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Abstract 

Economic, social and environmental requirements make planning for a sustainable electricity generation mix a 

demanding endeavour. Technological innovation offers a range of renewable generation and energy management 

options which require fine tuning and accurate control to be successful, which calls for the use of large-scale, 

detailed datasets. In this paper, we focus on the UK and use Multi-Criteria Decision Making (MCDM) to evaluate 

electricity generation options against technical, environmental and social criteria. Data incompleteness and 

redundancy, usual in large-scale datasets, as well as expert opinion ambiguity are dealt with using a 

comprehensive grey TOPSIS model. We used evaluation scores to develop a multi-objective optimization model 

to maximize the technical, environmental and social utility of the electricity generation mix and to enable a larger 

role for innovative technologies. Demand uncertainty was handled with an interval range and we developed our 

problem with multi-objective grey linear programming (MOGLP). Solving the mathematical model provided us 

with the electricity generation mix for every 5 minutes of the period under study. Our results indicate that nuclear 

and renewable energy options, specifically wind, solar, and hydro, but not biomass energy, perform better against 

all criteria indicating that interindustry architectural innovation in the power generation mix is key to sustainable 

UK electricity production and supply.     
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1. Introduction 

Energy supply is one of the most important elements of any economy. High quality and timely energy 

supply is necessary to meet demand in a growing range of operations. In this context, uninterrupted 

energy supply feeds into the production, value enhancement and retail of all commodities and even 

services (Bhattacharya et al, 2017). However, energy production, transformation and consumption are 

often delivered by large-scale industrial processes which are responsible for severe environmental 



damage (Kaldellis et al, 2004; Wang and Song, 2014; Mazzanti and Rizzo, 2017). Change to more 

sustainable systems and processes has been slowed by technological lock-in, which tends to maintain 

the status quo and competitiveness of incumbent organisations (Unruh, 2000; Foxon; 2002). Recent 

advances in renewable energy and energy storage systems, however, set the scene for a forthcoming 

complex energy system that enables deep decarbonisation (Rode et al, 2017). In this context, 

interindustry architectural innovation (Jaspers et al., 2012) offer a better approach in the energy sector.  

Architectural innovations are reconfigurations of existing products and systems, created through new 

interfaces between existing components, but where the technological basis of the components remains 

largely unchanged (Henderson and Clark, 1990). Interindustry architectural innovation is defined as the 

novel configuration of existing technologies from different industries or sectors. This approach 

integrates different mature technologies and incremental innovations to produce higher efficiency under 

reduced risk (Zhang et al., 2013) and presents less challenge than developing and integrating new radical 

innovations.  Configuration approaches put the emphasis on optimising or incrementally improving 

existing solutions through the application of novel integration strategies (Hyard, 2013), leading to 

significantly different and innovative solutions (Kern, 2012; Negro et al., 2012).  

 

To achieve interindustry architectural innovation and adopt a novel integrating approach, there is an 

increasing need for the efficient use of high frequency, large-scale data (Song et al, 2016) to address 

existing and forthcoming challenges in the energy sector (Chalvatzis and Rubel, 2015; Ulnicane, 2016). 

In this process, large-scale data hold the promise of unlocking opportunities for interindustry 

architectural innovation, particularly focused on the complex issues of sustainability (Etzion and 

Aragon-Correa, 2016). For this research we develop a novel multi-objective model that enables 

addressing conflicting challenges for sustainable power supply by using high-frequency demand and 

fuel mix data to fine-tune its operation. We argue that this approach promotes the sustainability of power 

supply system and facilitates interindustry architectural innovation.   

 

There is a wide range of available energy resources, the supply of which can be optimised (Chalvatzis 

and Ioannidis, 2017a; 2017b), however in this research we call for a focus on electricity. Unlike other 

energy types, electricity can be used flexibly to support almost every energy need in the built 

environment (Darby, 2017), transportation (Canzler et al, 2017) and industrial processes (Zafirakis et 

al, 2014; Pappas and Chalvatzis, 2017). Moreover, electricity is potentially the only form of energy that 

can be produced and consumed with negligible environmental emissions (Kalkuhl et al, 2012; Jakob et 

al, 2014), meaning that electricity is an attractive proposition for meeting the ambitious challenge of 

economy-wide decarbonisation. Moreover, electricity is a secondary form of energy which can be 

produced from a variety of resources and resource combinations, depending on regional availability 

(Chalvatzis, 2009). 

 



Electricity generation is not without challenges, not least with regards to optimal resource allocation 

(Malekpoor et al, 2017), demanding sustainability constraints and issues of social adjustment (Zafirakis, 

2013; Messner, 2015). Policies at international, regional and national levels focus on the electricity 

sector to address multiple environmental issues. Climate change mitigation and air pollution control are 

strongly linked to emission from power generation (Spyropoulos et al. 2005; Heard et al, 2017), 

achieved by substituting fossil fuels for renewable energy sources and nuclear energy for power 

generation. The reduction of toxic urban air pollution that is responsible for respiratory and other health 

impacts, has also been an important environmental issue (Giles-Corti et al, 2016). It is expected that the 

substitution of internal combustion engine vehicles with electric vehicles and the electrification of 

domestic heating can significantly reduce urban pollution.  

 

Power sector management is therefore highly complex. Addressing the sustainability challenges of 

electricity production and distribution requires the diffusion of new technologies that add to this 

complexity (Bompard et al, 2015). Considering the complexities within the electricity industry and the 

existence of multiple attributes involved with production planning, researchers have applied Multi-

Criteria Decision Making techniques to evaluate and optimize the electricity generation mix and deliver 

a solution to sustainable electricity planning. Linares and Romero (2000) proposed a multi objective 

linear optimization approach to simultaneously minimize the cost and emissions related to electricity 

production in Spain. Unsihuay-Vila et al. (2011) proposed a Multi-Objective model for long-term 

expansion planning of electricity generation and transmission by applying mixed integer programming 

for economic and environmental criteria. However, social factors, an important basis of sustainable 

development, were omitted by this previous research. Arnette and Zobel (2012) made an effort to 

develop a regional generation mix for the USA. Applying a bi-objective optimization model, which 

aims to reduce the costs of generation and minimize the greenhouse gas (GHGs) emissions, they 

proposed a model to determine the optimal generation mix of wind, solar and coal generation systems. 

Perrera et al. (2013) developed an optimization model to design a hybrid electrification system for 

standalone grids. Applying non-linear multi-objective optimization, levelized cost of energy, unmet 

load fraction, wasted renewable energy and fuel consumption were considered as objectives and by 

applying TOPSIS the obtained Pareto frontier was assessed for optimal solutions. More recently, 

Pratama et al. (2017) developed a bi-objective optimization model to find the best scenarios for 

electricity generation in Indonesia for 2050. The results were assessed through a simple normalization 

aggregation process considering eleven economic, environmental and social criteria to select the best 

possible solution.  

 

The development of low cost renewable energy technologies and the proliferation of renewable energy 

sources is adding large-scale intermittent output from wind and solar farms and thousands of micro 

power plants on house roofs. The expected popularity of electric vehicles will add millions of electricity 



consumption points as well as potential mobile power stations that can inject energy back into the grid 

(Haddadian et al, 2016). In addition to the enormous growth of power market participants their 

unpredictability brings forward the requirement for supply security mechanisms such as the capacity 

markets and the emergence of increased frequency market settlement to 5 and even 1-minute intervals 

(Dowling et al, 2017). In this context, attempting to describe the electricity market operation requires 

high frequency, large-scale data that capture the detailed role of each type of power generation.  

 

Nevertheless, the use of large-data even though necessary and promising (Karpatne et al, 2017), poses 

new methodological and contextual challenges. Heterogeneity, redundancy and incompleteness (Yuan 

et al, 2017) are the main problematic features that result in unpredictable relationships between 

attributes. To this end, the interrelation of sustainability and big data has been explored and applied in 

various fields of supply chain performance (Hazen et al, 2016; Mani et al, 2017; Dubey et al, 2017; 

Badiezadeh et al, 2017), manufacturing (Rehman et al, 2016; Xu et al, 2016; Zhang et al, 2017), risk 

management (Janke et al, 2016; Choi et al, 2017) and marketing and prediction of business success (Li 

et al., 2015, Fan et al., 2015, Erevelles et al., 2016). One of the prominent features of energy system 

complexity is the behaviour of consumers and their relation to technology (Pothitou, 2016; 2017) and 

Diamantoulakis et al (2015) introduced dynamic energy management as a two-way flow between the 

grid and its users. Acknowledging the potential of big data, researchers have developed load scheduling 

and power dispatching smart power grid applications (Guo et al, 2016) and classification and 

assignment methods of customer energy loads for serving (Biscarri et al, 2017). There have been few 

applications of big data in demand prediction. Rahman et al. (2016) applied machine learning 

techniques to data collected for the past 20 years by the USA power management sector to develop a 

demand forecasting system. This aggregation of machine learning and big data analytics achieved a 

forecasting rate equal to 99% of the actual demand.   

 

This body of literature shows that improved understanding and knowledge extraction from big data 

offers numerous opportunities for sustainability performance (Mukred and Jianguo, 2017). 

Sustainability challenges are often cited as the main driver for innovation in resource and knowledge 

based view approaches (Jelinek and Bergey, 2013). However, there have been few attempts to explain 

the role of big data in enabling innovation to address sustainability challenges. Wu et al (2016) provide 

a comprehensive review of conceptual approaches to big data for sustainability, but conclude that 

electricity sector sustainability is yet to be addressed. In their analysis they highlight the role of 

sustainable energy mix complexity as a hindrance for innovation.  

 

 

Following this introductory section, Section 2 explains the context of our case study in the UK and the 

goals this paper achieves. The methodological framework and the detailed structure of the problem are 



presented in Section 3. The results are presented in Section 4 alongside figures that highlight our 

findings and a comprehensive discussion that facilitates contextualisation. Finally, we conclude with 

future research suggestions and limitations in Section 5. 

 

2. The UK Case Study and Flow Diagram 

For our case study we focus on the UK, because it combines several unique features that define its 

energy sector and contextualises the role of big data in enabling the diffusion of innovation for 

sustainability. The UK has a long-term commitment to energy decarbonisation (Sithole et al. 2016), 

manifested with the Climate Change Act (UK Government, 2008) and updated with consecutive Carbon 

Budgets, leading the country to a trajectory to reduce its total emissions by 80% in the period 1990-

2050. It is anticipated that the UK electricity sector will be largely decarbonised significantly earlier 

than 2050, with 2030 cited as a target (Climate Change Committee, 2010). 

 

The UK must achieve this ambitious plan of deep power sector decarbonisation against the backdrop of 

a fragile balance of supply and demand (Newbery, 2016). Specifically, underinvestment in new 

generation capacity in the UK electricity sector makes it increasingly difficult to meet demand. Capacity 

is being removed faster than it is replaced, with coal power stations being retired due to emissions quota 

and nuclear power stations reaching the end of their lifespans (Royal Academy of Engineering, 2013). 

The UK power sector is regularly at the centre of political discourse and public debate (Lilliestam and 

Hanger, 2016), with repeated suggestions for price caps and market control (BBC 2013; 2017) and 

unstable regulation. Within this environment power utilities do not innovate, but instead use alternative 

approaches to retain customers (Rutter et al, 2017).  

 

Identifying the difficulties for UK’s power sector the Government has recently uncovered a plan to 

support innovation in new energy technologies (UK Government, 2017), specifically with a focus on 

energy storage (Zafirakis and Chalvatzis, 2014) and smart metering. Part of this agenda aims to enable 

wide technology diffusion for demand side management putting consumers in the centre of the changes, 

an agenda that matches the EU Clean Energy Package (2016). Energy sector innovation, with the 

examples of energy storage and big data, was in the UK Coalition Government’s Great Innovations as 

early as 2013 (UK Government, 2013).    

 

In this manuscript we propose an electricity generation mix optimisation framework that satisfies 

sustainability requirements for high time frequency big electricity demand data. The sustainability 

performance of each generation option has been evaluated against technical, economic, environmental 

and social criteria. The inherent uncertainty in these evaluations and the use of linguistic terms for 

qualitative criteria has been modelled using grey TOPSIS (Technique for Order of Preference by 

Similarity to Ideal Solution). The objective functions have been established by using the TOPSIS scores 



for each generating system. Electricity demand has been considered within a specified range to cover 

for uncertainty and unexpected events; thus, the optimization problem was converted to interval multi-

objective optimization type. Multi-objective grey linear programming (MOGLP), a reliable approach 

to deal with interval linear programming, has been used to solve the developed model (Figure 1).  

 

 

Figure 1: Overall solution procedure for obtaining the optimal electricity generation mix 

 

 

 



3. Methodology 

In real life decision making problems, decision makers (DMs) need to evaluate the performance of 

alternative options. For complex problems it is necessary to consider multiple parameters which are not 

straight-forward to process and quantify; therefore, it is preferable for DMs to occasionally apply 

qualitative linguistic terms instead of exact crisp values for a decision making problem. With the 

availability of large-scale data there is a degree of uncertainty for some factors which cannot be 

represented with a single value and require a range of values. Thus, we need to use methods capable of 

handling interval valued information.  

 

3.1 Grey numbers 

Grey number is a concept derived from the grey theory system, proposed by Deng (1982), which is well 

equipped to deal with insufficient, redundant, qualitative and interval information. A grey system is 

defined as a system capable of covering uncertain information presented by a grey number and a grey 

variable. For defining a grey number, let X be the universal set and 𝑥 ∈ 𝑋. Then a grey set G of X is 

defined by its two mappings in equations 1 and 2: 

�̅�𝐺(𝑥): 𝑥 → [0,1]         (1) 

𝜇𝐺(𝑥): 𝑥 → [0,1]         (2) 

In equations (1) and (2), �̅�𝐺(𝑥) and 𝜇𝐺(𝑥) are upper and lower membership functions respectively. 

Generally grey numbers are expressed as: 

⨂𝐺 = 𝐺| �̅�
𝜇
          (3) 

The lower and upper memberships can be estimated and an interval valued grey number with lower and 

upper bound can be defined as: 

⨂𝐺 = [𝐺, 𝐺]         (4) 

If we assume ⨂𝐺1 = [𝐺1, 𝐺1] and ⨂𝐺2 = [𝐺2, 𝐺2] two Grey interval numbers then, the main operations 

on grey numbers are done through following: 

⊗G1 + ⊗G2 = [𝐺1 + 𝐺2 , 𝐺1 + 𝐺2]       (5) 

⊗G1 − ⊗G2 = [𝐺1 − 𝐺2, 𝐺1 − 𝐺2]       (6) 

⊗G1 × ⊗G2 = [min( 𝐺1 𝐺2, 𝐺1 𝐺2, 𝐺1 𝐺2, 𝐺2 𝐺1), max(𝐺1 𝐺2, 𝐺1 𝐺2, 𝐺1 𝐺2, 𝐺2 𝐺1)] (7) 

⊗G1 ÷ ⊗G2 = [𝐺1 , 𝐺1] × [
1

𝐺2
 ,

1

𝐺2
]       (8) 

Also the lengths of a grey number can be calculated as follows: 

𝐿(⨂𝐺) = |𝐺 − 𝐺|         (9) 

In order to find the distance between two grey numbers, we refer to Euclidian distance between two 

triangular fuzzy numbers (TFN). Grey numbers can be considered as a certain type of TFN. A TFN 

number can be shown as �̃� = (𝐴1, 𝐴2, 𝐴3) and we can transform it to a grey number by considering the 



range of it as ⊗ 𝐴 = [𝐴1, 𝐴3] (Oztaysi 2014). Applying fuzzy literature and based on Chen’s (2000) 

definition of the distance between two TFN numbers, we define the distance between two grey numbers 

of ⊗ 𝐴 = [𝐴, 𝐴] and ⊗ 𝐵 = [𝐵, 𝐵] as follows: 

𝐷𝑖𝑠 (⊗ 𝐴, ⨂𝐵) = √
1

2
[(𝐴 − 𝐵)

2
+ (𝐴 − 𝐵)

2
]                                                                             (10) 

If we consider a set of 𝑚 alternatives (𝑦1, 𝑦2, ⋯ , 𝑦𝑚) and a set of 𝑛 criteria (𝑐1, 𝑐2, ⋯ , 𝑐𝑛), we can build 

the grey decision matrix as follows: 

𝐷𝑀 = [

⊗ 𝑑11 ⊗ 𝑑12   ⋯ ⊗ 𝑑1𝑛

⊗ 𝑑21  ⊗ 𝑑22   ⋯ 𝑑 ⊗2𝑛

 ⋮          ⋮        ⋯   ⋮   
  ⊗ 𝑑𝑚1 𝑑 ⊗𝑚2 ⋯ ⊗ 𝑑𝑚𝑛

] = [⊗ 𝑑𝑖𝑗]  𝑓𝑜𝑟  𝑖 = 1,2, ⋯ , 𝑚;  𝑎𝑛𝑑  𝑗 = 1,2, ⋯ , 𝑛 (11) 

Where ⊗ 𝑑𝑖𝑗 = [𝑑𝑖𝑗 , 𝑑𝑖𝑗] is the value of the ith alternative against the jth criterion. 

TOPSIS is based on the idea that the solution or alternative with the shortest distance to the ideal 

solution and furthest distance from the worst solution is the best option among its peer alternatives. The 

solution procedure for grey TOPSIS is the following: 

 

Step 1. Normalizing the decision matrix so the values lie between 0 and 1 based on equation 12 and 13. 

⊗ 𝑁𝑖𝑗 =
⊗ 𝑑𝑖𝑗

max (⊗ 𝑑𝑗)
= [

𝑑𝑖𝑗

𝑚𝑎𝑥(𝑑
𝑗
)

,
𝑑𝑖𝑗

max(𝑑𝑗)
] 𝑖𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝒋 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎     (12) 

⊗ 𝑁𝑖𝑗 = 1 −
⊗ 𝑑𝑖𝑗

max(⊗ 𝑑𝑗)

= [1 −
𝑑𝑖𝑗

𝑚𝑎𝑥(𝑑
𝑗
)

, 1 −
𝑑𝑖𝑗

max(𝑑𝑗)
] 𝑖𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝒋 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎           (13) 

This normalization converts all criteria to benefit criteria. 

 

Step 2. Determining the positive and negative ideal solutions (PIS and NIS) based on equations (14) 

and (15) respectively: 

𝑃𝐼𝑆 =  {max
𝑖

𝑁𝑖𝑗 |𝑗 = 1,2, ⋯ , 𝑛} = {𝑃𝐼𝑆1, 𝑃𝐼𝑆2, ⋯ , 𝑃𝐼𝑆𝑛}                                                                       (14) 

𝑁𝐼𝑆 =  {min
𝑖

𝑁𝑖𝑗 |𝑗 = 1,2, ⋯ , 𝑛} = {𝑁𝐼𝑆1, 𝑁𝐼𝑆2, ⋯ , 𝑁𝐼𝑆𝑛}                                                                      (15) 

 

Step 3. Calculating the distance between each alternative and the positive and negative ideal solution, 

𝐷𝑖𝑠+ and 𝐷𝑖𝑠− respectively, based on equations (16) and (17).  

𝐷𝑖𝑠𝑖
+ = √∑(𝑃𝐼𝑆𝑗 − 𝑁𝑖𝑗)2 + (𝑃𝐼𝑆𝑗 − 𝑁𝑖𝑗)2

𝑛

𝑗=1

     𝑓𝑜𝑟 𝑖 = 1,2, ⋯ , 𝑚                                            (16)     



𝐷𝑖𝑠𝑖
− = √∑(𝑁𝐼𝑆𝑗 − 𝑁𝑖𝑗)2 + (𝑁𝐼𝑆𝑗 − 𝑁𝑖𝑗)2

𝑛

𝑗=1

       𝑓𝑜𝑟 𝑖 = 1,2, ⋯ , 𝑚                                         (17) 

 

Step 4. Finally, relative closeness coefficient is obtained by equation (18) and alternative with the 

highest coefficient ranked as the best solution. 

𝐶𝑖
∗ =  

𝐷𝑖𝑠𝑖
−

𝐷𝑖𝑠𝑖
− + 𝐷𝑖𝑠𝑖

+                                                                                                                           (18) 

Figure 2 shows the necessary steps for execution of a grey TOPSIS evaluation.  

 

Figure 2: Grey TOPSIS procedure 

3.2 Multi-Objective Grey Linear Programming (MOGLP) 

Grey Linear Programming (GLP) is an optimization approach developed by Haung et al. (1992). In the 

presence of interval values, whether as coefficients of objective function or in the constraints of a linear 

problem, the problem cannot be solved by classical linear programming approaches.  Model (1) 

introduces a typical GLP mathematical model.  

𝑚𝑎𝑥 𝑓: ⊗ 𝐶 ⊗ 𝑋 

Subject to: 

⊗ 𝐴 ⊗ 𝑋 ≤⊗ 𝐵       Model (1)

 ⊗ 𝑋 ≥ 0 

 

Where ⊗ 𝐶 = {⊗ (𝑐1),⊗ (𝑐2), ⋯ ,⊗ (𝑐𝑛)} is a vector of coefficients for the objective function:  

⊗ 𝐵𝑇 = {⊗ (𝑏1),⊗ (𝑏2), ⋯ ,⊗ (𝑏𝑚)} are the values of the left hand side of the constraints. 



Variables in  ⊗ 𝑋𝑇 = {⊗ (𝑥1),⊗ (𝑥2), ⋯ ,⊗ (𝑥𝑛)} are our design variables and ⊗ 𝐴 = [⊗ 𝑎𝑖𝑗] for 

𝑖 = 1,2, ⋯ , 𝑛 and 𝑗 = 1,2, ⋯ , 𝑚 is a matrix with the values of design variables on the right hand side 

of the constraints. Since all of the parameters in the model are in interval grey form, the optimal solution 

will also be in interval grey form as ⊗ 𝑓 = [⊗ 𝑓,⊗ 𝑓] is the optimal value of the objective function 

and ⊗ 𝑋∗ = [⊗ (𝑥1
∗),⊗ (𝑥2

∗), ⋯ ,⊗ (𝑥𝑗
∗)] where ⊗ (𝑥𝑗

∗) = [⊗ 𝑥𝑗
∗,⊗ 𝑥𝑗

∗] are the optimal values of the 

design variables.   

 

To solve Model 1, Huang et al. (1992) proposed a two steps method (TSM). The principle of the method 

was to divide the problem into two sub problems and by solving each of them, the optimal values for 

lower and upper bounds of the design variable were found. Fan et al. (2011) improved the methodology 

by separating the positive and negative values of the objective function coefficients and guaranteeing 

that the solution would not violate the best-case constraints. If both the lower and upper bounds of the 

objective function (𝑓±) and right hand side of the constraints (𝑏±) are positive and for n interval 

coefficients in model (1), 𝑘 of them be positive (𝑐𝑗
± ≥ 0 ;  𝑗 = 1,2, ⋯ , 𝑘) and 𝑛 − 𝑘 of them be negative 

 (𝑐𝑗
± ≤ 0 ;  𝑗 = 𝑘 + 1, 𝑘 + 2, ⋯ , 𝑛), then the first sub-model for obtaining the lower bounds can be 

shown as follows: 

max𝑓− = ∑ 𝑐𝑗
−𝑥𝑗

− + ∑ 𝑐𝑗
−𝑥𝑗

+

𝑛

𝑗=𝑘+1

𝑘

𝑗=1

 

Subject to: 

∑ 𝑎𝑖𝑗
+ 𝑥𝑗

−

𝑘

𝑗=1

+ ∑ 𝑎𝑖𝑗
+ 𝑥𝑗

+

𝑛

𝑗=𝑘+1

≤ 𝑏𝑖
−  𝑓𝑜𝑟 𝑖 = 1,2, ⋯ , 𝑚,                                                𝑀𝑜𝑑𝑒𝑙 (2) 

𝑥𝑗
− ≥ 0  𝑓𝑜𝑟 𝑗 = 1,2, ⋯ , 𝑘, 

𝑥𝑗
+ ≥ 0  𝑓𝑜𝑟 𝑗 = 𝑘 + 1, 𝑘 + 2, ⋯ , 𝑛. 

 

By solving model (2) lower bounds for optimum value of 𝑥𝑗,𝑜𝑝𝑡
±  ; 𝑗 = 1,2, ⋯ , 𝑘 and upper bounds for 

optimum value of 𝑥𝑗,𝑜𝑝𝑡
±  ; 𝑗 = 𝑘 + 1, 𝑘 + 2, ⋯ , 𝑛 can be obtained. After solving model (2) the second 

sub-model for the main problem can be proposed as model (3) and by solving it the upper bound for 

objective function can be achieved.  

max𝑓+ = ∑ 𝑐𝑗
+𝑥𝑗

+ + ∑ 𝑐𝑗
+𝑥𝑗

−

𝑛

𝑗=𝑘+1

𝑘

𝑗=1

 

Subject to: 

∑ 𝑎𝑖𝑗
− 𝑥𝑗

+

𝑘

𝑗=1

+ ∑ 𝑎𝑖𝑗
− 𝑥𝑗

−

𝑛

𝑗=𝑘+1

≤ 𝑏𝑖
+    𝑓𝑜𝑟 𝑖 = 1,2, ⋯ , 𝑚,                                                                         



∑ 𝑎𝑖𝑗
− 𝑥𝑗

+

𝑙𝑖1

𝑗=1

+ ∑ 𝑎𝑖𝑗
− 𝑥𝑗𝑜𝑝𝑡

−

𝑘

𝑗=𝑙𝑖1+1

+ ∑ 𝑎𝑖𝑗
− 𝑥𝑗

−

𝑙𝑖2

𝑗=𝑘+1

+ ∑ 𝑎𝑖𝑗
− 𝑥𝑗𝑜𝑝𝑡

+

𝑛

𝑗=𝑙𝑖2+1

≤ 𝑏𝑖
+     𝑓𝑜𝑟 𝑖

= 1,2, ⋯ , 𝑚,           

𝑥𝑗
+ ≥ 𝑥𝑗,𝑜𝑝𝑡

−   𝑓𝑜𝑟 𝑗 = 1,2, ⋯ , 𝑘,                                                                                       𝑀𝑜𝑑𝑒𝑙 (3)        

𝑥𝑗
+ ≤ 𝑥𝑗,𝑜𝑝𝑡

−   𝑓𝑜𝑟 𝑗 = 𝑘 + 1, 𝑘 + 2, ⋯ , 𝑛, 

𝑥𝑗
+ ≥ 0  𝑓𝑜𝑟 𝑗 = 1,2, ⋯ , 𝑘, 

𝑥𝑗
− ≥ 0  𝑓𝑜𝑟 𝑗 = 𝑘 + 1, 𝑘 + 2, ⋯ , 𝑛, 

where: 

𝑎𝑗
± ≥ 0  𝑗 = 1,2, ⋯ , 𝑙𝑖1;  𝑗 = 𝑙𝑖2 + 1, 𝑙𝑖2 + 2, ⋯ , 𝑛, 

𝑎𝑗
± ≤ 0  𝑗 = 𝑙𝑖1 + 1, 𝑙𝑖1 + 2, ⋯ , 𝑘;  𝑗 = 𝑘 + 1, 𝑘 + 2, ⋯ , 𝑙𝑖2. 

In the aforementioned model, 𝑥𝑗,𝑜𝑝𝑡
−  and 𝑥𝑗,𝑜𝑝𝑡

+  are the optimum values for decision variables after 

solving model (2). 

 

The initiation stage for a multi-objective optimization problem is to find the optimized value for each 

of the objective functions separately. Thus, by applying models (1) to (3), the optimal solution for each 

objective function should be obtained. Assuming the optimal objective function value for the lth 

objective function is 𝑓𝑙
∗ = [⊗ 𝑓𝑙

∗,⊗ 𝑓𝑙
∗], a membership function for each minimization or 

maximization objective function can be obtained by equations (19) and (20) respectively: 

𝜇𝑙(𝑥) = {

1                 𝑖𝑓 𝑓𝑙(𝑥) ≤⊗ 𝑓𝑙
∗,

⊗𝑓𝑙
∗−𝑓𝑙(𝑥)

⊗𝑓𝑙
∗−⊗𝑓𝑙

∗         𝑖𝑓   𝑓𝑙(𝑥) ≥ ⊗ 𝑓𝑙
∗.             

                                                      (19) 

 

𝜇𝑙(𝑥) = {
1                 𝑖𝑓 𝑓𝑙(𝑥) ≥⊗ 𝑓𝑙

∗,
𝑓𝑙(𝑥)−⊗𝑓𝑙

∗

⊗𝑓𝑙
∗−⊗𝑓𝑙

∗         𝑖𝑓   𝑓𝑙(𝑥) ≤⊗ 𝑓𝑙
∗.              

                                                             (20)  

Figure 3 demonstrates the objective function memberships.  

 

Figure 3: Minimization and Maximization of membership functions 



Decreasing 𝑓𝑙(𝑥) leads to increasing the membership function in the minimization problem and on the 

contrary, an increase on the value of 𝑓𝑙(𝑥) increases the membership function for the maximization 

problem. Thus, lower amounts in minimization and higher amounts in maximization achieve higher 

values of membership function. The solution to the multi objective problem can be achieved through 

maximizing all the membership functions and by solving the model (4): 

max ∑ 𝑤𝑙𝜇𝑙

𝑝

𝑙=1

(𝑥) 

Subject to: 

𝜇𝑙(𝑥) ≤ 1  

⊗ 𝐴 ⊗ 𝑋 ≤⊗ 𝐵,        Model (4) 

and ⊗ 𝑋 ≥ 0. 

 

Where 𝜇𝑙(𝑥) are the membership functions; 𝑤𝑙 is the weight assigned to each objective function to 

emphasize the importance of the objectives based on DMs’ opinion; and values for ⊗ 𝐴 and  ⊗ 𝐵 are 

the same as the values applied in each objective problem. The above model is a grey linear programming 

problem and can be solved through steps (1) to (3).  

 

3.3 Problem design 

3.3.1 MCDM evaluation 

As explained in Section 3.2, the coefficients for our objective functions are based on MCDM 

evaluations and specifically the closeness coefficient calculated by grey TOPSIS for each of the 

technical, environmental and social criteria. Defining the related criteria is one the most important steps 

in designing a comprehensive evaluation. An extensive literature review revealed the following criteria 

for the evaluation process (Tables 1,2,3). 

 

Table 1: Technical Criteria for grey TOPSIS evaluation.  

Criteria Description and measuring unit Reference 

Evaluation of native resources The extent to which the natural environment, natural 

resources and technological advances of a country 

support the generation system (Linguistic terms) 

(Kabak and 

Dagdeviren, 2014) 

Decreasing dependency on 

imported fuel 

Effectiveness of the generation system in reducing the 

fuel imports and decreasing the dependency (Linguistic 

terms) 

(Kabak and 

Dagdeviren, 2014) 

Reliability of energy supply Supplying sufficient electricity to the grid is a 

significant issue. Intermittent energy sources can be 
(Sengul et al, 2015) 



difficult to predict or control and thus provide a source 

of liability (linguistic terms) 

Levelized cost of generation The average cost of the lifetime of the plant per MWh of 

electricity generated. 
(Lazard, 2017) 

Capacity factor The Capacity factor of a power plant is the ratio of the 

electrical energy produced by a generating unit for a 

period of time: to the electrical energy that could have 

been produced at continuous full power operation 

during the same period (crisp numbers in percentages) 

(Stein, 2013) 

 

 

 

 

Table 2: Environmental Criteria for grey TOPSIS evaluation 

Criteria Description and measuring unit Reference 

Heavy metal emissions Amount of emitted heavy metals to the environment 

due to fuel combustion of a power plant (Interval 

value, g/MWh) 

Experts opinion 

Water consumption The amount of water withdrawals used for cooling 

conventional power plants (crisp number, m3/GWh) 
(Macknick et al, 2012) 

Effect on global Warming Impacts of certain generation systems based on GHG 

emissions on global warming (Linguistic terms) 

(Streimikiene et al, 

2012) 

Land use The environment and landscape are affected directly 

by the land occupied by energy systems (Interval 

value,  m2/MWh) 

(Wang et al, 2009) 

Disturbance of ecological 

balance 

Extent of the negative impacts a power plant can have 

on the ecological system of the region due to land 

occupation, noise generation and wastes (Linguistic 

terms) 

(Garni et al, 2016) 

Particulate matter PM10 

and 

Particulate matter PM25 

Particulate matter emissions have been considered 

separately for PM10 and PM2.5. 

Particulate matter emissions pose significant risks for 

human health depending on size, distribution, 

microstructure and chemical composition (Interval 

value, kg/GWh) 

(Streimikiene et al, 

2012) 

Special wastes (nuclear, …,)  Nuclear power plants, depending on the technology, 

produce 2.7 g of nuclear waste per MWh of electricity 

generation (Interval value, g/MWh) 

(Brand and Missaoui, 

2014) 



 

 

Table 3: Social criteria for grey TOPSIS evaluation 

Criteria Description and measuring unit Reference 

Job creation Levelized number of employees involved in the 

construction and operation phases of a power plant  

 

(Maxim, 2014) 

Social acceptability The overview of opinions related to energy systems by 

the local population regarding the hypothesized 

realization of the projects under review from the 

consumer point of view, also known as potential for 

conflict generation (Linguistic terms) 

(Wang et al, 2009) 

Health costs associated with 

the technology 

Electricity generation systems can damage human 

health. Emissions, toxicity, noise creation and 

radioactive effects are among the contributors of the 

externalities.   

(Santoyo-Castelazo and 

Azapagic, 2014) 

 

Regarding the criteria chosen for this research, where the precise information about the criterion is 

available, crisp numbers have been chosen as the unit. For cases with uncertainty in their values, interval 

values are used and where experts’ opinions can best describe the criteria, linguistic terms have been 

applied to gather the best possible combination of information about all of the criteria.  

 

3.3.2 Multi objective optimization model 

In this section we present and explain the mathematical models used for the objective functions, 

decision variables (design variables) and constraints for this research. The goal of our model is to find 

the most sustainable electricity generation mix. The 8 sources of electricity generation, including Coal, 

Gas, Nuclear, Oil, Wind, Hydro, Solar and Biomass, compete with each other to gain a share of 

generation and to maximize the technical, environmental and social utility. Equations (21) to (28) show 

the multi-objective optimization model.  

𝑚𝑎𝑥 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑠𝑐𝑜𝑟𝑒: ∑ ∑ 𝐸𝑠𝑐𝑜𝑟𝑒𝑖𝑋𝑘𝑖,

𝑇

𝑘=1

𝑚

𝑖=1

                                                                      (21) 

𝑚𝑎𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑠𝑐𝑜𝑟𝑒: ∑ ∑ 𝑇𝑠𝑐𝑜𝑟𝑒𝑖𝑋𝑘𝑖,

𝑇

𝑘=1

𝑚

𝑖=1

                                                                                  (22) 

𝑚𝑎𝑥 𝑆𝑜𝑐𝑖𝑎𝑙 𝑠𝑐𝑜𝑟𝑒: ∑ ∑ 𝑆𝑠𝑐𝑜𝑟𝑒𝑖𝑋𝑘𝑖,

𝑇

𝑘=1

𝑚

𝑖=1

                                                                                          (23) 

Subject to: 



𝑋𝑘𝑖 ≤ 𝐷�̃�𝑘(1 + 𝑆)𝐿𝑆𝐶𝑖      𝑓𝑜𝑟 𝑖 = 1,2, ⋯ , 𝑚,                                                                                 (24) 

𝐷�̃�𝑘(1 + 𝑆) ≤ ∑ 𝑋𝑘𝑖 ≤ 𝐷�̃�𝑘(1.01 + 𝑆)                 𝑓𝑜𝑟  𝑘 = 1,2, ⋯ , 𝑇,                                     (25)

𝑚

𝑖=1

 

𝑋𝑘𝑖 = 0                                                                            𝑓𝑜𝑟  𝑖 = 7    𝑎𝑛𝑑   𝑘 ∈ 𝑁𝑆                         (26) 

𝑋𝑘𝑖 = �̃�𝑘𝐷�̃�𝑘(1 + 𝑆)𝐿𝑆𝐶𝑖                                           𝑓𝑜𝑟 𝑖 = 7     𝑎𝑛𝑑   𝑘 ∉ 𝑁𝑆                          (27) 

 

𝑋𝑘𝑖 ≥ 0                                                                                                                                                     (28) 

 

Where 𝑋𝑘𝑖 is the decision variable and it shows the rate of electricity generation (MWh) for generation 

option i in time period k. 

𝐷�̃�𝑘 is the demand rate (MWh) for time period k and it is a grey interval variable. 

𝐸𝑠𝑐𝑜𝑟𝑒𝑖, 𝑇𝑠𝑐𝑜𝑟𝑒𝑖 and 𝑆𝑠𝑐𝑜𝑟𝑒𝑖 are the objective function coefficients and are obtained through grey 

TOPSIS evaluations. 

𝐿𝑆𝐶𝑖 is the maximum percentage allowance of generation for system i. 

S is the slack coefficient and is used as a reliability coefficient determining the confidence level for 

generating more electricity than demand, in case energy demand is higher than anticipated. This 

coefficient is a percentage.  

�̃�𝑘 is the solar capacity coefficient which limits the availability of the solar system generation in the 

time period of k and is a grey interval variable. Lower bound of �̃�𝑘 is ratio of the minimum solar 

electricity generation at period k to maximum solar electricity generation for the total time periods of 

the last year and upper bound of �̃�𝑘 is ratio of the maximum solar electricity generation at period k to 

maximum solar electricity generation for the total time periods of the last year. The variables for the 

model can also be seen in nomenclature section, appendix 1.  

 

Equations (21) to (23) are the objective functions and aim to maximize the technical, environmental 

and social scores of the generation mix. Equation (24) is the constraint which guarantees diversity 

among the generation options. Equation (25) guarantees demand satisfaction in each time period. The 

total electricity generation through the system must satisfy electricity demand to prevent black outs. 

Equation (26) prevents the model from assigning any share to solar system during time periods belongs 

to NS where there is no solar radiation available and Equation (27) limit the generation of solar 

electricity proportionate to availability of solar radiation during the day.  Equation (28) is a technical 

constraint to make sure there are no negative values in the solutions.  

 

4. Results 

The first step in our approach is to obtain the Technical, Environmental and Social scores through the 

multi-criteria evaluation of 8 mainstream generation options (i=1,2,⋯,8; respectively for Coal, Gas, 



Nuclear, Oil, Wind, Hydro, Solar and Biomass). The experts’ opinions, statistical data and information 

about the criteria mentioned in Section 3.3.1 form the evaluation tables (Tables 4, 5 and 6). The 

importance weights of all of the criteria have been considered equal, as the consensus among the experts 

was that all of the criteria had a similar significance. 

 

Table 4: Evaluation against technical criteria. 

Criteria 

 

Systems 

 

Evaluation of 

native 

resources 

Decreasing 

dependencies 

on imported 

fuel 

Reliability of 

energy supply 

Capacity 

Factor 

Levelised cost 

of generation 

Coal Medium High Medium Medium High 85 [124 153] 

Gas Medium Medium Very High 85 [56 58] 

Nuclear Low Low Medium High 85 [82 121] 

Oil Low Very Low High 85 [163 216] 

Wind Very high Very High Medium 24 [78.5 108.5] 

Hydro Medium High Very High Medium High 50 [58 68] 

Solar Medium Very High Low 20 [71 94] 

Biomass Low Low Medium High 83 [85 88] 

 

Table 5: Evaluation against environmental criteria. 

Criteria 

 

Systems 

Heavy 

metal per 

g/GWh 

Water 

Consumption 

m3 / GWh 

Global 

warming 

(tons CO2 

/ GWh) 

Land use 

(m2/MWh) 

Disturbance 

of 

ecological 

balance 

Particulate 

Matter 

PM10 

kg/GWh 

Particulate 

Matter 

PM2.5 

kg/GWh 

Nuclear 

waste 

Coal 
[666.83  

806.17] 
2405 Very High [360 440] Very High 

[175.5 

210.98] 

[65.44 

146.25] 
0 

Gas 
[115.11 

139.31] 
1480 

Medium 

High 
[36 44] Medium 

High 
[5.67 7.06] [5.67 7.06] 0 

Nuclear 0 2405 Very low [9 11] Medium 0 0 [2.5 2.9] 

Oil 
[4322.98 

5247.98] 
2405 High [36 44] Very high [203.5 246] 

[147.25 

178.25] 
0 

Wind 0 0 Very low [632 948] Medium 

 
0 0 0 

Hydro 0 0 Very low [104 156] Medium 0 0 0 

Solar 0 0 Very Low [110 130] Low  0 0 0 

Biomass 
[2103.66 

2573.66] 
2271 medium [11.3 13.9] Low 

[335.6 

403.41] 

[291.16 

350.16] 
0 

 

Table 6: Evaluation against social criteria. 



Criteria 

 

Systems 

Job Creation 

(Job years/GWh) 

Social 

Acceptability 

External Costs 

Associated with Health 

€/GWh 

 Coal 0.11 Low [10200 76500] 

 Gas 0.11 Medium [2000 8000] 

 Nuclear  0.14 Low [1640 5740] 

 Oil 0.11 Medium [2000 8000] 

 Wind 0.17 High [340 1680] 

 Hydro 0.55 High [200 6700] 

 Solar 0.87 High 4380 

 Biomass 0.21 Medium 1700-42500 

 

Linguistic terms were converted into grey numbers. The lower and upper bounds of the grey numbers 

have been tuned in consultation with experts to best reflect their qualitative opinions (Table 7). 

Table 7: Linguistic terms conversion to grey numbers. 

Interval Term Grey Value 

Very High [9  10] 

High [7  9] 

Medium High [5  7] 

Medium [3  5]  

Low [1  3] 

Very Low [0  1] 

 

The evaluation process is done through steps 1 to 4 in Section 3.1.  The closeness coefficients obtained 

for each generation alternative is entered directly into the objective functions of the mathematical multi-

objective model. The demand data required for the optimization problem has been collected from the 

UK National Grid ("Data Explorer | National Grid") which provides high frequency demand in 5 minute 

intervals throughout 2017. To demonstrate the methodology, we single out the week with the highest 

demand in 2017, the 18th to 24th of January. The slack coefficient (S) was considered at 2% and the 

demand interval was presumed between the actual demand (ADe) and 3% above the actual demand (⊗

𝐷𝑒 = [𝐴𝐷𝑒, 0.03 × 𝐴𝐷𝑒]).  

All of the systems have been limited to 20% of the generation mix share, except the gas generation 

system which was given the limitation of 30%. The choice of these specific figures is arguably arbitrary 

but it serves model functionality in a range of ways. First, it does allow for a fuel mix to be developed 

rather than for the best option to substitute all others. Second, it delivers a diverse fuel mix which 

increases robustness of supply security. Third, it maintains focus on electricity planning that 

acknowledges the existing UK infrastructure. In this context, given the rapid growth of renewable 



energy sources and the role for natural gas as the last fossil-fuel remaining in the UK power sector these 

constraints provide a balanced approach. Specifically, natural gas is given a higher role than other 

energy sources because of its large-scale existing infrastructure and its capacity to provide energy on 

demand at times when renewable energy sources are not productive.  

(𝐿𝑆𝐶2 = 0.3 𝑎𝑛𝑑 𝐿𝑆𝐶𝑖 = 0.2 𝑓𝑜𝑟 𝑖 = 1,3,4,5,6,7,8).  

The grey TOPSIS evaluation final results show a higher closeness coefficient value as an indication for 

higher suitability of the options (Table 8). 

Table 8: Grey TOPSIS evaluation results.  

Systems 

Scores 
Coal Gas Nuclear Oil Wind Hydro Solar Biomass 

Technical 

scores 
0.5600     0.6365     0.4669     0.4238     0.6056     0.6813     0.4866     0.4730 

Environmental 

scores 
0.4866     0.7212     0.6163     0.4432     0.7141     0.9226     0.9278     0.4986 

Social scores 0.0813     0.4743     0.4390     0.4743     0.6173     0.7874     0.8329     0.4344 

 

Similar to other large-scale datasets, the dataset provided by the grid-watch suffers from missing data 

points and redundant data throughout the year. For the selected highest demand week, we had 1,976 

five-minute periods available (instead of 2,016) and the optimization process was run for these periods. 

A total of 15,808 decision variables exists in each of the objective functions. The problem was solved 

by Linear Programming function on CPLEX 12.0 which provides a reliable platform for large scale 

optimizations with a core i7 3.5 GHz CPU. 

The optimised generation mix across all objective functions, as an average weekly snapshot, promoted 

low carbon energy resources as the best options (Figure 4a and b). Specifically, wind and hydro are 

rated at their maxima permitted (by the model) share of 20%. Coal and oil are virtually scheduled for 

zero generation, which fits with the forthcoming UK power plan to eliminate coal power stations that 

are not fitted with carbon capture and storage by 2025 (UK Government, 2015). Solar energy is 

overshadowed by other options which perform better in the UK and are better supported by the current 

policy instrument mix.   



  

                                   a                                                                               b 

Figure 4: Optimised generation mix of the selected week for lower (3a) and upper (3b) bound of 

generation  

Figure 5 demonstrates the optimised use of generation options throughout the variable intraday demand 

for 18th January 2017. The contribution of wind and hydro is at all times equal (exactly at their cap of 

20% of demand) for the 2 systems due to their satisfactory performance across the evaluation stages. 

Gas and nuclear contribute all of the non-renewable energy to the system. When, there is no solar 

radiation available, biomass is making up for the required demand of electricity, however, when solar 

starts the generation, biomass is the first option that is reduced and sometimes when solar production is 

high, biomass is eliminated. These results demonstrate how the examined energy supply sources would 

behave according to the criteria that have been set for their performance and their availability based on 

historical environmental patterns. 
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Figure 5: Intraday 5-minute interval generation for 18th January (a) Lower bound (b) Higher bound.  

While the focus on a single optimal solution is an attractive proposition, the benefit of our recommended 

approach is its capacity to open up various viewpoints and demonstrate value propositions when a 

certain set of criteria is prioritised. To this end, we can demonstrate the specific performance of the 

generating options only against technical (Figure 6), environmental (Figure 7) or social (Figure 8) 

criteria without the “distortion” of all criteria having an impact at the same time.  

 

Figure 6: Optimal generation mix based on upper bound production of technical criteria 
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Figure 7: Optimal generation mix based on upper bound of environmental criteria 

 

Figure 8: Optimal generation mix based on upper bound of social criteria 

Specifically, the variable sets of criteria used for our objective functions deliver significantly different 

results. Coal is generally not considered to be an acceptable generation option, especially for new 

investment, but it performs well when it comes to technical criteria (Figure 6). The main reason for that 

is its long-term reliability in power generation. However, it is not featured in any of the other sets of 

criteria. Oil only performs well for social criteria and mainly for its role in skilled employment; 

however, it is completely eliminated against all other criteria. Biomass is the second solid fuel among 

our generation options, and it performs similarly to coal against technical criteria, but its high air 

pollution emissions and social costs eliminate it against all other criteria. The criteria-specific approach 
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allows for the biomass, oil and coal options to be examined in the areas in which they perform well, 

allowing a more complete view of this evaluation exercise.   

 

 

 

Figure 9: Generation rate in absence of social (a), environmental (b) and technical (c) criteria 

 

(a) 

(b) 

(c) 



Reviewing the results by eliminating each of the objective function can give us a good overview of the 

sensitivity of the results to the removed objective function. In figure 9 the results have been calculated, 

each time based on only two of the objective functions. As the share of generation for different systems 

based on lower and upper bound of generation is not significantly different, only upper bounds of the 

electricity generation have been presented. Due to satisfactory performance of the wind and hydro 

systems against all the sustainability criteria, these systems keep their generation at their maximum 

allowance by the diversity coefficient, at 20 percent of the generation mix in each time period. 

Furthermore, the solar system is also filling up its maximum share based on availability of the solar 

radiation. Eliminating social objective function allows coal to contribute and moreover, it allows 

nuclear energy systems to maximize production during the day. This shows the vulnerability of these 

two generation systems to social aspects of electricity generation.  However, when solar power reaches 

its maximum generation capacity, coal fired generation becomes zero and nuclear production level 

reduces approximately by half.  

 

In absence of environmental criteria, the generation share of biomass increases and this can be an 

indicator of a need for development of this technology regarding environmental measures. This might 

particularly important as biomass energy carbon capture and sequestration (BECCS) is often discussed 

as a possible carbon negative technology. The generation of electricity with oil system remains zero 

during all three scenarios. showing significant shortages against all criteria.  

 

 

5. Conclusion 

The rapid expansion of intermittent renewable energy will continue owing to both collapsing costs and 

decarbonisation targets. At the same time, energy innovations such as energy storage, demand side 

management systems, sensors and transmitters must play a role in ensuring the sustainable and secure 

supply of energy, but need the application of novel integration strategies through an interindustry 

architectural innovation approach. Controlling and integrating these innovations requires extracting 

knowledge about their interoperability from large-scale data. Overcoming the challenges inherent to 

large-scale data, such as redundancy and uncertainty can deliver promising results for sustainable 

planning across a wide range of applications and sectors (Song et al, 2017).  

 

Our case study focuses on the UK electricity sector where we use high frequency, large-scale, detailed 

electricity demand data to develop a generation mix optimisation process. In this deterministic 

approach, we employ objective functions that maximise the environmental, technical and social utility 

to achieve optimum sustainability. We find that generation mix innovation is necessary for the UK to 

achieve its ambitious deep decarbonisation targets. Our results support the current UK strategy to 

completely remove coal from its power fuel mix by 2025. At the same time, nuclear capacity will be 



reduced because of power stations reaching the end of their life-span. Interindustry architectural 

innovation will be necessary to substitute coal and nuclear power stations with renewable energy 

sources. Our analysis indicates that wind, solar and hydro energy provide the optimal benefits for the 

UK electricity mix. To this end we suggest that subsidizing biomass might not be appropriate, in terms 

of overall sustainability, even if it allows the UK to achieve greenhouse reduction targets based on zero 

emission assumptions. 

 

Apart from these final results, we argue that the transformation of the traditional utilities to a new 

disaggregated model is a case of interindustry architectural innovation which gradually appears to be 

feasible. This transitional decarbonisation phase requires fine tuning to a scale that was never previously 

necessary; therefore, with this work we contribute a robust methodological approach to integrate 

detailed large datasets for resource allocation in sustainable electricity production. Our approach is 

helpful to policy makers and utility managers because it allows an exploratory view of results with a 

separate focus on distinct technical, environmental and social objectives. In this context, decision 

makers can adjust their attention based on the specificities of the area they examine, ensuring the 

transferability of our method. We expect the implications of our work to be significant in enabling 

interindustry architectural innovation in the power sector. The use of large datasets to inform and fine 

tune this transition is essential and will promote sustainable resource allocation. 

 

As with all modelling work, our approach comes with limitations.  The main limitation is data quality.  

In addition, we do not control for the possibility of the rapid diffusion of new innovations, such as 

electromobility, that could have substantial interactions with the power sector. Future work should focus 

on a more meaningful understanding of innovation spill-over effects, particularly for example with the 

role of electric vehicles to provide grid services. Furthermore, future work should model energy 

diversity by accurately optimising the selected constrains for the selected energy mix options.   
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Appendix 1: nomenclature 

𝐸𝑠𝑐𝑜𝑟𝑒𝑖 Environmental score for generation system type i 

𝑆𝑠𝑐𝑜𝑟𝑒𝑖 Social score for generation system type i 

𝑇𝑠𝑐𝑜𝑟𝑒𝑖 Technical score for generation system type i 

𝑋𝑘𝑖 Generation level of system i at time period of k 

𝐷�̃�𝑘 Range of electricity demand at time period of k 

𝐿𝑆𝐶𝑖 Maximum allowance of generation mix share for system i 

�̃�𝑘 Capacity coefficient of solar system at time period k 

𝑁𝑆 Set of time periods k with no solar radiation available 

𝑆 Slack coefficient to reduce the risk of electricity interruption 
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