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Abstract—Hashing algorithm has been widely used to speed
up image retrieval due to its compact binary code and fast dis-
tance calculation. The combination with deep learning boosts the
performance of hashing by learning accurate representations and
complicated hashing functions. So far, the most striking success in
deep hashing have mostly involved discriminative models, which
require labels. To apply deep hashing on datasets without labels,
we propose a deep self-taught hashing algorithm (DSTH), which
generates a set of pseudo labels by analyzing the data itself, and
then learns the hash functions for novel data using discriminative
deep models. Furthermore, we generalize DSTH to support both
supervised and unsupervised cases by adaptively incorporating
label information. We use two different deep learning framework
to train the hash functions to deal with out-of-sample problem
and reduce the time complexity without loss of accuracy. We have
conducted extensive experiments to investigate different settings
of DSTH, and compared it with state-of-the-art counterparts in
six publicly available datasets. The experimental results show
that DSTH outperforms the others in all datasets.

Index Terms—Deep Learning, hashing, image retrieval, self-
taught.

I. INTRODUCTION

W ITH the rapid development of the Internet, data amount
has been increasing exponentially, leading to big data

era. Methods of efficiently extracting related or similar infor-
mation from a huge amount of data are the core of data
perceptual technology under big data environment. With the
scale of image data continuously increasing, efficient image
retrieval on large image data sets has attracted much attention
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from researchers, among which, content-based image hashing
is an effective method for image retrieval under big data envi-
ronment. Actually, hashing is a special way of dimensionality
reduction, mapping high dimensional feature to compact hash
codes. Since the Hamming distance between two binary hash
codes can be computed efficiently by using bit XOR opera-
tion and counting the number of nonzero bits, an ordinary
PC today would be able to do millions of Hamming distance
computation in just a few milliseconds. As a result, hashing
shows incomparable superiority in the fast similarity search.
Despite ensured efficiency, it is a hot topic to improve hashing
accuracy.

First, effective feature extraction is the premise of ensuring
the accuracy of hashing in the process of applying hashing to
image retrieval. Existing hashing methods are mainly based on
hand-crafted features, such as Color Histogram, GIST, scale-
invariant feature transform, bag of word, etc. However, those
features are limited in aspect of reflecting image semantic
information, because they represent the semantical content in
just one aspect, either global or local view. Meanwhile, above
feature extracting models are shallow models, which intrin-
sically could not explore the high-level semantic information
contained in feature data, showing poor performance on tack-
ling the problem of the semantic gap between image features
and hash codes.

Another critical problem in hashing is to preserve or
magnify similarity relationship of extracted features. Early
research on hashing focuses on data-unaware hashing meth-
ods, in which the locality sensitive hashing (LSH) methods
are the most well-known representatives. LSH [1] explores
the random projections followed by thresholding to embed
high-dimensional features into a low-dimensional Hamming
space, which are independent of the data. To make the
hash codes more efficient and accurate, several researchers
attempt to design data-aware hashing by introducing the
machine learning tricks. Data-aware hashing methods can
be categorized into unsupervised and supervised methods.
Unsupervised methods only use unlabeled data to learn hash
functions that map input data points to similarity-preserving
hash codes. Representative methods in this category include
kernelized locality-sensitive hashing [2], quantization-based
hashing [3], spectral hashing [4], graph-based hashing meth-
ods [5], and iterative quantization [6]. Supervised methods
try to adopt supervised information (e.g., class labels, rela-
tive similarities among data points, etc.) to generate semantic
hash codes. Supervised hashing with kernels (KSH) [7] is a
kernel-based method that pursues compact binary codes to
minimize the Hamming distances among similar pairs and
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maximize those among dissimilar pairs. Binary reconstruction
embedding (BRE) [8] learns hash functions by construct-
ing an objective function of reconstruction errors among
original feature data and corresponding hash codes. Self-
taught hashing (STH) [9] is proposed and considered as one
of state-of-the-art works. However, it suffers from overfit-
ting problem since the operations of generating hash codes
for training data and hash functions for testing data are
independently handled, which leads to poor generalization
ability.

Luckily, these problems have been greatly relieved with the
development of deep learning. Convolutional neural networks
(CNNs), have already achieved great success in various visual
tasks, such as image classification, retrieval, and object detec-
tion [10]–[17] due to their powerful capability on mining
high-level semantic image representation. With regard to
the hashing task, several researchers introduced CNN into
research [18]–[28], yielding good performance.

Above researches improve the hashing performance to some
extent, but there exists several problems. For higher accuracy,
existing methods require classification labels to supervise the
learning process. However, classification labels are difficult
to acquire which leads to poor adaptability to out-of-sample
data. To satisfy the label requirement and implement end-to-
end learning mechanism, research, such as CNNH generates
hash labels for supervised learning, which relies on classifica-
tion labels and neglects the intrinsic semantic information of
images. Besides, to generate accurate image features, exist-
ing methods always adopt deep network in the process of
feature extraction, yielding high time consumption which is
unacceptable in online retrieval process.

In view of above problems, we propose a deep STH algo-
rithm (DSTH) that can adapt to the circumstance without
labels and automatically generate hash labels for end-to-end
learning. At first, we get hash labels according to features
generated in a deep framework. And then, using the relatively
simple deep learning structure to carry out end-to-end learning
with generated hash labels.

II. RELATED WORKS

The research of hash algorithm is carried out from shallow
hashing algorithms to deep hashing algorithms.

A. Shallow Hashing Algorithm

Shallow hashing provides the basic concepts of trans-
forming data into hash codes. In addition to the classical
supervised hashing algorithm [7], [8] and unsupervised hash-
ing algorithms [1], [2], [4]–[6], [29], [30] introduced in
Section I [31], [32] also have been explored by shallow meth-
ods. The core of shallow hashing is to map vectors from high-
dimensional space into low-dimensional space. To maximize
similarity preservation in the process of hashing, shallow
learning algorithms always combine different extracted shal-
low features, by different mapping ways. These enlightening
works have been surpassed by deep methods, because of the
intrinsic drawback of the feature extraction of shallow models.
However, in order to adapt to the situation without labels, the

structure of self-taught in shallow learning is worth noting,
like STH [9].

STH [9] focuses on the local similarity structure, i.e.,
k-nearest-neighbors (KNN), for each data point. Let Y =
[y1, y2, . . . , yn] be the matrix of hash codes (binary vec-
tors with dimensionality k) associated with n data points
X = [x1, x2, . . . , xn] and Wn×n be the affinity matrix, where
W is defined as

W(i, j) =
{

xT
i xj

‖xi‖‖xj‖ , if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0, otherwise
(1)

where Nk(x) represents the set of KNN of data point x. For
training data, to make sure that similar items are mapped into
similar hash codes with good efficiency (i.e., each bit has
a 50% chance of being one or zero, and different bits are
independent of each other), the hash codes must satisfy the
following criteria:

arg min
∑
i,j

Wij
∥∥yi − yj

∥∥2

s.t. yi ∈ {−1, 1}k,
∑

i

yi = 0,
1

n

∑
i

yiyi
T = I. (2)

By introducing a n × k matrix Y whose jth row is yT
j and a

diagonal n × n matrix D(i, i) = ∑
j W(i, j), the above problem

is rewritten as

arg min
Y

Tr
(
YT(D − W)Y

)
s.t. y(i, j) ∈ {−1, 1}, YYT = I, YT1 = 0. (3)

Obviously, the above problem is NP-hard problem, but one
can obtain a compromised solution by selecting the k eigen-
vectors of D − W with minimal eigenvalues followed by
thresholding these eigenvectors to obtain a binary code.

For out-of-sample data, the linear SVM, f (x) = sgn(wTx)
is introduced to predict hash codes in STH. Given the data
points x1, . . . , xn together with their self-taught binary labels
for the pth bit y1

(p), . . . , y1
(p), the corresponding linear SVM

can be trained by solving the following quadratic optimization
problem:

arg min
w,εi≥0

1

2
wTw + C

n

n∑
i=1

εi

s.t. yi
(p)wTXi ≥ 1 − εi. (4)

STH maps feature data through the relative Euclidean dis-
tance, by preserving the semantic relationship among data
and controlling the hash code length. Therefore, it provides
hash codes with strong relativity and shows good performance.
Although our framework seems similar to STH, we have two
fundamental differences: 1) the proposed hash method is based
on automatic feature extraction method (i.e., CNN), rather
than hand-crafted feature used by STH and 2) the proposed
method utilizes the deep model, which usually shows better
performance, in contrast to the STH.
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B. Deep Hashing Algorithm

Because of the end-to-end interactive learning between
the feature and the task, deep learning algorithm makes the
extracted image feature more suitable to the task itself. Based
on this, some hashing tasks try to research with deep learn-
ing [18]–[20], [33]–[36]. In [19], the hash codes are generated
by using the features extracted from the depth structure, which
obtained fine results. However, it is not real end-to-end hash-
ing learning procedure, because of using classification labels as
learning standard. In [20], by referring to the network structure
of slice layers, the hash value of each bit is more represen-
tative, which improves the hash accuracy. But the method is
still under the premise of the known classification. Although
CNNH [18] also needs to rely on classification labels, it
maps classification labels into hash labels, ultimately achieved
end-to-end deep hash learning.

Given n images I = {I1, I2, . . . , In} and a pairwise similarity
matrix S defined by

S(i, j) =
{+1, Ii, Ij are semantically similar

−1, Ii, Ij are semantically dissimilar.
(5)

Define n by q binary matrix H whose kth row is Hk ∈
{−1, 1}q, where Hk represents the target q-bit hash code for the
image Ik. The approximate hash codes for the training images
in I is learned by minimizing the following reconstruction
errors:

arg min
H

n∑
i=1

n∑
j=1

(
Sij − 1

q
HiHj

)2

s.t. H ∈ {−1, 1}n×q. (6)

The above optimization problem is solved by relaxing the
range constraint of H and a coordinate descent algorithm using
Newton directions.

After getting the learned hash codes matrix H with each
of its rows being a q-bit hash code for a training image,
CNNH defines an output layer with q output units, each of
which corresponds to one bit in the target hash code for an
image. A network is adopted to get the target hash codes
which has three convolution-pooling layers with rectified lin-
ear activation, max pooling, and local contrast normalization, a
standard fully connected layer and an output layer with soft-
max activation. There are 32, 64, 128 filters (with the size
5 × 5) in the first, second, and third convolutional layers,
respectively.

CNNH generates hash labels through calculating H, solv-
ing the problem of lacking labels for generating hash codes
through deep learning, which is a milestone for hashing algo-
rithms. However, there is a weakness of independence from
hand-crafted labels resulting in negligence of the relativ-
ity among image semantic by using classification labels to
generate hash labels.

Inspired by previous works, we realized that better fea-
ture extracting methods generate more representative feature
vectors, which yields more accurate hash labels contribut-
ing to get better hash functions. Therefore, we propose our
improvement.

III. DEEP SELF-TAUGHT HASHING

The proposed deep STH framework is composed of hash
label generating stage and hash function learning stage. In
hash label generating stage, we use the deep and shal-
low mixed learning. First, we extract image features by
finetuning an existing model (e.g., AlexNet or GoogLeNet
trained on ImageNet). After that, graph model of features
is constructed using KNN algorithm and mapped using LE
algorithm [37], [38]. Then we apply binarization to map
results to hash codes as hash labels. The advantage of this
method is that it combines the advantages of feature extrac-
tion using deep learning and the advantages of shallow hash
algorithms when dealing with unlabeled data. Moreover, these
hash labels are more accurate than CNNH’s because they con-
tain semantics information of images. In hash function learning
stage, we apply deep learning framework to learn hash func-
tion through the hash labels generated in hash label generating
stage, which is real end-to-end hashing learning and used to
map new images into the hash codes for image retrieval. The
whole process is similar to the encoding and decoding, but
because of the use of different mapping methods, it will not
trigger the overfitting problem. To accelerate the hash codes
generating and try not to lose accuracy, we select complex nets
in label generating stage and simple nets in function learning
stage. The framework of our DSTH is shown in Fig. 1. In the
following, we introduce our DSTH in detail.

A. Hash Label Generating Stage

In this stage, we apply the deep and shallow mixed learn-
ing to get labels. For more accurate features, we introduce
a deeper CNNs (e.g., AlexNet or GoogLeNet), the model of
which is trained on a large image dataset (e.g., ImageNet). In
the absence of labels, we use the trained deep model to get
features. In another case, we finetune the network with labels
to extract features.

After that, we use LE and binarization to transform the
extracted CNN features to hash labels, retaining relative dis-
tances among data from high dimension vector space to
low dimension hamming space. Mathematically, we let n
m-dimensional vectors {xi}n

i=1 ∈ R
m denote the image fea-

tures. We use xi and yi to represent ith sample and its hash
label, where yi ∈ {0, 1}l. We set yρi ∈ {0, 1} as the ρth element
of yi. The hash codes set for n samples can be represented as
[y1, . . . , yn]T .

This method is based on graph structure and focus on the
local similarity one. Therefore, we apply KNN algorithm to
construct data graph. Our n × n local similarity matrix W is

Wij =
{

0 if Nk(xi, xj) is false
xT

i xj
‖xi‖·‖xj‖ otherwise

(7)

where Nk(xi, xj) represents the ith and the jth samples, which
are neighbors of each other in KNNs set. Furthermore, we
apply diagonal matrix

Dii =
n∑

j=1

Wij. (8)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 1. DSTH framework. The structure we propose is divided into three stages: hash label generating stage (blue), hash function learning stage (orange),
and image retrieval stage (red). In the first stage, we apply CNNs and trained model to abstract the features. Subsequently, hash labels will be generated
by using graph construction, min cut, and binarization. In the second stage, we use two different deep learning frameworks to train the hash functions with
hash labels and then obtain the net model. At last, we use the network and the net model to generate hash codes for new images and find similar images by
Hamming distance.

Meanwhile, we use the number of different bits for calculating
Hamming distance between yi and yj as

Hij = ‖yi − yj‖2/4. (9)

Similar to SpH, we define an object function ζ to minimize
the weighted average Hamming distance

ζ =
n∑

i=1

n∑
j=1

WijHij. (10)

To calculate ζ , we transform it to ξ = tr(YTLY)/4, where
L = D − W is Laplacian matrix and tr(·) means trace of
matrix. At last, we transform ξ to LapEig problem ψ with
slacking constraint yi ∈ {0, 1}t, and obtain the optimal t-
dimensional real-valued vector ỹ to represent each sample. ψ
is the following:

ψ = argmin
Ỹ

Tr
(
ỸTLỸ

)
s.t.

{
ỸTDỸ = I
ỸTD1 = 0

(11)

where Tr(ỸTLỸ) gives the real relaxation of the weighted
average Hamming distance Tr(TTLY). The solution of this
optimization problem is given by Ỹ = [v1, . . . , vt] whose
columns are the t eigenvectors corresponding to the small-
est eigenvalues of following generalized eigenvalue problem.
The solution of ψ can be transformed to

Lv = λDv (12)

where vector v are the t eigenvectors which are corresponding
to the t smallest eigenvalues (nonzero).

Then, we convert the t-dimensional real-valued vectors
ỹ1, . . . , ỹn into binary codes according to the threshold. We
set ε p to present threshold and ỹ p

i equivalent to pth element
of ỹi. The hash label as final result value of y p

i is

y p
i =

{
1 ỹ p

i ≥ ε p

0 otherwise
(13)

where

ε p = 1

n

n∑
i=1

ỹ p
i . (14)

B. Hash Function Learning Stage

In this stage, we implement an end-to-end hashing deep
learning to learn hash function. First, using hash labels
acquired in hash label generating stage, we employ CNNs
again to receive fine-grained features. After that, we try to
adopt two different kinds of encoding module and two differ-
ent kinds of loss function to approximate hash labels. Before
calculating the loss function, we try several different activation
functions.

The first kind of encoding module we introduce is MLP. We
adopt single-hidden-layer MLP, which is an artificial neural
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network (ANN) and consists of the input layers, hidden layers,
and output layers. It can adjust the input to approximate output
according to different weights on different nodes in hidden
layers. The reason why we select single-hidden-layer MLP to
learn hash labels after CNNs is that CNNs is also a kind of
transformation model of MLP. Therefore, we can build an end-
to-end deep learning framework of ANN on the multioutput
condition. The detail of net structure is shown in Table I.

Formally, we set a function f : RI → R
O, where I is the

input set, O is the output set, and x is the input vector. The
formulation is

f (1)(x) = b(2) + W(2)h
(

b(1) + W(1)x
)

f (2)(x) = b(4) + W(4)h
(

b(3) + W(3)f (1)(x)
)

. . . (15)

where b is bias vector, W is weight matrix of convolution, and
h(∗) is ReLU and BatchNorm function. Specially, f (n) presents
output through 2×n layers and other ∗(n) presents parameters
on nth layer. In practice, we set n = 3 for image size 32 × 32
and n = 5 for image size 96 × 96.

In the learning process, MLP converges accord-
ing to the perceptron rules. We set train set
D = {(I1,O1), . . . , (Im,Om)}, where Ii denotes ith input
to MLP as f (n)i (x) and Oi denotes ith objective output. The
perceptron function is

E(W) =
∑
Ii∈M

(
WTIi

)
Oi (16)

where W is weight matrix of full connection and M is a set
of input vectors who were classified wrong. Moreover, this
function subjects to

Oi =
{+1 WTIi ≥ 0

−1 otherwise.
(17)

Therefore, E(W) is the summary of positive numbers. If all
input vectors were classified correctly, E(W) = 0. In practice,
we use upper bound of E(W) and times of iteration to control
MLP convergence. Denote the output as one m × d matrix (m
is the number of samples in batch and d is the number of
output in last full connection layer), x is the output vector, y
is corresponding label. We define the loss function as follows:

F(x) = min
m∑

i=1

d∑
j=1

∥∥∥x(j)i − y(j)i

∥∥∥2

2
. (18)

The other kind of encoding module we refer to is divide and
encode module [20]. It is similar to MLP, except that the first
full connection layer maps the input into several groups, and
each group is followed by one fully connected layer. Different
from [20], we split a 1024-D vector into 16 groups, and each
group is mapped to q elements. The output number 16 × q is
the hash code length. We define the loss function as (18).

Due to the unsteady distribution of output in loss function,
the biases are large usually by thresholding values directly.
Therefore, we adopt activation function to decrease the bias.
The candidates are Sigmoid and BatchNorm [39]. When we
use sigmoid, the core of h(x) in (15) is the logistic function

sigmoid(α) = 1/(1 + e−α). When we use BatchNorm, the
function is calculated as follows:

x̃(k) = x(k) − E
(
x(k)

)
√

Var
(
x(k)

) (19)

where

E(x) = 1

m

m∑
i=1

xi (20)

Var(x) = 1

m

m∑
i=1

(xi − E(x))2. (21)

When we choose Sigmoid as activation function, the thresh-
old function is defined as follows:

xi =
{

1 xi ≥ 0.5
0 otherwise.

(22)

On the other hand, using BatchNorm as activation function,
we define the threshold function as the same as (13) and (14).
Usually, we apply the threshold values of each bit calculated
in the hash label generating stage.

IV. EXPERIMENTS

In this section, we first design the comparative experiments
to compare the effect of different networks combined with dif-
ferent configuration parameters without hand-crafted labels.
In detail, we try MLP and Slice net structure with differ-
ent mapping functions and activation functions. Afterward,
using hand-crafted labels or not, we compare our method
with some supervised algorithms and some unsupervised algo-
rithms, respectively. At last, we give the experimental analysis
and sum up some experience for different datasets. The
results show the superiority of our algorithm on traditional
datasets and our ability of solving out-of-sample problem on
challenging datasets.

A. Experiments Setting

Some abbreviations for evaluation and configuration will be
used in this paper as follows.

1) RP: Recall and Precision.
2) RIP: Returned Image Precision.
3) NC3P: Precision for searched images in nearest 3

classes.
4) HD3P: Precision for searched images of which the

Hamming distance is less than or equal to 3.
5) s: SimpleNet.
6) g: GoogLeNet.
7) a: AlexNet.
8) mb: MLP+BatchNorm.
9) ms: MLP+Sigmoid.

10) sb: Slice+BatchNorm.
11) ss: Slice+Sigmoid.
The experiments are implemented on benchmark data sets

of CIFAR-10, CIFAR-100, and STL-10. We summarize these
data sets and corresponding preprocessing as follows.

1) CIFAR-10: CIFAR-10 are labeled subsets of the 80 mil-
lion tiny images dataset, which consists of 60 000 32×32
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TABLE I
SIMPLE CNNS FOR DIFFERENT DATASET

color images in ten classes, with 6000 images per class.
There are 5000 training images and 1000 test images in
each class.

2) CIFAR-100: CIFAR-100 is similar to the CIFAR-10,
except that it has 100 classes containing 600 images in
each class. There are 500 training images and 100 test-
ing images per class. The 100 classes in the CIFAR-100
are grouped into 20 super-classes. Each image comes
with a fine label (the class to which it belongs) and a
coarse label (the superclass to which it belongs).

3) STL-10: STL-10 is a subset of ImageNet dataset for
image recognition, which consists of 10 classes, 5000
training images (500 images per class), 8000 test images
(800 images per class), and 1 000 000 unlabeled images,
each of size 96×96 pixels. We select 5000 train-
ing images and 8000 test images to complete our
experiments.

4) Oxford Buildings: This dataset contains two subdatasets:
Oxford 5k, which contains 5062 high revolutionary
(1024×768) images, including 11 different landmarks,
and each represented by several possible queries; and
Oxford 105K, which combines Oxford 5K with 100 000
distractors to allow for evaluation of scalability [40].

5) INRIA Holidays: This dataset includes a very large vari-
ety of scene types (natural, man-made, water and fire
effects, etc.) and contains 500 image groups, each of
which represents a distinct scene or object. Dataset size
is 1491 which contains 500 queries and 991 correspond-
ing relevant images. The other supplemental dataset is
one million images, which are stored in 1000 archives
of 10 000 feature files each [41].

6) Flickr Logo32: This dataset is a subset of Flickr, which
consists of 32 different logos, 320 training images, 960
validation images and 960 test images. At the same time,
there are 3000 nonlogo images in validation and test,
respectively, [42].

We adopt SimpleNet to extract features in hash function
learning stage. For different datasets, the SimpleNet structures
are shown in Table I. In particular, we resized images size to
96 × 96 for Oxford Buildings, INRIA Holidays, and Flickr
Logo32 using cubic interpolation when we apply SimpleNet.

TABLE II
CLASSIFICATION PRECISION USING DIFFERENT NETS

The classification precision results generated by deep learn-
ing using different nets are listed in Table II. In particular,
we resized image size to 256 × 256 using cubic interpolation
when we apply AlexNet, GoogLeNet, and VGG16.

B. Component Analysis

In order to verify the effect of the algorithm on different
datasets in the absence of classification labels, we configure
different networks (Slice and MLP) and activation functions
(BatchNorm and Sigmoid) to execute DSTH. In the hash label
generating stage, we will try applying two different CNNs
(AlexNet and GoogLeNet) with model (trained on ImageNet)
to generating features.

In Fig. 2, we show Max F-measure score by using dif-
ferent datasets and hash code lengths with β = 0.5. We
show the performance with 48-bits hash codes on CIFAR-
10 in Fig. 3, 32-bits hash codes on STL-10 in Fig. 4, 48-bits
hash codes on CIFAR-100 coarse in Fig. 5, and 48-bits hash
codes on CIFAR-100 fine in Fig. 6, respectively. The most
representative details of PR and F-measure comparison on
different datasets are shown in Table III. Besides, to highlight
the curve, the data of ave_RP, max _RPFscore, ave_RIP, and
max _RIPFscore in the radar figure of Fig. 3(b) are multiplied
by 1.23.

According to Table II and the above results, we find that
better classification results yield better hash labels and retrieval
performance (there exist better performances when using
hash labels derived from the feature extracted by GoogLeNet
than that by AlexNet). Moreover, Slice+BatchNorm has a
higher chance to get better results. See detailed analysis in
Section IV-E.

C. Algorithm Comparison

In this part, we compare our method with other hash
algorithms on CIFAR-10 and STL-10 datasets. We adopt
the parameter model trained on ImageNet with GoogLeNet
to extract features for hash label generation. Specially,
Slice+BatchNorm are introduced in the hash function learning
stage. Within the experiment, we set the number of nearest
neighbor as μ = 12 in LE. In the process of learning hash
function, we set momentum as ξ = 0.9, weight decay as
� = 0.004 in SimpleNet, and execute SimpleNet 60 000 times
with learning rate lr = 0.01, then finetune features 5000 times
with lr = 0.001 and lr = 0.0001, respectively.

In order to verify the independence of our algorithm on the
hand-crafted labels, we design two groups of experiments.
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(a) (b)

(c) (d)

Fig. 2. Max F-measure score (β = 0.5) under different hash length on different data. (a) CIFAR-10. (b) STL-10. (c) CIFAR-100 coarse. (d) CIFAR-100 fine.

(a) (b) (c)

Fig. 3. Contrast on 48-bits codes CIFAR-10 without class label. (a) PR curve, (b) performance of different net and activation function config under GoogLeNet
feature, and (c) performance of different feature under Slice net with BatchNorm activation function.

(a) (b) (c)

Fig. 4. Contrast on 32-bits codes STL-10 without class labels. (a) PR curve, (b) performance of different net and activation function config under GoogLeNet
feature, and (c) performance of different feature under Slice net with BatchNorm activation function.

In the first group of experiments, we do not use hand-
crafted labels in datasets. Therefore, we compare DSTH
with several unsupervised hash algorithms, including SKLSH,

SH, PCA-ITQ, STH, SpH, DSH, LSH. Fig. 7(a)–(d) shows
the PR and RIP performance of 48-bits codes for CIFAR-
10 and 32-bits codes for STL-10. Fig. 7(e)–(h) shows the
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TABLE III
RECALL-PRECISION AND MAX F-MEASURE SCORE FOR PARAMETER CONFIGURATION

(a) (b) (c)

Fig. 5. Contrast on 48-bits codes CIFAR-100 coarse without class label. (a) PR curve, (b) performance of different net and activation function config under
GoogLeNet feature, and (c) performance of different feature under Slice net with BatchNorm activation function.

code length analysis of CIFAR-10 and STL-10 on NC3P
and HD3P.

In the second group of experiments, we use classification
labels in datasets to finetune features during hash label gen-
erating stage. We compare DSTH with several supervised
algorithms, including CNNH, KSH, BRE, and CCA-ITQ.
Fig. 7(a)–(d) shows the PR and RIP performance of 48-
bits codes for CIFAR-10 and 32-bits codes for STL-10.
Fig. 7(e)–(h) shows the code length analysis of CIFAR10 and

STL10 on NC3P and HD3P. Besides, Table IV shows the
performance of DSTH with labels or not, including the PR
and score of 48-bits codes for CIFAR-10 and 32-bits codes
for STL-10.

Above results show the superiority of DSTH. Besides, for
DSTH, compared with generating hash codes without labels,
the improvement of performance by using classification labels
is not outstanding. Therefore, using DSTH without labels is
enough. See detailed analysis on Section IV-E.
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(a) (b) (c)

Fig. 6. Contrast on 48-bits codes CIFAR-100 fine without class label. (a) PR curve, (b) performance of different net and activation function config under
GoogLeNet feature, and (c) performance of different feature under Slice net with BatchNorm activation function.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Performance contrast without class label (a) 48-bits codes precision-recall curve on CIFAR-10, (b) 48-bits codes return image precision curve on
CIFAR-10, (c) 32-bits codes precision-recall curve on STL-10, (d) 32-bits codes return image precision curve on STL-10, (e) code length analyze with
Hamming distance ≤ 3 on CIFAR-10, (f) code length analyze with nearest class ≤ 3 on CIFAR-10, (g) code length analyze with Hamming distance ≤ 3 on
STL-10, and (h) code length analyze with nearest class ≤ 3 on STL-10.

TABLE IV
RECALL-PRECISION AND MAX F-MEASURE SCORE CONTRAST WITHOUT-LABELS AND WITH-LABELS

D. Comparison With State-of-the-Art of Single Target Deep
Hashing Methods

For verifying of the effectiveness of DSTH further, we
compare ours with the state-of-the-art of single target deep
hashing algorithms on more challenging datasets. Comparison
methods include DLBH [19], DeepBit [43], AIBC [44],
DSH [45], and SSDH [25]. Datasets include Oxford Buildings,

INRIA Holidays, and Flickr Logo32 which have less train-
ing samples for each class and more out-of-class samples.
Different from previous experiments, we select VGG16 with
model [46] which has been calculated on ILSVRC to gener-
ate deep features. Table V shows results of mAP and HD3P
of the compared methods with 16-bits codes and 32-bits
codes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Performance contrast with class label (a) 48-bits codes precision-recall curve on CIFAR-10, (b) 48-bits codes return image precision curve on
CIFAR-10, (c) 32-bits codes precision-recall curve on STL-10, (d) 32-bits codes return image precision curve on STL-10, (e) code length analyze with
Hamming distance ≤ 3 on CIFAR-10, (f) code length analyze with nearest class ≤ 3 on CIFAR-10, (g) code length analyze with Hamming distance ≤ 3 on
STL-10, and (h) code length analyze with nearest class ≤ 3 on STL-10.

The results shown in Table V approve that DSTH has better
effects on those datasets. Although it is not the best in HD3P,
it has advantage in mAP because of ability of solving out-of-
sample problem. See detailed analysis on Section IV-E.

E. Experimental Analysis

Experiments in Sections IV-B and IV-C demonstrate the
effectiveness of our algorithm. Referring to Tables II and III,
it is obvious that DSTH is sensitive to different datasets.
Generally, the better classification performance is, the bet-
ter performance of hash is, which derive from the effective
hash labels generated by accurate features. Meanwhile, with
different feature extraction methods, our algorithm shows dif-
ferent adaptability to different net settings. We illustrate the
performance with different datasets, respectively.

1) CIFAR-10: It shows the best classification performance
with every net in Table II and the highest F-measure
score in Table III. Apart from that, results in Fig. 3(c)
shows net configurations comparison with 48-bits codes,
it is obvious that GoogLeNet is superior to AlexNet, sat-
isfying the analysis that better classification results bring
better hash results. In Fig. 3(b), MLP+sigmoid gener-
ates the largest effective area, while Slice+BatchNorm
leads to balanced performance, which are similar to
Figs. 2(a) and 7(a), (b), (e), and (f). We use CIFAR-
10 to demonstrate our algorithm on small size images,
which has good classification performance. Experiment
results show our algorithm brings stable and efficient
performance.

2) STL-10: Compared with CIFAR-10, the classification
performance of STL-10 on three nets decreases by

TABLE V
RESULTS IN TERMS OF MAP AND HD3P OF THE COMPARED METHODS

ON OXFORD BUILDINGS, INRIA HOLIDAYS, AND FLICKR LOGO32
WITH 16-BITS CODES AND 32-BITS CODES, RESPECTIVELY

9%, because lacking training sample leads to weak
hash codes. According to Table III, GoogLeNet and
slice+BatchNorm show much better performance than
other cases. Fig. 4 also shows this case yields largest
effective area. Although Slice+BatchNorm maintains the
distribution of image feature to the largest extent in the
process of mapping, the accuracy of feature extraction
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is limited. Figs. 2(b) and 7 (c), (d), (g), and (h) demon-
strate above analysis, so does Fig. 8(g) with labels. We
use STL-10 to demonstrate our algorithm on large size
images, which has mediocre classification performance.
Experiment results show our algorithm brings good
performance with limited hash length, which is not
stable.

3) CIFAR-100: We adopt CIFAR-100 to explore the same
hash codes derived from different grain sizes of clas-
sification. From Table III and Fig. 2(c) and (d),
Slice+BatchNorm mostly shows superior performance,
Figs. 5(c) and 6(c) display the difference of searching
nearest three classes on different grain sizes of classi-
fication. However, they show little difference through
hamming distance, illustrating the adaptability of DSTH.

Experiments in Section IV-D reveal the ability of solving
out-of-sample problem of our algorithm. Referring to Table V,
even if HD3P results of DSTH are not dominant, it still
shows superior performance in mAP contrast with state-of-the-
art single target hashing methods. Of course, compared with
the hashing algorithms [21], [22] with RPN [13] structure or
detection process, there exists a gap between the results. We
illustrate the performance on different datasets, respectively.

1) Oxford 105K: It shows best mAP performance with
16-bits codes and 32-bits codes in Table V. The
performance is improved by 0.7% and 1.61%, respec-
tively. Meanwhile, the HD3P performance is 0.76%
higher than SSDH with 32-bits codes.

2) INRIA Holidays+1M: Compared with Oxford, the mAP
performance of Holidays decreases by 20%, because
more unlabeled samples are introduced. However, our
performances are higher than that of SSDH by 0.17%
and 2.85% with 16-bits codes and 32-bits codes, respec-
tively, illustrating the ability of solving out-of-sample
problem.

3) Flickr Logo32: We adopt FL32 to explore our ability
of recognizing small targets. The results show that our
performances are higher than that of SSDH by 0.47%
and 0.84% in mAP as well as 0.49% and 1.55% in
HD3P with 16-bits codes and 32-bits codes, respectively,
illustrating the superiority of ours.

It is worth noting that, we also try a combination of using
SimpleNet for feature extraction in hash label generating stage
and using ReLU as the activation function in MLP and Slice
nets, which shows bad performance. Apart from the factor of
grain size of classification, we believe that using the same net
in both stages leads to weak results, and using ReLU in MLP
and Slice nets destroys the distribution when mapping features
to hash codes.

V. CONCLUSION

In this paper, we propose a novel self-taught hash algorithm
under deep learning scheme (DSTH). It is a unified model to
get the hash codes of the training data, for both supervised and
unsupervised cases. During stages of hash label generating and
hash function learning, it not only generates hash labels with
guaranteed precision under no label condition, but also does

not consume more generation time for hash codes. Although
deep network in hash label generating stage leads to high time
consumption, the process is off-line. Comparative experiments
show the superiority of our scheme on solving out-of-sample
problem, especially without hand-crafted labels. Furthermore,
we summarize several application principles for using DSTH
according to configuration of network parameters. On the one
hand, the model which brings better classification results will
bring better features for hash labels generating. The better
the hash labels are, the better the learned hash functions are.
On the other hand, using combination of Slice network and
BatchNorm activation function have a higher chance to get
good results.
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