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Abstract

The fact that sperm carry more than just the paternal DNA has only been
discovered just over a decade ago. With this discovery, the idea that the
paternal condition may have direct implications for the fitness of the offspring
had to be revisited. While this idea is still highly debated, empirical evidence
for paternal effects is accumulating. Male condition not only affects male
fertility but also offspring early development and performance later in life.
Several factors have been identified as possible carriers of non-genetic
information, but we still know little about their origin and function and even
less about their causation. | consider four possible non-mutually exclusive
adaptive and non-adaptive explanations for the existence of paternal effects in
an evolutionary context. In addition, | provide a brief overview of the main
non-genetic components found in sperm including DNA methylation,
chromatin modifications, RNAs and proteins. | discuss their putative functions
and present currently available examples for their role in transferring non-
genetic information from the father to the offspring. Finally, | identify some of
the most important open questions and present possible future research

avenues.



35

40

45

50

55

Introduction

The importance of non-genetic factors for the transmission of information from
parents to offspring is increasingly recognized (Bonduriansky and Day, 2009;
Bonduriansky, 2012; Bondurianksy and Day, 2018). In animals, the relatively
bigger size of the female gamete — the egg — and the resulting transfer of
many different non-genetic components from the mother to her offspring has
led to an early recognition of the role of maternal non-genetic effects in
determining offspring phenotype (e.g. Dickerson, 1947; Willham, 1963;
Legates, 1972; see also Bernardo, 1996; Mousseau and Fox, 1998; Wade,
1998; Marshall and Uller, 2007 for reviews). In contrast, the small compact
size and the highly reduced cytoplasm of the animal male gamete — the sperm
— was one of the main reasons for the assumption that paternal condition
plays little to no role in determining offspring phenotype. This assumption has
been overturned just over decade ago and it is now recognised that sperm
contribute more than the paternal haploid genome (Krawetz, 2005). In this
review, | provide an overview of the potential non-genetic mechanisms and
factors transferred via sperm into the zygote. | discuss the evidence for their
effects across generations, their putative causes and potential consequences
in an evolutionary context. This is by no means a complete account and only
provides small insights into a highly complex and fascinating world, but it may
stimulate further research into the many processes that can be summarized

as “sperm factor”.
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Male condition and sperm phenotype

Male condition is affected by environmental factors such as diet, temperature
and social interactions and these effects are often reflected in the
characteristics of a male’s ejaculate. Nutritional stress is known to negatively
affect sperm quality and can lead to an increase in the number of
malfunctioning and morphologically abnormal sperm, which in turn may affect
male fertilisation success (Gage and Cook, 1994; Merrells et al., 2009; Perry
and Rowe, 2010; Tigreros, 2013; Kahrl and Cox, 2015;). Similarly, variation in
environmental temperature affects ejaculate traits such as sperm number and
sperm morphology in ectotherm insects (Fox et al., 2006) and fish (Breckels
and Neff, 2013) but also in endotherm mammals (e.g. Al-Khanaan et al.,
2015). Finally, aspects of male social environment such as male:female ratio
and the perceived intensity of sperm competition are known to affect sperm
numbers (Arnaud et al., 2001; Pilastro et al., 2002; Pizzari et al., 2003), sperm
swimming velocity (Burness et al., 2004) and sperm morphology (Crean and
Marshall, 2008; Immler et al., 2010). However, while these environmentally
induced changes in ejaculate traits are well established, the potential
consequences of such changes for the next generation are poorly understood.
In order to estimate the importance of paternal effects we need to understand
the non-genetic factors carried by sperm and which part of the zygotic

development they might affect.

Why do paternal effects exist?
While the evidence for an effect of the paternal condition on the offspring is

rapidly mounting (e.g. Curley et al., 2011; Soubry, 2015; lllum et al., 2018 for
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review), the evolutionary reason for the existence of paternal effects is less
clear. Here below, | discuss four non-mutually exclusive hypotheses that may
serve as possible explanations for the transfer of non-genetic information from

the father to the offspring.

Paternal effects are non-adaptive

The transfer of non-genetic factors through sperm could be non-adaptive
noise caused by physiological processes affecting the epigenetic mechanisms
in the male germline in response to changing environmental conditions
experienced by the father. Many of the experimental manipulations used to
study paternal effects involve a change in the stress level experienced by the
male for a defined period during life. Stress generally evokes strong
physiological responses, which may negatively affect the germline and with
that male reproduction (McGrady, 2009). These negative effects may include
an increase in the production of reactive oxygen species (Dickinson and
Chang, 2011) and elevated activity of repetitive elements (Capy et al., 2000),
both of which jeopardise the integrity of the genome and may increase
mutation rates (Maklakov and Immler, 2016). Defense mechanisms of the
genome against such mutagenic factors include DNA methylation, chromatin
modifications and the production of small RNAs (sRNAs) including Piwi
interacting (piRNAs) and microRNAs (miRNAs; Bartel, 2004; Klattenhof and
Theurkauf, 2008; Siomi et al., 2011; Ernst et al., 2017). All three factors are
known to be involved in mediating the possible effects of selfish genetic
elements at the translational and post-translational levels. As a result, relevant

epigenetic marks produced in protection of the germline genome may end up
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in the mature gametes as relicts by chance rather than for adaptive reasons.
At this stage, the non-adaptive hypothesis needs careful testing before we

can exclude it with certainty.

Paternal effects as an adaptive response to increase offspring fitness

The transfer of information about the environmental conditions encountered
by the parents to their offspring may be beneficial and provide an adaptive
advantage to the offspring (Bonduriansky and Day, 2009; Turner, 2009). A
mechanism that allows for such a transfer of information without modifying the
genome may offer a flexible solution particularly in rapidly changing
environments. A recent theoretical study described a positive feedback
process where the parental phenotype favoured by environmental conditions
gets progressively reinforced in the following generations through a learning
mechanism (Xue and Leibler, 2016). Empirical evidence for such dynamics
have been reported in C. elegans where small RNAs have been shown to be
inherited for several generations without further additional stimulation with the
help of RNA-dependent RNA polymerases (Rechavi et al., 2011; Ashe et al.,
2012; Gu et al., 2012; Rechavi et al., 2014). A recent study in C. elegans
provided direct evidence for such a feedback loop determining the duration of
transgenerational inheritance of small RNAs (Houri-Ze'evi et al., 2016).
Similarly, the ability of prions to assume a self-templating fold mechanism
(Harvey et al., 2018) suggests that these have the potential to maintain
themselves in a self-regulating manner over many generations. Such
genome-independent systems could be a way to memorise past conditions

and transfer relevant information across generations for swift adjustments to



135

140

145

150

155

slow or rapid environmental changes despite the rigidity of the underlying

genome.

Paternal effects to mediate sexual conflict

The inheritance of a paternal and a maternal genome creates a conflict
between males and females over allele expression at heterozygous loci in the
offspring (Arnqvist and Rowe, 2005). Epigenetic factors may further contribute
to this conflict if they are inherited at an equal rate from both parents, but they
may also offer a mechanism to resolve the conflict. Genomic imprinting is an
epigenetic mechanism, which determines expression of an allele according to
its parental origin (Reik and Walter, 2001). The three main theories proposed
for the evolution of genomic imprinting are the kinship theory (Haig, 2000), the
sexual antagonism theory (Day and Bonduriansky, 2004; Bonduriansky, 2007)
and the maternal-offspring co-adaptation theory (Wolf and Hager, 2006; Wolf
and Hager, 2009, all reviewed in Patten et al., 2014). The question at the
heart of all three theories is the conflict between the parents over gene
expression in their offspring at heterozygous loci. The aspect that varies
between the theories is the nature of the involved parties (parent-offspring,

male-female or all of them together etc.) and of the resolving mechanism.

Similar to the hypothesis presented for sexual conflict, other genetic conflicts
have been proposed as a possible explanation for sperm carrying RNAs
(Holman and Price, 2014; Hosken and Hodgson, 2014). These authors
suggested that RNAs mediate potential genomic conflicts not only between

males and females but also between the diploid male and its haploid sperm,
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and among the different sperm within an ejaculate. Given the shear variation
of RNAs present within each sperm they possibly cover several of these

functions.

Paternal effects to control selfish genetic elements

The genomic conflict arising between the genome and selfish genetic
elements may provide another explanation for the evolution of
transgenerational epigenetic mechanisms (Holman and Price, 2014). The
transfer of defense mechanisms against the detrimental effects of stressful
environments from the male germline to the zygote would allow the protection
of the zygotic genome during the sensitive stages of early development. The
findings of variation in small RNA profiles, methylation patterns and chromatin
structure in response to environmental stressors in sperm and the resulting
offspring appear to be in line with this idea. However, we still know relatively
little about the association between transposable elements (TEs) and
epigenetic marks and mechanisms. A recent study in Arabidopsis thaliana
showed that changes in methylation patterns and increased levels of gene
expression were directly associated with de novo insertions of TEs in the
immediate vicinity of affected genes (Stuart et al., 2016). Whether similar
associations exist in the male germline and/or in the zygote is currently not

known.

Epigenetic factors and RNAs in the sperm may also derive from segregation
distorting alleles that involve the incapacitation/killing of sperm or zygotes

carrying alternative alleles (Holman and Price, 2014). This suggestion is
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purely hypothetical and needs careful testing. But if such a mechanism exists,
it would potentially affect male fertility. An association between male fertility
and certain RNAs has been shown in humans but the mechanisms involved

are unknown (Jodar et al., 2012).

The hypotheses outlined above for the evolution of genetic imprinting and the
role of RNAs as signals among different units may apply to any epigenetic
factor transmitted via sperm. Males can undoubtedly benefit from transmitting
more than just a genome in their gametes, and the idea that these
mechanisms are adaptive is enticing. Testing the non-adaptive alternative is
therefore even more important and necessary. It will be exciting to examine
the different hypotheses and understand more about the evolutionary
dynamics involved. This should be increasingly possible with the steadily

improving methods available in genomics, transcriptomics and proteomics.

Which non-genetic components does a sperm transfer to the zygote?
Beside the nuclear genome, sperm are known to contain a range of
epigenetic elements, which are transferred into the zygote upon fertilisation,
including chromatin modifications, RNAs and proteins (reviewed in Dadoune,
2009; Carrell, 2012; Casas and Vavouri, 2014; Rando, 2016; Figure 1). Here
below, | provide a brief overview of the currently known factors and present
examples for the ways these factors might affect processes in the zygote and
beyond. | am using the term “epigenetics” in a broad sense and follow
Henikoff and Greally’s (2016) definition, where any cellular memory not

encoded in the genetic code is included. Genome-carrying cell organelles
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such as mitochondria are therefore not included even though these may be
inherited through sperm in rare occasions in some organisms, such as insects
(Wolff et al., 2012), mammals (Zhao et al., 2004) and birds (Alexander et al.,
2015) and regularly in others such as mussels (Sutherland et al., 1998;
Zouros, 2000). Even with this relatively restricted definition of the term
epigenetic, condition dependent transgenerational effects may be harder to
identify than assumed, and some of the aspects that may need further
investigation are described in the section Current challenges and future

directions below.

DNA methylation/acetylation

DNA methylation is probably the most studied epigenetic mark and is
assumed to play a major role in the transfer of non-genetic information across
generations. DNA methylation in combination with histone modifications (see
section below) plays a key role in regulating gene expression in the germ cells
and thereby contributes to three key processes: (I) the specification and
formation of primordial germ cells, (lI) the genome-wide erasure and re-
establishment of germline-specific patterns in the embryo and sex-specific
patterns during gametogenesis and (lll) the establishment of sex-specific
patterns typical for mature male and female gametes (reviewed in Allegrucci
et al., 2005). Given their key role in governing gene expression throughout
development, it is not surprising that paternal condition affects methylation
patterns in the offspring. Fathers kept on a high fat diet in Sprague-Dawley
rats for example sired daughters with impaired insulin secretion and glucose

tolerance. Their female offspring exhibited altered expression in 642

10
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pancreatic islet genes with some of the key genes being hypomethylated (Ng
et al., 2010). More generally, environmental changes during early
developmental stages seem to have a major impact on germline methylation

patterns (see Faulk and Dolinoy, 2011 for review).

The molecular mechanism is based on the binding of a methyl/acetyl group to
a DNA molecule, which may affect the transcriptional activity of the underlying
gene without changing the genetic code. The percentage of methylation
inherited from the father through sperm varies markedly across taxa and may
range from fully maternally inherited to largely paternally inherited patterns. In
house mice Mus musculus (and other mammals), the methylation structure in
the developing zygote is re-structured during early embryogenesis following
the maternal template and paternal marks are mostly removed (see Daxinger
and Whitelaw, 2012 for review). In contrast, in zebrafish Danio rerio, the
paternal methylation pattern forms the template and the maternal methylation
pattern is largely restructured according to the information coming from the
father (Potok et al., 2013; Jiang et al., 2013). These taxonomic differences in
methylation inheritance are currently not explained and possible evolutionary

reasons need to be tested.

RNA families

Sperm contain many families of RNAs, which may be transferred into the
zygote during fertilisation and may therefore affect processes involved during
early embryogenesis (Dadoune, 2009). These RNA families include

messenger RNAs (mRNA; Alcivar et al., 1989; Ostermeier et al., 2002; Yang

11
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et al., 2009; Bonache et al., 2012), micro RNAs (miRNAs; e.g. Krawetz et al.,
2011), Piwi interacting RNAs (piRNAs; e.g. Krawetz et al., 2011), transfer
RNA derived small RNAs (tRNAs; e.g. Peng et al., 2012) and a number of
other to date un-specified RNA families. mMRNAs are a large group of different
molecules that are the direct result of gene transcription and are therefore
also known as “coding” RNAs. The mRNA content in sperm is relatively low
compared to any other cell type, and their origin (i.e. pre- versus postmeiotic)

and role need further investigation.

The three remaining families (i.e. miRNAs, piRNAs and tRNAs) belong to the
group of “small non-coding” RNAs (sRNAs) as they are transcribed from non-
coding regions of the genome, and for many, their origin and function is still
unknown. miRNAs are short (about 22-nucleotides) molecules that are
involved in RNA silencing and regulation of gene expression at the
transcriptional and post-transcriptional stages (Bartel, 2004). They may
mediate the activity of selfish genetic elements by triggering small interfering
RNAs (siRNAs) in a highly specialised and pathway specific manner (Creasey
et al., 2014). Similarly, piRNAS (21-32 nucleotides) in the germline are
involved in the silencing of selfish DNA elements and the maintenance of
DNA integrity through the formation of RNA-protein complexes that act at the
transcriptional and post-transcriptional levels (Klattenhof and Theurkauf,
2008; Siomi et al., 2011; Ernst et al., 2017). However, the exact mechanisms
and origins of piRNAs are currently elusive. tRNAs (sometimes also referred
to as tsRNAs) may vary in length (from 20 nucleotides into the range of

piRNAs) and have been assumed to be the result of transmitter RNA

12
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degradation until they were clearly identified as a distinct group of small non-
coding RNAs (Lee et al., 2009). Observations in house mice M. musculus
suggested that in testicular sperm, the tRNA content is low but increases with
maturation through the fusion with epidydosomes (Sharma et al., 2016). The
same study also reported that the function of these tRNAs is to repress genes
associated with the selfish element MERVL active in preimplantation

embryos.

The total amount of RNA molecules transferred through sperm is vanishingly
small compared to the RNAs present in the egg. Nevertheless, several
families of RNAs have been reported to be involved in non-genetic inheritance
of paternal conditions across generations. miRNAs and piRNAS were
differentially expressed in the sperm of male house mice M. musculus
exposed to traumatic stress during the juvenile life stage compared to sperm
of control male mice (Gapp 2014). The injection of these differentially
expressed RNAs into early zygotes lead to similar offspring phenotypes as
those observed in the experiments using traumatised males as fathers.
Furthermore, miRNAs were involved in the transmission of chronic stress
responses experimentally evoked in adult male mice to their offspring
(Rodgers et al., 2013). The precise role of tRNAs needs further investigation
but they seem to affect gene expression during early embryo development

(Sharma et al., 2016).

Proteins

13
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Sperm are composed of a wide range of proteins located on the sperm
surface, in the acrosome (where present), in and around the nucleus and
even in the flagellum. The sperm proteosome as a whole has been analysed
with respect to human infertility and 20 proteins have been identified to be
associated with fertility issues (Lefievre et al., 2003; Pixton et al., 2004; Rawe
et al., 2008). A similar study in the house mouse M. musculus shortlisted 132
proteins that may affect fertility, some of which seem to be evolutionarily
preserved across taxonomic groups (Chu et al., 2006). These findings

suggest a potential major role for proteins in transgenerational epigenetics.

In fact, in non-rodent mammalian fertilisation, the centriole-centrosome is
inherited through the sperm and acts as a template for all subsequent cell
divisions from early embryogenesis into adulthood. Any malformations of this
complex result in severe infertility due to disruption or insufficiency during
mitotic divisions and may hence cause developmental problems anywhere
from interrupting the first mitotic divisions to causing embryonic malformations
(Schatten and Sun, 2013). The centriole-centrosome complex likely varies in
its shape and therefore function also among fertile males, and these more
subtle variations may contribute to the fithess and performance of the

offspring in the next generation.

In a recent review, Harvey et al. (2018) proposed that prions are ideal
candidates for non-genetic transgenerational inheritance due to their
conformational flexibility and their ability to transform into self-templating folds,

which allows them to proliferate independently even across generations.

14



Prions are considerably more stable during meiotic processes compared to
335 other epigenetic factors experiencing major re-structuring (Cox, 1965; Young

and Cox, 1971). The independence and stability of prions may imply that

protein-based transgenerational inheritance could be important but the idea

needs careful testing.

340  Histone modifications
Although histone modifications could be regarded as part of the sperm
proteome, | discuss them separately as they have received a lot of attention in
the context of trans-generational epigenetics. Modifications of the histones are
assumed to affect gene expression and therefore may play a key role in gene

345 regulation (e.g. Kouzarides, 2007). Gene regulation is particularly important
during the early stages of development and any marks inherited from the
father may contribute to embryonic gene expression — with potential effects
later on in life. In mammalian sperm, 90 (in humans) to 95% (in house mice)
of histones are replaced by protamines during spermatogenesis, and the

350 remaining histones may undergo post-translational modifications affecting
gene expression at these loci (Luense et al., 2016). These post-translational
modifications may regulate gene expression during spermatogenesis and
during early embryo development (Brykczynska et al., 2010; Hammoud et al.,
2011; Erkek et al., 2013; Brunner et al., 2014). In human sperm, histone

355 modifications appear to be particularly enriched around developmental loci.
Dimethylated lysine 4 on histone H3 (H3K4me2) for example, is found at
promoter loci, whereas H3K4me3 is found in large clusters of paternally

expressed imprinted genes, miRNAs and HOX genes (Hammoud et al.,

15
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2009). These patterns also seem to hold for the zebrafish Danio rerio, where
sperm retain the histones and lack protamines altogether, but chromatin
markers such as permissive H3K4me3 with or without repressive H3K9me3 or
H3K27me3 are associated with developmental loci (Lindeman et al., 2011). A
study manipulating the dietary conditions in male house mice observed
differential gene expression in the next generation and found a consistent
decrease in H3K27me3 at the promoter of monoamine oxidase in sperm of

low-protein diet males compared to control males (Carone et al., 2010).

Current challenges and future directions

The study of paternal epigenetic effects inherited across generations is still in
its early days and many fundamental questions are currently unanswered.
The many unfilled gaps and fundamental unknowns put limitations to our
ability to summarise the relative importance, prevalence, and/or impact of
each of the factors discussed. It may be worth identifying some of the key

aspects that we should focus on in the near future.

The term “sperm factor” may be somewhat misleading in being an
oversimplification of what is clearly a varied set of highly complex factors. One
of the questions is therefore: How are the different mechanisms linked?
Understanding whether the different epigenetic components act
independently, complementarily, additively, or interactively and how these
interactions and the resulting effects may be context-dependent are some of
the challenges we are currently facing. The interaction between some of the

factors such as the tight linkage between DNA methylation and histone

16
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modifications for the regulation of gene expression during proliferation and
differentiation of the germline is relatively well understood. In contrast, other
factors are still largely a black box (piRNAs), and many have not even been
properly identified yet (other small RNAs). Carefully designed experiments
combined with the latest —omics technology may be a valuable way to gain

insights into what are clearly highly complex processes.

Another currently open question is whether the non-genetic transfer of
information in sperm is truly “non-genetic” or whether there is a causal
connection between the non-genetic information and the underlying genome.
Non-genetic factors may fall into one of three possible categories: (1)
independent of sequence variation, (ll) partially dependent on sequence
variation, and (lll) completely dependent on sequence variation (based on
epiallelic variation as proposed by Richards, 2006). An additional aspect that
needs to be considered is whether the transfer of information is based (A)
purely on transmitted genes or (B) on a combination of transmitted genes and
non-genetic material. In case lll, all the observed variation should be
explained by focusing exclusively on sequence variation and the distinction
between scenario A and B is not necessary. However, in cases | and I,
sequence variation will not explain everything as non-genetic material may be
generated independently and add variation through non-genetic mutations
occurring between transcription events. Performing experimental
manipulations of paternally experienced environmental conditions in

combination with long-read DNA sequencing, RNA sequencing of different

17
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RNA families, ChIP sequencing and bisulfite sequencing is not an easy but a

promising way forward to answer these questions.

The importance of the relative timing and duration of changes in
environmental conditions experienced by a male to affect the following
generation(s) is still poorly understood. In mammals (and probably most other
taxa), early embryo development is a particularly sensitive period and
methylation patterns and histone modifications are strongly affected by
environmental conditions during this time (reviewed in Faulk and Dolinoy,
2011). However, effects across generations have also been shown in studies
where males were exposed to stressful environments as juveniles before
sexual maturity (e.g. Gapp et al., 2014), during adulthood (e.g. Carone et al.,
2010) or both (e.g. Rodgers et al., 2013). It would be interesting to
understand, which epigenetic factors are mostly affected by environmental
conditions in the male germline during each of these life stages and how

strong the observed transgenerational effects are relative to each other.

Of particular relevance for the fields of ecology and evolution is the question
about the stability of epigenetic alterations. While some epigenetic marks are
stable and conserved even across taxa (Provataris et al., 2018 ), others are
seemingly more apt to change. Having said that, even sRNAs can be
transferred across many generations without further stimulation in a self-
regulating process (Rechavi et al., 2014) suggesting that such systems may

provide a reliable way to memorise environmental conditions. Understanding

18
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the flexibility and stability of epigenetic mechanisms is important to fully

assess their relative contribution to inheritance.

Finally, ejaculates generally consist of more than just sperm, and we know
that the content of seminal fluids may have severe effects on female fitness
(Chapman et al., 1995; Wolfner, 2002), and also on their offspring (Chapman
et al., 2001; Crean et al., 2014, Crean et al., 2016). Controlling for such
effects and disentangling factors carried by sperm from factors in the seminal

fluid will be imperative when studying the various mechanisms.

In summary, non-genetic factors transferred through the sperm into the zygote
are very likely to affect the resulting generation(s) and this in itself is a very
important insight. We now need to understand, which mechanisms contribute
to this transfer of information and how and what the true purpose of non-
genetic information transferred in sperm across generations is. With a great
range of novel tools becoming available and increasingly affordable we should

be able to address these important questions.
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Figure 1: [llustration of non-genetic components transferred via sperm from the
father to the offspring and their putative effects in the offspring. The description
755  of the effects is very general as many of them are currently still poorly

understood.

760

28



Figure 1

Sperm factors

RNAs
Proteins Gene regulation,
Cell divisions, other effects? TE activity

DNA methylation

Histone modifications Gene regulation, TE activity

Gene regulation, TE activity



