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Abstract 

Predominance of beneficial bacteria helps to establish a healthy microbiota in fish gastrointestinal system and thus to reduce 

emerging pathogen. In this study, the colonization efficacy of Lactococcus lactis subsp. lactis CF4MRS in Artemia franciscana 

and its potential as a probiotic in suppressing Edwardsiella sp. infection were investigated in vivo. The colonization extent of the 

bioencapsulated L. lactis was established through visualization of gfp gene-transformed L. lactis in A. franciscana. Here, we 

demonstrate that when A. franciscana is administrated with L. lactis at 108 CFU mL−1 for 8 h, the highest relative percentage of 

survival (RPS = 50.0) is observed after inoculation with Edwardsiella sp. The total counts of L. lactis entrapped in Artemia were 

the highest (ranged from 3.2 to 5.1 × 108 CFU mL−1), when 108–109 CFU mL−1 of L. lactis was used as starting inoculum, with 

the bioencapsulation performed within 8–24 h. Fluorescent microscopy showed gfp-transformed L. lactis colonized the external 

trunk surfaces, mid-gut and locomotion antennules of the A. franciscana nauplii. These illustrations elucidate the efficiency of 

colonization of L. lactis in the gastrointestinal tract and on the body surfaces of Artemia. In conclusion, L. lactis subsp. lactis 

CF4MRS shows a good efficacy of colonization in Artemia and has the potential for biocontrol/probiotic activity against 

Edwardsiella sp. infection. 
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Introduction 
 

Aquaculture is the fastest growing food industry (Saravanan 

et al. 2013). However, the rapid expansion of the industry has 

resulted in massive occurrence of various fish diseases. 
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Aquaculture of fish, in particularly, turbot Scophthalmus 

maximus, Japanese flounder Paralichthys olivaceus, Nile tila- 

pia Oreochromis niloticus and catfish Clarias batrachus, of- 

ten develop diseases such as edwardsiellosis (Sahoo et al. 

1998; Kim et al. 2003; Zheng et al. 2004; Padros et al. 

2006). The Gram-negative pathogen Edwardsiella sp. is the 

major cause of edwardsiellosis, which can cause hemorrhagic 

septicemia including lesions on the skin, muscles and internal 

organs in many aquatic species (Bullock and Herman 1985; 

Mohanty and Sahoo 2007). The spread of Edwardsiella sp. 

in fish culture systems can be transmitted via contaminated 

equipment and facilities used in cultivation, or during the 

harvesting process of the live feed (Mainous et al. 2010). 

Common live feed include Artemia and rotifers and are 

often used as natural food sources for post-larvae in finfish 

or shrimp hatchery. Studies showed that Artemia could be a 

potential bio-vehicle for the transmission of several fish 

diseases; evidence indicates these live feeds can be in- 

volved (directly or indirectly) in transmitting piscine cryp- 

tosporidiosis infection caused by Cryptosporidium molnari 

and Cryptosporidium scophthalmi (Méndez-Hermida et al. 

mailto:lohjy@ucsiuniversity.edu.my


 

 

 

2007). Sivakumar et al. (2009) claimed that Artemia might 

be a possible horizontal transmission pathway for 

Hepatopancreatic parvo-like virus (HPV) in post-larvae 

of Penaeus monodon (Sivakumar et al. 2009). More im- 

portantly, a recent study demonstrated E. tarda and 

E. ictaluri can be transmitted via the oral route, particularly 

when pathogen-infected Artemia was used asa food source 

for Nile tilapia Oreochromis niloticus larvae (Situmorang 

et al. 2014). To control edwardsiellosis, conventional che- 

motherapeutic approaches are carried out, including pre- 

disinfection of the facility and application of prophylactic 

antibiotics for preventative measures or treatment pur- 

poses. However, the excessive use of antibiotics raises 

many food safety concerns; therefore, probiotics would 

be an advantageous alternative to control Edwardsiella 

sp. infections. 

Probiotics are defined as live microorganisms which, 

when administrated in adequate amounts, confer health ben- 

efits to the host (FAO and WHO 2001). In most cases, 

probiotics are supplied as live supplements in feed complex, 

which can then benefit the fish and shrimp through inhibi- 

tion of pathogenic microbes, improving immune response, 

improving survival and growth rates, increasing feed utili- 

zation, enhancing digestion and promoting antimutagenic 

or anticarcinogenic activity, and furthermore, some species 

have been suggested for improvement of water quality in 

aquaculture systems (Harikrishnan et al. 2010; Andani et al. 

2012). In hatchery production, probiotics are generally ap- 

plied through the oral route through live feed (e.g. Artemia 

and rotifers) (Hai et al. 2010). Probiotics could help to pre- 

vent bacterial infections by preventing the colonization of 

pathogenic bacteria (Villamil et al. 2010). Effective 

probiotics used in the fish industry possess several charac- 

teristics, including antimicrobial properties, adhesion 

capacity and growth on the intestinal or external mucous 

of the fish, are also relatively important to determine the 

feasibility of the putative probiotic in the field. Chang and 

Liu (2002) reported only certain bacterial species that colo- 

nized the GI tract could exert the protection to the eel 

Anguilla anguilla L. from edwardsiellosis infection. Thus, 

probiotic colonization in the GI (gastrointestinal) tract 

should be of particular importance to determine the viability 

and functionality of the beneficial bacteria. 

In the present study, a potential probiotic strain, 

Lactococcus lactis subsp. lactis (CF4MRS), previously 

isolated from farmed fish (Loh et al.  2014;  Loh  and  

Ting 2016) was used to evaluate for inhibitory effect 

against Edwardsiella sp.  using  A.  franciscana as  a host 

in an in vivo pathogenic assays. The bacterial uptake, 

proliferation and colonization were determined through  

the employment of gfp-transformed L. lactis in the live 

feed. Efficacy of the bioencapsulation process and the 

probiotic dosage were also optimized in this study. 

Materials and Methods 
 

Bacterial Culture of Lactococcus lactis subsp. lactis 

 
The bacterium Lactococcus lactis subsp. lactis CF4MRS 

(GenBank accession number: KM488626) was previously 

isolated from the GI tract of farmed freshwater catfish, 

Clarias batrachus (Monash University Animal Ethics 

Committee approval no.: MARP/2012/117) (Loh et al. 

2014). The strain CF4MRS was sub-cultured regularly on de 

Man Rogosa and Sharp agar (MRS, Difco™, BD, USA). For 

the bioencapsulation experiment, the cell density of L. lactis in 

MRS broth (overnight culture) was adjusted to 106, 107, 108 

and 109 CFU mL−1 (OD540) using 10 g L−1 autoclaved artifi- 

cial seawater (pH 7.5) (Instant Ocean® Sea Salt, USA). For 

the in vivo assay, the pathogenic Edwardsiella sp. BCRC 

16703 (98% similarity to E. anguillarum, see supplementary 

BCRC 16703 gene sequences) (http://www.bcrc.firdi.org.tw) 

was adjusted to 105 CFU mL−1 using sterile artificial seawater. 

 

Artemia Nauplii Hatching and Pre-disinfection 

 
The cysts of Artemia franciscana (Great Lake Artemia, Salt 

Lake City, UT, USA) were exposed to UV radiation (254 nm) 

for pre-disinfection in a laminar flow hood for 30 min prior to 

hatching. The cysts (6 g L−1) were placed in a 500-mL 

Artemio® set (JBL, Neuhofen, Germany) connected to an 

aerator and filled with sterile artificial seawater (20 g L−1, 

pH 7.5). Artemia cysts were incubated under continuous aer- 

ation at 26 ± 2 °C for 20–24 h. (Touraki et al. 2013) and a 

photoperiod of 12:12 h (light:dark). The newly hatched 

nauplii (instar I) were collected, starved for 6 h and subse- 

quently surface-disinfected with 10 ml L−1 Ovadine® (10% 

povidone-iodine) (Syndel Laboratories Ltd., Canada) for 

10 min. The disinfected Artemia nauplii were then used for 

the in vivo pathogenic study. 

 

In Vivo Challenge of Artemia Nauplii 
with Edwardsiella sp. 

 
The surface-disinfected Artemia nauplii (Instar II, at approx. 

28 h) were transferred into 250-mL conical flasks with a den- 

sity of approx. 300 individuals per milliliter. This experiment 

consisted of seven treatments: positive control (nauplii with 

no Lactococcus lactis subsp. lactis were administered but 

challenged with Edwardsiella sp.), the negative control 

(nauplii were administrated with 106 CFU mL−1 L. lactis but 

without challenged with Edwardsiella sp.), blank treatment 

(nauplii with no L. lactis administration and without chal- 

lenged with Edwardsiella sp.) and four different treatments 

of nauplii, each of which were administrated with 106, 107, 

108 and 109 CFU mL−1 L. lactis and subsequently challenged 

with Edwardsiella sp. 
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Artemia nauplii were exposed to L. lactis for 1, 4, 8, 12 and 

24 h. After bioencapsulation, a total of 20 Artemia nauplii per 

replicate were transferred aseptically from the flasks into 55- 

mm (in diameter) sterile Petri dishes, containing 10 mL of 

Edwardsiella sp. at 105 CFU mL−1 (except in the negative 

and blank treatments whereby Edwardsiella sp. was exclud- 

ed). After 48 h of incubation, the Edwardsiella sp. suspen- 

sions were replaced with fresh suspensions at the same con- 

centrations. A food source of autoclaved yeast Saccharomyces 

cerevisiae (Mauri-pan® instant yeast, Malaysia) (5.6 × 107 

cells mL−1 in 10 g L−1 sterile artificial seawater, pH 7.5) was 

administered to the Artemia nauplii daily (100 μL dish−1) 

throughout the experiment (Marques et al. 2004). Each treat- 

ment was performed in triplicate. The survival rates of the 

nauplii were monitored and recorded throughout the experi- 

ment until a complete mortality (100%) was achieved in the 

positive control. The relative percentage of survival (RPS) 

was calculated based on the following formula (Amend 1981): 

RPS ð%Þ ¼ 1−ðM t=M cÞ × 100 

where Mt is mortality from treatment and Mc mortality from 

control. RPS values (equivalent to ED50) ≥ 50 indicated a 

positive effect (Cunningham et al. 2010) of L. lactis against 

the pathogen Edwardsiella sp. 

In addition, water quality was monitored throughout the 

experiment period for dissolved oxygen (DO), pH, tempera- 

ture, total dissolved solid (TDS), salinity and total ammonia 

contents (Table 1). The DO, pH, temperature, TDS and salin- 

ity were determined using an Eutech instrument (PCD 650, 

Thermo Fisher Scientific, Singapore), while total ammonia 

nitrogen (NH3-N), nitrite nitrogen (NO2-N) and nitrate nitro- 

gen (NO3-N) were measured using a Hach colorimeter 

(DR890, Hach, USA) according to the Standard Methods for 

the Examination of Water and Wastewater (APHA 1985). 

 

Optimization of Bioencapsulation 

 
Firstly, new batches of Artemia nauplii were surface- 

disinfected using Ovadine® and then rinsed thoroughly with 

autoclaved artificial seawater. Nauplii (approx. 300 nauplii 

mL−1) were transferred to 250-mL conical flasks containing 

100 mL bacterial suspensions of various concentrations (106, 

107, 108 and 109 CFU mL−1 in autoclaved artificial seawater). 

Artemia nauplii without treatment with L. lactis were used as 

the control. Mild aeration (filtered through 0.22-μm mem- 

brane filters) was provided at the bottom of the flasks to ensure 

sufficient oxygenation in the Artemia culture. 

To quantify the total number of L. lactis cells 

bioencapsulated in the nauplii, 1 mL of Artemia nauplii of each 

treatment was collected after 1, 4, 8, 12 and 24 h of 

bioencapsulation. All nauplii were washed (5 mL sterile saline 

solution, NaCl, 0.85% w/v) and collected through sterile 

microclothes (Calbiochem, Merck, Germany). The nauplii were 

then transferred to 2 mL sterile saline solutions and macerated 

using a homogenizer (LabGEN®125, Cole-Parmar, USA). 

Serial dilutions of the homogenized suspensions were made 

down to 10−9, plated (100 μL) on nutrient agar (Badhul Haq  et 

al. 2012) and incubated at 26 ± 2 °C for 24–48 h. CFU were 

counted to enumerate the viable bacteria that were successfully 

encapsulated in the Artemia nauplii (all quantification experi- 

ments were done in triplicate). 

 

Colonization of gfp-Transformed L. lactis 

in A. franciscana 

 
Colonization and proliferation of Lactococcus lactis subsp. 

lactis CF4MRS in Artemia franciscana were detected via 

green fluorescent protein (GFP) (Fernández de  Palencia 

et al. 2000). The gfp-transformation process was firstly initi- 

ated by culturing the lactococcal cells (CF4MRS) in GM17 

medium (M17 broth (Oxoid Ltd., Hampshire, UK) supple- 

mented with 1% glucose) at 37 °C overnight. Cultures were 

diluted 100-fold in SGM17 medium (GM17 supplemented 

with 0.5 M sucrose) containing 3% glycine (Vivantis 

Technologies Sdn Bhd., Malaysia) (Holo and Nes 1989). 

Exponential-phase cells were grown to 0.2–0.7 cell densities 

(OD600) at 30 °C. The lactococcal cells were harvested by 

centrifugation at 6000×g for 5 min at 4 °C and washed fol- 

lowing the protocol suggested by Dornan and Collins (1990). 

The lactococcal cells were re-suspended in 2 mL of 0.22 μm 

filtered Milli-Q water (Merck Millipore, USA), the cells were 

collected by centrifugation (6000×g for 5 min at 4 °C) and the 

supernatant was discarded. A second wash in 1 mL of 

 

 
Table 1 Water quality in the A. franciscana experimental flasks 

Water quality physicochemical parameters 
 

 
DO 

(mg L−1) 

pH Temperature (°C) Salinity 

(ppt) 

TDS (mg L−1) NH3-N (mg L−1) NO2-N (mg L−1) NO3-N (mg L−1) 

Control 3.15 7.4 22.5 20.0 15.97 0.80 0.025 0.02 

Treatment 4.09–4.30 7.1–7.4 22.3–22.5 19.8–20.0 15.49–16.00 0.50–1.60 0.043–0.070 0.06–0.13 

DO, dissolved oxygen; TDS, total dissolved solid; NH3-N, total ammonia nitrogen; NO2-N, total nitrite nitrogen; NO3-N, total nitrate nitrogen 



 

 

 

0.22 μm filtered Milli-Q water was used. The washing steps 

were repeated twice to collect the cell pellets. Immediately 

after washing, 1 mL of 50 mmol L−1 EDTA (Sigma-Aldrich, 

Co., USA) was used to re-suspend the cell pellets and placed 

on ice for 5 min. After incubation, cells were collected by 

centrifugation. The re-suspension step was repeated again 

with 1 mL of 0.22 μm filtered Milli-Q water. In the final step 

of re-suspension, the cells were re-suspended using the same 

protocol by replacing Milli-Q water with 1 mL of 0.3 mol L−1 

sucrose (Systerm®, Malaysia). The lactococcal cells were 

then collected by centrifugation. 

Prior to electrotransformation, competent lactococcal cells 

were re-suspended in 0.2 mL of 0.3 mol L−1 sucrose. 

Immediately after re-suspension in sucrose, the cells were 

mixed with 2 μg of plasmid DNA. The plasmid DNA used 

in this study was pLS1GFP (KitMyGEN, Spain), a broad- 

host-range pMV158 replicon, which carries a tetL gene 

encoding a TetR determinant (Ruiz-Cruz et al. 2010), 

ermAM gene encoding an ErmR determinant (Ruiz-Masό  

et al. 2012) and the gfp gene (Fernández de Palencia et al. 

2000). Cell suspensions (100 μL) were transferred into a 

pre-chilled disposable electroporation cuvette (Bio-Rad 

Laboratories Inc., USA) (2-mm electrode gap) and subjected 

to a single pulse [2.5 kV (E = 12.4 kV cm−1), 200 Ω and 25 μF 

corresponding to pulse length of 4.6 ms] using a Gene Pulser 

(Xcell™, Bio-Rad Laboratories Inc., USA). Immediately after 

discharge, the cell suspensions were transferred to 1 mL of 

ice-cooled MRS broth (supplemented with 5 μg mL−1 eryth- 

romycin) and placed on ice for 5 min. Cell suspensions were 

incubated at 37 °C for 2 h and 100 μL was plated on MRS 

agars (supplemented with 5 μg mL−1 erythromycin) for the 

selection of erythromycin-resistant transformants. The plates 

were incubated for 4 to 5 days at 30 °C and colonies were 

inoculated onto fresh MRS agars. 

To detect gfp-transformed L. lactis in A. franciscana, 

Artemia cysts were surface-disinfected and followed by 

the hatching process as described previously (BArtemia 

Nauplii Hatching and Pre-disinfection^ section). Artemia 

nauplii were transferred to a conical flask containing 

200 mL of gfp-transformed L. lactis bacterial suspension 

(108–109 CFU mL−1) and mild aeration was provided dur- 

ing the experiment. After 6 and 12 h of bioencapsulation, 

10–15 nauplii were collected using a Pasteur pipette and 

transferred into Petri dishes containing 10 mL sterile PBS 

(PBS containing 10 g L−1 Instant Ocean® Sea Salt). The 

nauplii were observed under a fluorescence microscope 

(Olympus BX43, Olympus Co., Japan) equipped with an 

excitation Standard FITC set, a DP26 digital camera sys- 

tem and UIS2 optical components, for colonization of the 

gfp-transformed L. lactis. GFP fluorescence was detected 

by exposing the Artemia to ultraviolet light at a wave- 

length of 450–490 nm. The images were captured using     

a DP26 digital camera system. 

Statistical Analysis 

 
The data were analyzed for normality and homogeneity of 

variance. For the data in percentage values, they were trans- 

formed to a square root value prior to the analysis using 

ANOVA (Tukey test). Significant values were accepted at P 

value < 0.05. Statistical analysis was performed using the 

Statistical Package for the Social Sciences (SPSS) Version 20. 

 
 

Results 
 

Generally, Lactococcus lactis subsp. lactis CF4MRS at 

108 CFU mL−1 and bioencapsulated for 8 h to Artemia 

franciscana nauplii showed the highest protective effect 

against Edwardsiella sp. infection. The survival of both 

A. franciscana groups in the negative control and those ad- 

ministrated with 106 CFU mL−1 L. lactis showed a similar 

trend with no significant differences (P > 0.05) found between 

the blank treatment and positive control (Fig. 1a). Application 

of different L. lactis cell densities resulted in a slight increase 

in the relative percentage of survival (RPS) compared to the 

positive control (Table 2). No significant difference was found 

in the survival of A. franciscana in the negative and blank 

treatments (P > 0.05) (Fig. 2a). However, all L. lactis densities 

(106–109 CFU mL−1) showed a significant reduction (P 

< 0.05) in the survival rate of A. franciscana (Fig. 2a) re- 

gardless of the bioencapsulation duration, when compared to 

the positive control. A  lower  survival  was noticed   when 

A. franciscana administrated with 106 CFU mL−1 L. lactis 

for 4 h (Fig. 1b). However, no significant difference was ob- 

served in the survival of A. franciscana administrated with 

107–109 CFU mL−1 L. lactis (P > 0.05) (Fig. 2a). The RPS 

was recorded in the range of 31.7–48.3 within 4–12 h 

(Table 2). The survival of A. franciscana (108 CFU mL−1 

L. lactis; 8 h) was higher than those fed with 109 CFU mL−1 

L. lactis (Fig. 1c). In terms of RPS, A. franciscana adminis- 

trated with 108 CFU mL−1 L. lactis showed the highest pro- 

tective effect against Edwardsiella sp. (RPS = 50.0) (Table 2). 

Bioencapsulated Artemia with 108 CFU mL−1 L. lactis for 8-h 

duration showed 50% survival rate which was similar to those 

found in the negative control (nauplii not challenged with 

Edwardsiella sp.) (Fig. 2a). This trend, however, did not occur 

during the extended period of bioencapsulation (t = 12 and 

24 h). The survival did not significantly differ (P > 0.05) in 

the A. franciscana treated with different L. lactis cell densities. 

In terms of bioencapsulation time, no significant difference 

(P > 0.05) was observed among the duration and cell density, 

except for the negative and blank treatments (Fig. 2b). 

The total estimated bacteria bioencapsulated in the 

A. franciscana increased relatively to the bacterial density and 

bioencapsulation time (Fig. 3). Only a cell density at 

109 CFU mL−1 showed a significant difference (P > 0.05) 



 

 

 

 

Fig. 1 Survival of A. franciscana administrated with or without L. lactis 

for a 1 h, b 4 h, c 8 h, d 12 h, and e 24 h in the presence of Edwardsiella 

sp. (in vivo challenging) or without Edwardsiella sp. positive 

control, negative  control,   blank control,  nauplii 

administered  with  106 CFU  mL−1,    107 CFU mL−1, 

108 CFU mL−1, and 109 CFU mL−1 of L. lactis. Vertical error 

bars indicate standard deviation of means 

 

compared to the lower bacterial densities and the control (with- 

out bioencapsulation). The total number of bacteria in the 

A. franciscana increased tenfold when compared to those in 

the control (1.7 × 106 CFU mL−1), resulting in an average of 

5.2 × 106 CFU mL−1 of bacteria when administrated with 

109 CFU mL−1 of L. lactis in the first hour. The total estimated 



 

 

 

Table 2 Mortality and relative percentage survival (RPS) of L. lactis subsp. lactis-bioencapsulated A. franciscana after challenged with Edwardsiella 

sp. 

Lactococcus lactis subsp. lactis CF4MRS concentration 
 

 
Controla 

  
106 CFU mL−1 

  
107 CFU mL−1 

  
108 CFU mL−1 

  
109 CFU mL−1 

 

Time (h) Mortality (%) RPS 
 

Mortality (%) RPS 
 

Mortality (%) RPS 
 

Mortality (%) RPS 
 

Mortality (%) RPS 

1 100 – 
 

97 3.3 
 

65 35.0 
 

77 23.3 
 

77 23.3 

4 100 –  68 31.7  52 48.3  52 48.3  53 46.7 

8 100 –  60 40.0  68 31.7  50 50.0  80 20.0 

12 100 –  52 48.3  58 41.7  58 41.7  63 36.7 

24 100 –  73 26.7  70 30.0  73 26.7  72 28.3 

a 
Artemia did not receive administration of Lactococcus lactis subsp. lactis and are challenged with Edwardsiella sp. 

 

 

 

 

Fig. 2 Survival of A. franciscana 

at the end of experiment (5 days). 

a Survival rate at different 

bioencapsulation durations. b 

Survival rate at different 

treatments. Mean values with 

same letters within groups are not 

significantly different (HSD0.05). 

Vertical bars indicate standard 

deviation of means 

L. lactis L. lactis L. lactis 

L. lactis 

Treatment 



 

 

 

Fig. 3 Estimation of total bacteria 

bioencapsulated in A. franciscana 

at 1, 4, 8, 12, and 24 h, introduced 

by the initial cell densities of 

L. lactococcus subsp. lactis at 

106, 107, 108, and 109 CFU mL−1. 

Mean values with same letters 

within groups are not 

significantly different (HSD0.05). 

Vertical bars indicate standard 

deviation of means 

 

 

 

 

 

 

 

 

 

 

count of bacteria also increased tenfold when exposed to 108 and 

109 CFU mL−1 of L. lactis (3.2 and 5.1 × 108 CFU mL−1, re- 

spectively) for 4 h while the bacterial count in the control was 

only 1.4 × 107 CFU mL−1. When the bioencapsulation time was 

extended to 8 h, a remarkable change was observed, whereby the 

total bacterial count increased to 20-fold at 108 (2.4 × 108) and 

109 CFU mL−1 (3.9 × 108 CFU mL−1) L. lactis, respectively. The 

total bacterial count continued to increase up to 40-fold com- 

pared to the control when the time was extended to 12 and 24 h. 

In terms of bacterial uptake, proliferation and colonization, 

control Artemia did not have a fluorescent signal after ultra- 

violet light exposure (Fig. 4a, b). In contrast, green fluorescent 

spots were detected on the external trunk surfaces, including a 

pair of locomotion antennules of the instar after being admin- 

istered with gfp-transformed L. lactis for 6 h. The fluorescence 

intensity was particularly intense in the areas of the esophagus 

up to the mid-gut (Fig. 4c), suggesting that the bacterial intake 

could have commenced at the stages of instar II to III. 

 
 

 

Fig. 4  Visualization of  gfp-transformed  L.  lactic subsp. lactis in 

A. franciscana: a  wild-type A. franciscana without  administrated  to 

L. lactis (control) under bright-field-view microscopy; b wild-type control 

A.  franciscana under dark-field-view microcopy; c  instar  II  of 

A. franciscana administrated to 108–109 CFU mL−1  gfp-transformed 

L. lactic for 6 h; d nauplii of A. franciscana administrated to the same 

concentration of gfp-transformed L. lactic for 12 h. Putative adhesion of 

bacteria (c, d) in the mid-gut (indicated with arrows) and hindgut areas 

(arrow heads) were viewed under dark-field-view microcopy with expo- 

sure of ultraviolet light in the range of 450–490 nm 

L. lactis L. lactis L. lactis 

L. lactis L. lactis 



 

 

 

Bacterial proliferation in gut epithelial cells was observed in 

the nauplii (12 h). Bacterial cells were mostly confined to the 

GI tract and colonized mainly to the anterior parts of the body 

surface (Fig. 4d). In comparison with instar, the bacteria in the 

nauplii colonized the entire digestive tract towards the 

hindgut. 

 
 

Discussion 
 

In this present study, Artemia franciscana administrated with 

Lactococcus lactic subsp. lactis CF4MRS showed a signifi- 

cant survivorship after challenged with Edwardsiella sp. RPS 

showed A. franciscana administrated with 108 CFU mL−1 for 

8-h bioencapsulation offered the best protection against 

Edwardsiella sp. (Table 2). However, the cell density of 

L. lactis in the range of 106–109 CFU mL−1 shared the same 

protection as the survival of A. franciscana in the pathogenic 

challenging de facto. This result is in agreement with Touraki 

et al. (2013) where the authors found no significant effect on 

the survival of A. franciscana regardless of the dosage con- 

centration of L. lactis subsp. lactis used in Vibrio anguillarum 

challenge study. And yet, some studies suggest that a probiotic 

concentration of at least 108 CFU mL−1 is required to protect 

Artemia from Vibrio spp. infection (Lamari et al. 2013). When 

L. lactis is used as a prophylactic treatment for sea bass to 

prevent against vibriosis infection, the application dosage 

of the probiotic is suggested to be within the range of 106–

107 CFU mL−1 (Touraki et al. 2013). There are nu- merous 

studies on the application of lactic acid bacteria in fish and 

shrimp cultures; all of these showed promising results in 

disease protection. However, it is worth men- tioning that 

when L. lactis was supplied solely in live feed cultivation 

(Artemia in our case), without a pathogen, a noticeable 

mortality rate of Artemia was observed in the culture (Figs. 

1 and 2); this is presumably attributed to starvation as no 

food was provided during the bioencapsulation process. 

The administration of the probiotic before the first exog- 

enous feeding can facilitate the establishment of beneficial 

bacteria through their colonization in the digestive tract 

(Motlagh et al. 2012). Bacterial colonization in the digestive 

tract relies mainly on the number of bacteria being intro- 

duced and its proliferation capability in the intestinal system 

(Ziaei-Nejad et al. 2006). Therefore, it is crucial to under- 

stand the effects of bacterial density and incubation time, 

and the interaction between these two factors with/without 

exposure to the pathogen. The total bacterial count 

entrapped in A. franciscana exposed to L. lactis at 108– 

109 CFU mL−1 showed a significant increment at prolonged 

bioencapsulation duration i.e. > 4 h. Although Artemia 

cysts were surface-sterilized with povidone-iodine 

(Ovadine®), some bacteria were still observable on the 

surface of A. franciscana in the control group. This presum- 

ably could be due to the presence of natural microflora in the 

hatched nauplii. According to Sahul Hameed (1993) and 

Phatarpekar et al. (2002), the crustacean Penaeus indicus 

and Macrobrachium rosenbergii larvae were found to be 

dominated by some bacteria species upon hatching, even 

though their egg homogenates were sterile (Colorni 1985). 

This might be primarily due to the natural microflora pres- 

ent in the digestive tract of the animals (Colorni 1985). Our 

results indicate that bioencapsulation using L. lactis at 108– 

109 CFU mL−1 could improve the total bacterial count in 

A. franciscana from 10- to 40-fold compared to those in the 

control. The recovery of the probiotic was relatively higher 

than that of  other strains such as  Bacillus  subtilis and 

B. licheniformis, where only 104–106 CFU mL−1 of the total 

bacterial count were recovered from bioencapsulated 

A. urmiana (Motlagh et al. 2012). The higher CFU mL−1 
presented in this study could be due to different probiotic 

strains, Artemia species and also the enumeration technique 

used as well. 

In terms of bacterial uptake, proliferation and coloniza- 

tion, results showed that L. lactis mainly localized at the 

external trunk surfaces and in the digestive tracts of the zoo- 

plankton (Artemia nauplii). Probiotic adhesion capacity on 

the intestinal tract is a fundamental prerequisite in probiotic 

treatments to transient colonization, while others include an- 

tagonistic activity against invasive pathogens and the stimu- 

lation of innate immunity (Lauzon et al. 2008; Fjellheim et al. 

2010; Motlagh et al. 2012). The adhesion capacity of a puta- 

tive probiotic can be assessed through different approaches 

such as a cell line attachment assay. Lauzon et al. (2008) 

showed that the adhesion capacity of an actinobacteria group 

of probiotic which was isolated from salmon was only prom- 

inent in certain cell lines. Lactic acid-producing bacteria, 

especially Carnobacterium divergens V41, do not adhere 

to Epithelioma papulosum cyprini (EPC) cell lines. The au- 

thors suggested that the evaluation of adhesion capacity sole- 

ly based on cell lines could be a limitation. Furthermore, no 

cell line has yet been established for freshwater fish (Lauzon 

et al. 2008). Our study showed that the gfp-transformed 

L. lactis subsp. lactis has shown a significant capability of 

proliferation and colonization of the probiotic. More impor- 

tantly, it provides a real-time observation for the presence of 

bacteria on the surfaces and in the digestive tract of 

A. franciscana. To our knowledge, this is the first report on 

gut colonization and proliferation in the GI of Artemia 

through the employment of gfp. 

In conclusion, our study suggests that bioencapsulated 

Artemia with L. lactis subsp. lactis CF4MRS at 108 CFU mL−1 

for 8 h could effectively increase the survival rate of live feed up 

to 50% against Edwardsiella sp. infection. Extensive coloniza- 

tion of this bacterium on Artemia also confirms the potential use 

of this probiotic in larviculture. 
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