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ABSTRACT  

Small RNAs (sRNAs) are short, non-coding RNAs that play critical roles in many important biological 
pathways. They suppress the translation of messenger RNAs (mRNAs) by directing the RNA-induced 

silencing complex to their sequence-specific mRNA target(s). In plants, this typically results in mRNA 

cleavage and subsequent degradation of the mRNA. The resulting mRNA fragments, or degradome, 

provide evidence for these interactions, and thus degradome analysis has become an important tool 

for sRNA target prediction. Even so, with the continuing advances in sequencing technologies, not 

only are larger and more complex genomes being sequenced, but also degradome and associated 

datasets are growing both in number and read count. As a result, existing degradome analysis tools 

are unable to process the volume of data being produced without imposing huge resource and time 
requirements. Moreover, these tools use stringent, non-configurable targeting rules, which reduces 

their flexibility. Here, we present a new and user configurable software tool for degradome analysis, 

which employs a novel search algorithm and sequence encoding technique to reduce the search 

space during analysis. The tool significantly reduces the time and resources required to perform 

degradome analysis, in some cases providing more than two orders of magnitude speed-up over 

current methods. 

INTRODUCTION 

Small RNAs (sRNAs) are short, non-coding RNAs that are vital components of gene regulation acting 

through endogenous RNA silencing pathways. They regulate many important and diverse biological 

pathways such as growth and development, disease resistance, and stress response (1, 2). To do 

this, they suppress the translation of messenger RNAs (mRNAs) by directing the RNA-induced 
silencing complex (RISC) to its sequence-specific mRNA target(s). They can be classified into several 

classes such as microRNA (miRNA) and short interfering RNA (siRNA), differentiated by both 

biogenesis and mode of action (3). In plants, a high degree of complementarity between the sRNA 

and its mRNA target typically results in the endonucleolytic cleavage and subsequent degradation of 

the targeted mRNA (4). 



An important step in understanding the biological function of a sRNA is to identify and validate its 

targets. Most computational tools for plant (and animal) sRNA target prediction use techniques that 

search for complementarity between a sRNA sequence and a potential target-sequence (5). These 

types of prediction use stringent, position based targeting rules that tend to report a high number of 
predictions and offer little flexibility. Whilst these results will almost certainly contain genuine targets, 

many of the predictions may be false positives (5). Therefore, the predicted targets must undergo 

further experimental validation through low-throughput techniques such as 5' rapid amplification of 

cDNA ends (RACE) (6).  

In the last few years, three high-throughput sequencing techniques (parallel analysis of RNA ends 
(PARE) (7), genome-wide mapping of uncapped and cleaved transcripts (GMUCT) (8) and 

degradome sequencing (9)) have become a high-throughput alternative for identifying sRNA mediated 

cleavage products on a genome-wide scale. They capture the uncapped 5' ends of cleaved mRNA 

sequences giving a snapshot of the mRNA degradation profile, often termed the degradome. The 

cleaved mRNA fragments can then be aligned back to the reference transcript and used as evidence 

for sRNA mediated cleavage. 

CleaveLand (10) was the first tool to use this approach for analysing degradome data. It has been 

used to successfully identify sRNA targets in a number of plant species (11-14) using a mismatch-

based scoring scheme inferred from a set of experimentally validated miRNA-target interactions in 

Arabidopsis thaliana (15). Subsequently, Sequencing-based sRNA Target Prediction (SeqTar) (16) 

was developed in an attempt to loosen the stringent targeting rules implemented within CleaveLand. 

These rules, such as restrictions on the number of mismatches allowed within a sRNA-mRNA duplex 

and strictly not allowing a mismatch or G:U wobble pair at position 10 or 11, may result in CleaveLand 
discarding genuine interactions. SeqTar was shown to have higher accuracy than CleaveLand when 

using a less stringent set of targeting rules (16), but it is not publicly available to download or use. 

Both CleaveLand and SeqTar suffer from the same restrictions due to their underlying algorithms. In 

particular, they are only able to perform an analysis on a small set of input sequences, such as known 

miRNAs, or a limited number of candidate sRNAs, without considerable time constraints. This led to 
the development of PAREsnip (17), which is an accelerated approach to degradome analysis that is 

able to process entire sRNA datasets within a feasible time frame on a typical desktop computer. 

Since its release, PAREsnip has been successfully used for genome-wide analysis on a number of 

different plant species (18-20). However, PAREsnip implements the same stringent targeting rules as 

CleaveLand and relies on complementarity at position 10 and 11 of the sRNA for its speed. 

Furthermore, based on our computational benchmarking, PAREsnip requires a considerable amount 

of computational resources when performing analysis on larger sequencing datasets. 

Small RNA-PARE Target Analyzer (sPARTA) (21) is the most recent tool for degradome analysis. 

Unlike CleaveLand and PAREsnip, it does not assume a positive correlation between 

complementarity in the canonical seed region (2 to 13 nt from the 5′ end of the miRNA) and probability 

of actual cleavage. It offers the user two scoring schemes during the target prediction process: 



standard and seed free. The first is based on the analysis of experimentally validated targets and the 

complementarity rules based on the seed region (22). The second, which is also the default scoring 

system, allows for more flexibility within the seed region of the sRNA-target duplex and is based on 

genuine miRNA target interactions that differ from the canonical targeting rules (16, 23). Whilst 
sPARTA offers more flexibility when searching for targets, based on our computational benchmarking, 

it suffers from the same time restrictions as CleaveLand and has high computational resource 

requirements. 

Recent advances in high throughput sequencing technologies has resulted in larger, more complex 

genomes being sequenced such as Pinus taeda (24) or Triticum aestivum (25), both being many 
times larger than that of popular model organisms. Moreover, not only are larger genomes being 

sequenced, but degradome and sequencing datasets in general are growing ever larger in size and 

read count, with a typical sequencing experiment now containing millions of distinct reads in a single 

sample. In addition, the need for multiple samples and replicates is becoming the de-facto standard 

for biological experiments, further adding to this sequence-data deluge. 

All of the tools for degradome analysis mentioned above are unable to process the volume of data 

currently being produced without imposing considerable time and resource constraints. In addition, 

the accuracy of these tools is primarily determined by the targeting rules that they apply and each tool 

uses a different set of fixed rules, which reduces their flexibility. Indeed, the rules currently 

implemented by the tools are inferred from the analysis of experimentally validated miRNA targets in 

Arabidopsis thaliana. This was first performed on 94 validated miRNA-target duplexes by Allen et al. 

in 2005 (15) and then, through a similar approach, on a larger set of 155 validated target duplexes by 

Fahlgren and Carrington in 2010 (22). As our understanding of miRNA targeting improves, these rules 
may change, and so current tools risk becoming obsolete. 

In this paper, we introduce a novel degradome analysis method and software tool, which we call 

PAREsnip2, that is scalable with current sequencing datasets. As we shall see, PAREsnip2 has 

greater predictive power than previous tools and also provides a vast reduction in computation time 

and resource requirement. Additionally, PAREsnip2 enables users to perform degradome analysis 
using configurable targeting rules. We shall illustrate the tool’s use by analysing recently sequenced 

Arabidopsis thaliana datasets. Although PAREsnip2 uses a different approach, we give it this name 

since it is freely available in the UEA sRNA Workbench (26) where its predecessor, PAREsnip (17), is 

also implemented. 

 

MATERIAL AND METHODS 

The PAREsnip2 algorithm is split into three main stages. The first stage is the input of the sequencing 

data and targeting rules, the second is the pre-processing steps (developed to improve the speed and 
efficiency of an analysis), and the third is the prediction of sRNA targets. A visual overview of the 



steps involved in performing an analysis on the input data is shown in Figure 1A. We now explain 

each stage of the algorithm in more detail. 

Data input 

To perform an analysis using PAREsnip2 for a specific organism, the user must input the following 

data: 

● a reference file (transcriptome) in either FASTA format or Generic Feature Format version 3 
(GFF3) with corresponding genome; 

● a genome file (optional unless using GFF3 as reference); 

● one or more sRNA library replicates; 

● one or more degradome library replicates 

A reference file and at least one sRNA and degradome library are required to perform an analysis. If 

the user chooses to use a GFF3 file as a reference then a corresponding genome must also be 

provided.  When extracting the gene sequences from the genome using a GFF3, the user has the 

option to include or exclude untranslated regions (UTRs).  

The sRNA and degradome libraries must be in redundant FASTA format with the adapters trimmed.  

Sequence Filtering 

Several optional filtering techniques can be applied to the input data to remove low quality reads, 

sequencing errors or sample contamination. First, any sequence containing ambiguous bases are 

discarded, as they cannot be accurately aligned. Second, a low complexity sequence filter is applied 
based on the sequence single, di- or tri-nucleotide composition. This works by discarding any 

sequences that contain more than 75%, 37.5% and 25% of a single, di- or tri-nucleotide composition, 

respectively. Third, we provide the functionality to filter sequences using conservation over multiple 

samples where sequences will only be considered if they are present within each sample. Finally, 

when a genome is provided, sRNA sequences can be aligned to the genome using PatMan (27), with 

any sequences that do not align being discarded. 

Binary encoding of sequence input 

A core component of the PAREsnip2 algorithm is the encoding of sequence data into a number 

system (Figure 1B). Given that a sequence is composed of four nucleotide bases (A, C, G, T/U), it is 

possible to represent each nucleotide using two bits of computer memory (Table 1), known as the 
base 2, or binary representation, of a nucleotide. We represent a whole sequence as a single decimal 

number by concatenating the binary representations of each nucleotide and converting the binary 

representation into decimal. We use this encoding technique to reduce the memory footprint of storing 

sequence data in memory and to speed up analysis. Furthermore, sRNA and mRNA sequences have 

an inverse encoding (Table 1), such that if a sRNA and mRNA sequence are represented by the 

same number then they will be perfectly complementary.  



Target candidate generation  

To search for potential sRNA targets, we first generate a set of potential target-sequence candidates 
from the input data. The alignment of the degradome fragments to the reference gene sequences can 

inform us of potential sRNA cleavage events, with higher abundance fragments at a specific position 

more likely to be true cleavage signals. We developed a novel technique for exact match sequence 

alignment that uses the sequence encoding described above. First, degradome sequences are read 

from file, encoded as a number, and stored into a list. Once all the reads have been encoded and 

stored, the list is sorted into ascending order. Next, we split the reference sequences into 

subsequences using a sliding window and encode each of these into a decimal number. The size of 
the sliding window and the number of extracted subsequences are dependent on the accepted size 

range of the degradome reads. We then search the sorted list of encoded degradome fragments for 

the encoded reference subsequence using a binary search. If the number representing an encoded 

subsequence is found, an exact match has been identified at that position and is recorded. Once each 

reference sequence has been searched, the aligned degradome fragments are further processed to 

generate the set of target-sequence candidates. From the alignment position, we take 16nt towards 

both the 5’ and 3’ ends, resulting in a 32nt mRNA target-sequence candidate. 

The newly generated target-sequence candidates are then sorted into one of 5 categories based on 

those previously defined in CleaveLand (V4) (10) with a minor modification. In our modification, we do 

not consider those fragments with an abundance of 1 during the average coverage calculation. This 

helps us to distinguish true lower abundance peaks from background degradation upon the transcript. 

An overview of the category system is provided below: 

● Category-0 peaks are those that have greater than one read and are the maximum on the 

transcript when there is only one maximum; 

● Category-1 peaks are those that have greater than one read and are the maximum on the 

transcript, but there is more than one maximum; 

● Category-2 peaks are those that have greater than 1 read and are above the average 

fragment abundance on the transcript; 

● Category-3 peaks are those that have greater than 1 read and are below or equal to the 

average fragment abundance on the transcript; 

● Category-4 peaks are those that have just one read at that position on the transcript 

Region extraction and candidate grouping 

Three regions of length 7nt (7mer) are extracted from both the input sRNA sequences and the 

generated target-sequence candidates. These are named region R1, R2 and R3 for the sRNA and 

target region TR1, TR2 and TR3 for the target-sequence. The position of the extracted target-
sequence regions are based on a potential cleavage position i.e. where the sRNA would align if there 



were no gaps or bulges within the duplex (Figure 1Bi). The extracted region sequences are then 

encoded into their decimal number format and stored for later use. Finally, the generated target-

sequence candidates are grouped together using the decimal representation of their TR2 sequence 

such that any candidates sharing the same 7mer at their TR2 will be grouped together. 

Predefined and user configurable targeting rules 

Since the discovery of miRNAs and their regulatory role in plants, there has been much discussion on 

the rules that should be used when predicting plant miRNA targets (15, 21-23, 28-31). To the best of 
our knowledge, there are two generally accepted targeting rules for plant miRNAs. These rules are 

implemented within a position dependent scoring system based on the number of mismatches, G:U 

wobbles and target-bulged bases within the duplex. The first of these were inferred by Allen et al. in 

2005 (15) and the second, through a similar approach with a larger set of validated targets, by 

Fahlgren and Carrington in 2010 (22). During a PAREsnip2 analysis, the user can choose between 

two sets of default targeting rules, either the Allen et al. (15) rules or the Fahlgren and Carrington (22) 

rules. The difference between them is that the Fahlgren and Carrington rules permit a mismatch or 
G:U wobble at position 10 or 11 of the sRNA. However, these rules are based on a small set of 

experimentally validated miRNA targets and as more miRNA targets are experimentally validated, our 

understanding of these targeting rules may change. To address this, we offer the ability to search for 

potential targets based on a user configurable rule set. The rules that can be configured by the user 

and used during the search for potential targets are shown in Table 2.   

Computing valid region alignment matrices  

As discussed previously, we can represent biological sequences using decimal numbers. 7mers that 

are comprised of a 4-letter alphabet (A, C, G and T/U), where each nucleotide is encoded using 2 bits 

of computer memory, are represented by a decimal number between 0 and 16383.  For each of the 

three regions, we create a 16384x16384 matrix that represents all possible combinations of 

alignments between 7mers. Within these matrices, row numbers represent encoded sRNA 7mers and 
column numbers represent encoded mRNA 7mers. The matrices are then populated by attempting to 

align the decoded sRNA and mRNA 7mers using the user's chosen set of targeting rules. If a valid 

alignment is found within the matrix, we set that position to true otherwise it is set to false. This is 

repeated for every possible combination of alignments between 7mers for each of the three regions. 

Three-stage candidate filtering 

We developed a three-stage candidate filtering technique to reduce the search space and therefore 

the computation time required to perform an analysis. When searching for degradome peaks 

potentially resultant of sRNA mediated endonucleolytic cleavage, we use the valid region alignment 

matrices to discard candidates that do not fit the chosen targeting rules (Figure 1C). In the first stage 

of this technique, we consider only those target-sequence candidates where their TR2 7mer can 
successfully align to the R2 7mer of the sRNA. This is done by looking at the encoded sRNA R2 7mer 



row in the R2 valid region alignment table and taking all target-sequence candidates grouped on the 

columns set to true on that row.  

In the second and third stages, we discard any target-sequence candidates where their TR1 or TR3 

regions do not successfully align to the R1 or R3 regions of the sRNA. This is performed by first 

looking at the cell (R1base10, TR1base10) in the R1 valid region alignment matrix to see if it is set to 

true and if so, we do the same for the R3 and TR3 region, discarding any candidates if the cell values 

are set to false. 

Target search and results filtering 

Any target-sequence candidate that passes all stages of the three-stage candidate filtering process is 

aligned to the sRNA sequence using our duplex alignment algorithm employing the chosen targeting 

rules. When attempting to align a sRNA to a potential target-sequence candidate, the search process 

starts at the cleavage site and then traverses towards the 5’ end of the sRNA and at each position 

performs a nucleotide comparison between the two sequences. If the alignment towards the 5' end is 

successful, it then performs the same process towards the 3’ end. If there is a mismatch, it will 

attempt to insert a gap and continue the alignment. If at any point one of the user’s selected rules are 
broken then the alignment is discarded. This process will find all valid alignments based on the 

chosen targeting rules and the best possible alignment is selected. We first attempt to select the 

alignment that has the lowest alignment score and if there are multiple valid alignments with this 

score, the alignment with the fewest gaps is reported. If there are multiple alignments with the same 

number of gaps, the alignment with the fewest number of mismatches and G:U wobble pairs is 

reported.  

Once a potential target has been identified, two optional filtering processes can be performed to 

improve the confidence level of each prediction. The first is the application of a minimum free energy 

(MFE) ratio filter and the second is a P-value filter. The MFE is calculated using RNAplex (32,33) 

which was shown to score favourably for sensitivity and precision when compared to other similar 

methods in a recent benchmarking of performance (34). The MFE ratio is calculated by dividing the 

predicted target duplex MFE by the MFE of a perfectly complementary target site. Any predicted 

target site that has a MFE ratio less than a given cut-off is discarded. The default cut-off ratio is 0.7, 
as suggested by Allen et al. (15), but can be configured by the user. The second optional filtering 

process uses the binomial distribution P-value system implemented within CleaveLand V4 (10) but 

with the modification that the probability is calculated on a transcript by transcript basis.  

Implementation and output 

The algorithm has been implemented using the Java programming language and a user-friendly, 

cross-platform software package has been incorporated into the UEA sRNA Workbench (26). 

Analysis can be performed through the graphical user interface (GUI) or through the command-line 

interface (CLI) allowing PAREsnip2 to be used in other bioinformatics pipelines or workflows. 



The results of PAREsnip2 are provided in comma-separated value (CSV) format, allowing them to be 

viewed in any CSV file viewer. They include information about the transcript peak such as cleavage 

position, abundance and weighted-abundance at the cleavage site, and the category of the peak on 

the transcript. A visual representation of the sRNA-mRNA duplex is displayed along with its alignment 
score. The sequence read abundance for small RNA and degradome data are provided in both raw 

and normalized values so that sequencing libraries can be compared.  

Degradome library construction 

Three Arabidopsis thaliana degradome replicates were constructed using wild type Columbia (Col-0) 

plants grown at 22°C with 16 hours light and tissue was harvested when plants were at growth stage 

5, as defined by Boyes et al.  (35). For each replica, RNA was isolated from a pool of all leaves taken 

from nine plants with TRI reagent following manufacturer's instructions. This RNA was then used to 

construct degradome libraries following Zhai et al. protocol (36), with the only difference being that 

SuperScript II reverse transcriptase was used instead of Superscript III. 

Sequence datasets  

The transcriptome used in all of our analyses on Arabidopsis thaliana was the TAIR10 cDNA 

20110103 representative gene model updated (37). 

The computational performance benchmarking was carried out using a publicly available Arabidopsis 

thaliana mature leaf degradome dataset (38) obtained from GEO (39) (GSM1330562) which we shall 

call dataset D1. Additionally, we simulated 9 sRNA datasets of increasing size to use as input data. 

These sRNAs were generated by first aligning the D1 reads to the reference and then extracting 19–

24 nt sequences centred on cleavage positions. Transcripts, cleavage positions and sRNA sequence 

lengths were selected at random.  

The prediction performance benchmarking was performed using the three Arabidopsis thaliana 

degradome replicates, which we described above, and Arabidopsis thaliana mature miRNA 

sequences obtained from miRBase (v21) (40).  

To perform genome-wide degradome analyses on Arabidopsis thaliana, we obtained the 

corresponding sRNA libraries, which were previously published by our lab (41) (GSE90771), for each 

of the Arabidopsis thaliana degradome replicates. Collectively we shall call this dataset D2 and refer 

to each individual degradome replicate as D2A, D2B and D2C hereafter. Additionally, we performed a 

genome-wide analysis on Triticum aestivum using publicly available sRNA (GSE36867) and 

degradome (GSE37134) datasets (42) and the Triticum aestivum transcriptome (cDNA) obtained from 

Ensembl Genomes (release 38) (43). 

 

 



RESULTS 

Sequencing data 

We processed the raw data using tools provided within the UEA sRNA Workbench (26). The adapter 

trimming tool was used to trim the adaptor sequences in each of the three degradome replicates. 

Next, using the Filter tool, we discarded sequences that contained any ambiguous bases and aligned 

the remaining sequences to the genome (TAIR10) with no mismatches allowed. When mapping to the 

genome, 81%, 82% and 82% of trimmed reads successfully aligned in replicates D2A, D2B and D2C, 
respectively. Table 5 gives a summary of the statistics for the three replicates and Supplementary 

Figures 1-3 show the read length distributions.  

Computational performance benchmarking  

To measure the computational performance of the PAREsnip2 algorithm i.e. the time and memory 

required to perform an analysis, we carried out computational benchmarking and compared our 

results to those of other publicly available methods. This benchmarking was performed on a desktop 

computer running Ubuntu 16.04 equipped with a 3.40GHz Intel Core i7-6800K six core CPU and 

128GB RAM. Each tool was run using the authors default suggested parameters and for the fairest 

comparison, we included all filtering and pre-processing options available in PAREsnip2. Additionally, 

we set the number of threads to be used by the tools during the analyses to 12, except for 
CleaveLand as it was not an option.   

For this benchmarking, we used the D1 dataset, the simulated sets of sRNA sequences and the 

TAIR10 cDNA transcriptome. Whilst the tools were performing the analysis on the simulated data, we 

monitored their peak memory usage and recorded the time they took to complete the analysis. The 

results of these analyses for both time and peak memory usage is shown in Table 3. Additionally, if 
the tool did not complete the analysis within 10 days, we recorded it as did not finish (DNF).  

The results show that the newly developed PAREsnip2 algorithm substantially outperforms all the 

currently available tools on the simulated datasets. The largest dataset for which any of the existing 

tools could process in under 10 days contained 250,000 sequences. When performing analysis on 

this dataset, PAREsnip2 showed over two orders of magnitude (~300x) improvement in computation 
time. Additionally, the results suggest that the computation time of PAREsnip2 grows linearly with the 

number of input sequences, taking just 1 hour and 44 minutes to process the largest of the simulated 

datasets (1,000,000 sRNAs).  

Prediction performance benchmarking 

To evaluate the prediction performance of each tool we collected a set of experimentally validated 

Arabidopsis thaliana interactions by combining those previously published in the literature (17, 44, 45) 

and those contained within miRTarBase (46) with any duplicates being removed. In total, we collected 

616 validated interactions comprising 135 miRNAs. Out of these 135 miRNAs, 90 of them had unique 



sequences and were involved in 387 distinct miRNA-mRNA interactions. See Supplementary Table 

S1 for the complete list of curated validated targets. 

Any of the validated interactions with a category-4 signal at the cleavage position on the transcript 

within the D2 degradome datasets were excluded from the benchmarking. These signals were 

excluded because it is difficult to distinguish between true miRNA cleavage products and random 

degradation with such low abundance. To identify the cleavage positions, we obtained the miRNA 

sequence from miRBase and the transcript sequence for each of the validated miRNA targets and 

performed the alignment between them using loose targeting rules (maximum 7 mismatches). In the 

case that multiple alignments were found between the miRNA and its target, we retained the 
alignment(s) with the best alignment score and minimum free energy ratio. The position on the 

transcript opposite position 10 of the miRNA was recorded as the miRNA cleavage site. The category 

of the signal on the transcript was determined by aligning the D2 degradome datasets to the transcript 

and recording the abundance at the cleavage position. Out of a possible 387, we included 243, 239 

and 224 validated interactions comprising 61, 60 and 58 miRNA sequences for datasets D2A, D2B 

and D2C, respectively.  

We performed an analysis with each tool using the miRNA sequences contained within the validated 

set of miRNA-mRNA interactions, the Arabidopsis thaliana transcriptome, and the three D2 

degradome datasets described previously. Each tool was run using the default parameters 

recommended by the authors but with category-4 interactions discarded as they were not considered 

previously. When benchmarking PAREsnip2, we performed the analysis using both sets of default 

targeting rules and the MFE filter with cut-off score of 0.7. The results produced by each tool when 

analysing the three datasets were then compared against the set of validated targets and are shown 
in Table 4. The results show that both sets of default targeting rules implemented within PAREsnip2 

captured more of the experimentally validated interactions than the currently available tools. The 

differences between the results produced by the tools are likely due to variations in the implemented 

targeting rules and the filtering techniques applied. Additionally, the lower number of interactions 

reported by CleaveLand may be due to the way it handles degradome reads that map to multiple 

transcripts. If a degradome read aligns to more than one transcript, only one is randomly selected and 

reported by CleaveLand.  

Evaluation of the optional filtering methods 

To evaluate the success of the filtering techniques implemented within PAREsnip2, we repeated the 

prediction performance benchmarking on the D2B degradome dataset using the 60 miRNA 
sequences, the default Fahlgren and Carrington targeting rules, and increasing filtering cut-off values. 

The results of the MFE analysis are shown in Figure 2 and the results of the P-value analysis are 

shown in Figure 3. 

When evaluating the MFE filter, we start with a cut-off score of 0.45, as this captures all possible 

interactions, and with increments of 0.05 thereafter, we record the number of validated and non-



validated targets being captured. Using the initial value, we captured a total of 342 miRNA-mRNA 

interactions from 60 miRNAs with 223 being part of the validated set and 119 were non-validated. At 

the other end of the scale, by using a filter cut-off value of 1 we captured just 5 interactions, all of 

which are part of the validated set. The default value of the MFE ratio filter (0.70) for PAREsnip2 
captures a total of 262 interactions and of these the filtering process kept 219 (98%) from the possible 

223 validated interactions. 

Similarly, when evaluating the success of the P-value filter, we started with a cut-off score of 1, as this 

captures all possible interactions, and then repeated the analysis each time lowering the cut-off score 

and recorded the number of validated and non-validated targets being captured. A total of 342 
interactions, with 223 validated and 119 non-validated, were captured using a cut-off score of 1 and a 

total of 174 interactions, with 165 validated and 9 non-validated, were captured using a score of 0.01. 

The default value for the P-value filter implemented within PAREsnip2 (0.05) captures a total of 209 

interactions. Of these, the filtering process kept 191 from the possible 223 (85.6%) validated 

interactions.  

Genome-wide analysis of degradome datasets 

To illustrate the use of PAREsnip2, we carried out a genome-wide scale degradome analysis of 

dataset D2 using the sRNA-mRNA target interaction rules as described by Allen et al. in 2005 (15). 

For this analysis, we used the default stringent parameters, which discards category-4 signals and 

permits a minimum sRNA abundance of 5 reads. Additionally, the built-in conservation filter was used 

to increase confidence in the reported interactions. In total, PAREsnip2 captured 2008 sRNA-mRNA 
interactions (Supplementary Table S2), which comprised 960 category-0, 79 category-1, 511 

category-2 and 458 category-3 interactions. To consider how the Allen et al. rules fared in capturing 

known interactions that have previously been validated, we compared the results with the set of 

curated validated targets (Supplementary Table S1). We found that 178 of the validated targets were 

conserved within the three replicates of the dataset (degradome signal and miRNA sequence), and of 

these the Allen et al. targeting rules captured 132 (74%), which were predominantly category 0 

interactions. Interestingly, 46 of the validated interactions within the sequencing data were missed. 
This could have been due to the stringency of the parameters that were used, or that fact that the 

Allen et al. rules were based on a small set of experimentally validated interactions and are somewhat 

outdated in their representation of the requirements of miRNA mediated cleavage activity. Therefore, 

to test this we repeated the analysis on the same dataset but using the more recent Fahlgren and 

Carrington targeting rules, inferred in 2010, which allow mismatch and G:U wobble pairs at positions 

10 and 11. This analysis identified 1072 category-0, 91 category 1, 611 category 2 and 529 category 

3, making a total of 2303 interactions of which 151 (85%) of the possible validated interactions were 

captured (Supplementary Table S3). This shows a 11% improvement in identifying the known 
validated interactions over the Allen et al. targeting rules, which otherwise would have been missed. 

Performing this analysis using the Allen et al. rules took just 11 minutes and 32 seconds and the 

Fahlgren and Carrington targeting rules completed the analysis in 26 minutes and 48 seconds. 



The timings for degradome analysis in Arabidopsis thaliana led us to investigate the performance of 

PAREsnip2 on more complex species and larger genomes. The Triticum aestivum genome is much 

larger than Arabidopsis thaliana, containing more than 155,000 transcript sequences within the 

genome annotation. We carried out a genome-wide analysis of the Triticum aestivum dataset 
(GSE36867), which comprised a degradome of 4,306,082 non-redundant (NR) sequences and a 

corresponding sRNAome of 14,133,641 NR sequences.  The default stringent parameters identified 

25,063 interactions (Supplementary Table S4), which comprised 12,120 category-0, 1026 category-1, 

5576 category-2 and 6341 category-3 interactions and completed in just 31 minutes and 29 seconds. 

To investigate how using less stringent parameters would impact on the runtime performance of the 

tool, we repeated the analysis using the default flexible parameters. The tool identified 389,238 

interactions (Supplementary Table S5), which comprised 83,409 category-0, 13,943 category-1, 

79,935 category-2, 95,783 category-3 and 116,168 category-4 interactions with a runtime of 19 hours 
and 39 minutes.  

DISCUSSION 

In the age of genomics, the cost of sequencing has become cheaper and more accessible than ever 

before (47). This had led to many more genomes being sequenced, some of which are much larger 

and significantly more complex than popular model organisms. Many genomes are used in large 

scale studies from human health (48) to food production (49). Additionally, with the increasing number 

of reads being produced from sequencing experiments, the development of scalable and efficient 

algorithms for computational analysis of sequence data are becoming more and more important. We 

have developed a novel tool which is scalable with the increasing size and complexity of new genome 

releases and can perform a large scale degradome analysis using minimal computation resources. As 
an illustration, we ran our tool on wheat (Triticum aestivum), which in terms of base pairs is two orders 

of magnitude larger than Arabidopsis thaliana. Using the default flexible parameters on the publicly 

available dataset described previously, the analysis took just 19 hours and 39 minutes with a peak 

memory usage of 16GB and identified 389,238 targets by 169,636 sRNA sequences.  In comparison, 

we terminated the execution of PAREsnip after 25 days on the same dataset, after which time it only 

reported 18% completion with a peak memory requirement of 175GB, far exceeding the resources 

you would expect to find in a typical desktop machine. Moreover, these results suggest that 

PAREsnip2 is the only tool capable of performing degradome analysis over multiple biological 
replicates within a reasonable time scale. 

The miRNA targeting rules implemented within the currently available tools for degradome assisted 

target prediction are based on the analysis of experimentally validated miRNA targets in Arabidopsis 

thaliana. These rules have been successfully applied to multiple other species during degradome 

analyses and sRNA target prediction with some predicted targets being further experimentally 
validated.  However, probably in part due to the current lack of experimental evidence and to the best 

of our knowledge, no studies on miRNA targeting rules comparable to those performed on 

Arabidopsis thaliana have been applied to other plant species. This may have resulted in overfitting 

our current understanding and implementation of these rules on Arabidopsis thaliana. By providing 



the functionality to search for sRNA targets using configurable rules, users will be able to search for 

non-canonical targets that the existing rules would otherwise miss (16, 21, 23) and enable the 

potential to use a species specific set of rules if proven to be the case.   

In its current form, PAREsnip2 is most suitable for the analysis of plant degradome datasets, as the 

primary mechanism for RNA silencing in plants is mRNA cleavage, whereas in animals the primary 

mechanism is translational repression. However, if the degradome data is available, PAREsnip2 

could, in principle, be used for analysing sRNA mediated cleavage products in animals. 

As is the case with many rule based systems, there exist a number of experimentally validated 

miRNA targets that do not fit the canonical set of targeting rules (16, 21, 23). By adjusting the 

parameters so that these targets are found, PAREsnip2 may run the risk of increasing the rate at 

which false positives are reported. One potential solution to this would be to perform an analysis using 

a less stringent set of targeting rules alongside the built-in conservation filter. For example, if a high 

confidence, i.e. high abundance and low category peak, miRNA-target is reported across multiple 

biological replicates then further investigation, such as other experimental validation techniques, could 
be used to confidently determine if the reported interaction is real. 

The PAREsnip2 algorithm has been implemented into a user-friendly and cross-platform (Windows, 

Linux and MacOS) application that enables users to analyse their data without the need for dedicated 

bioinformatics support or specialized computer hardware. Additionally, the tool can be run using the 

command line for users who wish to incorporate PAREsnip2 into more complex computational 

pipelines. Enabling the use of specialist bioinformatics software without the need for any 
computational expertise will hopefully lead to new discoveries within RNA silencing pathways in all 

manner of experimental contexts. 

AVAILABILITY 

PAREsnip2 is available as part of the UEA sRNA Workbench and can be downloaded from 

http://srna-workbench.cmp.uea.ac.uk/. Additionally, the source code has been released on GitHub 

and is accessible at https://github.com/sRNAworkbenchuea/UEA_sRNA_Workbench/. 

ACCESSION NUMBERS 

The three degradome replicates have been submitted to GEO and can be accessed with accession 
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TABLE AND FIGURES LEGENDS 
 

 

Figure 1. An overview of different stages of the PAREsnip2 algorithm. (A) Shows the inputs and 

processing steps performed to predict sRNA targets evidenced through degradome sequencing. (B) 

Shows the process of encoding sequence data into a number system. (C) Visual representation of the 

three-stage candidate filtering process. Regions are labelled R and target regions are labelled TR. 



 

Figure 2. The number of interactions reported when using MFE as a filter. As the MFE filter ratio 

increases, there is a reduction in the number of captured sRNA-mRNA interactions. A cut-off score of 

0.70 captures 98% of the possible validated interactions.  



 

Figure 3. The number of interactions reported when using P-value as a filter. As the cut-off decreases, 

there is a reduction in the number of captured sRNA-mRNA interactions. The default cut-off score of 

0.05 captures 85.6% of the possible validated interactions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Nucleotide base Small RNA Encoding Messenger RNA Encoding 

A 0 0 1 1 

C 0 1 1 0 

T/U 1 1 0 0 

G 1 0 0 1 

 

Table 1. The 2-bit binary encoding of nucleotides within sequence data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Maximum Score Maximum Adjacent Mismatches 

Maximum G/U Wobble Pairs Maximum Mismatches 

Mismatch Score G/U Wobble Score 

Gap Score Permissible Mismatch Positions 

Core Region Start Position Core Region End Position 

Maximum Mismatches Core Region Maximum Adjacent Mismatches Core Region 

Allow Mismatch Position 10 Position 10 Mismatch Score 

Allow Mismatch Position 11 Position 11 Mismatch Score 

Core Region Multiplier Non-permissible Mismatch Positions 

Max Gaps Allowed G/U Wobble Counts as Mismatch 

 

Table 2. Features within a sRNA-mRNA alignment which are used during the duplex alignment 

process and can be configured by the user.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



# Seqs CleaveLand4 GB PAREsnip GB sPARTA GB PAREsnip2  GB 

1 19m 23s 1 9m 30s 58 12m 48s 25 5m 38s 5 

10 27m 32s 1 9m 50s 58 12m 53s 25 5m 36s 5 

100 1h 52m 1 12m 35s 58 13m 55s 25 5m 44s 5 

1,000 15h 8m 1 44m 51s 58 1h 11m 26 6m 15s 6 

10,000 6d 6h 48m 8 6h 25m 64 4d 6h 59m 37 6m 32s 6 

100,000 DNF - 2d 15h 16m 66 DNF - 15m 1s 6 

250,000 - - 6d 10h 49m 68 - - 29m 6s 7 

500,000 - - DNF - - - 53m 11s 8 

1,000,000 - - - - - - 1h 44m 8 

 

Table 3: Benchmarking results for both time and memory usage in Gigabytes (GB) from running each 

tool using the generated small RNA datasets. If the entry is DNF it means that the tool did not 

complete the analysis within the 10 day cut-off. A '-' means that we did not attempt to run the tool. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Tool Name 

Replicate D2A Replicate D2B Replicate D2C 

V NV %PV V NV %PV V NV %PV 

sPARTA 171 120 70% 169 121 70% 162 127 72% 

PAREsnip 177 48 73% 179 50 75% 167 57 75% 

CleaveLand4 88 20 36% 95 26 40% 87 25 39% 

PAREsnip2 Allen et 
al. 

193 41 79% 191 39 80% 181 33 80% 

PAREsnip2 Fahlgren 
& Carrington 

219 48 90% 219 43 91% 205 37 91% 

 

Table 4: The results from the accuracy performance benchmarking of each tool over the three 

biological replicates. V = validated targets, NV = non-validated and %PV = percentage of possible 

validated targets that could be found. 



 

 

Replicate Untrimmed 
Reads 

Untrimmed 
Reads (NR) 

Trimmed 
Reads (NR) 

Invalid 
Sequences 
Filtered 
(NR) 

Genome 
Matched 
Reads 

Genome 
Matched 
Reads (NR) 

D2A 45,581,525 15,267,190 11,114,679 21,004 41,144,941 9,009,977 

D2B 34,915,085 13,385,729 10,103,828 17,049 31,426,832 8,316,470 

D2C 26,067,832 10,199,905 7,715,372 12,140 23,303,530 6,337,667 

 

Table 5: Summary statistics from the sequencing of three Arabidopsis thaliana degradome replicates 

(NR = non-redundant). 

 

 

 

 

 

 

 

 

 


