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Abstract 

 

The use of finite fossil reserves within the energy and petrochemicals industries has 

harmful environmental impacts due to the release of CO2 into the Earth’s atmosphere. 

Consequently, new technologies that harness renewable forms of energy, such as solar 

energy, are required for the sustainable production of valuable chemicals including fuels. 

Taking inspiration from plants and photosynthetic micro-organisms, artificial systems        

are being developed for solar-chemicals production by combining light-harvesting 

photosensitisers, such as molecular dyes and semiconducting nanoparticles, with 

electrocatalysts such as purified enzymes and whole-cell bacteria. In particular, whole-cell 

bacteria have emerged as effective electrocatalysts because they provide opportunities to 

develop self-regenerating systems that can facilitate multiple chemical transformations. 

 

The work presented in this thesis aimed to develop a cell-based approach to                   

solar-chemicals production where a single micro-organism can act as a multi-faceted 

electrocatalyst without the requirement for costly and time-consuming enzyme 

purification. The approach was developed with the non-photosynthetic bacterium 

Shewanella oneidensis MR-1, a model micro-organism for extracellular electron transfer. 

The system uses methyl viologen as an electron shuttle to transfer photo-energised 

electrons from water-compatible photosensitisers to bacterial enzymes for H2-evolution 

and the reduction of fumarate, pyruvate and CO2 to succinate, lactate and formate, 

respectively. Preliminary experiments were also carried out to investigate the possibility of 

using new-generation carbon dot photosensitisers for light-driven H2-evolution in the 

absence of an exogenous electron shuttle. The work was performed in a step-wise manner 

involving an assessment of the determinants of each system using a range of analytical 

techniques and the findings form a basis for sustainable cell-based photocatalysis with 

other species of bacteria or genetically-modified Shewanella strains. 
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Abbreviations and Symbols 

 

All potentials in this thesis are quoted versus the standard hydrogen electrode (SHE). 

 

°  Degree 

°C  Celsius 

%  Percentage 

≈  Approximately equal to 

Å  Angstrom (10-10 m) 

λ  Wavelength 

λem  Emission wavelength of the photosensitiser excited state 

ΔAbs396nm Change in absorbance at 396 nm 

ΔAbs600nm Change in absorbance at 600 nm 

ΔH  Change in enthalpy 

ε  Extinction coefficient 

εBV+  Extinction coefficient for BV+ 

εMV+  Extinction coefficient for MV+ 

µ  Micro (10-6) 

µg  Microgram 

µL  Microlitre 

µm  Micrometer 

µM  Micromolar 

ν  Frequency 

 

200  Shewanella putrefaciens 200 

A  Absorbance / Amp / Irradiation area 

AA  Ascorbic acid  

AD  Anno Domini 

ADH  Alcohol dehydrogenase 

ADP  Adenosine diphosphate 

ANA-3  Shewanella ANA-3 

aq  Aqueous phase 

AQ  Anthraquinone 

AQDS  Anthraquinone-2,6-disulfonate 
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ATP  Adenosine triphosphate 

a.u.  Arbitrary units 

BCA  Bicinchoninic acid 

BCIP  5-bromo-4-chloro-3'-indolylphosphate p-toluidine salt 

bpy  2,2’-bipyridine 

BSA  Bovine serum albumin 

BV  Benzyl viologen 

BV+  One-electron reduced form of benzyl viologen 

BV2+  Oxidised benzyl viologen 

c  Speed of light in a vacuum (2.998 x 108 m s-1) / Centi (10-2) / Concentration 

CB  Conduction band 

CDs  Carbon dots 

CD-CO2
-  Anionic carbon dots 

CD-NHMe2
+ Cationic carbon dots 

CFU  Colony forming units 

cm  Centimeter 

CN-32   Shewanella putrefaciens CN-32 

CoA  Coenzyme A 

COSY  Correlation spectroscopy 

Cp*  1,2,3,4,5-pentamethylcyclopentadiene 

Cys  Cysteine 

Cyt c6  Cytochrome c6 

Da  Dalton (g mol-1) 

DMSO  Dimethyl sulfoxide 

DT  (sodium) Dithionite 

e-  Electron 

E. coli  Escherichia coli 

EDTA  Ethylenediaminetetraacetic acid 

Em  Reduction potential 

EPS  Extracellular polymeric substances 

eV  Electron volt 

EY  Eosin Y 

F  Oxidised flavin 

FAD  Flavin adenine dinucleotide 
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FaldDH  Formaldehyde dehydrogenase 

FccA  Fumarate reductase 

FDH, FateDH Formate dehydrogenase 

FH2  Reduced flavin 

Fl  Fluorescein 

FMN  Flavin mononucleotide 

FNR  Ferredoxin-NADP+-reductase 

FocA  Formate transporter 

ft  Foot 

FWHM  Full width at half maximum 

g  Gram / Gaseous phase 

g  Earth’s gravitational force 

GC  Gas chromatography 

h  Planck’s constant (6.626 x 10-34 m2 kg s-1) 

H2ase   Hydrogenase 

HEPES  4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid 

His  Histidine  

HMBC  Heteronuclear multiple-bond correlation spectrocopy 

HMW  High molecular weight 

HOMO  Highest occupied molecular orbital 

hr  Hour 

HSQC  Heteronuclear single-quantum correlation spectroscopy 

hν  Energy from a photon [i.e. Planck’s constant (h) x frequency (ν)] 

Hz  Hertz 

I  Intensity of transmitted light 

I0  Intensity of incident light 

IC  Internal conversion 

IM  Inner membrane 

IR  Infrared 

ISC  Intersystem crossing 

J  Joule 

k  Kilo (103) 

kDa  Kilodalton 

kg  Kilogram 
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kHz  Kilohertz 

kJ  Kilojoule 

kW  Kilowatt 

L  Litre 

LB  Lysogeny broth 

LDH  Lactate dehydrogenase 

LMW  Low molecular weight 

LUMO  Lowest unoccupied molecular orbital 

m  Meter 

M  Molar (mol L-1) / Mega (106) 

mA  Milliamp 

Me  Methyl group (CH3) 

MES  2-(N-morpholino)ethanesulfonic acid 

mg  Milligram 

MHz  Megahertz 

min  Minute 

MK  Menaquinone 

MKH2  Menaquinol 

mL  Millilitre 

mm  Millimeter 

mM  Millimolar 

mol  Avogadro’s constant (6.022 x 1023 mol-1) 

MPA  3-mercaptopropionic acid 

MR-1  Shewanella oneidensis MR-1 

MR-4  Shewanella oneidensis MR-4 

MR-7  Shewanella oneidensis MR-7 

ms  Millisecond 

mV  Millivolt 

MV  Methyl viologen 

MV0  Fully reduced methyl viologen 

MV+  One-electron reduced form of methyl viologen 

MV2+  Oxidised methyl viologen 

MW  Molecular weight 

n  Nano (10-9) 
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nA  Nanoamp 

NA  Avogadro’s constant (6.022 x 1023 mol-1) 

n/a  Not available 

NADH  Nicotinamide adenine dinucleotide  

NADPH  Nicotinamide adenine dinucleotide phosphate 

NBT  Nitro-blue tetrazolium chloride 

N-CD  Nitrogen-doped anionic carbon dots 

nd  Not detected 

nm  Nanometer 

nmol  Nanomol 

NMR  Nuclear magnetic resonance 

OD590nm  Optical density at 590 nm 

OM  Outer membrane 

OS185  Shewanella baltica OS185 

OS195  Shewanella baltica OS195 

OS223  Shewanella baltica OS223 

P680  Chlorophyll reaction centre of photosystem II 

P700   Chlorophyll reaction centre of photosystem I 

PDB ID  Protein data bank (http://www.rcsb.org/pdb) identification number 

PF  Proflavine 

PflB  Pyruvate-formate lyase 

Pi  Phosphate 

PMF  Proton motive force 

PMS  Phenazine methosulfate 

ppm  Parts per million 

PS  Photosensitiser 

PS0  Ground state of the photosensitiser 

PS*  Photo-excited state of the photosensitiser 

PS+  One-electron oxidised state of the photosensitiser 

PS-  One-electron reduced state of the photosensitiser 

Pta-AckA  Phosphotransacetylase-acetate kinase 

PTFE  Polytetrafluoroethylene 

PV-4  Shewanella loihica PV-4 

PVDF  Polyvinylidene fluoride 
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rpm  Revolutions per minute 

RuP  [Ru(bpy)2(4,4-(PO3H2)2bpy)]Br2 

s  Second 

S0  Ground state 

S1, S2  Excited singlet states 

SB2B  Shewanella amazonensis SB2B 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SED  Sacrificial electron donor 

SHE  Standard hydrogen electrode 

SS  Stainless steel 

STC  Small tetraheme cytochrome 

t  Irradiation time 

T  Tera (1012) 

T1, T2  Excited triplet states 

TCA  Tricarboxylic acid 

TCD  Thermal conductivity detector 

TCEP  Tris(2-carboxyethyl)phosphine 

TEOA  Triethanolamine 

TMAO  Trimethylamine N-oxide 

TMBD  3,3′,5,5′-tetramethylbenzidine dihydrochloride hydrate 

TON  Turnover number 

Tris  Tris(hydroxymethyl)aminomethane 

TSP  Sodium 3-(trimethylsilyl)-propionate-d4 

TW  Terawatt 

UV  Ultraviolet 

V  Volt 

VB  Valence band 

VR  Vibrational relaxation 

[v/v]  [Volume/Volume] 

W  Watt 

W3-18-1 Shewanella putrefaciens W3-18-1 

[w/w]  [Weight/Weight]
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Chapter 1 - Introduction 

 

1.1 General overview 

 

Fossil reserves are important commodities that currently underpin the supply of global 

commercially traded energy and the petrochemicals industry. However, they are finite 

resources and their combustion has detrimental impacts on the environment meaning that 

sustainable routes to electricity and chemicals production are sought after. One way to 

achieve this is to harness the near-infinite supply of solar energy reaching the Earth from 

the sun by taking inspiration from plants and photosynthetic micro-organisms that    

capture sunlight for the production of complex chemicals including fuels. A variety of 

artificial systems aiming to improve upon the natural processes have been developed 

through the combination of light-absorbing photosensitisers and electrocatalysts such         

as purified enzymes, transition metal complexes and whole-cell bacteria. This chapter 

reviews the advantages and disadvantages of various approaches to artificial 

photosynthesis and then describes how the non-photosynthetic bacterium Shewanella 

oneidensis MR-1 (MR-1) is a promising candidate for cell-based photocatalysis because it 

can produce multiple enzymes that catalyse useful chemical transformations and outer 

membrane porin:cytochrome complexes that act as electron conduits between the outside 

and inside of the cell. If MR-1 can be cultured to produce the enzymes of interest, it should 

be possible to combine the bacterium with abiotic reagents that generate photo-excited 

electrons to drive the production of commercially-important chemicals.  

 

1.2 Global challenges associated with the use of finite fossil 

reserves 

 

One of the biggest technological challenges currently facing human civilisation is the 

requirement to supply enough energy to support a rapidly growing global population 

without adversely affecting the environment.1 At the moment, global energy consumption 

is approximately 17.2 TW and is predicted to rise to 27 TW by 2050 in line with an increase     

in global population from 7 to 9.4 billion.1–4 In 2015, almost 90 % of total global energy      
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usage was derived from carbon-based fossil reserves such as oil, coal and natural               

gas, as shown in Fig. 1.1.4,5  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 - Supply of global commercially traded energy in 2015 by origin. Renewables includes 

solar, wind, geothermal and biomass. Data from British Petroleum statistical review of world energy: 

June 2016 (http://www.bp.com).   

 

Crude oil, coal and natural gas reserves are formed underground by the influence of 

extreme heat and pressure on the remains of dead plants and animals that have 

accumulated in sedimentary layers of rock over millions of years.6 As a consequence of the 

extremely long timescale over which they are created, fossil reserves are rendered           

non-renewable energy sources and are being consumed 500,000 times faster than they are 

being made naturally on Earth.2 Based on current estimates, coal reserves would be able to 

cover the present global energy usage for > 110 years whereas oil and natural gas reserves 

would only cover the usage for approximately 53 and 54 years, respectively.4 Although 

these predictions are likely to fluctuate based on the discovery of new reserves, or the use 

of previously disregarded reserves such as oil sands in Canada,7 the fact remains that there 

will come a time when the use of oil, coal and natural gas will reach a maximum (known as 

“peaking”) then begin to decline due to the finite nature of these energy sources.8  
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The combustion of fossil reserves releases energy but also produces carbon dioxide (CO2),
9 

as shown in Eq. 1.1 for the combustion of methane (a major constituent of natural gas).10,11 

 

                                                          CH4 + 2 O2  2 H2O + CO2           Eq. 1.1 

ΔH = -890 kJ mol-1 

 

Atmospheric CO2 levels have been rising since the Industrial Revolution, as shown in         

Fig. 1.2A, but widespread concern about the impact this has on the environment was only 

expressed after the 1950s due to the improvement of analytical techniques and increase in 

the number of scientific studies.12–15 CO2 is a greenhouse gas meaning it allows sunlight to 

penetrate the Earth’s atmosphere to reach the surface but blocks outgoing heat.               

This phenomenon increases surface temperatures and causes a rise in sea levels through 

ocean thermal expansion and the melting of glaciers and major ice sheets,16 as shown by 

the historical changes in globally-averaged temperature anomaly (i.e. change relative to the 

average global temperatures between 1951 and 1980) and sea level (relative to the level in 

1990) presented in Fig. 1.2B and 1.2C, respectively.16,17 Within the scientific community, 

there is an overwhelming consensus (shared by 90 to 100 % of publishing climate scientists) 

that humans are causing global warming.18 However, the challenge remains to 

communicate this information to the wider public and embed effective strategies to 

combat the detrimental impacts of this reality into future government policy. 

 

The adverse effects of rising global temperatures and sea levels are increased risk of 

flooding, extreme weather, food insecurity and widespread extinction of plant and animal 

species.19–21 Additionally, elevated levels of CO2 in the atmosphere have led to ocean 

acidification through air-sea gas exchange and subsequent chemical transformation to 

liberate H+ ions, as shown in Eq. 1.2. Since the pre-industrial era, the average pH of ocean 

surface water has decreased from 8.21 to 8.10, causing extensive damage to a range of 

marine organisms such as coral.22 Overall, there are clear, negative consequences related 

to the combustion of fossil reserves so it is imperative to develop more sustainable 

technologies for energy production to combat climate change. 
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Figure 1.2 - Historical changes in atmospheric CO2, temperature anomaly and sea level. A] Change in 

atmospheric CO2 levels from 1800 to 2016. Data from ice core records (1800 to 2004) at Carbon 

Dioxide Information Analysis Centre (CDIAC, http://cdiac.ornl.gov/) and infrared absorption analysis 

(2005 to 2016) at National Oceanic and Atmospheric Administration (NOAA, http://www.noaa.gov/). 

B] Combined land (surface air) and sea (surface water) temperature anomaly (change relative to 

average temperatures between 1951 and 1980) from 1880 to 2016. Data from the NASA Goddard 

Institute for Space Studies (GISS, https://www.giss.nasa.gov/). C] Global average sea level from 1880 

to 2009. Value at 1990 is set to zero. Data from Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) oceans and atmosphere research (http://www.csiro.au/en/Research/OandA). 
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Eq. 1.2 

 

 

 

 

As well as underpinning the supply of global commercially traded energy, fossil reserves 

can also be transformed into valuable products as part of the petrochemicals industry.23,24 

For example, crude oil can be refined and used to make plastics, lubricants, surfactants, 

insecticides and synthetic rubber.4,24 Although only 5 to 10 % of crude oil is used for the 

production of chemicals, these account for approximately 50 % of the profit made               

by conventional petrochemical refineries.25 As such, it is vital that sustainable routes to 

chemicals production, in addition to energy production, are developed.  

 

In 2015, only 9 % of global energy usage was derived from renewable sources (see Fig. 1.1) 

such as solar power, wind power, hydropower, geothermal power, biomass-derived power, 

ocean tidal power and wave power.4,5 By 2040, it is predicted that renewables will account 

for approximately 17 % of global energy usage through a combination of the sources listed 

above.8,26 Each energy source has a particular set of advantages and disadvantages and is 

typically suited to a specific climate or geographic location.27 For example, wind power is 

relatively cheap to harvest and produces little air or water pollution but can contribute        

to soil erosion and is only viable in areas with substantial amounts of wind.27                 

Similarly, hydropower is safe, abundant and offers the chance to develop recreational 

activities such as fishing and boating but dams can significantly influence the local 

hydrology and ecology.27 Of all the renewable energy sources, solar energy is widely 

considered as one of the most promising due to its near-limitless supply and the fact that it 

can be used for the production of electricity as well as valuable chemicals including 

fuels.1,4,27 The next section describes the advantages of solar energy then introduces some 

of the ways in which it can be harnessed and converted into a usable form.  
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1.3 Solar energy as a sustainable route to electricity 

production 

 

The sun provides the Earth with solar energy at a rate of approximately 120,000 TW.1       

This means that the energy reaching the planet over the course of two hours corresponds 

to more than the total annual energy usage of the entire global population. Solar energy is 

relatively well distributed over the planet and is practically inexhaustible based on the fact 

that the sun will endure for > 4 billion years.4 The average annual power of sunlight at the 

Earth’s surface is 0.17 kW m-2 and approximately 5 % of light is in the ultraviolet (UV, λ <     

400 nm), 43 % of light is in the visible (400 to 700 nm) and 52 % of light is in the infrared 

(IR, λ > 700 nm) region of the electromagnetic spectrum.1,28 This is illustrated by the solar 

irradiance spectrum shown in Fig. 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 - Spectral distribution of sunlight at the Earth’s surface. Data from National Renewable 

Energy Laboratory (NREL, https://www.nrel.gov/rredc/solar_resource.html). 

 

There are a number of ways in which solar energy can be converted into a usable form, for 

example, through the use of solar water heaters, solar concentrators, photovoltaic devices 

(solar cells), natural photosynthesis and artificial photosynthesis, as described in Table 1.1. 

In the UK, the photovoltaics sector represents the main technology used for harnessing 

solar energy.29 Photovoltaic devices work by using a thin layer of a semiconducting material 

to absorb photons in sunlight for the promotion of an electron to an excited energy state. 
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This results in the formation of a coulombically-bound electron-hole pair called an exciton 

which can be used to create an electrical current through charge separation followed by 

charge transfer to electrodes.30–32 These processes are shown in Fig. 1.4 for a generic       

light-absorbing donor material interfaced with an acceptor material. 

 

Table 1.1 - Common ways in which solar energy can be captured and converted into a                 

usable form.
27,29,33,34

 

Method Description 

Solar water  
heater 

Panels attached to buildings that capture solar energy to heat water 
for circulation and/or storage as part of the central heating.    

Solar  
concentrator 

An array of lenses and mirrors that reflect sunlight on to a small 
area to heat molten salts or oils to high temperatures. The heat can 
be dissipated for electricity production as required. 
 

Photovoltaic  
device 

Semiconducting materials such as crystalline silicon that absorb 
photons in sunlight and transfer photo-generated charges to 
electrodes for electricity production (see Fig. 1.4). 
 

Natural  
photosynthesis 

Natural conversion of sunlight into lignocellulosic biomass by plants 
that can be harvested and either combusted (to release the stored 
energy) or processed (to create biofuels) (see section 1.4). 
 

Artificial  
photosynthesis 

Systems that mimic and attempt to improve upon the processes 
behind natural photosynthesis (e.g. light absorption, water-splitting, 
CO2-reduction) for the production of complex chemicals including 
fuels (see section 1.5). 
 

 

Of particular importance to the photovoltaics sector are crystalline silicon devices      

because they exhibit high photon-to-current conversion efficiencies even within 

commercially available modules (typical efficiencies are between 15 and 25 %).4,30,35      

Examples of donor and acceptor materials are phosphorus-doped (n-type) and              

boron-doped (p-type) silicon, respectively.36 The major drawback of silicon-based solar     

cells is the high cost of their production due to relatively low manufacturing            

throughput.32,37 As a consequence, organic solar cells containing polymers are being             

developed because they can be readily processed using solution-based techniques at 

relatively low temperatures.37 Examples of acceptor materials are buckminsterfullerene 

(C60) derivatives and donor materials are polymers that incorporate electron-donating 

moieties such as cyclopentadithiophene.30,38 If the current efficiencies of organic solar cells 

(8 to 11 %) continue to rise, it is likely that they will be able to compete with silicon-based 

devices on the commercial market for niche applications.4,35 
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Figure 1.4 - Simplified diagrams for electricity generation using photovoltaic devices. A] Photon (hν) 

absorption by a generic donor (blue) promotes an electron from the highest occupied molecular 

orbital (HOMO), or valence band (VB), to the lowest unoccupied molecular orbital (LUMO), or 

conduction band (CB). B] Light absorption creates a coulombically-bound electron(-)/hole(+) pair 

which diffuses to the acceptor (pink) interface where charge separation occurs. Electrons and holes 

are then transferred to the cathode and anode, respectively. C] Charge recombination takes place 

after electrons flow from the cathode to the anode via an external circuit. 

 

In the future, photovoltaic devices will undoubtedly be used to cover a major part of global 

energy usage due to increasing efficiencies and decreasing manufacturing costs.4 However, 

the output from these devices is intermittent as a result of day-night cycles and 

unpredictable weather meaning another process is typically required to store the electricity 

for when the sun is not shining.39 One way to achieve this is to convert electrical energy 

into chemical energy by applying an external voltage to a battery (an electrochemical cell 

comprised of an electrolyte and two electrodes) to drive electrochemical reactions.40    
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These reactions can then be reversed to discharge a flow of electrons by connecting the 

battery to a circuit. One of the oldest and most widely used batteries are lead-acid devices 

which contain lead metal and lead oxide electrodes with concentrated sulphuric acid as 

electrolyte.41 The electrochemical reactions that take place at the anode and cathode are 

shown in Eq. 1.3 and 1.4, respectively. Lead-acid batteries are versatile devices with typical 

efficiencies of > 60 %.41 However, they contain toxic materials and suffer from short life 

cycles and low energy densities.41 More recently, lithium-ion devices have shown great 

promise due to their superior energy densities and stabilities in comparison to traditional 

batteries and they are increasingly being used to power portable electronic devices as well 

as the next generation of electric vehicles.40,41 Current research in this area is focussed on 

the development of novel materials and device architectures to make large scale 

deployment as economically viable as possible.  

 

Anode:                                         Pb + SO4
2-                    PbSO4 + 2 e-           Eq. 1.3 

 

Cathode:                   PbO2 + SO4
2- + 4 H+ + 2 e-                   PbSO4 + 2 H2O                       Eq. 1.4 

 

Another way to overcome the problem of intermittent sunlight is to harvest solar energy 

for the direct conversion of cheap, abundant feedstocks into valuable chemicals and fuels 

which can be readily stored, distributed and consumed as required. These systems           

take inspiration from the natural processes performed by plants and photosynthetic             

micro-organisms.3,33 The next sections give an overview of natural photosynthesis then 

discuss artificial approaches to light-driven chemical synthesis.  

 

1.4 Natural photosynthesis as inspiration for the direct 

production of chemicals and fuels from solar energy 

 

During natural plant photosynthesis, solar energy is harvested for the generation of    

photo-energised electrons which drive the production of nicotinamide adenine 

dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP). These molecules are 

then used to generate a multitude of complex chemicals via CO2-fixation, as summarised     

in Fig. 1.5.3 Certain photosynthetic micro-organisms can also deliver photo-energised 
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Amino acids
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Light-dependent reactions Dark reactions

H2
Photosynthetic micro-organisms

electrons to enzymes that catalyse the production of versatile chemical fuels such as H2 

(the properties of which are described in greater detail in section 1.5).28,42  

 

 

 

 

 

 

 

Figure 1.5 - Schematic diagram for the processes that underpin natural plant photosynthesis.        

Solar energy is used to produce photo-energised electrons which drive the formation of NADPH and 

a proton motive force (PMF) for ATP synthesis. NADPH and ATP are then used for CO2-fixation.    

Some photosynthetic micro-organisms can also catalyse the production of H2.  

 

In plants, the light-dependent reactions occur within chloroplasts on thylakoid membranes 

containing protein complexes for photon absorption (photosystems I and II) and charge 

transport.3 Light-harvesting is achieved using an array of antennae molecules such as 

carotenoids (conjugated isoprene units)2 and chlorophylls (magnesium(II) porphyrins and 

chlorins)43 which transfer energy to specific chlorophyll reaction centres (called P700 and 

P680 for photosystems I and II, respectively) where charge separation occurs.               

Photo-excited electrons then initiate a series of redox reactions which result in the 

formation of NADPH and a proton motive force (PMF) for ATP synthesis (through the action 

of the ATP synthase).28 Electrons are donated to the system through water-splitting which 

is facilitated by a catalytic cluster (embedded in photosystem II) comprised of four 

manganese ions and one calcium ion.3 The light-dependent processes can be summarised 

as a “Z-scheme”, as shown in Fig. 1.6. Photo-produced NADPH and ATP are then used 

within a series of light-independent (dark) reactions such as the Calvin cycle (where CO2 is 

reduced to triose phosphates) to ultimately generate the diverse range of organic 

molecules that make up living organisms (collectively known as biomass).28,43 Overall, these 

processes represent a way to access complex chemicals from relatively simple feedstocks 

(i.e. H2O and CO2) through the capture and transformation of solar energy. 
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Figure 1.6 - Simplified Z-scheme for the light-driven electron transport chain in plant    

photosynthesis. Photosystems I and II absorb photons (hν) for charge separation at the P700 and 

P680 reaction centres, respectively. The ensuing redox cascades generate NADPH through the action 

of the ferredoxin-NADP
+
-reductase (FNR) and a proton motive force (PMF) for ATP synthesis. 

Electrons are donated to the system via a water-splitting manganese-calcium cluster [Mn4Ca] that 

forms part of photosystem II. 

 

There are opportunities to exploit natural plant photosynthesis for the sustainable 

production of biomass (which can be combusted to produce heat or processed into biofuels 

such as bioethanol)27 but there are some drawbacks associated with doing this.                

One disadvantage is the fact that the theoretical maximum efficiency of photosynthesis is 

only 4.6 % despite the quantum efficiencies (i.e. proportion of photons used to generate a 

charge-separated state) of the light-harvesting apparatus typically exceeding 90 %.2,44         

In reality, however, it is unusual for dry matter yields to surpass 1 %, even under optimised 

conditions such as the intensive growth of sugar cane in tropical environments.3 This is 

because the energy required for water-splitting and CO2-fixation corresponds to photons 

with wavelengths in the red part of the electromagnetic spectrum (ca. 690 nm) and, 

although higher energy photons can be absorbed, surplus energy is dissipated as heat.3 This 

means that the growth of plants for biomass is rarely economically viable.27 Furthermore, 

there are concerns that edible feedstocks such as grain are better used as food rather than 

for energy or biofuel production.4 
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It is also possible to exploit the natural processes performed by photosynthetic              

micro-organisms where solar energy is captured for the enzymatic production of chemical 

fuels such as H2.
28,42 For example, light-driven H2-evolution by the green alga 

Chlamydomonas reinhardtii can be induced by removal of sulphur from growth medium, 

with maximal H2 production rates of 11.1 mL H2 hr-1 (L culture)-1 (reactor volumes ≤ 1.1 L) 

reported previously.45,46 However, these rates of H2-evolution are not sustainable because                  

sulphur-deprivation has negative effects on the survival, growth and light-harvesting 

capacity of the micro-organisms.46,47 Additionally, expanding the methodology for        

larger-scale H2 production (reactor volumes > 50 L) is problematic due to decreases in 

efficiency under non-optimised conditions (e.g. natural sunlight vs. simulated irradiation) as 

well as strict requirements for anaerobicity, sterility and pH control.45,48           

 

To overcome the challenges described above, there has been a focus on the development 

of artificial systems that attempt to mimic and improve upon the outcomes of natural 

photosynthesis (i.e. light-driven chemical synthesis). The next section introduces artificial 

photosynthesis then describes two chemical transformations of particular importance         

to this area of research. 

 

1.5 Artificial photosynthesis for H2-evolution, CO2-fixation      

and chemical synthesis 

 

The general concept behind artificial photosynthesis can be visualised as an optimised 

redox cascade based on that which operates during natural photosynthesis, as shown          

in Fig. 1.7. A light-absorbing photosensitiser is used to harvest solar energy and transfer 

photo-energised electrons to an electrocatalyst that performs a reductive chemical 

transformation. For this process to take place, electrons are transferred to the 

photosensitiser from an electron donor such as an electrode, a catalyst that performs 

water-splitting or a chemical reducing agent referred to as a sacrificial electron                

donor (SED).1,2,49 The latter example is used extensively within systems for artificial 

photosynthesis because a range of small, simple molecules (such as tertiary aliphatic 

amines) can be employed as SEDs.49 Two products of particular interest are H2 (from the 

reduction of protons) and formate (from the reduction of CO2) because they are both 

valuable fuels and platform chemicals derived from abundant substrates (see below).50,51    
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Figure 1.7 - Schematic diagram for artificial photosynthesis. A photosensitiser absorbs photons (hν) 

for promotion of an electron to an excited state. This is followed by electron transfer to an 

electrocatalyst that performs a reductive chemical transformation. Electrons are typically supplied to 

the photosensitiser by an electrode, a catalyst that splits water or a SED. 

 

H2 is a versatile energy carrier with the highest gravimetric energy density of any fuel, as 

highlighted in Table 1.2. It can act as a store for electricity (which can be released            

using a fuel cell, with water as the only byproduct) to overcome the problem of 

intermittent sunlight and is an important commodity for a number of industrial 

procedures.4 For example, H2 can be combined with N2 as part of the Haber-Bosch process 

to make ammonia for fertiliser production or combined with carbon monoxide to      

produce long chain hydrocarbons (such as synthetic petrol and diesel) through            

Fischer-Tropsch chemistry.4,42,52 

 

Table 1.2 - Approximate gravimetric energy densities of common fuels.
11

 

Fuel 
Gravimetric energy density 

(MJ kg-1) 

Hydrogen 142 

Methane 56 

Gasoline 47 

Diesel 45 

Coal 15 - 27 

Wood 15 

 

H2 is currently produced on a large scale through the steam reformation of methane 

followed by the water-gas shift reaction, shown in Eq. 1.5 and 1.6, respectively.4,42         

These processes are relatively cost-effective but rely on a non-renewable feedstock and 

transition metal catalysts as well as high temperatures and pressures.4,42 The water-gas 
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shift reaction has the added disadvantage of producing CO2 as a side product. As such, 

more sustainable routes to H2 production need to be developed.  

 

800 °C      
                                                     CH4 + H2O                    CO + 3 H2          Eq. 1.5 

40 bar 
 

> 200 °C      
                                                       CO + H2O                    CO2 + H2          Eq. 1.6 
 

The light-driven reduction of CO2 to formate is an important chemical transformation for a 

number of reasons. First, the reaction achieves the removal of a potent greenhouse gas 

from the atmosphere which could help to combat the detrimental effects of climate change 

caused by the combustion of fossil reserves (see section 1.2). Secondly, the reaction 

represents the storage of H2 as a liquid which is easier to handle and transport than 

gaseous H2.
53 Formate can be used directly in fuel cells to produce an electrical current        

or the H2 stored within formate can be released on demand using transition                    

metal catalysts.54 Lastly, formate (or formic acid) is a versatile commodity with applications 

in the textiles industry and as an antibacterial additive in livestock feeds.55 It can also be 

used to produce other chemicals. For example, the sequential reduction of CO2 to 

methanol via formic acid and formaldehyde has been reported previously using three 

nicotinamide adenine dinucleotide (NADH)-dependent enzymes encapsulated within a 

porous matrix.56 A schematic diagram for this system is shown in Fig. 1.8. 

 

 

 

 

 

 

Figure 1.8 - Schematic diagram for the enzymatic reduction of CO2 to methanol. FateDH = formate 

dehydrogenase, FaldDH = formaldehyde dehydrogenase, ADH = alcohol dehydrogenase.                 

 

The predominant industrial process for the generation of formic acid involves the 

combination of carbon monoxide and methanol at high pressures and temperatures in      

the presence of a strong base.54,55 As a consequence, new technologies for formic acid 

production that operate under milder conditions are sought after. 



Chapter 1 

 

30 
 

Early approaches to artificial photosynthesis achieved light-driven reduction of protons to 

H2 using homogeneous systems containing colloidal metal (e.g. platinum, palladium and 

gold) electrocatalysts.43 SEDs such as ethylenediaminetetraacetic acid (EDTA) or                    

N-phenylglycine were used as a source of electrons, photosensitisers such as Ru(bpy)3
2+ 

(where bpy is 2,2’-bipyridine) were used for light absorption and experiments were 

typically carried out in aqueous solutions due to the availability of protons.57,58                

Many of these systems also used small, redox-active molecules such as methyl viologen 

(MV) which can cycle between the fully oxidised form (MV2+) and one-electron reduced 

form (MV+) to shuttle electrons from the photosensitiser to the electrocatalyst.58     

Recently, more sophisticated approaches to light-driven H2-evolution have been developed 

using purified enzymes or transition metal complexes as electrocatalysts to avoid the 

requirement for rare and expensive metal colloids.43 These advances have also provided 

the opportunity to expand the repertoire of chemical transformations to include 

photocatalytic CO2-reduction to formate and other valuable products. The next sections 

describe the advantages and disadvantages of using purified enzymes and transition metal 

complexes as electrocatalysts for artificial photosynthesis then discuss how whole-cell 

bacteria may offer routes to improved solar-chemicals production. More detailed 

information about the role and function of photosensitisers and SEDs for reductive 

photocatalysis is provided at the beginning of chapter 4. 

 

1.5.1 Purified hydrogenases and formate dehydrogenases as 

electrocatalysts 

 

Hydrogenase and metal-dependent formate dehydrogenase enzymes underpin metabolism 

in a range of micro-organisms by catalysing the reversible interconversion of protons to H2 

and CO2 to formate, respectively.59,60 Although the two enzymes catalyse different chemical 

transformations, they are similar with respect to their structural organisation, as shown        

in Fig. 1.9 with representative enzymes. In general, the enzymes contain two distinct 

subunits: one with a series of iron-sulphur clusters for electron transfer and one                

with a buried active site for catalysis.60,61 Hydrogenases typically have active sites              

comprising a nickel atom and an iron atom ([NiFe]-hydrogenases) or two iron atoms                        

([FeFe]-hydrogenases) whereas metal-dependent formate dehydrogenases have active 

sites based on molybdenum or tungsten.60,62 Chemical structures of the different active 

sites are shown in Fig. 1.10.60,63,64 During reductive catalysis in vivo, electrons derived from 
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2 H+
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CO2 + H+

e-

e-

metabolism are delivered to the distal iron-sulphur cluster then rapidly transferred to the 

active site. In artificial systems, the purified enzymes must be combined with reagents that 

harvest solar energy and supply the chain of redox centres with photo-energised electrons. 

 

 

 

 

 

 

 

 

 

Figure 1.9 - Representative hydrogenase and formate dehydrogenase structures. Electrons derived 

from metabolism or light-harvesting reagents are transferred to the active site (green) via             

iron-sulphur clusters (yellow). Crystal structures for the [FeFe]-hydrogenase from Desulfovibrio 

desulfuricans (PDB ID: 1HFE) and the W-containing formate dehydrogenase from Desulfovibrio gigas 

(PDB ID: 1H0H). Images rendered with PyMOL software. 

 

 

 

 

 

Figure 1.10 - Chemical structures for the active sites of [NiFe]-hydrogenases (left),                        

[FeFe]-hydrogenases (middle) and metal-containing formate dehydrogenases (right). Cys = cysteine,    

[4Fe4S] = iron-sulphur cluster, M = Mo or W. 

 

Examples of artificial photosynthesis with purified enzymes are described below to 

highlight some of the ways in which light-driven H2-evolution and CO2-reduction can be 

performed. This is followed by a more general overview of the advantages and 

disadvantages of such systems. Experimental details including schematic diagrams for each 

example are provided in Table 1.3. Example A65 in Table 1.3 involves a mediated approach 
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to photocatalytic formate production where electron transfer from the photosensitiser to 

the NADH-dependent formate dehydrogenase proceeds via multiple redox reactions 

involving regeneration of the NADH cofactor. This system is relatively complex and reliant 

on the diffusion of each component for electron exchange. Example B66 in Table 1.3 

achieves direct electron transfer from the photosensitiser to the [FeFe]-hydrogenase for 

H2-evolution by chemically-linking the two components. This system shows remarkable 

stability over 64 days (samples held at room temperature with ambient light under          

non-turnover conditions) but requires a combination of SEDs to achieve the highest         

rates of photocatalytic H2 production as well as genetic manipulation of the    

photosensitiser and enzyme for attachment of the chemical linker. Example C67 in Table 1.3               

achieves light-driven H2-evolution through attachment of the photosensitiser to the                     

[NiFe]-hydrogenase with only EDTA as the SED. Despite their close proximity, however, 

direct electron transfer between the photosensitiser and the enzyme does not occur and a 

high concentration of MV as an electron transfer mediator is required to facilitate            

photocatalytic H2-evolution.  

 

In general, the use of purified enzymes for artificial photosynthesis takes advantage of    

their high catalytic turnover rates and specificities which are displayed under relatively            

mild conditions (i.e. in aqueous solutions with near-neutral pH at ambient temperatures)          

and match or exceed those of noble metals.59,68 As an example, the rate of H2 oxidation by       

the [NiFe]-hydrogenase from Allochromatium vinosum matches that of platinum.69 

Additionally, an increasing number of photocatalytic transformations can be targeted as 

new enzymes are isolated and interfaced with photosensitisers, as shown in a number        

of recent publications.1,42,62,68,70 This includes CO2-reduction to carbon monoxide and 

methanol (both valuable fuels and feedstocks) using carbon monoxide dehydrogenases and 

alcohol dehydrogenases, respectively, as well as O-dealkylation reactions using cytochrome 

P450 enzymes (versatile mono-oxygenases involved in the synthesis of numerous complex 

chemicals including vitamins, steroids and fatty acids).62,70,71 However, there are a number 

of drawbacks associated with using purified enzymes for solar-chemicals production.          

For example, there is a time and cost associated with the isolation of enzymes and there 

may be a requirement for genetic manipulation or the addition of exogenous cofactors 

such as NADH to achieve photocatalysis.65,66,68 As a result, research has also focussed on the 

use of transition metal complexes as electrocatalysts because they can be readily created 

and modified using synthetic chemistry.1,33,43  
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1.5.2 Transition metal complexes as electrocatalysts  

 

In this section, further examples of artificial photosynthesis for H2-evolution and               

CO2-reduction are described to showcase the use of transition metal complexes as 

electrocatalysts and highlight their advantages and disadvantages. Experimental           

details including schematic diagrams are shown in Table 1.4. Example A72 in Table 1.4      

uses a diffusion-controlled approach to photocatalytic H2-evolution with a synthetic                

[FeFe]-hydrogenase mimic as an electrocatalyst. The complex is compatible with aqueous 

solutions through the attachment of long ether chains but does not operate effectively 

under pH neutral conditions. In contrast, example B73 in Table 1.4 achieves light-driven      

H2-evolution by anchoring the photosensitiser and the cobalt electrocatalyst to titanium 

dioxide for rapid electron transfer via the conduction band of the nanoparticles.                

The system readily self-assembles and shows optimal performance at pH 7 but suffers from 

significant decreases in activity after 6 hr irradiation due to photo-instability of the metal 

complexes. Example C74 in Table 1.4 uses anchoring groups to connect the ruthenium 

electrocatalyst to light-harvesting photosensitiser nanoparticles which can directly transfer 

electrons to the electrocatalyst for the photo-production of formate. 

 

In general, transition metal complexes are suitable electrocatalysts because they exhibit 

high catalytic turnover rates and are amenable to chemical synthesis such that a range of 

metal centres, structures and ligands can be readily evaluated to optimise performance, as 

highlighted in a number of recent review articles.1,2,43,75,76 Additionally, their photophysical 

properties can be assessed using kinetic and spectroscopic techniques to further 

understand the mechanisms of electron transfer and catalysis for the design of better 

systems. The main disadvantage of using transition metal complexes as electrocatalysts is 

the relative cost and scarcity of certain metals, such as ruthenium, meaning that carrying 

out light-driven chemical transformations on a large scale may not be economically viable.1 

Although transition metal complexes can also be based on Earth-abundant metals, such as 

iron, synthetic routes can be relatively time-consuming and the complexes may suffer from 

poor long-term stability.1,2 To overcome these problems, as well as the problems associated 

with using purified enzymes, recent work has focussed on the use of whole-cell bacteria as 

electrocatalysts. These systems are discussed in the next section to show how they provide 

opportunities for sustained light-driven chemical synthesis and the formation of a wide 

range of products. 
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1.5.3 Whole-cell bacteria as electrocatalysts 

 

Artificial photosynthesis with whole-cell bacteria draws on the fact that micro-organisms 

naturally produce a wealth of metabolic machinery (e.g. enzymes for catalysis, proteins                   

for electron transfer) during growth.77–81 This can be exploited for light-driven chemical 

synthesis by combining micro-organisms with reagents that generate photo-energised 

electrons (or photo-produce simple molecules such as H2) and deliver them to intracellular 

enzymes. Examples of whole-cell photocatalysis are discussed below to show how this can 

be achieved. Experimental details including schematic diagrams are provided in Table 1.5. 

 

Example A82 in Table 1.5 uses a hydrogenase-producing Escherichia coli (E. coli) strain to 

facilitate light-driven H2-evolution over 15 hr with extracellular titanium dioxide 

nanoparticles for absorption of UV light. Here, electron transfer from the photosensitiser     

to intracellular hydrogenases is mediated by MV that shuttles photo-excited electrons 

across the bacterial outer membrane. Example B77 in Table 1.5 uses Moorella 

thermoacetica for the production of acetic acid under visible light irradiation. Light 

absorption is achieved using biologically-precipitated cadmium sulphide nanoparticles and 

electron transfer is directly linked to central metabolism meaning that acetic acid can be 

generated without compromising on the survival of the micro-organism. Example C79 in      

Table 1.5 uses an inorganic water-splitting device and Ralstonia eutropha for the     

reduction of CO2 to either biomass (with the wild-type bacterium) or isopropanol (with a      

genetically-engineered strain). H2 generated by the water-splitting device is transferred to 

the bacterium then oxidised by intracellular hydrogenases to produce NADPH for             

CO2-reduction. The main disadvantage of the system is the production of reactive O2 

species at the cathode which hinder bacterial growth. Recently, this problem has been 

overcome by using a biocompatible cathode made from a cobalt phosphorus alloy.80             

In combination with genetically-engineered strains of Ralstonia eutropha, the new       

system can generate fusel alcohols (such as isobutanol and 3-methyl-1-butanol) with                   

solar-to-product (quantum) yields of > 7 % (assuming the electricity required for            

water-splitting came from a photovoltaic device with 18 % efficiency), exceeding those of 

natural photosynthesis.80 Overall, these examples show that whole-cell bacteria provide an 

excellent platform for the sustainable production of valuable products. In the next section, 

the key aspects of these systems are summarised to introduce the approach to                

solar-chemicals production that was developed in this thesis. 
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1.6 Opportunities for developing whole-cell bacteria 

approaches to artificial photosynthesis 

 

As shown in section 1.5, a variety of SEDs, photosensitisers and electrocatalysts can be 

used for artificial photosynthesis with electron transfer from the photosensitiser to the 

electrocatalyst proceeding directly or via electron shuttles such as MV. Although systems 

containing purified enzymes or transition metal complexes have undoubtedly furthered our 

understanding of photocatalysis, there are clear advantages to using whole-bacteria as 

electrocatalysts. These include: (i) access to a diverse range of products using the natural, 

or genetically-enhanced, repertoire of bacterial enzymes, (ii) self-regeneration whereby 

intracellular enzymes are repaired by the living organism for enhanced longevity and          

(iii) product formation under relatively mild conditions. Taking this into account, 

prospective micro-organisms for artificial photosynthesis should be able to produce 

multiple enzymes that catalyse useful chemical transformations and be amenable                 

to productive electron exchange with light-harvesting reagents. In particular,                         

non-photosynthetic bacteria that cannot naturally harvest solar energy are of interest 

because the catalytic efficiencies of intracellular enzymes can be coupled with the           

well-studied photochemical and photophysical properties of biotic and abiotic                  

photosensitisers such as molecular dyes, semiconducting nanoparticles and light-harvesting 

protein complexes (see examples in Table 1.3, 1.4 and 1.5). 

 

Based on these requirements, the non-photosynthetic bacterium Shewanella oneidensis 

MR-1 (MR-1) is especially attractive to this area of research for two main reasons. First, the 

bacterium has been the subject of extensive research efforts aiming to understand its 

remarkable metabolic capabilities that allow it to survive in redox-stratified environments. 

As a consequence, much is known about the structure and localisation of the enzymes          

it produces during respiration, some of which could be targeted for light-driven       

reductive transformations. Secondly, it can produce protein complexes spanning the outer 

membrane that exchange electrons with extracellular redox partners. These act as natural 

electron conduits between the exterior and interior of the cell and may provide a route to 

deliver photo-excited electrons to bacterial enzymes. The next sections provide background 

information about MR-1 then describe how its unique characteristics make it suitable for 

assessing whether it can be utilised for light-driven chemical synthesis. 
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1.6.1 Metabolic versatility of Shewanella oneidensis MR-1 may allow 

for the simultaneous presence of multiple enzymes that catalyse 

useful reductive transformations 

 

MR-1 (previously referred to as Alteromonas putrefaciens MR-1 and Shewanella 

putrefaciens MR-1) is a Gram-negative, γ-proteobacterium which was first isolated from 

the anoxic sediments of Lake Oneida, New York State in 1988.83,84 The bacterium is a 

facultative anaerobe renowned for its respiratory versatility with respect to the array of 

terminal electron acceptors it can utilise during respiration.85 This includes O2, fumarate, 

dimethyl sulfoxide (DMSO), trimethylamine N-oxide (TMAO), protons, nitrate, nitrite, 

thiosulfate, sulfite and elemental sulphur as well as insoluble iron (III) and manganese (IV) 

hydr(oxides) and electrodes.85–91 Of particular significance are the final three examples 

because they are unable to cross the bacterial outer membrane.85 The range of electron 

donors that can be utilised by MR-1 is much narrower and includes H2, pyruvate, lactate 

and formate.92–94 Research into anaerobic respiration with these substrates allows the 

construction of the key metabolic pathways within the cytoplasm and periplasm of MR-1, 

as shown in Fig. 1.11 with lactate as electron donor and fumarate as electron acceptor.93–95  

 

In the cytoplasm, lactate is oxidised to pyruvate and then to acetyl coenzyme A (CoA) and 

formate by the lactate dehydrogenases and the pyruvate-formate lyase (PflB), 

respectively.95 Pyruvate can also be oxidised by the pyruvate dehydrogenase to generate 

CO2 and reduce NAD+ to NADH but this has not been included in Fig. 1.11 for clarity.93 

Acetyl-CoA is then oxidised to acetate via the phosphotransacetylase-acetate kinase        

(Pta-AckA) pathway which results in the generation of ATP through substrate-level 

phosphorylation.95 Formate is transferred across the inner membrane to the periplasm via 

a predicted bi-directional formate transporter (FocA) where it is oxidised to CO2 and 

protons by the formate dehydrogenases.94 This process releases electrons to the 

menaquinone (MK) pool for reduction of MK to menaquinol (MKH2). Re-oxidation of MKH2 

can be facilitated by the tetraheme cytochrome CymA, a membrane-bound quinol 

dehydrogenase that acts as a hub for electron transfer to a range of terminal reductases      

in MR-1.89,96 The redox cycling of MK and MKH2 leads to the generation of a PMF across the 

inner membrane. In the presence of fumarate, electrons can be transferred from CymA to 

the fumarate reductase to produce succinate.94 In the absence of a terminal electron 
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acceptor, known as acceptor-limited conditions, MKH2 can be re-oxidised by the 

hydrogenases for the reduction of protons to H2.
91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 - Anaerobic respiration by MR-1 with lactate as electron donor and fumarate as     

electron acceptor. In the absence of another electron acceptor, menaquinol (MKH2) is re-oxidised   

by the hydrogenases (H2ase) for subsequent reduction of protons to H2. IM = inner                   

membrane, OM = outer membrane, ADP = adenosine diphosphate, ATP = adenosine triphosphate,                      

LDH = lactate dehydrogenase, CoA = coenzyme A, PflB = pyruvate-formate lyase, Pi = phosphate,                             

Pta = phosphotransacetylase, AckA = acetate kinase, FDH = formate dehydrogenase,                          

MK = menaquinone, FccA = fumarate reductase. 

 

Based on the respiratory capabilities of MR-1, there are four key enzymes that could be 

exploited for light-driven reductive transformations to generate products of current 

interest. These are the hydrogenases (for reduction of protons to H2),
91,97,98 fumarate 

reductase (for reduction of fumarate to succinate, an example of C=C bond 

hydrogenation),99 lactate dehydrogenases (for reduction of pyruvate to lactate, an example 

of C=O bond hydrogenation)93 and formate dehydrogenases (for reduction of CO2 to 

formate).94 The reductive transformations and their mid-point potentials (Em, all values 

quoted versus the standard hydrogen electrode in this thesis)100,101 are shown in Eq. 1.7 to 

1.10 and further details about the enzymes are provided in the sections below. More 

information about the wider importance of these reductive transformations is given in 
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section 1.5 (for reduction of protons to H2 and CO2 to formate) and the sections below (for 

reduction of fumarate to succinate and pyruvate to lactate).                    

  

                         Eq. 1.7 

 

                                             

 

 

 Eq. 1.8 

 

                                                

 

 

 Eq. 1.9 

 

                

 

 

  Eq. 1.10 

 

 

1.6.1.1 Hydrogenases 

 

The genome sequence of MR-1 reveals that the bacterium possesses genes that encode      

for one [NiFe]-hydrogenase and one [FeFe]-hydrogenase, both of which are localised to the          

periplasm.91,102 The [NiFe]-hydrogenase is quinone-reactive and comprised of three 

subunits: HyaA (small subunit, SO2099), HyaB (large catalytic subunit, SO2098) and HyaC 

(cytochrome b subunit, SO2097).91,103 The [FeFe]-hydrogenase is comprised of HydA        

(large catalytic subunit, SO3920) and HydB (small subunit, SO3921) and is predicted to form 

a formate-hydrogen lyase complex because the hydA operon contains a putative formate 

dehydrogenase γ subunit (SO3922).91,94 Early reports that described H2 metabolism by       

MR-1 suggested that the [NiFe]-hydrogenase was bi-directional (i.e. could catalyse the 

oxidation of H2 in addition to the reduction of protons) and the [FeFe]-hydrogenase was 

solely involved in H2-evolution.91 More recently, however, it has been shown that the 



Chapter 1 

 

42 
 

[FeFe]-hydrogenase can couple the oxidation of H2 to the reduction of amaranth (an azo 

dye that is predicted to be reduced extracellularly).104,105       

 

1.6.1.2 Fumarate reductase 

 

The MR-1 fumarate reductase (FccA, SO0974) is a soluble, uni-directional enzyme 

containing four bis-histidine ligated heme c groups and a non-covalently bound flavin          

adenine dinucleotide (FAD) catalytic cofactor.99,106 The crystal structure has been solved 

previously106 and is shown in Fig. 1.12. The enzyme is comprised of three domains: the        

N-terminal domain contains the heme groups, the C-terminal domain contains the FAD 

group and the clamp domain joins the N- and C-terminal domains.107 The enzyme is    

unique as a fumarate reductase because it is monomeric and localised to the periplasm. 

This is in contrast to other bacterial quinol-fumarate oxidoreductases which are typically 

membrane-bound and formed of multiple subunits containing iron-sulphur clusters.108    

FccA acts as a terminal reductase during MR-1 metabolism by receiving electrons from 

CymA for the reduction of fumarate to succinate (see Fig. 1.11) but has also been 

implicated in electron transfer across the periplasmic space during anaerobic growth with 

extracellular electron acceptors.89,109      

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12 - Crystal structure of the MR-1 fumarate reductase (PDB ID: 1D4D). The FAD group is 

shown in blue and the heme groups are shown in red with the central iron atoms as orange spheres. 

Image rendered with PyMOL software. 
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γ

The photocatalytic reduction of fumarate to succinate is an important reaction to target 

because it represents a fundamental transformation in organic chemistry (C=C bond 

hydrogenation) as well as the storage of H2 within an organic molecule.110,111 Additionally, 

succinate (or succinic acid) has applications in the food industry as a flavour enhancer and 

is a key platform chemical for the generation of specialised polymers (such as          

polyesters and nylons) and high-value petrochemical products (such as tetrahydrofuran,                     

1,4-butanediol and γ-butyrolactone), the structures of which are shown in Fig. 1.13.112,113  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13 - Chemical structures of valuable chemicals that can be produced from succinic acid. 

 

The commercial production of succinate has traditionally relied on technologies that 

require expensive metal catalysts such as palladium as well as high temperatures               

and pressures.112 As a consequence, cheaper routes to succinate production that operate 

under milder conditions are sought after.  

 

1.6.1.3 Lactate dehydrogenases 

 

The oxidation of D- and L-lactate (the structures of which are shown in Fig. 1.14) by MR-1 is 

facilitated by two distinct lactate dehydrogenases (one for each lactate isomer) which are 

both membrane-bound enzymes on the cytoplasmic side of the inner membrane.93,114,115 

The first reports describing these enzymes found they were novel bacterial lactate 

dehydrogenases but subsequent analysis revealed there were homologous enzymes in 

other species of Shewanella as well as a range of α- and β-proteobacteria.114 Oxidation        

of D-lactate is performed by Dld-II (SO1521) which is a relatively distant homolog                     
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(23 % sequence identity) of the D-lactate dehydrogenase from yeast and oxidation of            

L-lactate is carried out by LldEFG (SO1518-SO1520) which is predicted to be a multi-subunit 

enzyme.114 Interestingly, D-lactate is preferentially utilised by MR-1 over L-lactate, 

presumably because D-lactate is able to inhibit the oxidation of L-lactate.115  

 

 

 

 

 

 

Figure 1.14 - Chemical structures of D- and L-lactate. 

 

Lactate (or lactic acid) is a valuable commodity because it can be used as a platform 

chemical for the production of green solvents (such as lactate esters) and biodegradable 

fibres for biomedical applications.113 Additionally, there is an increasing interest in the 

polymerisation of lactic acid to give high molecular weight (HMW) poly-lactic acid which 

can be used as a sustainable alternative to polystyrene.113 The production of HMW 

polymers from lactic acid is most effective if the synthesis proceeds via a low molecular 

weight (LMW) pre-polymer and lactide, the structures of which are shown in Fig. 1.15.113,116 

 

 

 

 

 

 

Figure 1.15 - Chemical conversions of lactic acid to produce high molecular weight (HMW) poly-lactic 

acid. LMW = low molecular weight, m < n. 

 

On an industrial scale, lactic acid can be produced by chemical and biological routes.113,117 

For example, the chemical synthesis of lactic acid can be achieved using hydrogen cyanide 

and acetaldehyde to produce a lactonitrile intermediate (in a reaction that proceeds in the 

liquid phase and requires high pressures) which can then be hydrolysed to lactic acid using 

concentrated hydrochloric or sulphuric acid.117 Lactic acid can also be produced under 

milder conditions through microbial fermentation of substrates such as glucose. 

Commercial fermentation yields are relatively high (approximately 90 % based on the 
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amount of supplied glucose) but the process results in the formation of calcium lactate 

which must be neutralised to give pure lactic acid.113 This neutralisation procedure leads to 

the formation of vast quantities of calcium sulfate as a waste product.113 As such, there is      

a desire for new routes to lactic acid production that proceed under ambient conditions 

and avoid the generation of unwanted byproducts.  

 

1.6.1.4 Formate dehydrogenases 

 

The genome of MR-1 contains gene clusters that encode for a total of three formate 

dehydrogenase complexes.94 One of the gene clusters (SO0101-SO0103) encodes for a 

nitrate-inducible formate dehydrogenase.102 Transcription of the genes related to this 

enzyme is up-regulated during growth with nitrate as electron acceptor but the enzyme 

does not significantly contribute to formate oxidation during anaerobic growth with 

fumarate as electron acceptor.94,118 The other two gene clusters (SO4509-SO4511               

and SO4513-SO4515) encode for related NADH-independent formate dehydrogenases       

(68 % sequence identity to each other) which have likely arisen from a gene               

duplication event.94 Both enzymes are membrane-bound on the periplasmic side of the 

inner membrane and are comprised of three subunits: the α-subunits contain the catalytic 

active site, the β-subunits transfer electrons to the active site, and the γ-subunits anchor 

the enzyme to the inner membrane and exchange electrons with the MK pool.51,61,94              

It is proposed that the ability to produce multiple formate dehydrogenases affords MR-1 

with an evolutionary advantage for surviving in diverse environments where the 

concentration of formate is continuously fluctuating.94 

 

Overall, the respiratory flexibility of MR-1 makes the bacterium suitable for assessing 

whether it can be utilised for light-driven chemical synthesis because there are a range of 

enzymes that can be targeted for the generation of commercially-valuable products.            

As mentioned above, the bacterium is also suitable because it produces outer membrane 

protein complexes that can exchange electrons with insoluble redox partners such as metal 

hydr(oxides) and electrodes. The next section provides a description of how insoluble, 

extracellular electron acceptors are reduced by MR-1 during respiration then introduces 

recent work that acts as a direct platform to achieve the aims of this thesis. 

 



Chapter 1 

 

46 
 

A B

MtrC

MtrB

MtrA

1.6.2 Outer membrane spanning complexes may provide a route to 

deliver photo-energised electrons from the outside to the inside of 

the bacterium 

 

To reduce extracellular electron acceptors that cannot enter the periplasm, MR-1 must 

transport electrons generated through central metabolism across the bacterial outer 

membrane, which typically acts as an insulating barrier.119 Electron transfer from the inside 

to the outside of the bacterium proceeds via porin:cytochrome complexes embedded in 

the outer membrane. MtrCAB is the most widely studied of these complexes but MR-1 can 

also produce a second complex called MtrDEF, the genes of which are highly expressed 

under aerobic aggregated (biofilm) growth.119,120 MtrCAB is comprised of three proteins in    

a 1:1:1 complex, as shown in Fig. 1.16. MtrC (≈75 kDa) is a decaheme cytochrome localised     

to the outer surface of MR-1 via a lipid anchor and MtrA (≈35 kDa) is a periplasmic       

decaheme cytochrome that forms a tight complex with MtrB (≈85 kDa), a 28-strand 

transmembrane β-barrel protein that creates a pore (3 to 4 nm in diameter) in the outer 

membrane.85,119,121 MtrC and MtrA each contain 10 bis-histidine ligated heme c groups 

which are covalently linked to the protein structure via the Cys-X-X-Cys-His motif (where 

Cys is cysteine, X is any residue and His is histidine).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16 - Structure of the MR-1 outer membrane porin:cytochrome complex MtrCAB. A] Model 

of the MtrCAB complex rendered with PyMOL software by Dr. Marcus Edwards (University of East 

Anglia, UK) from the crystal structure of MtrC (PDB ID: 4LM8), a model of MtrA based on two NrfB 

(PDB ID: 2OZY) units and a model of MtrB generated using TMB_Pro_3D software. Heme groups 

within MtrC and MtrA are coloured in red. B] Chemical structure of heme c. Cys = cysteine residue. 
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The hemes of MtrC and MtrA are thought to be brought into close contact (≤ 11 Å edge-to-

edge distances between porphyrin rings) with MtrA positioned inside MtrB to create a wire 

of iron centres that cycle between the oxidised (Fe(III), ferric) and reduced (Fe(II), ferrous) 

states to shuttle electrons across the outer membrane.122,123 With the purified complex 

adsorbed on a graphite electrode, the reduction potential of MtrCAB spans approximately           

-0.4 to +0.05 V.124 Once electrons from the periplasm are transferred along the hemes of 

MtrA to reach MtrC, they are transferred to extracellular acceptors via direct,                 

flavin-mediated and/or nanowire-assisted mechanisms, as summarised in Fig. 1.17.85  

 

 

 

 

 

 

 

 

Figure 1.17 - Schematic diagram for the transfer of electrons from MR-1 central metabolism to an 

extracellular acceptor (e.g. an Fe(III) or Mn(IV) hydr(oxide) or an electrode) via MtrCAB. Electron 

transfer from MtrC to the acceptor can proceed via the direct [1], flavin-mediated [2] and/or 

nanowire-assisted [3] mechanisms. F = oxidised flavin, FH2 = reduced flavin. 

 

The direct mechanism of electron transfer has been supported by experiments where 

purified MtrCAB was re-constituted in spherical vesicles encapsulating MV. After reducing 

MV with a chemical reductant, the internalised pool of electrons could be released from 

the vesicles via MtrCAB through the addition of Fe(III) minerals (such as goethite,      

hematite and lepidocrocite) in the absence of an exogenous electron shuttle.125,126             

The flavin-mediated mechanism has been supported by a number of previous studies, as 

reviewed in Brutinel et al. (2012).127 For example, it was found that there was a dramatic 

decrease in current produced by electrode-grown bacterial biofilms (i.e. Shewanella 
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cultured with lactate as electron donor and an electrode poised at +0.24 V as electron 

acceptor) when the surrounding medium (containing flavin shuttles such as riboflavin) was 

exchanged with fresh medium.128 The nanowire-assisted mechanism has been supported 

by immuno-labelling and live fluorescence imaging which revealed that electron transfer 

along bacterial appendages (typically referred to as nanowires) involved extensions of the 

outer membrane containing the MtrCAB complex.129 

 

By reversing the native flow of electrons through MtrCAB, it should be possible to drive 

reductive transformations in MR-1. This has been performed previously for the reduction of 

fumarate and chromate, although an electrode poised at a reducing potential provided 

electrons to the bacterium rather than a SED and photosensitiser.130,131 For example,       

Ross et al. (2011) reported that electrons could be transferred into MR-1 via MtrCAB for 

the reduction of fumarate to succinate using a graphite electrode poised at -0.36 V.130 

Further analysis revealed that approximately 85 % of electrons were transferred to the 

fumarate reductase via CymA and the MK pool with little direct electron transfer from 

MtrA.130 More recently, the work reported in Ainsworth et al. (2016) assessed the 

photoreduction of purified MR-1 outer membrane cytochromes to evaluate the possibility 

of light-driven electron transfer into the bacterium.132 The key results from this work are 

described below to show how they provide a platform to achieve the aims of this thesis. 

 

In Ainsworth et al. (2016), the photoreduction of purified MtrC, OmcA (a decaheme protein 

which is a homolog of MtrC) and MtrCAB was carried out using a range of photosensitisers 

including xanthene-dyes, an acridine-dye, flavins and ruthenium complexes.132 The proteins 

were combined with a SED and photosensitiser then samples were irradiated with a white 

light source (λ > 390 nm) at an intensity of 0.4 kW m-2. The photoreduction of the proteins 

was monitored using a spectrophotometer to assess the increases in absorbance at         

420, 523 and 552 nm corresponding to reduced heme. A schematic diagram for 

photoreduction of MtrC is shown in Fig. 1.18A and representative spectra for fully      

oxidised and fully reduced MtrC are given in Fig. 1.18B. The extent of heme photoreduction 

over 90 min irradiation was dependent on the photosensitiser and similar trends were    

seen for MtrC, OmcA and MtrCAB. With triethanolamine (TEOA) as SED, complete 

photoreduction was achieved with the xanthene- and acridine-dyes, approximately 61 % 

photoreduction was achieved using the flavins and ≤ 14 % photoreduction was achieved 

with the ruthenium complexes. However, it was found that the rate and extent of 
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2-(N-morpholino)ethanesulfonic acid (MES) as SED.132 

 

 

 

 

 

 

 

 

 

 

Figure 1.18 - Photoreduction of purified MtrC. A] Schematic diagram for photon (hν) absorption by a 

photosensitiser and transfer of photo-excited electrons to MtrC in the presence of a sacrificial 

electron donor (SED). B] Representative spectra showing fully oxidised (black) and fully reduced 

(red) MtrC in 50 mM HEPES, 100 mM NaCl, pH 7 at 4 °C. Arrows indicate the increase in absorbance 

at 420, 523 and 552 nm corresponding to heme reduction. 

 

Overall, the findings in Ainsworth et al. (2016) provide a foundation for the work in this 

thesis through the evaluation of photosensitisers from a variety of chemical classes 

including a comprehensive assessment of their spectral properties, photoreduction 

potentials and relative photoreduction efficiencies in the presence of SEDs such as TEOA 

and 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES). Importantly, the work 

showed that photo-energised electrons can be rapidly transferred to isolated MR-1 outer 

membrane cytochromes under ambient conditions (i.e. in aqueous medium at pH 7) which 

should be compatible with bacteria for cell-based photocatalysis. 

 

1.7 Aims of this thesis 

 

The work presented in this thesis addressed two main objectives. The first objective was to 

establish whether MR-1 can be used for cell-based photocatalysis to generate multiple 

products. To achieve this, MR-1 was cultured to produce the enzymes of interest then 
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combined with a SED and photosensitiser (for generation of photo-excited electrons under 

irradiation by visible light) and MV (for effective electron transfer to bacterial enzymes). 

This approach has been summarised in Fig. 1.19A. The second objective was to evaluate 

whether outer membrane porin:cytochrome complexes can be used as electron conduits to 

transfer photo-excited electrons from photosensitisers to bacterial enzymes. This part of 

the work aimed to avoid the requirement for MV as an electron shuttle by exploiting the 

native electron transfer abilities of MR-1. This approach has been summarised in Fig. 1.19B. 

The objectives were pursued in a step-wise manner as described in the paragraphs below.     

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.19 - Schematic diagrams showing the strategies for cell-based photocatalysis investigated in 

this work. Photon (hν) absorption by a photosensitiser in the presence of a SED leads to the     

transfer of photo-excited electrons to MR-1 enzymes via MV (A) or MtrCAB (B) for reductive 

chemical transformations. Red circle = hydrogenases, green circle = fumarate reductase, orange 

circle = lactate dehydrogenases, blue circle = formate dehydrogenases. 

 

Chapter 3 describes how MR-1 growth conditions were established to facilitate                  

the simultaneous presence of active hydrogenases, fumarate reductase, lactate 
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dehydrogenases and formate dehydrogenases. Enzyme assays with sodium dithionite (DT) 

as chemical reductant and MV as electron transfer mediator were performed after 

harvesting MR-1 from growth medium and re-suspending in a defined buffer to confirm the 

desired reductive transformations could be catalysed by the bacterium. 

 

Chapter 4 describes the development of a system for photocatalytic reduction of protons 

to H2 with MR-1. This reaction was selected for initial experiments because the formation 

of the product can be readily quantified using electrochemistry and gas chromatography. 

Water-compatible photosensitisers were assessed for their ability to photoreduce MV2+ 

under conditions compatible with MR-1 enzyme activity and then photoreduction of MV2+ 

was performed in the presence of MR-1 which had been cultured and processed as 

described in chapter 3. Determinants of the system such as MV concentration and pH were 

evaluated before the analysis was extended to assess sustained light-driven H2-evolution. 

 

Chapter 5 describes how the system for light-driven H2-evolution presented in chapter 4 

was used for the photocatalytic reduction of fumarate, pyruvate and CO2 by providing      

MR-1 with the chosen carbon substrate prior to irradiation. This chapter also describes the 

competition between bacterial enzymes for electrons provided to MR-1 by photo-produced 

MV+, the ways in which light-driven CO2-reduction can be enhanced, and the possibility of 

performing photocatalytic fumarate reduction over extended periods of time. 

 

Chapter 6 describes preliminary work that evaluated cell-based photocatalysis using       

carbon dots (CDs) as photosensitisers without the need for MV as an electron shuttle.       

The CDs were first characterised by assessing their ability to photoreduce a range of 

electron acceptors in the presence of different SEDs. Combinations of CDs and SEDs were 

then used in experiments that aimed to achieve photo-production of H2 by MR-1 and other 

species of Shewanella. Different strains were assessed in this work to exploit the different 

physicochemical properties associated with their outer surfaces. 

 

Lastly, chapter 7 presents a wider summary and discussion of the work presented in this 

thesis. This includes an analysis of the future opportunities for cell-based photocatalysis 

with Shewanellaceae and other species of bacteria to achieve the sustainable production of 

commercially-valuable chemicals. 
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Chapter 2 - Materials and Methods 

 

2.1 General reagent preparations 

 

Eosin Y (acid form), flavin mononucleotide (FMN, sodium salt), proflavine                           

(3,6-diaminoacridine, hemisulfate salt), Ru(bpy)3Cl2 (where bpy is 2,2’-bipyridine), 

triethanolamine (TEOA), 1,1’-dimethyl-4,4’-bipyridinium dichloride (methyl viologen, MV),       

1,1’-dibenzyl-4,4’-bipyridinium dichloride (benzyl viologen, BV), 4-(2-hydroxyethyl)-

piperazine-1-ethanesulfonic acid (HEPES, acid form), casein digest of peptone, sodium 

fumarate (dibasic), 13C-formate (99 atom % 13C), 13C-sodium carbonate (anhydrous,              

99 atom % 13C), sodium D,L-lactate solution (60 % [w/w]), sodium hydrosulfite (dithionite, 

DT), L-cysteine hydrochloride monohydrate, L-ascorbic acid (sodium salt), sodium sulfite, 

sodium azide, sodium chloride, potassium chloride, potassium chloride solution        

saturated with silver chloride, calcium chloride, nickel chloride, sodium phosphate               

(monobasic), potassium phosphate (dibasic), chloroplatinic acid hydrate and                           

2-(N-morpholino)ethanesulfonic acid hydrate (MES, acid form) were from Sigma-Aldrich. 

Fluorescein (acid form) was from Alfa Aesar. Papaic digest of soybean meal was from 

Neogen Corp. Tryptone and yeast extract were from Melford Laboratories Ltd. Glycerol, 

sodium pyruvate, sodium carbonate (anhydrous) and D-glucose were from Fischer 

Scientific. Sodium 3-(trimethylsilyl)-propionate-d4 (TSP) was from Goss Scientific 

Instruments Ltd. Deuterium oxide was from Cambridge Isotope Laboratories. Sodium 

oxalate was from Lancaster Synthesis. Ethylenediaminetetraacetic acid solution (EDTA,      

0.5 M, pH 8) was from Ambion Inc. The reagents listed above were used without further 

purification. [Ru(bpy)2(4,4’-(PO3H2)2bpy)]Br2 (RuP) was kindly provided by Dr. Manuela 

Gross (University of Cambridge, UK) and was prepared as described previously.133        

Anionic carbon dots (CD-CO2
-), cationic carbon dots (CD-NHMe2

+, where Me = CH3) and 

nitrogen-doped carbon dots (N-CDs) were kindly provided by Dr. Benjamin Martindale and 

Dr. Bertrand Reuillard (University of Cambridge, UK) and were prepared as described 

previously.134–136   MtrC was kindly provided by Dr. Simone Payne (University of East Anglia, 

UK) and was purified as described previously.137  

 

Aqueous solutions were prepared using Milli-Q water (resistivity 18.2 MΩ cm). Solution pH 

was confirmed using a Fisher Scientific accumet AE150 pH meter calibrated with standard 
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solutions at pH 4, 7 and 10 (Sigma-Aldrich). Stock solutions of photosensitisers were made 

by dissolving the appropriate mass in 50 mM HEPES, 2 mM CaCl2, 10 mM KCl, pH 7. 

Solutions were then stored in the dark and their integrity confirmed using absorbance 

spectroscopy prior to use (extinction coefficients and absorbance spectra for 

photosensitisers are presented in chapters 4 and 6). Stock solutions of TEOA were made by 

dissolving the appropriate volume in 50 mM HEPES, 2 mM CaCl2, 10 mM KCl and adjusting 

the pH to 7.8 using 5 M HCl. Stock solutions of MV, BV, DT, sodium fumarate, sodium 

pyruvate and (13C-)sodium carbonate were made by dissolving the appropriate mass             

in filter-sterilised (0.2 µm membrane, Sartorius Stedim Biotech) 50 mM HEPES,                          

50 mM NaCl, pH 7. H2-saturated Milli-Q water was produced by purging 1 mL anaerobic 

Milli-Q water for 30 min with H2 generated by a polymer electrolyte membrane    

electrolyser (Horizon Educational).  

 

2.2 Characterisation of irradiation sources 

 

Two irradiation sources were used for light-driven transformations. One was a KL5125 cold 

light source (Krüss) fitted with high-quality UV-filtering quartz glass and a 150 W                  

(15 V) halogen lamp (Osram). The other irradiation source was a photosynthetic growth            

lamp within a New Brunswick Scientific Innova 44 shaker incubator. Relative spectral 

distributions of the irradiation sources are shown in Fig. 2.1.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 - Relative spectral distributions of the irradiation sources used in this study. Outputs      

from the cold light source (red) and the photosynthetic growth lamp (black) recorded using a      

HR2000CG-UV-NIR Ocean Optics fibre spectrometer. 
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Prior to each experiment, the light intensity at the sample was estimated using a          

SOLAR-100 Amprobe solar power meter (sensor wavelength 400 to 1100 nm) positioned an 

appropriate distance from the light source. Irradiation from the cold light source was 

provided at an intensity of 0.7 kW m-2 unless otherwise stated and irradiation from the 

photosynthetic growth lamp was provided at an intensity of 0.02 kW m-2.  

 

2.3 Bacterial growth, characterisation and processing 

 

2.3.1 - Growth media preparations 

 

The composition of lysogeny broth (LB) medium, M72 medium and anaerobic growth 

additions are shown in Table 2.1. The required components were dissolved in distilled 

water then the pH was adjusted to the indicated value with 10 M NaOH.  

 

Table 2.1 - Growth media components. 

LB medium (pH 7) 

Component Concentration (g L-1) 

Tryptone 10 

Yeast extract 5 

NaCl 10 

M72 medium (pH 7.8)138  

Component Concentration (g L-1) 

Casein digest of peptone 15 

Papaic digest of soybean meal 5 

NaCl 5 

Anaerobic growth additions for M72 medium (pH 7.9)98 

Component Concentration (g L-1) 

Sodium D,L-lactate 4.20 

Sodium fumarate 3.00 

NiCl2 0.45 

HEPES 8.93 
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Liquid media were sterilised using an autoclave and anaerobic growth additions               

were filter-sterilised using a 0.2 µm membrane (Sartorius Stedim Biotech). To make                     

LB-agar plates, 15 g L-1 agar was added to LB medium before autoclave sterilisation.                        

The LB-agar solid was then melted in a microwave, distributed between plastic Petri dishes 

and allowed to solidify within a laminar flow cabinet (Walker safety cabinets). 

 

2.3.2 Strains used in this study 

 

Descriptions of the Shewanella strains used in this study are given in Table 2.2. Wild-type 

strains were sourced from culture collections and mutant strains were kindly provided by        

Dr. Liang Shi (China University of Geosciences, Wuhan).  

 

Table 2.2 - Shewanella strains used in this study. 

Shewanella strain Description [location of original isolation] Ref. 

oneidensis MR-1  Wild-type [Lake Oneida, New York, US] 83 

HydA-/HyaB- ΔhydA (SO3920) and ΔhyaB (SO2098) in MR-1 139 

Mtr- ΔmtrB-mtrD (SO1776-SO1782) in MR-1 140 

oneidensis MR-4 Wild-type [Black Sea] 141 

oneidensis MR-7 Wild-type [Black Sea] 141 

amazonensis SB2B Wild-type [Amapa River, Brazil] 142 

ANA-3 Wild-type [Woods Hole, Massachusetts, US] 143 

baltica OS185 Wild-type [Baltic Sea] 144 

baltica OS195 Wild-type [Baltic Sea]  144 

baltica OS223 Wild-type [Baltic Sea]  144 

loihica PV-4 Wild-type [Hawaiian Seamount, US] 145 

putrefaciens CN-32 Wild-type [Albuquerque, New Mexico, US] 146 

putrefaciens 200 Wild-type [Alberta, Canada] 147 

putrefaciens W3-18-1 Wild-type [Washington coast, Pacific Ocean] 148 
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The HydA-/HyaB- mutant has the genes encoding the large subunits of the [FeFe]- and 

[NiFe]-hydrogenases (hydA and hyaB, respectively) deleted in Shewanella oneidensis MR-1 

(MR-1).139 The Mtr- mutant has the genes encoding the entire mtr cluster (mtrB, mtrA, 

mtrC, omcA, mtrF, mtrE, mtrD) deleted in MR-1.140 

 

2.3.3 Growth conditions 

 

Bacterial strains were stored at -80 °C in 25 % glycerol, 50 % LB medium, 25 % distilled 

water. Aliquots of the frozen strains were spread on to LB-agar plates and incubated for   

≈24 hr at 30 °C. Single colonies were used to inoculate 10 mL LB medium which was then 

shaken aerobically at 200 rpm overnight (≈20 hr). The resultant cultures inoculated               

(2 % [v/v]) glass Hungate tubes (17 mL total volume) that contained 10 mL M72 medium 

supplemented with anaerobic growth additions (see Table 2.1). The additions contain      

37.5 mM lactate as electron donor and 18.8 mM fumarate as electron acceptor with         

1.9 mM NiCl2 and 37.5 mM HEPES for production of active hydrogenases in Shewanella,      

as described previously.98 The tubes were sealed, the headspaces (7 mL) were purged with       

N2 for 5 min and the cultures were incubated with no shaking at 30 °C for the desired time 

period. Optical density at 590 nm (OD590nm) was recorded with the tubes placed directly in a 

Fisher Scientific colorimeter (Model 45). A Hungate tube containing 10 mL distilled water 

was used as reference. 

 

2.3.4 Bicinchoninic acid (BCA) assay 

 

Total protein content of Shewanella samples was quantified using a bicinchoninic acid 

(BCA) assay (Sigma-Aldrich). In the assay, Cu2+ ions form complexes with protein in the 

sample and are reduced to Cu+. BCA then forms a blue-purple complex with Cu+ to give an 

increased absorbance at 562 nm which is proportional to the amount of protein present.149                   

To prepare Shewanella samples, bacteria were harvested by centrifugation (5 min,        

20000 x g, room temperature) from 1 mL of culture, re-suspended in 0.5 mL                       

100 mM HEPES, pH 7.2 and lysed by sonication (3 pulses each lasting 15 s with samples 

kept on ice between each pulse). Samples were then assayed according to the 

manufacturer’s protocol by mixing them with BCA solution and copper (II) sulfate 

pentahydrate solution (4 %) in a 96-well plate (NUNC) and incubating at 37 °C for 30 min. 

After this time, the absorbance at 562 nm was recorded using a FLUOstar Omega plate 
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reader (BMG Labtech) under the control of Omega software (version 1.3). A calibration 

curve was generated using known quantities of bovine serum albumin (BSA) in 100 mM 

HEPES, pH 7.2. A representative calibration curve is shown in Fig. 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 - Representative calibration curve for bicinchoninic acid assay. Absorbance at 562 nm for 

known concentrations of bovine serum albumin (BSA) in 100 mM HEPES, pH 7.2. Equation and R
2
 

value for linear trendline. 

 

2.3.5 Colony forming units (CFU) 

 

Viability of Shewanella strains was assessed by measuring colony forming units (CFU). 

Bacteria were harvested from reaction solutions by centrifugation (7 min, 20000 x g, room 

temperature) then supernatants were removed and cell pellets were gently re-suspended 

in LB medium. 10-fold serial dilutions of the re-suspended cells were prepared in                  

LB medium and 0.1 mL of each dilution was spread on an LB-agar plate. Colonies were then 

counted manually after incubating the plates at 30 oC for 48 hr. For each reaction condition, 

three plates spread with different serial dilutions were used to calculate a mean value for 

CFU mL-1 in the reaction solution.  

 

2.3.6 Protein gels and Western blotting 

 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to analyse 

proteins produced by Shewanella strains that had been cultured for 24 hr in                      
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M72 medium as described in section 2.3.3. Bacteria were harvested by centrifugation         

(5 min, 20000 x g, room temperature) from 1 mL of culture, re-suspended in 32 µL loading 

buffer (6 M urea, 5 % sodium dodecyl sulfate, 0.1 % glycerol, 0.05 % bromophenol blue) 

and heated at 90 oC for 15 min. Samples (15 µL) were then loaded on a 10 % SDS-PAGE gel 

and proteins were separated based on their molecular weight by electrophoresis (≈1 hr, 

100 V, 60 mA). To visualise all proteins in the sample, SDS-PAGE gels were washed with 

distilled water then incubated with a Coomassie staining solution (InstantBlue, Expedeon) 

for 15 min. The blue Coomassie dye associates with proteins in the gel via electrostatic 

interactions with protonated amino acids and via hydrophobic interactions with aromatic 

amino acids.150 To specifically visualise heme-containing proteins in the sample, SDS-PAGE 

gels were washed with distilled water then incubated with 250 mM sodium acetate, pH 5 

for 15 min before the addition of 3.2 mM 3,3′,5,5′-tetramethylbenzidine dihydrochloride 

hydrate (TMBD) in methanol and incubation for a further 15 min. This was followed by the 

addition of 30 % H2O2 solution and incubation for 5 min. Gels were developed in the dark 

due to the light-sensitivity of TMBD. During the staining process, heme c groups (which 

remain covalently attached to proteins in the gel) catalyse the reduction of H2O2 with 

TMBD as reductant.151,152 Oxidised TMBD then forms a blue charge-transfer complex with 

another molecule of TMBD153 to reveal the position of heme-containing proteins.  

 

To specifically visualise MtrB and MtrC in the sample through Western blotting, proteins on 

the SDS-PAGE gel were transferred to a polyvinylidene fluoride (PVDF) membrane              

(GE Healthcare) which was then incubated overnight in blocking buffer (5 % skimmed milk, 

20 mM Tris-HCl, 150 mM NaCl, 0.1 % Tween 20, pH 7.5) at 5 °C to prevent non-specific 

binding. After this time, the membrane was washed and incubated with 0.6 g mL-1 of 

either anti-MtrB (specific to residues 23-42) or anti-MtrC (specific to residues 399-410) 

primary antibody in blocking buffer at room temperature. After 2 hr, the membrane was 

washed and incubated with 0.15 µg mL-1 goat anti-rabbit secondary antibody conjugated to 

alkaline phosphatase (Sigma-Aldrich) in 20 mM Tris-HCl, 150 mM NaCl, 0.1% Tween 20,     

pH 7.5 at room temperature. After 1 hr, proteins were visualised by incubating                    

the membrane with nitro-blue tetrazolium chloride (NBT) / 5-bromo-4-chloro-3'-

indolylphosphate p-toluidine salt (BCIP) solution (Thermo Fisher Scientific) for 10 min. 

During the visualisation process, alkaline phosphatase (localised at the protein of interest) 

catalyses the dephosphorylation of BCIP to form an intermediate that undergoes a redox 

reaction with NBT. This yields a blue-purple precipitate to reveal the position of MtrB        
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and MtrC.154,155 A schematic diagram for the Western blotting visualisation process is           

shown in Fig. 2.3. 

 

 

 

Figure 2.3 - Schematic diagram of processes and protein:protein interactions for visualisation in 

Western blotting after electrophoretic resolution. Proteins on a polyvinylidene fluoride (PVDF) 

membrane are visualised using a protein-specific primary antibody and a secondary antibody 

conjugated to alkaline phosphatase that catalyses the production of a coloured precipitate.           

MW = molecular weight.   

 

2.3.7 Harvesting and re-suspension in a defined buffer 

 

To prepare bacterial suspensions for enzyme assays and reductive transformations, 

Shewanella strains were cultured for the desired time period in M72 medium as described 

in section 2.3.3 then Hungate tubes were taken into a N2-filled chamber (Belle Technology, 

clear acrylic chamber, atmospheric O2 < 10 ppm) and the contents transferred to Eppendorf 

tubes. The tubes were removed from the chamber and bacteria were harvested by 

centrifugation (5 min, 13000 x g, 5 °C). The tubes were then returned to the chamber,       

the supernatants were removed and the cell pellets were gently re-suspended in anaerobic 

50 mM HEPES, 50 mM NaCl (pH 6, 7 or 8). Suspensions were centrifuged as before and, 

inside the N2-filled chamber, the cell pellets were gently re-suspended to the desired 

OD590nm in anaerobic 50 mM HEPES, 50 mM NaCl (pH 6, 7 or 8). Bacterial suspensions in the 

defined buffer were then supplemented with the reagents required for the particular 

experiment (see below). 
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2.4 H2 detection and quantification 

 

2.4.1 Quantification of headspace H2 using gas chromatography (GC) 

 

2.4.1.1 Method principle and calibration  

 

Headspace H2 was quantified using a PerkinElmer Clarus 580 gas chromatograph with a 

thermal conductivity detector (TCD) and stainless steel molecular sieve column 

(PerkinElmer, 6 ft length, 2 mm internal diameter). The instrument used a TCD current of    

-40 mA, argon carrier gas at a flow rate of 25 mL min-1 and internal temperatures of             

80 °C for the oven housing the column and 100 °C for the packed injector and TCD.                       

The instrument settings are summarised in Fig. 2.4. Mixtures of gases that are injected into 

the instrument are separated as individual components interact with the column 

differently and consequently reach the TCD at different rates. The detector monitors 

changes in the thermal conductivity of the column effluent versus pure carrier gas using 

heated filaments. The temperature, and hence resistance, of the filaments remains 

constant in the presence of pure carrier gas but changes when the sample, with a different 

thermal conductivity, flows through. The change in resistance is sensed by a bridge circuit 

which produces a voltage proportional to the amount of sample. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 - Schematic diagram of gas chromatograph with thermal conductivity detector. Samples 

containing a mixture of gases are separated as they flow through the column. Individual components 

give a change in voltage as they reach the detector.   
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H2, O2 and N2 were the only species detected by gas chromatography (GC) using the 

instrument settings and experimental conditions described in this chapter. Representative 

GC data showing voltage changes over time for an injection of 0.15 mL pure air (containing 

only O2 and N2) or 0.15 mL 10000 ppm H2 in N2 (containing no O2) are presented in Fig. 2.5A 

to demonstrate typical peak positions. The H2 peak area was converted to an amount of H2 

by regularly calibrating the instrument with a series of gas standards containing 100, 1000, 

5000 or 10000 ppm H2 in N2 (Scientific and Technical Gases Ltd). A representative 

calibration curve is shown in Fig. 2.5B. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 - Representative gas chromatography data. A] Relative positions of peaks corresponding 

to H2 [1], O2 [2] and N2 [3] for an injection of 0.15 mL pure air (black) or 10000 ppm H2 in N2 (blue). 

B] Correlation between peak area and amount of H2 determined using gas standards with known 

quantities of H2 in N2. Equation and R
2
 value for linear trendline. See text for instrument settings. 

 

2.4.1.2 Measurement of headspace H2  

 

GC was used to quantify headspace H2 produced during microbial growth and by               

light-driven H2-evolution over irradiation times of > 1 hr. To quantify H2-evolution during 

microbial growth, Shewanella strains were cultured as described in section 2.3.3 then 

gaseous samples (0.15 mL) were extracted from Hungate tubes after the desired time 

period using a gas-tight syringe pre-purged with N2 (destructive sampling from tubes).          

To quantify light-driven H2-evolution, Shewanella strains were cultured and processed as 

described in sections 2.3.3 and 2.3.7, respectively, then cell pellets were gently                   
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re-suspended to the desired OD590nm in anaerobic 50 mM HEPES, 50 mM NaCl, pH 7 

supplemented with a sacrificial electron donor (SED), MV and a photosensitiser as required. 

Reaction suspensions were transferred to clear, colourless glass vials (Supelco, 5 mL total 

volume) which were tightly sealed within the N2-filled chamber. Samples were then 

irradiated with the cold light source (room temperature, 0.7 kW m-2 light intensity unless 

otherwise stated) or the photosynthetic growth lamp (25 °C, 0.02 kW m-2 light intensity) 

with no stirring. Irradiation by the cold light source was provided with vials positioned 

inside the N2-filled chamber and the lamp positioned outside the chamber. The walls of the 

chamber served as an additional filter for light with λ < 400 nm. Irradiation by the 

photosynthetic growth lamp was provided with vials positioned at a 45 ° angle on a          

foil-lined tray within the shaker incubator to maximise light absorption by the sample. 

Gaseous samples (0.15 mL) were extracted from glass vials after the desired time period 

using a gas-tight syringe pre-purged with N2 (non-destructive sampling from vials). 

 

2.4.2 Quantification of dissolved H2 using a H2-sensing electrode 

 

2.4.2.1 Method principle and calibration 

 

Dissolved H2 was quantified using a H2-sensing (Clark-type) electrode (Hansatech Oxygraph 

Plus) which measures a current proportional to the amount of dissolved H2 in the sample.    

The instrument uses an electrode disk with a platinum anode positioned below the 

reaction solution and a silver cathode embedded in the insulating electrode base, as shown 

in Fig. 2.6. The anode is separated from the gently stirred reaction solution by an absorbent 

spacer (Rizla Blue) and a layer of polytetrafluoroethylene (PTFE). The absorbent spacer 

ensures a connection between the cathode and anode by trapping a thin layer of 

electrolyte (50 % saturated solution of KCl in Milli-Q water). The PTFE membrane is 

selectively permeable to dissolved gases meaning that other chemical species in the sample 

cannot reach the anode to contribute to the observed current. The lower portion of the 

electrode sample chamber was covered in duct tape to ensure that light from the cold light 

source only irradiated the reaction solution and not the exposed electrode surfaces.          

This was found to reduce the background signals observed when irradiating samples.                        

The instrument was prepared for H2 detection according to the manufacturer’s protocol 

(Hansatech). Briefly, the anode was prepared by soaking in 2 M H2SO4 (to clean the surface) 

then platinum black was electrochemically deposited on the electrode surface from               
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a solution of 2 % H2PtCl6(H2O)6 in Milli-Q water. The cathode was prepared by 

electrochemically depositing silver chloride on the electrode surface from an aqueous 

solution of 3 M KCl saturated with AgCl. Plating the electrodes and polarising at +0.7 V 

rendered the unit responsive to H2 and unresponsive to O2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 - Schematic diagram of H2-sensing electrode. The instrument consists of a platinum anode 

and silver cathode connected by an absorbent spacer saturated with electrolyte. Dissolved H2 in the 

sample passes through the polytetrafluoroethylene (PTFE) layer to the anode where it is oxidised.  

 

The observed current was converted to an amount of H2 by regularly calibrating the 

instrument through the addition of aliquots of H2-saturated Milli-Q water (0.8 mM H2       

from Henry’s Law,156 prepared as described in section 2.1) to 1 mL anaerobic 50 mM HEPES,         

50 mM NaCl, pH 7 within the electrode sample chamber. Representative data for the 

calibration of the H2-sensing electrode are shown in Fig. 2.7. Comparison of the                   

H2-sensing electrode response under irradiation by the cold light source (0.7 kW m-2) or in                        

50 mM HEPES, 50 mM NaCl at pH 6 or 8 showed no difference to that observed in               

50 mM HEPES, 50 mM NaCl, pH 7 with no irradiation. 
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Figure 2.7 - Representative data showing calibration of the H2-sensing electrode. A] Change in 

current over time in response to 5 additions (red arrows) of 0.1 mL H2-saturated Milli-Q                

water to 1 mL anaerobic 50 mM HEPES, 50 mM NaCl, pH 7. B] Correlation between current and the 

amount of dissolved H2. Equation and R
2
 value for linear trendline.   

 

2.4.2.2 Measurement of dissolved H2 

 

The H2-sensing electrode was used for real-time quantification of dissolved H2 produced      

by DT-driven H2-evolution and light-driven H2-evolution over irradiation times of < 1 hr. 

Shewanella strains were cultured and processed as described in sections 2.3.3 and 2.3.7, 

respectively, then cell pellets were gently re-suspended to the desired OD590nm in anaerobic 

50 mM HEPES, 50 mM NaCl (pH 6, 7 or 8). For DT-driven H2-evolution, samples (1.29 mL) 

were supplemented with 0.3 mg mL-1 DT and/or 0.3 mM MV as required then        

transferred to the H2-sensing electrode which was sealed within the N2-filled chamber with 

negligible headspace to ensure the majority of H2 produced in the subsequent experiment 

remained in solution. Outside the N2-filled chamber, the electrodes were connected to a 

potentiostat that poised the electrodes for H2 detection. For light-driven H2-evolution, 

samples (1.65 mL) were supplemented with TEOA, MV and a photosensitiser as required 

then transferred to the H2-sensing electrode which was assembled and operated as 

described above. The system was allowed to equilibrate for 10 min under ambient light 

during which time the current fell to a constant low level. The sample was then periodically 

irradiated through the side of the electrode sample chamber (which transmits 90 % of light 

with λ > 400 nm) with the cold light source (room temperature, 0.7 kW m-2 light intensity 

unless otherwise stated) for the desired time period(s). 
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 2.5 Spectrophotometric enzyme assays 

 

Spectrophotometric assays for the quantification of H2 oxidation, fumarate-reduction and 

CO2-reduction by bacterial enzymes were performed under anaerobic conditions inside a 

N2-filled chamber with samples in sealed polystyrene cuvettes (STARLAB UK, 1 cm 

pathlength). Spectra were recorded using a Biochrom WPA Biowave II diode array 

spectrophotometer located inside the chamber. Absorbance changes were converted to 

concentration changes using the Beer-Lambert law shown in Eq. 2.1, where A is the 

absorbance, ε is the extinction coefficient in mM-1 cm-1, c is the concentration in mM,           

L is the pathlength of light in cm, I0 is the intensity of incident light and I is the intensity of 

transmitted light. The extinction coefficients of redox indicators used in this study are 

provided in Table 2.3. Bacterial cell pellets for enzyme assays were harvested by 

centrifugation (5 min, 13000 x g, 5 °C) outside the N2-filled chamber then supernatants 

were separated from cell pellets within the chamber and samples were supplemented with 

the reagents required for the particular assay (see below). 

 

                  Eq. 2.1 

 

 

Table 2.3 - Extinction coefficients of BV
+
, MV

+
 and MtrC used for spectrophotometric assays. 

Redox indicator Wavelength (nm) 
Extinction coefficient 

(mM-1 cm-1) 

BV+ 600 7.4157 

MV+ 

396 42.1158 

600 13.5159 

606 13.7158 

MtrC (oxidised) 410 126084 

 

The ability of different SEDs and photosensitisers to facilitate photoreduction of electron 

acceptors (MV2+, BV2+ and MtrC) under irradiation by visible light was also assessed using 

absorbance spectroscopy. Anaerobic samples containing a SED, an electron acceptor and a 

photosensitiser were prepared in sealed polystyrene cuvettes within a N2-filled chamber 

then irradiated (0.7 kW m-2, room temperature) through the side of the chamber by the 

cold light source with no stirring. Full details about the composition of samples for these 

experiments are provided in the relevant sections in chapters 4 and 6. 

 

A = ε x c x L = log10 
I0 

I 
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2.5.1 H2 oxidation coupled to benzyl viologen reduction 

 

Functional hydrogenase enzymes can couple the oxidation of H2 to the reduction of BV2+           

(to form BV+) to give an increase in absorbance at 600 nm. A schematic diagram for this 

process is shown in Fig. 2.8. To assess samples for the presence of active hydrogenases, 

Shewanella cell pellets were re-suspended in anaerobic 1 mM BV, 50 mM HEPES,                  

50 mM NaCl, pH 7 and supernatants (separated from cell pellets) were supplemented with 

BV (1 mM final concentration). The absorbance at 600 nm was then recorded over 10 min 

with an addition of 0.1 mL H2-saturated Milli-Q water (prepared as described in section 2.1) 

after approximately 1 min followed by gentle mixing and continued measurement.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 - Schematic diagram for assay of hydrogenase activity. In the presence of functional 

hydrogenase, H2 is oxidised and electrons are transferred to oxidised benzyl viologen (BV
2+

) to form 

BV
+
 which gives an increased absorbance at 600 nm. 

 

2.5.2 Fumarate- and CO2-reduction driven by dithionite-reduced 

methyl viologen 

 

Active fumarate reductase or formate dehydrogenases can couple the oxidation of MV+      

(to form MV2+) to the reduction of fumarate or CO2, respectively, to give a decrease in 

absorbance at 600 nm. A schematic diagram for this process is shown in Fig. 2.9 where DT 

is used for the initial reduction of MV2+ to MV+. To assess samples for the presence of active 

enzyme, Shewanella cell pellets were re-suspended in anaerobic 64.5 µg mL-1 DT, 0.08 mM 

MV, 50 mM HEPES, 50 mM NaCl, pH 7 and supernatants (separated from cell pellets) were 

supplemented with DT and MV (64.5 µg mL-1 and 0.08 mM final concentrations, 
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respectively). The absorbance at 600 nm was then recorded over 8 min with an addition of 

0.1 mL of either 10 mM fumarate or 100 mM CO2 (in 50 mM HEPES, 50 mM NaCl, pH 7) 

after approximately 1 min followed by gentle mixing and continued measurement.  

 

 

 

 

 

 

 

 

Figure 2.9 - Schematic diagram for assay of fumarate- and CO2-reductase activity. Sodium dithionite 

(DT) is used to reduce oxidised methyl viologen (MV
2+

) to form MV
+
 which gives an increased 

absorbance at 600 nm. In the presence of functional enzyme, MV
+
 is re-oxidised and the absorbance 

at 600 nm decreases as electrons are transferred to the substrate.  

 

2.6 Quantification of carbon-based compounds using 1H         

and 13C nuclear magnetic resonance (NMR) 

 

Proton nuclear magnetic resonance (1H-NMR) was used to quantify DT- and light-driven 

reduction of fumarate, pyruvate and CO2. The technique draws on the fact that 1H has a 

nuclear spin of ½ meaning it can align with or against an externally applied magnetic field 

to give two possible energy states with a difference in energy that is proportional to the 

strength of the applied field.160–162 Nuclei in the lower energy state (aligned with the field) 

can be excited into the higher energy state using radio frequency electromagnetic 

radiation. The release of energy as the nuclei return to the lower energy state (termed 

relaxation) can then be detected by a NMR spectrometer. The position (chemical shift) and 

shape (peak splitting) of the observed signals are characteristic of nuclei within particular 

chemical environments enabling the composition of the sample to be resolved from           

the NMR spectrum. Chemical shift is determined by the amount of electron density 

surrounding the nuclei because electrons induce a magnetic field that opposes the       

applied field. Consequently, electron-deficient nuclei experience a stronger overall field 

than electron-rich nuclei and absorb radiation at a higher frequency to give a greater 

chemical shift (relative to reference nuclei set at 0 ppm).160–162 Peak splitting is determined 

by magnetic interactions between vicinal nuclei in different chemical environments.           
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Peaks are split based on the “n + 1” rule where n is the number of adjacent nuclei                  

in a distinct chemical environment.160–162  

 

To prepare samples for 1H NMR analysis, Shewanella strains were cultured and processed 

as described in sections 2.3.3 and 2.3.7, respectively, then cell pellets were gently               

re-suspended to OD590nm ≈0.25 in 1 mL 50 mM HEPES, 50 mM NaCl, pH 7 within clear, 

colourless glass vials (Supelco, 5 mL total volume). DT-driven transformations were 

performed by supplementing samples with 0.8 mg mL-1 DT, 0.5 mM MV and fumarate, 

pyruvate or CO2 (initial concentrations between 2.2 and 5 mM) and incubating for 30 min in 

a N2-filled chamber. Light-driven transformations were performed by supplementing 

samples with 50 mM TEOA, 0.5 mM MV, 0.08 mM eosin Y and fumarate, pyruvate or CO2 

(initial concentrations between 8.1 and 11.7 mM) and irradiating with the cold light source 

(room temperature, 0.7 kW m-2) for 30 min or the photosynthetic growth lamp (25 °C,     

0.02 kW m-2) for 24 hr. On completion of the desired incubations, cellular material was 

removed by centrifugation (7 min, 13000 x g, 5 °C) and 0.4 mL of the supernatant was 

mixed with 0.4 mL NMR buffer (21.7 mM NaH2PO4, 81 mM K2HPO4, 1 mM TSP, 14.2 mM 

sodium azide in D2O). Samples were then stored at -20 °C until analysed at which point they 

were thawed at room temperature and 0.5 mL was transferred to a 5 mm NMR tube for 

spectral acquisition. Spectra were recorded at 600 MHz on a Bruker Avance spectrometer 

(Bruker BioSpin GmbH) running Topspin 2.0 software and fitted with a cryoprobe.            

Each spectrum was acquired with 64 scans, a spectral width of 12.3 kHz, an acquisition time 

of 2.7 s and a relaxation delay of 3.0 s. The “noesypr1d” pre-saturation sequence was used 

to suppress the residual water signal with low-power selective irradiation at the water 

frequency during the recycle delay and a mixing time of 10 ms. 1H-NMR spectra were 

transformed with a 0.3 Hz line broadening, manually phased, baseline corrected and 

referenced by setting the TSP methyl signal to 0 ppm. Carbon-based compounds were 

quantified with Chenomx NMR suite 7.6TM software using resonances reported 

previously,163,164 the Human Metabolome Database (http://www.hmdb.ca/) and 2D-NMR 

methods: correlation spectroscopy (COSY), heteronuclear single-quantum correlation 

spectroscopy (HSQC) and heteronuclear multiple-bond correlation spectrocopy (HMBC).     

1H-NMR spectra were acquired and analysed in collaboration with Dr. Adam Elliston and     

Dr. Gwénaëlle Le Gall (Institute of Food Research, UK). The 1H-NMR peaks used for 

quantification of carbon-based compounds are provided in Table 2.4 with the protons 

corresponding to each peak shown in red on the chemical structures. 
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Table 2.4 - 
1
H-NMR peaks used for quantification of carbon-based compounds. The protons 

corresponding to the observed signals are highlighted in red on the chemical structures. 

Compound Structure 
Chemical  

shift (ppm) 
Peak splitting 

Formate 
 

8.40 Singlet 

Fumarate 

 

6.50 Singlet 

Malate 

 

2.70 
Doublet of 
doublets 

Succinate 

 

2.42 Singlet 

Pyruvate 

 

2.38 Singlet 

Acetate 
 

1.90 Singlet 

Pyruvate 
hydrate 

 
1.50 Singlet 

Lactate 
 

1.30 Doublet 

Ethanol  1.20 Triplet 

 

13C-NMR was used for quantification of 13C-formate in supernatants after 24 hr irradiation 

(photosynthetic growth lamp at an intensity of 0.02 kW m-2) of anaerobic samples 

containing MR-1 (OD590nm ≈0.25), 50 mM TEOA, 0.5 mM MV, 0.08 mM eosin Y and 10 mM 

13C-carbonate in 50 mM HEPES, 50 mM NaCl, pH 7 (1 mL) prepared as described above. 

Each 13C-NMR spectrum was acquired with 5000 scans, a spectral width of 36000 Hz and an 

acquisition time of 0.91 s. The amount of 13C-formate in samples was quantified by 

comparison to the spectra of defined concentrations (0, 0.25, 0.5, 1, 1.5, 2, 2.5, 10 and     

100 mM) of 13C-formate in 50 mM HEPES, 50 mM NaCl, pH 7.  
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Chapter 3 - Anaerobic growth of Shewanella oneidensis MR-1 

to catalyse H2-evolution and reduction of fumarate, pyruvate 

and CO2 

 

3.1 Introduction 

 

As described in chapter 1, MR-1 is a suitable bacterium to be utilised for artificial 

photosynthesis because it can produce four key enzymes that catalyse reductive 

transformations of current interest. The enzymes are the hydrogenases, fumarate 

reductase, lactate dehydrogenases and formate dehydrogenases and the catalytic 

transformations are the reduction of protons, fumarate, pyruvate and CO2 to H2, succinate, 

lactate and formate, respectively. To best exploit this ability for light-driven chemical 

synthesis, a single growth condition must be established that leads to the simultaneous 

presence of all four enzymes in MR-1. This would allow the bacterium to act as a           

multi-faceted electrocatalyst with a tuneable product range determined by the presence of 

a particular substrate. In this chapter, results from biochemical assays are presented that 

assessed MR-1 enzyme activities after culturing the bacterium under anaerobic conditions 

with an excess of lactate as electron donor to fumarate as electron acceptor. Data are 

presented from spectrophotometric and electrochemical assays that were used to quantify 

hydrogenase activity and from 1H-NMR analysis that was used to identify and quantify the 

products formed from the reduction of fumarate, pyruvate and CO2. The work shown 

below forms the basis for cell-based photocatalysis with MR-1 developed in the next 

chapters where photo-excited electrons are delivered to bacterial enzymes to drive the 

desired reductive transformations. 

 

3.2 Anaerobic growth of Shewanella oneidensis MR-1 under 

acceptor-limited conditions  

 

Previous research into the metabolic pathways in MR-1 makes it possible to select culture 

conditions that should lead to the simultaneous presence of all four enzymes of interest to 

this study within the bacterium (see Fig. 1.11).91,93–95 With lactate as the electron donor and 
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fumarate as the electron acceptor, MR-1 should naturally produce the fumarate reductase, 

lactate dehydrogenases and formate dehydrogenases as these enzymes are required for 

the sequential oxidation of lactate to CO2, with the liberated electrons used for reduction 

of fumarate to succinate. Furthermore, using an excess of lactate to fumarate should lead 

to acceptor-limited conditions once the fumarate has been completely depleted. Lactate 

oxidation should then become coupled to proton reduction as reducing equivalents are 

delivered to the hydrogenases. Lastly, the use of anaerobic growth conditions should avoid 

the (ir)reversible inhibition of the hydrogenases by O2.
60 Growth of MR-1 under these 

conditions was reported previously in Meshulam-Simon et al. (2007) where it was found 

that depletion of fumarate led to the bacterium entering stationary phase and the          

onset of H2 production.91 However, a comprehensive assessment of MR-1 enzyme activities         

was not performed in this previous study. 

 

For the work in this thesis, MR-1 was cultured in nutrient-rich M72 medium containing   

37.5 mM D,L-lactate, 18.8 mM fumarate, 37.5 mM HEPES and 1.88 mM NiCl2 (see section 

2.3.1), similar to the conditions reported previously for purification of the MR-1                    

[NiFe]-hydrogenase but with fumarate as the electron acceptor in place of DMSO.98                

M72 medium (10 mL) in glass Hungate tubes was inoculated (2 % [v/v]) with MR-1 then 

tubes were sealed and headspaces (7 mL) were purged with N2 to remove atmospheric O2. 

Cultures were incubated at 30 °C with periodic quantification of optical density at 590 nm 

(OD590nm, a measure of scatter caused by and proportional to the size and number of 

bacteria in growth medium) and headspace H2 content (see sections 2.3.3 and 2.4.1). 

Parallel control experiments were performed with the HydA-/HyaB- strain lacking functional 

hydrogenases (see section 2.3.2)139 and no bacteria. The changes in OD590nm and headspace 

H2 over 48 hr are shown in Fig. 3.1.  

 

The OD590nm of MR-1 and HydA-/HyaB- cultures started increasing after the initial reading 

and plateaued after 8 and 12 hr, respectively, as the bacteria entered the stationary phase. 

Negligible changes in OD590nm were seen for non-inoculated M72 medium showing that the 

growth curves produced with MR-1 and HydA-/HyaB- correspond to the presence of 

bacteria. H2 was first detected after 18 hr in headspaces of tubes containing MR-1 and the 

amount of H2 increased between 18 and 48 hr to a total of 328 ± 35 nmol at the end of the 

experiment. H2 was not detected in headspaces of tubes containing HydA-/HyaB-, or no 

bacteria, confirming that proton reduction resulted specifically from the activity of the              
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wild-type MR-1 [NiFe]- and/or [FeFe]-hydrogenases. Based on the predicted metabolic 

pathways in MR-1 (see Fig. 1.11), the increase in OD590nm during incubation with an excess 

of lactate to fumarate and the presence of H2 in culture headspaces after 18 hr suggest that 

MR-1 can produce the four key enzymes targeted in this study. However, the results do not 

indicate whether the enzymes can be exploited for reductive catalysis using an external 

source of electrons. As such, a series of biochemical assays were used to directly           

assess the activities of the enzymes after harvesting MR-1 from growth medium and                     

re-suspending in a defined buffer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 - Anaerobic growth of MR-1 and HydA
-
/HyaB

-
 with 37.5 mM lactate as electron donor and 

18.8 mM fumarate as electron acceptor. Optical density at 590 nm (black, left axis) and headspace 

H2 (red, right axis) for MR-1 (squares), HydA
-
/HyaB

-
 (triangles) and no bacteria (circles). Inoculation 

at 0 hr of M72 medium (10 mL) supplemented with anaerobic growth additions. Samples had 7 mL 

headspace (100 % N2 at inoculation). Optical densities are mean values from 4 biological replicates, 

error bars indicate standard error. Headspace H2 data are mean values from biological duplicates, 

error bars indicate maximum and minimum. Lines serve as a guide to the eye, the majority of error 

bars are too small to resolve. 

 

3.3 Biochemical assays of hydrogenase, fumarate reductase, 

lactate dehydrogenase and formate dehydrogenase activities 

in anaerobically grown Shewanella oneidensis MR-1  

 

For experimental tractability, Shewanella strains were routinely cultured for 24 hr under 

anaerobic, acceptor-limited conditions as described in section 3.2. Bacteria were then 
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harvested by centrifugation with minimal exposure to O2 and gently re-suspended to the 

desired OD590nm in anaerobic 50 mM HEPES, 50 mM NaCl, pH 7 within a N2-filled chamber 

(see section 2.3.7). Washing and re-suspending bacteria removed residual growth medium 

to give a well-defined system that could be readily assessed for enzyme activities.              

The activity of the hydrogenases was evaluated using spectrophotometric H2 oxidation 

assays and a H2-sensing electrode that electrochemically detects dissolved H2 in               

real-time. The activity of the fumarate reductase, lactate dehydrogenases and formate 

dehydrogenases was initially assessed by performing H2-evolution assays in the presence    

of fumarate, pyruvate and CO2 then formation of the desired products was quantified         

using 1H-NMR analysis. Results from the experiments are presented in the sections below. 

 

3.3.1 Hydrogenase activity  

 

Spectrophotometric H2 oxidation assays were performed with anaerobic bacterial 

suspensions at OD590nm between 0.4 and 0.5. Samples were supplemented with BV as a 

colourimetric redox indicator (Em = -0.36 V)165 then the absorbance at 600 nm was recorded 

over 10 min with an addition of 0.1 mL H2-saturated Milli-Q water after approximately          

1 min. An increase in absorbance at 600 nm indicated the presence of functional 

hydrogenases capable of oxidising H2 and transferring electrons to BV (see section 2.5.1). 

Representative data with MR-1, HydA-/HyaB- and no bacteria are shown in Fig. 3.2.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2 - Representative H2 oxidation data. Absorbance at 600 nm for MR-1 (black), HydA
-
/HyaB

-
 

(red) and no bacteria (blue). Samples contained 1 mM BV in 50 mM HEPES, 50 mM NaCl, pH 7 with 

an addition of 0.1 mL H2-saturated Milli-Q water after 1 min. MR-1 and HydA
-
/HyaB

-
 OD590nm ≈0.45. 

Pathlength 1 cm. Shaded area shows the time over which initial rates were calculated using Eq. 3.1. 
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The offset in absorbance at 0 min for MR-1 and HydA-/HyaB- is due to scattering caused by 

the bacteria and the sharp decrease in absorbance around 1 min is due to removal of the 

cuvette from the spectrophotometer for mixing. Initial rates of H2 oxidation were 

calculated over 1 min after the cuvette had been returned to the spectrophotometer (see 

Fig. 3.2, shaded area). Absorbance changes were converted to amounts of H2 oxidised per 

min using Eq. 3.1 where ΔAbs600nm is the change in absorbance at 600 nm over 1 min, εBV+ is 

the extinction coefficient for the one-electron reduced form of BV (BV+, 7.4 mM-1 cm-1)157 

and division by a factor of two accounts for the fact that one molecule of H2 liberates two 

electrons upon oxidation. Mean H2 oxidation rates for MR-1, HydA-/HyaB- and no bacteria 

are listed in Table 3.1. Results for MR-1 and HydA-/HyaB- have been normalised to total 

protein content quantified using a BCA assay (see section 2.3.4) to allow a better 

comparison of the responses from different strains. Negligible H2 oxidation rates were seen 

for samples containing HydA-/HyaB- and no bacteria whereas an oxidation rate of               

138 ± 34 nmol H2 min-1 mg-1 was seen for samples containing MR-1. The results confirm 

that acceptor-limited growth conditions lead to the production of MR-1 hydrogenases that 

can oxidise H2 and that these enzymes are responsible for the increase in absorbance at 

600 nm during the spectrophotometric assays. 

 

          Eq. 3.1 

 

Table 3.1 - Initial rates of H2 oxidation coupled to BV reduction by MR-1, HydA
-
/HyaB

-
 and no 

bacteria. Rates with MR-1 and HydA
-
/HyaB

-
 are mean values from technical duplicates of 4 biological 

replicates with standard error (normalised to total protein). Rate with no bacteria is the mean value 

from technical duplicates, error indicates maximum and minimum. Anaerobic samples in 1 mM BV, 

50 mM HEPES, 50 mM NaCl, pH 7. 

Strain H2 oxidation rate  

MR-1 138 ± 34 nmol min-1 mg-1 

HydA-/HyaB- 2 ± 2 nmol min-1 mg-1 

No bacteria 0.06 ± 0.02 nmol min-1 

 

Of greater interest to this study is the opposite reaction catalysed by hydrogenases           

(i.e. the reduction of aqueous protons to H2) because H2 is a valuable and versatile chemical 

fuel (see section 1.5). To drive this transformation using MR-1, anaerobic bacterial 

suspensions (1.3 mL) at OD590nm ≈0.25 were supplemented with 0.3 mg mL-1 (≈1.7 mM) DT 

as a chemical reductant and 0.3 mM MV as an electron transfer mediator then formation of       

ΔAbs600nm x 103 
= nmol H2 oxidised min-1 

εBV+ x 2 
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H2 was quantified electrochemically with samples placed within the chamber of a                

H2-sensing electrode (see section 2.4.2). The use of DT and MV has been reported 

previously for H2-evolution assays with whole-cell bacteria and purified enzymes.138,166–168         

They are suitable reagents because DT (Em = -0.66 V, pH 7)169 can facilitate the reduction of 

MV2+ to MV+ (Em = -0.45 V)165 and MV is known to effectively cross the outer membrane of 

Gram-negative bacteria.82,170 Minimal gaseous headspace was allowed above samples 

within the chamber of the H2-sensing electrode to ensure the majority of evolved H2 

remained in solution and reaction suspensions were gently stirred during measurement to 

afford homogeneity. Control experiments were carried out by systematically omitting or 

replacing components of the system detailed above. Representative H2-evolution profiles 

for MR-1 and HydA-/HyaB- with DT and MV are shown in Fig. 3.3A and are comparable to 

those reported previously with E. coli.166 The amounts of dissolved H2 in samples after         

30 min are presented in Fig. 3.3B. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 - DT-driven H2-evolution by MR-1. A] Representative data for MR-1 (black) and             

HydA
-
/HyaB

-
 (red) at OD590nm ≈0.25 in the presence of 0.3 mg mL

-1
 DT and 0.3 mM MV. B] Dissolved 

H2 produced after 30 min in suspensions (1.3 mL) of MR-1 or HydA
-
/HyaB

-
 (OD590nm ≈0.25) with          

0.3 mg mL
-1

 DT and/or 0.3 mM MV as indicated. Mean value with standard error from 5 biological 

replicates for DT, MV and MR-1. Other values are the mean from duplicates, error bars               

indicate maximum and minimum. Anaerobic samples in 50 mM HEPES, 50 mM NaCl, pH 7                    

at room temperature. 

 

MR-1 suspensions contained 725 ± 97 nmol H2 after 30 min incubation with DT and MV. 

Approximately 60-fold less H2 was produced in the absence of MV and less than 3 nmol H2 
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was detected in samples where DT and MV or MR-1 were omitted, or where MR-1 was 

replaced with HydA-/HyaB- at the same OD590nm. The data confirm that acceptor-limited 

growth conditions lead to the production of MR-1 hydrogenases which can be exploited for 

DT-driven proton reduction. The control experiments show that electrons are exclusively 

provided to the hydrogenases by DT, as opposed to intracellular MR-1 metabolite reserves, 

and that MV can rapidly transfer electrons from DT to the hydrogenases. 

 

Changing the OD590nm of MR-1 suspensions was found to have a decisive impact on both the 

initial rate and total amount of DT-driven H2-evolution, as shown in Fig. 3.4 for MR-1 at           

OD590nm ≈2.5, ≈0.25 or ≈0.03. The initial rate of H2-evolution increased approximately        

50-fold when the OD590nm was raised from ≈0.03 to ≈0.25 and approximately 4-fold when 

raised from ≈0.25 to ≈2.5. These trends likely reflect the increase in hydrogenase content 

of the sample available to accept electrons from MV+ for proton reduction. However, total 

H2 production after 40 min did not correlate with OD590nm in the same way. For MR-1 at 

OD590nm ≈2.5, the amount of dissolved H2 plateaued after approximately 12 min then 

decreased such that net H2 accumulation at the end of the experiment was around half as 

much as that seen with MR-1 at OD590nm ≈0.25. This likely reflects the fact that the 

hydrogenases are reversible enzymes meaning that dissolved H2 can be re-oxidised once     

DT has been depleted and there is no longer a driving force for proton reduction. Electrons 

could then be distributed amongst intracellular metabolites and enzymes with more 

positive redox potentials than the H+/H2 couple (Em = -0.41 V, pH 7).100 It is possible that a 

closed system with no gaseous headspace (as is the case for the H2-sensing electrode 

chamber) promotes H2 re-oxidation as the product remains dissolved and readily accessible 

to the hydrogenases and it is likely that this process is more pronounced at the higher cell 

densities because of the greater quantity of intracellular electron acceptors in the sample. 

 

Overall, the results presented in this section show that MR-1 contains functional, reversible 

hydrogenases after anaerobic growth under acceptor-limited conditions and that OD590nm 

can significantly impact the rate and extent of DT-driven H2-evolution. In the next section, 

data are shown from biochemical assays that evaluated whether MR-1 also contained 

fumarate reductase, lactate dehydrogenases and formate dehydrogenases active in            

the reduction of fumarate, pyruvate and CO2, respectively, when cultured under            

acceptor-limited conditions.  
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Figure 3.4 - DT-driven H2-evolution by MR-1 at different cell densities. Dissolved H2 in suspensions 

(1.3 mL) of MR-1 at OD590nm ≈2.5 (black), ≈0.25 (red) or ≈0.03 (blue) with 0.3 mg mL
-1

 DT and             

0.3 mM MV. Anaerobic samples in 50 mM HEPES, 50 mM NaCl, pH 7 at room temperature. 

 

3.3.2 Reduction of fumarate, pyruvate and CO2  

 

The reduction of carbon-based substrates by MR-1 was first assessed by performing          

DT-driven H2-evolution assays in the presence of fumarate, pyruvate or CO2 to see whether 

electrons could be re-directed away from the hydrogenases to the fumarate reductase, 

lactate dehydrogenases or formate dehydrogenases, respectively. Sodium carbonate 

dissolved in anaerobic 50 mM HEPES, 50 mM NaCl, pH 7 was used as a convenient source 

of CO2 for the experiments and, for simplicity, the term “CO2” is used in this thesis to refer 

to equilibrated solutions containing carbonic acid, bicarbonate and dissolved CO2 (see            

Eq. 1.2).171 MR-1 was cultured and processed as described in sections 3.2 and 3.3 then 

bacterial suspensions (1.3 mL, OD590nm ≈0.25) were supplemented with 0.3 mg mL-1 DT,      

0.3 mM MV and 5 mM fumarate, pyruvate or CO2. Samples were transferred to the 

chamber of the H2-sensing electrode and the amount of dissolved H2 was monitored over 

30 min. Representative data from the experiments are shown in Fig. 3.5 and mean values 

for total H2 production after 30 min are given in Table 3.2. In the presence of all three 

carbon substrates, less H2 was produced compared to experiments with no added substrate 

suggesting that electrons provided to the bacterium by DT can be utilised for other 

reductive transformations. In the presence of pyruvate or CO2, the amount of dissolved H2 

plateaued after approximately 13 or 21 min, respectively, and then started to decrease, 

presumably due to re-oxidation of H2 by MR-1 as described above. The lack of detectable 
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Figure 3.5 - DT-driven H2-evolution by MR-1 in the presence of 5 mM fumarate, pyruvate or CO2. 

Representative data for dissolved H2 in MR-1 suspensions (OD590nm ≈0.25) with 0.3 mg mL
-1

 DT and 

0.3 mM MV. Anaerobic samples (1.3 mL) in 50 mM HEPES, 50 mM NaCl, pH 7 at room temperature. 

 

Table 3.2 - DT-driven H2-evolution by MR-1 in the presence of fumarate, pyruvate or CO2. Dissolved 

H2 in samples incubated for 30 min with 0.3 mg mL
-1

 DT, 0.3 mM MV and 5 mM fumarate, pyruvate 

or CO2. MR-1 OD590nm ≈0.25. Mean values from technical duplicates, error indicates maximum and 

minimum. Anaerobic samples (1.3 mL) in 50 mM HEPES, 50 mM NaCl, pH 7 at room temperature. 

Added substrate  Dissolved H2 (nmol) 

None 773 ± 14 

Fumarate 0 

Pyruvate 347 ± 18 

CO2 450 ± 23 

 

To quantify the formation of succinate, lactate and formate from reduction of fumarate, 

pyruvate and CO2, respectively, anaerobic MR-1 suspensions (1 mL) at OD590nm ≈0.25 were 

prepared in glass vials and a series of parallel assays were performed within a N2-filled 

chamber. Samples contained 0.8 mg mL-1 (≈4.6 mM) DT, 0.5 mM MV and fumarate, 

pyruvate or CO2 (initial concentrations between 2.2 and 5 mM, see below). Greater       

initial concentrations of DT and MV were used compared to H2-evolution assays to ensure a 

sufficient reservoir of electrons and rate of electron transfer for the reduction of carbon 
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substrates. After 30 min incubation, MR-1 was removed from samples by centrifugation 

and supernatants were mixed with deuterated phosphate buffer for 1H-NMR analysis       

(see section 2.6). Control experiments were performed with no added carbon substrate 

and/or no bacteria. Representative 1H-NMR spectra are shown in Fig. 3.6 and supernatant 

compositions after 30 min are presented in Table 3.3. The peaks in Fig. 3.6A correspond to 

sodium 3-(trimethylsilyl)-propionate-d4 (TSP, reference compound with methyl signal set to 

0 ppm), MV (4.5, 8.5 and 9.1 ppm)172 and residual H2O (4.8 ppm).173 The broad series              

of peaks between 2.8 and 4.0 ppm corresponds to buffer components including          

HEPES174 and trace metabolites produced by MR-1 (Human Metabolome Database, 

http://www.hmdb.ca/). Signals for carbon-based compounds were identified using a 

database of resonances in Chenomx NMR suite 7.6TM software (see section 2.6 and         

Table 2.4) and have been highlighted on the expanded spectra in Fig. 3.6B. Quantification 

of the compounds was performed by matching the area underneath the recorded peak to 

the area underneath a standard peak (corresponding to a known concentration of the 

chosen compound). Signals used for quantification were selected based on their clear 

position away from other resonances.  

 

Key results from the 1H-NMR analysis (see Table 3.3) have been summarised in Fig. 3.7 to 

best compare the extents of each reductive transformation. With no added carbon 

substrate, the supernatants analysed after 30 min contained negligible quantities of 

carbon-based compounds both in the absence and presence of MR-1. The only exception 

was a slight enrichment of formate when MR-1 was incubated with DT and MV. This may 

be due to trace amounts of growth medium which were not removed during processing of 

MR-1 or the release of intracellular metabolite reserves upon bacterial lysis during 

incubation. Importantly, the control experiments show that buffer components do not 

contribute to the resonances of the compounds of interest and that incubation of MR-1 

with DT and MV does not lead to substantial formation of carbon-based compounds. When 

MR-1 was incubated with DT, MV and fumarate (≈4721 nmol initially), the supernatants 

contained ≈3768 nmol succinate (80 % yield) and ≈976 nmol malate (21 % yield) after         

30 min with only trace amounts of other compounds. Malate is likely formed from the 

hydration of the C=C bond in fumarate by the cytoplasmic fumarate hydratase (SO2222) 

which is part of the tricarboxylic acid (TCA) cycle.102,175 Transformation of fumarate did not 

take place in equivalent experiments performed with no bacteria.  
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Figure 3.6 - Representative 
1
H-NMR spectra for DT-driven reduction of fumarate, pyruvate and       

CO2 by MR-1. A] Full spectra showing peak positions of buffer components and sodium                                  

3-(trimethylsilyl)-propionate-d4 (TSP) reference. B] Expanded view of spectra highlighting peaks 

used to quantify carbon-based compounds (see section 2.6). Numerical label for each spectrum 

refers to a set of conditions described in Table 3.3. 
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Incubation of MR-1 with DT, MV and pyruvate (≈2220 nmol initially) for 30 min resulted in 

the formation of ≈926 nmol lactate (42 % yield) with no other major products. In the 

absence of MR-1, negligible quantities of lactate were detected. Lastly, incubation of MR-1 

with DT, MV and CO2 (≈5000 nmol initially) led to the production of ≈1474 nmol formate 

(29 % yield) after 30 min, with only trace amounts of other compounds. The yield of 

formate equates to approximately 6.5-fold more than what was detected in experiments 

with DT, MV, MR-1 and no added carbon substrate. In parallel experiments with no 

bacteria, the amount of formate detected was similar to that seen for all other abiotic 

assays. Overall, the yields of succinate, lactate and formate (80, 42 and 29 %, respectively) 

correlated well with the decreases in DT-driven H2-evolution caused by the presence of 

fumarate, pyruvate and CO2 (100, 55 and 42 %, respectively, see Table 3.2). 

 

 

 

 

 

 
 

Figure 3.7 - DT-driven reduction of fumarate, pyruvate and CO2 by MR-1. Composition of 

supernatants recovered from samples incubated for 30 min with 0.8 mg mL
-1

 DT, 0.5 mM MV, and 

fumarate (left), pyruvate (middle) or CO2 (right). Assays performed with or without MR-1         

(OD590nm ≈0.25) as indicated. Mean values from technical duplicates, error bars indicate maximum 

and minimum. Anaerobic samples (1 mL) in 50 mM HEPES, 50 mM NaCl, pH 7 at room temperature. 

 

To summarise, the data shown in this section confirm that culturing MR-1 under anaerobic, 

acceptor-limited conditions leads to the presence of functional fumarate reductase,     

lactate dehydrogenases and formate dehydrogenases that can be exploited for reductive 

catalysis using DT and MV. Importantly, incubating MR-1 with DT, MV and a particular 

carbon substrate gave a distinct range of products and, with the exception of fumarate 

hydrolysis to malate, the majority of the enzymatic activity was associated with the desired 

reductive transformations.  
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3.4 Discussion 

 

In this chapter, it was shown that MR-1 can be cultured to simultaneously contain 

hydrogenases, fumarate reductase, lactate dehydrogenases and formate dehydrogenases 

that can be readily assessed using biochemical assays. Spectrophotometric H2 oxidation 

assays confirmed the presence of active hydrogenases after harvesting MR-1 from growth 

medium and re-suspending in a defined buffer. Although the assays did not assess the 

reductive transformation of interest, they represent a rapid and convenient method for 

comparing hydrogenase activity in different bacterial strains. Comparable assays with MR-1 

have not been published previously but a H2 oxidation rate of 17.4 ± 2 nmol H2 min-1 mg-1 

was reported for the purified MR-1 [NiFe]-hydrogenase in 50 mM HEPES, pH 7.8 with MV 

as the redox indicator.98 The value is significantly lower than that reported here with MR-1 

(see Table 3.1) considering that the results are normalised to total protein and only a small 

proportion of MR-1 cellular material is comprised of hydrogenases. This may reflect a loss 

of activity for the [NiFe]-hydrogenase during purification, the more positive reduction 

potential of the BV2+/+ couple versus the MV2+/+ couple165 (which may have facilitated 

electron transfer during cell-based assays described in this chapter) and/or the possibility 

that the bacterium also contains [FeFe]-hydrogenases that contribute to H2 oxidation.  

 

The reduction of protons, fumarate, pyruvate and CO2 to H2, succinate, lactate and 

formate, respectively, by MR-1 was driven using DT-reduced MV.  The H2-sensing electrode 

allowed investigation of factors affecting DT-driven H2-evolution including MR-1 OD590nm 

and the presence of carbon-based substrates. Although experimental throughput for the 

detection of H2 was low compared to GC, real-time H2 production and consumption profiles 

could be obtained because DT and MV enable rapid electron transfer to the hydrogenases. 

This was highlighted by the fact that DT-driven proton reduction over 30 min gave greater 

yields of H2 than those seen during natural MR-1 respiration (i.e. lactate oxidation coupled 

to proton reduction) over 48 hr (see Fig. 3.1). A key result from the H2-evolution assays was 

evidence that MV is a suitable electron transfer mediator for bacterial enzymes, with 

negligible amounts of H2 produced over 30 min in the absence of MV (see Fig. 3.3). Electron 

transfer from DT to the hydrogenases may still be taking place but these processes clearly 

occur over longer timescales. The use of MV affords a more rapid and direct approach to 

driving reductive transformations with MR-1 and permits electron transfer to soluble and 

membrane-bound enzymes localised to the periplasm and cytoplasm.  
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The transformation of carbon-based substrates was evaluated using 1H-NMR spectroscopy 

coupled with software for the detection of microbial metabolites. The analysis allowed 

facile quantification of the compounds of interest and confirmed that other common 

metabolites such as acetate are only produced in small quantities (see Table 3.3).                   

A comparable evaluation of multiple enzyme activities after culturing MR-1 under a single 

growth condition and the reduction of CO2 to formate by the bacterium have not been 

reported previously at the time of writing. Based on the final amounts of succinate, lactate              

and formate after 30 min incubations, the rates of DT-driven fumarate-, pyruvate- and            

CO2-reduction by MR-1 were ≈126, ≈31 and ≈49 nmol min-1, respectively (see Fig. 3.7).       

The superior rates of fumarate-reduction most likely reflect the fact that the fumarate 

reductase is a soluble and highly abundant176,177 periplasmic enzyme with accessible redox 

cofactors (see Fig. 1.12)106 whereas the hydrogenases, lactate dehydrogenases and formate 

dehydrogenases are predicted to be membrane-associated enzymes that exchange 

electrons with the MK pool, making it necessary for DT-driven electron transfer to proceed 

via intermediary redox partners.91,94,115 In all cases, complete consumption of the starting 

carbon substrate did not occur over 30 min. In part, it is likely that this is a result of 

electrons from DT being lost to alternative bacterial electron acceptors. For example, 

electrons are still transferred from MV+ to the hydrogenases in the presence of pyruvate 

and CO2 (see Table 3.2).  

 

Overall, the results presented in this chapter are an important foundation to achieve the 

aims of this thesis because it was shown that MR-1 can act as a multi-faceted 

electrocatalyst with a selectable product range that can be quantified using a variety of 

analytical techniques. In the next chapter, results are shown from experiments that aimed 

to facilitate light-driven (rather than DT-driven) reduction of MV2+ to MV+ using a SED     

and photosensitiser. Data are then presented from assays that quantified light-driven                

H2-evolution by anaerobically grown MR-1 from photo-produced MV+. 



Chapter 4 

 

87 
 

 

 

 

 

  

 

 

CHAPTER 4 
Light-driven H2-evolution by 
Shewanella oneidensis MR-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

 

88 
 

Chapter 4 - Light-driven H2-evolution by Shewanella 

oneidensis MR-1 

 

4.1 Introduction 

 

In chapter 3, it was shown that MR-1 can be used to drive reductive transformations with 

DT as a chemical reductant and MV as an electron shuttle after culturing the bacterium 

under anaerobic, acceptor-limited conditions. To build upon the findings for cell-based 

photocatalysis with MR-1, it is of interest to exploit the ability of MV to rapidly transfer 

electrons to bacterial enzymes but replace DT with light-harvesting reagents that generate 

photo-excited electrons under irradiation by visible light. In this chapter, the photocatalytic 

reduction of protons to H2 was targeted for the initial characterisation of such a system 

because the product can be readily quantified using a H2-sensing electrode and GC. First, 

results are presented from spectrophotometric assays that were used to evaluate 

photoreduction of MV2+ to MV+ using a variety of water-soluble photosensitisers and SEDs 

under conditions compatible with MR-1 enzyme activity. Next, data are shown from 

experiments that aimed to drive H2-evolution by performing photoreduction of MV2+ in the 

presence of anaerobically grown MR-1. Finally, results are presented from experiments 

that assessed the determinants of light-driven H2-evolution, the longevity of the system 

and the role of porin:cytochrome complexes in electron transfer across the bacterial outer 

membrane. The results shown below provide a framework for the photoreduction of 

fumarate, pyruvate and CO2 with MR-1 described in the next chapter.  

 

4.2 Reductive photocatalysis 

 

To develop a system for photocatalytic chemical synthesis with MR-1, the chemical 

reductant DT must be replaced by light-harvesting reagents that facilitate the reduction      

of MV2+ to MV+ for subsequent electron transfer to bacterial enzymes. As shown in section 

1.5, it is possible to generate photo-energised electrons for reductive photocatalysis using a 

photosensitiser and a SED (see Fig. 1.7 and examples in Tables 1.3, 1.4 and 1.5).1,2,49 More 

specifically, the absorption of light by a photosensitiser can promote an electron from the 

ground state (S0) to an excited singlet state (S1). After photo-excitation, excess energy is 
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rapidly lost to the surroundings through vibrational relaxation (VR) until the molecule 

relaxes to the lowest energy vibrational level of the excited state. It is also possible for an 

electron to be promoted to higher-energy excited singlet states (S2). If this happens,           

VR takes place until the molecule is in the lowest energy vibrational level then internal 

conversion (IC) can occur whereby the molecule transitions to a lower-energy excited state 

(i.e. from S2 to S1). This is followed by further VR to the lowest energy vibrational level.        

At this point, energy can be lost through the emission of a photon. This process is termed 

fluorescence for relaxation from S1 to S0 with no change in electron spin during emission. 

Alternatively, intersystem crossing (ISC) can occur whereby the molecule transitions to an 

excited triplet state (T1, T2) which will typically be longer-lived and have a lower energy 

than the corresponding singlet state. Once the lowest energy vibrational level is attained 

through VR, energy can be lost through the emission of a photon. This process is termed 

phosphorescence for relaxation from T1 to S0 with a corresponding change in electron spin 

during emission. The processes described above are summarised as a simplified Jablonski 

diagram in Fig. 4.1.178–180 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 - Simplified Jablonski diagram showing the fate of a photo-excited molecule following 

absorption of light (hν) in an isolated system. Vibrational levels within excited states are shown as 

horizontal lines and the lowest energy vibrational levels are highlighted in bold. S0 = ground state,    

S1, S2 = excited singlet states, T1, T2 = excited triplet states, VR = vibrational relaxation, IC = internal 

conversion, ISC = intersystem crossing. See text for further details. 

 

Alternatively, rather than energy loss by energy transfer, as above, this may occur by 

electron transfer. If the photo-excited state is sufficiently long-lived then it can act as an 
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electron donor and/or acceptor in the presence of other molecules. Excited state electron 

transfer is referred to as quenching and can proceed via a reductive or oxidative pathway, 

as summarised in Fig. 4.2 for a generic photosensitiser and SED with MV as an electron 

acceptor.2,49,132 The first step in both cycles is absorption of a photon by the photosensitiser 

to form the photo-excited state (PS*). During reductive quenching, PS* oxidises the SED to 

form a one-electron reduced state of the photosensitiser (PS-) which can then reduce      

MV2+ to regenerate the photosensitiser ground state (PS0). During oxidative quenching,             

PS* reduces MV2+ to form a one-electron oxidised state of the photosensitiser (PS+) which 

can then oxidise the SED to regenerate PS0. The likelihood of each pathway depends on a 

variety of factors including the solvent and pH as well as the identity of the photosensitiser 

and SED.49 These factors influence the (photo-)reduction potentials associated with each 

step of the process (see Fig. 4.2, red text) and hence the feasibility of each mechanism to 

achieve photoreduction of MV2+. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 - Reductive (left) and oxidative (right) quenching mechanisms after absorption of light (hν) 

by a photosensitiser showing the ground (PS
0
), photo-excited (PS*), one-electron reduced (PS

-
) and 

one-electron oxidised (PS
+
) states of the photosensitiser with their corresponding (photo-)reduction 

couples. SED = sacrificial electron donor, MV = methyl viologen. 

 

A range of photosensitisers and SEDs can be used to generate and transfer                     

photo-energised electrons via the mechanisms described above. Commonly used 

photosensitisers include molecular dyes, (sensitised-)semiconducting nanoparticles and 
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light-harvesting protein complexes1,68,180 whilst commonly used SEDs include aliphatic and 

aromatic amines, carboxylic acids, thiols and sugars (see examples in section 1.5).49 The 

next sections give an overview of the photosensitisers and SEDs that were chosen for this 

study including their key structural and chemical properties. 

 

4.2.1 Photosensitisers used in this study 

 

Six photosensitisers were assessed in this study. Chemical structures and the available 

(photo-)reduction potentials from the literature are given in Table 4.1. Absorbance spectra 

for 10 µM photosensitiser in 50 mM HEPES, 50 mM NaCl, pH 7 are shown in Fig. 4.3 and   

the corresponding absorbance maxima and extinction coefficients are given in Table 4.2.        

Excited state energies, E(PS*), are calculated using Eq. 4.1 (where h is Planck’s constant and 

c is the speed of light) from the emission wavelength (λem) of the excited state as it decays 

to the ground state.179 The oxidation and reduction potentials of the ground state, E(PS+/0) 

and E(PS0/-) respectively, are determined using cyclic voltammetry.181 Taken together, these 

values can be used to estimate the photoreduction potentials of the excited state, E(PS+/*) 

and E(PS*/-), using Eq. 4.2 and 4.3, respectively.179,181  

 

                                  Eq. 4.1 

 

                                                          E(PS+/*) = E(PS+/0) - E(PS*)                 Eq. 4.2 

 

                                                          E(PS*/-) = E(PS0/-) + E(PS*)                             Eq. 4.3 

 

The values of E(PS+/0) and E(PS+/*) for FMN are not included in Table 4.1 because the 

reductive quenching pathway is the predominant mechanism by which light-driven 

electron transfer takes place with this photosensitiser.182,183 Reductive quenching leads to 

formation of hydroquinone, PS2- (via disproportionation of semiquinone), which can 

perform a two-electron reduction to regenerate the FMN ground state. The value of 

E(PS+/*) for proflavine is not included in Table 4.1 because the oxidative quenching 

pathway with this photosensitiser involves more complex photochemistry than that shown 

in Fig. 4.2.184–186 Oxidative quenching involves absorption of multiple photons and leads to 

the production of solvated electrons that can reduce an available electron acceptor or         

re-combine with oxidised proflavine to regenerate the photo-excited state. 

h x c 
   =     E(PS*)        

λem 
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Table 4.1 - Chemical structures and (photo-)reduction potentials of photosensitisers used in this 

study. Ionisation state shown for predominant form at pH 7. Potentials at pH 7 vs. SHE. PS
0
, PS*, PS

-
 

and PS
+
 refer to the photosensitiser states shown in Fig. 4.2. 

a
For FMN, the relevant couples are      

E(PS
0/2-

)
 
 and E(PS*/2-

). n/a = not available. 

Photosensitiser 
E(PS*) 
(eV) 

E(PS+/0) 
(V) 

E(PS+/*) 
(V) 

E(PS0/-)a 
(V) 

E(PS*/-)a 
(V) 

Ref. 

Eosin Y 

 

1.89 +1.03 -0.86 -0.81 +1.08 187,188 

Fluorescein 

 

1.96 +0.95 -1.01 -0.97 +0.99 187,188 

FMNa 

 

2.07 n/a n/a -0.22 +1.85 132,182,189 

Proflavine 

 

2.14 +1.31 n/a -0.78 +1.36 184,185 

Ru(bpy)3
2+ 

 

2.10 +1.26 -0.84 -1.26 +0.84 190 

RuP 

 

2.21 +1.26 -0.95 -1.09 +1.12 132,191,192 
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Figure 4.3 - Absorbance spectra of photosensitisers used in this study. 10 µM eosin Y (blue), 

fluorescein (grey), FMN (green), proflavine (red), Ru(bpy)3
2+

 (black) and RuP (orange) in 50 mM 

HEPES, 50 mM NaCl, pH 7 (pathlength 1 cm). 

 

Table 4.2 - Absorbance maxima and extinction coefficients of photosensitisers used in this study. 

λmax given as maximum electronic absorbance at wavelengths > 400 nm for 10 µM photosensitiser in 

50 mM HEPES, 50 mM NaCl, pH 7, see Fig. 4.3. *Extinction coefficients were determined by              

Dr. Emma Ainsworth (University of East Anglia, UK) using the Beer-Lambert law, see Eq. 2.1. 

Photosensitiser λmax (nm) εmax (mM-1 cm-1) 

Eosin Y 520 80.4* 

Fluorescein 490 64.6* 

FMN 445 12.5193 

Proflavine 445 76.1* 

Ru(bpy)3
2+ 452 14.4191 

RuP 455 10.2191 

 

Eosin Y, fluorescein and proflavine are light-harvesting reagents with structures analogous 

to redox active molecules associated with microbial electron transfer, such as pyocyanin 

and anthraquinone-2,6-disulfonate (AQDS).194 FMN is a flavin molecule secreted naturally 

by MR-1 up to concentrations of 0.5 µM in culture supernatants195 and has been implicated        

in extracellular electron transfer to insoluble redox partners (see section 1.6.2).127,189    

Ru(bpy)3
2+ and RuP are light-absorbing inorganic complexes with chemical structures 

comparable to iron (III) chelates which can be used by MR-1 as terminal electron 
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acceptors.84,88,196 These six photosensitisers were selected because they are                    

water-compatible and their absorbance maxima fall within the visible region of the 

electromagnetic spectrum. Additionally, they have been used for photoreduction of 

purified MR-1 outer membrane cytochromes (see section 1.6.2)132 and photoreduction        

of MV has been reported previously for all photosensitisers, except FMN, in                     

aqueous medium.186,197–200  

 

4.2.2 Sacrificial electron donors used in this study 

 

Ten SEDs were assessed in this study. Chemical structures and the available reduction 

potentials from the literature are given in Table 4.3. TEOA and EDTA are two of the most 

widely used SEDs because they are compatible with many organic and inorganic 

photosensitisers,49,68,201,202 although EDTA is typically able to operate at more acidic pH         

than TEOA.49 HEPES and MES are common Good’s buffers that can also be employed             

as SEDs.132 In particular, the use of MES has been reported recently in systems comprised of 

purified protein and RuP co-adsorbed on titanium dioxide nanoparticles.110,132,203 Glucose 

and glycerol represent relatively sustainable SEDs204,205 because the former can be 

produced through natural photosynthesis as part of biomass and the latter is a waste 

product from the esterification of vegetable oils to biodiesel. Ascorbate is a versatile SED 

that can be used at acidic to neutral pH and shows promise as a recyclable proton/electron 

relay in photocatalytic systems with tris(2-carboxyethyl)phosphine (TCEP) as co-SED.49,206 

Oxalate is considered a useful SED because its oxidation produces CO2 and a CO2 

radical.49,207 CO2 is an undesirable side product because of its detrimental impacts on         

the environment (see section 1.2) but its formation reduces the likelihood of charge 

recombination as the gaseous molecule can escape the reaction solution. The CO2 radical is 

a powerful reductant capable of performing additional, potentially productive, electron 

transfer processes. Sulfite is typically used as a SED in combination with sulfide, for 

example, in systems containing cadmium-based semiconductors for light-driven H2 

production from H2S.208 Lastly, thiols such as cysteine are used as SEDs because their 

oxidation can release multiple electrons and leads to the formation of inert               

disulfide-bridged dimers.49,209 More generally, these molecules were chosen as SEDs 

because they are water-soluble and their reported reduction potentials, E(SED+/0), make 

them suitable for reductive and/or oxidative quenching with the majority of the 

photosensitisers described above. 



Chapter 4 

 

95 
 

Table 4.3 - Chemical structures and reduction potentials of SEDs used in this study. Ionisation state 

shown for predominant form at pH 7. Potentials vs. SHE: values for cysteine, EDTA, HEPES, MES, 

sulfite and TEOA were determined in aqueous solutions and values for ascorbate and oxalate were 

determined in solutions of acetonitrile/water (50:50). n/a = not available. 

SED E(SED+/0) (V) SED E(SED+/0) (V) 

L(+)-Ascorbate 

 

+0.70210 

HEPES 

 

+0.80211 

L-Cysteine 

 

+0.92212 

MES 

 

+0.95213 

EDTA 

 

+0.82-1.1749,214 

Oxalate 

 

+1.05215 

D-Glucose 

 

+1.00216 

Sulfite 

 

+0.75217 

Glycerol 

 

n/a 

TEOA 

 

+0.82-1.07198,214 

 

The (photo-)reduction potentials of the photosensitisers and SEDs have been summarised 

as an energy level diagram in Fig. 4.4 to show the feasibility of light-driven H2-evolution 

with MR-1 using MV as an electron transfer mediator. In the majority of cases, the 

reduction potentials of the SEDs are more negative than those associated with the PS*/- 

and PS+/0 couples. Similarly, most of the reduction potentials associated with the PS0/- and 

PS+/* couples are more negative than the reduction potential of the MV2+/+ couple.                  

Taken together, this should make electron transfer from the SEDs to the photosensitisers 

and from the photosensitisers to MV2+ thermodynamically favourable. Once MV+ has been 
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generated, it should then be possible to deliver electrons to bacterial hydrogenases for 

proton reduction, as shown by the work presented in chapter 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 - Summary of photochemistry relevant to light-driven H2-evolution with MR-1.           

(Photo-)reduction potentials for eosin Y (EY), fluorescein (Fl), FMN, proflavine (PF), Ru(bpy)3
2+

 and 

RuP related to reductive (black) and oxidative (red) quenching, see Fig. 4.2 and Table 4.1. Potentials 

for the MV
2+/+

 and H
+
/H2 couples as well as those spanned by the SEDs in Table 4.3 are indicated. 

SED = sacrificial electron donor, MV = methyl viologen, H2ase = hydrogenase. 

 

In the next section, data are shown from experiments that evaluated different 

combinations of photosensitisers and SEDs for their ability to facilitate reduction of MV2+ to 

MV+ under irradiation by visible light. Results from the assays informed the choice of 

reagents used for photo-production of MV+ in the presence of MR-1 to drive H2-evolution. 

 

4.3 Photoreduction of methyl viologen under conditions 

compatible with Shewanella oneidensis MR-1 enzyme activity 

 

First, experiments were performed to compare photoreduction of MV2+ using different 

photosensitisers and a chosen SED. For the assays, TEOA was selected as the SED because 

of its widespread use in photocatalytic systems including those containing purified enzymes 

and whole-cell bacteria.78,199,218 Photoreduction of MV2+ was evaluated in 50 mM HEPES,        

50 mM NaCl, pH 7 because this buffer was shown to be compatible with MR-1 enzyme 
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activities in chapter 3. Anaerobic 50 mM HEPES, 50 mM NaCl, pH 7 (1 mL) was 

supplemented with 12 mM TEOA, 0.06 mM MV and 0.02 mM photosensitiser within              

a N2-filled chamber then irradiated with the cold light source at an intensity of                          

0.7 kW m-2 (see section 2.2). The amount of photo-produced MV+ was quantified 

spectrophotometrically by analysing the peaks appearing over time at 396 and 606 nm                      

(see section 2.5). Representative spectra for experiments with each photosensitiser after          

0, 10, 20 and 30 min irradiation are presented in Fig. 4.5.  

 

 

 

Figure 4.5 - Photoreduction of MV
2+

 by xanthene-, acridine- and Ru(II)-dyes. Representative spectra 

for 0.02 mM of the indicated photosensitiser with 12 mM TEOA recorded after 0 (black),                     

10 (dark grey), 20 (light grey) and 30 min (red) irradiation with the cold light source (0.7 kW m
-2

).                   

The majority of spectra cannot be seen due to overlap. Starting concentration of MV
2+

 was 0.06 mM. 

Anaerobic samples (1 mL) in 50 mM HEPES, 50 mM NaCl, pH 7 (pathlength 1 cm).  

 

FMN was the only photosensitiser that did not photoreduce MV2+. This reflects the fact that 

its reduction potential (Em = -0.22 V) is more positive than the MV2+/+ couple (Em = -0.45 V), 

making electron transfer thermodynamically unfavourable (see Fig. 4.4). The spectral 

changes seen in the assays instead correspond to formation of reduced FMN which has a 

lower extinction coefficient than oxidised FMN.219 With eosin Y, fluorescein, proflavine, 

Ru(bpy)3
2+ and RuP, clear peaks at 396 and 606 nm appeared after 10 min irradiation.       

The peaks remained relatively stable over 30 min irradiation for all photosensitisers except 

eosin Y. In the case of eosin Y, the peaks corresponding to both MV+ and the 

photosensitiser diminished over time. This is likely due to photo-degradation of the 
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photosensitiser which has been reported previously in the absence of an electron 

acceptor220 (conditions which are attained once all available MV2+ has been photoreduced 

to MV+). Eosin Y may also facilitate further reduction of bright blue MV+ to pale yellow MV0 

(Em = -0.88 V)221 causing a change in the spectral properties of the solution. The absorbance 

changes at 396 nm (for Ru(bpy)3
2+ and RuP) or 606 nm (for eosin Y, fluorescein and 

proflavine) after 10 min irradiation were converted to concentrations of MV+ in the sample 

using the Beer-Lambert law (see Eq. 2.1) and the reported extinction coefficients for MV+                 

(see section 2.5). Results from the analysis and equivalent experiments performed in the 

absence of TEOA are shown in Fig. 4.6. The concentration of MV+ after 10 min irradiation 

decreased in the order eosin Y > proflavine >> fluorescein > RuP > Ru(bpy)3
2+ and, in all 

cases, more MV+ was formed when TEOA was present in the sample. Overall, the results 

show that a variety of photosensitisers can facilitate the reduction of MV2+ using visible 

light irradiation under conditions compatible with MR-1 enzyme activity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 - Photoreduction of MV
2+

 by xanthene-, acridine- and Ru(II)-dyes. Concentration of MV
+
 

after 10 min irradiation (0.7 kW m
-2

) of 0.06 mM MV and 0.02 mM of the indicated photosensitiser 

in the presence or absence of 12 mM TEOA. Mean values from technical duplicates, error bars        

indicate maximum and minimum. Anaerobic samples (1 mL) in 50 mM HEPES, 50 mM NaCl,             

pH 7. Irradiation provided by the cold light source. 

 

In the next set of experiments, photoreduction of MV2+ was performed using eosin Y         

and Ru(bpy)3
2+ as representative photosensitisers with different SEDs (see Table 4.3)            

to compare their effectiveness against TEOA. The concentrations of MV+ after 10 min 
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irradiation with the cold light source (0.7 kW m-2) are shown in Fig. 4.7. Eosin Y and 

Ru(bpy)3
2+ were used as representative photosensitisers for the assays to compare 

different chemical classes with different photochemical properties. Despite being able to 

photoreduce MV2+ to similar extents, eosin Y was chosen over proflavine as the latter is an 

anti-microbial agent222–224 and inclusion of 10 µM proflavine, but not 10 µM eosin Y or 

Ru(bpy)3
2+, in M72 medium during anaerobic, acceptor-limited growth of MR-1 resulted in 

limited change of OD590nm over 48 hr, as shown in Fig. 4.8. Ru(bpy)3
2+ was chosen over RuP 

because the former is more widely available from commercial suppliers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 - Photoreduction of MV
2+

 by eosin Y and Ru(bpy)3
2+

 with different SEDs. A] Concentration 

of MV
+
 after 10 min irradiation (0.7 kW m

-2
) of 0.02 mM eosin Y and either L(+)-ascorbate,                   

L-cysteine, EDTA, D-glucose, oxalate, sulfite or TEOA at 10 mM or 30 mM MES or 27 mM glycerol.    

B] Concentration of MV
+
 after 10 min irradiation (0.7 kW m

-2
) of 0.04 mM Ru(bpy)3

2+
 and either      

L(+)-ascorbate, L-cysteine, EDTA, D-glucose, oxalate, sulfite or TEOA at 25 mM or 75 mM MES            

or 69 mM glycerol. Starting concentration of MV
2+

 was 0.06 mM with eosin Y and 0.15 mM               

with Ru(bpy)3
2+

. Mean values from technical duplicates, error bars indicate maximum and                    

minimum. Anaerobic samples (1 mL) in 50 mM HEPES, 50 mM NaCl, pH 7. Irradiation provided by the               

cold light source. 

 

The effectiveness of each SED is best evaluated against experiments with no added SED 

(which reflect the ability of HEPES in the buffer to act as a SED). In all cases, similar trends 

were seen with both eosin Y and Ru(bpy)3
2+. Relative to assays with no added SED, 
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ascorbate and sulfite were found to hinder photo-production of MV+, glucose and glycerol 

gave similar concentrations of MV+, and cysteine, EDTA, MES, oxalate and TEOA facilitated 

MV2+ photoreduction to greater extents. Overall, EDTA and TEOA were the most effective 

SEDs for photoreduction of MV2+ making them the most suitable reagents for experiments 

aiming to achieve light-driven H2-evolution with MR-1. Of the two, TEOA was chosen for 

subsequent work because it has been shown previously that EDTA adversely impacts 

anaerobic growth of MR-1 when present at low concentrations (0.25 mM), presumably due 

to destabilisation of the outer membrane.225 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 - Anaerobic growth of MR-1 with 37.5 mM lactate as electron donor and 18.8 mM 

fumarate as electron acceptor in the presence of eosin Y, proflavine or Ru(bpy)3
2+

. Optical density at 

590 nm for MR-1 in the presence of no added photosensitiser (black) or 10 µM eosin Y (red), 

proflavine (grey) or Ru(bpy)3
2+

 (blue). Inoculation at 0 hr of M72 medium (10 mL) supplemented with 

anaerobic growth additions. Samples had 7 mL headspace (100 % N2 at inoculation). Optical 

densities are mean values from biological duplicates, error bars indicate maximum and minimum. 

Lines serve as a guide to the eye, the majority of error bars are too small to resolve. 

 

To further quantify the photoreduction of MV2+ by eosin Y and Ru(bpy)3
2+ in the presence of 

TEOA, quantum yields were calculated to show the proportion of incident light used in 

productive electron transfer (i.e. for reduction of MV2+ to MV+). The external quantum yield 

of a photocatalytic system is defined by Eq. 4.4 and considers all light falling incident on the 

sample. The internal quantum yield of a photocatalytic system is defined by Eq. 4.5 and 

only considers light that has been absorbed by the photosensitiser to generate the          

photo-excited state. If the photosensitiser concentration is sufficiently high then it can be 
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assumed that all incident light is absorbed and that the external quantum yield equals the 

internal quantum yield. 

 

  

                                                                                                                             

 

 

 

 

  

                                                                                                                             

 

 

 

To irradiate samples with a defined number of photons, bandpass interference filters 

(Edmund Optics, 10 nm FWHM) that only transmit light at a particular wavelength were 

placed directly in front of the beam of light coming from the cold light source. The total 

number of incident photons over a known time and surface area was estimated from the 

light intensity and the energy of a single photon at the wavelength defined by the filter 

according to Eq. 4.6, where I0 is the incident light intensity in kW m-2, A is the area being 

irradiated in m2, t is the duration of the experiment in s, λ is the wavelength of light in m,     

h is Planck’s constant and c is the speed of light. This calculation makes the assumption that 

all light incident on the sample is at a single wavelength. 

 

            Eq. 4.6 

 

Stirred anaerobic samples (2 mL, 1 cm pathlength) containing 0.06 mM photosensitiser, 

0.15 mM MV and 30 mM TEOA in 50 mM HEPES, 50 mM NaCl, pH 7 were irradiated for       

10 min with light from the cold light source (0.01 kW m-2, 1.2 x 10-4 m2 irradiation area) 

passing through a bandpass filter at 450 or 500 nm for experiments with Ru(bpy)3
2+ or     

eosin Y, respectively. At the end of the irradiation period, the total number of               

photo-excited electrons used in productive electron transfer was calculated using Eq. 4.7, 

where ΔAbs396nm is the change in absorbance at 396 nm after 10 min, NA is Avogadro’s 

(total number of electrons used 

in productive electron transfer)  

x 100 % 
 

 =   external quantum yield 
(total number of photons  

incident on the sample) 

(total number of electrons used 

in productive electron transfer)  

x 100 % 
 

 =   internal quantum yield 
(total number of photons 

absorbed by the photosensitiser) 

I0 x A x t x λ x 103 
    =      total photons 

h x c 

Eq. 4.4 

Eq. 4.5 
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constant, εMV+ is the extinction coefficient of MV+ (42.1 mM-1 cm-1)158 and the factor of           

5 x 105 accounts for the volume of the reaction solution. 

 

                   Eq. 4.7 

 

Based on the Beer-Lambert law (see Eq. 2.1) and the extinction coefficients of the 

photosensitisers (see Table 4.2), 0.06 mM eosin Y or Ru(bpy)3
2+ would give an absorbance 

of 4.82 or 0.86, respectively, at λmax. This corresponds to the absorption of 99.99 or 86.20 % 

of incident light by eosin Y or Ru(bpy)3
2+, respectively. As such, it can be assumed that 

solutions containing eosin Y absorb all incident photons and the external quantum yield 

equals the internal quantum yield whereas solutions containing Ru(bpy)3
2+ only absorb 

86.20 % of incident photons such that the external and internal quantum yields are 

different. Using Eq. 4.4 to 4.7 and the experimental parameters described above, the 

quantum yields for photoreduction of MV2+ were 2.16 ± 0.22 % for eosin Y and 0.98 ± 0.04 

(external) and 1.13 ± 0.05 (internal) % for Ru(bpy)3
2+ (all mean values from technical 

triplicates, error indicates standard error).  

 

4.4 Light-driven H2-evolution by Shewanella oneidensis MR-1 

from photo-produced MV+ 

 

4.4.1 Impact of photosensitiser identity 

 

To investigate light-driven H2-evolution, photo-production of MV+ was carried out in the 

presence of MR-1 which had been cultured for 24 hr under anaerobic, acceptor-limited 

conditions then re-suspended in anaerobic 50 mM HEPES, 50 mM NaCl, pH 7 (see sections 

2.3.3 and 2.3.7). Bacterial suspensions (OD590nm ≈0.25) were supplemented with                   

60 mM TEOA, 0.3 mM MV and 0.11 mM photosensitiser then stirred samples (1.7 mL, no 

gaseous headspace above reaction suspensions, room temperature) within the chamber of 

the H2-sensing electrode were irradiated (0.7 kW m-2) periodically with the cold light source 

after a 10 min equilibration period (see section 2.4.2). Results from experiments with each 

of the six photosensitisers introduced above are presented in Fig. 4.9A. Equivalent 

experiments in the absence of MV are shown in Fig. 4.9B. 

ΔAbs396nm x NA 
   =     total electrons 

εMV+ x 5 x 105 
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Figure 4.9 - Light-driven H2 production by MR-1 with xanthene-, acridine- and Ru(II)-dyes.                      

A] Dissolved H2 in samples that experienced ambient light throughout and high intensity irradiation 

by the cold light source (0.7 kW m
-2

) between 0-10, 15-25 and 30-40 min (white panels). MR-1 

suspensions (OD590nm 0.25) with 60 mM TEOA, 0.3 mM MV and 0.11 mM of the indicated 

photosensitiser. B] As for A] but in the absence of MV. Anaerobic samples (1.7 mL) in 50 mM HEPES, 

50 mM NaCl, pH 7 at room temperature. 

 

At the end of experiments in the presence of MV, suspensions contained approximately    

93, 75, 13, 11, 10 and 0 nmol dissolved H2 with eosin Y, proflavine, RuP, Ru(bpy)3
2+, 

fluorescein and FMN, respectively. The final quantities of H2 correlate with the relative 

extents of MV2+ photoreduction supported by each photosensitiser shown in Fig. 4.6. 

Identical experiments in the absence of MV gave approximately 8 (eosin Y), 3 (proflavine)     

and 0 (all other photosensitisers) nmol dissolved H2 showing that direct electron transfer 

from the photosensitisers to the hydrogenases does not occur to a significant extent under 

these conditions. This is consistent with H2-evolution assays using the chemical reductant 

DT as the source of electrons (see Fig. 3.3). In both cases, the addition of MV as electron 

shuttle afforded a more rapid approach to H2-evolution with MR-1. 

 

In the presence of MV and all photosensitisers except FMN, irradiation of the sample with 

high intensity light led to an increase in dissolved H2 after a delay of approximately 30 sec            

to 1 min. The amount of dissolved H2 increased for the duration of the irradiation period 

then continued to increase at a slower rate once the sample was returned to ambient light 



Chapter 4 

 

104 
 

0.0

0.5

1.0

1.5

350 450 550 650 750

A
b

so
rb

an
ce

 (
a.

u
.)

Wavelength (nm)

conditions. The same trend of faster and slower H2-evolution was seen during two further 

cycles of irradiation with high intensity light and then ambient light. Continuation of           

H2-evolution after removal of the high intensity light source is due to accumulation of MV+ 

in the sample which corresponded to the gradual appearance of a deep blue colour in 

reaction suspensions over the course of the experiment. Formation of MV+ was confirmed 

by recording the absorbance spectrum of samples at the end of experiments described             

in Fig. 4.9A. The resultant spectra from assays with eosin Y or Ru(bpy)3
2+ as the 

photosensitiser are presented in Fig. 4.10. Peaks corresponding to formation of MV+ can be 

seen at 396 nm (with both photosensitisers) and 606 nm (with eosin Y only) superimposed 

on a background of scatter caused by the presence of MR-1. The relative amounts of MV+ 

seen with each photosensitiser correlate with the extents of MV2+ photoreduction achieved 

in abiotic assays (see Fig. 4.6). The build-up of MV+ during experiments means that        

proton reduction can continue in the absence of high intensity irradiation because there is 

a pool of electrons available for continued transfer to MR-1 hydrogenases.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 - Accumulation of MV
+
 in reactions suspensions during light-driven H2 production by       

MR-1. Absorbance spectra recorded at the end of experiments described in Fig. 4.9A with eosin Y 

(black) or Ru(bpy)3
2+

 (red) as photosensitiser. Reaction suspensions diluted 4-fold in anaerobic           

50 mM HEPES, 50 mM NaCl, pH 7 for clearer spectra (pathlength 1 cm). 

 

Overall, the work presented in this section shows that light-driven H2-evolution can be 

achieved by carrying out the photoreduction of MV2+ to MV+ in the presence of 

anaerobically grown MR-1. To further understand the determinants of H2 production,    
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eosin Y and Ru(bpy)3
2+ were used as representative photosensitisers in experiments which 

varied the cell density, buffer pH, light intensity and MV concentration. 

 

4.4.2 Effect of Shewanella oneidensis MR-1 cell density 

 

The first set of experiments assessed how changing MR-1 cell density and systematically 

omitting MR-1, functional hydrogenases, TEOA, the photosensitiser or irradiation affected 

light-driven H2 production. MR-1 was cultured and processed as described in section 4.4.1 

and a H2-sensing electrode was used to quantify H2 production. Results from the 

experiments are shown in Fig. 4.11. 

 

 

 

 

 

 

 

 

Figure 4.11 - Impact of MR-1 cell density and omission of MR-1, functional hydrogenases, TEOA, the 

photosensitiser or irradiation on light-driven H2 production. Dissolved H2 in samples that 

experienced ambient light throughout and high intensity irradiation (0.7 kW m
-2

) between 0-10,      

15-25 and 30-40 min (white panels). A] 0.11 mM eosin Y, 60 mM TEOA and 0.3 mM MV with MR-1 at 

OD590nm 0.25 (solid black line), MR-1 at OD590nm 2.5 (solid red line), no bacteria (dashed black line) 

or HydA
-
/HyaB

-
 at OD590nm 0.25 (dashed red line). B] As for A] but with 0.11 mM Ru(bpy)3

2+
 in place 

of eosin Y as photosensitiser. C] As for solid black line in A] but with omission of TEOA (black),       

eosin Y (red) or irradiation at 0.7 kW m
-2

 (blue). D] As for solid black line in B] but with omission of 

TEOA (black), Ru(bpy)3
2+

 (red) or irradiation at 0.7 kW m
-2

 (blue). Anaerobic samples (1.7 mL) in          

50 mM HEPES, 50 mM NaCl, pH 7 at room temperature. Irradiation provided by the cold light source. 

 

For both photosensitisers, negligible amounts of H2 were produced in experiments 

performed with no bacteria or with the HydA-/HyaB- strain in place of MR-1. This confirms 
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that light-driven H2-evolution is a direct result of proton reduction by wild-type MR-1 

hydrogenases and that abiotic processes do not significantly contribute to the formation       

of H2. When experiments were performed with MR-1 at OD590nm ≈0.25, eosin Y and 

Ru(bpy)3
2+ gave similar relative performances to those shown in Fig. 4.9A. With MR-1 at 

OD590nm ≈2.5, very different trends were seen with the two photosensitisers. During 

experiments with eosin Y, there was no net accumulation of H2 due to complete depletion 

of the product under ambient light conditions. This is most likely caused by re-oxidation of 

H2 followed by distribution of electrons between intracellular electron acceptors. 

Comparable results were seen during H2-evolution assays with MR-1 at OD590nm ≈2.5 using 

the chemical reductant DT as the source of electrons (see section 3.3.1 and Fig. 3.4). 

However, this did not occur during experiments with Ru(bpy)3
2+ and approximately 50 % 

more H2 was produced by the end of the experiment with MR-1 at OD590nm ≈2.5 compared 

to OD590nm ≈0.25. The different trends with each photosensitiser for MR-1 at OD590nm ≈2.5 

could be due to there being considerably more dissolved H2 in experiments with               

eosin Y compared to those with Ru(bpy)3
2+. This may shift the equilibrium of the           

hydrogenase-catalysed reaction towards H2 oxidation. Lastly, in experiments omitting 

TEOA, the photosensitiser or irradiation, only negligible amounts of H2 were produced with 

both photosensitisers. The slight increases and decreases in dissolved H2 may be caused by 

heating and cooling of the sample under irradiation and/or minor levels of proton 

reduction by MR-1 hydrogenases. 

 

Overall, the results in this section confirm that MR-1, functional hydrogenases, TEOA, the 

photosensitiser and irradiation are all essential to achieve light-driven H2 production            

and that cell density can greatly affect accumulation of the product. The next set of 

experiments extended the evaluation of the determinants of light-driven H2-evolution with 

MR-1 by varying the buffer pH, light intensity and concentration of MV. 

 

4.4.3 Effect of pH, light intensity and methyl viologen concentration 

 

The effect of pH was evaluated using 50 mM HEPES, 50 mM NaCl at pH 6, 7 or 8 for 

washing and re-suspending MR-1 harvested after 24 hr anaerobic growth in M72 medium. 

The effect of light intensity was evaluated by irradiating samples with the cold light source 

at an intensity of 0.3, 0.5 or 0.7 kW m-2. The effect of mediator concentration was 

evaluated by including MV in MR-1 suspensions to an initial concentration of 0, 0.3 or       
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1.2 mM. Only one parameter was changed at a time and irradiation of samples within the 

H2-sensing electrode was provided continuously over 30 min to avoid significant changes to 

the rate of H2-evolution, as seen in Fig. 4.9A and 4.11. Samples (1.7 mL) were prepared as 

described in section 4.4.1 and all experiments contained MR-1 at OD590nm ≈0.25,                   

60 mM TEOA and 0.11 mM photosensitiser. Results from the experiments are presented in 

Fig. 4.12 and have been normalised to those collected with pH 7 buffer, 0.7 kW m-2 light 

intensity and 0.3 mM MV to assess relative differences related to the change of a single 

parameter. The 100 % values correspond to 242 ± 24 or 33 ± 5 nmol dissolved H2 in samples 

after 30 min irradiation with eosin Y or Ru(bpy)3
2+ as the photosensitiser, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 - Impact of pH, light intensity and MV concentration on light-driven H2 production by       

MR-1. Dissolved H2 after 30 min continuous irradiation of MR-1 suspensions (OD590nm ≈0.25) with          

0.11 mM eosin Y (grey) or Ru(bpy)3
2+

 (orange). Buffer was pH 7, light intensity was 0.7 kW m
-2

, and 

[MV] was 0.3 mM unless otherwise stated. Mean values from biological duplicates, error bars 

indicate maximum and minimum. Results normalised to those collected with pH 7 buffer, irradiation 

at 0.7 kW m
-2

 and a starting concentration of 0.3 mM MV for each photosensitiser. 100 % dissolved 

H2 was 242 ± 24 nmol with eosin Y (6 biological replicates) and 33 ± 5 nmol with Ru(bpy)3
2+

                  

(5 biological replicates). Anaerobic samples (1.7 mL) with 60 mM TEOA in 50 mM HEPES,                     

50 mM NaCl at room temperature. Irradiation provided by the cold light source. 

 

Normalising the results in Fig. 4.12 overcomes the problem of comparing absolute      

amounts of H2 produced by different MR-1 cultures due to day-to-day variations of 

biological samples. Representative sample variations are shown in Fig. 4.13 for light-driven                 
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H2-evolution by MR-1 (OD590nm ≈0.25) in the presence of 60 mM TEOA, 0.3 mM MV and 

0.11 mM photosensitiser. Dissolved H2 was quantified with the H2-sensing electrode and 

irradiation (0.7 kW m-2) was provided by the cold light source continuously for 30 min.     

Each line represents a sample prepared on a different day from a different anaerobic 

culture of MR-1. Despite the changes in the final quantities of dissolved H2 after 30 min,    

the relative effectiveness of eosin Y compared to Ru(bpy)3
2+ in supporting light-driven        

H2-evolution is consistent throughout all experiments.     

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 - Day-to-day variations in light-driven H2 production by MR-1. Representative data for 

dissolved H2 in MR-1 suspensions (OD590nm ≈0.25) with 60 mM TEOA, 0.3 mM MV and 0.11 mM     

eosin Y (black) or Ru(bpy)3
2+

 (red). Each line represents an experiment performed on a different      

day using a sample prepared from a different MR-1 culture. Anaerobic samples (1.7 mL) in                      

50 mM HEPES, 50 mM NaCl, pH 7 at room temperature. Irradiation (0.7 kW m
-2

) was provided by the 

cold light source continuously for 30 min. 

 

Changing the pH had little effect on light-driven H2 production by MR-1. With eosin Y, the 

amount of dissolved H2 after 30 min irradiation increased slightly with increasing buffer pH 

whereas with Ru(bpy)3
2+ the amount of dissolved H2 decreased slightly with increasing 

buffer pH. Hydrogenases typically exhibit more rapid proton reduction at lower pH226 but 

this was not observed to a significant extent here suggesting that the rate-defining      

events are not hydrogenase-dependent. Additionally, the spectral properties of the 

photosensitisers were found to be pH-independent, as shown by the absorbance profiles 

for eosin Y and Ru(bpy)3
2+ in 50 mM HEPES, 50 mM NaCl at pH 6, 7 or 8 presented in          

Fig. 4.14. Instead, it is likely that changing the pH slightly alters the (photo-)reduction 

potentials of TEOA and/or the photosensitisers (see Fig. 4.4) and hence the feasibility of      
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light-driven electron transfer. With both photosensitisers, a lower light intensity led to less 

dissolved H2 present in reaction suspensions after 30 min. This is likely due to fewer 

photons striking the sample leading to fewer photo-excited electrons being generated and 

transferred to MV for proton reduction. Of the three parameters assessed in the 

experiments described above, MV concentration had the greatest influence on total H2 

production. With both photosensitisers, negligible quantities of H2 were produced with            

0 mM MV confirming the key role of this reagent in light-driven electron transfer to MR-1 

hydrogenases. Increasing the initial concentration of MV from 0.3 to 1.2 mM led to a 

decrease in H2 production by approximately 71 and 13 % for experiments with eosin Y and 

Ru(bpy)3
2+, respectively. A decrease in light-driven H2 production caused by an increase in 

MV concentration was also reported in Gurunathan et al. (1997)197 for a system comprised 

of sensitised-SnO2 loaded with platinum in the presence of EDTA as SED. This observation 

was attributed to increased formation of the MV+ dimer which has a more positive 

reduction potential than the MV+ monomer, making proton reduction less 

thermodynamically favourable. Alternatively, increasing the concentration of MV may 

increase the likelihood of non-productive electron transfer pathways such as re-oxidation 

of MV+ to MV2+ through electron donation to the highly oxidising PS+ species (see Fig. 4.2 

and Table 4.1) generated during oxidative quenching of the photosensitiser excited state. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 - Absorbance spectra of 10 µM eosin Y (black) and Ru(bpy)3
2+

 (red) in 50 mM HEPES,           

50 mM NaCl at pH 6 (solid line), 7 (dashed line) or 8 (dotted line). Pathlength 1 cm. The majority of 

spectra cannot be seen due to overlap. 

 

Overall, the findings in this section show that light-driven H2-evolution by MR-1 is 

predominantly influenced by the photosensitiser and MV. This suggests that the system is 
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highly dependent on photo-production of MV+ and subsequent electron transfer to 

bacterial enzymes. In the next section, the implications of these processes on the viability 

of MR-1 were evaluated after incubating the bacterium with reagents required for          

light-driven H2-evolution. It is of interest to assess the viability of MR-1 to determine 

whether the system could be self-regenerating over extended periods of time with the 

opportunity for the bacterium to repair and/or replace enzymes as required. 

 

4.4.4 Viability of Shewanella oneidensis MR-1 after incubation with 

reagents required for light-driven H2-evolution 

 

Bacterial viability was assessed by measuring CFU mL-1 (see section 2.3.5) after incubating       

MR-1 (previously cultured under acceptor-limited conditions for 24 hr) in buffer only                   

(1.7 mL anaerobic 50 mM HEPES, 50 mM NaCl, pH 7 with MR-1 at OD590nm ≈0.25) or buffer 

supplemented with 60 mM TEOA, 0.3 mM MV and either 0.11 mM eosin Y or Ru(bpy)3
2+. 

Incubations were performed for 30 min in the dark or with irradiation (0.7 kW m-2) by the 

cold light source. Results from the experiments are shown in Fig. 4.15A. Equivalent 

experiments were performed with reagents required for DT-driven H2-evolution where    

MR-1 was incubated with 26.4 µg mL-1 DT and/or 0.3 mM MV for 30 min in the dark. 

Results from the assays are shown in Fig. 4.15B.  

 

When MR-1 was incubated in buffer only (with no added reagents) the samples contained       

≈108 CFU mL-1 after 30 min regardless of whether they were kept in the dark or irradiated 

by the cold light source. This shows that MR-1 remains viable after harvesting from M72 

medium and processing for enzyme assays and that irradiation has little impact on bacterial 

survival in buffer only. When MR-1 was incubated with TEOA, MV and eosin Y, the samples 

contained ≈8 x 104 or 0 CFU mL-1 after 30 min in the dark or under irradiation, respectively. 

When MR-1 was incubated with TEOA, MV and Ru(bpy)3
2+, the samples contained                 

≈3 x 104 or ≈77 CFU mL-1 after 30 min in the dark or under irradiation, respectively.           

The results show that the light-harvesting reagents have an intrinsic toxicity in the dark 

which is amplified under irradiation, particularly with eosin Y as photosensitiser. Based on 

the results shown in Fig. 4.15B for incubation with reagents required for DT-driven             

H2-evolution, it is likely that the loss of viability in the presence of TEOA, MV and a 

photosensitiser is primarily caused by the toxicity of MV and the generation of MV+ under 

reducing conditions. However, additional factors may also be responsible for the further 
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decrease in viability under irradiation. For example, decomposition of TEOA after electron 

donation proceeds via carbon-centred radicals to eventually form a secondary amine        

and glycoaldehyde,49 as shown in Fig. 4.16. Furthermore, it has been reported that             

(photo-)degradation of eosin Y can result in the formation of aromatic compounds such as 

diphenylmethane, 2,6-dibromophenol and benzoic acid227 whilst photo-damage of 

Ru(bpy)3
2+ can cause aquation of the ruthenium centre and release of the 2,2’-bipyridine 

ligands.228 Taken together, it is possible that under irradiation there is an accumulation of 

numerous chemical species in the sample which are potentially harmful to MR-1. 

 

 

 

 

 

 

 

 

 

Figure 4.15 - Viability of MR-1 after incubation with reagents required for light-driven and DT-driven 

H2-evolution. A] CFU mL
-1

 after 30 min incubation in buffer only or buffer containing 60 mM TEOA, 

0.3 mM MV and either 0.11 mM eosin Y (EY) or Ru(bpy)3
2+

. B] CFU mL
-1

 after 30 min incubation          

in buffer containing 26.4 µg mL
-1

 DT and/or 0.3 mM MV. Samples were kept in the dark or irradiated           

(0.7 kW m
-2

) with the cold light source as indicated. Mean values from biological duplicates, error 

bars indicate maximum and minimum. Anaerobic samples (1.7 mL) with MR-1 at OD590nm ≈0.25 in      

50 mM HEPES, 50 mM NaCl, pH 7 at room temperature.  

 

Overall, the findings in this section indicate that light-driven H2-evolution has a detrimental 

impact on the viability of MR-1. The system can clearly be used to generate H2 under 

irradiation by visible light (see sections 4.4.1, 4.4.2 and 4.4.3) but proton reduction after      

30 min irradiation is predominantly performed by hydrogenases associated with non-viable 

bacteria. Despite these observations, it was of interest to evaluate the longevity of          

light-driven H2-evolution by MR-1 to see whether the hydrogenases remain active in the 

sample following the decrease in bacterial viability. 
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Figure 4.16 - TEOA decomposition pathway after electron donation.
49

 

 

4.5 Sustained light-driven H2-evolution by Shewanella 

oneidensis MR-1 from photo-produced MV+ 

 

Irradiation of samples over extended periods of time was achieved using light supplied by a 

photosynthetic growth lamp within a shaker-incubator (see section 2.2). The module 

allowed uniform irradiation of multiple samples, complete temperature control and high 

experimental throughput compared to assays performed within the chamber of the            

H2-sensing electrode. To prepare samples, MR-1 was cultured under acceptor-limited 

conditions for 24 hr then washed and re-suspended in anaerobic 50 mM HEPES,                   

50 mM NaCl, pH 7. Bacterial suspensions (1.7 mL, OD590nm ≈0.25) were transferred to clear 

glass vials and then supplemented with 60 mM TEOA, 0.3 mM MV and 0.11 mM of either 

eosin Y or Ru(bpy)3
2+. The glass vials provided a 3.3 mL gaseous headspace above samples 
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to allow photo-produced H2 to escape the solution and avoid re-oxidation by the 

bacterium, as seen in Fig. 3.4 and Fig. 4.11A. Glass vials were tightly sealed within the        

N2-filled chamber then suspensions were irradiated at an intensity of 0.02 kW m-2 for 96 hr 

at 25 °C with periodic quantification of headspace H2 using GC (see section 2.4.1). Parallel 

assays were performed in the absence of MR-1. Results from the experiments are shown in 

Fig. 4.17. With no bacteria, trace amounts of H2 (≤ 96 nmol) were detected with both 

photosensitisers showing that eosin Y and Ru(bpy)3
2+ can directly reduce aqueous protons 

in the buffer. However, the quantities of H2 produced in abiotic experiments remained 

below the levels detected when MR-1 was included in the sample. In the presence of MR-1, 

significantly more H2 was generated with eosin Y compared to Ru(bpy)3
2+ which correlates 

with the relative performances of the photosensitisers observed when irradiation was 

provided by the cold light source (see Fig. 4.9A and 4.11). With eosin Y, the amount of 

headspace H2 decreased after 18 hr whereas with Ru(bpy)3
2+ the amount of H2 continued    

to increased such that the final quantities after 96 hr were nearly identical with                    

both photosensitisers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 - Light-driven H2 production by MR-1 over 96 hr. Headspace H2 with 0.11 mM eosin Y 

(black) or Ru(bpy)3
2+

 (red) for irradiated (0.02 kW m
-2

)
 
samples containing MR-1 (solid lines) or no 

bacteria (dashed lines). With MR-1, mean values from 2 (0-18 hr), 7 (24-48 hr) or 5 biological 

replicates (72-96 hr), error bars indicate standard error. With no bacteria, mean values from 

technical duplicates (0-96 hr), error bars indicate maximum and minimum. Anaerobic samples        

(1.7 mL) with MR-1 at OD590nm ≈0.25, 0.3 mM MV and 60 mM TEOA in 50 mM HEPES, 50 mM NaCl, 

pH 7 at 25 
o
C. Samples had 3.3 mL headspace (100% N2 at inoculation). Lines serve as a guide             

to the eye, the majority of error bars are too small to resolve. Irradiation provided by the        

photosynthetic growth lamp. 
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To further quantify light-driven production of headspace H2 by MR-1, quantum yields were 

determined based on the calculations described in section 4.3. For the analysis, reaction 

suspensions (1.7 mL) containing MR-1 (OD590nm ≈0.25), 60 mM TEOA, 0.3 mM MV and      

0.11 mM photosensitiser in anaerobic 50 mM HEPES, 50 mM NaCl, pH 7 were prepared 

within clear glass vials as described above. Samples were then irradiated for 1 hr with light 

from the cold light source (0.01 kW m-2, 2.3 x 10-4 m2 irradiation area) passing through a 

bandpass filter at 450 or 500 nm for experiments with Ru(bpy)3
2+ or eosin Y, respectively. 

At the end of the irradiation period, the total number of electrons used in productive 

electron transfer (i.e. for the generation of H2) was calculated using Eq. 4.8, where mol H2 is 

the amount of headspace H2 after 1 hr in mol (determined using GC), NA is Avogadro’s 

constant and multiplication by a factor of two accounts for the fact that two electrons are 

required to generate one molecule of H2. 

 

                                                  mol H2 x NA x 2    =    total electrons                                      Eq. 4.8 

 

Based on the Beer-Lambert law (see Eq. 2.1) and the extinction coefficients of the 

photosensitisers (see Table 4.2), 0.11 mM eosin Y or Ru(bpy)3
2+ would give an absorbance 

of 8.84 or 1.58, respectively, at λmax. This corresponds to the absorption of > 99.99 or      

97.37 % of incident light by eosin Y or Ru(bpy)3
2+, respectively. Accordingly, it can be 

assumed that samples containing eosin Y absorb all incident photons and the external 

quantum yield equals the internal quantum yield whereas samples containing Ru(bpy)3
2+ 

only absorb 97.37 % of incident photons such that the external and internal quantum yields 

are different. Using Eq. 4.4, 4.5, 4.6 and 4.8 with the experimental parameters described 

above, the quantum yields for light-driven H2-evolution were 0.56 ± 0.01 % for eosin Y and 

0.46 ± 0.08 (external) and 0.47 ± 0.09 (internal) % for Ru(bpy)3
2+ (all mean values from four 

biological replicates with standard error).  

 

To further investigate the lack of sustained H2 production with eosin Y after 18 hr, 

spectrophotometric H2 oxidation assays (see section 2.5.1) were performed on 

supernatants and re-suspended cell pellets harvested after centrifugation of MR-1 

suspensions which had been irradiated for 0, 24, 48, 72 or 96 hr as described in Fig. 4.17. 

Results from the analysis are presented in Fig. 4.18 for samples previously containing    

eosin Y or Ru(bpy)3
2+ as the photosensitiser. The results show that H2 oxidation activity is 

predominantly associated with re-suspended cell pellets over 96 hr and that if bacteria lyse 
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during the experiment then they do not release significant quantities of active 

hydrogenases into solution. The considerable decrease in activity associated with cell 

pellets between 0 and 24 hr may be due to toxicity of the light-harvesting reagents           

(see section 4.4.4) causing a loss of bacterial viability (with the potential for subsequent cell 

lysis) and/or inhibition of the hydrogenases by O2.
60 In the latter case, gradual exposure to 

O2 is a result of irradiating samples with the photosynthetic growth lamp outside the          

N2-filled chamber where headspace gases can slowly exchange with the surrounding air. 

This is illustrated in Fig. 4.19 by the increase in GC peak area corresponding to headspace 

O2 (see Fig. 2.5) recorded during light-driven H2-evolution experiments over 96 hr (as 

described in Fig. 4.17). To summarise, the results show that MR-1 hydrogenases remain 

active and associated with the pelletable cellular material over 96 hr. As a consequence,       

it is most likely that sustained H2-evolution with eosin Y is not possible due to                   

photo-degradation of the photosensitiser (see Fig. 4.5) and, with no driving force for 

proton reduction, the amount of headspace H2 decreases due to re-oxidation by the 

bacterium and/or slow leakage from the reaction vessel.  

 

 

 

 

Figure 4.18 - Initial rates of H2 oxidation coupled to BV reduction by MR-1 hydrogenases over 96 hr. 

Initial rates of H2 oxidation associated with cell pellets (solid bars) and supernatants (striped bars) 

recovered after centrifugation of MR-1 suspensions irradiated for 0, 24, 48, 72 or 96 hr with eosin Y 

(grey) or Ru(bpy)3
2+

 (orange) as described in Fig. 4.17. Mean values for biological duplicates, error 

bars indicate maximum and minimum. Anaerobic samples in 50 mM HEPES, 50 mM NaCl, pH 7.  
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Figure 4.19 - Increase in headspace O2 within glass vials over 96 hr. Representative data showing the 

increase in O2 peak area for MR-1 suspensions irradiated by the photosynthetic growth lamp with 

eosin Y (black) or Ru(bpy)3
2+

 (red) as described in Fig. 4.17. O2 peak area for atmospheric O2 is 

indicated, lines serve as a guide to the eye.  

 

To assess whether light-driven H2-evolution with eosin Y could be restored after                

photo-degradation of the photosensitiser, MR-1 cell pellets were harvested and then          

re-suspended in a fresh solution of TEOA, MV and eosin Y after 24 hr irradiation. For the 

experiments, MR-1 was first cultured under acceptor-limited conditions for 24 hr then 

harvested and re-suspended in 50 mM HEPES, 50 mM NaCl, pH 7 (1.7 mL, MR-1           

OD590nm ≈0.25) supplemented with 60 mM TEOA, 0.3 mM MV and 0.11 mM eosin Y. 

Reaction suspensions were irradiated (0.02 kW m-2) for 24 hr with the photosynthetic 

growth lamp as described in Fig. 4.17 and then headspace H2 was quantified by GC before 

samples were taken into a N2-filled chamber. Cell pellets were harvested by centrifugation 

and then re-suspended in a fresh solution of TEOA, MV and eosin Y with an identical 

composition to the one described above. The new reaction suspensions were irradiated for 

a further 24 hr and headspace H2 was quantified at the end of the experiment. The process 

of harvesting cell pellets, re-suspending in a fresh solution of TEOA, MV and eosin Y, and 

then irradiating for 24 hr was carried out a further two times using the same cellular 

material. Results from the analysis are presented in Fig. 4.20 with data from parallel 

experiments performed with the HydA-/HyaB- strain in place of MR-1. With the              

HydA-/HyaB- strain, only trace amounts of headspace H2 (≤ 99 nmol) were detected 

throughout all experiments corresponding to the lack of functional hydrogenases in the 

bacterium. In this case, the generation of H2 is likely due to abiotic proton reduction as 

seen in Fig. 4.17. With MR-1, 1575 ± 87 nmol H2 was produced after the first period of 24 hr 

irradiation. After the second, third and fourth periods of 24 hr irradiation, H2-evolution was 
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a fresh solution of TEOA, MV and eosin Y then irradiated for 24 hr

restored to 20, 14 and 12 %, respectively, of that seen during the first period of irradiation. 

It is likely that full restoration of the original activity is not possible due to loss of cellular 

material during repeated processing of biological samples or inhibition of the hydrogenases 

as a result of decreased cell viability and exposure to O2 (see above).  

 

 

 

 

 

 

 

 

Figure 4.20 - Restoration of light-driven H2-evolution by MR-1 through replacement of                    

light-harvesting reagents after 24 hr irradiation. Headspace H2 for MR-1 (white) or HydA
-
/HyaB

-
 

(grey) suspensions (OD590nm ≈0.25) containing 60 mM TEOA, 0.3 mM MV and 0.11 mM eosin Y with 

24 hr irradiation (0.02 kW m
-2

) by the photosynthetic growth lamp. Numerical label corresponds to 

the number of times that bacterial cell pellets were harvested and re-suspended in a fresh solution 

of light-harvesting reagents, see text for details. Mean values for technical triplicates, error bars 

indicate standard error. Anaerobic samples (1.7 mL) in 50 mM HEPES, 50 mM NaCl, pH 7. 

 

The results presented in this section show that there is potential for sustained light-driven 

H2-evolution with MR-1 due to the robustness of the hydrogenases which remain           

active over 96 hr despite decreases in bacterial viability (see section 4.4.4). However,         

the longevity of the system is compromised by the susceptibility of eosin Y to                        

photo-degradation under extended periods of irradiation, although it is possible to partially 

restore light-driven H2-evolution by replenishing the light-harvesting reagents. Under the 

same experimental conditions, photo-degradation of Ru(bpy)3
2+ did not occur to such an 

extent that the system stopped functioning but the rate of light-driven H2-evolution was 

significantly lower than that seen with eosin Y. Overall, the results suggest that the system 

is predominantly influenced by the photosensitiser and photoreduction of MV2+ as opposed 

to the hydrogenases, similar to the findings in section 4.4.3. In the next section, results are 

shown from experiments that aimed to further understand the pathways by which 

electrons are transferred from MV+ to MR-1 hydrogenases for light-driven H2-evolution. 
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4.6 Investigation of the possible role of outer membrane 

porin:cytochrome complexes in light-driven H2-evolution by 

Shewanella oneidensis MR-1 from photo-produced MV+ 

 

In sections 4.4 and 4.5, light-driven H2-evolution was achieved by performing 

photoreduction of MV2+ in the presence of anaerobically grown MR-1. The approach is 

underpinned by the presence of MV to effectively transfer photo-energised electrons to 

hydrogenases which are predominantly associated with pelletable cellular material. 

However, there are two main routes by which MV could transfer electrons into the 

periplasm (assuming the pelletable cellular material is largely comprised of intact cells). It is 

possible that MV crosses the outer membrane and interacts with MR-1 redox partners 

directly but it has also been reported that electrons can enter MR-1 via porin:cytochrome 

complexes spanning the outer membrane (see section 1.6.2).130,131 As a consequence, it 

was of interest to determine whether these protein complexes are involved in light-driven 

electron transfer across the outer membrane for the reduction of protons to H2. For the 

experiments, a mutant strain of MR-1 was used where the genes encoding the entire mtr 

cluster have been deleted (referred to as Mtr-, see section 2.3.2).140 To allow a direct 

comparison with the wild-type bacterium, the Mtr- strain was cultured under anaerobic, 

acceptor-limited conditions then assessed for its hydrogenase activity using GC and 

spectrophotometric H2 oxidation assays. Changes in OD590nm and headspace H2 during 

anaerobic growth with an excess of lactate to fumarate are shown in Fig. 4.21 with the 

equivalent data for MR-1 and HydA-/HyaB-. The growth curve for Mtr- is similar to the 

profile seen with the HydA-/HyaB- strain but the Mtr- strain displayed a decrease in OD590nm 

between 12 and 20 hr corresponding to a decrease in the size and/or amount of bacteria. 

Headspace H2 was detected 6 hr after inoculation confirming that the Mtr- strain can 

produce hydrogenases active in proton reduction (coupled to lactate oxidation). However, 

Mtr- produced approximately 2.5-fold and 3-fold more H2 than MR-1 after 24 and 48 hr 

anaerobic growth, respectively. This may be due to increased hydrogenase content or 

increased electron delivery to the hydrogenases as a result of there being fewer 

cytochromes (i.e. MtrCAB, MtrDEF and OmcA) within the bacterium to accept electrons. 

 

Spectrophotometric H2 oxidation assays were performed using Mtr- which had been 

harvested after 24 hr anaerobic growth then washed and re-suspended in anaerobic           
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50 mM HEPES, 50 mM NaCl, pH 7. Initial rates of H2 oxidation were normalised to total 

protein content of samples using a BCA assay (see section 2.3.4) to better compare the 

responses of different strains. The results are presented in Table 4.4 with the equivalent       

data for MR-1, HydA-/HyaB- and no bacteria. The mean H2 oxidation rates for Mtr- are 

approximately 2-fold greater than those seen with MR-1 under identical conditions 

suggesting increased hydrogenase content in Mtr- compared to the wild-type bacterium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 - Anaerobic growth of MR-1, HydA
-
/HyaB

-
 and Mtr

-
 with 37.5 mM lactate as electron 

donor and 18.8 mM fumarate as electron acceptor. Optical density at 590 nm (black, left axis) and 

headspace H2 (red, right axis) for MR-1 (squares), HydA
-
/HyaB

-
 (triangles) and Mtr

-
 (circles). 

Inoculation at 0 hr of M72 medium (10 mL) supplemented with anaerobic growth additions. Samples 

had 7 mL headspace (100 % N2 at inoculation). Optical densities are mean values from 4 biological 

replicates, error bars indicate standard error. Headspace H2 data are mean values from biological 

duplicates, error bars indicate maximum and minimum. Lines serve as a guide to the eye, the 

majority of error bars are too small to resolve. 

 

Table 4.4 - Initial rates of H2 oxidation coupled to BV reduction by MR-1, HydA
-
/HyaB

-
, Mtr

-
 and        

no bacteria. Rates with MR-1, HydA
-
/HyaB

-
 and Mtr

-
 are mean values from technical duplicates of        

4 biological replicates with standard error (normalised to total protein). Rate with no bacteria is the 

mean value from technical duplicates, error indicates maximum and minimum. Anaerobic samples in 

1 mM BV, 50 mM HEPES, 50 mM NaCl, pH 7. 

Strain H2 oxidation rate 

MR-1 138 ± 34 nmol min-1 mg-1 

HydA-/HyaB- 2 ± 2 nmol min-1 mg-1 

Mtr- 262 ± 47 nmol min-1 mg-1 

No bacteria 0.06 ± 0.02 nmol min-1 
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In addition to experiments confirming the production of active hydrogenases, protein gels 

and Western blotting (see section 2.3.6) were used to determine whether bacteria cultured 

under acceptor-limited conditions had produced the MtrCAB complex (see Fig. 1.16).         

For the analysis, MR-1, HydA-/HyaB- and Mtr- were harvested after 24 hr anaerobic growth, 

re-suspended in loading buffer (32 µL) and heated at 90 °C to lyse cells. Samples were then 

loaded on a 10 % SDS-PAGE gel and proteins in the cell lysates were resolved using gel 

electrophoresis. On separate gels, a Coomassie staining protocol was used to visualise all 

proteins within the sample and a heme-staining protocol was used to specifically visualise 

heme-containing proteins within the sample. Results from the visualisation protocols are 

presented in Fig. 4.22 (top). The Coomassie stain did not establish whether MtrCAB has 

been produced because proteins are stained indiscriminately but the analysis confirmed 

that sample loading was equivalent for all three strains. The heme stain showed two clear 

bands for MR-1 (lane 2) and HydA-/HyaB- (lane 3) which matched those seen for purified 

MtrCAB (lane 1). These bands most likely correspond to the presence of MtrA and MtrC in 

the samples. The Mtr- strain did not stain under these conditions, presumably because the 

sample did not contain a sufficient amount of heme-containing protein. To specifically 

visualise MtrB and MtrC via Western blotting, cell lysates were prepared as described 

above then proteins in the sample were resolved by gel electrophoresis and transferred to 

a PVDF membrane for immunoblotting. Results from the visualisation of MtrB and MtrC are 

shown in Fig. 4.22 (bottom). On both membranes, protein bands were seen around 75 kDa 

showing that anaerobic growth of MR-1 (lane 2) and HydA-/HyaB- (lane 3) with an excess of 

lactate to fumarate leads to production of MtrB and MtrC. The bands match those seen for 

samples of the purified MtrCAB complex (lane 5). As expected, no protein bands were seen 

for Mtr- (lane 4) confirming that the strain cannot produce MtrB or MtrC. It should be 

noted that the bands around 250 kDa, particularly visible in lanes 2 and 3 on the anti-MtrB 

membrane, are likely due to the fully associated MtrCAB complex which was not denatured 

during sample preparation.      
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Figure 4.22 - MtrCAB content of MR-1, HydA
-
/HyaB

-
 and Mtr

-
 after 24 hr anaerobic growth with       

37.5 mM lactate as electron donor and 18.8 mM fumarate as electron acceptor. Top left: protein 

visualisation by Coomassie staining. Lanes: 1] molecular weight markers, 2] MR-1, 3] HydA
-
/HyaB

-
,     

4] Mtr
-
 and 5] purified MtrCAB. Top right: protein visualisation by heme staining. Lanes: 1] purified 

MtrCAB, 2] MR-1, 3] HydA
-
/HyaB

-
 and 4] Mtr

-
. Bottom: protein visualisation by Western blotting to 

anti-MtrB (residues 23-42) and anti-MtrC (residues 399-410) as indicated. Lanes: 1] molecular weight 

markers, 2] MR-1, 3] HydA
-
/HyaB

-
, 4] Mtr

-
 and 5] purified MtrCAB. Arrows indicate bands of interest. 

Theoretical masses of MtrA, MtrB and MtrC are 35, 85 and 75 kDa, respectively.
85

 

 

Taken together, the results presented above show that the Mtr- strain can produce 

hydrogenases and not MtrCAB, the HydA-/HyaB- strain can produce MtrCAB and                

not hydrogenases whilst MR-1 can produce both hydrogenases and MtrCAB, when cultured 

under acceptor-limited growth conditions. The findings confirm that the three strains can 

be assessed in parallel to determine the role of porin:cytochrome complexes in light-driven     

H2-evolution. The assessment was performed by culturing MR-1, HydA-/HyaB- and Mtr- 

anaerobically for 24 hr then harvesting and re-suspending bacteria in 50 mM HEPES,            

50 mM NaCl, pH 7. Samples (1.7 mL) were supplemented with 60 mM TEOA, 0.3 mM MV 

and 0.11 mM of either eosin Y or Ru(bpy)3
2+, transferred to the chamber of the H2-sensing 
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electrode and then irradiated (0.7 kW m-2) with the cold light source continuously for          

30 min. The amounts of dissolved H2 (normalised to total protein content) present in 

reaction suspensions at the end of the experiments are shown in Table 4.5. Similar trends 

were seen with both photosensitisers. Only negligible quantities of H2 were produced with 

the HydA-/HyaB- strain and approximately 3-fold or 3.5-fold more H2 was produced with 

Mtr- compared to MR-1 in experiments containing eosin Y or Ru(bpy)3
2+ as the 

photosensitiser, respectively. The differences between Mtr- and MR-1 likely reflect the 

increased hydrogenase content of Mtr- compared to MR-1 as shown by GC analysis            

(see Fig. 4.21) and spectrophotometric H2 oxidation assays (see Table 4.4). The findings 

reveal that porin:cytochrome complexes are not required for light-driven H2-evolution, 

although it is possible that MtrCAB can contribute to electron transfer into the periplasm 

when present. Instead, the system is underpinned by the well-reported ability of MV to 

deliver electrons to bacterial enzymes.82,170 In particular, the results show the versatility of 

the approach to light-driven chemical synthesis as it may be possible to use MV to deliver 

photo-excited electrons to enzymes in bacteria lacking porin:cytochrome complexes. 

 

Table 4.5 - Light-driven H2-evolution by MR-1, HydA
-
/HyaB

-
 and Mtr

-
. Dissolved H2 produced after    

30 min continuous irradiation (0.7 kW m
-2

) of the indicated strain with 0.11 mM eosin Y or 

Ru(bpy)3
2+

. Mean values from 3 biological replicates with standard error (normalised to total 

protein). Anaerobic samples (1.7 mL) with 60 mM TEOA and 0.3 mM MV in 50 mM HEPES,                  

50 mM NaCl, pH 7 at room temperature. Irradiation provided by the cold light source. 

Strain 
Dissolved H2 (nmol mg-1) 

Eosin Y Ru(bpy)3
2+ 

MR-1 584 ± 137 75 ± 18 

HydA-/HyaB- 9 ± 9 10 ± 10 

Mtr- 1689 ± 182 271 ± 19 

 

4.7 Discussion 

 

The work presented in this chapter showed the development and assessment of a        

system for light-driven H2-evolution with MR-1. The results build upon those presented in       

chapter 3 where anaerobically grown MR-1 was exploited for reductive catalysis by 

combining the bacterium with DT and MV. Here, the requirement for DT as a chemical 

reductant was avoided by generating MV+ with a SED and a photosensitiser under 
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irradiation by visible light. Photo-production of MV+ was achieved with five                    

water-compatible photosensitisers in the presence of TEOA as the optimal SED (see Fig. 4.6 

and 4.7). Interestingly, the extent of light-driven MV+ generation was not a simple 

reflection of the spectral properties of the photosensitisers. For example, eosin Y and 

proflavine gave similar performances despite the cold light source emitting more light 

around the λmax of the former compared to the latter (see Fig. 2.1 and 4.3). Additionally, 

fluorescein was significantly less effective than eosin Y and proflavine despite all             

three photosensitisers having similar εmax (see Table 4.2). Therefore, it is likely that                    

light-driven electron transfer is also influenced by the (photo-)reduction potentials of the 

photosensitisers which affect the feasibility of reductive and oxidative quenching of the 

photo-excited state (see Fig. 4.2). A full mechanistic study was beyond the scope of          

this thesis but the relevant (photo-)reduction potentials of eosin Y, fluorescein,              

proflavine, Ru(bpy)3
2+ and RuP have been reported previously for comparable systems                         

(see Table 4.1).184,185,187,188,190–192 The presence of excess TEOA clearly increased the extent 

of MV2+ photoreduction with eosin Y, fluorescein and proflavine. This may be due to the 

fact that reduction of PS+ (formed during oxidative quenching of the excited state, see       

Fig. 4.1) to regenerate PS0 is facilitated by TEOA oxidation rather than MV+ re-oxidation                  

(i.e. non-productive electron transfer) or that reductive quenching is also possible with 

these photosensitisers. For the Ru(II)-dyes, assignment of a particular pathway is difficult 

because the rate of MV2+ photoreduction is slow in the presence and absence of TEOA, 

although both quenching mechanisms would generate reductants with Em ≤ -0.84 V for the 

PS+/* and PS0/- couples. Again, the effectiveness of each photosensitiser did not simply 

correlate with the predicted driving force meaning that additional factors such as the rate 

of electron exchange with TEOA (determined by the PS+/0 and PS*/- couples) and/or the 

prevalence of futile side reactions are likely to be responsible for the relative extents of 

MV2+ photoreduction. Furthermore, the values quoted in Table 4.1 and 4.3 may not reflect 

those for the system described here due to differences in the experimental conditions 

under which they were measured. Slight changes to the (photo-)reduction potentials of the 

photosensitisers and SEDs could significantly affect the likelihood of particular quenching 

mechanisms being in operation and may account for the fact that particular SEDs are more 

effective than others under the conditions described in this chapter (see Fig. 4.7). 

 

After carrying out photoreduction of MV2+ in the presence of MR-1 which had been 

cultured under acceptor-limited conditions, H2 production was quantified using a               
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H2-sensing electrode and GC (see Fig. 4.9A and 4.17). The system is underpinned by           

the simultaneous presence of irradiation, TEOA, a photosensitiser, MV and MR-1 

hydrogenases, and removal of any component significantly compromises the generation      

of H2 (see Fig. 4.11 and Fig. 4.12). Additionally, it was confirmed that proton reduction is 

predominantly catalysed by hydrogenases associated with pelletable cellular material in 

the sample (see Fig. 4.18) and that electron transfer to these enzymes is not reliant on the 

presence of porin:cytochrome complexes (see section 4.6). Taken together, the results 

allow construction of a general schematic for light-driven H2-evolution with MR-1, as shown 

in Fig. 4.23. Photoreduction of MV2+ may take place extracellularly and/or in the periplasm 

with the possibility of electron transfer proceeding via CymA for redox cycling of MK and 

MKH2. The scheme also highlights decomposition of TEOA+ (see Fig. 4.16) as well as             

re-oxidation of H2 which can occur at high cell densities in the absence of high intensity 

irradiation (see Fig. 4.11).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.23 - General schematic for light-driven H2-evolution with MR-1. Photon (hν) absorption by a 

photosensitiser in the presence of TEOA leads to the reduction of MV
2+

 to MV
+
 which can 

subsequently transfer electrons to MR-1 hydrogenases for proton reduction. IM = inner            

membrane, OM = outer membrane, H2ase = hydrogenase, MK = menaquinone, MKH2 = menaquinol,                    

MV = methyl viologen, TEOA = triethanolamine. 
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For the majority of work in this chapter, reaction suspensions for light-driven H2-evolution 

contained 187 nmol photosensitiser meaning that a single turnover (i.e. photo-excitation 

followed by reductive or oxidative quenching to regenerate PS0) of the entire system would 

generate 187 nmol photo-excited electrons and 93.5 nmol H2 (if all photo-excited electrons 

were delivered to the hydrogenases for proton reduction). As such, turnover numbers 

(TONs) with respect to the amount of photosensitiser can be estimated for experiments by 

dividing the amount of H2 produced after a period of continuous irradiation by 93.5.       

Over 30 min irradiation with the cold light source (see Fig. 4.11, 100 % values), the TONs 

were approximately 2.6 and 0.4 with eosin Y and Ru(bpy)3
2+, respectively, showing that the 

system is not catalytic with respect to Ru(bpy)3
2+ under these conditions. For irradiation 

with the photosynthetic growth lamp (see Fig. 4.17), the TONs were approximately 11.7 

with eosin Y (after 18 hr) and 4.7 with Ru(bpy)3
2+ (after 96 hr), showing that both systems 

are catalytic. Importantly, it should be noted that the TONs above are lower limits with 

respect to the generation of photo-excited electrons by the photosensitisers because there 

is an accumulation of MV+ under irradiation (see Fig. 4.10) and it is likely that electrons are 

transferred to alternative bacterial electron acceptors. This is corroborated by the fact     

that quantum yields for MV2+ photoreduction were 4-fold and 2-fold higher than             

those for light-driven H2-evolution with eosin Y and Ru(bpy)3
2+, respectively (see sections 

4.3 and 4.5), suggesting that electron transfer from the photosensitiser to MV2+ is more 

efficient than electron transfer from MV+ to the hydrogenases. However, it must be noted 

that the quantum yields for photoreduction of MV2+ by eosin Y and Ru(bpy)3
2+ are 

significantly lower than values reported previously under comparable experimental 

conditions: 30 and 19 % for eosin Y and Ru(bpy)3
2+, respectively, in the presence of 

TEOA.198,200 This shows that the efficiency of the system described in this chapter is not 

optimised and is most likely limited by processes involving photo-production of MV+ by      

the photosensitisers (e.g. light-harvesting, productive electron exchange with MV2+        

and/or TEOA). This is also supported by the results presented in sections 4.4.3 and 4.5              

which suggest the rate-defining events are photosensitiser-dependent rather than      

hydrogenase-dependent. 

 

Comparable systems with whole-cell bacteria and purified enzymes have been reported 

previously and provide a benchmark for the work in this chapter.82,218 For example,         

Honda et al. (2016) (see Table 1.5, example A) reported the generation of 117 µmol H2 

using E. coli (containing recombinant [FeFe]-hydrogenase), ascorbate as SED, titanium 
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dioxide as photosensitiser and MV as electron transfer mediator with 5 hr irradiation by    

UV light.82 This corresponded to a quantum yield of 0.3 %. Although significantly more H2 

was produced by the system in Honda et al. (2016) compared to the one reported in this 

chapter, the quantum yields for both systems are very similar. Additionally, the approach 

used here has the advantage of functioning under irradiation by visible light and the 

potential to operate over 96 hr with a suitable photosensitiser due to the robustness of                        

MR-1 hydrogenases (see Fig. 4.17 and 4.18). In Sakai et al. (2013), 5 µmol H2 was                

produced after 24 hr irradiation by visible light using purified Desulfomicrobium baculatum               

[NiFeSe]-hydrogenase in the presence of TEOA as SED and eosin Y as photosensitiser.218     

This corresponded to a quantum yield of 1.5 % at low light intensity (0.015 kW m-2).            

Again, greater quantities of H2 were generated by the system in Sakai et al. (2013) 

compared to the work in this chapter but the quantum yields for both systems are similar. 

Notably, the system in Sakai et al. (2013) did not require MV for effective electron transfer 

from eosin Y to the purified hydrogenase. This highlights the added complexity of             

cell-based approaches to light-driven chemical synthesis where there is competition 

between various metabolic pathways and bacterial electron acceptors. As shown in this 

chapter, the use of MV as electron shuttle overcomes this challenge but there is a 

corresponding loss of bacterial viability due to the toxicity of the reagent (see section 

4.4.4). However, the result most likely reflects the fact that light-driven electron transfer is 

not directly linked to natural bacterial metabolism and no substrates for cell maintenance 

or growth were included in reaction suspensions. Indeed, if MR-1 was incubated with 

TEOA, MV and a photosensitiser in M72 growth medium, the samples contained                    

≈5 x 106 CFU mL-1 after 30 min incubation in the dark (i.e. considerably more than for 

equivalent experiments performed in buffer only). This shows that it is possible to reduce 

the toxicity of the light-harvesting reagents, although it is likely that this would also affect 

the yields of photo-produced H2 due to changes in light absorption and/or quenching of the              

photo-excited state. 

 

The loss of bacterial viability in the presence of the light-harvesting reagents means that 

the current system is unlikely to be self-regenerating over extended periods of time.              

However, despite samples predominantly containing non-viable bacteria, light-driven            

H2 production could still be performed over 96 hr with Ru(bpy)3
2+ as photosensitiser          

and the use of MV renders the system highly versatile because it is likely that                 

photo-energised electrons can be transferred to enzymes associated with micro-organisms 
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that cannot produce porin:cytochrome complexes. Another major advantage of the system 

developed in this thesis is the potential to drive multiple chemical transformations using a 

single bacterium, as shown by the work in chapter 3 which confirmed that acceptor-limited 

growth leads to the simultaneous presence of active hydrogenases, fumarate reductase, 

lactate dehydrogenases and formate dehydrogenases. As such, it was of interest to assess 

whether the approach to light-driven H2-evolution described in this chapter could also        

be used for the photoreduction of fumarate, pyruvate and CO2 to succinate, lactate and 

formate, respectively. In the next chapter, results are shown from experiments that 

evaluated how light-driven H2-evolution is affected by the presence of carbon         

substrates and from 1H-NMR analysis that quantified the extents of the desired        

reductive transformations. 
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Chapter 5 - Light-driven reduction of fumarate, pyruvate and 

CO2 by Shewanella oneidensis MR-1 

 

5.1 Introduction 

 

In chapter 4, light-driven H2-evolution was achieved by carrying out the photoreduction of 

MV2+ in the presence of MR-1 which had been cultured under anaerobic, acceptor-limited 

conditions for production of active hydrogenases. From the work in chapter 3, it is known 

that the growth conditions also lead to the production of active fumarate reductase, 

lactate dehydrogenases and formate dehydrogenases by MR-1. As such, it was of interest 

to extend the use of the light-driven system for the reduction of fumarate, pyruvate and 

CO2 by inclusion of the chosen carbon substrate in reaction suspensions. Eosin Y was 

selected as photosensitiser for the experiments due to its superior rates of MV2+ 

photoreduction compared to Ru(bpy)3
2+. First, results from the assessment of light-driven 

H2-evolution in the presence of fumarate, pyruvate or CO2 are shown to evaluate how      

MR-1 enzymes compete for electrons provided to the bacterium by photo-produced MV+. 

Next, data are presented from 1H-NMR analysis that was used to quantify the formation of 

succinate, lactate and formate. Lastly, results are shown from experiments that aimed to 

improve light-driven CO2-reduction and assess the longevity of the periplasmic fumarate 

reductase. The work presented below demonstrates the advantages of using MV to achieve 

cell-based photocatalysis then describes how MR-1 could be used to overcome the 

drawbacks of the approach by exploiting porin:cytochrome complexes to transfer electrons 

from the outside to the inside of the bacterium. Preliminary results for the development of 

such a system that operates in the absence of MV are shown in the next chapter. 

 

5.2 Effect of fumarate, pyruvate and CO2 on light-driven          

H2-evolution by Shewanella oneidensis MR-1 from                  

photo-produced MV+ 

 

Based on the results shown in section 3.3.2, it was predicted that the presence of fumarate, 

pyruvate and CO2 would decrease the yields of photo-produced H2 due to competition 
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between MR-1 enzymes for electrons provided to the bacterium by MV+. Furthermore,         

it was predicted that the relative decreases in H2 production with each carbon substrate 

would correlate with the relative yields of succinate, lactate and formate. To test this, MR-1 

was cultured under acceptor-limited conditions for 24 hr then harvested and re-suspended 

in anaerobic 50 mM HEPES, 50 mM NaCl, pH 7 (see sections 2.3.3 and 2.3.7). From the 

work in chapter 3, processing the bacterium as described above leads to the simultaneous    

presence of hydrogenases, fumarate reductase, lactate dehydrogenases and formate 

dehydrogenases which can all be exploited for reductive catalysis. Bacterial suspensions 

(1.7 mL, MR-1 OD590nm ≈0.25) were supplemented with 0.11 mM eosin Y, 60 mM TEOA,      

0.3 mM MV and 1.5 or 3 mM fumarate, pyruvate or CO2 then transferred to the chamber of 

a H2-sensing electrode which was sealed with minimal gaseous headspace above samples. 

Reaction suspensions were then irradiated for 30 min with the cold light source at an 

intensity of 0.7 kW m-2 (see sections 2.2 and 2.4.2). The H2-sensing electrode was used to 

quantify H2-evolution because formation of the product can be monitored in real-time and 

the initial concentrations of carbon substrates were chosen to best demonstrate the 

different trends over 30 min. Results from the experiments are shown in Fig. 5.1. 

 

 

 

 

 

 

 

 

Figure 5.1 - Light-driven H2-evolution by MR-1 in the presence of fumarate, pyruvate or CO2. 

Dissolved H2 in MR-1 suspensions (OD590nm ≈0.25) with 0.11 mM eosin Y, 60 mM TEOA, 0.3 mM MV 

and the indicated concentration of fumarate (left), pyruvate (middle) or CO2 (right). Irradiation       

(0.7 kW m
-2

) provided by the cold light source throughout. Anaerobic samples (1.7 mL) in                  

50 mM HEPES, 50 mM NaCl, pH 7 at room temperature. 

 

In the presence of fumarate, light-driven H2-evolution was completely suppressed during 

the first part of the experiment. After approximately 10 or 20 min with an initial 
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concentration of 1.5 or 3 mM fumarate, respectively, production of H2 then resumed at an 

identical rate to that seen in the absence of fumarate. This suggests that MR-1 

hydrogenase activity does not change significantly over the course of the experiment. 

Assuming that fumarate was completely consumed before H2-evolution took place, the    

rate of consumption was approximately 255 nmol fumarate min-1. On the other hand, the        

rate of H2-evolution in the absence of fumarate was approximately 5 nmol H2 min-1.                   

The difference between the apparent rates most likely reflects the high abundance of the 

fumarate reductase and the more accessible redox cofactors compared to the 

hydrogenases, as discussed in section 3.4.91,106,176,177 When pyruvate or CO2 were included 

in reaction suspensions, there were less substantial decreases in light-driven H2 production 

compared to those seen in the presence of fumarate. However, increasing the 

concentration of CO2 from 1.5 to 3 mM gave a further decrease in H2 production whereas 

increasing the concentration of pyruvate in this way had little effect on the system.               

In general, the results are in agreement with those seen for comparable experiments with 

DT as the electron source where pyruvate and CO2 were less effective than fumarate at      

re-directing electrons away from the hydrogenases (see Fig. 3.5 and Table 3.2).                       

 

To standardise the analysis, light-driven H2 production with MR-1 was carried out in the 

presence of 10 mM fumarate, pyruvate or CO2 and irradiation was provided by either the 

cold light source (0.7 kW m-2 light intensity, 30 min, room temperature) or the 

photosynthetic growth lamp (0.02 kW m-2 light intensity, 24 hr, 25 °C) to compare the 

distinct irradiation regimes used in chapter 4. Reaction suspensions were prepared as 

described above. Dissolved H2 was quantified with the H2-sensing electrode and headspace 

H2 was quantified with GC (see section 2.4.1) for experiments performed over 30 min         

and 24 hr, respectively. Representative data collected with the H2-sensing electrode are 

presented in Fig. 5.2 and mean values for dissolved and headspace H2 are presented in 

Table 5.1. The pH of samples containing the light-harvesting reagents and 10 mM 

fumarate, pyruvate or CO2 was also measured after 24 hr to confirm there were no changes 

which may impact the results. There were negligible pH changes in the presence of 

fumarate or pyruvate and an increase of 0.2 pH units in the presence of CO2 after 24 hr 

showing the reagents do not significantly compromise the buffering capacity of the 

solution. To summarise, the results in Fig. 5.2 reflect the trends shown in Fig. 5.1 and         

the relative differences in H2 production in Table 5.1 correlate with those seen for                    

DT-driven reactions (see Table 3.2).  



Chapter 5 

 

132 
 

0

50

100

150

0 10 20 30

H
2

(n
m

o
l)

Time (min)

Protons 
(no added substrate)

Pyruvate

CO2

Fumarate

Overall, the findings in this section show that there is competition between bacterial 

enzymes during light-driven experiments performed in the presence of exogenous carbon 

substrates. Additionally, the results suggest that the reduction of fumarate, pyruvate and 

CO2 by MR-1 can be driven using photo-produced MV+ and that the reduction of fumarate 

proceeds to a greater extent than the reduction of pyruvate and CO2. In the next section, 

data are presented from 1H-NMR analysis that quantified the generation of succinate, 

lactate and formate by the system described above. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 - Light-driven H2-evolution by MR-1 in the presence of 10 mM fumarate, pyruvate or CO2. 

Representative data for dissolved H2 in MR-1 suspensions (OD590nm ≈0.25) with 0.11 mM eosin Y,       

60 mM TEOA and 0.3 mM MV. Irradiation (0.7 kW m
-2

) provided by the cold light source throughout. 

Anaerobic samples (1.7 mL) in 50 mM HEPES, 50 mM NaCl, pH 7 at room temperature. 

 

Table 5.1 - Light-driven H2-evolution by MR-1 in the presence of 10 mM fumarate, pyruvate or CO2. 

Dissolved or headspace H2 for samples incubated with 0.11 mM eosin Y, 60 mM TEOA and                 

0.3 mM MV. Assays performed with MR-1 (OD590nm ≈0.25) and either 30 min irradiation (0.7 kW m
-2

, 

room temperature) by the cold light source or 24 hr irradiation (0.02 kW m
-2

, 25 °C) by the 

photosynthetic growth lamp. Mean values from technical duplicates, error indicates maximum and 

minimum. Anaerobic samples (1.7 mL) in 50 mM HEPES, 50 mM NaCl, pH 7. 

Added substrate  
Dissolved H2  

after 30 min (nmol) 
Headspace H2  

after 24 hr (nmol) 

None 121 ± 6 812 ± 62 

Fumarate 0 180 ± 10 

Pyruvate 56 ± 2 566 ± 8 

CO2 48 ± 8 582 ± 7 
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5.3 Light-driven reduction of fumarate, pyruvate and CO2 by 

Shewanella oneidensis MR-1 from photo-produced MV+ 

 

To quantify the photoreduction of carbon substrates, MR-1 was cultured under      

acceptor-limited conditions for 24 hr then harvested and re-suspended in anaerobic            

50 mM HEPES, 50 mM NaCl, pH 7. Bacterial suspensions (1 mL, MR-1 OD590nm ≈0.25) were 

supplemented with 0.08 mM eosin Y, 50 mM TEOA, 0.5 mM MV and fumarate, pyruvate or 

CO2 (initial concentrations between 8.1 and 11.7 mM, see below) then transferred to       

clear glass vials (4 mL gaseous headspace, initially 100 % N2) which were tightly sealed          

within the N2-filled chamber. Irradiation was provided by the cold light source (0.7 kW m-2 

light intensity, 30 min, room temperature) or the photosynthetic growth lamp (0.02 kW m-2 

light intensity, 24 hr, 25 °C). Parallel control experiments were performed with no added 

carbon substrate, no irradiation and/or no bacteria. After incubation for the required time 

period, samples containing MR-1 were centrifuged to remove cellular material and 

supernatants were analysed by 1H-NMR to determine their composition (see section 2.6).  

 

Representative 1H-NMR spectra for the light-driven reduction of fumarate, pyruvate and 

CO2 are shown in Fig. 5.3. The peaks for TSP, MV,172 residual H2O
173 and the carbon-based 

compounds (see section 2.6 and Table 2.4) match the positions of those seen in                  

Fig. 3.6 for equivalent reactions driven by DT as electron source. The broad series of peaks 

between 2.8 and 4.0 ppm in Fig. 5.3A corresponds to buffer components including      

HEPES,174 TEOA, trace metabolites produced by MR-1 (Human Metabolome Database, 

http://www.hmdb.ca/) and other small molecules resulting from the degradation of       

light-harvesting reagents (see section 4.4.4).49,227 The predicted peaks for eosin Y between        

7 and 8 ppm229 were not observed, presumably due to an insufficiently high concentration 

of the reagent in samples. Quantification of carbon-based compounds was performed as 

described in section 3.3.2. Supernatant compositions are shown in Table 5.2 for 30 min 

incubations and in Table 5.3 for 24 hr incubations. The next sections describe and compare 

results with the different irradiation sources then introduce experiments which aimed to 

improve light-driven CO2-reduction and assess the longevity of the fumarate reductase. 
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Figure 5.3 - Representative 
1
H-NMR spectra for light-driven reduction of fumarate, pyruvate and                      

CO2 by MR-1. A] Full spectra showing peak positions of buffer components and sodium                         

3-(trimethylsilyl)-propionate-d4 (TSP) reference. B] Expanded view of spectra highlighting peaks 

used to quantify carbon-based compounds (see section 2.6). Numerical label for each spectrum 

refers to a set of conditions described in Table 5.3. 
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5.3.1 Irradiation at an intensity of 0.7 kW m-2 for 30 min 

 

The key results from experiments performed over 30 min (see Table 5.2) are presented in 

Fig. 5.4A to compare the extents of each reductive transformation. With no added 

fumarate, pyruvate or CO2, the supernatants analysed after 30 min contained negligible 

amounts of carbon-based compounds regardless of the presence of MR-1 or irradiation. 

This confirms that the light-harvesting reagents and their predicted (photo-)degradation 

products (see section 4.4.4) do not contribute to signals used for quantification of the 

compounds of interest. When MR-1 was incubated with fumarate (≈9466 nmol initially) 

and irradiated for 30 min, the supernatants contained ≈4337 nmol succinate (46 % yield) 

and ≈4249 nmol malate (45 % yield) at the end of the experiment. In the absence of MR-1, 

the transformation of fumarate did not occur whereas hydrolysis of fumarate to malate 

took place to a similar extent (52 % yield) in the presence of MR-1 in the dark. Formation of 

malate was also observed for DT-driven reactions (see Table 3.3) and is likely a result of 

fumarate hydration which can be catalysed by the cytoplasmic fumarate hydratase.102,175 

When MR-1 was incubated with pyruvate (≈8057 nmol initially) under irradiation there was 

≈594 nmol lactate (7 % yield) present after 30 min. Negligible quantities of lactate were 

produced when MR-1 or irradiation were omitted from parallel assays. Lastly, incubation of 

MR-1 with CO2 (≈10000 nmol initially) under irradiation gave ≈113 nmol formate (1 % yield) 

after 30 min. This is 5-fold more than the quantities detected in parallel experiments 

performed in the absence of MR-1 or irradiation. In all cases, MR-1 and irradiation were 

required for formation of the desired compounds and the distribution of products 

corresponded to the presence of a particular carbon substrate. Complete consumption of 

the starting carbon substrate was not seen during any of the experiments, presumably due 

to the relatively short irradiation time. Interestingly, the yields of lactate and formate were 

considerably different despite the presence of pyruvate and CO2 causing similar decreases 

to light-driven H2 production (see section 5.2). 
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Figure 5.4 - Light-driven reduction of fumarate, pyruvate and CO2 by MR-1. A] Composition of 

supernatants recovered from samples incubated for 30 min with 0.08 mM eosin Y, 0.5 mM MV,        

50 mM TEOA and fumarate (left), pyruvate (middle) or CO2 (right). Assays performed with or without 

MR-1 (OD590nm ≈0.25) in the dark or irradiated (0.7 kW m
-2

) by the cold light source. B] As for A] but 

with 24 hr incubations and irradiation provided by the photosynthetic growth lamp at an intensity of 

0.02 kW m
-2

 as required. Mean values from technical duplicates, error bars indicate maximum and 

minimum. Anaerobic samples (1 mL) in 50 mM HEPES, 50 mM NaCl, pH 7 at room temperature.  

 

5.3.2 Irradiation at an intensity of 0.02 kW m-2 for 24 hr 

 

The key results from experiments performed over 24 hr (see Table 5.3) are presented in 

Fig. 5.4B to compare the extents of each reductive transformation. With no added carbon 

substrate, there were negligible quantities of carbon-based compounds in supernatants 
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after 24 hr, similar to the control experiments described in section 5.3.1. The only 

difference was a slight enrichment of ethanol in samples which contained MR-1 under        

24 hr irradiation. This may be due to increased formation of ethanol through 

decomposition of TEOA over extended periods of irradiation. When MR-1 was incubated 

with fumarate (≈11727 nmol initially) under irradiation, supernatants contained             

≈8289 nmol succinate (71 % yield) and ≈3451 nmol malate (29 % yield) after 24 hr with no 

remaining fumarate. Succinate and malate were not detected in parallel experiments with 

no bacteria but malate (97 % yield) was still produced in samples containing MR-1 in          

the dark. Incubation of MR-1 with pyruvate (≈9774 nmol initially) under irradiation led to 

the production of ≈9136 nmol lactate (93 % yield) after 24 hr. Reduction of pyruvate to 

lactate did not occur in parallel assays that omitted MR-1 or irradiation. Compared to the 

equivalent experiments containing pyruvate described in the previous section, the only 

difference was an enrichment of acetate in supernatants analysed after 24 hr. This may be 

due to increased oxidation of pyruvate to acetate via the phosphotransacetylase-acetate 

kinase pathway (see Fig. 1.11) and/or formation of acetate through (photo-)degradation of 

light-harvesting reagents over longer periods of time. Lastly, irradiation of samples 

containing MR-1 and CO2 (≈10000 nmol initially) produced ≈1561 nmol formate (16 % yield) 

after 24 hr. This is 8-fold more than the quantities produced in parallel assays omitting    

MR-1 or irradiation. To confirm that the presence of formate did not result from the 

release of intracellular metabolite reserves by MR-1, the CO2-reduction experiments       

were repeated identically but with 13C-carbonate used as a source of 13CO2                  

(≈10000 nmol initially), making it possible to track the fate of this species using 13C-NMR 

analysis (see section 2.6). Results from the assays are shown in Fig. 5.5. There was no 

evidence for the presence of 13C-formate after 24 hr when samples containing MR-1 were 

incubated in the dark whereas 1790 ± 230 nmol 13C-formate (18 % yield) was produced        

in parallel assays under 24 hr irradiation (0.02 kW m-2) by the photosynthetic growth          

lamp. The results show that CO2 is directly reduced to formate by MR-1 in the system     

described in this chapter. To summarise, the desired transformations only took place in the 

presence of MR-1 under irradiation and the distribution of products was well-defined with 

respect to the initial carbon substrate, as was seen for experiments performed over 30 min. 
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Figure 5.5 - Light-driven reduction of 
13

CO2 by MR-1 over 24 hr irradiation. 
13

C-NMR spectra for 

supernatants recovered from samples incubated for 24 hr with 0.08 mM eosin Y, 0.5 mM MV,           

50 mM TEOA and 10 mM 
13

CO2. Assays performed with MR-1 (OD590nm ≈0.25) in the dark (A and B) or 

irradiated (C and D). Anaerobic samples (1 mL) in 50 mM HEPES, 50 mM NaCl, pH 7 at 25 °C. 

Irradiation (0.02 kW m
-2

) provided by the photosynthetic growth lamp. Peak for 1 mM 
13

C-formate in 

50 mM HEPES, 50 mM NaCl, pH 7 (E) is shown for comparison. 

 

Overall, the results in section 5.3 confirm that MR-1 can be used to drive the reduction of 

fumarate, pyruvate and CO2 to succinate, lactate and formate, respectively, from          

photo-produced MV+. Succinate was produced in high yield for experiments performed 

with 30 min or 24 hr irradiation which correlates with the ability of fumarate to   

significantly inhibit light-driven H2 production (see Fig. 5.1 and 5.2 and Table 5.1). 

Interestingly, less malate was produced over 24 hr irradiation compared to experiments 

where equivalent samples were irradiated for 30 min. This suggests that hydration of 

fumarate to malate by MR-1 is rapid over short periods of time but the transformation can 

be reversed once there is a sufficient driving force for reduction of fumarate to        

succinate. This is presumably achieved over 24 hr due to gradual accumulation of MV+ in 

reaction suspensions, as discussed in section 4.4.1. Incubation of MR-1 with pyruvate and 

CO2 under 24 hr irradiation gave far greater yields of lactate and formate, respectively, 

compared to experiments with 30 min irradiation. However, there were still considerable 
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differences between the yields of lactate and formate despite results in section 5.2 

suggesting that the extents of each reaction would be similar. The reduction of pyruvate 

and CO2 likely takes a longer time to proceed than the reduction of fumarate due to 

differences in enzyme accessibility, as discussed previously (see sections 1.6.1 and 3.4).  

 

A notable result from the analysis in this section is that the extent of CO2-reduction was 

significantly less than pyruvate-reduction under both irradiation regimes despite both 

compounds being equally effective at suppressing light-driven H2-evolution (see Fig. 5.1, 

5.2 and Table 5.1). Additionally, the yields of succinate were high over both the shorter and 

longer irradiation periods suggesting that the system is particularly suitable for facilitating 

the reduction of fumarate. However, it is possible that the longevity of the fumarate 

reductase is compromised after prolonged exposure to conditions required for              

photo-production of MV+ which affect bacterial viability and may cause cells to lyse                 

(see sections 4.4.4 and 4.5). In the next sections, experiments were performed to address 

these matters and examine the wider properties of the system. Section 5.4 describes 

experiments that aimed to improve CO2-reduction by varying the size of the gaseous 

headspace above samples during irradiation or by replacing MR-1 with the HydA-/HyaB-     

strain. Section 5.5 describes experiments that assessed the activity of the fumarate 

reductase over 96 hr to compare with changes to the activity of the hydrogenases            

over the same time period. 

 

5.4 Enhancement of light-driven CO2-reduction by Shewanella 

oneidensis MR-1 from photo-produced MV+ 

 

An unexpected result from the 1H-NMR analysis in the previous section was the production 

of approximately 6-fold less formate than lactate at the end of experiments even though 

the presence of pyruvate and CO2 cause similar decreases to light-driven H2-evolution       

(see section 5.2). As such, it was of interest to investigate whether experimental conditions 

could be changed to improve the extent of light-driven CO2-reduction by MR-1.                  

For example, it is possible that the presence of a gaseous headspace above samples     

allows dissolved CO2 to escape solution, rendering it unavailable as a substrate for 

reductive catalysis. To test this, light-driven CO2-reduction within glass vials was performed 

with minimal gaseous headspace in an attempt to increase the concentration of dissolved 
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CO2 and improve photo-production of formate. For the assays, MR-1 was cultured for        

24 hr under acceptor-limited conditions then harvested and re-suspended in 50 mM HEPES, 

50 mM NaCl, pH 7. Bacterial suspensions (2 mL, MR-1 OD590nm ≈0.25) were supplemented 

with 0.08 mM eosin Y, 0.5 mM MV, 50 mM TEOA and 10 mM CO2 then transferred to clear 

glass vials with either 3 or 0.3 mL gaseous headspace (initially 100 % N2) and irradiated 

(0.02 kW m-2) for 24 hr with the photosynthetic growth lamp. 1H-NMR analysis of 

supernatants (technical duplicates for each condition) after 24 hr revealed the presence of 

739 ± 17 (4 % yield) and 1609 ± 36 (8 % yield) nmol formate for assays with the larger and 

smaller headspaces, respectively. The yields of formate are less than those seen in      

section 5.3, presumably due to day-to-day variations of biological samples (see section 

4.4.3), but the relative difference between the two values shows that decreasing the 

volume of gas above reaction suspensions improves the yield of formate by a factor of 2.  

 

The discrepancy between the decrease of light-driven H2-evolution in the presence of CO2 

and the overall yield of formate may also be a result of the requirement for H2 to facilitate 

CO2-reduction, as would occur with a formate-hydrogen lyase complex (see section 

1.6.1.1)91 where a molecule of CO2 and a molecule of H2 are consumed to achieve       

formate production. If this is the case, electrons provided to the bacterium by                

photo-produced MV+ must also be delivered to the hydrogenases for proton reduction 

(with the evolved H2 consumed for reduction of CO2 to formate) such that fewer electrons 

are transferred directly to the formate dehydrogenases. Consequently, it may be possible 

to enhance the yields of formate by performing experiments with the HydA-/HyaB- strain 

lacking functional hydrogenases to increase the flow of electrons to the formate 

dehydrogenases (assuming that CO2-reduction can still occur in the absence of the 

hydrogenases). To test this, MR-1 and HydA-/HyaB- were cultured and processed as 

described above then bacterial suspensions (1 mL, OD590nm ≈0.25) were supplemented      

with 0.08 mM eosin Y, 0.5 mM MV, 50 mM TEOA and 10 mM CO2. Samples were 

transferred to clear glass vials (4 mL gaseous headspace, initially 100 % N2) and incubated 

for 24 hr in the dark or under irradiation (0.02 kW m-2) by the photosynthetic growth     

lamp. After 24 hr, the amount of formate in supernatants was quantified using 1H-NMR 

analysis then normalised to total protein content determined using a BCA assay (see 

section 2.3.4). Results from the experiments are presented in Table 5.4.    

 

 



Chapter 5 

 

143 
 

Table 5.4 - Light-driven CO2-reduction by MR-1 and HydA
-
/HyaB

-
. 

1
H-NMR derived quantification of 

formate in supernatants recovered from samples incubated for 24 hr with 0.08 mM eosin Y,            

0.5 mM MV, 50 mM TEOA and 10 mM CO2. Assays performed with MR-1 or HydA
-
/HyaB

-
 (both at 

OD590nm ≈0.25) in the dark or irradiated (0.02 kW m
-2

) with the photosynthetic growth lamp.          

Mean values from technical duplicates (normalised to total protein), error indicates maximum and 

minimum. Anaerobic samples (1 mL) in 50 mM HEPES, 50 mM NaCl, pH 7 at 25 °C. 

Strain Light Formate (nmol mg-1)  

MR-1 
No 97 ± 10 

Yes 11373 ± 72 

HydA-/HyaB- 
No 243 ± 54 

Yes 31285 ± 1068 

 

Negligible amounts of formate were produced after 24 hr incubation in the dark with       

both strains whereas almost 3-fold more formate was produced by the HydA-/HyaB-       

strain compared to MR-1 after 24 hr irradiation. To confirm that the latter result               

does not reflect significant differences in enzyme activity between the two strains, 

spectrophotometric CO2-reduction assays were performed using MR-1 and HydA-/HyaB- 

which had been cultured for 24 hr under acceptor-limited growth then harvested and         

re-suspended in 50 mM HEPES, 50 mM NaCl, pH 7. Samples were supplemented with       

64.5 µg mL-1 DT and 0.08 mM MV then the absorbance at 600 nm was recorded over 8 min 

with an aliquot (0.1 mL) of 100 mM CO2 in 50 mM HEPES, 50 mM NaCl, pH 7 added after 

approximately 1 min (see section 2.5.2). Representative data from the assays are          

shown in Fig. 5.6 with data from equivalent control experiments where the addition of CO2 

was omitted. The high absorbance at the start of the experiment is due to the presence        

of MV+, the sharp decrease in absorbance around 1 min is due to removal of the cuvette 

from the spectrophotometer for mixing and the differences in absorbance at the end of the 

experiment are due to differences in scattering caused by the presence of bacteria.               

It should also be noted that the gradual decrease in absorbance seen during the control 

experiments is likely due to electron transfer from MV+ to bacterial electron acceptors    

such as the MR-1 hydrogenases which can facilitate proton reduction. The background 

absorbance changes have been accounted for when calculating the CO2-reduction rates 

quoted below. 
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Figure 5.6 - Representative CO2-reduction data for MR-1 and HydA
-
/HyaB

-
 after 24 hr              

acceptor-limited growth. Absorbance at 600 nm (pathlength 1 cm) for MR-1 (black) and HydA
-
/HyaB

-
 

(red) cell pellets in 64.5 µg mL
-1

 DT, 0.08 mM MV, 50 mM HEPES, 50 mM NaCl, pH 7 with an addition 

of CO2 (to an initial concentration of 10 mM) after 1 min. Dashed lines correspond to equivalent 

experiments performed with no addition of CO2.  

 

Maximal CO2-reduction rates were calculated from the change in absorbance over 0.5 min 

at the steepest part of the slope using Eq. 5.1, where ΔAbs600nm is the change in absorbance 

at 600 nm over 0.5 min (minus the change in absorbance for an equivalent experiment with 

no addition of CO2), the factor of 1.86 x 103 accounts for the volume of the sample,           

εMV+ is the extinction coefficient of MV+ (13.5 mM-1 cm-1),159 and division by a factor of         

two accounts for the fact that two electrons are required to reduce one molecule of                

CO2. The analysis gave CO2-reduction rates of 172 ± 20 and 269 ± 21 nmol min-1 mg-1        

(technical triplicates with standard error, normalised to total protein) for MR-1 and         

HydA-/HyaB-, respectively, showing that the photo-production of 3-fold more formate by 

HydA-/HyaB- compared to MR-1 is not due to an increase in enzyme activity. 

 

  

                                                                                                                             

Overall, the results above indicate that H2 is not required for light-driven CO2-reduction and 

that the yields of photo-produced formate can be increased through the use of the         

HydA-/HyaB- strain in place of MR-1, presumably because electrons are no longer lost to 

the hydrogenases for reduction of protons to H2. The findings in this section do not fully 

account for there being less formate than anticipated at the end of experiments presented 

ΔAbs600nm x 1.86 x 103 
 =   nmol CO2 reduced min-1 

εMV+ x 2 
Eq. 5.1 
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in section 5.3 but showcase the ways in which CO2-reduction could be enhanced and         

the potential benefits of genetically engineered Shewanella strains for cell-based 

photocatalysis. It is therefore possible that the formate dehydrogenases are unstable under 

the experimental conditions and lose activity during prolonged periods of irradiation 

and/or that photo-degradation of eosin Y permits the re-oxidation of formate to CO2 due to 

the lack of a driving force for the reductive reaction. Similar observations were discussed in 

section 4.5 with respect to the longevity of the MR-1 hydrogenases. 

 

Moving forward, it is also of interest to extend the analysis of reactions which resulted in 

the formation of the desired product in high yield, such as the light-driven reduction of 

fumarate to succinate by MR-1. High yields of succinate were seen over 30 min and 24 hr 

irradiation (see section 5.3) making it useful to evaluate the activity of the fumarate 

reductase over extended periods of time to see whether the current system could be used 

for sustained fumarate-reduction. 

 

5.5 Longevity of the Shewanella oneidensis MR-1 fumarate 

reductase over 96 hr 

 

The longevity of the MR-1 fumarate reductase was determined by measuring the activity of 

the enzyme in supernatants and re-suspended cell pellets harvested after centrifugation of 

MR-1 suspensions which had been irradiated for 0, 24, 48, 72 or 96 hr as described in        

Fig. 4.17. Such an analysis made it possible to compare the longevity of representative 

soluble and membrane-bound MR-1 enzymes because the activity of the hydrogenases was 

evaluated in an identical way in the previous chapter (see Fig. 4.18). For the experiments, 

MR-1 was cultured under acceptor-limited conditions for 24 hr then harvested and               

re-suspended in anaerobic 50 mM HEPES, 50 mM NaCl, pH 7. Bacterial suspensions           

(1.7 mL, MR-1 OD590nm ≈0.25) were supplemented with 60 mM TEOA, 0.3 mM MV and                     

0.11 mM eosin Y then transferred to clear glass vials (3.3 mL headspace, initially 100 % N2) 

and irradiated (0.02 kW m-2) with the photosynthetic growth lamp for 96 hr. 

Spectrophotometric fumarate-reduction assays were performed periodically on harvested 

supernatants and re-suspended cell pellets by supplementing samples with 64.5 µg mL-1 DT 

and 0.08 mM MV then recording the absorbance at 600 nm over 8 min with an aliquot     

(0.1 mL) of 10 mM fumarate in 50 mM HEPES, 50 mM NaCl, pH 7 added after 
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approximately 1 min (see section 2.5.2). Representative data from the assays are        

shown in Fig. 5.7A with data from equivalent experiments performed with no addition of 

fumarate. Maximal fumarate-reduction rates were calculated from the change in 

absorbance over 0.5 min at the steepest part of the slope using Eq. 5.1 and are presented 

in Fig. 5.7B. Control experiments where the addition of fumarate was omitted gave 

background reduction rates of ≤ 1.1 nmol min-1 in all cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 - Longevity of the MR-1 fumarate reductase. A] Representative fumarate-reduction data 

for cell pellets (black) and supernatants (red) recovered after centrifugation of MR-1 suspensions 

irradiated with eosin Y as described in Fig. 4.17. Absorbance at 600 nm (pathlength 1 cm) for 

samples in 64.5 µg mL
-1

 DT, 0.08 mM MV, 50 mM HEPES, 50 mM NaCl, pH 7 with an addition of 

fumarate (to an initial concentration of 1 mM) after 1 min. Dashed lines correspond to equivalent 

experiments performed with no addition of fumarate. B] Maximal fumarate-reduction rates 

associated with cell pellets (solid bars) and supernatants (striped bars) recovered after 

centrifugation of MR-1 suspensions irradiated for 0, 24, 48, 72 or 96 hr with eosin Y. Mean values    

for technical duplicates, error bars indicate maximum and minimum. Anaerobic samples in                 

50 mM HEPES, 50 mM NaCl, pH 7.  

 

At 0 hr, the majority of the fumarate reductase activity was associated with the                   

re-suspended cell pellets but from 24 hr onwards the activity steadily decreased with 
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negligible rates of fumarate-reduction recorded after 72 hr. As the activity associated with 

the cell pellets decreased from 0 to 24 hr there was a corresponding increase in the activity 

associated with the supernatants. The rates of fumarate-reduction by supernatants then 

gradually decreased between 24 and 96 hr. The activity profile for the fumarate reductase 

over 96 hr is significantly different to that for the hydrogenases with respect to enzyme 

location and variation over time (see Fig. 4.18). H2 oxidation activity was only associated 

with the re-suspended cell pellets and remained constant between 24 and 96 hr whereas 

fumarate-reduction activity varied significantly over the same time period and was also 

associated with supernatants. This is likely caused by exposure of MR-1 to conditions 

required for photo-production of MV+ which results in a loss of bacterial viability (see 

section 4.4.4) and, as evidenced here, cell lysis leading to a release of soluble periplasmic 

enzymes into solution. Despite the changes in enzyme location over 96 hr, fumarate 

reductase activity was detected in samples over the entire experiment. This suggests that 

MR-1 could be exploited for sustained light-driven fumarate-reduction but it is likely that 

the system could be improved if reagents and/or experimental conditions were found 

which facilitate rapid photocatalysis but avoid decreases in bacterial viability. 

 

5.6 Discussion 

 

The results in this chapter show that MR-1 can be used for light-driven hydrogenation of 

C=C and C=O bonds within simple carbon substrates. The work builds upon the findings 

presented in the two previous chapters where growth conditions were established for the 

production of four key enzymes by MR-1 then photoreduction of MV2+ was carried out in 

the presence of the bacterium to drive H2-evolution. In this chapter, addition of an 

exogenous carbon substrate prior to irradiation successfully re-directed electrons away 

from the hydrogenases to yield a well-defined range of products. Based on the final 

amounts of succinate, lactate and formate, the rates of light-driven fumarate-, pyruvate- 

and CO2-reduction over 30 min irradiation (0.7 kW m-2) with the cold light source were 

approximately 145, 20 and 4 nmol min-1, respectively (see Fig. 5.4A). Determination of the 

corresponding rates over 24 hr irradiation (0.02 kW m-2) with the photosynthetic growth 

lamp is challenging because it is not known if or when the reactions reach completion.         

Compared to the rates observed with MR-1 in the presence of DT and MV (see section 3.4), 

the values here are slightly higher for fumarate-reduction and much lower for          

pyruvate- and CO2-reduction. The lower rates of reduction with respect to pyruvate and 
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CO2 likely reflect the fact that formation of MV+ and transfer of electrons to bacterial redox 

partners is slow during light-driven experiments relative to DT-driven experiments where 

MV2+ reduction is instantaneous. The slower formation of MV+ may also account for the 

greater yields of malate in light-driven experiments (see Fig. 5.4, left) compared to             

DT-driven experiments (see Fig. 3.7, left) because there is more time for hydration of 

fumarate to occur before there is a sufficient driving force for reduction of fumarate to 

succinate. Photocatalytic TONs with respect to the photosensitiser can be calculated based 

on the fact that reaction suspensions contained 80 nmol eosin Y and a single turnover of 

the system would generate 40 nmol product (see section 4.7 for more information).        

From the final quantities of succinate, lactate and formate, TONs for the system are 

approximately 108, 15 and 3, respectively, after 30 min irradiation and approximately        

207, 228 and 39, respectively, after 24 hr irradiation. For both irradiation regimes, the yield 

of formate was lower than expected but could be improved through changes to the 

experimental setup or replacement of MR-1 with HydA-/HyaB-, presumably due to 

increased availability of dissolved CO2 or increased electron transfer to the formate 

dehydrogenases, respectively. On the other hand, the yield of succinate was high under 

both irradiation regimes showing that electrons provided to the bacterium by                

photo-produced MV+ can be effectively delivered to the fumarate reductase.            

However, assays which examined the longevity of the fumarate reductase indicated that 

the enzyme is released from the bacterium and gradually becomes inactive over extended 

periods of irradiation. This suggests that the current system is more suitable for sustained 

photocatalysis with membrane-bound enzymes, such as the hydrogenases, that remain 

associated with cellular material and retain their activity over 96 hr despite decreases in 

bacterial viability caused by the light-harvesting reagents.  

 

Enzymatic systems for the photocatalytic reduction of fumarate, pyruvate and CO2 have 

been reported previously and can be compared with the work described in this       

chapter.65,110,135,230–232 For example, Bachmeier et al. (2014) reported fumarate-reduction 

under visible light irradiation (0.45 kW m-2) by co-adsorbing the purified fumarate 

reductase from Shewanella frigidimarina NCIMB400 and RuP on titanium dioxide 

nanoparticles.110 The system used MES as SED and generated 2.3 mM succinate (38 % yield) 

over 4 hr corresponding to a TON of approximately 5800 with respect to the amount of 

enzyme. Light-driven fumarate-reduction was also reported in Hutton et al. (2016) using 

the purified fumarate reductase from MR-1, cationic carbon dots as photosensitisers and 
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EDTA as SED.135 The system produced 1.3 mM succinate (13 % yield) after 24 hr visible light 

irradiation (1 kW m-2) corresponding to a TON of approximately 6000 with respect to the 

amount of enzyme. The examples in the literature display high TONs and operate with very 

little enzyme present. However, the absolute quantities of succinate being generated are in 

a similar range to those reported in this chapter where comparable yields were achieved 

over 30 min irradiation (see Table 5.2). An additional benefit of the cell-based approach 

developed in this thesis is that rapid photo-production of succinate takes place without the 

need for costly and time-consuming enzyme purification. With respect to light-driven 

pyruvate-reduction, Huang et al. (2014) reported the generation of 5 mM lactate              

(100 % yield) under 6 hr visible light irradiation using carbon nitride mesoporous spheres as 

photosensitisers, TEOA as SED and purified L-lactate dehydrogenase in a system that 

required exogenous NADH and a rhodium catalyst for regeneration of NADH from          

NAD+ after hydride transfer.230 Miyatani et al. (2004) also reported photo-production of               

0.17 mM lactate (17 % yield) after 4 hr visible light irradiation (0.2 kW m-2) using a zinc 

porphyrin photosensitiser, TEOA as SED, MV as electron transfer mediator and purified        

L-lactate dehydrogenase from pig heart.231 This corresponded to a quantum yield of 4 %. 

The examples with purified lactate dehydrogenases in the literature exhibit relatively high 

yields of lactate over short timescales. However, the cell-based approach developed in this 

chapter is beneficial because photo-produced MV+ can effectively deliver electrons to 

intermediary MR-1 enzymes required for catalysis without the addition of exogenous 

cofactors such as NADH. Light-driven CO2-reduction was reported in Yadav et al. (2012) 

using a system comprised of a graphene-based photosensitiser with TEOA as SED, purified 

formate dehydrogenase, exogenous NADH and a rhodium catalyst for cofactor 

regeneration (see Table 1.3, example A).65 After 2 hr irradiation with visible light and a 

continuous supply of gaseous CO2, approximately 111 µmol formate was generated in 

reaction solutions. Photo-production of formate was also reported in Ihara et al. (2013) 

with photosystem I as photosensitiser, exogenous NADPH, a genetically modified formate 

dehydrogenase and a range of electron transfer proteins including plastocyanin, ferredoxin 

and FNR.232 After 2.5 hr irradiation by visible light with a CO2 atmosphere, the final 

concentration of formate in reaction solutions was approximately 47 µM. Additionally, the 

mutant formate dehydrogenase could be produced by cyanobacteria to accelerate in      

vivo formate production under irradiation. The examples in the literature exhibit relatively 

fast rates of CO2-reduction but the systems are very complex and, in the latter case, require 

purification of four proteins as well as genetic manipulation of a formate dehydrogenase to 
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change its cofactor specificity from NADH to NADPH. The cell-based approach with MR-1 

described here is advantageous because all the required enzymes, cofactors and redox 

partners are provided by the wild-type bacterium and can be accessed or surpassed by 

photo-produced MV+ without the need for enzyme purification. 

 

To summarise, some of the examples in the literature likely display greater efficiencies than 

the system developed in this thesis due to improved enzyme accessibility and a lack of 

metabolic pathways found in vivo which can act as electron sinks. It is also likely that 

particular experimental conditions and/or combinations of SEDs and photosensitisers 

promote more effective photon absorption and generation of photo-excited electrons than 

the approach described here. However, a clear advantage of cell-based photocatalysis with 

MR-1 is the fact that four key reactions can be performed using a single set of growth 

conditions and without the need for genetic engineering. This is made possible through the 

use of MV which can rapidly deliver electrons from eosin Y to bacterial enzymes, including 

membrane-associated enzymes localised to the cytoplasm such as lactate dehydrogenases. 

MV also provides opportunities to exploit other micro-organisms for light-driven chemical 

synthesis as there is no barrier to electron transfer across the outer membrane                  

(see section 4.6). As mentioned in the previous chapter, the major disadvantage of the 

approach is that successful photocatalysis comes at the expense of bacterial integrity and 

viability due to the intrinsic toxicity of MV and products from the (photo-)degradation of 

TEOA and/or the photosensitisers (see section 4.4.4).49,227,228 In the ideal case, MR-1 would 

remain viable during light-driven experiments to allow self-regeneration of enzymes for 

enhanced longevity. Accordingly, it is of interest to find more robust and biocompatible 

photosensitisers which can transfer electrons to bacterial enzymes in the absence of MV.                    

For example, it may be possible to take advantage of porin:cytochrome complexes 

embedded in the outer membrane of MR-1 which act as electron conduits between the 

outside and the inside of the bacterium (see section 1.6.2).122,124 One such complex, 

MtrCAB, was produced by MR-1 after 24 hr anaerobic, acceptor-limited growth                 

(see Fig. 4.22). In the next chapter, data are presented from assays that quantified          

light-driven H2-evolution with MR-1 in the absence of MV using a range of carbon dots 

(CDs) as photosensitisers. The work included an evaluation of multiple Shewanella strains 

to take advantage of the different physicochemical properties associated with their outer 

surfaces,233 some of which may encourage productive interactions with CDs. 
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Chapter 6 - Assessment of light-driven H2-evolution by 

Shewanellaceae with carbon dot photosensitisers 

 

6.1 Introduction 

 

In chapters 3, 4 and 5, a system for cell-based photocatalysis was developed by combining 

anaerobically grown MR-1 with TEOA, water-compatible dyes and MV for generation of       

photo-energised electrons and subsequent electron transfer to bacterial enzymes.           

Four reductive transformations were achieved using eosin Y as photosensitiser but 

sustained irradiation led to photo-degradation of eosin Y and the toxicity of MV caused a 

significant decrease in bacterial viability. As a consequence, it was of interest to combine 

MR-1 with more robust photosensitisers that can deliver photo-energised electrons to 

bacterial enzymes in the absence of an exogenous electron shuttle, for example, by 

transferring electrons across the outer membrane via porin:cytochrome complexes.             

In this chapter, new-generation carbon dot (CD) photosensitisers were investigated as a 

replacement for eosin Y and MV to develop a more sustainable approach to cell-based 

photocatalysis with MR-1 and other species of Shewanella. Light-driven H2-evolution was 

targeted for the preliminary work because the product can be rapidly quantified using GC 

to afford high experimental throughput. Furthermore, different species of Shewanella were 

used to assess whether variations in hydrogenase activity, the production of extracellular 

cytochromes and other extracellular polymeric substances (EPS), and cell surface 

physicochemistry (including charge, morphology and hydrophobicity) afford more effective 

electron exchange between CDs and bacteria. First, data are shown from 

spectrophotometric assays that evaluated photoreduction of MV2+, BV2+ and MtrC by three 

types of CDs under conditions compatible with MR-1 enzyme activity. Next, data are shown 

from an assessment of multiple Shewanella strains including their hydrogenase activity 

after acceptor-limited growth and ability to support light-driven H2-evolution with CD 

photosensitisers. The results below display the potential for Shewanellaceae to be used in 

future photocatalytic systems that operate without exogenous electron mediators. 

 

 

 



Chapter 6 

 

153 
 

6.2 Carbon dot photosensitisers 

 

CDs (also known as carbon nanoparticles) have recently emerged as a stable, biocompatible 

and versatile allotrope of carbon with applications in light emitting devices and                   

bio-imaging.234,235 Furthermore, their solubility in aqueous solutions and photochemical 

properties, including good absorption of light in the UV-visible region of the 

electromagnetic spectrum, have led to their use as photosensitisers for artificial 

photosynthesis with noble metals, transition metal complexes and purified enzymes as 

electrocatalysts.134,135,236 In this chapter, three types of CDs were evaluated: anionic CDs 

with terminal carboxylate groups (CD-CO2
-), cationic CDs with terminal ammonium groups      

(CD-NHMe2
+) and nitrogen-doped anionic CDs with terminal carboxylate groups (N-CD).      

All CDs were synthesised by Dr. Benjamin Martindale and Dr. Bertrand Reuillard (University 

of Cambridge, UK) and have been characterised previously using a variety of spectroscopic 

techniques.134–136,206 The next section provides an overview of their synthesis, key 

properties and use in recent photocatalytic systems. 

 

6.2.1 Synthesis and physicochemical properties 

 

CD-CO2
- were synthesised by thermal decomposition (180 °C) of citric acid in air for 40 hr 

followed by dissolution in water, neutralisation with sodium hydroxide and freeze-drying   

to yield a solid product.134 The nanoparticles are spherical with an average diameter of          

6.8 nm as determined by high-resolution transmission electron microscopy and the 

terminal carboxylic acid groups are de-protonated at neutral pH to give a negative        

surface charge. CD-NHMe2
+ were synthesised through surface modification of CD-CO2

-.135                 

Briefly, CD-CO2
- were refluxed in thionyl chloride for 1 hr to form acyl chloride-capped CDs. 

These were then stirred in N,N-dimethylethylenediamine for 3 hr before the solid       

product was isolated through dissolution in acetone, filtration and freeze-drying. The 

nanoparticles have similar average diameters to CD-CO2
- and the terminal amine groups are 

protonated at neutral pH to give a positive surface charge. N-CD were synthesised by 

thermal decomposition (320 °C) of aspartic acid in air for 100 hr followed by dissolution in 

water, neutralisation with sodium hydroxide and freeze-drying to yield a solid product.136             

The nanoparticles are quasi-spherical with an average diameter of 3.1 nm and the terminal 

carboxylic acid groups are deprotonated at pH 6 to give a negative surface charge.             
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CD-CO2
- and CD-NHMe2

+ are predominantly composed of amorphous carbon with some 

graphitic regions whereas N-CDs are predominantly composed of graphitic carbon           

with nitrogen incorporated into the core of the nanoparticles.134–136 The properties of                     

CD photosensitisers have been summarised in Table 6.1 and the absorbance spectra for         

0.3 mg mL-1 CD in 50 mM HEPES, 50 mM NaCl, pH 7 are shown in Fig. 6.1. 

 

Table 6.1 - Overview of CD photosensitisers used in this study. *Zeta potentials at pH 7 for CD-CO2
-
 

and CD-NHMe2
+
 and at pH 6 for N-CD. 

Photosensitiser Precursor 

Average 
particle 

diameter 
(nm) 

Zeta 
potential 

(mV)* 
Ref. 

CD-CO2
- 

 

Citric  
acid 

6.8 ± 2.3 -14 134 

CD-NHMe2
+

 

Citric  
acid 

6.4 ± 1.2 +18 135 

N-CD 

 

Aspartic 
acid 

3.1 ± 1.1 -23 136 
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Figure 6.1 - Absorbance spectra of CD photosensitisers used in this study. 0.3 mg mL
-1

 CD-CO2
-
 

(black), CD-NHMe2
+
 (red) and N-CD (blue) in 50 mM HEPES, 50 mM NaCl, pH 7 (pathlength 1 cm). 

 

CD-CO2
- and N-CD have been used as photosensitisers for light-driven H2-evolution with a 

nickel bis(diphosphine) electrocatalyst in the presence of EDTA as SED.134,136 Under 

comparable conditions, quantum yields of approximately 1.4 and 5.3 % were reported with 

CD-CO2
- and N-CD, respectively, using monochromatic light at 360 nm. The superior 

performance of N-CD compared to CD-CO2
- was attributed to enhanced light absorption 

and electron transfer rates. CD-CO2
- were also found to be compatible with a recyclable 

SED system comprised of TCEP and ascorbate for sustained light-driven H2-evolution over      

5 days.206 CD-NHMe2
+ have been used previously for light-driven reductive transformations 

with the purified fumarate reductase from MR-1 and the purified [NiFeSe]-hydrogenase 

from Desulfomicrobium baculatum as electrocatalysts and EDTA as SED.135 Efficient 

electron transfer from CD-NHMe2
+ to the enzymes was afforded by favourable electrostatic 

interactions between the two components and TONs (with respect to the amount of 

enzyme) of approximately 6000 (for succinate production after 24 hr) and 50000 (for H2 

production after 48 hr) were reported with the fumarate reductase and the hydrogenase, 

respectively. Based on the success of the previously reported systems, it was predicted that 

the CDs would have sufficient reducing potential for proton reduction (Em = -0.41 V)100 and 

electron transfer to outer membrane porin:cytochrome complexes such as MtrCAB            

(Em = -0.4 to +0.05 V).124 To confirm this, a series of spectrophotometric assays were 

performed to assess light-driven electron transfer from the CDs to three different electron 

acceptors under conditions compatible with MR-1 enzyme activity. Results from the assays 

are presented in the next section. 
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6.2.2 Photoreduction of electron acceptors under conditions 

compatible with Shewanella oneidensis MR-1 enzyme activity 

 

Spectrophotometric assays with CD photosensitisers were performed using MV2+, BV2+         

or purified MtrC (from MR-1) as electron acceptor with TEOA, EDTA or MES as SED.         

MV2+ and BV2+ (at final concentrations of 0.5 mM) were chosen as electron acceptors 

because they have reduction potentials comparable to those associated with chemical 

transformations of interest to this study (see Eq. 1.7 to 1.10).100,101,165 MtrC (at a final 

concentration of 0.6 µM = 6 µM heme) was chosen as an electron acceptor because it is 

produced by MR-1 after 24 hr acceptor-limited growth (see Fig. 4.22) and is localised to    

the outer surface of the bacterium (see section 1.6.2)119 so may be able to accept                

photo-excited electrons from CDs for subsequent electron transfer to bacterial enzymes.   

To prepare samples, anaerobic buffer (1 mL) was supplemented with the chosen CD, 

electron acceptor and SED within a N2-filled chamber and then irradiated (0.7 kW m-2) with 

the cold light source for 30 min (see sections 2.2 and 2.5). The effectiveness of TEOA and 

EDTA was assessed in 50 mM HEPES, 50 mM NaCl, pH 7 and parallel control experiments 

without TEOA or EDTA reflected the ability of HEPES to act as SED. The effectiveness of MES 

was assessed in 150 mM MES, pH 6 where it may act as both a pH buffering component           

and SED. Representative spectra recorded after 0, 15 and 30 min irradiation for each 

electron acceptor with N-CD in the presence of TEOA as SED are presented in Fig. 6.2.  

 

Figure 6.2 - Photoreduction of MV
2+

, BV
2+

 and MtrC by N-CDs with TEOA as SED. MV and BV: 

Representative spectra for 0.3 mg mL
-1

 N-CD with 50 mM TEOA recorded after 0 (black), 15 (grey) 

and 30 min (red) irradiation (0.7 kW m
-2

). Starting concentration of MV
2+

 and BV
2+

 was 0.5 mM. 

MtrC: Representative spectra for 0.13 mg mL
-1

 N-CD with 50 mM TEOA recorded after 0 (black),        

15 (grey) and 30 min (red) irradiation (0.7 kW m
-2

) and after an addition of excess DT (blue). Starting 

concentration of MtrC was 0.6 µM (= 6 µM heme). Anaerobic samples (1 mL) in 50 mM HEPES,          

50 mM NaCl, pH 7 (pathlength 1 cm). Irradiation provided by the cold light source. 

 

Upon irradiation, peaks appear around 600 nm (for assays with MV2+ and BV2+) or 420,      

523 and 552 nm (for assays with MtrC) corresponding to photoreduction of the electron 
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acceptors. The concentration of photo-produced MV+ and BV+ in samples was calculated 

using the Beer-Lambert law (see Eq. 2.1) with the known extinction coefficients at 600 nm 

(see section 2.5).157,159 MtrC heme photoreduction was quantified at 552 nm against the 

fully reduced cytochrome attained at the end of each experiment through the addition of 

excess DT. The extents of MV2+, BV2+ and MtrC heme photoreduction with each 

combination of CD and SED are shown in Fig. 6.3 and have been summarised below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 - Photoreduction of MV
2+

, BV
2+

 and MtrC by CD photosensitisers with different SEDs.         

A] Concentration of MV
+
 after 15 (white) and 30 min (grey) irradiation (0.7 kW m

-2
) of the indicated 

CD (0.3 mg mL
-1

) with either EDTA or TEOA at 50 mM or 150 mM MES. Starting concentration of 

MV
2+

 was 0.5 mM. B] As for A] but with BV
2+

 as electron acceptor. C] Concentration of reduced MtrC 

heme after 15 (white) and 30 min (grey) irradiation (0.7 kW m
-2

) of the indicated CD (0.13 mg mL
-1

) 

with either EDTA or TEOA at 50 mM or 150 mM MES. Starting concentration of MtrC was                   

0.6 µM (= 6 µM heme). Mean values from technical duplicates, error bars indicate maximum and                    

minimum. Some error bars are too small to resolve. Anaerobic samples (1 mL) in 50 mM HEPES,                    

50 mM NaCl, pH 7 or 150 mM MES, pH 6. Irradiation provided by the cold light source. 
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Very little photoreduction was observed for any electron acceptor in the 50 mM HEPES,        

50 mM NaCl, pH 7 buffer with no added SED. With added TEOA or EDTA as SED, the             

N-CD photosensitisers were most effective at photoreduction of all three electron 

acceptors. MES was not able to act as SED with MV2+ as electron acceptor and could only 

act as SED with BV2+ as electron acceptor in combination with N-CD. On the other hand, 

MES was able to act as SED for all CDs with MtrC as electron acceptor, which may reflect 

the lower concentration of MtrC in samples compared to MV2+ and BV2+. 

 

Overall, the results from spectrophotometric assays show that different combinations         

of CDs and SEDs can facilitate photoreduction of relevant electron acceptors under 

conditions compatible with MR-1 enzyme activity. This suggests that CD photosensitisers 

have sufficient reducing potential to achieve proton reduction in the presence of 

anaerobically grown MR-1 and other species of Shewanella. In the next section, results      

are presented from an evaluation of 12 wild-type Shewanella strains including a 

comparison of their genomes and quantification of hydrogenase activity after             

acceptor-limited growth. Particular strains were then chosen for further experiments that 

assessed light-driven H2-evolution with CD photosensitisers. 

 

6.3 Evaluation of Shewanella oneidensis MR-1 and other 

species of Shewanella for light-driven H2-evolution with carbon 

dot photosensitisers  

 

6.3.1 Genomic comparison of Shewanellaceae 

 

A variety of Shewanella strains (see Table 2.2), for which the genomes have been 

sequenced, were evaluated for their hydrogenase activity and ability to facilitate             

light-driven H2-evolution with CD photosensitisers. Based on their genomes, the bacteria 

differ in their capacity to produce particular sets of extracellular cytochromes and 

hydrogenases, as illustrated in Table 6.2 where comparison of the relevant genes            

was achieved using SyntTax software (http://archaea.u-psud.fr/synttax/)237 and Fredrickson         

et al. (2008).120 The genes encoding MtrCAB and the [NiFe]-hydrogenase are common to      
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all 12 strains whereas the genes encoding other extracellular cytochromes and the       

[FeFe]-hydrogenase are only present in the genomes of certain bacteria.           

      

Table 6.2 - Genomic comparison of Shewanellaceae showing the presence (✔) or absence (-) of 

genes encoding the indicated proteins. 

Shewanella 
strain 

MtrCAB MtrDEF OmcA1 OmcA2 UndA 
HydA 
[FeFe] 

HyaB 
[NiFe] 

oneidensis 
MR-1  

✔ ✔ ✔ - - ✔ ✔ 

oneidensis 
MR-4 

✔ ✔ ✔ - - ✔ ✔ 

oneidensis 
MR-7 

✔ ✔ ✔ - - - ✔ 

amazonensis 
SB2B 

✔ ✔ ✔ ✔ - - ✔ 

ANA-3 ✔ ✔ ✔ - - ✔ ✔ 

baltica 
OS185 

✔ ✔ ✔ - - - ✔ 

baltica 
OS195 

✔ ✔ ✔ - - - ✔ 

baltica 
OS223 

✔ ✔ - - ✔ - ✔ 

loihica  
PV-4 

✔ ✔ ✔ ✔ - - ✔ 

putrefaciens 
CN-32 

✔ - - - ✔ - ✔ 

putrefaciens 
200 

✔ - - - ✔ - ✔ 

putrefaciens 
W3-18-1 

✔ - - - ✔ - ✔ 

 

Differences in the production of extracellular cytochromes and other EPS (such as 

lipopolysaccharides) during growth (as well as sequence variations between protein 

homologs and the presence of bound metal ions) likely afford bacteria with distinct outer 

surfaces (with respect to their charge, morphology and hydrophobicity),137,233,238–240 some of 

which may promote productive interactions with CD photosensitisers for light-driven         

H2-evolution. For example, it was reported in Korenevsky et al. (2002) that the cell surface 

of aerobically grown Shewanella putrefaciens CN-32 (CN-32) is not capsulated and lacks 
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fibrous material (i.e. does not possess extensive arrays of long-branched 

lipopolysaccharides), in contrast to MR-1, Shewanella oneidensis MR-4 (MR-4) and 

Shewanella amazonensis SB2B (SB2B), which may support adhesion of the bacterium to 

inanimate surfaces such as iron oxides.238 It was also shown in Korenevsky et al. (2007) that 

aerobically grown CN-32 has a more positive zeta potential and is more hydrophobic than 

other Shewanella strains such as MR-1 and MR-4.233 Furthermore, it is likely that the strains 

differ in their hydrogenase content and activity as well as their ability to produce natural 

electron shuttles such as flavins and soluble periplasmic cytochromes, including the       

small tetraheme cytochrome (STC),109,127 which may aid or hinder electron transfer to the 

hydrogenases. To quantify the differences in hydrogenase activity between the strains, 

spectrophotometric H2 oxidation assays were performed after culturing bacteria under 

acceptor-limited conditions. Results from the assays are presented in the next section. 

 

6.3.2 Hydrogenase activity of Shewanellaceae after anaerobic, 

acceptor-limited growth 

 

To assess hydrogenase activity, the Shewanella strains were first cultured under    

anaerobic conditions with an excess of lactate to fumarate and the OD590nm of bacteria was 

measured periodically to monitor growth (see section 2.3.3). Results from the analysis are 

shown in Fig. 6.4 (data were obtained by Mr. Jack Day [University of East Anglia, UK]).     

The OD590nm was not recorded during overnight incubations so data points have only been 

connected on consecutive hours and the growth curves have been grouped based on the 

OD590nm measured at the end of the experiment. The results with MR-1 are comparable to 

those shown in chapter 3 (see Fig. 3.1). For the majority of the other strains, the OD590nm 

increased following inoculation then plateaued after approximately 4 to 7 hours.             

After overnight incubation, the OD590nm decreased (to a significant extent in some cases) 

suggesting a reduction in the amount and/or size of bacteria. The OD590nm then remained 

relatively stable up to 48 hr. Spectrophotometric H2 oxidation assays (see section 2.5.1) 

were performed using bacteria which had been cultured under acceptor-limited conditions 

for 20 hr then harvested from growth medium and re-suspended in 50 mM HEPES,             

50 mM NaCl, pH 7 to an OD590nm between 0.18 and 0.24. Mean H2 oxidation rates 

(normalised to total protein using a BCA assay, see section 2.3.4) for all strains are shown in 

Fig. 6.5 (data were obtained by Mr. Jack Day [University of East Anglia, UK]). All bacterial 

strains were able to oxidise H2 but there were significant differences in the initial oxidation 
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rates suggesting variations in hydrogenase content and/or activity. However, there was no 

clear correlation between the H2 oxidation rates and the relative OD590nm endpoint        

during anaerobic growth (see Fig. 6.4) or the capacity for bacteria to produce the                     

[FeFe]-hydrogenase in addition to the [NiFe]-hydrogenase (see Table 6.2). 

 

 

 

 

Figure 6.4 - Anaerobic growth of Shewanellaceae with 37.5 mM lactate as electron donor and        

18.8 mM fumarate as electron acceptor. Optical density at 590 nm for strains which exhibit a higher 

(left) or lower (right) relative endpoint. Inoculation at 0 hr of M72 medium (10 mL) supplemented 

with anaerobic growth additions. Samples had 7 mL headspace (100 % N2 at inoculation). Optical 

densities are mean values from 3 biological replicates, error bars indicate standard error. Lines serve 

as a guide to the eye, the majority of error bars are too small to resolve. Data obtained by Mr. Jack 

Day (University of East Anglia, UK). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 - Initial rates of H2 oxidation coupled to BV reduction by Shewanellaceae after 20 hr 

acceptor-limited growth. Rates are mean values from 4 (MR-1, MR-4, ANA-3 OS223, CN-32),                 

3 (SB2B, OS185, 200) or 2 (MR-7, OS195, PV-4, W3-18-1) biological replicates with standard error 

(normalised to total protein). Anaerobic samples in 0.5 mM BV, 50 mM HEPES, 50 mM NaCl, pH 7. 

Data obtained by Mr. Jack Day (University of East Anglia, UK). 
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Overall, the findings in this section show that multiple species of Shewanella can be 

cultured under acceptor-limited conditions to produce hydrogenases active in H2 oxidation. 

Based on the results, MR-4, SB2B, Shewanella loihica PV-4 (PV-4), CN-32 and Shewanella 

putrefaciens 200 (200) are of interest to be assessed for light-driven H2-evolution              

with CD photosensitisers because they display faster rates of H2 oxidation relative to                    

MR-1, suggesting increased hydrogenase content. Furthermore, MR-4 and CN-32                  

(in addition to MR-1) are of particular interest because they grow to a relatively                

high OD590nm after 24 hr acceptor-limited growth meaning the yields of cellular material     

for subsequent experiments are greater than for the other strains. In the next section, 

results are presented from a preliminary assessment of light-driven H2-evolution by MR-1, 

MR-4 and CN-32 with CD photosensitisers. 

 

6.3.3 Preliminary assessment of light-driven H2-evolution by 

Shewanellaceae 

 

To assess light-driven H2-evolution by MR-1, MR-4 and CN-32 with CD photosensitisers, 

bacteria were cultured under acceptor-limited conditions for 24 hr then headspace H2 in 

Hungate tubes was quantified using GC (see section 2.4.1) to provide confirmation that 

hydrogenases active in proton reduction had been produced. Next, bacteria were 

harvested and re-suspended in anaerobic 50 mM HEPES, 50 mM NaCl, pH 7 in a N2-filled 

chamber (see section 2.3.7) then samples (1 mL, OD590nm ≈0.3) were supplemented with    

0.5 mg mL-1 N-CD and 50 mM TEOA. For the experiments, N-CD were used as 

photosensitisers because they showed faster rates of MV2+, BV2+ and MtrC heme 

photoreduction compared to CD-CO2
- and CD-NHMe2

+ (see Fig. 6.3) and TEOA was used as 

SED to allow a direct comparison with results presented in chapter 4. Reaction suspensions 

were transferred to clear glass vials with 4 mL gaseous headspace (initially 100 % N2)         

and irradiated (0.7 kW m-2) for 4 hr with the cold light source. At the end of the irradiation 

period, headspace H2 was quantified using GC. Results from the analysis (normalised to 

total protein) are shown in Fig. 6.6 with equivalent data for samples that contained no 

bacteria, HydA-/HyaB- or Mtr- (prepared as described above). Each data point corresponds 

to H2 production by a different biological sample. The amount of headspace H2 produced 

after 24 hr acceptor-limited growth is plotted against the left axis (black squares) and the 

amount of headspace H2 produced after 4 hr irradiation in the presence of N-CD and TEOA 

is plotted against the right axis (red crosses). No headspace H2 was detected for parallel 
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control experiments containing Shewanellaceae (OD590nm ≈0.3), 0.5 mg mL-1 N-CD and           

50 mM TEOA in 50 mM HEPES, 50 mM NaCl, pH 7 after 4 hr incubation in the dark. 

 

 

 

 

Figure 6.6 - Assessment of light-driven H2-evolution by Shewanellaceae with N-CD. Left axis         

(black squares): Headspace H2 (normalised to total protein) for the indicated strain after 24 hr 

anaerobic growth in Hungate tubes with 37.5 mM lactate as electron donor and 18.8 mM fumarate 

as electron acceptor. Right axis (red crosses): Headspace H2 (normalised to total protein) after 4 hr 

continuous irradiation (0.7 kW m
-2

) for the indicated strain (OD590nm ≈0.3) with 50 mM TEOA and    

0.5 mg mL
-1

 N-CD. Anaerobic samples (1 mL) in 50 mM HEPES, 50 mM NaCl, pH 7 at room 

temperature. Irradiation provided by the cold light source.  

 

In general, the results from the assessment of light-driven H2-evolution with N-CD 

photosensitisers were variable. With MR-1 and MR-4, only two out of the four samples 

facilitated light-driven H2-evolution (see Fig. 6.6, red crosses) despite the detection of 

headspace H2 in all Hungate tubes after 24 hr acceptor-limited growth (see Fig. 6.6, black 

squares), confirming the production of active hydrogenases. In contrast, all samples 

containing CN-32 were found to facilitate light-driven H2-evolution. These observations 

may reflect the fact that different biological samples of MR-1 and MR-4 vary significantly 

with respect to the production of extracellular cytochromes, EPS and/or periplasmic redox 

partners. These changes may impact the system if a particular cell surface physicochemistry 

affords close interactions with N-CD for photoreduction of bacterial electron acceptors or if 

specific bacterial redox partners are essential for electron transfer across the outer 

membrane and periplasmic space to the hydrogenases. Alternatively, it is possible that     

CN-32 is particularly suitable for light-driven H2-evolution with N-CD photosensitisers.       

For example, CN-32 produced approximately 2-fold more headspace H2 after 24 hr 

acceptor-limited growth compared to MR-1 and MR-4 suggesting increased hydrogenase 

content for proton reduction. It is also possible that the outer surface of CN-32 is more 
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accessible to N-CD for photoreduction of bacterial electron acceptors due to a lack of 

fibrous material extending from the outer membrane, in contrast to MR-1 and MR-4 (see 

section 6.3.1).238 Overall, the preliminary results in this section are encouraging, particularly 

with CN-32, because light-driven H2-evolution can be achieved using TEOA and N-CD in the 

absence of MV. However, more work clearly needs to be done to assess the determinants 

of the system and to understand the variability between biological samples of Shewanella 

strains. Some proposals for future experiments are discussed in the next section. 

 

6.4 Discussion 

 

In this chapter, N-CD were revealed as superior photosensitisers to CD-CO2
- and CD-NHMe2

+ 

in spectrophotometric assays that quantified the photoreduction of MV2+, BV2+ and purified 

MtrC (see Fig. 6.3). The results most likely reflect enhanced light absorption at  

wavelengths > 400 nm (see Fig. 6.1) and/or more efficient electron transfer via reductive or 

oxidative quenching of the excited state (see Fig. 4.2) for N-CD compared to the other CDs. 

However, the relevant (photo-)reduction potentials for CDs have not been determined 

experimentally at the time of writing. The rate of MV2+ photoreduction by N-CD in the 

presence of TEOA was slow compared to analogous experiments performed with eosin Y   

or proflavine as photosensitiser but correlated well with assays containing fluorescein,  

Ru(bpy)3
2+ or RuP (see Fig. 4.6). On the other hand, the extent of MtrC heme 

photoreduction by N-CD was comparable to experiments performed with eosin Y as 

described in Ainsworth et al. (2016).132 Overall, the results showed that N-CD should have 

sufficient reducing potential to drive proton reduction by Shewanellaceae. 

 

12 wild-type Shewanella strains were screened in this chapter to take advantage of 

variations in the charge, morphology and hydrophobicity of their outer surfaces which may 

support close and stable interactions with N-CD for light-driven H2-evolution. Some of        

these variations have been investigated previously (see section 6.3.1) and were         

attributed to differences in the production of extracellular cytochromes and 

lipopolysaccharides.233,238,239 All species of Shewanella showed hydrogenase activity after           

20 hr acceptor-limited growth but only MR-1, MR-4 and CN-32 displayed fast rates of          

H2 oxidation coupled with high yields of cellular material during anaerobic growth             

(see Fig. 6.4 and 6.5). However, light-driven H2-evolution with N-CD photosensitisers in the 

presence of TEOA as SED gave variable results with both MR-1 and MR-4 under identical 
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experimental conditions whereas results with CN-32 were more reproducible (see Fig. 6.6). 

An analysis of headspace gases after 24 hr acceptor-limited growth confirmed that these 

observations did not reflect a lack of hydrogenase activity. Instead, it is possible that 

different biological samples of MR-1 and MR-4 vary with respect to their surface 

physicochemistry and/or the production of periplasmic redox partners such as STC or         

the fumarate reductase (which have both been shown to interact with MtrA and           

CymA in vitro)109 required for productive electron transfer from N-CD to the     

hydrogenases. To test this, the zeta potential of anaerobically grown Shewanella strains 

could be measured to evaluate differences related to the charge of cell surfaces and          

the variations in bacterial EPS production could be monitored using microscopy after 

staining bacteria with a ruthenium red dye, as reported in Kouzuma et al. (2010).241 

Additionally, Western blotting could be used to quantify production of extracellular 

cytochromes and STC after 24 hr acceptor-limited growth and spectrophotometric assays 

could be used to quantify the activity of the fumarate reductase. Taken together, results 

from the assays described above may indicate that variations of Shewanella samples    

hinder light-driven H2-evolution with N-CD due to differences in cell surface properties 

and/or the production of bacterial redox partners. 

 

To extend the analysis, additional experiments could be performed to determine the   

routes by which photo-energised electrons are transferred from N-CD to bacterial 

hydrogenases. Two predominant pathways can be envisioned for this process, as shown in 

Fig. 6.7.  On the one hand, it is possible that N-CD closely associate with the outer surface 

of bacteria and transfer electrons into the periplasm via MtrC and MtrA (or other 

porin:cytochrome complexes if present). Electrons could then be delivered to CymA via 

periplasmic redox partners for cycling of MK and MKH2 which results in proton reduction. 

This mechanism is feasible because N-CD have an average diameter (see Table 6.1)136 

comparable to the size of MtrC (approximately 4 x 7 x 9 nm)137 making them less likely to          

cross the outer membrane than small molecules such as eosin Y and MV. On the other 

hand, the size distribution of N-CD is relatively broad136 meaning that smaller nanoparticles 

may be able to enter the periplasm and transfer electrons directly to CymA, particularly if 

the experimental conditions affect the integrity of the outer membrane or cause bacteria 

to lyse. To experimentally determine the mechanism(s) for light-driven electron transfer,       

a series of CN-32 mutants systematically lacking extracellular cytochromes and/or 

periplasmic redox partners could be produced to see whether the absence of particular 
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proteins completely inhibits electron transfer to the hydrogenases. The system could also 

be directly compared with the MV-mediated approach by irradiating samples with the cold 

light source over 96 hr and periodically performing spectrophotometric enzyme assays on 

re-suspended cellular material and supernatants, similar to the work described in sections 

4.5 and 5.5. This would reveal whether the localisation of membrane-bound and soluble 

enzymes varies under extended periods of irradiation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.7 - General schematic for light-driven H2-evolution by Shewanellaceae with N-CD 

photosensitisers. Photon (hν) absorption by N-CD in the presence of TEOA leads to direct or indirect 

electron transfer to CymA for subsequent proton reduction by the hydrogenases. See text for 

details. IM = inner membrane, OM = outer membrane, H2ase = hydrogenase, MK = menaquinone, 

MKH2 = menaquinol, TEOA = triethanolamine. 

 

To conclude, the preliminary findings in this chapter provide a basis for sustainable            

cell-based photocatalysis with MR-1 and other species of Shewanella but further 

experiments are required to understand the variability of the system and elucidate the 

pathways for light-driven electron transfer from N-CD to bacterial hydrogenases. In the 

next chapter, a summary of the work in this thesis is presented to highlight key 

accomplishments and future experiments are discussed to showcase the opportunities for 

light-driven chemical synthesis with Shewanellaceae and other species of bacteria.  
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Chapter 7 - Summary and Future Perspectives 

 

To avoid the harmful environmental impacts of accessing fossil reserves, new technologies 

that harness solar energy must be developed for the sustainable production of valuable 

chemicals including fuels (see sections 1.2 and 1.3). Plants and photosynthetic                

micro-organisms can drive the production of complex chemicals using sunlight and have 

provided inspiration for research into artificial systems that aim to mimic and improve 

upon natural photosynthesis using a SED and photosensitiser to generate photo-energised 

electrons and an electrocatalyst to perform a reductive chemical transformation                

(see sections 1.4 and 1.5). In particular, whole-cell bacteria have emerged as effective 

electrocatalysts for artificial photosynthesis because they provide opportunities for 

sustained chemical synthesis and the formation of multiple products (see section 1.6).         

In this thesis, a system for cell-based photocatalysis was developed with the                    

non-photosynthetic bacterium MR-1 where MV shuttles photo-energised electrons from 

water-compatible dyes to bacterial enzymes for the reduction of protons, fumarate, 

pyruvate and CO2 to H2, succinate, lactate and formate, respectively. Preliminary work was 

also carried out to assess the possibility of light-driven H2-evolution with MR-1 and other 

species of Shewanella using N-CD photosensitisers in the absence of MV. The key findings 

from this work are summarised below and further experiments are discussed to show how 

these results could be expanded upon in the future. 

 

The results in chapter 3 provided a platform for the subsequent work in the thesis by 

confirming that MR-1 could be cultured under a single growth condition to afford              

the simultaneous presence of active hydrogenases, fumarate reductase, lactate 

dehydrogenases and formate dehydrogenases. In addition, spectrophotometric enzyme 

assays, GC, H2-evolution assays within the chamber of a H2-sensing electrode and 1H-NMR 

analysis were all established as effective techniques for quantification of enzyme activity 

and formation of the desired products. The work also revealed that MV was a suitable 

electron shuttle for MR-1 enzymes, including those localised to the cytoplasm. In chapter 4,         

TEOA was shown to be an effective SED in combination with water-compatible dyes for 

photoreduction of MV2+ and light-driven H2-evolution in the presence of anaerobically 

grown MR-1. An assessment of the determinants of the system suggested the rate-defining 

events were photosensitiser-dependent rather than hydrogenase-dependent and 

highlighted a major advantage and disadvantage of the MV-mediated approach to            
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cell-based photocatalysis, namely, that the use of MV affords versatility because electrons 

can be transferred across the outer membrane of bacteria lacking porin:cytochrome 

complexes but that photocatalysis comes at the detriment of cell viability. The results in 

chapter 5 showed that MR-1 could drive the reduction of carbon substrates from         

photo-produced MV+ to give a well-defined distribution of products in relatively high yields. 

The work also demonstrated that photo-production of formate could be enhanced through 

changes to the experimental set-up or genetic manipulation of MR-1. Overall, the              

MV-mediated system represents an interesting proof-of-principle approach to light-driven 

chemical synthesis because a selectable product range can be accessed using bacteria 

cultured under a single growth condition without the need for costly and time-consuming 

enzyme purification. The loss of cell viability during photocatalysis is undesirable because 

soluble enzymes are released from the periplasm (see Fig. 5.7) and bacteria are rendered 

incapable of self-regeneration but, significantly, this did not prevent the desired reductive 

transformations from taking place. Consequently, it should be possible to develop the 

system further in a number of ways, as detailed below.  

 

First, it may be possible to improve the efficiency of light-driven reductive transformations 

by optimising conditions for photoreduction of MV2+, where the quantum yield was low 

with both eosin Y and Ru(bpy)3
2+ compared to results reported previously (see sections     

4.3 and 4.7).198,200 For example, the concentrations of TEOA, the photosensitiser and/or MV 

could be changed or experiments could be performed in a different buffer. Alternatively, 

new photosensitisers such as Rose Bengal (or other xanthene-dyes)242,243 or metal 

porphyrins and phthalocyanines244 could be screened with each SED (see Table 4.3).              

A similar optimisation of reaction conditions was reported recently in Honda et al. (2017) to 

enhance light-driven H2-evolution by a hydrogenase-producing E. coli strain (see Table 1.5,      

example A) where changing the photosensitiser from anatase titanium dioxide to P-25 

titanium dioxide increased the quantum yield from 0.3 to 26.4 % (with monochromatic light 

at 300 nm).245 Another way to improve the efficiency of photocatalysis could be to vary the 

growth conditions (e.g. growth medium, incubation time, concentrations of electron donor 

and acceptor) to favour production of particular enzymes by MR-1. This could include 

culturing MR-1 under acceptor-limited conditions for > 24 hr before harvesting bacteria for  

increased formation of the [FeFe]-hydrogenase, as reported in Kreuzer et al. (2014),97 or 

using formate as electron donor instead of lactate to evaluate whether expression of the 

genes encoding the formate dehydrogenases is increased. 
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Whilst it is advantageous that wild-type MR-1 can be used to drive four reductive 

transformations, there are opportunities to develop the MV-mediated system further using 

genetically modified MR-1 strains or different species of bacteria. For example, it may be 

possible to knockout multiple genes encoding proteins that act as undesirable electron 

acceptors to direct electrons towards particular enzymes, as shown in section 5.4 for 

photo-production of formate using the HydA-/HyaB- variant. The use of arabinose-inducible 

over-expression strains (such as the MR-1 mutant reported in Shi et al. (2011) capable of 

over-expressing the genes encoding the [NiFe]-hydrogenase)98 may also represent a way      

to significantly increase production of the enzymes of interest by the bacterium.   

Alternatively, it may be possible to engineer mutant strains of MR-1 that can produce    

non-native (recombinant) enzymes to evaluate whether they display faster rates of 

photocatalysis than MR-1 enzymes. An example of a potential strain for this work was 

reported in Sybirna et al. (2008) where the [FeFe]-hydrogenase from Chlamydomonas 

reinhardtii was produced by MR-1.138 Another possibility would be to generate mutant     

MR-1 strains capable of producing cytochrome P450s for stereospecific mono-oxygenation 

reactions. A comparable approach was reported previously in Park et al. (2015) where          

E. coli was engineered to produce a range of bacterial and human cytochrome P450s          

for light-driven transformations of drugs and steroids.78 To avoid recombinant gene 

expression, the MV-mediated system could be used in combination with different species 

of bacteria because porin:cytochrome complexes are not required for electron transfer 

across the outer membrane (see section 4.6). As an example, the native nitrous oxide 

reductase in Paracoccus denitrificans (a model bacterium for denitrification)246,247 could be 

targeted for the reduction of nitrous oxide to N2, which represents removal of a            

potent greenhouse gas from the atmosphere.  

 

An alternative way to develop the MV-mediated system further would be to find 

experimental conditions that do not cause a significant decrease in bacterial viability during 

photocatalysis (see section 4.4.4). This would afford a more sustainable, self-regenerating 

system where living bacteria can replace or repair enzymes as necessary. This could be 

achieved by performing experiments in M72 medium rather than buffer (see section 4.7)   

or by using different combinations of photosensitisers and SEDs (see Table 4.1 and 4.3). 

However, a balance would have to be found between the rates of light-driven electron 

transfer and the impact on cell viability. On the other hand, photo-production of MV+ could 

be achieved with a (photo-)cathode to avoid using a vast excess of TEOA which generates 
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radical species upon oxidation (see Fig. 4.16). It would also be interesting to assess 

different electron transfer mediators to see whether they have less of an impact on cell 

viability than MV. Potential reagents include common soluble mediators added to    

microbial fuel cells such as neutral red or anthraquinone-2,6-disulfonate (AQDS)248 and         

membrane-intercalating mediators such as those based on the ferrocene moiety.249 

However, if the mediator has a more positive reduction potential than the MV2+/+ couple 

then it may not be able to facilitate thermodynamically demanding reactions such as         

H2-evolution and CO2-reduction. In the ideal case, it would be possible to perform           

light-driven reductive transformations without an exogenous electron shuttle to reduce 

complexity and avoid any issues with toxicity caused by mediators. The possibility for such 

a strategy was assessed in chapter 6 using new-generation CD photosensitisers which can 

be synthesised using cheap and abundant precursors.134–136 The preliminary work revealed 

that N-CD were particularly effective photosensitisers because they showed relatively fast 

rates of MV2+, BV2+ and MtrC heme photoreduction in combination with a range of SEDs. 

Furthermore, it was found that different species of Shewanella can be cultured under 

acceptor-limited conditions for the production of active hydrogenases. Light-driven            

H2-evolution was reproducibly facilitated by CN-32 but inconsistent results were seen with 

MR-1 and MR-4, which may be due to the variations of biological samples. As such, further 

experiments are required to investigate the variability and determinants of the system, as 

discussed in section 6.4. Once a better understanding of the system has been realised, the 

biocompatibility of this approach to cell-based photocatalysis could be assessed by 

measuring CFU mL-1 (or using a live/dead bacterial viability stain)250 after incubating 

bacteria with TEOA and N-CD under irradiation. Furthermore, it would be useful to 

calculate quantum yields through the irradiation of samples with a fixed wavelength of light 

(see sections 4.3 and 4.5) and investigate the (sustained) photocatalytic reduction of 

carbon substrates to provide a comprehensive comparison with the MV-mediated system. 

 

Finally, there are future opportunities to directly exploit porin:cytochrome complexes for 

cell-based photocatalysis with Shewanellaceae by covalently attaching a photosensitiser to 

an extracellular cytochrome. This approach could use photosensitisers such as Ru(bpy)3
2+ or 

fluorescein derivatives linked to the surface of extracellular cytochromes via thiol, amine or 

carboxylic acid groups.67,251,252 This may allow for rapid electron transfer across the 

bacterial outer membrane due to the close proximity of the photosensitiser to the hemes 

of the extracellular cytochrome. If the photosensitisers cannot be directly attached to 
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bacteria in vivo, photosensitiser-modified cytochromes could be produced in vitro and then 

combined with bacteria to form functional, light-harvesting porin:cytochrome complexes, 

as illustrated in Fig. 7.1 with the MtrCAB complex. To aid in the attachment of 

photosensitisers (or photosensitiser-modified extracellular cytochromes) to the outer 

surface of bacteria, experimental protocols are available for the removal of EPS from 

Shewanellaceae with little impact on cell viability (e.g. by using heat treatment at 40 °C).253 

Additionally, it was reported in De Windt et al. (2005) that MR-1 can couple the oxidation 

of electron donors to the reduction of soluble palladium (II), resulting in the formation of 

palladium (0) nanoparticles localised to the outer surface of the bacterium and the 

periplasm.254 Such a process may provide an additional, biologically-produced surface 

which exogenous photosensitisers could be attached to. 

 

 

 

 

 

 

 

 

 

Figure 7.1 - General schematic for solar-chemicals production with Shewanellaceae using a 

photosensitiser-modified MtrC. Left: Combination of a photosensitiser-modified MtrC with a mutant 

Shewanella strain lacking native MtrC. Right: Photon (hν) absorption by the photosensitiser in          

the presence of a SED drives electron transfer into the periplasm. OM = outer membrane,                  

PS = photosensitiser, SED = sacrificial electron donor. 

 

Overall, it is envisioned that this type of approach to cell-based photocatalysis would be     

inherently biocompatible because it is designed to take advantage of the native electron 

transfer capabilities of Shewanellaceae. Work in this area of research is ongoing at the 

University of East Anglia, UK for the development of bespoke and sustainable approaches 

to light-driven chemical synthesis with whole-cell bacteria. 
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