If she makes a rational choice at this stage,
her payoff is the maximum of (i) the payoff associated with the best of these additional offers
and (ii) 10− b. Thus, as viewed at stage s, the option of rejecting the time-limited offer and
then acting rationally is formally equivalent to the lottery described in the first paragraph.
The expected value of this option is given by (1) when k = 10,m = 5 − s and z = 10 − b.
The expected value difference is defined as the payoff from accepting the time-limited offer
(i.e., 10− p) minus the expected value of the payoff from rejecting it. Equivalently, it is the
expected value of the price paid if the time-limited offer is rejected minus the time-limited
price.
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2.7.4 Appendix 4: Additional statistical analysis

1. Treatment effect

Table 2.4: Treatment effect

(1)
β ME

Expected value difference 1.874∗∗∗ 0.452∗∗∗

(0.088) (0.021)
Treatment 0.253 0.061

(0.156) (0.038)
Constant 0.355∗∗

(0.118)

Observations 2526
Pseudo R2 0.403
LR chi2 463.454
Prob > chi2 0.000
Baseline predicted probability 0.416

Notes: ∗ 5% level, ∗∗ 1% level, ∗ ∗ ∗ 0.1 % level. Cluster-robust standard errors in
parentheses. Cluster-robust standard errors in parentheses. The dependent variable
in the model is a dummy equal to 1 if the subject chose the time-limited offer and
0 if the subject rejected the time-limited offer in the task. For the model, the left
column contains coefficients, and the right column report marginal effects. Results
for the model are based on logit estimations with subject-level clustering.
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2. Effect of time pressure

Table 2.5: Effect of time pressure

(1)
β ME

Expected value difference 1.879∗∗∗ 0.453∗∗∗

(0.090) (0.022)
Available time 0.540∗∗∗ 0.129∗∗∗

(0.111) (0.027)
Constant 0.220∗∗

(0.100)

Observations 2526
Pseudo R2 0.409
LR chi2 433.274
Prob > chi2 0.000
Baseline predicted probability 0.417

Notes: ∗ 5% level, ∗∗ 1% level, ∗ ∗ ∗ 0.1 % level. Cluster-robust standard errors
in parentheses. The dependent variable in the model is a dummy equal to 1 if the
subject chose the time-limited offer and 0 if the subject rejected the time-limited
offer in the task. For the model, the left column contains coefficients, and the right
column report marginal effects. Results for the model are based on logit estimations
with subject-level clustering.
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3. Lottery choices: No Feedback and Regret Feedback

Figure 2.9: Lottery choices: No Feedback and Regret Feedback
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4. Logit model combining card and lottery tasks

Table 2.6: Logit model combining card and lottery tasks

(1)
β ME

Expected value difference −2.288∗∗∗ −0.560∗∗∗

(0.101) (0.025)
4s 0.007 0.002

(0.133) (0.033)
12s 0.616∗∗∗ 0.146∗∗∗

(0.128) (0.028)
Constant 0.258∗∗∗

(0.068)
Observations 5052
Pseudo R2 0.486
LR chi2 520.405
Prob > chi2 0.000
Baseline predicted probability 0.428

Notes: ∗ 5% level, ∗∗ 1% level, ∗ ∗ ∗ 0.1 % level. Cluster-robust standard errors
in parentheses. The dependent variable in the model is a dummy equal to 1 if
the subject chose the time-limited offer/Lottery 1 and 0 if the subject rejected the
time-limited offer/Lottery 1 in the task. For the model, the left column contains
coefficients, and the right column report marginal effects. Results for the model are
based on logit estimations with subject-level clustering.
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5. Comparisons between first and second fifteen periods

Figure 2.10: Comparisons between first and second fifteen periods
(a) 12s card task

(b) 4s card tasks
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Table 2.7: Regression

4s 12s
(1) (2)

β ME β ME

Expected value difference 1.752∗∗∗ 0.438∗∗∗ 2.038∗∗∗ 0.434∗∗∗

(0.107) (0.027) (0.130) (0.026)
Period dummy 0.082 0.020 0.107 0.023

(0.157) (0.039) (0.163) (0.035)
Constant 0.168 0.748∗∗∗

(0.117) (0.129)

Observations 1294 1232
Pseudo R2 0.379 0.433
LR chi2 266.155 251.460
Prob > chi2 0.000 0.000
Baseline predicted probability 0.381 0.453

Notes: ∗ 5% level, ∗∗ 1% level, ∗ ∗ ∗ 0.1 % level. Cluster-robust standard errors in
parentheses. The dependent variable in the model is a dummy equal to 0 if the task
is in period 1 to period 15, and 1 if the task is in period 16 to period 30. For the
model, the left column contains coefficients, and the right column report marginal
effects. Results for the model are based on logit estimations with subject-level
clustering.
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6. Models using Expected value difference

Table 2.8: Interactions between Available time and Good offers seen or Good offers
rejected: models using Expected value difference

Overall NF RF
(1) (2) (3)
β β β

Treatment 0.330∗

(0.200)
Expected value difference 2.397∗∗∗ 2.692∗∗∗ 2.138∗∗∗

(0.104) (0.168) (0.128)
Available time 0.762∗∗∗ 0.812∗∗∗ 0.909∗∗∗

(0.171) (0.258) (0.327)
Good offers rejected 2.224∗∗∗ 3.268∗∗∗

(0.331) (0.540)
Available time x Good offers rejected −0.271 −0.686

(0.425) (0.648)
Good offers seen 1.625∗∗∗

(0.448)
Available time x Good offers seen −0.441

(0.626)
Period 0.004 0.006 0.004

(0.008) (0.012) (0.011)
Constant −0.585∗∗∗ −0.823∗∗∗ −0.476∗

(0.210) (0.291) (0.277)

Observations 2456 1246 1210
LR chi2 537.186 257.388 280.652
Prob > chi2 0.000 0.000 0.000
Baseline predicted probability −0.796 −1.070 −0.643

Notes: ∗ 5% level, ∗∗ 1% level, ∗∗∗ 0.1 %. Standard errors in parentheses. The dependent
variable in these three models is a dummy equal to 1 if the subject chose the time-limited
offer and 0 if the subject rejected the time-limited offer in the task. We used panel data to
estimate all these models. The data used to estimate model 2 contains 1246 observations
from 105 subjects. The data used to estimate model 3 contains 1210 observations from
104 subjects. Results for all three models are based on random effects logit estimations in
which subject-specific random effects are controlled.
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7. Models using offer variables

Table 2.9: Interactions between Available time and Good offers seen or Good offers
rejected: models using offer variables

Overall NF RF
(1) (2) (3)
β β β

Treatment 0.307
(0.225)

Red card −2.146∗∗∗ −2.461∗∗∗ −1.895∗∗∗

(0.128) (0.215) (0.155)
Position 0.828∗∗∗ 0.763∗∗∗ 0.861∗∗∗

(0.178) (0.265) (0.237)
Best blue card 0.097∗∗ 0.074 0.129∗∗

(0.040) (0.061) (0.052)
Available time 0.653∗∗∗ 0.694∗∗ 0.670

(0.223) (0.330) (0.436)
Good offers rejected 1.826∗∗∗ 2.806∗∗∗

(0.442) (0.702)
Available time x Good offers rejected 0.078 −0.051

(0.548) (0.845)
Good offers seen 1.260∗

(0.653)
Available time x Good offers seen −0.052

(0.845)
Period −0.001 −0.013 0.011

(0.010) (0.016) (0.014)
Constant 1.205∗∗ 2.079∗∗ 0.455

(0.604) (0.915) (0.804)

Observations 1444 738 706
LR chi2 292.001 134.398 155.430
Prob > chi2 0.000 0.000 0.000
Baseline predicted probability −0.196 −0.224 −0.212

Notes: ∗ 5% level, ∗∗ 1% level, ∗∗∗ 0.1 %. Standard errors in parentheses. The dependent
variable in these three models is a dummy equal to 1 if the subject chose the time-limited
offer and 0 if the subject rejected the time-limited offer in the task. We used panel data
to estimate all these models. The data used to estimate model 2 contains 738 observations
from 105 subjects. The data used to estimate model 3 contains 706 observations from 104
subjects. Results for all three models are based on random effects logit estimations in
which subject-specific random effects are controlled.
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8. Interactions between Available time and offer variables

Table 2.10: Interactions between Available time and offer variables

Overall NF RF
(1) (2) (3)
β β β

Treatment 0.305
(0.226)

Red card −2.060∗∗∗ −2.286∗∗∗ −1.879∗∗∗

(0.161) (0.256) (0.210)
Position 0.633∗∗ 0.395 0.825∗∗

(0.258) (0.385) (0.350)
Best blue card 0.120∗∗ 0.044 0.200∗∗

(0.059) (0.090) (0.080)
Available time 0.308 −0.613 1.188

(1.065) (1.637) (1.406)
Good offers rejected 1.846∗∗∗ 2.717∗∗∗

(0.338) (0.565)
Good offers seen 1.251∗∗∗

(0.464)
Available time x Red card −0.172 −0.360 −0.041

(0.199) (0.309) (0.265)
Available time x Position 0.385 0.685 0.095

(0.354) (0.535) (0.476)
Available time x Best blue card −0.042 0.055 −0.125

(0.079) (0.122) (0.105)
Period −0.001 −0.013 0.011

(0.010) (0.016) (0.014)
Constant 1.389∗ 2.860∗∗ 0.133

(0.842) (1.297) (1.115)

Observations 1444 738 706
LR chi2 291.363 134.392 155.252
Prob > chi2 0.000 0.000 0.000
Baseline predicted probability −0.179 −0.172 −0.226

Notes: ∗ 5% level, ∗∗ 1% level, ∗∗∗ 0.1 %. Standard errors in parentheses. The dependent
variable in these three models is a dummy equal to 1 if the subject chose the time-limited
offer and 0 if the subject rejected the time-limited offer in the task. We used panel data
to estimate all these models. The data used to estimate model 2 contains 738 observations
from 105 subjects. The data used to estimate model 3 contains 706 observations from 104
subjects. Results for all three models are based on random effects logit estimations in
which subject-specific random effects are controlled.
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9. Choice of Lottery 1

Table 2.11: Choice of Lottery 1
Overall NF RF
(1) (2) (3)

β ME β ME β ME

Good offers rejected −0.107 −0.027 −0.605 −0.149
(0.471) (0.117) (0.712) (0.175)

Good offers seen 0.262 0.065
(0.964) (0.240)

Expected value difference 3.381∗∗∗ 0.839∗∗∗ 3.670∗∗∗ 0.904∗∗∗ 3.146∗∗∗ 0.784∗∗∗

(0.155) (0.039) (0.248) (0.062) (0.198) (0.050)
Constant 0.377∗∗ 0.624∗∗ 0.138

(0.176) (0.264) (0.480)

Observations 2526 1281 1245
LR chi2 477.709 219.624 252.986
Prob > chi2 0.000 0.000 0.000
Baseline predicted probability −0.789 −0.788 −0.794

Notes: ∗ 5% level, ∗∗ 1% level, ∗∗∗ 0.1 %. Standard errors in parentheses. The dependent
variable in these three models is a dummy equal to 1 if the subject chose the Lottery 1
and 0 if the subject chose Lottery 2 in the Lottery task. We used panel data to estimate
all these models. The data used to estimate model 2 contains 1281 observations from
105 subjects. The data used to estimate model 3 contains 1245 observations from 104
subjects. Results for all three models are based on random effects logit estimations in
which subject-specific random effects are controlled.
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Chapter 3

Does strategy fairness make
inequality more acceptable?

3.1 Introduction

Existing theories and experimental evidence on social preferences has identified at least
five types of fairness considerations: inequality aversion (Güth et al., 1982; Camerer and
Thaler, 1995; Roth, 1995; Camerer, 2011; Fehr and Schmidt, 1999; Bolton and Ockenfels,
2000), intention-based reciprocity (Blount, 1995; Falk et al., 2003; Offerman, 2002; Charness
and Rabin, 2002; Charness, 2004; Falk et al., 2008), social welfare preferences (Charness
and Grosskopf, 2001; Andreoni and Miller, 2002; Charness and Rabin, 2002), desert-based
fairness (Hoffman et al., 1994; Konow, 2000; Cappelen et al., 2007), and procedural fairness
as randomness (Bolton et al., 2005; Cox and Deck, 2005). By taking into account people’s
preference for fairness, these theories can explain many seemingly puzzling behaviours for
which conventional economic theories cannot give an explanation, such as the resistance
to ‘unfair’ outcomes in the ultimatum game and cooperative behaviour in the trust game.
People’s attitudes to fairness have also been considered in the literature on social norms
(Fehr and Fischbacher, 2004; Bicchieri, 2008; Bicchieri and Chavez, 2010; Xiao and Bicchieri,
2010; Krupka and Weber, 2013). The literature on social norms focuses on almost the same
dimensions of attitudes to fairness as the literature on social preference. However, both
literatures have neglected a type of procedural fairness that may be particularly important
in market environments and in public choice: fairness of a framework of rules within which
individuals pursue self-interest. The conjecture is that inequalities will tend to be seen as
acceptable if they come about through the workings of fair rules, even though they are the
result of self-interested intentions. To fill in this gap of literature on social preferences, we
propose a new concept of fairness: strategy fairness. This is tested using an experiment.

The ultimatum game has been used as a standard experimental design for studying all these
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different types of fairness preferences (see Section 3.2 for a comprehensive review). In the
ultimatum game, subjects are assigned to be either the proposer or the responder. The
proposer makes a decision on how to split an endowment between himself and the responder,
and then the responder chooses to either accept or reject this proposal. If the responder
accepts the offer, the payoff is distributed according to the proposal. If the responder rejects
the offer, both players get a zero payoff. The choices of the proposer and the responder reflect
their ideas of fairness.

The ultimatum game provides a natural environment for studying fairness considerations
regarding the allocation of social welfare. However, one limitation of using the ultimatum
game is that it does not provide a measure of fairness considerations in a competitive context.
Competitions are ubiquitous in our everyday life. We have sports competitions (e.g. football or
basketball), competitions in politics (e.g. elections), competition in business, and competition
in education. The distinction between the situation which is described by the ultimatum game
and competitions is that participants play different roles in the ultimatum game and move
sequentially, but in fair competitions, the positions of participants are completely symmetric,
so that each participant has the same strategy set, therefore equal opportunity to win. There
is evidence suggesting that people may hold different fairness preferences in situations where
they have equal opportunity to compete and in the ultimatum game. In their bargaining
games, Isoni et al. (2014) find that subjects are more willing to settle on efficient but unequal
allocations rather than equal but inefficient allocations when they have equal opportunity to
compete. In this paper, we will be concerned with people’s fairness preferences in a competition
environment. We will introduce a new concept of fairness: strategy fairness. Strategy fairness
in competitions implies that every one in the competition has equal opportunity to win.

In the ultimatum game, responders reveal their attitudes towards fairness by rejecting unequal
allocations or allocations which signal unkind intention of proposers. However, the right
to reduce other people’s payoff is asymmetric between the proposer and responder. The
proposer is given no opportunity to react to the decision made by the responder. As a
result, the cost of making a payoff reducing move is also asymmetric between proposers and
responders. Many recent studies have suggested that findings of experiments with games
involving asymmetric opportunities of punishment lack external validity. Fehr and Gächter
(2000, 2002) show that the existence of punishment opportunities increases the contribution
level in public good games. However, Nikiforakis (2008) shows that when both punishment and
counter-punishment are allowed in the public good game, cooperators’ willingness to punish
decreases, which leads to the breakdown of cooperation. In the presence of counter-punishment
opportunities, people also reveal their strong desire to reciprocate punishments in the public
goods game (Cinyabuguma et al., 2006; Denant-Boemont et al., 2007). Given these facts, an
experiment providing equal opportunities to players to punish (or take resources from) one
another has obvious advantages in studying fairness preferences. The experiment reported in
this paper was designed with that objective.

The experiment had two parts. In Part 1, subjects were paired to compete with one another in
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either a effort task or a series of card games. In each case, the winner of this competition was
given nine lottery tickets, and the loser was given three tickets. One of these lottery tickets
entitled the holder to a prize, but the subjects did not know which ticket this was until after
the end of Part 2. In Part 2, the same pair of subjects faced a version of the vendetta game,
originally introduced by Bolle et al. (2014). In this game, subjects were given opportunities
to take lottery tickets from their co-players, in alternating turns, to increase their number of
tickets by a fraction of what they took. By using or not using these opportunities to take
tickets, subjects were able to reveal their attitudes to equality and fairness.

In the card game, players were dealt a card each. Each card had a number of points on it.
The player who held the card with the higher number of points at the end of each card game
was the winner of game. Both players were given some opportunities to replace cards. The
number of replacement opportunities varied between treatments. In the Fair Rule treatment,
players were given equal numbers of replacement opportunities. In the Unfair Rule treatment,
one player was allowed to change more cards than the other player. The Encryption Task
presented in Erkal et al. (2011) was used as the real-effort task. In the Encryption Task,
subjects were asked to encrypt words by substituting letters with numbers using a given table.
The subject who encoded more words or encoded the same number of words in a shorter time
was the winner.

The Part 1 tasks were designed to generate unequal outcomes between players. In the series of
card games, the rules of the game satisfied strategy fairness in the Fair Rule treatment but not
in the Unfair Rule treatment. This feature of the design allowed us to use the vendetta game
to make between-treatment comparisons of individuals’ attitudes to inequalities generated
by fair and unfair rules. Effort tasks are commonly used to test the concept of desert-based
fairness (e.g. Burrows and Loomes, 1994; Bosman et al., 2005; Oxoby and Spraggon, 2008).
The task in the Real Effort treatment was used as another way of generating an unequal
distribution of the lottery tickets. By comparing the Real Effort and Fair Rule treatments, we
were able to compare attitudes to strategy fairness and desert-based fairness.

In this chapter, we are not interested in how subjects play Part 1 games – these games just
generate inequality by fair or unfair rules. But these games are of independent interest,
because they are ‘search competitions’. Subjects’ behaviour in these games will be analysed in
Chapter 4.

We begin by reviewing the existing concepts of fairness and measures of these concepts in
more detail (Section 3.2 ). We then propose a model of strategy fairness (Section 3.3). We
describe the basic principles of experimental design (Section 3.4) and the application of the
model and our hypotheses (Section 3.5). This is followed by a more detailed description of
the experimental design and its implementation (Section 3.6), the results (Section 3.7), and
their implications (Sections 3.8 and 3.9).
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3.2 Literature on the concept of fairness

Researchers have generally studied a number of fairness considerations: inequality aversion,
intention-based reciprocity, social-welfare preferences, desert-based fairness and procedural
fairness as randomness in the allocation procedure. In this section, we will review these
concepts of fairness in more detail, outlining the measures of them.

Studies show that when making decisions in the ultimatum game, responders are not only
concerned about their own payoff, but also care about the distribution of payoffs. Responders
frequently reject offers of less than 20 percent (Güth et al., 1982; Camerer and Thaler, 1995;
Roth, 1995; Camerer, 2011). The two best-known models of inequality aversion are developed
by Fehr and Schmidt (1999) and Bolton and Ockenfels (2000). By adding concerns about the
distributive consequence of outcomes, these models explain responders’ tendency to reject
unequal distribution of payoffs at the cost of efficiency.

A large number of experimental works show that responders are more likely to reject a given
offer with an unequal distribution of payoffs when the intentions signalled by proposers’ actions
are unkind, which implies that inequality aversion is not sufficient to explain responders’
punishment behaviour. Blount (1995) finds that responders indicate significantly higher
minimum acceptable outcomes when the payoff is allocated by an interested party than by
a random device. Falk et al. (2003) find that responders are more likely to reject a given
offer with an unequal distribution of payoffs when proposers have other alternatives, which
offer more equal distribution of payoffs. These pieces of evidence suggest that intention-based
reciprocity does better than inequality aversion in explaining responders’ different responses to
identical offers. Studies with other sequential games also confirm that people tend to reward
kind actions and punish unkind actions, even when the choice of rewarding or punishment is
costly (Offerman, 2002; Charness and Rabin, 2002; Charness, 2004; Falk et al., 2008).

Most studies of social welfare preference use dictator games or distribution games. These
studies show that many subjects are concerned with social efficiency. Charness and Rabin
(2002) show that in their dictator games, proposers are willing to sacrifice their money in
order to increase efficiency, especially when these sacrifices are inexpensive. They suggest that
social welfare preferences provides a better explanation than inequality aversion for helpful
sacrifice behaviour. Andreoni and Miller (2002) and Charness and Grosskopf (2001) find
similar results with distribution games.

Regarding the process by which the payoff distribution is generated in ultimatum games,
Bolton et al. (2005) find that in response to a given unequal distribution of payoffs, responders’
behaviour differs between when the offer is proposed by a co-player and when it is generated
by a random device. Studies show that responders’ decisions also vary depending on the
fairness of random devices (Bolton et al., 2005; Cox and Deck, 2005). Responders are less
likely to accept unfair random offers than fair random offers, which cannot be explained by
intention-based reciprocity. All this evidence suggest that responders have preferences for
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procedural fairness.

Studies of desert-based fairness focus on various entitlement conditions in both ultimatum
games and dictator games. There are two dimensions of entitlement: the first dimension
implies how the role of first mover is assigned; the second dimension refers to how the initial
endowment is produced. Hoffman et al. (1994) find that in both ultimatum games and dictator
games, the origin of initial entitlements matters – first movers who earn the right to the role by
answering more questions correctly offer significantly less to their opponents than first movers
who have it assigned randomly. It is also interesting that in the ultimatum game, they did not
find any detectable difference in the rejection rate of second movers between treatments with
different entitlement conditions. Regarding the second dimension of entitlement, first movers
who make more contribution to the initial endowment than their opponents are found to keep
more for themselves than first movers who make less contribution (Konow, 2000; Cappelen
et al., 2007). Both studies also find that people treat the entitlement earned through factors
within individual control (e.g. effort) differently from that earned through factors beyond
individual control (e.g. talent) – people find it more fair to allocate payoffs according to
factors within individual control than factors beyond individual control. Ruffle (1998) shows
that in the dictator game, allocators offer significantly more to recipients who exert effort to
create a large pie than to lucky recipients who create a large pie as a result of a coin toss.

3.3 Model of strategy fairness

3.3.1 Concept of strategy fairness

Consider any normal form game. Each player i ∈ {1, 2, ..., n} has a strategy space Si containing
mi pure strategies, indexed by the numbers 1, ...,mi. The set of all strategy profiles, i.e.
S1× ...×Sn, is denoted by S. Typical profiles are denoted by s, s′. For each player i, material
payoffs are described by a function πi : S → R. If there is some m such that mi = m for all i,
the game has identical strategy spaces, i.e. Si = {1, ...,m} for all i. To develop a concept of
strategy fairness, we need to make comparisons between the opportunities faced by different
players in the same game. Consider any game in which, for two distinct players i and j,
mi = mj . We will say that two strategy profiles s, s′ for this game differ only by an {i,j}
transposition if s′i = sj (i.e. i’s component of s′ has the same index number as j’s component
of s), s′j = si, and for all k 6= i, j, sk = s′k.

Definition 1 (Direct fairness). A game is directly fair with respect to two distinct players
i and j if mi = mj and if, for all pairs of strategy profiles s, s′ that differ only by an {i, j}
transposition, πi(s) = πj(s′).

Definition 2 (Direct bias). A game is directly biased towards some player i relative to another
player j if mi = mj and if, for all pairs of strategy profiles s, s′ that differ only by an {i, j}
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transposition, πi(s) ≥ πj(s′), with a strict inequality for at least one such pair.

Two corollaries of these definitions will turn out to be significant:

Corollary 1 . In any game that is directly fair with respect to two players i and j,∑
s∈S πi(s) =

∑
s∈S πj(s).

Corollary 2. In any game that is directly biased towards one player i relative to another
player j,

∑
s∈S πi(s) >

∑
s∈S πj(s).

However,
∑

s∈S πi(s) =
∑

s∈S πj(s) does not imply that the game is directly fair, and∑
s∈S πi(s) >

∑
s∈S πj(s) does not imply the existence of direct bias.

‘Direct’ fairness and bias are defined with respect to arbitrary assignments of index numbers to
players’ strategies. To remove this limitation, we use the idea that a game can be ‘relabelled’
by changing this assignment. Consider any game G in which, for two distinct players i, j,
Si = Sj = {1, ...,m}. A relabelling of this game with respect to i and j is a pair of one-to-one
mappings fi : {1, ...,m} → {1, ...,m}, fj : {1, ...,m} → {1, ...,m}. The relabelled game G′ is
identical to G in all respects except that, for each k ∈ {1, ...,m}, the strategy for i that is
indexed by k in G is indexed by fi(k) in G′, and the strategy for j that is indexed by k in G
is indexed by fj(k) in G′.

Notice that, because index numbers are transformed separately for the two players, a pair of
strategies (one for i and one for j) that have the same index in G may have different indices in
G′. However, relabelling cannot affect the value of

∑
s∈S πi(s) or

∑
s∈S πj(s), i.e. the total of

all possible payoffs to each player, summing over all strategy profiles. The following theorem
can be proved by combining this fact with Corollaries 1 and 2:

Theorem 1. For any game G, for any distinct players i and j, no more than one of the
following propositions is true:

[i] There is some relabelling of G with respect to i and j such that the re-labelled game G′ is
directly fair with respect to i and j.

[ii] There is some relabeling of G with respect to i and j such that the re-labelled game G′ is
directly biased towards i relative to j.

[iii] There is some relabeling of G with respect to i and j such that the re-labelled game G′ is
directly biased towards j relative to i.

Theorem 1 legitimates the following definitions:

Definition 3 (Label-independent fairness). A game G has label-independent fairness with
respect to two distinct players i and j if mi = mj and if there is some relabelling of G with
respect to i and j such that the re-labelled game G′ is directly fair with respect to i and j.

Definition 4 (Label-independent bias). A game G has label-independent bias towards some
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player i relative to another player j if mi = mj and if there is some relabelling of G with
respect to i and j such that the re-labelled game G′ is directly biased towards i relative to j.

Table 3.1: Battle of the Sexes 1

Wife
Boxing Opera

Husband
Boxing 3, 2 0, 0
Opera 0, 0 2, 3

These definitions can be illustrated by using the ‘Battle of the Sexes 1’ game 1 in Table 1.
Husband gets more payoff than Wife if both of them choose Boxing, while Wife gets more
than Husband if both of them choose Opera. If, for each player, we index Boxing by 1 and
Opera by 2, we find that the game is neither directly fair with respect to the two players, nor
biased towards either of them. However, we can relabel the game for assigning the index 1
(and the name ‘Preferred’) to Boxing for Husband and to Opera for Wife, and by assigning
the index 2 (and the name ‘Less Preferred’) to Opera for Husband and to Boxing for Wife.
The relabelled game, ‘Battle of the Sexes 2’ is given in Table 2. In Battle of the Sexes 2,
both Husband and Wife get zero payoff if they both choose Preferred or both choose Less
Preferred. Husband gets 2 if he chooses Less Preferred and Wife chooses Preferred, which
is as same as the payoff that Wife gets if she chooses Less preferred and Husband chooses
Preferred. Similarly, Husband gets 3 if he chooses Preferred and Wife chooses Less Preferred,
which is as same as the payoff that Wife gets if she chooses Preferred and Husband chooses
Less Preferred. So, Battle of the Sexes 2 is directly fair with respect to its two players under
Definition 1. Therefore, we can say that Battle of the Sexes 1 has label-independent fairness
with respect to its players under Definition 3.

Table 3.2: Battle of the Sexes 2

Wife
Less

Preferred preferred

Husband
Preferred 0, 0 3, 2

Less preferred 2, 3 0, 0

We now extend our concept of bias to cases in which the players’ strategy spaces are not
identical.

Consider any normal form game G for n players. Consider any players i, j with strategy
spaces Si = {1, ...,mi}, Sj = {1, ...,mj} where mi > mj . By removing any mi−mj strategies
from player i’s strategy space and then re-labelling the game so that Si = {1, ...,mj}, we can
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create a game G′ that is a reduction of G with respect to i and j and in which i and j have
identical strategy spaces.

Definition 5 (Reduced-game bias). A game G has reduced-game bias towards one player i
relative to another player j if mi > mj and if there is some game G′ that is a reduction of G
with respect to i and j such that G′ has label-independent bias towards i relative to j.

3.3.2 Utility function

In this subsection, we propose a method of incorporating attitudes to strategy fairness into
players’ utility functions. We model these attitudes as modifying attitudes to inequality via
strategy fairness factors. Consider any game G, defined by its profile (S1, ..., Sn) of strategy
spaces and its profile (π1, ..., πn) of payoff functions. These properties determine whether, with
respect to each pair of players, the game is strategically fair or biased. Let x = (x1, ..., xn) be
profile of actual payoffs in the game, as determined by players’ strategy choices.1 The strategy
fairness factor for the comparison between xi and xj , as viewed by player i, is given by

ϕi(G, xi, xj) =



ri if xi ≥ xj and the game is biased towards player i

1 if the game is fair, no matter xi ≥ xj or xi < xj

si if xi ≥ xj and the game is biased towards player j

pi if xi < xj and the game is biased towards player i

qi if xi < xj and the game is biased towards player j

The parameters ri, si, pi and qi represent i’s attitudes to strategy fairness. We impose the
restrictions (i) ri > 0, si > 0, pi > 0, and qi > 0, (ii) if ri > 1 then si < 1, (iii) if ri < 1 then
si > 1, (iv) if pi > 1 then qi < 1, (v) if pi < 1 then qi > 1. We will explain the motivation for
these restrictions after we have explained the role of the strategy fairness factor in the utility
function.

The utility function of player i ∈ {1, ..., n} is given by

Ui(x) = xi−αi(
1

n− 1)
∑
j 6=i

max{xj−xi, 0}ϕi(G, xi, xj)−βi(
1

n− 1)
∑
j 6=i

max{xi−xj , 0}ϕi(G, xi, xj)

where 0 ≤ βi < 1 and βi ≥ αi

In the case of a two-player game, this simplifies to

U1(x) = x1 − α1max{x2 − x1, 0}ϕ1(G, x1, x2)− β1max{x1 − x2, 0}ϕ1(G, x1, x2)

1We use xi rather than πi in this context, to distinguish ex post payoffs from payoff functions.
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This utility function is based on the Fehr and Schmidt (1999) model of inequality aversion. It
takes players’ preferences for strategy fairness into account by modifying players’ attitudes
to payoff inequality according to the fairness of the game in which the inequality has come
about. Consistent with the Fehr-Schmidt model, βi ≤ αi means that a player suffers more
from disadvantageous inequality than advantageous inequality. 0 ≤ βi rules out the possibility
that a player likes to be better off than others. βi < 1 means that a player’s utility is always
increasing in her own material payoff in a fair game.

Returning to the restrictions placed on the parameters ri, si, pi and qi, the restrictions ri > 0,
si > 0, pi > 0 and qi > 0 capture the idea that strategy fairness can partially influence a
player’s attitude to payoff inequality, but cannot change it completely. For example, suppose
that player i is inequality averse and has a lower monetary payoff than player j (i.e. xi < xj).
If the game is biased towards player i, this can make player i feel better about the payoff
inequality or worse about the payoff inequality, but it cannot make her completely indifferent
to inequality or inequality seeking. Restrictions (ii) to (v) express the idea that disadvantaged
strategy unfairness and advantaged strategy unfairness affect utility in opposite directions. If
player i feels better about disadvantaged inequality when a game is biased towards her than
when it is fair, then she feels worse about disadvantaged inequality when the game is biased
against her.

3.4 Basic principles of experimental design

The experiment consists of two stages, Stage 1 with either a series of card games or an effort
task, and Stage 2 with a vendetta game. Before the experiment began, subjects were randomly
assigned to seats with numbers on them. The randomness of the seat allocation was salient
to subjects, but because it took place before the experiment began, we expected it to be
separated from the game in subjects’ minds when they were thinking about the fairness of
the game.

At the beginning of the experiment, subjects were told that those with odd seat numbers
became participant As and those with even seat numbers became participant Bs. Each
participant A was randomly and anonymously matched with a coparticipant B. This matching
stayed the same throughout the experiment. During the experiment, participant As and
participant Bs competed for some lottery tickets. The results of the series of card game or the
effort task in Stage 1 determined the distributions of the lottery tickets between participants
that was carries over to Stage 2. The winner got more lottery tickets than the loser. The
vendetta game in Stage 2 gave the two participants opportunities to change the distribution of
the tickets. At the end of the experiment, one tickets was picked out randomly as the winning
ticket. If the winning ticket was held by one of the participants, that participant got a prize.

In order to investigate people’s preference for strategy fairness in competition environments,
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we wanted a Stage 1 game with the following features. First, the game had to provide an
environment in which subjects interact with each other. Second, the game needed to create
fixed inequality as the outcome. Third, within the interaction, we also wanted subjects to
reveal their intentions of trying to win in the game. Therefore, random devices would not be
suitable for the purpose. Finally, the rules of the game needed to be easily understood as fair
or unfair.

We designed a card game which has all these features. At the start of each game, participants
were dealt a card each. Each card had a number of points. In each game, both participant As
and participant Bs were offered opportunities to replace cards. The numbers of replacement
opportunities available to participant As and participant Bs varied between treatments. By
allowing participant As and participant Bs to have equal/unequal replacement opportunities,
the rules of the game were deliberately made fair/unfair between participants. In the Fair
Rule treatment, both participant As and participant Bs had the same number of replacement
opportunities. In the Unfair Rule treatment, participant As had less replacement opportunities
than participant Bs. At the end of the card game, the participant who held a card with a
higher number of points won the game.

In the interest of comparing strategy fairness with other widely tested concept of fairness, we
chose to have a Real Effort treatment in which unequal outcomes in Stage 1 were generated by
a real-effort task. In the literature on attitudes to fairness, real-effort tasks are commonly used
to test the concept of desert-based fairness (e.g. Hoffman et al., 1994; Ruffle, 1998; Fahr and
Irlenbusch, 2000; Oxoby and Spraggon, 2008). Comparisons between the Fair Rule treatment
and the Real Effort treatment allows us to analyse similarities or differences between strategy
fairness and desert-based fairness.

In Stage 2, we wanted a game which can pick out people’s attitudes towards the inequality
created in Stage 1, i.e. how willing they are to accept this inequality. The game was
selected with the following considerations in mind. First, the game had to provide a natural
environment in which both participants are allowed to make moves. As discussed in Section
3.1, games with a single punishment round may lack external validity. We wanted a game
which provides both participants with the same opportunities to change the distribution of
payoffs, at the same cost. The idea of ‘having the same opportunities’ in the Stage 2 game
mirrors the role of equality of opportunities in the concept of strategy fairness that we use in
analysing Stage 1. Second, the game should offer participants opportunities to redistribute
the lottery tickets rather than to punish each other. In the card game, participants interact
with each other under rules that can be fair or unfair. If these rules are biased towards one of
the players, there seems no reason for the disadvantaged player to punish a co-participant
who did not set up the rule. But there is a reason to want to redistribute the outcomes of an
unfair game.

We used the vendetta game created by Bolle et al. (2014), which meets all the criteria. To
make the game easier to understand and to fit better with Stage 1 of our experiment, we
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made some changes to Bolle et al.’s original design. Details of game will be described in the
next section. In the vendetta game, participant As and participant Bs took turns to choose
whether to stay with the current distribution of lottery tickets or to choose a taking move –
that is, a move that takes lottery tickets from the co-participant at a cost in terms of ‘wasted’
tickets. The loser in stage 1 made a choice first. Participants always had the option of not
taking any tickets. The game ended when both participants had not taken for two successive
turns each, or when no taking moves remained for either participant.

3.5 Application of the model and hypotheses

In section 3.3, we showed how to incorporate the concept of strategy fairness into a more
complete model. Although the experiment was not designed to test the model, the model still
can provide us some insight into the behaviours that we may observe in our experiment.

Table 3.3 summarises the initial positions in the vendetta game. The initial positions are
determined by the type of tasks that were carried out in Stage 1 and their outcomes. In both
the Fair Rule treatment and the Unfair Rule treatment, the series of card games was used to
determine the allocation of lottery tickets between participant A and participant B. In the
Fair Rule treatment, participant A and participant B had the same number of replacement
opportunities; i.e., the game provided them with opportunities of competing fairly. Therefore,
subjects can be classified as either fair winners or fair losers. In the Unfair Rule treatment,
participant B was allowed to change more cards than participant A. This rule is obviously
biased towards participant B. (In terms of the analysis in Section 3.3.1, there is reduced-game
bias.) However, according to the design of the card game in the Unfair Rule treatment,
participant A still has a chance to win. Hence, the outcome of the series of games can either
be that the advantaged participant B wins and the disadvantaged participant A loses, or (but
with much lower probability) the opposite. In the Real Effort treatment, the effort task is
used to determine the allocation of lottery tickets between participant A and participant B in
each pair. Subjects can be classified as either high effort winners or low effort losers.

Table 3.3: Initial positions in the vendetta game
Loser Winner

Fair Rule treatment Fair loser Fair winner
Unfair Rule treatment
Advantaged player wins Disadvantaged loser Advantaged winner
Disadvantaged player wins Advantaged loser Disadvantaged winner
Real Effort treatment Low effort loser High effort winner
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3.5.1 Application of the model

Figure 3.1 shows the component of player i’s utility that derives from inequality of material
payoffs. The baseline case of utility from inequality in a strategically fair game is shown
by the solid lines. The other lines are drawn on the assumption that that qi > 1 > pi and
ri > 1 > si. Our prior intuition was that most people’s attitudes to unfairness would be well
represented by these assumptions. The interpretation of qi > 1 > pi is that if player i has a
lower monetary payoff than player j, she would feel less bad about the payoff inequality if the
game was biased towards her than if the game was fair, while she would feel worse about it if
the game was biased towards player j. The interpretation of ri > 1 > si is that if player i has
a higher monetary payoff than player j, she would feel less bad about the payoff inequality if
the game was biased towards player j, while she would feel worse about it if the game was
biased towards her.

These conjectures are about what attitudes to unfairness are most common. One would expect
to find a lot of heterogeneity of attitudes in any population.

Applied to our experiment, these conjectures suggest that disadvantaged losers would be more
likely to take than fair losers, and that advantaged winners would be less likely to take than
fair winners.

Figure 3.1: Utility from payoffs
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3.5.2 Hypotheses

The existing literature on social preferences suggests that people have a desire for fairness.
When people are treated unfairly, they have the desire to rectify the unfair situation by means
of punishment (e.g. Rabin, 1993; Charness and Rabin, 2002; Falk et al., 2003; Segal and
Sobel, 2007). In our experiment, the Fair Rule treatment produces inequality as the result of
a game that is strategically fair in a way that is likely to be salient to players. The Unfair
Rule treatment uses the same framing as the Fair Rule treatment but deliberately generates
unfairness. Hence, if the fairness of the ‘equal opportunities to change cards’ rule is salient in
the card games, one would expect more desire to rectify the inequality between disadvantaged
losers and advantaged winners in the Unfair Rule treatment than to rectify the inequality
between fair losers and fair winners in the Fair Rule treatment. In the Real Effort treatment,
the framing of the effort task makes people think of a situation where effort ought to be
rewarded. If one participant is to get more lottery tickets than the other, it ought to be the
one who makes more effort. It is consistent with the idea of desert that people who put in
more effort should get a greater reward as they are relatively deserving (e.g. Hoffman and
Spitzer, 1985; Burrows and Loomes, 1994; Bosman et al., 2005). Hence, less taking behaviour
should be observed in the Real Effort treatment than in the Unfair Rule treatment. We
therefore test the following hypothesis about efficiency loss:

Hypothesis 1: More taking behaviour occurs in the Unfair Rule treatment with disad-
vantaged losers and advantaged winners than in the Fair Rule treatment or in the Real
Effort treatment.

Apart from differences in efficiency loss between treatments, we were also interested in
individual players’ propensities to take. First, we consider the first moves of the losers. In
the Fair Rule treatment, the fair loser and the fair winner got the unequal outcome by going
through a fair competition. In the Real Effort treatment, the high effort winner wins the game
by making more effort. For the disadvantaged losers in Unfair rule treatment, the advantaged
winner won the game through making use of a rule that was biased in her favour. Therefore,
one would expect that unfair losers in the Unfair Rule treatment should be less willing to
settle on the initial distribution of lottery tickets than fair losers in the Unfair Rule treatment
or low effort losers in the Real Effort treatment. For the first moves of losers, we therefore
test the following hypotheses:

Hypothesis 2: Comparing the first moves of losers, disadvantaged losers in the Unfair
Rule treatment are more likely to take than fair losers in the Fair Rule treatment or
low effort losers in the Real Effort treatment.

Moreover, any taking behaviour by advantaged winners in the Unfair Rule treatment can
be expected to provoke more counter-taking behaviour by disadvantaged losers than the
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corresponding behaviour of winners in the other two treatments. Therefore, for the propensity
to steal of losers in these three treatments, we also want to test the following hypotheses:

Hypothesis 3: At any point in the vendetta game at which the loser moves, disadvantaged
losers in the Unfair Rule treatment are more likely to take than fair losers in the Fair
Rule treatment or low effort losers in the Real Effort treatment.

Furthermore, it is also interesting to compare winners’ propensity to take in these three
treatments. In both the Fair Rule treatment and the Real Effort treatment, fair winners and
high effort winners won more lottery tickets either by playing and winning a strategically fair
card game or by making more effort than their co-participants. In the Unfair Rule treatment,
advantaged winners instead were favoured by the rules of the card game. One might expect
that within an ongoing vendetta, advantaged winners in the Unfair Rule treatment would be
more tolerant of the taking behaviour of the disadvantaged losers than either the fair winners
or high effort winners in the other two treatments. Our final hypothesis is, therefore:

Hypothesis 4: At any point in the vendetta game at which the winner moves, advantaged
winners in the Unfair Rule treatment are less likely to take than fair winners in the Fair
Rule treatment or high effort winners in the Real Effort treatment.

As Table 3.3 shows, there is a fourth type of initial position for the vendetta game – the
position that can arise in the Unfair Rule treatment when the series of card game is won by
participant A. In this case, the vendetta game is played between a disadvantaged winner and
an advantaged loser. The experiment was not designed to investigate this case; it occurs only
as a necessary by-product of setting up a genuine game with unfair rules. Precisely because
of the unfairness of the game, this case occurs relatively rarely, and so our design produces
relatively few observations of it. (17 (22.67 per cent) of the vendetta games in the Unfair Rule
treatment were of this type.) But, while recognising the small number of observations, it is
still interesting to compare the propensity to take of disadvantaged winners and advantaged
losers in the Unfair Rule treatment with winners and losers in the other two treatments.

We do not state any formal hypotheses regarding differences between taking behaviour in the
Fair Rule treatment and the Real Effort treatment. The Fair Rule treatment gets inequality
by incorporating a certain kind of fairness: strategy fairness. The Real Effort treatment
incorporates a different kind of fairness: desert-based fairness, which is more commonly tested
in the literature of social preference. Existing theories of attitudes to fairness do not provide
unambiguous predictions about the direction that differences between the two treatments
might take. Still, it is interesting to compare taking behaviour in these two treatments.
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3.6 Design details and implementation

3.6.1 Overall structure of experiment

Each session of the experiment was randomly assigned to one of the three treatments (Fair
Rule, Unfair Rule or Real Effort). Stage 1 of each session consisted of either a series of card
games or an effort task; Stage 2 consisted of a vendetta game. At the beginning of each stage,
each subject received a copy of the instructions for that part; these instructions were read
aloud by the experimenter. These instructions are reproduced in Appendix 1. Each subject
then completed a computerised questionnaire which tested her understanding of the tasks. If
a subject made a mistake, the computer would show her the correct answer and the relevant
part of the instructions. Subjects were invited to ask the experimenter for clarification.

In Stage 1, subjects competed for twelve lottery tickets numbered 1 to 12. The results of
the series of card game or the effort task determined the initial allocation of these tickets.
At the end of Stage 1, the computer picked nine of these numbered tickets at random and
assigned them to the winner. The remaining three tickets were assigned to the loser. The
vendetta game in Stage 2 gave subjects the opportunities to change the initial distribution of
the tickets.

At the end of each session, the experimenter put twelve numbered tickets into a bag. One of
the participants was asked to come forward and pick one ticket from the bag. The number on
this ticket was the number of the winning ticket. In each pair of subjects, if either member of
that pair held a ticket with the winning number, she got the prize of £24. If the winning
ticket had been wasted during the vendetta game, neither member of the pair got the prize.
In all cases, both members of a pair also received a participation fee of £3.

3.6.2 The Series of Card Games

In both the Fair Rule treatment and the Unfair Rule treatment, subjects played a series of
card games in Stage 1. The basic structure of the game was described in Section 3.4 above;
here we fill in the details.

At the start of each card game, participants were dealt a card each. Each card had a number
of points, which could be any of the whole numbers in the range from 1 to 100. Each of these
numbers was equally likely at each ‘deal’.

In each game, participant A and participant B were offered opportunities to replace cards. In
the Fair Rule treatment, both participants were allowed to replace cards up to three times in
each card game. In the Unfair Rule treatment, participant A was allowed to replace cards up
to one time in each card game, while participant B was allowed to replace cards up to three
times. During the game, participants could decide to stick with the card that they had been
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dealt or to replace it with a new card. If a participant decided to replace her card with a new
card, then the computer would randomly draw a new one for her. Each number in the range
from 1 to 100 was still equally likely at this ‘deal’. However, the participant could not go back
to the replaced card again. Participants could decide to stick with any card that was dealt to
them. Once they used up all the replacement opportunities, they could not make any further
replacement and had to stick with the last card that they had been dealt. During this stage
of the game, neither participant could see what cards her co-participant was being dealt, or
whether the co-participant was using replacement opportunities.

After both participants had made the decision of sticking with a card they had been dealt or
had used up all their opportunities for replacing cards, their cards were compared. At this
stage, they could both observe the points on both participants’ cards. They were also shown
how many replacement opportunities their co-participants had used. A participant who held
a card with a higher number of points than the card held by her coparticipant won the game.
If both of them had the same number of points, the game was a draw. The first participant to
win 4 games was the overall winner of the series of games. Draws were not counted.2 We used
a series of card games rather than just one because we wanted the game to be fairly simple
(and so not to contain too many replacement opportunities) but also wanted the advantaged
player to win with high probability.

3.6.3 Real-effort task

In the Real Effort treatment, participants faced the Encryption Task presented in Erkal et al.
(2011). In this task, participants were given an encryption table which assigned a number
to each letter of the alphabet in a random order. Each participant was then presented with
words in a predetermined sequence and was asked to encrypt them by substituting the letters
with numbers using the encryption table. All participants were given the same words to
encode in the same sequence.

After a participant encoded a word, the computer would tell her whether the word had been
encoded correctly or not. If the word had been encoded wrongly, the participant would be
asked to check her codes and correct them. Once the participant encoded a word correctly,
the computer then prompted her with another word which she was asked to encode. This
process continued for six minutes.

After both participants had finished the task, the number of words they had encoded was
counted as their scores for the task. At the end of the task, the participant with the higher
score was the winner. If both participants got the same score, then the person who encoded
the words in a shorter time was the winner.

2In all sessions, draw happened in only 18 games (1.23% of all card games played).
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3.6.4 Vendetta Game

In the second stage of the experiment, we used a modified version of the vendetta game
created by Bolle et al. (2014). Participants took turns to choose whether to stay with the
current distribution of lottery tickets or to change it. The loser in stage 1 made a choice
first, starting from the distribution of lottery tickets determined in Stage 1. When it was a
participant’s turn to move, she was asked to choose whether she wanted to take lottery tickets
from her co-participant, and if so, how many lottery tickets to take. Amounts taken had to
be in blocks of three (so the number of tickets taken could be three, six or nine), and up to as
many as the co-participant had at the time. The transfer rate, which denotes the marginal
gain per unit taken, was 1/3, implying an efficiency loss from taking tickets. Therefore, for
every block of three tickets that the participant took from her co-participant, she gained one
ticket and two were wasted. Participants always had the option of not taking any tickets. All
the feasible points of the vendetta game are given in Figure 3.2 below. The initial starting
point is (3, 9), i.e. the Stage 1 loser (and first mover in the vendetta game) held three tickets
and the Stage 1 winner held nine.

Figure 3.2: The Feasible Points of the Vendetta Game

Notes: Shaded areas indicate all feasible points of the vendetta game. The horizontal axis
refers to the number of lottery tickets owned by the Part 1 loser and the vertical axis refers to
the number of lottery tickets owned by the Part 1 winner.

The game ended if one of two cases applied. The first case occurred if one or both participants
could still take tickets from their co-participants but the participant(s) who were able to do
this had chosen not to do so for two consecutive times. The second case occurred if both
participants held less than three tickets, so no positive multiple of three tickets could be taken
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from either of them. Therefore, (0, 2) is the terminal point, i.e. the (only) distribution of
tickets at which no further taking moves are possible.

Figure 3.3: Sample computer display of the vendetta game

Notes: The sample computer display shows what subjects saw at the beginning of the
vendetta game.

The computer display is shown in Figure 3.3. On this display, the participant could see
three baskets. One contained the lottery tickets that she held at present, one contained the
lottery tickets that her coparticipant held at present, and one was the bin. Before making any
decision, she could try different possible numbers of blocks of lottery tickets to take away from
her coparticipant. The computer would show her how many of these lottery tickets would be
moved from her coparticipant’s basket into her basket and how many of these lottery tickets
would be moved from her coparticipant’s basket into the bin. After the participant made her
decision, the baskets and bin were updated to show her the outcome of her decision and the
location of all the lottery tickets at the time. After her coparticipant had chosen, the baskets
and bin were updated again to show her the location of all the lottery tickets at the time as a
result of her coparticipant’s choice.

The vendetta game replicates the ‘mini-vendetta’ game in Bolle et al. (2014), in which all
possible sequences of taking moves are relatively short (the longest possible game has five
taking moves). The advantage of having such a design is that it minimises the degree of
reasoning required from the subjects, in terms of the number of steps required to backward
induce to subgame perfection. It makes the game simpler for subjects, and therefore reduces
the likelihood that a vendetta might be caused by confusion. Compared to the original
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mini-vendetta game, the major changes that we made in our experimental design are as
follows. An important difference is that we used lottery tickets instead of describing outcomes
in terms of numerical probabilities of winning the game. Lottery tickets are more concrete
objects and easier to understand, while still making it easy for subjects to read off probabilities
(in our design, as multiples of 1/12). On the computer display, each participant was able
to see very clearly the current distribution of the tickets; i.e. how many tickets were in her
basket, how many were in her co-participants’ basket, and how many were in the bin. By
allowing participants try out different possible actions before making a final decision, our
design enabled participants to see vividly the consequences that alternative actions would
produce. The existence of the bin helped participants to have a clearer sense of the waste
that takes place when they take each other’s tickets, as they can see the number of tickets
that go into the bin.

3.6.5 Implementation

The experiment was conducted between November 2015 and January 2016 at the CBESS
Experimental Laboratory at the University of East Anglia. Participants were recruited
from the general student population via the CBESS online recruitment system (Bock et al.,
2012). The experiment was programmed and conducted with the experimental software z-Tree
(Fischbacher, 2007). We ran 18 sessions in total: four for the Real Effort treatment, six for
the Fair Rule treatment and eight for the Unfair Rule treatment. A total of 326 subjects
participated in the experiment, of whom 72 were in the Real Effort treatment, 104 in the
Fair Rule treatment, and 150 in the Unfair Rule treatment. We needed more participants
in the Unfair Rule treatment than the Fair Rule treatment is because some series of card
games would be won by disadvantaged players in the Unfair Rule treatment and we wanted
the number of games won by advantaged winners in the Unfair Rule treatment to be close to
the number of games won by fair winners in the Fair Rule treatment. Fewer participants were
recruited in the Real Effort treatment, as we were more interested in investigating possible
differences in behaviour between strategically fair and biased games. 123 subjects were male
and 196 were female.3 Most of the participants were students from a wide range of academic
disciplines and with an age range from 18 to 63. The experiment lasted about 50 minutes.
Average earnings were £10.67 per person, including a show-up fee of £3.00. The lowest
earning was £3.00, the highest was £27.00.

3Seven subjects selected ‘prefer not to say’ in the gender question.
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3.7 Results

3.7.1 Efficiency Loss and Vendetta behaviour

We begin by looking at the outcomes of the vendetta games across treatments.

Figure 3.4 provides an overview of vendetta game outcomes in the Real Effort treatment, the
Fair Rule treatment, and the Unfair Rule treatment with advantaged winners. It shows that
in the Real Effort treatment, subjects did not take in 14 out of 36 pairs (i.e. the vendetta
game ended at the initial starting points), while 9 of the 36 pairs ended at the terminal point
(0,2). In the Fair Rule treatment, 23 out of 52 pairs settled on the initial starting points, and
11 out of 52 pairs ended at the terminal point. In the Unfair Rule treatment with advantaged
winners, subjects did not take in 13 out of 58 pairs, and 16 out of 58 pairs ended at the
terminal point.

Figure 3.4: Outcomes of the Vendetta Game
(a) Real Effort treatment
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(b) Fair Rule treatment

(c) Unfair Rule treatment with advantaged winners

Notes: Shaded cells correspond to the points that can be reached in the game. Numbers on
each grid represent the number of times a point (x, y) was obtained as the final point in the
experiment.

The cumulative distributions of the outcomes of the vendetta games across these three
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treatments are shown in Figure 3.5. For any given pair of subjects, final total holdings is the
total number of lottery tickets that two co-participants hold at the end of vendetta game.
This is a measure of the efficiency of the outcome or, equivalently, an inverse measure of
the extent of taking and counter-taking during the game. It takes its maximum value of 12
if neither participant chooses to take anything. It takes its minimum value of 2 if taking
and counter-taking continues until no more taking moves are possible. On average, pairs in
the Fair Rule treatment and Real Effort treatment ended up with more lottery tickets than
pairs in the Unfair Rule treatment. The mean value of final total holdings is 7.94 in the
Real Effort treatment, 8.27 in the Fair Rule treatment and 6.90 in the Unfair Rule treatment
with advantaged winners. The distributions of final total holdings are significantly different
between the Fair Rule treatment and the Unfair Rule treatment (Mann-Whitney p=0.046)4.
No significant difference in the distributions of final outcomes of vendetta games is found either
between the Fair Rule treatment and the Real effort treatment (Mann-Whitney p=0.679) or
between the Real effort treatment and the Unfair Rule treatment (Mann-Whitney p=0.177).

Figure 3.5: Cumulative distributions of final total holdings

Result 1: As implied by Hypothesis 1, significantly greater efficiency losses were observed
in the Unfair Rule treatment between disadvantaged losers and advantaged winners
than in the Fair Rule treatment between fair losers and fair winners. No significant
difference in efficiency losses was found either between the Fair Rule treatment and
the Real Effort treatment or between the Real Effort treatment and the Unfair Rule
treatment.

4In this chapter, all reported p values are two-sided.
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3.7.2 The first moves of losers and winners

In the light of the results that we have reported so far, it would be interesting to know
whether there were systematic differences between the taking behaviour of losers and winners
across treatments. However, the problem with comparing individual players’ decisions across
treatments is that apart from the initial point of the game, different subjects may move to
different feasible points in the vendetta game. Therefore, we have to test separately for each
feasible point in the game. However, except for the initial point of the game (the loser’s first
opportunity to take), the number of observations is necessarily lower – often much lower – than
the total number of participants in the relevant role (i.e. winner or loser). For most points in
the game, we do not have enough data for informative statistical tests about behaviour at
individual points.

To solve this problem, we use several methods. First, we test for differences in losers’ first
moves across treatments. 47.2% of low effort losers in the Real Effort treatment and 46.2%
of fair losers in the Fair Rule treatment made a taking decision in their first move. In the
Unfair Rule treatment, 60.3% of disadvantaged losers chose to take in their first moves. These
data suggests that low effort losers in the Real Effort treatment and fair losers in the Fair
Rule treatment are more willing to settle on the initial unequal distribution of lottery tickets
than disadvantaged losers in the Unfair Rule treatment. However, no statistically significant
difference in taking behaviour is found either between fair losers and disadvantaged losers in
their first moves (Mann-Whitney p=0.138) or between low effort losers and disadvantaged
losers in their first moves (Mann-Whitney p=0.216).

If the loser made a non-taking decision in her first move and the winner did not take in her
first move either, the loser then would get another chance to make a taking decision at the
initial point (3, 9). Therefore, if we want to check losers’ willingness to settle on the initial
unequal distribution of lottery tickets, it is reasonable for us to also take into account losers’
second moves. Our data show that, conditioning on losers not having taken in their first
moves, there are only two winners who made a taking move in their first moves: one fair
winner and one advantaged winner. After we exclude these two cases, the data shows that
after the first two successive turns of losers, 38.9 % of pairs in the Real Effort treatment and
47.1% of pairs in the Fair Rule treatment still held their initial amount of lottery tickets, while
30.4% of pairs with disadvantaged losers and advantaged winners in the Unfair Rule treatment
were still at the initial point. We find evidence that more fair losers in the Fair Rule treatment
chose to settle on the initial unequal distribution of lottery tickets than disadvantaged losers
in the Unfair Rule treatment (Mann-Whitney p=0.077). But there is no significant difference
in willingness to settle on the initial unequal distribution between low effort losers in the
Real Effort treatment and disadvantaged losers in the Unfair Rule treatment (Mann-Whitney
p=0.401).

Result 2: In line with our Hypothesis 2, disadvantaged losers in the Unfair Rule
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treatment were more likely to take in their first moves than fair losers in the Fair Rule
treatment

In order to get a rough idea of winners’ attitude towards losers’ taking behaviour, we compare
winners’ first moves across treatments. After winners had seen losers choosing to take in
their first moves, 47.1% of high effort winners in the Real Effort treatment and 50.0% of fair
winners in the Fair Rule treatment made a taking decision in their first moves. In the Unfair
Rule treatment, 54.3% of advantaged winners chose to take in their first moves after their
co-participants had made a taking decision. There is no evidence of less taking behaviour by
advantaged winners in their first moves in the Unfair Rule treatment than by fair winners in
the Fair Rule treatment (Mann-Whitney p=0.746).

3.7.3 Index method

To get further insight into the propensity to steal of losers and winners in the vendetta games,
we need a method which can solve two problems – the problem of having small numbers of
observations for most feasible points, and the problem of dependence between losers’ moves
and winners’ moves. Bolle et al. (2014) investigate the dynamics of taking behaviour in their
vendetta game using a regression method. However, we believe that this regression method is
not sufficient to deal with our second problem. It cannot fully disentangle subjects’ decisions
from their co-participants’ decisions. If subjects in one role (winner or loser) in one treatment
make more taking moves (or take more tickets in total) than subjects in the same role in
another treatment, we would not be able to tell from the regression results whether this was
because the subjects in the first treatment had a stronger desire to take, other things being
equal, or because they we retaliating against co-participants who had taken more.5 To solve
these problems, we use an ‘index’ method.

For each subject, we want to construct an index which represents the subject’s propensity
to take, relative to the overall behaviour of all subjects with the same role, controlling for
differences in the points in the game that are reached by different subjects. The index for an
average subject should be equal to zero. Subjects with indexes above zero are the subjects
who have a greater propensity to take than an average subject, while subjects with indexes
below zero are the ones who have a lower propensity to take than an average subject.

5We run a regression analysis. The results can be found in Appendix 1. Table 3.10 and 3.11 both
contain three overall regressions. Model 1 tests for a treatment effect. Model 2 tests taking behaviour
in later rounds by controlling for the taking decisions that the co-player made in the most recent round
in which that player had an opportunity to take. Model 3 tests the effect of the difference in the
number of lottery tickets (Lottery ticket difference) on taking behaviour. Lottery ticket difference is
the difference between the number of lottery tickets held by the subject and the number of lottery
tickets held by her co-player. The treatment variables are Real Effort (= 1 if the subject is in the Real
Effort treatment) and Unfair Rule (=1 if the subject is in the Unfair Rule treatment). The results
show that there is no significant treatment effect. Lag Taken has positive and significant effect on both
losers’ decisions and winners’ decisions. Lottery ticket difference has negative and significant effect on
players’ decision.
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The first step in defining the index is to define, for each of the two roles in the vendetta game,
the set of possible taking opportunities. Each taking opportunity is a point in the game at
which a player in the relevant role can choose between taking and not taking, and which can
be reached by some feasible combination of previous decisions by the two players. A ‘point in
the game’ for a given role is defined in terms of the two players’ current holdings of tickets
and (in cases where both players hold three or more tickets) whether, conditional on those
holdings, this is the first or second opportunity for player in the relevant role to take. Taking
opportunities for the two roles are shown in Table 3.4.

Table 3.4: Taking opportunities for losers and winners

Loser Winner

(3,9) opportunity 1 (3,9) opportunity 1
(3,9) opportunity 2 (3,9) opportunity 2
(4,6) opportunity 1 (4,6) opportunity 1
(4,6) opportunity 2 (4,6) opportunity 2
(4,6) opportunity 1 (5,3) opportunity 1
(4,6) opportunity 2 (5,3) opportunity 2

(0,10) (6,0)
(1,7) (3,1)
(2,4)

For example, consider taking opportunities for the loser. ‘(3, 9): opportunity 1’ is the initial
point in the game: the current distribution is (3, 9), and the loser has her first opportunity
to choose between taking and not taking. ‘(3, 9): opportunity 2’ occurs if the loser chooses
not to take in her first move and if the winner then chooses not to take in his first move. ‘(1,
7)’ occurs if the loser takes three tickets at the initial distribution and the winner then takes
three tickets. It also occurs if the winner takes three tickets at the initial distribution and
the loser then takes three tickets. Notice that, because tickets can be taken only in blocks of
three, it is not possible for the winner to take any tickets at (1, 7). Thus, there is no strategic
difference between the loser’s first and second opportunity to take at this point in the game.
Accordingly, we treat (1, 7) as a single taking opportunity for the loser.

We now define an index for losers. (We use the same method to define an index for winners.)
We assume that a player’s behaviour at any given point in the game is independent of how
that point was reached. Given this assumption, any given (mixed) strategy for a loser implies
a taking probability pl (i.e. the probability that a taking move is chosen) at each taking
opportunity l in the set L of all possible taking opportunities for losers (i.e. all those listed
in Table 3.4.6 Intuitively, the propensity to take of a given player in the role of loser can

6As in analyses of subgame-perfect Nash equilibrium, we allow for the possibility of low-probability
‘trembles’. Thus, for example, even if a strategy assigns zero probability to taking moves at (3, 9), it is
meaningful to define taking probabilities at (4, 6).
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be measured by some weighted sum of that player’s taking probabilities. Provided that
the weights are fixed, such a measure can in principle be used to compare different players’
propensities to take, independently of differences in the behaviour of their co-players. However,
there is no uniquely correct way of assigning these weights. For the purposes of our statistical
tests, we adopt the convention of weighting each taking opportunity l by the proportion of
vendetta games in our experiment which the loser faced that opportunity.7 This proportion is
denoted by ql. Thus, for any given strategy, the taking propensity is:

∑
l∈L

plql.

Intuitively, a player’s taking propensity is the expected number of taking moves that she would
make in the vendetta game if she faced each taking opportunity with the same probability as
an ‘average’ player.

However, our experimental design does not allow us to observe complete strategies. For
each participant, we observe behaviour only at those taking opportunities that she in fact
reached. Consider any given participant playing in the role of loser. Let L∗ be the set of
taking opportunities that she in fact reached. For each l in L∗, let al be the actual decision of
that player, where al = 0 denotes ‘not take’ and al = 1 denotes ‘take’. Let el be the expected
proportion of taking moves at opportunity l (i.e. considering all those vendetta games in the
experiment in which opportunity l was reached, the proportion in which a taking move was
made at that opportunity). We define the index of excess taking for that player as:

∑
l∈L∗

(al − el)ql.

Notice that if all players follow the same mixed strategy, the expected value of this index is
zero. Intuitively, the value of this index for a given player can be thought of as an estimate of
the difference between this player’s taking propensity and the taking propensity of an ‘average’
player, based only on actual observations.

The ‘index’ approach is useful for the following reasons. First, it solves the problem of lack
of observations of behaviour at taking opportunities that are not reached. Second, it takes
individual subjects as independent units of observations and allows us to combine all the
moves of each individual subject. Thus, it allows us to do statistical tests at the level of
the individual subject. Third, it controls the problem of dependence between losers’ moves
and winners’ moves, so that, for each role (loser and winner) separately, we can compare
the distributions of indexes across treatments. If we find a difference in the behaviour of

7In defining each ql, we aggregate across the three treatments in our experiment, giving each
observation equal weight. Although different treatments had different numbers of participants, this
procedure is legitimate for tests where the null hypothesis is that behaviour does not differ across
treatments.
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losers (winners) between treatments, we are able to say that the difference is not caused by
differences in the behaviour of winners (losers) between treatments.

As a variant of the index of excess taking defined above, we also defined an index of excess
taking with value. The only difference between these indexes is that, while the index of excess
taking is a measure of taking moves (i.e. of all moves in which three, six or nine tickets were
taken from the co-player), the index of excess taking with value is a measure of the number of
tickets taken. Defining ql as before, let sl be the actual number of tickets taken at opportunity
l and let tl be the expected number of tickets taken at that opportunity (i.e. considering
all those vendetta games in the experiment in which opportunity l was reached, the average
number of tickets stolen at that opportunity). The index of excess taking with value is:

∑
l∈L∗

(sl − tl)ql.

The distributions of these two indexes in the three treatments are summarised in Table 3.5.
From Table 3.5 we can see that low effort losers in the Real Effort treatment and fair losers in
the Fair Rule treatment are more likely to take than disadvantaged losers in the Unfair Rule
treatment. This is indicated by both indexes. However, the difference between fair losers and
disadvantaged losers is not statistically significant either for the index of excess taking (Mann
Whitney p= 0.146) or for the index of excess taking with value (Mann-Whitney p= 0.177).

Table 3.5: Distributions of the indexes

Loser Winner
Mean Std. Dev Mean Std.Dev

Index of excess taking
RE -0.014 0.543 -0.032 0.119
FR -0.077 0.531 -0.016 0.132
UR 0.078 0.519 0.034 0.158

Index of excess taking with value
RE -0.035 3.090 -0.092 0.354
FR -0.310 3.129 -0.051 0.398
UR 0.300 3.036 0.102 0.485

Notes: RE represents the Real Effort treatment, FR represents the Fair Rule treatment,
and UR represents the Unfair Rule treatment.

Surprisingly, the distributions of both indexes show that high effort winners in the Real Effort
treatment and fair winners in the Fair Rule treatment are less likely to take than advantaged
winners in the Unfair Rule treatment. The difference between fair winners and advantaged
winners is significant both for the index of excess taking (Mann-Whitney p= 0.073) and the
index of excess taking with value (Mann-Whitney p= 0.057).

Result 3: As predicted by Hypothesis 3, disadvantaged losers in the Unfair Rule
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treatment are more likely to take than losers in other two treatments. However, this
difference is not statistically significant. Contrary to Hypothesis 4, there is some
evidence that advantaged winners in the Unfair Rule treatment are more likely to take
than winners in the Fair Rule treatment.

3.7.4 Gender difference in the propensity to take

The original propose of this experiment was not to test for gender differences in attitudes
towards strategy fairness. However, many studies suggest the existence of differences between
male and female attitudes towards rules and competitions. A study of children’s social
behaviour has shown that boys play rule-based games more often than girls, such as sports
games which are governed by a set body of rules and aim at achieving an explicit goal,
and consequentially boys gain more experience in the judicial process (Lever, 1976). Piaget
(1932 (1968)) observed that in the games played by children, boys were more explicit about
agreements and more concerned with legal elaboration than girls. Gilligan (1982) claims that
for men, fairness is more of a matter of principle, while for women, fairness does not appear
to be a moral imperative. We might conjecture that male participants are predisposed to care
more than female participants about the rules of the game that generates inequality in our
experiment. We test for gender differences in propensities to take by losers and winners using
the index method.

Table 3.6: Distributions of indexes for losers by gender

Male Female
Mean Std. Dev Mean Std.Dev

Index of excess taking
RE 0.037 0.544 -0.023 0.552
FR -0.311 0.464 0.078 0.520
UR 0.122 0.518 0.067 0.507

Index of excess taking with value
RE 0.196 3.354 -0.062 2.967
FR -1.048 3.281 0.211 3.002
UR 0.183 2.881 0.512 3.155

Notes: RE represents the Real Effort treatment, FR represents the Fair Rule treatment,
and UR represents the Unfair Rule treatment.

Table 3.6 summarizes the distributions of the indexes for losers by gender. First, we compare
the indexes of male losers and female losers by treatments. There is no significant difference
between male and female behaviour in the Real Effort and Unfair Rule treatments. However,
females are significantly more likely than males to take in the Fair Rule treatment, whether
this is measured by the index of excess taking (Mann-Whitney p= 0.009), or by the index
of excess taking with value (Mann-Whitney p= 0.026). We also consider cross-treatment
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differences in losers’ taking behaviour separately for males and females. We find that male
losers are significantly more likely to take in the Unfair Rule treatment than in the Fair Rule
treatment, which is indicated by both indexes8, while female losers’ behaviour is relatively
more consistent between treatments.

Table 3.7: Distributions of indexes for winners by gender

Male Female
Mean Std. Dev Mean Std.Dev

Index of excess taking
RE -0.013 0.076 -0.043 0.138
FR -0.019 0.113 -0.007 0.145
UR 0.007 0.134 0.047 0.167

Index of excess taking with value
RE -0.033 0.229 -0.125 0.410
FR -0.069 0.339 -0.016 0.435
UR 0.026 0.401 0.137 0.520

Notes: RE represents the Real Effort treatment, FR represents the Fair Rule treatment,
and UR represents the Unfair Rule treatment.

Table 3.7 summarizes the distributions of the indexes for winners by gender. No significant
difference between male winners and female winners is found in any of the treatments. Nor is
there any significant difference between the behaviour of male winners in the Fair Rule and
Unfair Rule treatments. Surprisingly, female winners are significantly more likely to take in
the Unfair Rule treatment than in the Fair Rule treatment9 or in the Real Effort treatment10.

3.7.5 The taking behaviour of disadvantaged winners and ad-
vantaged losers

Although the Unfair Rule treatment was designed to produce data about the taking behaviour
of advantaged winners and disadvantaged losers, it also generates a relatively small number of
vendetta games between disadvantaged winners and advantaged losers. So, it is natural to
ask whether there were systematic differences in the behaviour of winners and losers between
the two forms of the Unfair Rule treatment.

There are 75 pairs of subjects who participated in the Unfair Rule treatment sessions. Of
these 75 pairs, 58 pairs ended up with advantaged players winning the series of card games
and 17 pairs ended up with disadvantaged players winning the series of card games.

8Mann-Whitney p=0.006 for index of excess taking; Mann-Whitney p= 0.038 for index of excess
taking with value.

9Mann-Whitney p=0.091 for index of excess taking; Mann-Whitney p= 0.098 for index of excess
taking with value.

10Mann-Whitney p=0.026 for index of excess taking; Mann-Whitney p= 0.024 for index of excess
taking with value.
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Figure 3.6 shows the outcomes of vendetta games carried out by these 17 pairs. It shows
that 3 out of 17 pairs settled on the initial starting points, and 8 out of 17 pairs ended at
the terminal point. No significant difference in the distribution of final outcomes of vendetta
games is found between these 17 pairs with disadvantaged winners and the other 58 pairs
with advantaged winners (Mann-Whitney p=0.446).

Figure 3.6: Outcomes of the Vendetta Game with disadvantaged winners in the
Unfair Rule treatment

In these 17 pairs, 70.6% of advantaged losers made a stealing decision in their first move,
which is slightly higher than the proportion of disadvantaged losers who stole lottery tickets
from their coparticipant in their first move (60.3%). However, the difference is not statistically
significant (Mann-Whitney p=0.414).

Table 3.8: Distributions of indexes of advantaged losers and disadvantaged winners

Loser Winner
Mean Std. Dev Mean Std.Dev

Index of excess taking
Disadvantaged -0.026 0.521 0.048 0.387
Advantaged 0.088 0.501 -0.014 0.397

Index of excess taking with value
Disadvantaged -0.328 3.027 0.132 1.186
Advantaged 1.120 3.568 -0.039 1.242

A summary of indexes for disadvantaged losers, advantaged losers, advantaged winners and
disadvantaged winners in the Unfair Rule treatment is shown in Table 3.8. We can see from
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Table 3.8 that the mean values of both indexes are higher for disadvantaged winners than
for advantaged winners and, more surprisingly, are higher for advantaged losers than for
disadvantaged losers. None of these differences is statistically significant.11 However, it is
interesting that the direction of the observed difference for losers parallels the surprising part
of Result 3 – that advantaged winners are more likely to take than fair winners. These findings
raise the possibility that competing with unfair rules might have a general tendency to induce
taking behaviour, even on the part of individuals who have benefited from the unfairness.

3.8 Discussion

Our findings arise a number of interesting issues.

A. Does the fairness of competition matter?

Previous research shows that people care about equality of outcome, intention-based reciprocity,
social welfare preferences, desert-based fairness, and procedural fairness as randomness.
However, none of these theories can well explain the results that we find in the experiment.

In our Fair Rule treatment and Unfair Rule treatment, the allocations of lottery tickets
depended on the results of the series of card games in Part 1. In the Real Effort treatment,
subjects competed in effort tasks. Winners got more lottery tickets then losers, which is the
same across all three treatments. It is obvious that neither the effort task nor the series of card
games can be counted as a random procedure, which suggests that the theory of procedural
fairness as randomness cannot play any role in explaining our results.

As the distributions of lottery tickets were the same among all three treatments, the models
of inequality aversion (Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000) cannot explain
the difference in degrees of willingness to accept inequalities between the Fair Rule treatment
and the Unfair Rule treatment.

During the card game, a player’s self-interested intention of trying to win the game was
revealed if she used any of her replacement opportunities. According to our data, only 3
subjects in the Fair Rule treatment and 4 subjects in the Unfair Rule treatment did not use
any replacement opportunities in the series of card games, which implies that almost all of
the subjects in both the Fair Rule and Unfair Rule treatments revealed their self-interested
intentions in the game. Therefore, we cannot use the theory of intention-based reciprocity
(Blount, 1995; Offerman, 2002; Falk et al., 2003) to explain the finding that people are more
tolerant of the inequality in the Fair Rule treatment than in the Unfair Rule treatment.

11There is no significant difference in the index of excess taking between advantaged losers and
disadvantaged losers (Mann Whitney p= 0.280) or between advantaged winners and disadvantaged
winners (Mann-Whitney p= 0.693). If the index of excess taking with value is used, the corresponding
tests give p = 0.165 and p = 0.818 respectively.
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Although the card games were not random procedures, winning or losing in the Fair Rule
treatment was mainly determined by luck. Even in the Unfair Rule treatment, where one
player had three times as many replacement opportunities as the other and a player had to
win four games in order to be the winner of the series, 23 per cent of the series were won by
the disadvantaged player.12 Clearly, the game involved an element of skill, but winning was
not obviously a matter of effort. Working out the equilibrium strategy (or a best response to
a given belief about the behaviour of an opponent) is a difficult mathematical problem; it is
unlikely that any subject would have been able to solve this problem while taking part in the
experiment. Therefore, it is hard to see how a theory of desert-based fairness could explain
both the similarity in taking behaviour between the Fair Rule and Real Effort treatments and
the dissimilarity between the Fair Rule and Unfair Rule treatments.

Our theory of strategy fairness instead provides a simple explanation of our findings. People’s
tolerance of inequality is sensitive to strategy fairness in the competition. To much the same
extent that people are willing to accept inequalities that result from differences in effort, they
are are willing to accept inequalities that are the result of fair procedures, even if individuals
reveal self-interested intentions in the competition and even if the inequality does not reward
effort or ability. This means in particular that the acceptability of a given allocation as a
result of fair/unfair competition cannot be captured by any theory of fairness consideration
in the existing literature. Strategy fairness is conceptually distinct from distribution fairness,
fairness intention, desert-based fairness, social welfare preferences or procedural fairness as
randomness. My strategy fairness model meshes strategy fairness with distribution fairness,
and demonstrates how such an approach can explain people’s tolerance to unequal outcomes
that occur as a result of fair competition.

B. Why is it important to make the competition fair?

Our experiment provides a simple benchmark to test the role of strategy fairness in competitions.
In our experiment, subjects are matched up and take part in competitions. The winners of
the competitions get higher chances to win a prize. By using a treatment in which the rules of
this competition are biased, we deliberately make some subjects able to win the competition
more easily than others.

In our Fair Rule treatment, 44.2% of pairs chose to settle on the unequal distribution of
lottery tickets. In the Unfair Rule treatment, this occurred in 22.4% percent of the games.
These results suggest that when people compete in a fair competition, they are more tolerant
of ex post inequality. This finding also supports the idea of Isoni et al. (2014) that procedural
fairness reduces the salience of considerations of distribution fairness. On the other hand,
when the rules of the competition are unfair, disadvantaged participants are more likely to
try to re-establish fairness, even if doing so is costly.

12This is almost exactly the proportion that would occur in Nash equilibrium. In Nash equilibrium,
the probability that the advantaged player wins a single game is 0.630 (see Chapter 4). The probability
that the advantaged player wins a series of seven games is 0.766.
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It is not surprising that disadvantaged losers in the Unfair Rule treatment were more likely
to take than fair losers in the Fair Rule treatment. However, the results also show that
advantaged winners in the Unfair Rule treatment were more likely to take than fair winners in
the Fair Rule treatment. It is reasonable to expect that competing under unfair rules would
make disadvantaged losers reluctant to accept the unequal outcome and make retaliatory
moves. A similar line of thought would lead to the expectation that, as advantaged winners
are favoured by the rule of the competition, they would be more tolerant to taking behaviour
of disadvantaged losers. Surprisingly, the evidence is against that expectation. It seems that,
when inequality is generated unfairly, the person who has benefited from the unfairness feels
entitled to get even more. One possible explanation is that some people enjoy being in an
advantaged position, and they do not feel bad about earning more than others by using their
advantages. An alternative explanation is that advantaged winners might have a self-biased
expectation about disadvantaged losers’ beliefs. They might expect disadvantaged losers to
believe that they (the advantaged winners) are not the one who set up the biased rules of the
competition and that therefore, they should not be punished for the unequal outcome.

As subjects in the Unfair Rule treatment engaged in more taking behaviour, we observed
greater efficiency losses in that treatment than in the Fair Rule treatment. This result indicates
that as people care about strategy fairness and are ready to involve themselves in costly
vendettas if they are treated unfairly, competitions with unfair rules would result in significant
social inefficiencies.

C. Procedural fairness as fair competition vs desert-based fairness

My experimental design makes it possible to compare the influence of two different concepts
of fairness: strategy fairness and desert-based fairness. We find no evidence that subjects
in the Real Effort treatment behave differently from subjects in the Fair Rule treatment.
Moreover, there is no significant difference in efficiency losses between these two treatments.
The implication is that if the outcome has to be unequal, giving people equal opportunities to
compete in competitions can have a similar tendency to mitigate resistance to inequality as
offering them equal opportunities to put in effort.

However, even when subjects are given equal opportunity to put in effort or equal opportunity
to compete, we find that more than 45% of the losers made a taking decision in their first
moves in all three treatments. This result may suggest that people care both about strategy
fairness and equality of distributions in competitions, and they would be willing to rectify the
unequal outcomes even if the competition offer them equal opportunities to compete. Bolle
et al. (2014) find that there is no significant difference between stealing ratios in the vendetta
games with equal initial winning probability and stealing ratios in the vendetta games with
unequal initial winning probability. They provide two explanations. One explanation assumes
that individuals are motivated by pure nastiness (such as preferences with strong spite). The
other explanation assumes that vendettas are triggered by the boundedly rational temptation
of immediate gains from taking behaviour.
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D. Implications

Although our experimental setup is simple and abstract, it provides a stylised representation
of many real world situations. For instance, competition in markets often generates unequal
outcomes between competitors. If people’s willingness to tolerate inequality is influenced by
strategy fairness in the market competition, then maybe policy makers should focus more
on how to make the market competition more fair by ensuring that individuals have equal
opportunities to compete, instead of just trying to equalize the final outcomes.

The finding that competing in an unfair environment makes both the disadvantaged party and
the advantaged party behave more aggressively seems to be surprising, but if one looks more
closely into various psychological and economic studies, one can find evidence in the direction
of this finding. Milgram (1963) carried out one of the most famous studies of obedience in
psychology. In the studies, participants were divided into two groups: learners and teachers.
Teachers were asked to administer increasingly severe electric shocks to learners when they
provided a wrong answer. Shock levels were labelled from 15 to 450 volts. Although most
subjects were uncomfortable about doing this, all subjects continued to 300 volts. 65% of
participants in the teacher group continued to give shocks up to the highest level of 450 volts.
In 1971, Zimbardo and his team conducted the Stanford Prison Experiment (Zimbardo, 2009).
Participants were recruited and told they would participate in a two-week prison simulation.
Participants were assigned the role of either prisoners or guards. In the end, the experiment
had to be terminated after only six days because the brutality of the Guards and the suffering
of the Prisoners was way too intense. Zimbardo suggests that the behaviour of subjects who
acted guards was significantly influenced by the situation that was created by the experiment,
such as the roles, the norms, conformity pressures, and group identity. Karakostas and Zizzo
(2016) conducted an experiment where participants were ordered directly or indirectly to
destroy half of another participant’s earnings at a cost to their own earnings. They find
that around 60% of participants decide to comply with the orders. They suggests that the
occurrence of the high destruction rate is due to the existence of the norm of compliance
towards authority. The finding about the behaviour of advantaged players in our experiment
can be also driven by the norm of compliance or obedience. One conjecture is that the
advantaged winners in the Unfair Rule treatment may believe that they are picked by the
‘authority’ to have the right to earn more than others, and therefore they should try to
earn more than their co-participants as ‘ordered’ by the ‘authority’. Although future studies
are required to check the robustness of our finding that advantaged players behave more
aggressively in fair competitions than in unfair competitions, our finding draws attention
to large potential cost of unfair competitions which can be caused by the decisions of both
advantaged and disadvantaged parties in the society.
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3.9 Conclusion

The main objective of our experiment was to explore how strategy fairness of competitions
affects the willingness of individuals to accept inequality. We proposed a utility model of
individual preferences for strategy fairness which complements the Fehr-Schmidt model for
inequality aversion. The model assumes that strategy fairness influences fairness perceptions
of outcomes.

We designed a novel card game which creates fixed inequality as an outcome. The rules of
the card game could be easily understood as fair or unfair. When playing the game, subjects
also need to reveal their self-interested intentions to win the game. This card game allowed
us to explore whether people are more willing to accept inequalities that result from fair
competitions than competitions with unfair procedures, even if individuals reveal self-interested
intentions in the competition. We used a vendetta game (Bolle et al., 2014) as an instrument
to measure people’s attitude towards the status of fairness.

Overall, the evidence shows that people are more tolerant of inequalities that result from fair
competitions than competitions with unfair rules. We find a tendency for players to settle
on initial inequalities when the card game gives them equal opportunities to compete in the
game. Significantly more efficiency losses are observed when the rules of the game are biased.
Surprisingly, we also find that in the unfair competition, not only are disadvantaged players
more likely to take from their co-players, but so too are advantaged players. The results also
show that males and females hold different beliefs about fairness norms or have difference
preferences about strategy fairness.
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3.10 Appendix

3.10.1 Appendix 1: Instructions for experiment

Welcome to today’s experiment and thanks for coming. This is an experiment in decision-
making. At the end of the experiment you will be paid the earnings you obtained from this
experiment plus a participation fee of £3.

It is important that you remain silent and do not look at other people’s work. If you have
any questions, or need assistance of any kind, please raise your hand and an experimenter will
come to you. If you talk, laugh, exclaim out loud, etc., you will be asked to leave and you will
not be paid. We expect and appreciate your cooperation.

I will now describe the nature of the tasks within the experiment.

Tasks

This experiment contains two parts. At the beginning of this experiment, individuals with
odd seat numbers will become participant As and individuals with even seat numbers will
become participant Bs. Each participant A will be randomly matched with a coparticipant B.
This matching will stay the same throughout the experiment. You will never be told who
your coparticipant is.

During the experiment, you and your coparticipant will compete for 12 lottery tickets numbered
1 to 12. At the end of the experiment, the experimenter will put 12 tickets with the numbers
1 to 12 on them into a bag. One of you will be asked to come forward and pick one ticket
from the bag. The number on this ticket will be the number of the winning ticket. If you
hold the winning ticket, you will get £24. If your coparticipant holds the winning ticket, he
or she will get £24.

Part 1

[For Effort treatment]

In this part, you will be given a task and your coparticipant will be given the same task. You
and your coparticipant will do the task independently. After you both have finished the task,
your score will be compared with your coparticipant’s score. At the end of the task, the
winner will get 9 lottery tickets and the loser will get 3 lottery tickets.

In the task, you will be presented with a number of words and your task will be to encode
these words by substituting the letters of the alphabet with numbers using Table 1 below.

Table 3.9
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
8 12 14 10 9 6 24 22 7 5 11 3 18 1 21 16 23 2 13 19 25 4 26 17 20 15
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Example 1: You are given the word FLAT. The letters in Table 1 show that F=6, L=3, A=8,
and T=19.

In the task, Table 1 will also be shown on each screen. The picture below shows you how the
computer screen will look.

All the codes need to be entered into the boxes under the letters of the word that you are
asked to encode. You can shift among boxes by clicking the boxes. After you encode a word,
you need to click the ‘OK’ button to verify your codes. The computer will tell you whether
the word has been encoded correctly or not. If the word has been encoded wrongly, you need
to check your codes and correct them. Then, you need to click the ‘OK’ button again to verify
the codes.

Once you encode a word correctly, the computer will prompt you with another word which
you will be asked to encode. Once you encode that word, you will be given another word and
so on. This process will continue for 6 minutes (360 seconds).

You and your coparticipant will be given the same words to encode in the same sequence.

After you both have finished the task, the number of words you have encoded will be your
score for the task. Your score will be compared with your coparticipant’s score. If you and
your coparticipant get the same score, then the computer will compare the total amount of
time that you used encoding these words (i.e. the time between the start of the task and
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when the OK button was clicked after you finished the last word) with the total amount of
time that your coparticipant used.

At the end of the task, the person with the higher score will be the winner. If you and your
coparticipant get the same score, then the person who encodes the words in the shorter time
will be the winner. The winner will get 9 lottery tickets and the loser will get 3 lottery tickets.

Please raise your hand if you have any questions.

Before you start to take decisions, we ask you to answer some questions in the next several
screens. The purpose of these questions is to check whether you have understood these
instructions. Any mistake you may make in doing these questions will not affect your final
money earnings.

When you have finished Part 1, please remain seated. When everyone has finished Part 1, I
will distribute the instructions for Part 2.

[For Fair Rule treatment]

In this part, you will play a series of card games with your coparticipant. The winner of
the series of card games will get 9 lottery tickets and the loser of the series of
card games will get 3 lottery tickets.

At the start of each card game, you will be dealt a card and your coparticipant will also be
dealt a card. Each card has a number of points, which can be any of the whole numbers in
the range from 1 to 100. Each of these numbers is equally likely at each ‘deal’. You and your
coparticipant will have some opportunities to replace cards. To win the game, you need to
hold a card with a higher number of points than the card hold by your coparticipant.

You can decide whether to stick with the card you have been dealt or replace it with a new
card. If you decide to replace the card with a new card, then the computer will randomly
draw a new one for you. Each number in the range from 1 to 100 is still equally likely at this
’deal’. However, if you decide to replace this card, you cannot go back to it again.

In each game, if you are participant A, you are allowed to replace cards up to 3 times. If you
are participant B, you are allowed to replace cards up to 3 times. During the game, you can
decide to stick with any card that is dealt to you. Once you have used up all these replacement
opportunities, you will not be able to make any further replacement and have to stick with
the last card that you have been dealt. On the computer display, there will be a message
reminding you how many replacement opportunities you have left. The picture below shows
you how the computer screen might look in the first game, before you had made any decision.

93



While you are making your decisions about whether to stick or to use replacement opportunities,
you will not know what decisions your coparticipant is making. Nor will you know the numbers
on the cards that are dealt to him or her. Similarly, your coparticipant will not know what
decisions you are making, or the numbers on the cards that are dealt to you.

After you and your coparticipant have made the decision of sticking with a card you have been
dealt or have used up all your opportunities for replacing cards, your coparticipant’s card will
be turned over. You can observe the points on your card and the points on your coparticipant’s
card. You will also be shown how many replacement opportunities your coparticipant has
used. Whoever has the card with the higher number of points on it wins the game. If you
both have the same number of points, the game is a draw. The first participant to win 4
games will be the overall winner of the series of games. Draws will not be counted. The
overall winner will get 9 lottery tickets and the overall loser will get 3 lottery tickets.

Please raise your hand if you have any questions.

Before you start to take decisions, we ask you to answer some questions in the next several
screens. The purpose of these questions is to check whether you have understood these
instructions. Any mistake you may make in doing these questions will not affect your final
money earnings. When you have finished Part 1, please remain seated. When everyone has
finished Part 1, I will distribute the instructions for Part 2.

[For Unfair Rule treatment]
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In this part, you will play a series of card games with your coparticipant. The winner of
the series of card games will get 9 lottery tickets and the loser of the series of
card games will get 3 lottery tickets.

At the start of each card game, you will be dealt a card and your coparticipant will also be
dealt a card. Each card has a number of points, which can be any of the whole numbers in
the range from 1 to 100. Each of these numbers is equally likely at each ‘deal’. You and your
coparticipant will have some opportunities to replace cards. To win the game, you need to
hold a card with a higher number of points than the card held by your coparticipant.

You can decide whether to stick with the card you have been dealt or replace it with a new
card. If you decide to replace the card with a new card, then the computer will randomly
draw a new one for you. Each number in the range from 1 to 100 is still equally likely at this
‘deal’. However, if you decide to replace this card, you cannot go back to it again.

In each game, if you are participant A, you are allowed to replace cards up to 1 time. If you
are participant B, you are allowed to replace cards up to 3 times. During the game, you can
decide to stick with any card that has been dealt to you. Once you have used up all these
replacement opportunities, you will not be able to make any further replacement and will
have to stick with the last card that you have been dealt. On the computer display, there will
be a message reminding you how many replacement opportunities you have left. The picture
below shows you what you might see on the computer screen in the first game, if you were
participant A and before you had made any decision.
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Participant B would see a similar screen, showing the card that he or she had been dealt and
saying that he/she had 3 replacement opportunities left. While you are making your decisions
about whether to stick or to use replacement opportunities, you will not know what decisions
your coparticipant is making. Nor will you know the numbers on the cards that are dealt to
him or her. Similarly, your coparticipant will not know what decisions you are making, or the
numbers on the cards that are dealt to you.

After you and your coparticipant have made the decision of sticking with a card you have been
dealt or have used up all your opportunities for replacing cards, your coparticipant’s card will
be turned over. You can observe the points on your card and the points on your coparticipant’s
card. You will also be shown how many replacement opportunities your coparticipant has
used. Whoever has the card with the higher number of points on it wins the game. If you
both have the same number of points, the game is a draw. The first participant to win 4
games will be the overall winner of the series of games. Draws will not be counted. The
overall winner will get 9 lottery tickets and the overall loser will get 3 lottery tickets.

Please raise your hand if you have any questions.

Before you start to take decisions, we ask you to answer some questions in the next several
screens. The purpose of these questions is to check whether you have understood these
instructions. Any mistake you may make in doing these questions will not affect your final
money earnings.

When you have finished Part 1, please remain seated. When everyone has finished Part 1, I
will distribute the instructions for Part 2.

Part 2

At the end of Part 1, 12 lottery tickets were allocated between you and your coparticipant
based on the result of the tasks you carried out. The winner in Part 1 got 9 lottery tickets
and the loser in Part 1 got 3 lottery tickets. The tickets are numbered 1 to 12. The computer
has picked 9 of these numbered tickets at random and assigned them to the winner. The
remaining 3 tickets have been assigned to the loser. One of these lottery tickets will be the
winning ticket, which gives a prize of £24. At the end of Part 2, the number of the winning
ticket will be picked at random. Therefore, each lottery ticket gives a 1/12 chance of winning
the prize. At the end of Part 2, if you hold the winning ticket, you will get the prize. If your
coparticipant holds the winning ticket, he or she will get the prize.

In this part of the experiment, you and your coparticipant will take turns to choose whether
to stay with the current distribution of lottery tickets or to change it. The loser in Part 1 will
make a choice first.

On the screen there will be three baskets. One contains the lottery tickets that you currently
hold, one contains the lottery tickets that your coparticipant currently holds, and one is a bin.
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When it is your turn to choose, you will be asked to decide whether you want to take some
lottery tickets from your coparticipant, and if so, how many lottery tickets to take. Amounts
taken have to be in blocks of three (so if you choose to take tickets, the number you take
can be 3, 6 or 9, up to as many as your coparticipant has at the time). You always have the
option of not taking any tickets.

For every block of 3 lottery tickets that you take away from your coparticipant, one ticket
from the block will be moved into your basket and the other two will be moved into the bin.
If at the end of Part 2 the winning ticket is in the bin, neither you nor your coparticipant
gets the prize.

The picture below shows how the computer screen would look at the start of Part 2 if you
had been the loser in Part 1. Your basket is on the left, containing the three tickets that you
earned in Part 1. Your coparticipant’s basket is on the right, containing the nine tickets that
he or she earned in Part 1. The bin is at the bottom. At the top of the screen you are told
that it is your turn to make a decision.

Before making any decision, you are allowed to try different possible numbers of blocks of
lottery tickets to take away from your coparticipant. The computer will show you how many
of these lottery tickets will be moved from your coparticipant’s basket into your basket and
how many of these lottery tickets will be moved from your coparticipant’s basket into the bin.
These lottery ticket will be shown in a different colour.
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For example, if you clicked the option ‘I choose to take 3 tickets’, the picture below shows you
what the computer would display. From the picture, you can see that three lottery tickets
have been moved from your coparticipant’s basket. One of these (number 12) has been moved
into your basket. The other two (numbers 3 and 6) have been moved into the bin. All these
tickets (numbers 3, 6 and 12) are in yellow.

After your decision is made, you need to click the ‘Confirm’ button. The baskets and bin
will be updated to show you the outcome of your decision and the current location of all the
lottery tickets. All the lottery tickets will come back to being coloured green. Then it will be
your coparticipant’s turn to make decisions on whether to take lottery tickets from you, and
if so, how many lottery tickets to take. After your coparticipant has chosen, the baskets and
bin will be updated again to show you the current location of all the lottery tickets as a result
of your coparticipant’s choice. Then it will be your turn to choose again, and so on.

If there are four turns in a row (two for you and two for your coparticipant) in which neither
of you takes lottery tickets, then Part 2 will end. Because tickets can be taken only in blocks
of three, Part 2 will also end if your basket and your coparticipant’s basket both contain less
than three tickets.

The experimenter will then put 12 numbered tickets into a bag. One of you will be asked
to come forward and pick one ticket from the bag. The number on this ticket will be the
number of the winning ticket. You will see whether this winning ticket is in your basket, or in
your coparticipant’s basket, or in the bin. If the winning ticket is not in the bin, whoever
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holds it will get the prize of £24. If the winning ticket is in the bin, then neither you nor
your coparticipant gets the prize. In all cases, both of you will also get a £3 participation fee.

Please raise your hand if you have any questions.

Before you start to take decisions, we ask you to answer some questions in the next several
screens. The purpose of these questions is to check whether you have understood these
instructions. Any mistake you may make in doing these questions will not affect your final
money earnings.

When you have finished Part 2, please remain seated until everyone has finished Part 2.
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3.10.2 Appendix 2: Regression results

Table 3.10: Estimation for losers’ decisions
Overall NF RF
(1) (2) (3)

β ME β ME β ME

Real Effort 0.218 0.050 0.371 0.076 0.453 0.091
(0.284) (0.067) (0.462) (0.098) (0.470) (0.098)

Unfair Rule 0.361 0.083 0.174 0.035 0.158 0.030
(0.248) (0.057) (0.412) (0.082) (0.426) (0.082)

Lag Taken 2.066∗∗∗ 0.448∗∗∗ 2.016∗∗∗ 0.430∗∗∗

(0.362) (0.074) (0.376) (0.077)
Lottery ticket difference −0.218∗∗∗ −0.041∗∗∗

(0.073) (0.013)
Constant −0.819∗∗∗ −1.745∗∗∗ −2.610∗∗∗

(0.187) (0.337) (0.476)

Observations 390 195 195
LR chi2 2.123 33.478 35.508
Prob > chi2 0.346 0.000 0.000
Baseline predicted probability −0.602 −1.303 −2.223

Notes: ∗ 5% level, ∗∗ 1% level, ∗∗∗ 0.1 %. Standard errors in parentheses. The dependent
variable in these three models is a dummy equal to 1 if the subject chose the steal and 0 if
the subject chose not to steal. We used panel data to estimate all these models. The data
used to estimate model 1 contains 390 observations from 146 subjects. The data used to
estimate model 2 and model 3 contain 195 observations from 134 subjects. For each model,
the left column contains coefficients, and the right column report marginal effects. Results
for all three models are based on random effects logit estimations in which subject-specific
random effects are controlled.
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Table 3.11: Estimation for winners’ decisions
Overall NF RF
(1) (2) (3)

β ME β ME β ME

Real Effort 0.074 0.014 −0.097 −0.018 −0.332 −0.044
(0.711) (0.134) (0.412) (0.076) (0.752) (0.095)

Unfair Rule 1.079+ 0.209+ 0.420 0.081 0.871 0.132
(0.641) (0.127) (0.359) (0.071) (0.663) (0.104)

Lag Taken 2.754∗∗∗ 0.525∗∗∗ 0.447 0.064
(0.331) (0.050) (0.635) (0.098)

Lottery ticket difference −0.632∗∗∗ −0.089∗∗∗

(0.180) (0.021)
Constant −1.574∗∗∗ −2.411∗∗∗ −0.575

Observations 289 283 283
LR chi2 3.403 71.500 28.799
Prob > chi2 0.182 0.000 0.000
Baseline predicted probability −1.059 −1.616 −0.280

Notes: ∗ 5% level, ∗∗ 1% level, ∗∗∗ 0.1 %. Standard errors in parentheses. The dependent
variable in these three models is a dummy equal to 1 if the subject chose the steal and 0 if
the subject chose not to steal. We used panel data to estimate all these models. The data
used to estimate model 1 contains 289 observations from 146 subjects. The data used to
estimate model 2 and model 3 contain 283 observations from 146 subjects. For each model,
the left column contains coefficients, and the right column report marginal effects. Results
for all three models are based on random effects logit estimations in which subject-specific
random effects are controlled.
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Chapter 4

Search competition: a theoretical
and experimental investigation

4.1 Introduction

This paper introduces a new type of game, a search competition game. This is related to
two theoretical and experimental literatures. The contest literature studies games in which
players compete for a fixed prize by expending costly effort; players who expend relatively
more effort have a higher probability of winning. Thus the decision about how much effort
to expend is made under strategic uncertainty. The search literature studies situations in
which an individual searches sequentially among a set of alternative offers of unknown value;
there is either an explicit cost of inspecting each offer, or the maximum number of inspections
is fixed and offers must be accepted or rejected sequentially without recall (or both). In
either case, the decision about when to terminate the search is made under (non-strategic)
uncertainty. Our paper is about a competition for a fixed prize when the competition takes
the form of parallel searches without recall. Each player’s objective is to find an offer that is
better than the offer found by the other player(s). There are many real world examples of this
kind of situation, such as football managers searching for players, competing firms searching
for managers, and firms in patent races searching for researchers. Little work has been done
on this type of game. Existing research suggests opposing intuitions about actual behaviour,
relative to Nash equilibrium play. Experiments on contests have found a general tendency for
players to expend more effort than the equilibrium solution (intuitively: trying too hard to
win). Experiments on search have found a general tendency for individuals to search less than
is optimal given risk-neutrality (intuitively: not trying hard enough to find the best offer).
Our experiment is aimed to find out which (if either) of these intuitions applies to search
competition.

We implement the search competition as a card game. In the search competition, players
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compete in fixed pairs. At the beginning of the game, players are dealt a card each. There is a
number of points on each card, which is randomly drawn from a discrete uniform distribution.
In the game, each player is given some opportunities to replace cards. If a player decides to
use a replacement opportunity, she will be dealt with a new card, which is drawn randomly
from the same distribution. All draws are stochastically independent. Rejected cards cannot
be recalled. There is no cost of replacing cards. Once a player has used up all replacement
opportunities, she has to stick with the last card dealt to her. Players cannot see each other’s
cards or know their replacement decisions until the end of the game. After both players have
made a decision of sticking to a card or have used up all their replacement opportunities, the
game ends. The player who holds a card with a higher number wins the game.

The general picture of our search competition is similar to games considered in contests
literature. In both situations, there is a single prize to be awarded. Multiple players compete
for the prize, but only one player receives the prize. However, almost all games in the
contests literature are developed based on three models: rent-seeking contests (Tullock, 2001),
rank-order tournaments (Lazear and Rosen, 1981), and all-pay auctions (Hirshleifer, 1978;
Nalebuff and Stiglitz, 1983; Hillman and Riley, 1989). Players in these games compete by
exerting costly irreversible effort. Each player’s probability of winning depends not only on
her own effort level but also on other players’ effort levels. In contrast, players in our game
compete for the prize by playing a pure strategic game. There is no monetary cost of exerting
effort. But players face opportunity costs when making decisions on whether or not to reject
a card and ask for a new one.

Our search competition should also interest economists who study individual search behaviour
because it resembles a dynamic search situation arising in many important economic contexts.
In our search competition, players search for a card sufficiently good for winning the game
from a known distribution. Each player has a limited number of replacement opportunities,
which means she can only observe a finite number of cards. A new card is drawn for the
player only if she rejected the previous card. The decision problem that players face in our
search competition is similar to many search problems in the real world, just as buyers must
decide whether or not to search for another house, and a job market candidate must decide
whether or not to reject the current offer and search for another job. A large number of studies
have been done to investigate variations of individual search problems, such as the price
search problem and the secretary problem1 (Stigler, 1961; Schotter and Braustein, 1981; Hey,
1981, 1982, 1987; Kogut, 1990, 1992; Sonnemans, 1998; Schunk and Winter, 2009a,b). To our
knowledge, all the existing studies on search problems focus on individual search behaviour.
Our paper is the first to study a search problem in a competitive setting. There are many

1In the secretary problem, the decision maker is presented with a set of items, one at a time,
in a random order. At any period, the decision maker is able to rank order all the items that have
been observed in terms of their desirability. In each period, the decision maker must either accept
the presented item , in which case the observation process terminates, or reject it, in which case the
decision maker is presented the next item in the randomly determined order. See for example Rapoport
and Tversky (1970) and Seale and Rapoport (1997, 2000) for detailed discussions of the secretary
problem.
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real world situations involving search with competitions. For instance, football managers
compete on signing better players than others. Firms compete on hiring good managers. So,
it is important to investigate how people behave in search competitions and what factors may
influence their decisions.

In the paper, we show the method of deriving the unique subgame perfect Nash equilibrium
to the search competition. Using our method, we derive the unique subgame perfect Nash
equilibrium for competitions with up to three replacement opportunities for each player. The
equilibrium solutions show that players should use reservation value strategies. That is, for
any given replacement opportunity, there is a reservation value such that that opportunity
should be used if and only if the number of points on the card currently held is lower than the
reservation value. A player’s probability of winning depends on the number of replacement
opportunities of both players. The more replacement opportunities the opponent has, the
higher reservation values a player should hold.

To gain insight into players’ behaviour in the card game compared to the theoretical prediction,
we designed a laboratory experiment. In the experiment, subjects competed for lottery tickets
by playing a series of card games in fixed pairs. The first player to win 4 card games was
the overall winner. The winner got more lottery tickets than the loser. At the end of the
experiment, one of these lottery was randomly drawn as the winning lottery ticket. The player
who held the winning lottery ticket got the prize.

The experimental literature on contests has generally found that the average effort level is
significantly higher than theoretical predictions.2 However, existing experimental evidence on
search behaviour show that subjects tend to stop searching too early, compared to the optimal
strategy. As our search competition consists elements of both individual search problem and
competition, it is hard to predict whether subjects in our experiment would search too little
or too much in comparison to the equilibrium prediction.

As far as we are aware, there is only one paper studying search related competition using
data from laboratory experiment. Tenorio and Cason (2002) analyse contestants’ behaviour
in The Wheel game in the television game show The Price is Right using data from both the
television show and a matching laboratory experiment. In The Wheel game, three contestants
take turns to spin a wheel with twenty equal partitions labelled from 5 to 100. Points that
a contestant gets depend on where the wheel stops. Each contestant is given the option of
spinning the wheel twice, and her score equals the sum of her spin(s). The contestant whose
score is closest to but not more than 100 wins. They find that contestants frequently make
decisions inconsistent with the equilibrium prediction. The rate of deviation increases when
the decision problem becomes more difficult. Deviations from optimal play often happens
because of failing to spin again when contestants should have chosen to continue. They suggest
two potential explanations for contestants’ under-spinning bias: computational errors and
omission bias. There are several differences between our search competition and The Wheel

2See Section 4.2 for a comprehensive review
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game. First, The Wheel is a sequential game. The fact that contestants in later positions
can observe choices made by contestants in earlier positions before they make any decision
makes the information asymmetric between contestants. In contrast, players make decisions
simultaneously in our search competition. Information about the result of the game and
other players’ decisions can only be learnt at the end of the game. Moreover, the decision
problem faced by contestants in The Wheel game is much more complicated than the problem
in our search competition, in the sense that contestants in The Wheel game not only need to
get a score high enough too win with two spins but also need to make decisions conditional
on the previous decisions of other contestants and the results of those contestants’ spins.
Furthermore, The Wheel game is an artificial game which is not directly related to any real
world scenario. Our search competition game instead combines competition and search which
are two topics of interest to economists.

We begin by providing an overview of the related literature in Section 4.2. Section 4.3
introduces the card game and the theoretical model. Section 4.4 details the experimental
design and implementation. In section 4.5 , we construct the econometric model for the data
analyses. We then report the experimental results (Section 4.6), discuss their implications
(Section 4.7), and conclude (Section 4.8).

4.2 Literature review

4.2.1 Overbidding and heterogeneity in contests

Over the last few decades, a rapidly growing number of controlled laboratory experiments
have been conducted to test contest theory. The advantage of using controlled experiments
is that it allows researchers to measure the actual effort made by the contestants, while
controlling for confounding effects. Experimental literature on contests focuses on a relatively
small range of games, which are based on three models: rent-seeking contests (Tullock, 2001),
rank-order tournaments (Lazear and Rosen, 1981), and all-pay auctions (Hirshleifer, 1978;
Nalebuff and Stiglitz, 1983; Hillman and Riley, 1989). The models of all these three games
assume that players expend costly efforts while competing for a prize and each individual
player’s probability of winning the prize of depends on the proportion of her expenditure
relative to the other individuals’ expenditures.

Overbidding and heterogeneity in the behaviour of individual contestants are the two main
phenomena observed in contest experiments: average effort levels are significantly higher than
the risk-neutral Nash equilibrium prediction, and there is a large variation in effort levels
between and within subjects; see Dechenaux et al. (2015) for a comprehensive review. There
are many different explanations that have been proposed for overbidding in contests literature
(Sheremeta, 2013). The first most commonly cited explanation is bounded rationality: subjects
are prone to mistakes in contests (Sheremeta, 2011; Chowdhury et al., 2014; Lim et al., 2014).
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The second explanation is that in addition to the monetary value of the prize, subjects also
get a non-monetary utility of winning (Sheremeta, 2010; Price and Sheremeta, 2011; Mago
et al., 2016). The third explanation is judgemental biases, such as probability distortions and
the hot hand fallacy (Amaldoss and Rapoport, 2009; Sheremeta and Zhang, 2010; Sheremeta,
2011). The final explanation is relative payoff maximization. Studies shows that subjects
care about their relative payoffs as well as the utility of winning (Herrmann and Orzen, 2008;
Mago et al., 2016).

Between-subject heterogeneity in contests is usually attributed to heterogeneous preferences
and demographic differences (Sheremeta, 2013). Studies suggest that gender and religion are
the two most important demographic differences that can explain heterogeneous behaviour
between contestants (Mago et al., 2013; Price and Sheremeta, 2015). Individual differences
in preferences towards risk, losses and winning can also explain heterogeneous behaviour of
the subjects in contests. Several experimental studies show that compared with risk-neutral
or risk-seeking subjects, risk-averse subjects expend less effort in lottery contests (Millner
and Pratt, 1991; Sheremeta and Zhang, 2010; Sheremeta, 2011; Mago et al., 2013). More
loss-averse subjects tend to exert lower efforts in contests than less loss-averse subjects (Shupp
et al., 2013). Finally, subjects’ other-regarding preferences, such as inequality aversion, are
also correlated with effort levels in contests (Balafoutas et al., 2012; Mago et al., 2016).

4.2.2 Feedback information and learning

Many experimental studies of contests point out that within-subject heterogeneity of effort in
contests can be explained by learning and by the hot hand fallacy. In this section, we focus
on the learning behaviour and the effect of feedback on subjects’ performance in contests.

Studies show that in experiments with repeated contests, as subjects become more experi-
enced overtime, they learn to lower their effort levels (Davis and Reilly, 1998; Gneezy and
Smorodinsky, 2006; Price and Sheremeta, 2011; Brookins and Ryvkin, 2014; Mago et al., 2016).
However, all of these studies find that subjects’ learning in contests is not sufficient – average
effort levels remain significantly higher than the Nash equilibrium prediction, even in the last
periods of the experiment.

Sheremeta (2011) finds that, given information about the outcomes of previous contests,
subjects are more likely to expend higher effort if they won the previous game. Sheremeta
and Zhang (2010) report similar results. They point out that the hot hand fallacy might be
an interpretation of this phenomenon, which was first described by Gilovich et al. (1985) as a
belief that a person who has experienced success with a seemingly random event has a greater
chance of further success in additional attempts.

Several experimental studies compare the effort level chosen by subjects in contests under
different feedback conditions. Kuhnen and Tymula (2012) examine the effect of private
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feedback about relative performance on performance in a real effort tournament. After
receiving feedback, subjects who got better ranks than expected decrease output, but expect
even better ranks in the future, whereas subjects who ranked lower than expected increase
their output and lower their future expectations on ranks. Ludwig and Lünser (2012) find that
in two-stage tournaments with feedback information on relative effort levels, subjects who
lead tend to reduce their effort levels in the second stage, while subjects who lag behind tend
to increase their effort levels. Nevertheless, they find that there is no significant difference in
average stage effort levels between the feedback and no feedback treatments. In a rent-seeking
lottery contest, Mago et al. (2016) also find that providing information about others’ effort
levels decreases the within-subjects heterogeneity of effort, but it does not affect the average
effort level in contests. Subjects who expended higher effort than the winning effort reduce
their effort in the future, whereas the opposite is true of subjects who exerted lower effort
than the winning effort. Similarly, Fallucchi et al. (2013) compare the effects of information
feedback in share contests and lottery contests. Additional feedback about rivals’ choices
and earnings increases average expenditures in the share contest. However, unlike the other
studies, they find that providing subjects with additional feedback about rivals’ effort reduces
aggregate effort in a lottery contest.

4.2.3 Search problem

Many experimental studies have been done to investigate variations of individual search
problems, mainly the price/wage search problem and the secretary problem (Stigler, 1961;
Schotter and Braustein, 1981; Hey, 1981, 1982, 1987; Kogut, 1990, 1992; Sonnemans, 1998;
Schunk and Winter, 2009a,b). In the price/wage search problem, a decision maker needs to
search for a price/wage which can maximize her payoff. The secretary problem is a more
complicated decision problem, in which a decision maker has to pick the option with the
highest rank based only on the relative ranks of the presented alternatives.3

One way of classifying these studies on search problems is by the opportunity of recall –
whether the rejected offer can be recalled or not. Most experimental studies on individual
search behaviour focus on cases where recall is allowed. In these cases, there is always a search
cost, otherwise a subject can always decide to check all the offers and choose the best one,
and therefore the problem would be trivial. Much less work has been done on search problems
where recall is not possible. Rapoport and Tversky (1970) and Schotter and Braustein (1981)
study standard search problem both with recall and without recall in various cost conditions.
Seale and Rapoport (1997, 2000) examine the secretary problem with assumptions that recall
of rejected applicants is not possible and there is no cost of searching.

Existing experimental evidence on search problems both with and without recall suggests

3See for example Rapoport and Tversky (1970); Seale and Rapoport (1997, 2000) for detailed
discussions of the secretary problem.
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that subjects tend to search too little compared to the risk neutral prediction of the optimal
strategy and there is heterogeneity in subjects’ search behaviour (Schotter and Braustein,
1981; Hey, 1987; Cox and Oaxaca, 1989; Sonnemans, 1998; Seale and Rapoport, 1997, 2000).
However, experimental findings in relation to search with recall show that subjects’ search
behaviour is relatively efficient in the sense that their actual earnings are close to those they
would have achieved had they used the optimal strategy, even though the subjects’ searching
strategy is different from the theoretical optimal strategy (Schotter and Braustein, 1981;
Harrison and Morgan, 1990; Kogut, 1990, 1992; Sonnemans, 1998).

Several explanations have been proposed for under-search in search problems with recall.
Schotter and Braustein (1981) find that risk averse subjects set lower reservation wages than
risk neutral subjects, and therefore search less. Cox and Oaxaca (1989) test a finite horizon
model of sequential search by individual agents. They suggest that the subjects’ tendency to
search too little can be explained by their risk-averse behaviour. Similarly, Kogut (1990) also
finds that in an infinite-horizon search experiment, subjects stopped searching even though the
expected gain was greater than the marginal cost. Evidence suggests that a large percentage
of this behaviour can be explained by risk aversion. In contrast, Schunk and Winter (2009a)
show that behavioural heterogeneity in search can be linked to heterogeneity in individual
preferences, such as loss aversion and reference point updating. But, no evidence supports
the hypothesis that risk aversion is related to subjects’ search behaviour. Schunk and Winter
also find that there is no correlation between individual risk attitudes and their reservation
prices and numbers of searches, whereas the correlation between loss aversion and these search
parameters is significant.

Camerer (2006) suggests that the phenomenon of searching too little can be explained by
heuristic rules. Many experimental studies find that subjects’ preferences, especially risk
attitudes, do not help to predict their search behaviour, while a few simple decision heuristics
can (Sonnemans, 1998; Houser and Winter, 2004; Schunk and Winter, 2009a). Sonnemans
(1998) finds that only a small amount of early stopping behaviour can be explained by risk
aversion, while subjects’ learning processes can partly explain the early stopping tendency.
Two different kinds of learners are considered: naive learners and sophisticated learners. Naive
learners tend to repeat behaviour that results in good outcomes. Sonnemans finds that naive
subjects tend to lower their reservation price after experiencing negative regret that they could
have earned more if they had stopped earlier. There is no evidence of learning from positive
regret. Moreover, naive learners who stop early have less opportunity to learn than naive
learners who stop late, which may also explain the early stopping behaviour. Sophisticated
learners instead tend to test different strategies first, and then follow the most successful
one. Systematic biases of sophisticated learners can also cause early stopping. Schunk and
Winter (2009a) show that simple heuristics, like the constant reservation price heuristic and
the satisfier heuristic can describe observed search behaviour which cannot be explained by
individual risk references.

The theory of optimal search strategy predicts that in search contexts with recall, a rational
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subject should never decide to return to an offer drawn earlier, and the decision on which
offer to accept should depend only on the period of the observation but not on the history of
the process. However, experimental evidence shows that there is a tendency to recall rejected
offers (Schotter and Braustein, 1981; Kogut, 1990, 1992). Kogut (1990) suggests that subjects’
decisions might be influenced by sunk costs, which can explain the fact that recall occurs. In
studies of the secretary problem, Seale and Rapoport (1997, 2000) find that subjects’ decisions
to either accept or reject a candidate depends on observed patterns in the sequence. Zwick
et al. (2003) study sequential search behaviour in a secretary problem. They find that the rate
of recall is influenced by periods since the last candidate was encountered and the average
rate of candidate arrival. The observed sequence of candidate arrival affects the length of
subjects’ search period.

The existing studies on search problems without recall do not provide many explanations of
the phenomenon of under-search in that search context. Seale and Rapoport (1997) and Seale
and Rapoport (2000) sugguest that in the secretary problem, subjects’ behaviour of stopping
too early can be explained by endogenous cost of search, i.e. subjects consider time spent on
observing the applicants as an implicit search cost.

Experimental evidence of learning in various search contexts is quite mixed. Seale and
Rapoport (1997) examine the secretary problem in experiments with repeated tasks, with a
known number of applicants, without search cost and with no recall allowed. They find signs
of learning over repeated trials – there is an increase in the proportion of decisions consistent
with theoretical predictions. In contrast, Seale and Rapoport (2000) study a similar search
problem, but they find only very week learning trends. Zwick et al. (2003), who examine the
secretary problem with recall, find that learning is insignificant.

4.3 The basic idea of the card game and Nash equi-
librium solution

4.3.1 The basic idea of the card game

In the card game, players compete with each other in groups. Each group contains two players,
i = {1, 2}. At the start of each card game, players are dealt a card each. Each card has a
number of points, which can be any of the whole numbers in the range from 1 to m. Each of
these numbers are equally likely at each ‘deal’. Players are informed of the distribution.

During the game, each player is offered a number of opportunities to replace cards, Oi. Each
player decides individually on whether she wants to stick with the card that she has been
dealt or to use the replacement opportunities. If the player decides to replace her card, then
the computer will randomly draw a new one for her. Each number in the range from 1 to m
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is still equally likely at this ‘deal’. However, the player cannot return to the replaced card.
Once the player has used up all the replacement opportunities, she has to stick with the last
card that she has been dealt.

At the end of the game, the player who holds a card with a higher number of points than the
card held by her co-player wins the game.

4.3.2 Subgame perfect Nash equilibrium solution

We now derive the subgame perfect Nash equilibrium solution for the card game using the
backward induction method. In the theoretical model, we used continuous distributions
(for ease of analysis), while in the experiment, we use discrete distributions (for ease of
implementation). As the experiment used a high value of m (m = 100), this difference should
not seriously affect the accuracy of the theoretical predictions.

Consider a card game with two players, i = {1, 2}. The numbers on the cards are drawn
randomly and independently from a uniform distribution over the interval [0, 1]. Each player
knows the distribution from which the number on the card is independently and randomly
drawn. In the card game, each player i is given Oi replacement opportunities.

Assume both players are fully rational and prefer winning to losing. Therefore, they have
the target of maximizing their probability of winning. There is no need to assume risk
neutrality. According to expected utility theory, any attitude to risk can be represented by a
utility function. The risk attitude of a player influences the curvature of her utility function,
i.e. a concave utility curve indicates risk-averse behaviour, a convex utility curve indicates
risk-seeking behaviour, and risk neutrality is reflected by a linear utility function. For each
player, the card game has only two possible outcomes: win or lose. Picking any two points
on the utility function where one is preferred to the other, the player’s utility function can
be normalized by assigning the worse outcome to zero and the better outcome to one. Since
there are only two outcomes and there are only two numbers to be assigned to the outcomes
in the utility function, the risk attitude of the player would not influence the result that the
better one is always preferred to the worse. Therefore, the subgame perfect Nash equilibrium
solution does not depend on the risk attitude of the players.

Let x̂0 be the actual value of first card dealt to player 1. Let x̂1, ..., x̂o1 be the actual value of
player 1’s replacement cards 1 to O1. Assume player 1 follows a reservation value strategy,
she chooses cut-offs κ1

1, κ
1
2, ..., κ

1
O1

, i.e.

1. Stick with the first card iff x̂0 ≥ κ1
1; otherwise use the first replacement opportunity;

and

2. Stick with the second card iff x̂1 ≥ κ1
2; otherwise use the second replacement opportunity;
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and

...

O1. Stick with the O1th card iff x̂O1 ≥ κ1
O1

; otherwise use the O1th replacement opportunity.

We take player 1’s cut-offs as given. Given the cut-offs, we know that her final card has
density f1(x), and cumulative distribution F1(x).

Let ŷ0 be the value of the first card dealt to player 2. Let ŷ1, ..., ŷO2 be the value of player 2’
replacement card 1 to O2. Assume player 2 chooses cut-offs κ2

1, κ
2
2, ..., κ

2
O2

, i.e.

1. Stick at first card iff ŷ0 ≥ κ2
1; otherwise use the first replacement opportunity; and

2. Stick at second card iff ŷ1 ≥ κ2
2; otherwise use the second replacement opportunity;

and

...

O2. Stick at O2th card iff ŷO2 ≥ κ2
O2

; otherwise use the O2th replacement opportunity.

Let κ2
1
∗
, κ2

2
∗
, ..., κ2

O2
∗ be the optimal values of κ2

1, κ
2
2, ..., κ

2
O2

. Let π∗0 be player 2’s probability
of winning (before knowing ŷ0), if player 2 plays optimally. Let π∗O2

be player 2’s probability
of winning, conditional on using the O2th replacement opportunity (before knowing ŷO2).

Using backward induction, we begin by deriving κ2
O2
∗. Suppose player 2 has used (O2 − 1)

replacement opportunities, and holds card ŷO2 . If player 2 decides to stick to card ŷO2 , the
probability of winning is F1 (ŷO2); if player 2 decides to use the O2th replacement opportunity,
the probability of winning is π∗O2

. Notice that given the density function of player 1’s final
card,

π∗O2 =
∫ 1

0
F1(x)dx (4.1)

Given that player 2 is fully rational, optimality requires F1
(
κ2
O2
∗) = π∗O2

, i.e.

κ2
O2
∗ = F−1(π∗O2) (4.2)

Now, we can derive κ2
O2−1

∗. Suppose player 2 has used (O2 − 2) replacement opportunities,
and holds card ŷO2−1. If player 2 decides to stick to card ŷO2−1, the probability of winning is
F1
(
ŷO2−1

)
; if player 2 decides to use the (O2 − 1)th replacement opportunity, the probability

of winning is π∗O2−1. Notice that given the density function of player 1’s final card and π∗O2
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π∗O2−1 = κ2
O2
∗ ∗ π∗O2 +

∫ 1

κ2
O2

∗
F1(x)dx (4.3)

The first term in (4.3) is the effect of using the O2th replacement opportunity, the second
term is the effect of sticking to the current card.

So, optimality requires F1(κ2
O2−1

∗) = π∗O2−1, i.e.

κ2
O2−1

∗ = F−1(π∗O2−1) (4.4)

Using the same method, we can get that,

κ2
O2−2

∗ = F−1(π∗O2−2)
...

κ2
1
∗ = F−1(π∗1)

Player 2’s ex-ante probability of winning (before knowing ŷ0) if she plays optimally is,

π∗0 = κ2
1
∗ ∗ π∗1 +

∫ 1

κ2
1

∗
F1(x)dx (4.5)

Player 2’s best response function can be determined by finding the first derivatives of her
ex-ante probability of winning (π∗0) w.r.t. κ2

1
∗
, κ2

2
∗
, ..., κ2

O2
∗ and set them equal to zero.

Using the same procedure, we can derive player 1’s best response function.

Given both players’ best response functions, we can derive the combination
(κ1

1
∗
, κ1

2
∗
, ..., κ1

O1
∗
, κ2

1
∗
, κ2

2
∗
, ..., κ2

O2
∗) of reservation values such that each player’s action is a

best response to the other player’s action. This combination is the Nash equilibrium solution
of the card game.

Next, we will derive the Nash equilibrium solution of a card game in which both players are
given 1 replacement opportunity as an example.

Suppose that player 1 plays with a cut-off of κ1
1 (i.e. she sticks iff her first card is ≥ κ1

1 ). So,
player 1’s final card has density f1 (x) and cumulative distribution F1 (x)

f1(x) =

κ
1
1 if x < κ1

1

1 + κ1
1 if κ1

1 ≤ x ≤ 1

F1(x) =

κ
1
1x if x < κ1

1

x+ κ1
1x− κ1

1 if κ1
1 ≤ x ≤ 1

(4.6)
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Assume player 2 follows a reservation value strategy by choosing a cut-off κ2
1, i.e. she sticks

iff her first card is ≥ κ2
1. Let κ2

1
∗ be the optimal values of κ2

1. Notice that given the density
function of player 1’s final card, player 2’s probability of winning if she uses the replacement
opportunity is

π∗ =
∫ 1

0
F1(x)dx = 1

2 −
1
2κ

1
1 + 1

2(κ1
1)2 (4.7)

Given that player 2 is fully rational, optimality requires F1(κ2
1
∗) = π∗1. As player 1’s final card

has cumulative distribution F1(x), we know that

F1(κ2
1
∗) =

κ
1
1κ

2
1
∗ if κ2

1
∗
< κ1

1

κ2
1
∗ + κ1

1κ
2
1
∗ − κ1

1 if κ1
1 ≤ κ2

1
∗ ≤ 1

(4.8)

Player 2’s ex-ante probability of winning (before knowing ŷ0, i.e. the value of the first card) if
she plays optimally is

π∗0 = κ2
1
∗
π∗1 +

∫ 1

κ2
1

∗
F1(x)dx

=


1
2 −

1
2κ

1
1 + 1

2(κ1
1)2 + 1

2κ
2
1
∗ − 1

2κ
1
1κ

2
1
∗ + 1

2(κ1
1)2κ2

1
∗ − 1

2κ
1
1(κ2

1
∗)2 if κ2

1
∗
< κ1

1
1
2 −

1
2κ

1
1 + 1

2κ
2
1
∗ + 1

2κ
1
1κ

2
1
∗ + 1

2(κ1
1)2κ2

1
∗ − 1

2(κ2
1
∗)2 − 1

2κ
1
1(κ2

1
∗)2 if κ1

1 ≤ κ2
1
∗ ≤ 1

(4.9)

Player 2’s best response function can be determined by differentiating her ex-ante probability
of winning (π∗0) w.r.t. κ2

1
∗

∂π∗0
∂κ2

1
∗ = f1(x) =


1
2 −

1
2κ

1
1 + 1

2(κ1
1)2 − κ1

1κ
2
1
∗ if κ2

1
∗
< κ1

1
1
2 + 1

2κ
1
1 + 1

2(κ1
1)2 − κ2

1
∗ − κ1

1κ
2
1
∗ if κ1

1 ≤ κ2
1
∗ ≤ 1

(4.10)

By setting equation 4.10 equal to zero, we get player 2’s best response function

κ2
1
∗ = f1(x) =


1

2κ1
1
− 1

2 + κ1
1

2 if κ2
1
∗
< κ1

1
1+κ1

1+(κ1
1)2

2(1+κ1
1) if κ1

1 ≤ κ2
1
∗ ≤ 1

(4.11)

Given that the game is symmetric between player 1 and player 2, player 1’s best response
function is

κ1
1
∗ = f2(x) =


1

2κ2
1
− 1

2 + κ2
1

2 if κ1
1
∗
< κ2

1
1+κ2

1+(κ2
1)2

2(1+κ2
1) if κ2

1 ≤ κ1
1
∗ ≤ 1

(4.12)
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By solving these two best response functions, we get that there is a unique pure strategy
Nash equilibrium solution (κ1

1
∗
, κ2

1
∗) = (

√
5

2 −
1
2 ,
√

5
2 −

1
2) . It means that both players should

hold the cut-off
√

5
2 −

1
2 , i.e. they should use the replacement opportunity if the value of their

first card is below
√

5
2 −

1
2 , and stick if the value of the first card is above

√
5

2 −
1
2 . At the

equilibrium, each player’s ex ante probability of winning is equal to 0.5.

4.3.3 General features of the subgame perfect Nash equilib-
rium solutions

Using the same method, we derive the subgame perfect Nash equilibrium solutions for games
in which either player has up to three replacement opportunities (including cases that both
players have the same/different number of replacement opportunities).

The optimal cut-off is a function of three variables: replacement opportunity (x), total number
of replacement opportunities (y), and number of replacement opportunities for co-participant
(z). A change of any of these three variables would change the cut-off. The solutions are
shown in Table 4.1, in which κ(x, y, z) represents the optimal cut-off given the values of x, y,
and z. The probability of winning of a subject depends on the total number of replacement
opportunities and the number of replacement opportunities for the co-participant, i.e. variable
y and variable z. Table 4.2 shows the probability of winning for each player in each game, in
which p(y, z) represents the probability of winning given the values of y and z.

Table 4.1: Subgame perfect Nash equilibrium solutions
κ(1, 1, 0) = 0.500 κ(1, 1, 1) = 0.618 κ(1, 1, 2) = 0.652 κ(1, 1, 3) = 0.682
κ(1, 2, 0) = 0.625 κ(1, 2, 1) = 0.698 κ(1, 2, 2) = 0.743 κ(1, 2, 3) = 0.763
κ(1, 3, 0) = 0.695 κ(1, 3, 1) = 0.749 κ(1, 3, 2) = 0.781 κ(1, 3, 3) = 0.827
κ(2, 2, 0) = 0.500 κ(2, 2, 1) = 0.593 κ(2, 2, 2) = 0.657 κ(2, 2, 3) = 0.676
κ(2, 3, 0) = 0.625 κ(2, 3, 1) = 0.705 κ(2, 3, 2) = 0.739 κ(2, 3, 3) = 0.762
κ(3, 3, 0) = 0.500 κ(3, 3, 1) = 0.574 κ(3, 3, 2) = 0.632 κ(3, 3, 3) = 0.671

Table 4.2: Probability of winning
p(1, 0) = 0.625 p(2, 0) = 0.695 p(3, 0) = 0.742
p(1, 1) = 0.500 p(2, 1) = 0.577 p(3, 1) = 0.630

p(2, 2) = 0.500 p(3, 2) = 0.555
p(3, 3) = 0.500

Table 4.1 and Table 4.2 indicate some general features of the subgame perfect Nash equilibrium
solutions and the probabilities of winning for different games. First, we notice that given the
total number of replacement opportunities of the subject, for a given replacement opportunity
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(e.g. first, second, third for a player with three opportunities), the cut-off increases with the
number of replacement opportunities for the co-participant. Second, given the number of
replacement opportunities for the co-participant, for a given replacement opportunity, the cut-
off increases with the total number of replacement opportunities. Third, given the total number
of replacement opportunities of the subject and the number of replacement opportunities
for the co-participant, the cut-off decreases as ‘replacement opportunity’ increases. The last
feature is that given the number of replacement opportunities of the subject’s co-participant,
the more replacement opportunities she is given, the higher the probability of winning she
has. For example, given that the subject’s co-participant has no replacement opportunity,
her probability of winning increases from 0.5 to 0.742 when the number of her replacement
opportunity increases from 0 to 3.

4.4 The experimental design and implementation

4.4.1 Overall structure of experiment

The experiment contains two treatments. In the first treatment, subjects with 3 replacement
opportunities competed with subjects with 3 replacement opportunities. In the second treat-
ment, subjects with 3 replacement opportunities competed with subjects with 1 replacement
opportunity. The same two subjects played a series of games. The first subject to win 4
games is the ‘winner’ of the sequence. This experimental setting was used for the following
reasons (see Chapter 3 for details). First, we wanted to generate given inequality by fair or
unfair rules. Having subjects with 3 replacement opportunities playing against subjects with
3 replacement opportunities makes the rule of the game fair, while having subjects with 3
replacement opportunities playing against subjects with 1 replacement opportunity makes the
rule of the game unfair. Second, we needed an overall winner for the competition. Using best
of seven series is a way to generate the overall winner. This feature of the experiment does
not affect the subgame perfect Nash equilibrium solutions derived in Section 4.3.3. These
solutions were derived for a single game on the assumption that each player tries to maximize
her probability of winning. For any player in the series of card games, each game has only
two outcomes, win or lose. A fully rational player should try to maximize her probability of
winning in each card game, irrespective of how many previous games have been played and
irrespective of the results of those games.

This experiment was run as a part of the experiment in Chapter 3. The original experiment
consisted of two stages, Stage 1 with either a series of card games or an effort task; Stage 2
with a vendetta game. In this paper, we only consider the series of card games.

Each session of the original experiment was randomly assigned to one of the three treatments
(Fair Rule, Unfair Rule or Real Effort). At the beginning of each session, subjects were
randomly allocated to numbered seats. Subjects with odd seat numbers were assigned to
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be participant As and subjects with even seat numbers were assigned to be participant Bs.
Each participant A was randomly and anonymously matched with a co-participant B. This
matching stayed the same throughout the experiment.

At the beginning of each part, each subject received a copy of the instructions for that part;
these instructions were read aloud by the experimenter. These instructions are reproduced in
Appendix 1, Chapter 3. Each subject then completed a computerised questionnaire which
tested her understanding of the tasks. If a subject made a mistake, the computer would show
her the correct answer and the relevant part of the instructions. Subjects were invited to ask
the experimenter for clarification.

In stage 1, subjects competed for twelve lottery tickets numbered 1 to 12. The results of
the series of card game or the effort task determined the initial allocation of these tickets.
At the end of Stage 1, the computer picked nine of these numbered tickets at random and
assigned them to the winner. The remaining three tickets were assigned to the loser. The
vendetta game in Stage 2 gave subjects the opportunities to change the initial distribution
of the tickets, but at a cost: for every three tickets that one player took from the other, she
received only one, the other two being wasted.4

At the end of each session, the experimenter put 12 numbered tickets into a bag. One of the
participants was asked to come forward and pick one ticket from the bag. The number on
this ticket was the number of the winning ticket. The subject who held the winning ticket got
the prize of £24. If the winning ticket was wasted during the vendetta game, then neither
subjects for the pairing got the prize. In all cases, both of them also received a participation
fee of £3.

4.4.2 The rules of the card game

In both the Fair Rule treatment and the Unfair Rule treatment, participants played card
games.

At the start of each card game, participants were dealt a card each. Each card had a number
of points, which could be any of the whole numbers in the range from 1 to 100. Each of these
numbers was equally likely at each ‘deal’.

In each game, both participant As and participant Bs were offered some opportunities to replace
cards. The numbers of replacement opportunities that participant As and participant Bs had
varied between treatments. In the Fair Rule treatment, both participant As and participant
Bs were given 3 replacement opportunities. In the Unfair Rule treatment, participant As
had 1 replacement opportunity and participant Bs had 3 replacement opportunities. During
the game, participants could decide to stick with the card that they had been dealt or to
replace it with a new card. If the participant decided to replace her card with a new card,

4The detail of the vendetta game is described in Chapter 3.
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then the computer would randomly draw a new one for her. Each number in the range from 1
to 100 was still equally likely at this ‘deal’. However, the participant could not go back to
the replaced card again. Participants could decide to stick with any card that was dealt to
them. Once they used up all the replacement opportunities, they could not make any further
replacement and had to stick with the last card that they had been dealt.

After both participants had made the decision of sticking with a card they had been dealt or
had used up all their opportunities for replacing cards, their cards were compared. They both
could observe the points on their cards and the points on their co-participants’ cards. They
were also shown how many replacement opportunities their co-participants had used.

At the end of the card game, the participant who held a card with a higher number of points
than the card held by her co-participant won the game. If both of them had the same number
of points, the game was a draw.

4.4.3 Subgame perfect equilibrium solution of the card game

In section 4.3.3, we derived the subgame perfect Nash equilibrium solutions for the game
in which both players are given 3 replacement opportunities and for the game in which one
player has 3 replacement opportunities and the other player has 1 replacement opportunity,
when the number of points on the card is drawn form a uniform distribution over the interval
[0, 1]. In the card games in our experiment, the number of points on the card could only be
the whole numbers in the range from 1 to 100. Therefore, we adjust the subgame perfect
Nash equilibrium solutions to reflect this.

According to the subgame perfect Nash equilibrium solution, subjects in the Fair Rule
treatment should hold cut-offs 83, 76, and 67, i.e. use the first replacement opportunity if
the number of points on first card is below 83, use the second replacement opportunity if the
number of points on the second card is below 76, and use the third replacement opportunity
if the number of points on the third card is below 67. If these cut-offs are used, both players
have the same probability of winning, i.e. 0.5.

In the Unfair Rule treatment, the one replacement opportunity player should hold a cut-off
68 and the cut-offs for the three replacement opportunities player should be 75, 71, and 57
for the first, second and third card respectively. The probability of winning for the three
replacement opportunities player and the one replacement opportunity player are 0.63 and
0.37.

4.4.4 Implementation

The experiment was conducted between November 2015 and January 2016 at the CBESS
Experimental Laboratory at the University of East Anglia. Participants were recruited

117



from the general student population via the CBESS online recruitment system (Bock et al.,
2014). The experiment was programmed and conducted with the experimental software z-Tree
(Fischbacher, 2007). We ran 18 sessions in total: four for the Real Effort treatment, six for
the Fair Rule treatment and eight for the Unfair Rule treatment. Subjects were not allowed to
participate in more than one session. A total of 326 subjects participated in the experiment,
of whom 72 were in the Real Effort treatment, 104 in the Fair Rule treatment, and 150 in
the Unfair Rule treatment. 123 of the subjects were male and 196 were female.5 Most of the
participants were students from a wide range of academic disciplines and with an age range
from 18 to 63. Each session lasted approximately 50 minutes. Average earnings were £10.67
per person, including a show-up fee of £3.00. The lowest earning was £3.00, the highest was
£27.00.

4.5 The Econometric Model

In this section, we introduce the econometric model that simultaneously estimates subjects’
cut-offs and variables that we believe may influence their choices of cut-offs.

4.5.1 General Setup

Each subject i plays t games, i ∈ {1, ..., n} and t ∈ {1, ..., Ti}. In each game, t, subject
i observes up to Ji card draws with values v1,t to vJi,t. For subjects with 3 replacement
opportunities, Ji equals 4; for subjects with 1 replacement opportunity, Ji equals 2.

If subject i accepts a draw, her participation in the game ends. If subject i gets as far as draw
Ji, she must accept draw Ji. Define ai,t to represent draw accepted by subject i in game t:
ai,t = j if subject i accepts jth draw in game t, j = 1, ..., Ji.

Subject i wins game t (wi,t = 1) if her accepted draw is higher than her opponent’s accepted
draw.

4.5.2 Econometric Model

Consider the decisions of subject i. But for simplicity, subscript i is suppressed in the rest of
this section.

In game t, the subject has a ‘cut-off’ for each draw: κ1,t to κJ−1,t. Conditional on having
rejected previous draws (if any), the subject accepts draw j if vj,t − κj,t + εj,t > 0, Where
εj,t ∼ N(0, σ2), represents computational error.

57 subjects selected ‘prefer not to say’ in the gender question.
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If J > 2, the subject’s cut-off declines between draws according to:

κj,t = κ1,t − dt(j − 1), j = 2, ..., J − 1

dt therefore represents the rate of decline of the cut-off. dt does not enter the model when
J = 2.

Both cut-offs and the rate of decline of the cut-off are allowed to change with experience (t).
A reciprocal specification is adopted here, since this implies convergence to an equilibrium 6

with experience (see Moffatt, 2015, Chapter 4). The specification is:

κ1,t = κ1,e + τκ(1
t
), t = 1, 2, 3, ...

dt = de + τd(
1
t
), t = 1, 2, 3...

Note that κ1,e and de are respectively the equilibrium cut-off and equilibrium rate of change
of the cut-off to which subjects converge with experience. τκ and τd represent the distance
away from these respective equilibria with no experience (i.e. when t = 1).

Furthermore, the cut-off is assumed to shift in response to the values of previous draws (for
subjects with J = 3):

κ2,t = κ1,t − dt + γ1v1,t

κ3,t = κ1,t − 2dt + γ2v2,t + γ3v1,t

Finally, we allow the cut-offs to depend on whether the subject won the previous game (wt−1),
and also on whether the subject is playing against an opponent who only has one opportunity
to replace a card (i.e. an opponent for whom J = 2). The latter variable is labelled ‘opp1’.
Hence the cut-off in draw 1 becomes:

κj,t = κ1,e + τκ
1
t

+ βwwt−1 + βopp1opp1, t = 1, 2, 3...

4.5.3 Construction of Likelihood function

Estimation is by Maximum Simulated Likelihood (MSL).

Recall that at = j if subject accepts jth draw in game t, j = 1, ..., J

6This need not be a Nash equilibrium.
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The probability of accepting draw 1 in game t is:

P (at = 1|κ1,e) = Φ(v1,t − κ1,t
σ

)

Where Φ(.) is the standard normal cdf.

If J = 2, the probability of accepting draw 2 is:

P (at = 2|κ1,e) = 1− Φ(v1,t − κ1,t
σ

)

If J = 4, the probability of accepting draw 2 is:

P (at = 2|κ1,e) = [1− Φ(v1,t − κ1,t
σ

)]Φ(v2,t − κ2,t
σ

)

The probability of accepting draw 3 is:

P (at = 3|κ1,e) = [1− Φ(v1,t − κ1,t
σ

)][1− Φ(v2,t − κ2,t
σ

)]Φ(v3,t − κ3,t
σ

)

The probability of accepting draw 4 (note that this is just the probability of rejecting all of
the first three draws) is:

P (at = 4|κ1,e) = [1− Φ(v1,t − κ1,t
σ

)][1− Φ(v2,t − κ2,t
σ

)][1− Φ(v3,t − κ3,t
σ

)]

Between-subject heterogeneity

The cut-off for the first draw with experience (κ1,e) is assumed to vary between subjects,
according to:

κ1,e ∼ N(µκ, η2
κ)

When J = 4, there are eleven parameters to estimate: µκ, ηκ, de, σ, γ1, γ2, γ3, τκ, τd, βw, βopp1.

When J = 2, there are five parameters to estimate: µκ, ηκ, σ, τκ, βw

Likelihood function

The per-subject (subject i) likelihood contribution is given by:

Li =
∫ ∞
−∞

[
T∏
t=1

P (at,i|κ1,e)
]
f(κ1,e;µκ, ηκ)dκ1,e
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where P (at,i|κ1,e) is the (conditional) probability of subject i’s observed decision in game
t (given by one of the formulae above), and f(κ1,e;µκ, ηκ) is the normal density function
evaluated at κ1,e.

The integral appearing in (.) is evaluated using Halton draws. The integral is converted into
the sum:

L̂i = 1
R

R∑
r=1

T∏
t=1

P (at|κ1,e,r)

Where κ1,e,r, r = 1, ..., R, are the transformed Halton draws for subject i.7 The draws are
transformed to represent draws from a N(µκ, η2

κ) distribution. The draws are fixed over t for
a given i.

Finally, the sample log-likelihood function is obtained as:

LogL =
n∑
i=1

L̂i

The LogL is maximised with respect to all parameters of the model in order to obtain MLEs.

For further details of the MSL technique see Chapter 10 of Moffatt (2015).

4.6 Results

In this section, we estimate the model constructed in the previous section, using the method
of maximum simulated likelihood. Our sample consist of 254 subjects, of whom 104 are in the
Fair Rule treatment and 150 are in the Unfair Rule treatment. On average, each subject in
the Fair Rule treatment played 5.81 rounds of card games and each subject in the Unfair Rule
treatment played 5.76 rounds.

Table 4.3 shows the separate results of the model for players with 3 replacement opportunities
and players with 1 replacement opportunity. Remember that µκ and ηκ represent the mean
and the standard deviation of the equilibrium cut-offs for the first card, that is, the cut-off to
which they converge with experience. To find the cut-offs of subjects with no experience, we
need to find µκ + τκ.

7κ1,e is the parameter that is assumed to vary between subjects. The method of MSL involves
using simulations of this parameter in order to evaluate L̂i. Halton draws are used as the simulated
values. Halton draws are uniformly distributed. They need to be transformed to normality so that
they represent the variation in κ1,e.
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Table 4.3: Estimates from the model

3 opportunities player 1 opportunity player
(J=4) (J=2)

µκ 68.55(1.86) 60.13(2.83)
ηκ 9.72(0.98)∗∗∗ 10.37(1.75)∗∗∗
de 8.06(2.01)∗∗∗
σ 13.12(0.65)∗∗∗ 15.00(1.57)∗∗∗

γ1 0.08(0.04)∗
γ2 0.30(0.07)∗∗∗
γ3 −0.09(0.07)
τκ −18.44(2.88)∗∗∗ −15.09(4.87)∗∗∗
τd 0.62(2.86)
βopp1 3.13(1.94)
βw −1.64(0.72)∗∗ −1.97(1.67)

n 179 75
T (mean of) 5.79 5.76
LogL −549.76 −136.86

Notes: The estimation technique used is maximum simulated likelihood. Standard errors
are given within parentheses. The first column presents estimates for players with three
replacement opportunities; the second column presents estimates for players with one
replacement opportunity. * p<0.1; ** p<0.05; ***p<0.01. It is only logical to test whether
a parameter equals zero if that is an interesting hypothesis. We know that µκ is non-zero.
It makes no sense to apply stars to µκ.

4.6.1 Actual cut-offs versus subgame perfect Nash equilib-
rium predictions

We first analyse the extent to which subjects make decisions consistent with subgame perfect
Nash equilibrium solutions. Table 4.4 lists the posterior estimates of the actual cut-offs for
subjects without experience and the equilibrium predictions.

Table 4.4: Summary of actual play without experience and equilibrium predictions
3 opportunities player

1 opportunity player
Against 3 opportunities opponent Against 1 opportunity opponent
Actual Predicted Actual Predicted Actual Predicted

Card 1 50.11 83 53.24 75 45.04 68
Card 2 42.05 76 45.18 71
Card 3 33.99 67 37.12 57
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In our experiment, there are two types of 3 replacement opportunities players: players who
play against players with 3 replacement opportunities in the Fair Rule treatment and players
who play against players with only 1 replacement opportunity in the Unfair Rule treatment.
The estimates show that the cut-off for the first card chosen by an average subject with 3
replacement opportunities who plays against a 3 replacement opportunities player is 50.11 in
the first game. The cut-off for the first card chosen by an average subject with 3 replacement
opportunities who plays against a 1 replacement opportunity player is 53.24 in the first game.
Within the game, the average rate of decline of the cut-off is 8.06, which is the same for both
types of subjects. Therefore, the cut-offs chosen by an average subject with 3 replacement
opportunities who plays against a 3 replacement opportunities player are 50.11, 42.05, and
33.99 in her first game. The cut-offs chosen by an average subject with 3 replacement
opportunities who plays against a 1 replacement opportunity player are 53.24, 45.18, and 37.12
in her first game. Figure 4.1 and Figure 4.2 display the distributions of posterior estimates of
cut-offs chosen by subjects with 3 replacement opportunities in their first card games. The
vertical line in each histogram indicates the subgame perfect Nash equilibrium prediction. It
is striking to see that, all the cut-offs chosen by both types of subjects with 3 replacement
opportunities in their first games are below subgame perfect Nash equilibrium predictions.

Figure 4.1: Posterior estimates of cut-offs - 3 vs 3 without experience

Notes: The histograms display the distributions of posterior estimates of cut-offs chosen by 3
replacement opportunities subjects who play against 3 replacement opportunities players.
The vertical lines indicate subgame perfect Nash equilibrium predictions.
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Figure 4.2: Posterior estimates of cut-offs - 3 vs 1 without experience

Notes: The histograms display the distributions of posterior estimates of cut-offs chosen by 3
replacement opportunities subjects who play against 1 replacement opportunity players. The
vertical lines indicate subgame perfect Nash equilibrium predictions.

An average subject with 1 replacement opportunity chose a cut-off of 45.04 for the first card
in the first game. Figure 4.3 shows the distribution of posterior estimates of cut-offs chosen
by subjects with 1 replacement opportunity in their first games. It is clear that none of the
cut-offs chosen by subjects with 1 replacement opportunity is consistent with or above the
subgame perfect Nash equilibrium prediction.

Figure 4.3: Posterior estimates of cut-offs - 1 vs 3 without experience

Notes: The histogram displays the distribution of posterior estimates of the cut-offs chosen
by 1 replacement opportunity subjects. The vertical line indicates the subgame perfect Nash
equilibrium prediction.
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Result 1. The actual cut-offs chosen by subjects without experience are lower than
subgame perfect Nash equilibrium predictions.

According to the subgame perfect Nash equilibrium prediction, the cut-offs for 3 replacement
opportunities players who play against 3 replacement opportunities players should be higher
than the cut-offs for 3 replacement opportunities players who play against 1 replacement
opportunity players. Our estimation results show that, contrary this prediction, playing
against an opponent with 1 replacement opportunity has a small positive effect on cut-offs
chosen by subjects, but the effect is not significant.

Result 2. For subjects with 3 replacement opportunities, cut-offs are not significantly
affected by the number of replacement opportunities available to their opponents.

Result 3. Although the actual cut-offs chosen by subjects do not match with the
subgame perfect Nash equilibrium prediction, the decline of subjects’ cut-offs between
cards is significant and in the same direction as predicted.

When a player with three replacement opportunities makes decisions on the rational strategy
for the card game, it involves two levels of reasoning. The question that arises at the first
level of reasoning is what strategy she should choose when playing against an opponent with
a given strategy, implying a given distribution of the value of the opponent’s final card. The
intuition is that, for any such distribution, the player should decrease cut-offs between cards.
The question that arises at the second level of reasoning is what strategy the opponent will
choose, and therefore what the distribution of the opponent’s final card will be. The intuition
is that the player should adjust her cut-offs based on the number of replacement opportunities
held by her opponent, i.e. the more replacement opportunities held by her opponent, the
higher cut-offs she should hold. From Result 2 and Result 3, we can see that subjects are
able to conduct the first level of reasoning, but their reasoning is not deep enough for them
to realize that cut-offs should vary with the number of replacement opportunities held by
opponents.

Moreover, from Figure 4.1 to Figure 4.3 we can see that, instead of following a unique pure
strategy subgame perfect Nash equilibrium, subjects’ cut-offs are distributed over a wide range.
For example, the cut-offs chosen by subjects with 3 replacement opportunities who play against
3 replacement opportunities players should be concentrated at 83, but instead they range from
27.40 to 64.26. Similar behaviour is observed of subjects with 3 replacement opportunities who
play against 1 replacement opportunity players. For subjects with 1 replacement opportunity,
their cut-offs for the first card should be 68, but the actual cut-offs instead cover a wide range
from 9.27 to 67.39. The estimates show that ηκ is significantly greater than zero in both
models, implying heterogeneity in the cut-offs .

Result 4. The actual cut-offs are distributed over a wide range, instead of concentrating
at the equilibrium value.
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4.6.2 Feedback information

In our experiment, subjects were provided with the same feedback information in both the
Fair Rule treatment and the Unfair Rule treatment. At the end of each card game, subjects
saw the card held by their opponents and learned whether they had won or lost that game. In
this section we focus on the impact of feedback on subjects’ performance in the card games.

In the previous section, we showed that at the beginning of the series of card game subjects
chose cut-offs significantly lower than predicted. Thus, one might expect that cut-offs would
increase as subjects gained experience. Table 4.5 shows estimated actual cut-offs for experienced
players – that is, the estimated values to which cut-offs converge as t increases. The results of
our model show that as subjects become more experienced, cut-offs increase. Note that τd,
which measures the difference between the cut-off decline rates for subjects with and without
experience, is not significant, which suggests that the rate of decline of cut-offs is stable with
experience.8

Table 4.5: Summary of actual play with experience, equilibrium predictions, and
empirical best responses

3 opportunities player
1 opportunity player

Against 3 opportunities opponent Against 1 opportunity opponent
Actual Predicted Empirical Actual Predicted Empirical Actual Predicted Empirical

Card 1 68.55 83 76 71.68 75 74 60.13 68 67
Card 2 60.49 76 72 63.62 71 69
Card 3 52.43 67 67 55.56 57 61

Our model implies that, for an average subject with 3 replacement opportunities, each cut-off
is 18.44 higher when the subject is experienced than in the first game. For an average subject
with 1 replacement opportunity, the cut-off is 15.09 higher when the subject is experienced
than in the first game. Figure 4.4 and Figure 4.5 display the distributions of posterior estimates
of cut-offs chosen by 3 replacement opportunities subjects with experience. In Figure 4.4 and
Figure 4.5, the solid vertical lines indicate the subgame perfect Nash equilibrium predictions.
(The dashed vertical lines in these figures, and the data in the ‘Empirical’ columns of Table
4.5, will be explained in Section 4.6.3)

8As the coefficient of τd is relatively small and insignificant, we do not take it into account when
we estimate actual cut-offs.
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Figure 4.4: Posterior estimates of cut-offs - 3 vs 3 with experience

Notes: The histograms display the distributions of posterior estimates of cut-offs chosen by 3
replacement opportunities subjects who play against 3 replacement opportunities players.
The solid vertical lines indicate subgame perfect Nash equilibrium predictions. The dashed
vertical lines indicate empirical best responses.
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Figure 4.5: Posterior estimates of cut-offs - 3 vs 1 with experience

Notes: The histograms display the distributions of posterior estimates of cut-offs chosen by 3
replacement opportunities subjects who play against 1 replacement opportunity players. The
solid vertical lines indicate subgame perfect Nash equilibrium predictions. The dashed
vertical lines indicate empirical best responses.

It appears that subjects learn to increase their cut-offs over the course of the experiment.
With experience, all of the cut-offs chosen by subjects with 3 replacement opportunities who
play against 3 replacement opportunities players remain lower than the subgame perfect Nash
equilibrium predictions. For subjects with 3 replacement opportunities who play against 1
replacement opportunity players, 27.93 % of their cut-offs for the first card are higher than
the equilibrium prediction, 7.26% of their cut-offs for the second card are higher than the
equilibrium prediction, and 40.22% of their cut-offs for the third card are higher than the
equilibrium prediction

Figure 4.6 shows the distribution of posterior estimates of cut-offs chosen by subjects with
1 replacement opportunity after they became experienced with the card game. From the
histogram, we can see that with experience, almost all of the cut-offs chosen by subjects with
1 replacement opportunity who play against 3 replacement opportunities players remain lower
than the subgame perfect Nash equilibrium prediction. Only 1.33% of the cut-offs are higher
than the equilibrium prediction.
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Figure 4.6: Posterior estimates of cut-offs - 1 vs 3 with experience

Notes: The histogram displays the distribution of posterior estimates of cut-offs chosen by 1
replacement opportunity subjects. The solid vertical line indicates the subgame perfect Nash
equilibrium prediction. The dashed vertical line indicates the empirical best response.

Result 5. Subjects learn to increase their cut-offs over time, but for experienced subjects,
most cut-offs still remain lower than predicted.

According to the theoretical prediction, subjects should use the strategy of maximizing the
winning probability in each card game. Therefore, the results of the preceding game should
have no impact on the cut-offs chosen by subjects in the later games. However, it may
be possible that the cut-offs chosen by subjects in our experiment were influenced by the
outcomes of previous games. In our model, we include variable βw, which takes into account
the influence of the outcome of the previous game on cut-offs chosen by subjects in the later
games. It turns out that for subjects with 3 replacement opportunities, βw is positive and
statistically significant (p-value< 0.05). If the previous game was a win, on average subjects
with 3 replacement opportunities lower their cut-offs in the following game by 1.64. For
subjects with 1 replacement opportunity, βw is positive but not significant.

Result 6. Subjects’ decisions are influenced by the outcome of the preceding game.

4.6.3 Actual cut-offs versus empirical best responses

In previous sections, we have shown that although there is an increasing trend, the average
cut-offs chosen by subjects remain lower than the subgame perfect equilibrium prediction.
Next, we examine to what degree the players learn to choose the empirical best response. We
define the empirical best response as the strategy that is ex post optimal given the strategy
played by an average player in the game. A similar concept is used by Weizsäcker (2010),
who defines an empirically optimal action, the action that is ex post optimal in the majority
of cases under identical conditions. Weizsäcker suggests that empirically optimal action is a
better measure of the success of social learning than Perfect Bayesian Equilibrium or Quantal
Response Equilibrium, as it reflects the true behaviour of other players.

Given the cut-offs of an average player with experience presented in Section 4.6.2, we calculate
the empirical best responses to these cut-offs. The empirical best responses are shown in
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Table 4.5. For players with 3 replacement opportunities who play against players of the same
type, the empirical best response is to choose cut-offs 76, 72, and 67. For players with 3
replacement opportunities who play against 1 replacement opportunity players, the empirical
best response predicts cut-offs 74, 69, and 61. The empirical best response cut-off for players
with 1 replacement opportunity is 67.

We measure how well subjects learn to play the empirical best responses by comparing the
cut-offs estimated for experienced subjects with the predictions of the empirical best response.
Figure 4.4, 4.5, and 4.6 show the distributions of posterior estimates of cut-offs chosen by
experienced subjects. The dashed vertical lines indicate the empirical best response cut-offs
in each case.

Figure 4.4 and Figure 4.6 clearly show that, for experienced subjects with 3 replacement
opportunities playing against players of the same type and for experienced subjects with 1
replacement opportunity, posterior estimates of cut-offs are almost always lower than empirical
best responses. Of all players with 3 replacement opportunities who play against 3 replacement
opportunities players, 7.26% are estimated as having cut-offs for the first card that are higher
than the empirical best response. For the second card, the corresponding percentage is 1.12%.
For the third card, all cut-offs are lower than the empirical best response. For subjects with
1 replacement opportunity, only 1.33% have estimated cut-offs higher than the empirical
best response. In contrast, the average cut-offs estimated for subjects with 3 replacement
opportunities who play against 1 replacement opportunity players are closer to the empirical
best responses. For these subjects, 33.52% of the cut-offs for the first card and 15.64% of the
cut-offs for the second and third cards are higher than the empirical best responses.

Result 7. For experienced subjects, most cut-offs are lower than the empirical best
responses.

4.7 Discussion

Our search competition takes the form of parallel searches without recall. Players compete
for a fixed prize by finding an offer that is better than the offer found by the other player(s).
Existing research suggests opposing intuitions about actual behaviour, relative to Nash
equilibrium play. The experimental literature on contests has generally found that the average
effort level is significantly higher than the theoretical prediction. Experimental evidence on
search suggests that subjects tend to stop searching too early, compared to the risk neutral
benchmark.

In our search competition, we observe a significant tendency for subjects to set lower cut-offs
than is optimal. This finding is similar to the general phenomena of under-search reported
by experiments on search. In literature on search problem with recall, early termination of
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search is usually attributed to risk aversion or loss aversion (Schotter and Braustein, 1981;
Cox and Oaxaca, 1989; Kogut, 1990; Schunk and Winter, 2009a). However, because our card
game has only two possible outcomes, either win or lose, and because we used the binary
lottery mechanism as the incentive system in our experiment, the behaviour of a player who
acted in accordance with expected utility theory would be independent of her attitude to
risk. For the same reasons, the behaviour of a player who acted in accordance with prospect
theory would be independent both of her attitudes to gain and loss and of the properties of
her probability weighting function.9

Similar to the finding in contest experiments that subjects learn to reduce their efforts over
the course of the experiment, but their effort levels remain significantly higher than the Nash
equilibrium prediction (Davis and Reilly, 1998; Gneezy and Smorodinsky, 2006; Price and
Sheremeta, 2011; Brookins and Ryvkin, 2014; Mago et al., 2016), we find that as subjects
become more experienced, they tend to choose higher cut-offs, but their cut-offs remain
lower than the subgame perfect Nash equilibrium predictions, especially the cut-offs chosen
by subjects with 3 replacement opportunities who play against 3 replacement opportunities
players and the cut-offs chosen by subjects with 1 replacement opportunity. To get more
insight into how successful subjects learn to play the best response of other players’ strategies,
we compare subjects’ cut-offs with the predictions of the empirical best response. We find
that although subjects are given full feedback information, cut-offs chosen by subjects with
experience are still different from cut-offs predicted by the empirical best response.

We also find that as subjects become experienced with the card game, the average cut-offs
chosen by 3 replacement opportunities subjects who play against 1 replacement opportunity
players are closer to both subgame perfect Nash equilibrium solutions and empirical best
response predictions than the average cut-offs chosen by 3 replacement opportunities subjects
who play against 3 replacement opportunities players and the average cut-offs chosen by 1
replacement opportunity subjects. One possible explanation to this finding is that compared
to the decision problems faced by subjects with 3 replacement opportunities, the decision
problem for subjects who play against 1 replacement opportunity players is relatively easier
than the decision problem for subjects who play against 3 replacement opportunities players.
Therefore less effort may be required for subjects who play against 1 replacement opportunity
players to learn to play optimally.

As subjects in the competition get full feedback information about the outcome of each game,
our experimental design allows us to study more about subject’s learning process. We find
that subjects who win the previous game tend to decrease their cut-offs in later rounds, while
subjects who lose the previous game tend to increase their cut-offs in later rounds. Many
experimental studies on tournaments and multi-battle contests report similar results. For
instance, Mago et al. (2016) find that in multi-battle contests with feedback information

9However, there is some evidence that, when the binary lottery incentive system is used in
experiments, subjects treat probabilities of winning as if they were material consequences (Selten et al.,
1999).
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on relative effort levels, subjects who put effort lower than the winning effort increase their
effort in the consecutive battle, while subjects who put effort higher than the winning effort
decrease their effort in the consecutive battle. In contests, given the information about the
other players’ effort levels, subjects may able to increase their payoffs by reducing effort levels
if their effort levels are higher than the winning effort level in the previous round. However, as
in our search competition there is no cost of replacing cards, adjusting cut-offs only influences
subjects’ probability of winning the competition. Subjects got feedback on whether they won
the game or not, but not on the probability of winning given the cut-offs that they chose. It
is difficult for them to learn what is the best strategy given the limited feedback information.
One possible explanation is that subjects tend to play ‘safe’ psychologically by lowering their
cut-offs and therefore changing cards less often after having won a few games, while subjects
tend to play ‘risky’ psychologically by raising their cut-offs and therefore changing cards more
often after having lost a few games.

Subjects’ reluctance to replace cards, especially after winning a game(s) might be explained
by some behavioural biases. Omission bias is one of the possible biases that might influence
the card replacing behaviour of subjects. Many psychological studies have shown that when
a decision leads to a bad outcome, relative to what might have been, people think that the
decision was worse if the outcome resulted from action than if it resulted from inaction (Ritov
and Baron, 1992; Spranca et al., 1991; Ritov and Baron, 1992; Baron and Ritov, 1994). For
subjects in our search competition, if the game ends up with a loss, they might feel worse
if they could have won by not using the replacement opportunity and keeping a card that
they were dealt, especially when losing the game means losing the leading position or even
the competition.

4.8 Conclusion

We introduce a new type of game, a search competition. The game describes a situation in
which players compete for a fixed prize by searching for an offer that is better than the offer
found by the other player(s). It combines features of both games in the contest literature
and games in the search literature. The search competition differs from games in the contest
literature: exerting effort in contests is costly and the cost is irreversible, while exerting effort
in the search competition is costless. Compared to games studied in the contest literature,
our search competition focuses more on the strategic interaction between players in the
competition. We conducted a laboratory experiment to study individual behaviour in the
search competition, and compared our results with the main findings in the contest literature
and search literature.

We find that in the search competition, subjects set reservation prices too low relative to
theoretical predictions, and therefore search is less than optimal. Our results indicate that
individual behaviour in the search competition is more consistent with the search behaviour
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reported in the search literature than with competitive behaviour in contests.

Our experiment results show that subjects’ learning behaviour in the search competition is
similar to behaviour reported in contest literature. Subjects learn to increase their cut-offs
over the course of the experiment, but their reservation prices remain lower than equilibrium
predictions. Although feedback information on previous games and opponents’ choices should
not influence subjects’ decisions, subjects in our experiments tend to adjust their reservation
prices based on this information in the competition. Subjects’ learning behaviour can be
explained to some extent by behavioural biases.
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