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Abstract An important problem in phylogenetics is the construction of phylogenetic
trees. One way to approach this problem, known as the supertree method, involves
inferring a phylogenetic tree with leaves consisting of a set X of species from a
collection of trees, each having leaf-set some subset of X . In the 1980s, Colonius
and Schulze gave certain inference rules for deciding when a collection of 4-leaved
trees, one for each 4-element subset of X , can be simultaneously displayed by a single
supertree with leaf-set X . Recently, it has become of interest to extend this and related
results to phylogenetic networks. These are a generalization of phylogenetic trees
which can be used to represent reticulate evolution (where species can come together
to form a new species). It has recently been shown that a certain type of phylogenetic
network, called a (unrooted) level-1 network, can essentially be constructed from 4-
leaved trees. However, the problem of providing appropriate inference rules for such
networks remains unresolved. Here, we show that by considering 4-leaved networks,
called quarnets, as opposed to 4-leaved trees, it is possible to provide such rules. In
particular, we show that these rules can be used to characterize when a collection of
quarnets, one for each 4-element subset of X , can all be simultaneously displayed

B Katharina T. Huber
k.huber@uea.ac.uk

Vincent Moulton
v.moulton@uea.ac.uk

Charles Semple
charles.semple@canterbury.ac.nz

Taoyang Wu
taoyang.wu@uea.ac.uk

1 School of Computing Sciences, University of East Anglia, Norwich, UK

2 Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-018-0450-2&domain=pdf


K. T. Huber et al.

by a level-1 network with leaf-set X . The rules are an intriguing mixture of tree
inference rules, and an inference rule for building up a cyclic ordering of X from
orderings on subsets of X of size 4. This opens up several new directions of research for
inferring phylogenetic networks from smaller ones, which could yield new algorithms
for solving the supernetwork problem in phylogenetics.

Keywords Inference rules · Phylogenetic network · Quartet trees · Closure · Cyclic
orderings · Level-1 network · Quarnet · Qnet

1 Introduction

One of the main goals in phylogenetics is to develop methods for constructing evolu-
tionary trees, the tree-of-life being a prime example of such a tree (Letunic and Bork
2016). Mathematically speaking, for a set X of species, a phylogenetic X -tree is a
(graph theoretical) tree with leaf-set X and no degree-2 vertices; it is binary if every
internal vertex has degree three. A popular approach to constructing such trees, called
the supertree method, is to build them up from smaller trees (Bininda-Emonds 2014).
The smallest possible trees that can be used in this approach are quartet trees, that is,
binary phylogenetic trees having 4 leaves (see e.g. Fig. 1 for the quartet tree ab|cd
with leaf-set {a, b, c, d} ⊆ X ). Thus, it is natural to ask the following question: How
should we decide whether or not it possible to simultaneously display all of the quartet
trees in a given collection Q of quartet trees by some phylogenetic tree?

In case the collection Q consists of a quartet tree for every possible subset of
X of size 4 (which we denote by

(X
4

)
), this problem has an elegant solution that was

originally presented by Colonius and Schulze (1981) (see also Bandelt and Dress 1986
for related results). We present full details in Theorem 1, but essentially their result
states that, given a collection of quartet trees Q, one for each element in

(X
4

)
, there

exists (a necessarily unique) binary phylogenetic X -tree displaying every quartet tree
in the collection if and only if when the quartet trees ab|cx and ab|xd are contained in
Q then so is the quartet tree ab|cd. Rules such as ab|cx plus ab|xd implies ab|cd are
known as inference rules, and they have been extensively studied in the phylogenetics
literature (see e.g. Semple and Steel 2003, Chapter 6.7 and the references therein).
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Fig. 1 i A level-1 phylogenetic network with leaf-set X = {a, b, . . . , h}. ii Top: a quartet tree with leaf-set
{a, b, c, d}, also denoted by ab|cd. Bottom: a quarnet with leaf-set {a, c, h, g}. Both the quartet tree and
quarnet are displayed by the level-1 network in i
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Although phylogenetic trees are extremely useful for representing evolutionary
histories, in certain circumstances they can be inadequate. For example, when two
viruses recombine to form a new virus (e.g. swine flu), this is not best represented by
a tree as it involves species combining together to form a new one rather than splitting
apart. In such cases, phylogenetic networks provide a more accurate alternative to
trees and there has been much recent work on such structures (see e.g. Steel 2016,
Chapter 10 for a recent review).

In this paper, we will consider properties of a particular type of phylogenetic net-
work called a level-1 network (Gambette et al. 2012).1 For a set X of species, this
is a connected graph with leaf-set X and such that every maximal subgraph with no
cut-edge is either a vertex or a cycle (see Sect. 2 formore details). Ourmain results will
apply to binary level-1 networks, where we also assume that every vertex has degree
1 or 3. We present an example of such a network in Fig. 1. Note that a phylogenetic
X -tree is a special example of a level-1 network with leaf-set X . As with phylogenetic
X -trees, it is possible to construct level-1 networks from quartets (Gambette et al.
2012). However, it has been pointed out that there are problems with understanding
such networks in terms of inference rules (see e.g. Keijsper and Pendavingh 2014,
p. 2540).

Here, we circumvent these problems by considering a certain type of subnetwork of
level-1 network called a quarnet instead of using quartet trees. A quarnet is a 4-leaved,
binary, level-1 network (see e.g. Fig. 1); they are displayed by binary level-1 networks
in a similar way to quartets (see Sect. 3 for details). As we shall see, quarnets naturally
lead to inference rules for level-1 networkswhich can be thought of as a combination of
quartet inference and inference rules for building circular orderings of a set. Moreover,
in our main result we show that, just as with phylogenetic trees, the quarnet inference
rules that we introduce can be used to characterize when a collection of quarnets, one
for each element in

(X
4

)
, is equal to the set of quarnets displayed by a binary level-1

network with leaf-set X .
We now summarize the contents of the rest of the paper. In the next section, we

present some preliminaries concerning phylogenetic trees and level-1 networks, as
well as their relationship with quartets. Then, in Sect. 3, we prove an analogous
theorem to the quartet results of Colonius and Schulze for level-1 networks (The-
orem 2). In Sect. 4, we use Theorem 2 to provide a characterization for when a set of
quartets, one for each element of

(X
4

)
, can be displayed by a binary level-1 network

(Theorem 3). In Sect. 5, we then define the closure of a set of quarnets. This can be
thought of as the collection of quarnets that is obtained by applying inference rules to
a given collection of quarnets until no further quarnets are generated. We show that
this has similar properties to the so-called semi-dyadic closure of a set of quartets
(see Theorem 4). We conclude with a brief discussion of some possible further
directions.

1 Note that this concept was first introduced for rooted networks—see Jansson and Sung (2004) for more
details
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2 Preliminaries

In this section, we review some definitions as well as results concerning the connection
between phylogenetic trees and quartets. From now on, we assume that X is a finite
set with |X | ≥ 2.

2.1 Definitions

An unrooted phylogenetic network N (on X) (or network N (on X) for short) is a
connected graph (V, E) with X ⊆ V , every vertex has either degree 1 or degree at
least 3, and the set of degree-1 vertices is X . The elements in X are the leaves of N . We
also denote the leaf-set of N by L(N ). The network is called binary if every vertex in
N has degree 1 or 3. An interior vertex of N is a vertex that is not a leaf. A cherry in N
is a pair of leaves that are adjacent with the same vertex. Two phylogenetic networks
N and N ′ on X are isomorphic if there exists a graph theoretical isomorphism between
N and N ′ whose restriction to X is the identity map.

Note that a phylogenetic (X-) tree is a network which is also a tree. For any three
vertices u1, u2, u3 in such a tree T , their median, denoted by med(u1, u2, u3) =
medT (u1, u2, u3), is the unique vertex in T that is contained in every path between
any two vertices in {u1, u2, u3}.

A cut-vertex of a network is a vertex whose removal disconnects the network, and a
cut-edge of a network is an edge whose removal disconnects the network. A cut-edge
is trivial if one of the connected components induced by removing the cut-edge is a
vertex (which must necessarily be a leaf). A network is simple if all of the cut-edges
are trivial (so for instance, note that phylogenetic trees with more than three leaves
are not simple networks). A network N is level-1 if every maximal subgraph in N that
has no cut-edge is either a vertex or a cycle. Note that we shall say that a network N
on X , where |X | ≥ 3, is of cycle type if it contains a unique cycle of length |X |, and
the number of vertices in N is 2|X | (so in particular, a network is of cycle type if it is
simple, binary, level-1 and is not a phylogenetic tree).

In what follows it will be useful to consider a certain type of operation on a level-1
network, which we define as follows. For a level-1 network N on X , let u be an interior
vertex of N that is not contained in any cycle in N . Furthermore, let (v1, v2, . . . , vk),
where k ≥ 3, be a circular ordering of the set of vertices in N that are adjacent to u.
Then, we obtain a new network N ′ on X from N by removing vertex u and all edges
incident with it and inserting new vertices ui and new edges {ui , vi } and {ui , ui+1}
for all 1 ≤ i ≤ k (see Fig. 2). Here, we use the convention that k + 1 is identified
with 1. We say that N ′ is obtained from N by a blow-up operation on u (using the
given circular ordering of its neighbours). Note that N ′ is a level-1 network with
one more cycle than N . Note that blow-up operations on the same vertex but with
different circular orderings of its neighbours may lead to non-isomorphic networks.
We illustrate a blow-up operation in Fig. 2.
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Fig. 2 Example of blow-up operations: N ′ is obtained from N by a blow-up operation on u

2.2 Quartets, Trees and Networks

We now briefly recall some notation and results concerning quartet systems (for more
details see Dress et al. 2012, Chapter 3).

Although quartets are often considered as being 4-leaved trees, here it is more
convenient to consider a quartet Q to be a partition of a subset Y of X of size 4 into
two subsets of size 2. The set Y is called the support of Q. If Q = {{a, b}, {c, d}} for
a, b, c, d ∈ X distinct, we denote Q by ab|cd. The set of all quartets on X is denoted
by Q(X), and any non-empty subset Q ⊆ Q(X) is called a quartet system (on X ).
Given a quartet system Q on X and a subset Y ∈ (X

4

)
, let m(Y ) = mQ(Y ) be the

number of quartets in Q whose support is Y . For simplicity, we write m({a, b, c, d})
as m(a, b, c, d). If m(Y ) ≥ 1 for every subset Y ∈ (X

4

)
, then Q is said to be dense.

Following the terminology in Dress et al. (2012), a quartet system Q is:

– thin if no pair of quartets in Q have the same support;
– saturated if for all {a, b, c, d, x} ∈ (X

5

)
with ab|cd ∈ Q, the systemQ contains at

least one quartet in {ax |cd, ab|cx};
– transitive if for all {a, b, c, d, x} ∈ (X

5

)
, if {ab|cx, ab|xd} ⊆ Q holds, then ab|cd

is also contained in Q.

These concepts are related as follows:

Lemma 1 Suppose that Q is a quartet system on X. If Q is saturated and thin, then
Q is transitive.

Proof We use a similar argument to that used by Bandelt and Dress (1986, Lemma 1).
Suppose {a, b, c, d, x} ∈ (X

5

)
with {ab|cx, ab|xd} ⊆ Q. We need to show ab|cd ∈ Q.

SinceQ is saturated and ab|cx is contained inQ, we have {ab|cd, ad|cx}∩Q �= ∅.
Using a similar argument, ab|dx inQ implies that {ab|cd, ac|dx}∩Q �= ∅. Therefore,
we must have ab|cd ∈ Q as otherwise {ad|cx, ac|dx} ⊂ Q, a contradiction to the
assumption that Q is thin. ��

A quartet ab|cd on X is displayed by a phylogenetic X -tree T if the path between
a and b in T is vertex disjoint from the path between c and d in T . The quartet system
displayed by T is denoted by Q(T ).
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Fig. 3 The two types of
three-leaved networks: tree type
(left) and cycle type (right)
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In viewofDress et al. (2012,Theorem3.7) and the last lemma,wehave the following
slightly stronger characterisation of quartet systems displayed by a phylogenetic tree,
which was stated in Bandelt and Dress (1986, Proposition 2) using slightly different
terminology.

Theorem 1 A quartet systemQ ⊆ Q(X) is of the formQ = Q(T ) for a (necessarily
unique) phylogenetic X-tree T if and only if Q is thin and saturated.

Wenow turn our attention to the relationship between quartets and level-1 networks.
A split A|B of X is a bipartition of X into two non-empty parts A and B (note that

since A|B is a bipartition, order does not matter, that is, A|B = B|A). Such a split is
induced by a network N if there exists a cut-edge in N whose removal results in two
connected components, one with leaf-set A and the other with leaf-set B. A quartet
ab|cd is exhibited by a network N if there exists a split A|B induced by N such that
{a, b} ⊆ A and {c, d} ⊆ B.

Note that if a quartet ab|cd ∈ Q(X) is exhibited by N , then it is displayed by N , that
is, N contains two disjoint paths, one from a to b, and the other from c to d. However,
the converse is not true. For example, quartet ab|cd is displayed by the network in
Fig. 4(iv), but ab|cd is not exhibited by this network. Given a network N , we let�(N )

denote the set of quartets exhibited by N , and letQ(N ) be the set of quartets displayed
by N . In the light of the last remark, clearly we have �(N ) ⊆ Q(N ).

3 Quarnets

In this section, we shall show that an analogue of Theorem 1 holds for quarnets and
level-1 networks. We begin by formally defining the concept of a quarnet and how
quarnets can be obtained from level-1 networks.

Given a binary, level-1 phylogenetic network N on X and a subset A ⊆ X , we let
N |A denote the network induced on A by N , which is obtained from N by deleting all
edges that are not contained in some path between a pair of elements in A, removing
all isolated vertices, and then repeatedly applying the following two operations until
neither of them is applicable (i) suppressing degree-2 vertices, and (ii) suppressing
parallel edges. Note that N |A is a binary, level-1 phylogenetic network on A.

We now consider the different possible phylogenetic networks on three and four
leaves. First note that there are two possible types of phylogenetic networks with three
leaves (see Fig. 3). We call these cycle type and tree type depending on whether they
contain a cycle or not, respectively. Similarly, a quarnet or qnet, for short,2 is a binary,

2 Note that this notion of a qnet is not related to the notion of a qnet introduced in Grünewald et al. (2007)
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Fig. 4 Four types of qnets on X = {a, b, c, d}: i a Type I qnet a  b|c  d; ii a Type II qnet a ⊕ b|c  d;
iii a type III qnet a ⊕ b|c ⊕ d; iv a type IV qnet a ⊕ b ⊕ c ⊕ d. Type IV is of cycle type

level-1 phylogenetic network with four leaves. The leaf-set L(F) of a qnet F is called
its support. As illustrated in Fig. 4, there are four types of qnets: Type I qnets contain
no cycles; Type II qnets contain one cycle and one non-trivial cut-edge; Type III qnets
contain two cycles; and Type IV qnets contain no non-trivial cut-edge. A qnet system
F on X is a collection of qnets all of whose supports are contained in X . We shall say
that a qnet F with support A ⊆ X is displayed by a network N on X if F is isomorphic
to N |A. Moreover, we let F(N ) be the qnet system displayed by N , that is,

F(N ) = {N |A for all A ⊆ X with |A| = 4}.

Wenow turn to characterizingwhen a qnet system is displayed by a level-1 network.
To do this, we introduce some additional concepts concerning qnet systems.

First, a qnet system F on X is consistent (on subsets of X of size three) if for
all subsets A ∈ (X

3

)
, F |A is isomorphic to F ′|A, for each pair of qnets in F with

A ⊆ L(F) ∩ L(F ′). In addition, a qnet system F on X is minimally dense if for all
Y ∈ (X

4

)
, there exists precisely one qnet in F with support Y .

Second, we say that a qnet system F on X is cyclically transitive or cyclative if for
all subsets {a, b, c, d, x} ∈ (X

5

)
with {a ⊕ b⊕ c⊕ d, x ⊕ a ⊕ c⊕ d} ⊆ F , the system

F also contains a ⊕ b ⊕ d ⊕ x . Note that this is closely related to the cyclic-ordering
inference rule given in Bandelt and Dress (1992, Proposition 1).

Finally, we say that a qnet system F on X is saturated, if for all subsets
{a, b, c, d, x} ∈ (X

5

)
, the following hold:

(S1) If F contains a  b|c  d, then a  b|c  x , or a  b|c ⊕ x , or a  x |c  d, or
a ⊕ x |c  d is contained in F .

(S2) If F contains a ⊕ b|c  d, then a ⊕ b|c  x , or a ⊕ b|c ⊕ x , or a  x |c  d, or
a ⊕ x |c  d is contained in F .

(S3) If F contains a ⊕ b|c ⊕ d, then a ⊕ b|c  x , or a ⊕ b|c ⊕ x , or a  x |c ⊕ d, or
a ⊕ x |c ⊕ d is contained in F .

We next show how these concepts are related. To prove the following result, given
a qnet systemF , we shall consider the quartet system consisting of those quartets that
are exhibited by some qnet in F , which we shall denote by �(F).

Lemma 2 Suppose that F is a qnet system on X.

(i) If F is minimally dense, then �(F) is thin.
(ii) If F is saturated, then �(F) is saturated.
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Proof For the proof of (i), as F is minimally dense, for each subset Y of X with size
four, there exists precisely one qnet F in F whose support is Y . Hence, there exists at
most one quartet in �(F) with support Y .

To prove (ii), consider a quartet Q = ab|cd inQ(F) and an arbitrary element x in X
that is distinct from a, b, c, d. Let F be a qnet inF such that Q is the quartet exhibited
by F . Then, F is Type I, II or III. Assume first that F is Type I, then F = ab|cd.
Since F is saturated, by (S1),

{a  b|c  x, a  b|c ⊕ x, a  x |c  d, a ⊕ x |c  d} ∩ Q �= ∅,

and so one of the quartets ab|cx and ax |cd is contained in �(F), as required. If F is
of Type II or III, then similar arguments using (S2) and (S3), respectively, show that
ab|cx or ax |cd is contained in �(F). ��

We now characterize when a minimally dense set of qnets is displayed by a level-1
network.

Theorem 2 Let F be a minimally dense qnet system on X with |X | ≥ 4. Then,
F = F(N ) for some (necessarily unique) binary, level-1 network N on X if and only
if F is consistent, cyclative and saturated.

Proof Clearly, if F = F(N ) holds for a binary, level-1 network N , then F(N ) is
consistent, cyclative and saturated.

We now show that the converse holds. Suppose that F is a minimally dense qnet
system on X that is consistent, cyclative and saturated. Consider the quartet system
� = �(F). By Lemma 2, � is thin and saturated. Therefore, by Theorem 1, there
exists a unique phylogenetic tree T with Q(T ) = �.

For each interior vertex v in T , letAv denote the partition of X induced by deleting
v from T so that, in particular, the number of parts in Av is equal to the degree of v.
Note that, for all A ∈ Av , if a ∈ A and b ∈ X − A, the path in T between a and b
must contain v, and if a, b ∈ A, the path between a and b does not contain v.

We next partition the set of interior vertices of T . Let V1(T ) be the set of degree-3
vertices v in T with the property that there exist three elements, one from each distinct
part ofAv , so that there exists a qnet F in F whose restriction to these three elements
is of cycle type. Let V0(T ) be the set of degree-3 vertices in T not contained in V1(T ).
Lastly, let V2(T ) be the set of interior vertices in T with degree at least 4. ��
Claim 1 A degree-3 vertex v in T is contained in V1(T ) if and only if, for each subset
Y of X of size three that contains precisely one element from each part of Av , the
restriction F |Y is of cycle type for every qnet F in F with Y ⊂ L(F).

Proof Since F is minimally dense, the “if ” direction follows directly from the defi-
nition of V1(T ).

Conversely, let Y ∗ = {a∗
1 , a

∗
2 , a

∗
3 } be such that a∗

i , 1 ≤ i ≤ 3, are all contained in
distinct parts of Av and there exists a qnet F∗ in F such that F∗|Y ∗ is of cycle type.
Now let Y = {a1, a2, a3} with ai all contained in distinct parts of Av and let F be
an arbitrary qnet in F with Y ⊂ L(F). We shall show that F |Y is of cycle type by
considering the size of the intersection Y ∩ Y ∗.
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First assume that |Y ∩ Y ∗| = 3, that is, Y = Y ∗. Then, as F is consistent, F |Y is
of cycle type since it is isomorphic to F∗|Y ∗ .

Second assume that |Y ∩Y ∗| = 2. By swapping the indices, we may further assume
that a1 = a∗

1 , a2 = a∗
2 , and a3 �= a∗

3 . In other words, we have Y = {a∗
1 , a

∗
2 , a3}.

Consider Y ′ = {a∗
1 , a

∗
2 , a3, a

∗
3 } and let F ′ be the qnet in F with L(F ′) = Y ′. Since

a3, a∗
3 are both contained in Av , the quartet Q′ = a∗

1a
∗
2 |a3a∗

3 is contained inQ(T ). As
F ′|Y ∗ is of cycle type, this implies that F ′ is either a∗

1 ⊕a∗
2 |a3a∗

3 or a
∗
1 ⊕a∗

2 ⊕a3⊕a∗
3 .

In both cases, F ′|Y is of cycle type, and hence F |Y is also of cycle type in view of the
consistency of F .

Next assume that |Y ∩ Y ∗| = 0. By swapping the indices, we may further assume
that, for 1 ≤ i ≤ 3, elements ai and a∗

i are contained in the same part of Av but
ai �= a∗

i . Consider the sets Y1 = {a∗
1 , a

∗
2 , a3} and Y2 = {a∗

1 , a2, a3}, and put Y0 = Y ∗
and Y3 = Y . Then, we have |Yi ∩ Yi+1| = 2 for 0 ≤ i ≤ 2. Repeatedly applying the
argument used when the size of the intersection is two, it follows that F |Y is of cycle
type, as required.

Lastly, the case |Y ∩ Y ∗| = 1 can be established using a similar argument to that
when the size of the intersection is zero. This completes the proof of the claim. ��

Although we will not use this fact later, note that it follows from Claim 1 that a
vertex v in T is contained in V0(T ) if and only if, for each subset Y of X of size three
whose elements are contained in distinct elements of Av , the restriction F |Y is a tree
type for every qnet F in F with Y ⊂ L(F).

Claim 2 Suppose v ∈ V2(T ). Let x, y, p, q ∈ X be contained in distinct parts
Ax , Ay, Ap, Aq of Av , respectively. Then, the qnet F in F with support A =
{x, y, p, q} is of Type IV. Moreover, if F is x ⊕ y ⊕ p ⊕ q, then, for all x ′ ∈ Ax ,
y′ ∈ Ay, p′ ∈ Ap and q ′ ∈ Aq, the qnet F ′ with support A′ = {x ′, y′, p′, q ′} is
x ′ ⊕ y′ ⊕ p′ ⊕ q ′.

Proof Suppose F is not ofType IV.Then,�(F) contains precisely onequartet, denoted
by Q, and L(Q) = A. This implies that Q ∈ �(F) = Q(T ). However, Q is not
contained inQ(T ) because the path between any pair of distinct elements in A contains
v; a contradiction. Thus, F is of Type IV.

Now, suppose |A∩A′| = 3. Then, wemay further assumewithout loss of generality
that x = x ′, y = y′, p = p′, and q �= q ′. Hence, A′ = {x, y, p, q ′}. Note that the
argument in the last paragraph implies that F ′ is of Type IV. If F ′ is not isomorphic
to x ⊕ y ⊕ p ⊕ q ′, then F ′ is isomorphic to either x ⊕ y ⊕ q ′ ⊕ p or x ⊕ p ⊕ y ⊕ q ′.
In the first subcase, since F is cyclative and {x ⊕ y ⊕ p ⊕ q, x ⊕ y ⊕ q ′ ⊕ p} ⊂ F ,
the qnet p ⊕ q ⊕ y ⊕ q ′ is contained in F . This implies that the quartet Q′ = py|qq ′
is not contained in Q(T ), a contradiction since q, q ′ are contained in Aq while p, y
are contained in X − Aq . The second subcase follows in a similar way.

Lastly, if |A ∩ A′| ≤ 2, then note that there exists a list of 4-element subsets
A = A0, . . . , At = A′ for some t ≥ 1 such that, for 0 ≤ i < t ,wehave |Ai∩Ai+1| = 3
and the two elements in (Ai − Ai+1) ∪ (Ai+1 − Ai ) are contained in the same part of
Av . Claim 2 follows by repeatedly applying the argument in the last paragraph to the
list. ��

Using the last claim, we next establish the following.
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Claim 3 For each vertex v ∈ V2(T ), there exists a unique circular ordering of the
parts A1, . . . , Am of Av such that, for each tuple A = (ai , a j , ak, al) ∈ Ai × A j ×
Ak × Al with 1 ≤ i < j < k < l ≤ m, the qnet in F with support {ai , a j , ak, al} is
isomorphic to ai ⊕ a j ⊕ ak ⊕ al .

Proof In the light of Claim 2, we can define a quaternary relation || on the parts of
Av by setting AB||CD, for all distinct parts A, B,C, D ∈ Av , if and only if, for all
x ∈ A, y ∈ B, p ∈ C and q ∈ D, the qnet with support {x, y, p, q} is x ⊕ p ⊕ y ⊕ q.
Put differently, the distance between x and p in the qnet with support {x, y, p, q} is
two, and so is the distance between y and q.

Now, for all distinct A, B,C, D, E ∈ Av , we show that

(BD-1): AB||CD implies BA||CD and CD||AB;
(BD-2): either AB||CD, or AC ||BD, or AD||BC (exclusively);
(BD-3): AC ||BD and AD||CE implies AC ||BE .
Indeed, let x ∈ A, y ∈ B, p ∈ C , q ∈ D, r ∈ E . Then, (BD-1) holds since
x ⊕ p ⊕ y ⊕ q is isomorphic to y ⊕ p ⊕ x ⊕ q and to p ⊕ x ⊕ q ⊕ y. Next, (BD-2)
follows immediately since F is minimally dense. To see (BD-3) holds, note that since
AD||CE and AC ||BD imply that x ⊕ r ⊕ q ⊕ p and x ⊕ q ⊕ p ⊕ y are contained
in F , using the fact that F is cyclative implies that x ⊕ r ⊕ p ⊕ y is in F , and hence
AC ||EB holds. Using (BD-1), it follows that AC ||BE , as required.

Since the quaternary relation || on Av satisfies the conditions (BD-1)–(BD-3) as
specified in Proposition 1 on page 73 of Bandelt and Dress (1992), it follows that ||
determines a unique circular ordering of the parts in Av as specified in Claim 3. ��

Now let V ′ = V1(T ) ∪ V2(T ), and for each vertex u ∈ V ′, fix a circular ordering
of its neighbourhood Nu(T ) induced by the ordering of Au in Claim 3 if u ∈ V2(T ),
or the necessarily unique circular ordering (clockwise and anticlockwise are treated
as the same) of Nu(T ) if u ∈ V1(T ) (and hence |Nu(T )| = 3). Let N be the level-1
network obtained from T by blowing up each vertex u in V ′ using the given circular
ordering of Nu(T ). We next show that F ⊆ F(N ). To this end, fix four arbitrary
elements a, b, c, d in X and let F be the qnet in F with support {a, b, c, d}. We need
to show that F ∈ F(N ). There are four cases depending upon whether F is Type I,
II, III, or IV.

First suppose F is of Type I. Without loss of generality, we may assume that F =
ab|cd. Let u = medT (a, b, c). If u ∈ V1(T )∪V2(T ), then a, b, c are contained in
three distinct parts in the partitionAu of X on u. By Claims 1 and 2, it follows that F |A
with A = {a, b, c} is of cycle type, a contradiction. Thus, u ∈ V0(T ) and so there exists
a cut-vertex in N whose removal induces three connected components, containing
a, b and c, respectively. Similarly, the median v = medT (a, c, d) is contained in
V0(T ). Hence, there exists a cut-vertex in N whose removal induces three connected
components, containing a, c and d, respectively. Let F ′ be the qnet in F(N ) whose
support is {a, b, c, d}. Thus, by inspecting all possible qnets on {a, b, c, d}, it follows
that F ′ is isomorphic to a  b|c  d, and hence F ∈ F(N ).

Second, suppose that F is of Type II. Without loss of generality, we may assume
that F = a ⊕ b|c  d. Let F ′ be the qnet in F(N ) whose support is {a, b, c, d}.
Let u be the median of a, c, d in T . Then, by an argument similar to the one used
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in the last paragraph, it follows that there exists a cut-vertex in N (and hence also a
cut-vertex in F ′) whose removal results in three connected components, containing a,
c and d, respectively. On the other hand, let v be the median of A = {a, b, c} in T .
Then, a, b, c are contained in three distinct parts of Av . Since F |A is of cycle type,
by Claim 2 it follows that v ∈ V1(T ) ∪ V2(T ), which implies that F ′|A is also of
cycle type. Thus, by inspecting all possible qnets on {a, b, c, d}, it follows that F ′ is
isomorphic to a ⊕ b|c  d, and hence F ∈ F(N ).

Next, suppose that F is of Type III. Without loss of generality, we may assume that
F = a ⊕ b|c ⊕ d. Let F ′ be the qnet in F(N ) whose support is {a, b, c, d}. Let u be
the median of A = {a, b, c} in T and v be the median of B = {a, c, d} in T . Since
the quartet ab|cd is contained in Q(T ), we know that u and v are distinct. Hence,
there exists a cut-edge whose deletion puts a and b in one component and c and d
in the other connected component. By an argument similar to that used for analysing
when F is of Type II, it follows that F ′|A and F ′|B are both of cycle type. Hence, by
inspecting all possible qnets on {a, b, c, d}, the qnet F ′ is isomorphic to a ⊕ b|c ⊕ d,
and hence F ∈ F(N ).

Lastly, suppose that F is of Type IV. Without loss of generality, we may assume
that F = a⊕b⊕c⊕d. Let F ′ be the qnet inF(N )whose support is A = {a, b, c, d}.
Hence, there exists noquartet inQ(F)whose support is A. Therefore,medT (a, b, c) =
medT (a, b, d) = medT (a, c, d) = medT (b, c, d). Denoting this median by u, it fol-
lows that u is necessarily contained in V2(T ), and hence NT (u) contains m ≥ 4
vertices. Now let (v1, v2, . . . , vm) be the unique circular ordering of vertices NT (u)

induced by the circular ordering A1, . . . , Am of Au in Claim 3. Without loss of gen-
erality, we may assume that a ∈ A1. Then, there exists 1 < j < k < l ≤ m such that
(b, c, d) ∈ A j × Ak × Al . By the construction of N (which locally is the blow-up at u
with respect to the circular ordering), it follows that F ′ is isomorphic to F , and hence
F ∈ F(N ).

This shows thatF ⊆ F(N ). SinceF andF(N ) are both minimally dense, we have
F = F(N ). Finally, the uniqueness statement concerning N is a direct consequence
of the uniqueness of T and the unique way in which N is constructed from T .

4 A Characterization of Level-1 Quartet Systems

We now use Theorem 2 to characterize when a quartet system is equal to the set
of quartets displayed by a binary level-1 network. This characterization is given as
Theorem 3. Let Q be a quartet system on X . A quartet Q in Q is distinguished if Q
is the only quartet in Q with support equal to the leaf-set of Q. Moreover, a network
N is called 3-cycle free if it does not contain any cycle consisting of three vertices.

Theorem 3 Let Q be a dense quartet system on X with |X | ≥ 4. Then, Q = Q(N )

for some binary level-1 network N on X if and only if the following three conditions
hold:

(D1) For all Y ∈ (X
4

)
, we have mQ(Y ) = 1 or mQ(Y ) = 2.

(D2) If {ab|cd, ad|bc, ax |cd, ac|xd} ⊆ Q, then {ab|dx, bd|ax} ⊆ Q, for
a, b, c, d ∈ X distinct.
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(D3) If ab|cd is a distinguished quartet inQ, then, for each x ∈ X−{a, b, c, d}where
a, b, c, d ∈ X are distinct, either ax |cd or ab|cx is a distinguished quartet in
Q.

Moreover, if Q satisfies (D1)–(D3), then there exists a unique level-1, 3-cycle free
network N with Q(N ) = Q.

Proof It is easily checked that, if Q = Q(N ) holds for some binary level-1 network
N , then (D1)–(D3) holds. Conversely, letQ be a dense quartet system satisfying (D1)–
(D3). Let Q1 ⊆ Q be the set consisting of the distinguished quartets contained in Q.
We first associate a phylogenetic X -tree T toQ1. IfQ1 = ∅, then we let T denote the
phylogenetic X -tree which contains precisely one vertex that is not a leaf (i.e. a “star
tree”). IfQ1 �= ∅, then let Q = ab|cd be some quartet contained inQ1, a, b, c, d ∈ X .
Suppose that there exists some x ∈ X−{a, b, c, d}. Then, by (D3), either ax |cd ∈ Q1
or ab|cx ∈ Q1. It follows that

⋃
Q∈Q1

L(Q) = X . Moreover, as Q1 is clearly thin
and by (D3)Q1 is saturated, it follows by Theorem 1, that there exists a phylogenetic
X -tree T with Q(T ) = Q1.

Nowwe construct a qnet systemF as follows. Let�1 be the subset of
(X
4

)
consisting

of those Y with mQ(Y ) = 1, and �2 = (X
4

) \ �1. To each π = {a, b, c, d} ∈ �1
we associate a qnet F(π) as follows. Swapping the labels of the elements in π if
necessary, we may assume that Q = ab|cd is the (necessarily unique) quartet in Q1
with leaf-set π . Now let v1 and v′

1 be the median of {a, b, c} in Q and T , respectively.
Similarly, let v2 and v′

2 be the median of {a, c, d} in Q and T , respectively. Then,
F(π) is the qnet on {a, b, c, d} obtained from Q by performing a blow-up on each of
vi , where i ∈ {1, 2}, if and only if the degree of v′

i in T is at least four.
We also associate a qnet F(π) to each π = {a, b, c, d} ∈ �2 as follows. Swapping

the labels of the elements in π if necessary, we may assume that the quartets in Q
with leaf-set {a, b, c, d} are ab|cd and ad|bc. We then define F(π) to be the qnet
a ⊕ b ⊕ c ⊕ d.

Now, letF = {F(π) : π ∈ (X
4

)}. By constructionF is minimally dense. Moreover,
Q(F) = Q, and F is cyclative in view of (D2).

Next, we shall show that F is consistent. Fix a subset {a, b, c} ∈ (X
3

)
and consider

its median v in T . By construction, it suffices to establish the claim that the degree of
v is three in T if and only if, for each d ∈ X − {a, b, c}, the set π = {a, b, c, d} is not
contained in �2.

To see that this claim holds first note that if v has degree three, then each of the
three components of T −{v} contains precisely one element in {a, b, c}. Without loss
of generality, we may assume that element d is contained in the connected component
containing element c. But this implies that ab|cd is a quartet in Q(T ), and hence
{a, b, c, d} ∈ �1. On the other hand, if v has degree at least four, then there exists
an element x ∈ X − {a, b, c} such that x, a, b, c belong to four different connected
components of T −{v}. Therefore,Q(T ) and {ab|cx, ac|bx, ax |bc} are disjoint. This
implies that π = {a, b, c, x} is not contained in �1, and so it is contained in �2. This
establishes the claim.

Next, we show that F is saturated. We shall show that (S2) holds; the fact that F
satisfies (S1) and (S3) can be established by a similar argument. Let {a, b, c, d} ∈ (X

4

)

be a set that satisfies the condition in (S2), that is, a ⊕ b|c  d is contained in F .
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Then, ab|cd is a quartet in Q1 = Q(T ). Furthermore, put u = medT (a, b, c) and
v = medT (a, c, d), then the degree of u is at least four and the degree of v is three.
Now, fix an element x ∈ X − {a, b, c, d}. If x and a are in the same connected
component resulting from deleting v from T , then ax |cd is a quartet in Q1. Since
the median of a, c, d in T has degree three, by construction either a  x |c  d or
a ⊕ x |c  d (but not both) is contained in F . Otherwise, ab|cx is a quartet in Q1.
Since the median u of a, b, c in T has degree greater than three, by construction we
can conclude that either a ⊕ b|c  x or a ⊕ b|c ⊕ x is contained in F (but not both).
This completes the verification of (S2).

It follows that F is minimally dense, cyclative, consistent and saturated. By The-
orem 2, there exists a unique binary level-1 network N on X such that F(N ) = F .
By construction, it also follows that Q(N ) = Q(F(N )) = Q(F) = Q. The unique-
ness statement in the theorem follows from the uniqueness of N and the fact that
Q(N ) = Q(N ′) for two binary level-1 networks N and N ′ if and only if N and N ′ on
X differ only by 3-cycles (see e.g. Keijsper and Pendavingh 2014, Lemma 2). ��

5 Quarnet Inference Rules and Closure

For a quartet system Q on X , we write Q � ab|cd precisely if every phylogenetic
X -tree that displays Q also displays ab|cd. The statement Q � ab|cd is known as a
quartet inference rule (Semple and Steel 2003). A well-known example of such a rule
is

{ab|cd, ac|de} � ab|ce

which leads to the concept of the semi-dyadic closure cl2(Q) of the setQ, that is, the
minimal set of quartets that contains Q and has the property that if {ab|cd, ac|de} ⊆
cl2(Q), then ab|ce ∈ cl2(Q).

In this section, we define analogous concepts for qnets and show that they have
similar properties to those enjoyed by phylogenetic trees. If F is a qnet system, we
write F � F for some qnet F if every binary level-1 network that displays F also
displays F . Now, let ∗,�, ◦ denote symbols in {,⊕}. For example, a ∗ b|c � d is
equivalent to a  b|c⊕ d when ∗ =  and � = ⊕. We introduce three qnet inference
rules on F :

(CL1): {a ∗ b|c � d, b � c|d ◦ e} � a ∗ b|c � e for all ∗,�, ◦ ∈ {,⊕};
(CL2): {a⊕b|c∗d, a⊕c⊕e⊕b} � a⊕e|c∗d and {a⊕b|c∗d, a⊕c⊕b⊕e} � a⊕e|c∗d

and {a ⊕ b|c ∗ d, a ⊕ e ⊕ c ⊕ b} � a ⊕ e|c ∗ d for all ∗ ∈ {,⊕};
(CL3): {a ⊕ b ⊕ c ⊕ d, e ⊕ a ⊕ c ⊕ d} � a ⊕ b ⊕ d ⊕ e.

We illustrate two of these rules in Fig. 5.
We remark in passing that the qnet system {a ∗ b|c � d, b � c|d ◦ e : ∗,�, ◦ ∈

{,⊕}} ∪ {a ⊕ b|c ∗ d, a ⊕ c ⊕ e ⊕ b, a ⊕ c ⊕ b ⊕ e, a ⊕ e ⊕ c ⊕ b : ∗ ∈
{,⊕}} ∪ {a ⊕ b ⊕ c ⊕ d, e ⊕ a ⊕ c ⊕ d} implies that inference rules (CL1)–(CL3)
are independent from one another.

Using Theorem 2, it is straightforward to show that the above three rules are well
defined. That is, given three qnets F1, F2 and F such that {F1, F2} � F holds for one
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a

b c

d a

c e

b e

a c

d

d

e a

cd

a b

c e

a b

d

Fig. 5 An illustration of the (CL2) and (CL3) inference rules. Top: The first part of the (CL2) inference
rule with ∗ = . Bottom: the (CL3) inference rule

of the above three rules, then every binary level-1 network that displays {F1, F2}must
display F .

For a qnet systemF , we define the set cl2(F) to be the minimal qnet system (under
set-inclusion) that containsF such that if cl2(F) � F holds under (CL1)–(CL3), then
F ∈ cl2(F) holds. We call cl2(F) the closure of F .

The following key proposition is analogous to that for semi-dyadic closure for
quartet systems (cf. Meacham 1983; Huber et al. 2005, Proposition 2.1). It follows
from the fact that the closure of a qnet system F can clearly be obtained from F by
repeatedly applying the qnet rules (CL1)–(CL3) until the sequence of sets so obtained
stabilizes. Note that this process must clearly terminate in polynomial time.

Proposition 1 Let F be a qnet system and let N be a binary, level-1 network. Then,
N displays F if and only if N displays cl2(F).

We now show that cl2(F) behaves in a similar way to the semi-dyadic closure of a
quartet system (cf. Semple and Steel 2003, Exercise 19, p. 143).

Theorem 4 Suppose that F is a minimally dense, consistent set of qnets on X with
|X | ≥ 5. Then, the following statements are equivalent:

(i) F = F(N ) holds for a (necessarily unique) binary, level-1 network N on X;
(ii) cl2(F) = F;
(iii) For every 3-element subset F ′ of F , the subset F ′ is displayed by some binary

level-1 network on X.

Proof The fact that (i) implies (ii) and (i) implies (iii) are straightforward.We complete
the proof by showing that (ii) implies (i) and (iii) implies (i).

For the proof of (ii) implies (i), suppose that cl2(F) = F . Note first that by (CL3)
F is cyclative. Moreover,F is minimally dense and consistent by assumption. Hence,
by Theorem 2, it suffices to show that F is saturated. To this end, let w, x, y, z, t be
five pairwise distinct elements in X such that F = w ∗ x |y � z is contained in F with
∗,� ∈ {⊕,} and (∗,�) �= (,⊕). We need to show that F satisfies (S1)–(S3).
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For p ∈ {w, x, y, z}, let Fp be the qnet on {w, x, y, z, t} − {p} that is contained
in F (which must exist as F is minimally dense). First assume that there exists some
element p in {w, x, y, z} such that the qnet Fp is of Type IV.Without loss of generality,
assume p = w (the other cases can be established in a similar manner). Since Fw is
of Type IV, by the consistency of F we have F = y ⊕ z|w ∗ x . Now, applying (CL2)
with a = y, b = z, c = w, d = x , e = t implies that y ⊕ t |w ∗ x ∈ cl2(F) = F , by
(ii). Therefore,F satisfies (S2) and (S3) (corresponding, respectively, to taking ∗ = 
and ∗ = ⊕). It follows that in the remainder of the proof we can assume that none of
the qnets in {Fw, Fx , Fy, Fz} is of Type IV.

For convenience, in the following, we will use the convention that when we apply
(CL1), we will write a 5-tuple and assume that the i th element in the 5-tuple will
correspond to the i th element in the tuple (a, b, c, d, e) of elements used in (CL1) for
1 ≤ i ≤ 5.

To show that F satisfies (S1), suppose that F = w  x |y  z. Note first that if
Fx = w  y|z ∗ t , then applying (CL1) to (x, w, y, z, t) implies x  w|y  t ∈
cl2(F) = F , and hence (S1) holds. Similarly, if Fz = w  y|x ∗ t , then applying
(CL1) to (z, y, w, x, t) implies z  y|w  t ∈ F , and hence (S1) holds. Therefore,
if (S1) does not hold, then, by consistency, we may assume Fx = w  z|y ∗ t and
Fz = x  y|w ∗ t with ∗ ∈ {,⊕}. Considering Fx and Fz , and applying (CL1) to
(x, y, t, w, z) implies x  y|t ∗ z ∈ F . On the other hand, considering F and Fz and
applying (CL1) to (z, y, x, w, t) implies that z  y|x  t ∈ F , a contradiction to the
fact that F is minimally dense. Thus, F satisfies (S1).

Using an argument similar to the one that we used to show that F satisfies (S1), it
is straightforward to deduce that F satisfies (S2) and (S3).

We next prove that (iii) implies (i). Since F is minimally dense and consistent by
assumption, it follows by Theorem 2 that it suffices to show that F is cyclative and
saturated.

First, we show that F is cyclative. If not, then there exist five elements Y =
{w, x, y, z, t} such that F1 = w ⊕ x ⊕ y ⊕ z and F2 = t ⊕w ⊕ y ⊕ z are contained in
F but F = w⊕ x⊕ z⊕ t is not contained inF . Let F ′ be the (necessarily unique) qnet
inF whose leaf-set is {w, x, z, t}. Then, F ′ �= F . Consider the setF ′ = {F ′, F1, F2}.
The assumption (iii) implies that F ′ is displayed by a binary level-1 network N on X .
Consider N ′ = N |Y . Then, F ′ ⊆ F(N ′). By Theorem 2, F(N ′) is minimally dense
and cyclative. Since {F1, F2} ⊆ F(N ′), it follows that F ∈ F(N ′), a contradiction in
view of F ′ ∈ F(N ′).

Second we show that F is saturated. Here, we only show that F satisfies (S2)
as showing that F satisfies (S1) and (S3) can be done in a similar manner. If F
does not satisfy (S2), then there exists a 5-element set Y = {w, x, y, z, t} such that
F = w ⊕ x |y  z is contained in F while, for the qnet system

F∗ = {w ⊕ x |y  t, w ⊕ x |y ⊕ t, w  t |y  z, w ⊕ t |y  z},

we have F∗ ∩F = ∅. Let F1 and F2 be the qnets in F with leaf sets A = {w, x, y, t}
and B = {w, t, y, z}, respectively which must exist as F is minimally dense by
assumption. Then, neither F1 nor F2 is contained in F∗.
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Lastly, consider the subsetF ′ = {F, F1, F2} ofF . Then, as assumption (iii) holds it
follows thatF ′ is displayed by a binary level-1 network N on X . Consider N ′ = N |Y .
Then, F ′ ⊆ F(N ′). By Theorem 2, F(N ′) is minimally dense and saturated. Using
the fact that F(N ′) is saturated, it follows that F∗ ∩ F(N ′) �= ∅ as F ∈ F(N ′).
Therefore, F(N ′) contains either two distinct qnets on A or two distinct qnets on B, a
contradiction to the fact thatF(N ′) is minimally dense. Thus, (iii) implies (i), thereby
completing the proof of the theorem. ��

Note that it follows from Theorem 4 that we can decide whether or not a given
minimally dense set of qnets F is displayed by a level-1 binary phylogenetic network
on n ≥ 2 leaves in O(n5) time. This follows since we can compute cl2(F) in O(n5)
time. It would be interesting to see if this time bound can be improved upon.

6 Discussion

We have shown that by considering quarnets we can define natural inference rules,
as well as the concept of quarnet closure. With quartets, there are various types of
inference rules, which imply alternative definitions of closure for quartet systems (see
e.g. Bryant and Steel 1995; Semple and Steel 2003). It would thus be of interest to
explore whether there are other types of inference rules for quarnets and, if so, what
their properties are. In this paper, we have focused on understanding the closure for
a minimally dense set of quarnets. For real data, there can be cases where it may be
necessary to consider non-minimally dense sets (e.g. in case there is missing data).
Hence, it could be useful to develop results for such situations. However, it should be
noted that understanding the closure of a non-minimally dense set quartets is already
quite challenging (for example, as opposed to the minimally dense case, deciding
whether or not an arbitrary set of quartets can be displayed by a phylogenetic tree is
NP-complete) (Steel 1992).

In many applications, biologists prefer to use weighted phylogenetic trees and net-
works to model their data, where non-negative numbers are assigned to edges of the
tree or network to, for example, represent evolutionary distance. The problem of con-
sidering when a dense set of weighted quartets can be represented by a weighted
phylogenetic tree has been considered in Dress and Erdös (2003), Grünewald et al.
(2008). Given the results in this paper, it could therefore be of interest to consider how
weighted level-1 networks may be inferred from dense sets of weighted quarnets. In
applications, it can also be useful to consider rooted networks, which are essentially
leaf-labelled, directed acyclic graphs. Edges in such networks have a direction which
represents the fact that species evolve through time from a common ancestor (repre-
sented in graph theoretical terms by a root vertex). For such networks, the concept of
level-1 networks can be defined in a similar way to the unrooted case, and algorithms
are known for deciding when minimally dense collections of 3-leaved, rooted level-
1 phylogenetic networks (which are known as trinets) can be displayed by a single
phylogenetic network (Huber and Moulton 2013; Huber et al. 2017). It would thus
be of interest to consider inference rules for trinets. Moreover, for both the rooted
and unrooted case, it could be worth exploring whether there are inference rules for
more complicated networks (e.g. networks with level higher than one, as defined in
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e.g. Gambette et al. 2012). Although results in Iersel and Moulton (2017) indicate that
such inference rules might exist, if they do, then we expect that these will probably be
quite complicated.
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