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ABSTRACT

Small RNAs (sRNAs) are short, non-coding RNAs
that play critical roles in many important biological
pathways. They suppress the translation of messen-
ger RNAs (mRNAs) by directing the RNA-induced si-
lencing complex to their sequence-specific mRNA
target(s). In plants, this typically results in mRNA
cleavage and subsequent degradation of the mRNA.
The resulting mRNA fragments, or degradome, pro-
vide evidence for these interactions, and thus de-
gradome analysis has become an important tool for
sRNA target prediction. Even so, with the continuing
advances in sequencing technologies, not only are
larger and more complex genomes being sequenced,
but also degradome and associated datasets are
growing both in number and read count. As a result,
existing degradome analysis tools are unable to pro-
cess the volume of data being produced without im-
posing huge resource and time requirements. More-
over, these tools use stringent, non-configurable tar-
geting rules, which reduces their flexibility. Here, we
present a new and user configurable software tool for
degradome analysis, which employs a novel search
algorithm and sequence encoding technique to re-
duce the search space during analysis. The tool sig-
nificantly reduces the time and resources required
to perform degradome analysis, in some cases pro-
viding more than two orders of magnitude speed-up
over current methods.

INTRODUCTION

Small RNAs (sRNAs) are short, non-coding RNAs that are
vital components of gene regulation acting through endoge-
nous RNA silencing pathways. They regulate many impor-
tant and diverse biological pathways such as growth and de-

velopment, disease resistance, and stress response (1,2). To
do this, they suppress the translation of messenger RNAs
(mRNAs) by directing the RNA-induced silencing com-
plex (RISC) to its sequence-specific mRNA target(s). They
can be classified into several classes such as microRNA
(miRNA) and short interfering RNA (siRNA), differenti-
ated by both biogenesis and mode of action (3). In plants, a
high degree of complementarity between the sRNA and its
mRNA target typically results in the endonucleolytic cleav-
age and subsequent degradation of the targeted mRNA (4).

An important step in understanding the biological func-
tion of a sRNA is to identify and validate its targets. Most
computational tools for plant (and animal) sRNA target
prediction use techniques that search for complementarity
between a sRNA sequence and a potential target-sequence
(5). These types of prediction use stringent, position based
targeting rules that tend to report a high number of predic-
tions and offer little flexibility. Whilst these results will al-
most certainly contain genuine targets, many of the predic-
tions may be false positives (5). Therefore, the predicted tar-
gets must undergo further experimental validation through
low-throughput techniques such as 5′ rapid amplification of
cDNA ends (RACE) (6).

In the last few years, three high-throughput sequenc-
ing techniques (parallel analysis of RNA ends (PARE) (7),
genome-wide mapping of uncapped and cleaved transcripts
(GMUCT) (8) and degradome sequencing (9)) have become
a high-throughput alternative for identifying sRNA medi-
ated cleavage products on a genome-wide scale. They cap-
ture the uncapped 5′ ends of cleaved mRNA sequences giv-
ing a snapshot of the mRNA degradation profile, often
termed the degradome. The cleaved mRNA fragments can
then be aligned back to the reference transcript and used as
evidence for sRNA mediated cleavage.

CleaveLand (10) was the first tool to use this approach for
analysing degradome data. It has been used to successfully
identify sRNA targets in a number of plant species (11–14)
using a mismatch-based scoring scheme inferred from a set
of experimentally validated miRNA-target interactions in
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Arabidopsis thaliana (15). Subsequently, Sequencing-based
sRNA Target Prediction (SeqTar) (16) was developed in an
attempt to loosen the stringent targeting rules implemented
within CleaveLand. These rules, such as restrictions on the
number of mismatches allowed within a sRNA–mRNA du-
plex and strictly not allowing a mismatch or G:U wobble
pair at position 10 or 11, may result in CleaveLand discard-
ing genuine interactions. SeqTar was shown to have higher
accuracy than CleaveLand when using a less stringent set of
targeting rules (16), but it is not publicly available to down-
load or use.

Both CleaveLand and SeqTar suffer from the same re-
strictions due to their underlying algorithms. In particular,
they are only able to perform an analysis on a small set of in-
put sequences, such as known miRNAs, or a limited number
of candidate sRNAs, without considerable time constraints.
This led to the development of PAREsnip (17), which is an
accelerated approach to degradome analysis that is able to
process entire sRNA datasets within a feasible time frame
on a typical desktop computer. Since its release, PAREs-
nip has been successfully used for genome-wide analysis
on a number of different plant species (18–20). However,
PAREsnip implements the same stringent targeting rules
as CleaveLand and relies on complementarity at position
10 and 11 of the sRNA for its speed. Furthermore, based
on our computational benchmarking, PAREsnip requires a
considerable amount of computational resources when per-
forming analysis on larger sequencing datasets.

Small RNA-PARE Target Analyzer (sPARTA) (21) is the
most recent tool for degradome analysis. Unlike Cleave-
Land and PAREsnip, it does not assume a positive corre-
lation between complementarity in the canonical seed re-
gion (2–13 nt from the 5′ end of the miRNA) and probabil-
ity of actual cleavage. It offers the user two scoring schemes
during the target prediction process: standard and seed free.
The first is based on the analysis of experimentally validated
targets and the complementarity rules based on the seed re-
gion (22). The second, which is also the default scoring sys-
tem, allows for more flexibility within the seed region of the
sRNA-target duplex and is based on genuine miRNA target
interactions that differ from the canonical targeting rules
(16,23). Whilst sPARTA offers more flexibility when search-
ing for targets, based on our computational benchmarking,
it suffers from the same time restrictions as CleaveLand and
has high computational resource requirements.

Recent advances in high throughput sequencing tech-
nologies has resulted in larger, more complex genomes be-
ing sequenced such as Pinus taeda (24) or Triticum aestivum
(25), both being many times larger than that of popular
model organisms. Moreover, not only are larger genomes
being sequenced, but degradome and sequencing datasets
in general are growing ever larger in size and read count,
with a typical sequencing experiment now containing mil-
lions of distinct reads in a single sample. In addition, the
need for multiple samples and replicates is becoming the de-
facto standard for biological experiments, further adding to
this sequence-data deluge.

All of the tools for degradome analysis mentioned above
are unable to process the volume of data currently being
produced without imposing considerable time and resource
constraints. In addition, the accuracy of these tools is pri-

marily determined by the targeting rules that they apply and
each tool uses a different set of fixed rules, which reduces
their flexibility. Indeed, the rules currently implemented by
the tools are inferred from the analysis of experimentally
validated miRNA targets in A. thaliana. This was first per-
formed on 94 validated miRNA-target duplexes by Allen
et al. (15) and then, through a similar approach, on a larger
set of 155 validated target duplexes by Fahlgren and Car-
rington (22). As our understanding of miRNA targeting im-
proves, these rules may change, and so current tools risk be-
coming obsolete.

In this paper, we introduce a novel degradome analysis
method and software tool, which we call PAREsnip2, that
is scalable with current sequencing datasets. As we shall
see, PAREsnip2 has greater predictive power than previ-
ous tools and also provides a vast reduction in computation
time and resource requirement. Additionally, PAREsnip2
enables users to perform degradome analysis using config-
urable targeting rules. We shall illustrate the tool’s use by
analysing recently sequenced A. thaliana datasets. Although
PAREsnip2 uses a different approach, we give it this name
since it is freely available in the UEA sRNA Workbench (26)
where its predecessor, PAREsnip (17), is also implemented.

MATERIALS AND METHODS

The PAREsnip2 algorithm is split into three main stages.
The first stage is the input of the sequencing data and target-
ing rules, the second is the pre-processing steps (developed
to improve the speed and efficiency of an analysis), and the
third is the prediction of sRNA targets. A visual overview
of the steps involved in performing an analysis on the input
data is shown in Figure 1A. We now explain each stage of
the algorithm in more detail.

Data input

To perform an analysis using PAREsnip2 for a specific or-
ganism, the user must input the following data:

• a reference file (transcriptome) in either FASTA format
or Generic Feature Format version 3 (GFF3) with corre-
sponding genome;

• a genome file (optional unless using GFF3 as reference);
• one or more sRNA library replicates;
• one or more degradome library replicates

A reference file and at least one sRNA and degradome
library are required to perform an analysis. If the user
chooses to use a GFF3 file as a reference then a correspond-
ing genome must also be provided. When extracting the
gene sequences from the genome using a GFF3, the user
has the option to include or exclude untranslated regions
(UTRs).

The sRNA and degradome libraries must be in redundant
FASTA format with the adapters trimmed.

Sequence filtering

Several optional filtering techniques can be applied to the
input data to remove low quality reads, sequencing errors
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Figure 1. An overview of different stages of the PAREsnip2 algorithm. (A) Shows the inputs and processing steps performed to predict sRNA targets
evidenced through degradome sequencing. (B) Shows the process of encoding sequence data into a number system. (C) Visual representation of the three-
stage candidate filtering process. Regions are labelled R and target regions are labelled TR.

or sample contamination. First, any sequence containing
ambiguous bases are discarded, as they cannot be accu-
rately aligned. Second, a low complexity sequence filter is
applied based on the sequence single, di- or tri-nucleotide
composition. This works by discarding any sequences that
contain more than 75%, 37.5% and 25% of a single, di- or
tri-nucleotide composition, respectively. Third, we provide
the functionality to filter sequences using conservation over
multiple samples where sequences will only be considered if
they are present within each sample. Finally, when a genome
is provided, sRNA sequences can be aligned to the genome
using PatMan (27), with any sequences that do not align
being discarded.

Binary encoding of sequence input

A core component of the PAREsnip2 algorithm is the en-
coding of sequence data into a number system (Figure 1B).
Given that a sequence is composed of four nucleotide bases
(A, C, G, T/U), it is possible to represent each nucleotide
using two bits of computer memory (Table 1), known as
the base 2, or binary representation, of a nucleotide. We
represent a whole sequence as a single decimal number by
concatenating the binary representations of each nucleotide
and converting the binary representation into decimal. We
use this encoding technique to reduce the memory footprint
of storing sequence data in memory and to speed up analy-
sis. Furthermore, sRNA and mRNA sequences have an in-
verse encoding (Table 1), such that if a sRNA and mRNA
sequence are represented by the same number then they will
be perfectly complementary.

Table 1. The 2-bit binary encoding of nucleotides within sequence data

Nucleotide base sRNA Encoding mRNA Encoding

A 0 0 1 1
C 0 1 1 0
T/U 1 1 0 0
G 1 0 0 1

Target candidate generation

To search for potential sRNA targets, we first generate a set
of potential target-sequence candidates from the input data.
The alignment of the degradome fragments to the refer-
ence gene sequences can inform us of potential sRNA cleav-
age events, with higher abundance fragments at a specific
position more likely to be true cleavage signals. We devel-
oped a novel technique for exact match sequence alignment
that uses the sequence encoding described above. First, de-
gradome sequences are read from file, encoded as a number,
and stored into a list. Once all the reads have been encoded
and stored, the list is sorted into ascending order. Next, we
split the reference sequences into subsequences using a slid-
ing window and encode each of these into a decimal num-
ber. The size of the sliding window and the number of ex-
tracted subsequences are dependent on the accepted size
range of the degradome reads. We then search the sorted
list of encoded degradome fragments for the encoded refer-
ence subsequence using a binary search. If the number rep-
resenting an encoded subsequence is found, an exact match
has been identified at that position and is recorded. Once
each reference sequence has been searched, the aligned de-
gradome fragments are further processed to generate the
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set of target-sequence candidates. From the alignment posi-
tion, we take 16nt towards both the 5′ and 3′ ends, resulting
in a 32nt mRNA target-sequence candidate.

The newly generated target-sequence candidates are then
sorted into one of five categories based on those previously
defined in CleaveLand (V4) (10) with a minor modification.
In our modification, we do not consider those fragments
with an abundance of 1 during the average coverage calcu-
lation. This helps us to distinguish true lower abundance
peaks from background degradation upon the transcript.
An overview of the category system is provided below:

• Category-0 peaks are those that have greater than one
read and are the maximum on the transcript when there
is only one maximum;

• Category-1 peaks are those that have greater than one
read and are the maximum on the transcript, but there
is more than one maximum;

• Category-2 peaks are those that have greater than 1 read
and are above the average fragment abundance on the
transcript;

• Category-3 peaks are those that have greater than 1 read
and are below or equal to the average fragment abun-
dance on the transcript;

• Category-4 peaks are those that have just one read at that
position on the transcript

Region extraction and candidate grouping

Three regions of length 7nt (7mer) are extracted from
both the input sRNA sequences and the generated target-
sequence candidates. These are named region R1, R2 and
R3 for the sRNA and target region TR1, TR2 and TR3
for the target-sequence. The position of the extracted target-
sequence regions are based on a potential cleavage position
i.e. where the sRNA would align if there were no gaps or
bulges within the duplex (Figure 1Bi). The extracted region
sequences are then encoded into their decimal number for-
mat and stored for later use. Finally, the generated target-
sequence candidates are grouped together using the decimal
representation of their TR2 sequence such that any candi-
dates sharing the same 7mer at their TR2 will be grouped
together.

Predefined and user configurable targeting rules

Since the discovery of miRNAs and their regulatory role
in plants, there has been much discussion on the rules
that should be used when predicting plant miRNA targets
(15,21–23,28–31). To the best of our knowledge, there are
two generally accepted targeting rules for plant miRNAs.
These rules are implemented within a position dependent
scoring system based on the number of mismatches, G:U
wobbles and target-bulged bases within the duplex. The first
of these were inferred by Allen et al. in 2005 (15) and the
second, through a similar approach with a larger set of val-
idated targets, by Fahlgren and Carrington in 2010 (22).
During a PAREsnip2 analysis, the user can choose between
two sets of default targeting rules, either the Allen et al.
(15) rules or the Fahlgren and Carrington (22) rules. The
difference between them is that the Fahlgren and Carring-
ton rules permit a mismatch or G:U wobble at position 10

Table 2. Features within a sRNA–mRNA alignment which are used dur-
ing the duplex alignment process and can be configured by the user

Configurable Search Parameters

Maximum score Maximum adjacent mismatches
Maximum G/U Wobble Pairs Maximum Mismatches
Mismatch Score G/U Wobble Score
Gap Score Permissible Mismatch Positions
Core Region Start Position Core Region End Position
Maximum Mismatches Core
Region

Maximum Adjacent Mismatches
Core Region

Allow Mismatch Position 10 Position 10 Mismatch Score
Allow Mismatch Position 11 Position 11 Mismatch Score
Core Region Multiplier Non-permissible Mismatch

Positions
Max Gaps Allowed G/U Wobble Counts as Mismatch

or 11 of the sRNA. However, these rules are based on a
small set of experimentally validated miRNA targets and as
more miRNA targets are experimentally validated, our un-
derstanding of these targeting rules may change. To address
this, we offer the ability to search for potential targets based
on a user configurable rule set. The rules that can be con-
figured by the user and used during the search for potential
targets are shown in Table 2.

Computing valid region alignment matrices

As discussed previously, we can represent biological se-
quences using decimal numbers. 7mers that are comprised
of a four-letter alphabet (A, C, G and T/U), where each nu-
cleotide is encoded using 2 bits of computer memory, are
represented by a decimal number between 0 and 16383. For
each of the three regions, we create a 16384 × 16384 ma-
trix that represents all possible combinations of alignments
between 7mers. Within these matrices, row numbers repre-
sent encoded sRNA 7mers and column numbers represent
encoded mRNA 7mers. The matrices are then populated by
attempting to align the decoded sRNA and mRNA 7mers
using the user’s chosen set of targeting rules. If a valid align-
ment is found within the matrix, we set that position to true
otherwise it is set to false. This is repeated for every possible
combination of alignments between 7mers for each of the
three regions.

Three-stage candidate filtering

We developed a three-stage candidate filtering technique to
reduce the search space and therefore the computation time
required to perform an analysis. When searching for de-
gradome peaks potentially resultant of sRNA mediated en-
donucleolytic cleavage, we use the valid region alignment
matrices to discard candidates that do not fit the chosen
targeting rules (Figure 1C). In the first stage of this tech-
nique, we consider only those target-sequence candidates
where their TR2 7mer can successfully align to the R2 7mer
of the sRNA. This is done by looking at the encoded sRNA
R2 7mer row in the R2 valid region alignment table and tak-
ing all target-sequence candidates grouped on the columns
set to true on that row.

In the second and third stages, we discard any target-
sequence candidates where their TR1 or TR3 regions do not
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successfully align to the R1 or R3 regions of the sRNA. This
is performed by first looking at the cell (R1base10, TR1base10)
in the R1 valid region alignment matrix to see if it is set to
true and if so, we do the same for the R3 and TR3 region,
discarding any candidates if the cell values are set to false.

Target search and results filtering

Any target-sequence candidate that passes all stages of
the three-stage candidate filtering process is aligned to the
sRNA sequence using our duplex alignment algorithm em-
ploying the chosen targeting rules. When attempting to
align a sRNA to a potential target-sequence candidate, the
search process starts at the cleavage site and then traverses
towards the 5′ end of the sRNA and at each position per-
forms a nucleotide comparison between the two sequences.
If the alignment towards the 5′ end is successful, it then
performs the same process towards the 3′ end. If there is
a mismatch, it will attempt to insert a gap and continue the
alignment. If at any point one of the user’s selected rules
are broken then the alignment is discarded. This process
will find all valid alignments based on the chosen targeting
rules and the best possible alignment is selected. We first
attempt to select the alignment that has the lowest align-
ment score and if there are multiple valid alignments with
this score, the alignment with the fewest gaps is reported.
If there are multiple alignments with the same number of
gaps, the alignment with the fewest number of mismatches
and G:U wobble pairs is reported.

Once a potential target has been identified, two optional
filtering processes can be performed to improve the confi-
dence level of each prediction. The first is the application of
a minimum free energy (MFE) ratio filter and the second
is a P-value filter. The MFE is calculated using RNAplex
(32,33) which was shown to score favourably for sensitivity
and precision when compared to other similar methods in a
recent benchmarking of performance (34). The MFE ratio
is calculated by dividing the predicted target duplex MFE
by the MFE of a perfectly complementary target site. Any
predicted target site that has a MFE ratio less than a given
cut-off is discarded. The default cut-off ratio is 0.7, as sug-
gested by Allen et al. (15), but can be configured by the user.
The second optional filtering process uses the binomial dis-
tribution P-value system implemented within CleaveLand
V4 (10) but with the modification that the probability is cal-
culated on a transcript by transcript basis.

Implementation and output

The algorithm has been implemented using the Java pro-
gramming language and a user-friendly, cross-platform
software package has been incorporated into the UEA
sRNA Workbench (26). Analysis can be performed
through the graphical user interface (GUI) or through the
command-line interface (CLI) allowing PAREsnip2 to be
used in other bioinformatics pipelines or workflows.

The results of PAREsnip2 are provided in comma-
separated value (CSV) format, allowing them to be viewed
in any CSV file viewer. They include information about the
transcript peak such as cleavage position, abundance and

weighted-abundance at the cleavage site, and the category
of the peak on the transcript. A visual representation of the
sRNA–mRNA duplex is displayed along with its alignment
score. The sequence read abundance for small RNA and de-
gradome data are provided in both raw and normalized val-
ues so that sequencing libraries can be compared.

Degradome library construction

Three A. thaliana degradome replicates were constructed
using wild type Columbia (Col-0) plants grown at 22◦C with
16 h light and tissue was harvested when plants were at
growth stage 5, as defined by Boyes et al. (35). For each
replica, RNA was isolated from a pool of all leaves taken
from nine plants with TRI reagent following manufacturer’s
instructions. This RNA was then used to construct de-
gradome libraries following Zhai et al. protocol (36), with
the only difference being that SuperScript II reverse tran-
scriptase was used instead of Superscript III.

Sequence datasets

The transcriptome used in all of our analyses on A.
thaliana was the TAIR10 cDNA 20110103 representative
gene model updated (37).

The computational performance benchmarking was car-
ried out using a publicly available A. thaliana mature
leaf degradome dataset (38) obtained from GEO (39)
(GSM1330562) which we shall call dataset D1. Addition-
ally, we simulated 9 sRNA datasets of increasing size to use
as input data. These sRNAs were generated by first aligning
the D1 reads to the reference and then extracting 19–24 nt
sequences centred on cleavage positions. Transcripts, cleav-
age positions and sRNA sequence lengths were selected at
random.

The prediction performance benchmarking was per-
formed using the three A. thaliana degradome replicates,
which we described above, and A. thaliana mature miRNA
sequences obtained from miRBase (v21) (40).

To perform genome-wide degradome analyses on
A. thaliana, we obtained the corresponding sRNA li-
braries, which were previously published by our lab (41)
(GSE90771), for each of the A. thaliana degradome repli-
cates. Collectively we shall call this dataset D2 and refer
to each individual degradome replicate as D2A, D2B and
D2C hereafter. Additionally, we performed a genome-wide
analysis on Triticum aestivum using publicly available
sRNA (GSE36867) and degradome (GSE37134) datasets
(42) and the Triticum aestivum transcriptome (cDNA)
obtained from Ensembl Genomes (release 38) (43).

RESULTS

Sequencing data

We processed the raw data using tools provided within the
UEA sRNA Workbench (26). The adapter trimming tool
was used to trim the adaptor sequences in each of the three
degradome replicates. Next, using the Filter tool, we dis-
carded sequences that contained any ambiguous bases and
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Table 3. Summary statistics from the sequencing of three Arabidopsis thaliana degradome replicates (NR = non-redundant)

Replicate
Untrimmed
Reads

Untrimmed
Reads (NR)

Trimmed Reads
(NR)

Invalid Sequences
Filtered (NR)

Genome Matched
Reads

Genome Matched
Reads (NR)

D2A 45 581 525 15 267 190 11 114 679 21 004 41 144 941 9 009 977
D2B 34 915 085 13 385 729 10 103 828 17 049 31 426 832 8 316 470
D2C 26 067 832 10 199 905 7 715 372 12 140 23 303 530 6 337 667

aligned the remaining sequences to the genome (TAIR10)
with no mismatches allowed. When mapping to the genome,
81%, 82% and 82% of trimmed reads successfully aligned in
replicates D2A, D2B and D2C, respectively. Table 3 gives a
summary of the statistics for the three replicates and Supple-
mentary Figures S1–S3 show the read length distributions.

Computational performance benchmarking

To measure the computational performance of the PAREs-
nip2 algorithm i.e. the time and memory required to per-
form an analysis, we carried out computational benchmark-
ing and compared our results to those of other publicly
available methods. This benchmarking was performed on
a desktop computer running Ubuntu 16.04 equipped with
a 3.40GHz Intel Core i7-6800K six core CPU and 128GB
RAM. Each tool was run using the authors default sug-
gested parameters and for the fairest comparison, we in-
cluded all filtering and pre-processing options available in
PAREsnip2. Additionally, we set the number of threads to
be used by the tools during the analyses to 12, except for
CleaveLand as it was not an option.

For this benchmarking, we used the D1 dataset, the simu-
lated sets of sRNA sequences and the TAIR10 cDNA tran-
scriptome. Whilst the tools were performing the analysis on
the simulated data, we monitored their peak memory usage
and recorded the time they took to complete the analysis.
The results of these analyses for both time and peak mem-
ory usage is shown in Table 4. Additionally, if the tool did
not complete the analysis within 10 days, we recorded it as
did not finish (DNF).

The results show that the newly developed PAREsnip2
algorithm substantially outperforms all the currently avail-
able tools on the simulated datasets. The largest dataset for
which any of the existing tools could process in under 10
days contained 250 000 sequences. When performing anal-
ysis on this dataset, PAREsnip2 showed over two orders
of magnitude (∼300×) improvement in computation time.
Additionally, the results suggest that the computation time
of PAREsnip2 grows linearly with the number of input se-
quences, taking just 1 h and 44 min to process the largest of
the simulated datasets (1 000 000 sRNAs).

Prediction performance benchmarking

To evaluate the prediction performance of each tool we col-
lected a set of experimentally validated A. thaliana interac-
tions by combining those previously published in the litera-
ture (17,44,45) and those contained within miRTarBase (46)
with any duplicates being removed. In total, we collected
616 validated interactions comprising 135 miRNAs. Out of
these 135 miRNAs, 90 of them had unique sequences and
were involved in 387 distinct miRNA–mRNA interactions.

See Supplementary Table S1 for the complete list of curated
validated targets.

Any of the validated interactions with a category-4 sig-
nal at the cleavage position on the transcript within the D2
degradome datasets were excluded from the benchmarking.
These signals were excluded because it is difficult to distin-
guish between true miRNA cleavage products and random
degradation with such low abundance. To identify the cleav-
age positions, we obtained the miRNA sequence from miR-
Base and the transcript sequence for each of the validated
miRNA targets and performed the alignment between them
using loose targeting rules (maximum seven mismatches). In
the case that multiple alignments were found between the
miRNA and its target, we retained the alignment(s) with
the best alignment score and minimum free energy ratio.
The position on the transcript opposite position 10 of the
miRNA was recorded as the miRNA cleavage site. The cate-
gory of the signal on the transcript was determined by align-
ing the D2 degradome datasets to the transcript and record-
ing the abundance at the cleavage position. Out of a possi-
ble 387, we included 243, 239 and 224 validated interactions
comprising 61, 60 and 58 miRNA sequences for datasets
D2A, D2B and D2C, respectively.

We performed an analysis with each tool using the
miRNA sequences contained within the validated set of
miRNA–mRNA interactions, the A. thaliana transcrip-
tome, and the three D2 degradome datasets described pre-
viously. Each tool was run using the default parameters rec-
ommended by the authors but with category-4 interactions
discarded as they were not considered previously. When
benchmarking PAREsnip2, we performed the analysis us-
ing both sets of default targeting rules and the MFE fil-
ter with cut-off score of 0.7. The results produced by each
tool when analyzing the three datasets were then compared
against the set of validated targets and are shown in Table 5.
The results show that both sets of default targeting rules im-
plemented within PAREsnip2 captured more of the experi-
mentally validated interactions than the currently available
tools. The differences between the results produced by the
tools are likely due to variations in the implemented target-
ing rules and the filtering techniques applied. Additionally,
the lower number of interactions reported by CleaveLand
may be due to the way it handles degradome reads that map
to multiple transcripts. If a degradome read aligns to more
than one transcript, only one is randomly selected and re-
ported by CleaveLand.

Evaluation of the optional filtering methods

To evaluate the success of the filtering techniques imple-
mented within PAREsnip2, we repeated the prediction per-
formance benchmarking on the D2B degradome dataset us-
ing the 60 miRNA sequences, the default Fahlgren and Car-
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Table 4. Benchmarking results for both time and memory usage in Gigabytes (GB) from running each tool using the generated small RNA datasets. If
the entry is DNF it means that the tool did not complete the analysis within the 10 day cut-off. A ‘-’ means that we did not attempt to run the tool

# Seqs CleaveLand4 GB PAREsnip GB sPARTA GB PAREsnip2 GB

1 19m 23s 1 9m 30s 58 12m 48s 25 5m 38s 5
10 27m 32s 1 9m 50s 58 12m 53s 25 5m 36s 5
100 1h 52m 1 12m 35s 58 13m 55s 25 5m 44s 5
1,000 15h 8m 1 44m 51s 58 1h 11m 26 6m 15s 6
10,000 6d 6h 48m 8 6h 25m 64 4d 6h 59m 37 6m 32s 6
100,000 DNF - 2d 15h 16m 66 DNF - 15m 1s 6
250,000 - - 6d 10h 49m 68 - - 29m 6s 7
500,000 - - DNF - - - 53m 11s 8
1,000,000 - - - - - - 1h 44m 8

Table 5. The results from the accuracy performance benchmarking of each tool over the three biological replicates. V = validated targets, NV = non-
validated and %PV = percentage of possible validated targets that could be found

Replicate D2A Replicate D2B Replicate D2C

Tool Name V NV %PV V NV %PV V NV %PV

sPARTA 171 120 70% 169 121 70% 162 127 72%
PAREsnip 177 48 73% 179 50 75% 167 57 75%
CleaveLand4 88 20 36% 95 26 40% 87 25 39%
PAREsnip2 Allen et al. 193 41 79% 191 39 80% 181 33 80%
PAREsnip2 Fahlgren & Carrington 219 48 90% 219 43 91% 205 37 91%

rington targeting rules, and increasing filtering cut-off val-
ues. The results of the MFE analysis are shown in Figure 2
and the results of the P-value analysis are shown in Figure 3.

When evaluating the MFE filter, we start with a cut-off
score of 0.45, as this captures all possible interactions, and
with increments of 0.05 thereafter, we record the number of
validated and non-validated targets being captured. Using
the initial value, we captured a total of 342 miRNA–mRNA
interactions from 60 miRNAs with 223 being part of the
validated set and 119 were non-validated. At the other end
of the scale, by using a filter cut-off value of 1 we captured
just 5 interactions, all of which are part of the validated set.
The default value of the MFE ratio filter (0.70) for PAREs-
nip2 captures a total of 262 interactions and of these the
filtering process kept 219 (98%) from the possible 223 vali-
dated interactions.

Similarly, when evaluating the success of the P-value fil-
ter, we started with a cut-off score of 1, as this captures all
possible interactions, and then repeated the analysis each
time lowering the cut-off score and recorded the number
of validated and non-validated targets being captured. A
total of 342 interactions, with 223 validated and 119 non-
validated, were captured using a cut-off score of 1 and a
total of 174 interactions, with 165 validated and 9 non-
validated, were captured using a score of 0.01. The default
value for the P-value filter implemented within PAREsnip2
(0.05) captures a total of 209 interactions. Of these, the fil-
tering process kept 191 from the possible 223 (85.6%) vali-
dated interactions.

Genome-wide analysis of degradome datasets

To illustrate the use of PAREsnip2, we carried out a
genome-wide scale degradome analysis of dataset D2 us-
ing the sRNA–mRNA target interaction rules as described
by Allen et al. (15). For this analysis, we used the default
stringent parameters, which discards category-4 signals and

permits a minimum sRNA abundance of 5 reads. Addition-
ally, the built-in conservation filter was used to increase con-
fidence in the reported interactions. In total, PAREsnip2
captured 2008 sRNA–mRNA interactions (Supplementary
Table S2), which comprised 960 category-0, 79 category-1,
511 category-2 and 458 category-3 interactions. To consider
how the Allen et al. rules fared in capturing known inter-
actions that have previously been validated, we compared
the results with the set of curated validated targets (Supple-
mentary Table S1). We found that 178 of the validated tar-
gets were conserved within the three replicates of the dataset
(degradome signal and miRNA sequence), and of these the
Allen et al. targeting rules captured 132 (74%), which were
predominantly category 0 interactions. Interestingly, 46 of
the validated interactions within the sequencing data were
missed. This could have been due to the stringency of the
parameters that were used, or that fact that the Allen et al.
rules were based on a small set of experimentally validated
interactions and are somewhat outdated in their represen-
tation of the requirements of miRNA mediated cleavage ac-
tivity. Therefore, to test this we repeated the analysis on the
same dataset but using the more recent Fahlgren and Car-
rington targeting rules, inferred in 2010, which allow mis-
match and G:U wobble pairs at positions 10 and 11. This
analysis identified 1072 category-0, 91 category 1, 611 cate-
gory 2 and 529 category 3, making a total of 2303 interac-
tions of which 151 (85%) of the possible validated interac-
tions were captured (Supplementary Table S3). This shows a
11% improvement in identifying the known validated inter-
actions over the Allen et al. targeting rules, which otherwise
would have been missed. Performing this analysis using the
Allen et al. rules took just 11 minutes and 32 seconds and
the Fahlgren and Carrington targeting rules completed the
analysis in 26 minutes and 48 seconds.

The timings for degradome analysis in A. thaliana led
us to investigate the performance of PAREsnip2 on more
complex species and larger genomes. The Triticum aestivum
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Figure 2. The number of interactions reported when using MFE as a filter. As the MFE filter ratio increases, there is a reduction in the number of captured
sRNA–mRNA interactions. A cut-off score of 0.70 captures 98% of the possible validated interactions.

Figure 3. The number of interactions reported when using P-value as a filter. As the cut-off decreases, there is a reduction in the number of captured
sRNA–mRNA interactions. The default cut-off score of 0.05 captures 85.6% of the possible validated interactions.

genome is much larger than A. thaliana, containing more
than 155 000 transcript sequences within the genome an-
notation. We carried out a genome-wide analysis of the
T. aestivum dataset (GSE36867), which comprised a de-
gradome of 4 306 082 non-redundant (NR) sequences and
a corresponding sRNAome of 14 133 641 NR sequences.
The default stringent parameters identified 25 063 inter-
actions (Supplementary Table S4), which comprised 12
120 category-0, 1026 category-1, 5576 category-2 and 6341
category-3 interactions and completed in just 31 minutes
and 29 s. To investigate how using less stringent parame-
ters would impact on the runtime performance of the tool,
we repeated the analysis using the default flexible parame-
ters. The tool identified 389,238 interactions (Supplemen-
tary Table S5), which comprised 83 409 category-0, 13 943
category-1, 79 935 category-2, 95 783 category-3 and 116
168 category-4 interactions with a runtime of 19 h and 39
min.

DISCUSSION

In the age of genomics, the cost of sequencing has become
cheaper and more accessible than ever before (47). This had
led to many more genomes being sequenced, some of which
are much larger and significantly more complex than popu-
lar model organisms. Many genomes are used in large scale
studies from human health (48) to food production (49).
Additionally, with the increasing number of reads being
produced from sequencing experiments, the development of
scalable and efficient algorithms for computational analysis
of sequence data are becoming more and more important.
We have developed a novel tool which is scalable with the
increasing size and complexity of new genome releases and
can perform a large scale degradome analysis using mini-
mal computation resources. As an illustration, we ran our
tool on wheat (T. aestivum), which in terms of base pairs is
two orders of magnitude larger than A. thaliana. Using the
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default flexible parameters on the publicly available dataset
described previously, the analysis took just 19 h and 39 min
with a peak memory usage of 16GB and identified 389 238
targets by 169 636 sRNA sequences. In comparison, we ter-
minated the execution of PAREsnip after 25 days on the
same dataset, after which time it only reported 18% comple-
tion with a peak memory requirement of 175GB, far exceed-
ing the resources you would expect to find in a typical desk-
top machine. Moreover, these results suggest that PAREs-
nip2 is the only tool capable of performing degradome anal-
ysis over multiple biological replicates within a reasonable
time scale.

The miRNA targeting rules implemented within the cur-
rently available tools for degradome assisted target pre-
diction are based on the analysis of experimentally vali-
dated miRNA targets in A. thaliana. These rules have been
successfully applied to multiple other species during de-
gradome analyses and sRNA target prediction with some
predicted targets being further experimentally validated.
However, probably in part due to the current lack of ex-
perimental evidence and to the best of our knowledge, no
studies on miRNA targeting rules comparable to those per-
formed on A. thaliana have been applied to other plant
species. This may have resulted in overfitting our current
understanding and implementation of these rules on A.
thaliana. By providing the functionality to search for sRNA
targets using configurable rules, users will be able to search
for non-canonical targets that the existing rules would oth-
erwise miss (16,21,23) and enable the potential to use a
species specific set of rules if proven to be the case.

In its current form, PAREsnip2 is most suitable for the
analysis of plant degradome datasets, as the primary mech-
anism for RNA silencing in plants is mRNA cleavage,
whereas in animals the primary mechanism is translational
repression. However, if the degradome data is available,
PAREsnip2 could, in principle, be used for analysing sRNA
mediated cleavage products in animals.

As is the case with many rule based systems, there exist
a number of experimentally validated miRNA targets that
do not fit the canonical set of targeting rules (16,21,23). By
adjusting the parameters so that these targets are found,
PAREsnip2 may run the risk of increasing the rate at which
false positives are reported. One potential solution to this
would be to perform an analysis using a less stringent set
of targeting rules alongside the built-in conservation filter.
For example, if a high confidence, i.e. high abundance and
low category peak, miRNA-target is reported across multi-
ple biological replicates then further investigation, such as
other experimental validation techniques, could be used to
confidently determine if the reported interaction is real.

The PAREsnip2 algorithm has been implemented into a
user-friendly and cross-platform (Windows, Linux and Ma-
cOS) application that enables users to analyse their data
without the need for dedicated bioinformatics support or
specialized computer hardware. Additionally, the tool can
be run using the command line for users who wish to in-
corporate PAREsnip2 into more complex computational
pipelines. Enabling the use of specialist bioinformatics soft-
ware without the need for any computational expertise will
hopefully lead to new discoveries within RNA silencing
pathways in all manner of experimental contexts.

DATA AVAILABILITY

PAREsnip2 is available as part of the UEA sRNA Work-
bench and can be downloaded from http://srna-workbench.
cmp.uea.ac.uk/. Additionally, the source code has been re-
leased on GitHub and is accessible at https://github.com/
sRNAworkbenchuea/UEA sRNA Workbench/. The three
degradome replicates have been submitted to GEO and can
be accessed with accession code GSE113958.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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