
New algorithms and
mathematical tools for

phylogenetics beyond trees

Guillaume E. Scholz
School of Computing Sciences
University of East Anglia

A thesis submitted for the degree of
Doctor of Philosophy

April 2018

c© This copy of the thesis has been supplied on condition that anyone who consults
it is understood to recognise that its copyright rests with the author and that use
of any information derived there from must be in accordance with current UK
Copyright Law. In addition, any quotation or extract must include full attribution.

“Prépare toi, petit garçon
Elle s’ra longue, l’expédition”

Les cowboys fringants.

i

I would like to dedicate this thesis to Mr. B. Rinckel,
who highly inspired a growing young boy

some fifteen years ago.

Declaration

No portion of the work referred to in this thesis has been submitted in
support of an application for another degree or qualification at this or
any other university or other institute of learning. I certify that this
thesis, and the research to which it refers, are the product of my own
work, and that any ideas or quotations from the work of other people,
published or otherwise, are fully acknowledged.

List of Publications

- P. Gambette, K. T. Huber and G. E. Scholz. Uprooted phylo-
genetic networks. Bulletin of Mathematical Biology (2017) 79(9):
2022-2048.

- K. T. Huber and G. E. Scholz. Beyond representing orthology
relations with trees. Algorithmica (2018) 80(1): 73-103.

- K. T. Huber, V. Moulton and G. E. Scholz. Three-way symbolic
tree-maps and ultrametrics. Journal of Classification, in press.

- G. E. Scholz, A.-A. Popescu, M. I. Taylor, V. Moulton and K. T.
Huber. OSF-Builder: A new tool for reconstructing and rep-
resenting phylogenetic histories involving introgression, submitted.

Abstract

Phylogenetic trees and networks are mathematical structures for repre-
senting the evolutionary history of a set of taxa. The need for methods
to build such structures from various type of data, as well as the need
to understand the story these data may tell, give rise to exciting new
challenges for mathematics and computer sciences. This thesis presents
some recent advances in both these directions. It features new math-
ematical methodology for reconstructing phylogenetic networks, and
new computational tools for inferring complex evolutionary scenarios.
These come with a thorough analysis, assessing their attractiveness in
terms of their theoretical properties. It expands on previous results,
which are themselves briefly reviewed, and conclude with potentially
interesting further research questions.

Preface

29th of February. Cold morning in the cobbled streets of Strasbourg. A hot
chocolate, and a remark from the friend in front of me: “I never imagined one of us
would work in Phylogenetics”. She was right, who could have guessed when, back
in high school, Phylogenetics meant nothing more to me than “the easiest chapter
of the Biology class”. I would not have associated the topic with Mathematics
then. Perhaps with Logic. But what are Mathematics, if not Logic?

This thesis does not provide an answer to this question. It does, however,
highlight some of the several links between Phylogenetics and Mathematics, as I
have been led to discover and study them over the past three years.

For these three exciting years, I would like to thank first my primary super-
visor, Dr. Katharina Huber. For everything. I add a special thank also to Prof.
Vincent Moulton. If I am allowed to acknowledge a city, I would like to thank
the inspiring streets and places of Norwich. A fine city, indeed. And of course, a
big thank for the amazing NoBoG group, for all these evenings spent moving cubes.

Finally, I would like to send a few mercis back to France. Merci Laurent, for
my first steps into the vast world of research. Merci Yann, Charlotte, and all those
of you who frequently take me out of this world, in words exchanged or in time
spent together (and Yann, merci for Figure 1(ii) as well.). Merci papa, maman
and Jeanne, for always being to me such a peaceful river. And merci Marine, for
all of the above and much more, for your help and advices, and for allowing me to
take a part of you with me wherever I am.

Guillaume.
Borgarnes, September 2017.

vi

Contents

Preface vi

Contents vii

Figures x

Introduction 1

1 Phylogenetics and Mathematics: a brief overview 5
1.1 Basic definitions . 5

1.1.1 Directed and undirected graphs 5
1.1.2 Phylogenetic trees and networks 8
1.1.3 The variety of phylogenetic networks 12

1.2 Distances and splits . 15
1.2.1 Trees and distances . 15
1.2.2 The Split Equivalence Theorem 18
1.2.3 Split-networks . 20

1.3 Beyond metrics . 25
1.3.1 Symbolic distances . 25
1.3.2 Dissimilarities . 29

1.4 Decomposition into smaller structures 30
1.4.1 Triplets . 30
1.4.2 Encoding properties and trinets 33

2 On symbolic 3-dissimilarities and labelled level-1 networks 35
2.1 Introduction . 35
2.2 Preliminaries . 38

2.2.1 Rooted level-1 networks . 38
2.2.2 Labelled level-1 networks . 40
2.2.3 δ-triplets, δ-tricycles, and δ-forks 41

2.3 Three steps for a reconstruction . 43

vii

CONTENTS

2.3.1 Recognizing cycles . 43
2.3.2 Constructing cycles . 46
2.3.3 Constructing a level-1 representation 52

2.4 Encoding and characterization properties 57
2.4.1 Uniqueness of the output . 57
2.4.2 Characterizing level-1 representability 61

2.5 Conclusion . 65

3 On symbolic 3-way tree-maps and ultrametrics 67
3.1 Introduction . 67
3.2 Two types of maps for two types of trees 69

3.2.1 3-way symbolic tree-maps for unrooted trees 69
3.2.2 3-way symbolic ultrametrics for rooted trees 73

3.3 Characterizations of 3-way symbolic ultrametrics 77
3.3.1 A five-point characterization 77
3.3.2 Triplets as an alternative . 81

3.4 Conclusion . 86

4 On circular split systems, 1-nested networks and the Buneman
graph 87
4.1 Introduction . 87
4.2 The minimal cut approach . 89

4.2.1 Displaying splits . 89
4.2.2 A characterization in terms of I-intersections 91
4.2.3 The analogue of the Split Equivalence Theorem 97

4.3 Optimality and the Buneman graph 104
4.3.1 The Buneman graph . 104
4.3.2 Marguerites and Blocks . 108
4.3.3 Gates . 110

4.4 Conclusion . 113

5 On introgression and multiple rooted networks 115
5.1 Introduction . 116
5.2 Preliminaries . 118

5.2.1 Tree reconciliation . 118
5.2.2 Model of introgression . 120

5.3 Building an optimal OSF . 122
5.3.1 The Fitch-Hartigan Algorithm 122
5.3.2 The algorithm OSF-Builder 124

5.4 Real biological dataset . 126
5.4.1 The Scaevola (goodentaceae) dataset 126

viii

CONTENTS

5.4.2 The Heliconius butterfly dataset 129
5.5 Simulation study . 130

5.5.1 Method . 130
5.5.2 Noise in the allele tree . 132
5.5.3 Noise in the species forest 133

5.6 Conclusion . 135

General Conclusion 137

A Some properties of OSF-Builder 139
A.1 Optimality . 139
A.2 Stability . 141
A.3 Number of optimal solutions . 145
A.4 Representing OSFs in terms of graphs 146

B List of algorithms 153
B.1 Reviewed algorithms . 153
B.2 New algorithms . 154

Index 155

References 157

ix

Figures

1 First example of a phylogenetic network and of a phylogenetic tree. 1

1.1 Directed and undirected graph. 6
1.2 Unrooted phylogenetic networks. 9
1.3 Rooted phylogenetic networks. 10
1.4 Ancestorship in a network. 11
1.5 A tree-based network and three support trees. 15
1.6 Weighted trees and distances. 16
1.7 Split: An example. 19
1.8 From compatible split systems to trees. 21
1.9 Three split networks representing the same split system. 22
1.10 Symbolic ultrametric induced by a labelled tree. 26
1.11 Symbolic ultrametrics: Forbidden patterns. 28
1.12 Three leaves of a network may induce more than one triplet. 31
1.13 From a collection of triplets to a tree. 32
1.14 1-nested trinets. 34

2.1 Three level-1 representations of a symbolic 2-dissimilarity. 37
2.2 Three level-1 representations of a symbolic 3-dissimilarity. 37
2.3 Vocabulary of a cycle. 39
2.4 Labelled trinets and δ-trinets. 43
2.5 The graph C(δ). 45
2.6 Top-Down and Check-Labels graphs. 48
2.7 Independences of the conditions characterizing level-1 representability. 58

3.1 Displaying 3-way maps. 68
3.2 Two representations of a 3-way map. 74
3.3 Discriminating labelled trees on four leaves. 75
3.4 Case analysis for Theorem 3.3.7. 83

4.1 Displaying all splits on X. 88
4.2 Two ways of displaying the same split system. 89

x

FIGURES

4.3 Partial resolution. 91
4.4 The undesirability of cycles of length three. 91
4.5 Intersection of splits in a cycle. 92
4.6 Support for the proof of Theorem 4.2.5. 95
4.7 Buneman graph: An example. 105
4.8 Marguerites in the Buneman graph. 109

5.1 Output of OSF-Builder applied on a biological dataset. 117
5.2 Embedding a tree into a further tree. 118
5.3 Some coevolutionary events. 119
5.4 The OSF-Problem. 121
5.5 Optimal extensions to a leaves-coloring map. 123
5.6 The Bottom-up step of the Fitch-Hartigan algorithm. 124
5.7 Non uniqueness of an optimal OSF. 126
5.8 OSF-Builder applied to the Scaevola dataset. 127
5.9 The inner-working of OSF-Builder. 128
5.10 The contacts arcs postulated by OSF-Builder within the Helico-

nius species tree. 130
5.11 Overview of the simulation study. 132
5.12 Quantitative effect of a change in the allele tree on the output of

OSF-Builder. 133
5.13 Qualitative effect of a change in the allele tree on the output of

OSF-Builder. 134
5.14 Quantitative effect of a change in the species forest on the output

of OSF-Builder. 134

A.1 The P -induced AS-forest. 141
A.2 Sharpness of the bound postulated by Theorem A.2.2. 144
A.3 Sharpness of the bound postulated by Theorem A.2.3. 145
A.4 Two distinct OSFs with the same graph representation. 148
A.5 Support for the proof of Proposition A.4.1, case α. 150
A.6 Support for the proof of Proposition A.4.1, case β. 151

xi

Introduction

From a high level, a phylogenetic network is a picture. To biologists, genealogists,
even linguists, it is a graphical representation of the interrelationships governing a
set of taxa, such as individuals, genes, organisms, or languages, among others. It
can come equiped with directions, in which case it is commonly interpreted as some
kind of illustration of the common evolutionary history of a set of taxa. Figure 1(i)
depicts such a network, that originally appeared in [49] in the context of studying
the complex evolutionary relationships governing a set of five distinct bread wheat
lineages. But a phylogenetic network is more than a simple picture. It is a complex
system of lines, nodes and tips, an object which scientists more commonly call a
graph, and it can be studied from a purely theoretical point of view. As such, it
is highly attractive for both mathematicians and computer scientists.

AA BB

AABB DD

AABBDD

A B

D

(i) (ii)

Figure 1: (i) A phylogenetic network depicting the evolutionary relationships
between five lineages of bread wheat, indicated by AA, BB, DD, AABB, and
AABBDD (see [49]). (ii) A phylogenetic tree on 5 species: hippopotamus, ele-
phant, lion, cat and puffin. The four mammals are grouped together against the
bird. Among the mammals, we distinguish between two groups, the herbivores
(hippopotamus and elephant) and the carnivores (lion and cat).

One of the first examples of a phylogenetic network is depicted in Charles Dar-
win’s On the Origin of Species by Means of Natural Selection, or the Preservation

1

of Favoured Races in the Struggle for Life, published in 1859, and is in facts a tree.
From a structural point of view, it differs from a “proper” phylogenetic network
by the addition of the extra requirements that it does not allow for two distinct
paths to merge into a single one.

The idea of a phylogenetic tree is closely related to the main theory defended by
Darwin in that book, that is, that the diversity of life on earth as can be observed
today results from a complex chain of evolutionary events. Following this idea, it
then makes sense to try and obtain this chain by comparing taxa with each other
other, the idea being that closely related species should not differ too much. The
toy example in Figure 1(ii) depicts such a tree for five animal species, based on
simple morphological characters.

Nowadays, with the significant increase of interest in molecular biology, helped
by decisive technological breakthroughs, the quality and quantity of data from
which a phylogenetic tree may be constructed have become more and more com-
plex, revealing more and more incongruences. One of the consequences of this
is that it is not always possible to represent data in the form of a phylogenetic
tree. These incongruences may be genuine signals of complex evolutionary events,
ranging from hybridization, to introgression and horizontal gene transfer, where
part of the genome of an organism moves to the gene pool of another. Or they
may be noisy signals, induced for example by the technologies used to generate the
data, the large amount of data to treat, or due to missing information. Whatever
the reason, the resulting conflicts in the data need to be taken into account one
way or another.

Therefore, challenges for mathematicians and computer scientists are numer-
ous. This thesis addresses some of these challenges, both from a mathematical
and a computational perspective. To help develop a feel for them, we next classify
them into two main types.

Inference of information from phylogenetic trees and networks. Apart
from providing a graphical representation, one of the main interest in using phy-
logenetic trees or networks is to reveal new insights into the data set for which
they have been constructed. Clearly, there is a strong link between these new
insights and the theoretical properties of such structures, thus making their study
as abstract combinatorial objects an important task in phylogenetics.

Phylogenetic trees and networks also provide information when put in perspec-
tive with each other, that can not be observed from investigating each on their
own. For example, if the evolution of a set A of taxa is represented by a phyloge-
netic tree T , and the evolution of a set B of taxa represented by a phylogenetic
tree T ′, what can these trees, taken together, tell us about the common evolu-
tionary history of A and B? This question naturally extends to sets of more than

2

two trees. The purpose may be, for example to build a single tree reconciling all
the trees of a set of tree (see the “reconstruction problem” below), or to construct
some sort of consensus. Indeed, as we shall see in Chapter 2, phylogenetic trees
or networks can sometimes be “put together”, in a certain well-defined sense, to
reconstruct a larger one. However, we shall see in Chapter 5 that there are other
ways to reconcile two (or more) trees than to build a bigger tree from them.

Reconstruction of phylogenetic trees and networks. This is one of the
“classic” problems in phylogenetics, and is concerned with the translation of some
data on a given set of taxa into a phylogenetic tree or network representing these
data. This task can be summarized as follows. A phylogenetic tree or network N
provides information about the set of taxa it is inferred from. Does the knowledge
of that information, without the previous knowledge of the tree or network used
to infer it, allow for recovering N? This task is, for example, the starting point of
the work presented in Chapter 3.

Most of the time the answer to this question takes the form of an algorithm,
which takes as input some data, and generates a phylogenetic tree or network that
in some way displays these data, should one exist. Such an algorithm is often
based on a characterization, which provides conditions on these data for them to
be representable using the desired structure. Many of these algorithms also have
a software implementation, so that they can be used without any previous knowl-
edge of their inner-workings.

The difference in treatment made here between phylogenetic trees and net-
works is not incidental, and two reasons stand for favoring trees over networks, if
possible. As mentioned before, phylogenetic trees are much simpler in structure,
which makes them, in some circumstances, both more suitable as a representation
of complex relationships, and easier to deal with from a purely theoretical point of
view. Split systems, which play a central role in Chapter 4, are a perfect illustra-
tion of this simplicity. Without embarking on too much detail here, it suffices to
say that a split system is closely related to a certain type of distance between the
taxa considered. The question of the representability of a split system by a phy-
logenetic tree has been answered in [10], together with a characterization of split
systems that can be represented by a tree (Theorem 1.2.3), as this does not hold
for all split systems. Thus the question becomes, how and under which conditions
a split system can be represented by a phylogenetic network, if that split system
does not satisfy the aforementioned characterization. The work that has been re-
alized in the context of trees forms a solid starting point to address this question,
which can then be thought of as a generalization of the previous results, going one
step further in complexity. Chapter 2 also adopts the same generalization pattern.

3

As the information inference and the reconstruction problems are closely en-
tangled with each other, so are the distinct chapters of this thesis. It can however
be divided into two main parts, which, although not independent, deal with differ-
ent aspects of phylogeny research. Each of Chapters 2 to 5 is based on a research
paper that has appeared (or is under peer review) in a journal in the past three
years (see below for the references). Details about these papers, including their
availability and the respective contribution of their authors, can be found in the
introduction of the respective chapters. We next provide details about the various
chapters that make up this thesis.

Chapter 1 presents a review of relevant definitions and results that will play a role
in this thesis. As such, it should not be seen as an exhaustive review of the lit-
erature, but as a tool to put the findings of the subsequent chapters into context.
In particular, unless stated otherwise explicitly, all definitions and terminology
introduced there will also be used for the remainder of this thesis.

Chapters 2, 3 and 4 are based on [41], [39] and [29] respectively. All three of them
concern reconstruction problems, and introduce novel approaches to tackle them.
In all three cases, the starting point is a variation of the general notion of a distance.

Chapter 5 is based on [54]. It presents a new type of reconciliation problem, which
can be summarized as follows: Given a set of phylogenetic trees representing the
evolution of some sets of species, and a further tree representing the evolution of
the alleles of some genes carried by these species, how can we infer “introgression”,
that is, the gene flow within these distinct sets of species.

4

Chap. 1

Phylogenetics and Mathematics:
a brief overview

1.1 Basic definitions
In this section, we first review required basic concepts for directed and undirected
graphs, and then elaborate on them in the context of phylogenetic trees and net-
works. Unless stated otherwise, the terminology follows [43].

1.1.1 Directed and undirected graphs
We start by reviewing the basic definitions for undirected graphs, and then move
on to directed ones.

Undirected graphs. An undirected graph (or graph for short) is a pair G =
(V,E), where V is a finite set of vertices, and E is a finite set of edges e = {u, v},
where u and v are two distinct elements of V (see Figure 1.1(i) for a first example).
For convenience, we sometimes write V (G) and E(G) for V and E respectively.

For a graph G = (V,E) and u, v ∈ V , we say that an edge e = {u, v} ∈ E is
incident with u and v. We also say that two edges are adjacent if they share a
vertex. The degree of v is defined as the number of edges in E that are incident
with v. We call v isolated if v has degree 0, and internal if v has degree at least
two. If v has degree 1, we say that v is a leaf and we denote by L(G) the set of
leaves of G. Finally, a subgraph G′ = (V ′, E ′) of G = (V,E) is a graph such that
V ′ ⊆ V and E ′ ⊆ E.

Two graphs G = (V,E) and G′ = (V ′, E ′) are said to be isomorphic if there
exists a bijection φ : V → V ′ such that for any two vertices v, u ∈ V , we have that
{u, v} ∈ E if and only if {φ(u), φ(v)} ∈ E ′. If G and G′ are not isomorphic, we

5

• •

••

•

•

(i)

a
b

c

d

e

f

• •>

•

>

• >
> >

•

>
•>

(ii)

a
b

c

d

e

f

Figure 1.1: (i) An undirected graph (ii) A directed graph. In both cases, black dots
represent vertices of the graph, and lines joining them are edges, whose direction
in (ii) are given by arrows. In both graphs vertices e and f are leaves, since they
have degree one. The vertex d has degree 5 in both (i) and (ii). It has in-degree 3
and out-degree 2 in (ii).

simply say that G and G′ are different. By abuse of terminology, we say that a
graph is unique (subject to certain properties), if it is unique up to isomorphism.

The notion of a path turns out to be fundamental to the definition of phylo-
genetic trees and networks, our main objects of interest. Suppose G = (V,E) is a
graph. A path P is a sequence of k + 1 ≥ 1 distinct vertices v0, . . . , vk ∈ V such
that for all 0 ≤ i ≤ k − 1, the vertices vi and vi+1 are joined by an edge ei ∈ E.
We say that P connects v0 and vk, and for all i, that the edge ei is lying on P .
We call the vertices v2 to vk−1 internal vertices of P . If, in addition, vk and v0 are
connected by an edge, we say that the sequence v0, . . . , vk, v0 is a cycle of G.

The length of a path P is defined as the number of edges lying on P . More
generally, we can associate to each edge e of a graph G = (V,E) a length ω(e),
where ω : E → R>0. In that case, the pair (G,ω) is said to be a weighted graph
and the length of a path P in G is defined as the sum of the length of the edges
lying on P . Note that we can always consider an unweighted graph as a weighted
graph whose edges all have length one.

If any pair of distinct vertices of a graph can be connected by a path, we say
that this graph is connected. Following this idea, we define a connected component
of a graph to be a maximal connected subgraph.

Operations on undirected graphs. Various operations have been defined for
graphs. To review some of them, suppose for the remainder that G = (V,E) is
a graph. The edge-deletion operation simply consists of removing an edge e from
E. The related vertex-deletion operation removes not only a vertex v from V , but
also all edge from E that are incident with v. Clearly, these operations give rise
to subgraphs of G. If G is connected, we call an edge e of G a cut-edge if its

6

deletion disconnects G. Similarly, a vertex v of G enjoying this property is called
a cut-vertex .

We can also subdivide an edge e = {u, v} ∈ E, by adding a new vertex w to
V , and replacing the edge {u, v} by two edges {u,w} and {v, w}. This operation
is reversible, as we can suppress a vertex w of G of degree 2 by first deleting w in
the above sense, and then adding a new edge joining the two vertices that were
adjacent to w. If G is weighted, when removing a degree two vertex w, we assign
to the newly created edge the sum of the length of the two edges incident to w.
Similarly, when subdividing an edge e of G, we need to ensure that the sum of the
weight assigned to the two newly created edges is precisely the length of e. This
allows us to talk about the addition of a new edge to a graph G = (V,E), which
can either be done by adding a new edge to E, or by subdividing two edges of G
with new vertices u and v, and adding to E the edge {u, v}.

A further operation is that of collapsing an edge e = {v, w} of E. In that
case, we remove e from E, and merge v and w in V . In other word, we add a
new vertex u to V , remove v and w from V , and define every edge incident to v
or w to be incident to u instead. Note that collapsing edges of G does not result
in a subgraph of G. The reverse operation is called vertex expansion. It works by
replacing a vertex u of V by a pair of new vertices v and w, adding the edge {v, w}
to E, and defining all edges in E adjacent with u to be adjacent either with v or
with w instead. Note that although collapsing an edge can only be performed in
an unique way, this is not the case for the vertex expansion operation. Indeed, for
each edge e adjacent to some vertex v of G we want to expand, we have to decide
to which of the two new vertices e should be adjacent.

Directed graphs. Given a graph G = (V,E), we can assign to each edge e ∈ E a
direction. Indeed, since e is given by an subset of two elements V , we can define an
ordering on that subset. Motivated by this, we say that a directed graph G = (V,E)
consists of a finite set of vertices V , and a finite set of arcs (i. e. directed edges)
E. We denote an arc e ∈ E as (v, w) and say that e is directed from v to w (see
Figure 1.1(ii)). We refer to v as the tail of e, and to w as the head of e. Moreover,
we say that v is a parent of w and that w is a child of v.

Let G = (V,E) be a directed graph. We call the undirected graph U(G)
obtained from G by ignoring the directions of the edges of E and suppressing
resulting degree-2 vertices the underlying graph ofG. Through this transformation,
most of the definitions previously introduced for undirected graph also apply within
the directed framework. However, directed graphs also induce specific terminology,
related to the extra information they contain. For a vertex v ∈ V , we call the
number of arcs of E directed to v the in-degree of v, and the number of arcs
directed away from v the out-degree of v. Clearly, the degree of v is equal to the

7

sum of its in-degree and its out-degree. We also say that a path v0, . . . vk, k ≥ 1
of G is a directed path if for all 0 ≤ i ≤ k − 1, the edge ei is directed from vi to
vi+1. By extension, we call a sequence v0, . . . , vk, v0 a directed cycle, if v0, . . . , vk is
a directed path and (vk, v0) ∈ E.

1.1.2 Phylogenetic trees and networks
As already mentioned, the graph-theoretical notion of a path allows us to define
phylogenetic trees and networks, both of which are central to phylogenetics. From
now on, let X = {x1, . . . , xn} be a finite set of size n ≥ 3. In a phylogenetic
context, the elements of X are called taxa (singular taxon), and represent, for
example, species, individuals or genes.

Phylogenetic networks have been defined and studied both as undirected and
directed graphs (see [33, 43]). We first consider the undirected ones, and then turn
our attention to the directed ones.

Unrooted phylogenetic networks. We say that an undirected graph N is an
(unrooted) phylogenetic network on X if N satisfies the three following assump-
tions:

(N1) N is connected.

(N2) The leaves of N are the elements of X.

(N3) N does not contain any vertex of degree 2.

A special case of an unrooted phylogenetic network is an unrooted phylogenetic
tree, that is, an unrooted phylogenetic network that does not contain any cycle.
Phylogenetic trees enjoy some additional properties, making them particularly
attractive. For example, any two vertices of a tree T are connected by exactly one
path. If we remove an edge from T , we necessarily obtain a disconnected graph
(i. e. all edges are cut-edge), and if we add a new edge to T , we obtain a cycle.

Reflecting the assumption that an evolutionary process is assumed to generate
two distinct species, we say that an unrooted phylogenetic network N is binary
if every internal vertex of N has degree 3. Note that we can always transform
a non-binary unrooted phylogenetic network into a binary one by a succession of
vertex-expansion operations (see Section 1.1.1). We call this operation a resolution
of N .

Rooted phylogenetic networks. A rooted (phylogenetic) network on X is a
directed graph N such that:

8

1

2

u
v

3 4

5

(i)

N :

4

5

3

1

2

(ii)

Figure 1.2: (i) An unrooted phylogenetic tree onX = {1, 2, 3, 4, 5} (ii) An unrooted
phylogenetic network onX that is not a tree. Both graphs in (i) and (ii) are binary.
Note that we do not always represent vertices with a dot, as we did in Figure 1.1,
when there is no need to do so.

(R1) The underlying graph U(N) is an unrooted phylogenetic network, that is,
U(N) satisfies (N1) – (N3).

(R2) N contains exactly one vertex ρ of in-degree 0.

(R3) N does not contain any directed cycles.

(R4) N does not contain any vertex of in-degree and out-degree 1, or of out-degree
0 and in-degree greater than one.

For N a rooted phylogenetic network, the vertex ρ defined in (R2) is called the
root of N (see Figure 1.31). As in the unrooted case, a rooted phylogenetic network
N whose underlying graph does not contain a cycle is called a rooted phylogenetic
tree. If N is a rooted phylogenetic tree, the directed path from ρN to any leaf of
N is unique, whereas this may not be true in general.

We say that a rooted phylogenetic networkN is binary if ρN has out-degree two,
and all its other internal vertices have degree three. Note that if N is binary, then
so is U(N). Contrary to a binary rooted phylogenetic tree, where each internal
vertex that is not the root has necessarily in-degree one and out-degree two, an
internal vertex of a binary rooted phylogenetic network can either have in-degree
one and out-degree two, or vice versa. For N a rooted phylogenetic network, we
call a vertex of in-degree zero or one a tree-vertex , and a vertex of in-degree greater
than one a hybrid vertex . For example, the rooted phylogenetic networks depicted
in Figure 1.3(ii) and (iii) both contain exactly one hybrid vertex, the parent of 4

1In Figure 1.3 and in subsequent figures, we draw rooted phylogenetic networks with their
root at the top, and the arcs are implicitly assumed to be directed downwards, away from the
root.

9

1 52

u

3

v

4
(i)

1 52 3 4
(ii)

1 52 3 4
(iii)

Figure 1.3: (i) A rooted phylogenetic tree on X = {1, 2, 3, 4, 5}. (ii) and (iii) Two
distinct rooted phylogenetic networks with the same underlying graph, that is the
unrooted phylogenetic network depicted in Figure 1.2(ii).

and 3 respectively. As is easy to see, a rooted tree does not contain any hybrid
vertices.

Within an evolutionary context, the idea of ancestorship is central. This notion
is captured for a rooted phylogenetic tree T on X as follows: A vertex v of T is
called an ancestor of a leaf x ∈ X if v lies on the path from the root ρT of T to
x. We also say that x is an offspring of v, and we denote the set of offsprings
of v by C(v) (sometimes also called the cluster induced by v). If Y is a subset
of X of size k ≥ 2, we say that a vertex v of T is the last common ancestor of
Y if v is an ancestor of all elements of Y , and no child of v enjoys this property.
Note that such a vertex always exists, and that it is necessarily unique. We put
v = lcaT (Y), where we may omit the index if the tree T we are referring to is clear
from the context. Note that if Y = {y1, . . . , yk}, we usually write lca(y1, . . . , yk)
rather than lca({y1, . . . , yk}), to avoid overcomplicated notation. For example, in
Figure 1.3(i), we have lca(1, 2) = u and lca(3, 4, 5) = v.

Although a similar formalization of ancestorship might be attractive for rooted
phylogenetic networks that are not also phylogenetic trees, the definition of a last
common ancestor of a subset Y of X does not easily carry over. Indeed, for N
a rooted phylogenetic network on X and Y ⊆ X, there may be more than one
vertex of N satisfying the condition for being a last common ancestor of Y . In the
network N depicted in Figure 1.4, for example, both the vertices v ad w satisfy
that condition for the leaves 2 and 4. To tackle this problem, the notion of a stable
ancestor was introduced in [42], where a vertex v of N is called a stable ancestor
of a leaf x ∈ X if v lies on every path from ρN to x. We can then consider the last
stable common ancestor of a subset Y ⊆ X, which is unique and corresponds to
the last common ancestor of Y if N is a tree. Continuing with the example of the
network N depicted in Figure 1.4, the last stable common ancestor of the leaves 2
and 4 is the root of N .

Alternatively, we can consider the notion of a lowest common ancestor, where

10

we say that a vertex v of N is a lowest common ancestor for a subset Y ⊆ X if for
all x ∈ Y , there exists a path from the root to x such that v is the last vertex that
is common to all these paths. Here again, such a vertex is unique and corresponds
to the last common ancestor of Y in the case N is a tree, but it may not be unique
otherwise.

ρ

v w

1 3
2

4

Figure 1.4: A rooted phylogenetic network. The vertex v is the lowest common
ancestor of {1, 2}, whereas the last stable common ancestor of {1, 2} is ρ. The
lowest common ancestor of {2, 4} is not unique, since both v and w satisfy the
property of a lowest common ancestor for the set {2, 4}.

Subtree and subnetwork. Given a phylogenetic network N on X, there is
sometimes a need to extract some substructures from N . These substructures
are called subnetworks (or subtrees in case N is a phylogenetic tree), as they are
themselves phylogenetic networks on some subset of X. Subnetworks can be of
two different types:

If N is a rooted phylogenetic network and v is a vertex of N , we call the
subnetwork of N rooted at v the subgraph Nv of N that consists of all edges and
vertices that can be reached from v in N via a directed path. Clearly, Nv is a
rooted phylogenetic network on the set C(v) of offsprings of v.

The second type does not require N to be rooted, and does not, in general, lead
to a subgraph of N . Considering a subset Y of X, we define the subnetwork of N
induced by Y in two steps. First, we delete all edges and vertices ofN that do not lie
on a (undirected) path between two elements of Y . Then, we successively suppress
resulting degree two vertices. As we shall see, this latter type of subgraph leads
to the key notions of a “triplet” (Section 1.4.1) and of a “trinet” (see Section 1.4.2).

Rooting an unrooted phylogenetic network. As seen above, rooted and un-
rooted phylogenetic network are closely related to each other, since due to Property

11

(R1), the underlying graph U(N) of a rooted phylogenetic network N is always
an unrooted phylogenetic network. Conversely, it is possible to assign directions
to the edges of an unrooted phylogenetic network N , in order to get a rooted
phylogenetic network Nr satisfying U(Nr) = N .

To do this, we first need to define a root ρ for the network Nr. This can be
done either by declaring an internal vertex of N to be ρ, or by subdividing an edge
of N and defining the newly created vertex to be ρ. The latter is usually preferred
in case we want to transform a binary unrooted phylogenetic network into a binary
rooted one, as in that case, the created root has out-degree two. Once the root is
defined, we attribute a direction to each edge of N , making sure that we do not
conflict with Properties (R2) and (R3). If N is a tree, there is only one way to
do so, that is, direct all edges “away from the root”. Otherwise, as shown in [27],
there may be as many as 2|X|/2 different way to assign directions to the edges once
the root has been defined.

As an example, the rooted phylogenetic tree in Figure 1.3(i) is obtained by
subdividing the edge {u, v} of the unrooted tree in Figure 1.2(i), by introducing a
new vertex ρ, and directing the edges away from ρ. On the other hand, both the
rooted phylogenetic networks (ii) and (iii) in Figure 1.3 are obtained by subdividing
the same edge of the unrooted phylogenetic network in Figure 1.2(ii), but the way
the edges have been directed in both networks is different.

A second way to transform a rooted phylogenetic networks into an unrooted
phylogenetic networks, and back, is the Combinatorial Farris transform, intro-
duced in [22] in the context of phylogenetic trees (see [17] for a review of its use
and properties). For N an unrooted phylogenetic network, we first choose a leaf
x ∈ X. We then remove x from N , and define the vertex u adjacent to x in N
to be the root, assigning directions to the edges in the way described above. This
process leads to a rooted phylogenetic network on X−{x}. The reverse operation
is the following: For N a rooted phylogenetic network on X with root ρ, we first
add a new vertex r /∈ X, and the arc (r, ρ). By forgetting about the direction of
the arcs, we obtain an unrooted phylogenetic network N ′ on X ∪ {r}.

1.1.3 The variety of phylogenetic networks
The need to compare structures of the same type or to evaluate how “different”
they are from each other is essential in many areas of mathematics, and phylo-
genetics makes no exception. To make this more precise it is necessary to define
what is meant by writing, for two phylogenetic networks N and N ′, that N = N ′.
To this aim, we expand the notion of an isomorphism between graphs to phy-
logenetic networks. We say that two phylogenetic networks N and N ′ have the
same topology is they are isomorphic as graphs, according to the definition given
in Section 1.1.1. We say that they are isomorphic if in addition, they have the

12

same set of leaves X and this isomorphism is the identity on X. If this is the case,
we write “N = N ′”.

Reflecting the various biological processes that phylogenetic networks aim to
model, a number of different types of such networks have been introduced in the
literature. We focus here on three approaches, all of which induce particular types
of networks that will be of interest in the following chapters.

k-nested networks. The underlying idea of this approach is to look at the com-
plexity, in a sense to be defined, of some substructures contained in a phylogenetic
network. Put differently, the aim is to capture the complexity of the non-treelike
parts of a phylogenetic network, known as blobs (or blocks in the rooted case).
A blob of an unrooted phylogenetic network N is defined in [27] as a maximal
connected subgraph of N that does not contain any cut-vertex. The level of a
blob B is then defined as the minimal number of edges that need to be removed
from B in order to obtain a graph that does not contain any cycle. Thus, a blob
of level-0 is a cut-edge, and blobs of level-1 are isolated cycles, that is, cycles that
do not share an edge with a further cycle. If N is a rooted phylogenetic network,
we simply call a subgraph B of N a block of N if U(B) is a blob of U(N), and
define the level of B in N as the level of U(B) in U(N).

For k ∈ N and N an unrooted (resp. rooted) phylogenetic network, we say that
N is a k-nested network if the blobs (resp. the blocks) of N have level at most k.
We say thatN is a level-k network ifN is a k-nested network such that no two blobs
(resp. blocks) of N of level greater than zero share a vertex. In a binary context,
the definitions of a k-nested network and of a level-k network are equivalent. For
example, the rooted phylogenetic networks depicted in Figures 1.3(ii) and (iii)
and their underlying graph depicted in Figure 1.2(ii) are level-1 (and 1-nested)
networks, and the rooted phylogenetic network depicted in Figure 1.4 is a level-2
(and a 2-nested) network. Note that a phylogenetic network N is a level-0 network
(or equivalently, a 0-nested network) if and only if N is a phylogenetic tree. Note
also that if N is a rooted, binary phylogenetic network, the level of a block B of
N is precisely the number of hybrid vertices of B.

As we shall see, 1-nested and level-1 networks (also known in the rooted case
as galled trees, see [33]) play a key role in Chapters 2 and 4. In such networks, the
only blocks are cut-edges and isolated cycles, both structurally simple to under-
stand. In fact, it is possible to define 1-nested and level-1 networks without going
for the more general notion of a blob. Indeed, a 1-nested network can be seen as
a phylogenetic network in which two cycles do not share any edge, whereas level-1
networks are phylogenetic networks in which two cycles do not share any vertex.

Tree-child and tree-sibling networks. A second idea is to look at hybrid

13

vertices, since such vertices represent the main difference between phylogenetic
trees and phylogenetic networks that are not trees. Although the block approach
can apply both to the rooted and the unrooted case, this one can only be used
in the rooted one. The main idea is to check “how close” the hybrid vertices are
to each other. Roughly speaking, this is done by looking, for a hybrid vertex h
of a rooted phylogenetic network N , at the nature (hybrid or tree-vertices) of the
vertices of N sharing a parent with h.

To do so, for an internal vertex v of a rooted phylogenetic network N , the
authors of [12] and [11] consider two situations:

- If v has at least one child that is a tree vertex, we say that v is a tree-child
vertex.

- If v is not the root and has a parent u with a child other than v that is a
tree-vertex, we say that v is a tree-sibling vertex.

From these definitions, we can define two types of rooted phylogenetic networks.
Let N be such a network. If all non-leaf vertices of N are tree-child, we say that
N is a tree-child network. If all hybrid vertices of N are tree-sibling, we say that
N is a tree-sibling network. Clearly, a tree-child network is a tree-sibling network,
whereas the converse is not necessarily true. Phylogenetic trees, as well as 1-nested
networks, are examples of tree-child (and thus, tree-sibling) networks.

Coming back to the underlying idea of these definitions, we remark that in
a tree-child network N , all vertices sharing a parent with a hybrid vertex are
tree-vertices. On the opposite, if N is a rooted phylogenetic network that is not
tree-sibling, then there exists a hybrid vertex h of N such that all vertices sharing
a parent with h are also hybrid vertices.
Tree-based networks. Finally, the third approach of interest to us was intro-
duced in [26], in the form of the question “Which networks can be obtained from
a tree by adding new arcs to it?”. To answer this question, the authors formally
define a rooted phylogenetic network N as a tree-based networks if there exists a
binary phylogenetic tree T on the same set of leaves as N such that N can be
obtained from T by carrying out the following three operations (see Figure 1.5):

(a) Introduce any number of new vertices by subdividing arcs of T .

(b) Define new arcs between these newly created vertices, avoiding the creation
of directed cycles.

(c) Suppress any resulting vertices with in-degree and out-degree 1.

The phylogenetic tree T is said to be a support tree for N . However, that
tree need not be unique. In fact, for the tree-based phylogenetic network N on

14

1 2 3 1 2 3 1 2 31 2 3

(i) (ii) (iii) (iv)

Figure 1.5: (i) A tree-based phylogenetic network N on X = {1, 2, 3}. (ii)-(iv)
Three distinct phylogenetic trees on X = {1, 2, 3} to which new arcs are added
(dashed) so that the resulting phylogenetic network is N .

{1, 2, 3} depicted in Figure 1.5(i), all three binary phylogenetic trees on {1, 2, 3}
are a support tree. This observation gives rise to the following notion. We say that
a tree-based network N on X is a universal tree-based network on X if all binary
phylogenetic trees on X are support-trees for N . In [34] a method to build, for
any n ≥ 3, a universal tree-based phylogenetic network on n leaves is presented.
Moreover, the way the method works also establishes that there are infinitely many
such networks for a given number of leaves. Since these networks may be overly
complicated, the authors of [7] propose a method to build such a network with a
minimal number of hybrid vertices.

The definition of a tree-based network has been extended in [45] to the nonbi-
nary case. This is done by dropping the requirement for the support tree T to be
binary, and by replacing step (b) of the construction by:

(b’) Define new arcs between existing vertices, avoiding the creation of directed
cycles.

In particular, new arcs may be incident to vertices of T , rather than being only
allowed to be incident to vertices created in step (a).

1.2 Distances and splits
In this section, we turn our attention to metrics on the set X, and some more
general extensions of this notion.

1.2.1 Trees and distances
Formally speaking, a metric on a set Z is a function d : Z2 → R≥0 satisfying:

15

(M1) For any x, y ∈ Z, we have d(x, y) = 0 if and only if x = y (Identity and
separation).

(M2) For any x, y ∈ Z, we have d(x, y) = d(y, x) (Symmetry).

(M3) For any x, y, z ∈ Z, we have d(x, z) ≤ d(x, y) + d(y, z) (Triangle inequality).

If instead of (M1) d satisfies the weakened version (M1)’ given by:

(M1)’ For all x ∈ Z, we have d(x, x) = 0,

then d is said to be a pseudo-metric. Note that we shall sometimes use the word
“distance” for metrics or pseudo-metrics, although strictly speaking, a distance
does not need to satisfy Properties (M1) and (M3).

The use of metrics in a phylogenetic context is motivated by the observation
that any unrooted weighted phylogenetic tree T = (T, ω) on X trivially induces a
distance dT on its leaf set X by taking, for each pair x, y ∈ X, the distance dT(x, y)
between x and y to be the length of the (unique) path between x and y in T . This
distance is known as the phyletic distance of T (see e. g. [23]). For example, in the
unrooted tree depicted in Figure 1.6(i), the distance between the leaves 1 and 3 is
1 + 1 + 2 = 4, and the distance between the leaves 2 and 5 is 1 + 1 + 5 + 2 + 1 = 10.
Thus, it is of interest to understand under which conditions a given distance d on
X can be represented by a weighted phylogenetic tree T on X.

(i)

1

2 3

7 6
5

4

1

1 2

1

1

1 1

1
5
2 2

(ii)

0 2 4 10 10 10 10
2 0 4 10 10 10 10
4 4 0 10 10 10 10
10 10 10 0 2 6 6
10 10 10 2 0 6 6
10 10 10 6 6 0 2
10 10 10 6 6 2 0

(iii)

1
1

2
1

7
1

6
1

5
1

4
1

2 21

3

2

3 2

Figure 1.6: (i) An unrooted weighted phylogenetic tree T = (T, ω) on X =
{1, . . . , 7}. (ii) The distance d = dT induced by T, presented in terms of a distance-
matrix (d(i, j))i,j∈X . (iii) An ultrametric tree inducing the same distance d on X.

A metric d for which there exists a weighted phylogenetic tree T satisfying
d = dT is said to be tree-like. As is easy to see, any four leaves x, y, z and u of
the phylogenetic tree T depicted in Figure 1.2(i) satisfy the following inequality,
known as the four-point condition:

dT(x, y) + dT(z, u) ≤ max{dT(x, z) + dT(y, u), dT(x, u) + dT(y, z)}.

16

As it turns out, this definition is at the heart of a characterization of tree-like
metrics:

Theorem 1.2.1 ([10]). Let d be a metric on X. Then d is tree-like if and only if
d satisfies the four-point condition.

As is easy to see, the distance dT induced by a rooted, weighted tree T = (T, ω)
is independent of the location of the root in T . More precisely, for (U(T), ω0) the
underlying weighted tree of T we have that dT = d(U(T),ω0).

However, a particular type of weighted tree allows for getting around this non-
uniqueness problem. We say that a weighted, rooted tree (T, ω) is an ultrametric
tree if the length of the path from the root of T to a leaf is the same for all leaves
of T . For example, the tree depicted in Figure 1.6(iii) is an ultrametric tree, since
the length of the path from its root to any of its leaves is 5. This gives rise to the
following definition. We call a metric d on X an ultrametric on X if there exists
an ultrametric tree T = (T, ω) on X such that d = dT. As in the case of tree-like
metrics, ultrametrics can be characterized in term of an inequality. We say that
a metric d on X satisfies the three-point condition if the following holds for all
x, y, z ∈ X:

d(x, y) ≤ max{d(x, z), d(y, z)}.

In other words, the two larger distances between two of three leaves x, y and
z are equal. Clearly, a metric satisfying the three-point condition also satisfies
the four-point condition, and thus, is tree-like, whereas the converse is not true
in general. Indeed, the distance dT induced by the unrooted phylogenetic tree T

depicted in Figure 1.6(i) where all edges are given weight 1 is tree-like, but does
not satisfy the three-point condition, as max{dT(1, 3), dT(3, 4)} = 4 ≤ dT(1, 4) = 5.

This property provides the rooted analogue of Theorem 1.2.1:

Theorem 1.2.2 ([55]). Let d be a metric on X. Then d is an ultrametric on X
if and only if d satisfies the three-point condition.

Perhaps not surprisingly, various algorithm have been developed to recover a
weighted phylogenetic tree (T, ω) from a metric. These include the Unweighted
Pair Group Method using Arithmetic averages (known as UPGMA,
see [56]) for ultrametrics, and the Neighbor-Joining (NJ, [53]), for metrics in
general. Both methods take as input a distance d on X and are based on an
agglomerative process. Basically, this means that starting with n clusters, each of
them containing a single element of X, the two clusters that are, in some sense,
the closest to each other are merged, until a single cluster containing all elements
of X is obtained. The distance between clusters is derived from the distance given
on X, and is updated at each step, to reflect the merging of clusters.

17

1.2.2 The Split Equivalence Theorem
The fact that the path between two leaves of a phylogenetic network may not
be unique makes it difficult to extend this approach beyond phylogenetic trees.
However, tree-like distances enjoy a property that turns out to be useful in that
respect. To be able to state that property, we next introduce the notion of a “split”
of X.

A split S = {A,B} on X is a bipartition of X into two non-empty subsets
A,B (X, that is, A ∪ B = X and A ∩ B = ∅. We write S = A|B, or S = A|A.
Note that the role of the two sets that make up a split is symmetric, so we have
A|B = B|A. If A = {x1, . . . , xk} and B = {xk+1, . . . , xn} for some 1 ≤ k ≤ n− 1
we usually write x1 . . . xk|xk+1 . . . xn rather than {x1, . . . , xk}|{xk+1, . . . , xn}.

We denote by Σ(X) = {A|A : A (X,A 6= ∅} the set of all splits of X, and
we call a subset Σ of Σ(X) a split system on X. Note that |Σ(X)| = 2|X|−1 − 1.
Finally, for S = A|B a split on X and x ∈ X, we define the set S(x) of S as:

S(x) =
{
A if x ∈ A
B if x ∈ B

There exists a direct link between the notion of a split and an unrooted phylo-
genetic tree. Indeed, a split S = A|B of X is said to be displayed by an unrooted
phylogenetic tree T on X if there exists an edge e of T whose deletion discon-
nects T into two connected components whose set of leaves are respectively A
and B. Denoting the split induced by an edge e of T by Se, we call the set
Σ(T) = {Se : e ∈ E(T)} the split system induced by T . We say that a split system
Σ on X is displayed by T if Σ ⊆ Σ(T), and that it is represented by T if Σ = Σ(T).
For example, the split system

Σ = {1|2345, 2|1345, 12|345, 123|45, 3|1245, 4|1235, 5|1234}.

on X = {1, 2, 3, 4, 5} is the split system represented by the phylogenetic tree T
depicted in Figure 1.7.

Note that if T is an unrooted phylogenetic tree, then for all elements x ∈ X,
the deletion of the edge of T incident to x induces the split Sx = {x}|X − {x}.
Such splits are called trivial splits of X.

The notion of a split system can be extended to a weighted split system (Σ, α),
by including a map α : Σ → R≥0. Moreover, a split S on X trivially induces
a pseudo-metric δS : X × X → {0, 1} by putting, for x, y ∈ X, δS(x, y) = 0 if
S(x) = S(y), and δS(x, y) = 1 otherwise. Thus, a weighted split system (Σ, α) on
X induces a pseudo-metric d(Σ,α) given by:

d(Σ,α) : X2 → R≥0
(x, y) 7→

∑
S∈Σ

α(S)δS(x, y).

18

T :

e1

1

2

e2

5

4

3

Figure 1.7: A phylogenetic tree on X = {1, 2, 3, 4, 5}. The edges e1 and e2 respec-
tively induce the splits 12|345 and 123|45.

That d(Σ,α) satisfies Properties (M1’) and (M2) of a pseudo-metric is straight-
forward to observe. To see that d(Σ,α) also satisfies the triangle inequality (M3), it
suffices to observe that for any split S ∈ Σ(X) and any three elements x, y, z ∈ X,
we have δS(x, z) ≤ δS(x, y) + δS(y, z). Note also that d(Σ,α) is a metric if and only
if for all distinct x, y ∈ X, there exists a split S ∈ Σ such that S(x) 6= S(y). As
is easy to see, if (T, ω) is a weighted unrooted phylogenetic tree, and (Σ(T), α) is
such that for all edge e of T , we have α(Se) = ω(e), then the distance d(Σ(T),α)
coincides with the phyletic distance d(T,ω).

In [3], it has been shown that for all metrics d onX, there exists a weighted split
system (Σd, αd) and a residual term d0 ∈ R such that d = d(Σd,αd) + d0. Referring
to that expression as a decomposition of d, we say that d is totally-decomposable
if it admits a decomposition with residual term d0 = 0, that is, if d of the type
d(Σ,α) for a weighted split system (Σ, α). Such metrics have been introduced and
studied in [3] (see also [14] for more about metrics decomposition).

Note that two distinct weighted split systems (Σ, α) and (Σ′, α′) may induce the
same distance, that is, d(Σ,α) = d(Σ′,α′). This is the case, for example, for the splits
systems (Σ1, α1) and (Σ2, α2) on X = {1, 2, 3, 4}, where Σ1 = {12|34, 13|24, 14|23},
Σ2 = {1|234, 2|341, 3|412, 4|123}, and αi assigns weight one to all splits in Σi,
i ∈ {1, 2}. The distance d induced by both these weighted split systems is given,
for x, y ∈ X, by:

d(x, y) =
{

0 if x = y
2 if x 6= y

The natural question arising from these observations is the following: Given
a non-empty split system Σ ⊆ Σ(X), under which conditions does there exist an
unrooted phylogenetic tree T on X representing Σ? Due to the above observation,
it is not possible to consider directly the induced distance dΣ. Indeed consider
again the distance d(Σ1,α1) induced by the split system (Σ1, α1). Although d(Σ1,α1)
satisfies the four-point condition reviewed in Section 1.2.1, the phylogenetic tree

19

T representing d(Σ1,α1) does not satisfy Σ(T) = Σ1 (in fact, we have Σ(T) =
Σ2). However, a direct answer to that question, known as the Split Equivalence
Theorem, was given in [10].

To state this theorem, we require a further notion for splits. We say that two
distinct splits S1 = A1|B1 and S2 = A2|B2 on X are compatible if one of the four
following intersections:

A1 ∩ A2 ; A1 ∩B2 ; B1 ∩ A2 ; B1 ∩B2

is empty. Equivalently, two distinct splits S1 and S2 on X are compatible if and
only if there exist A1 ∈ S1 and A2 ∈ S2 such that A1 ⊂ A2. More generally, a split
system Σ is said to be compatible if any two distinct splits in Σ are compatible.
If moreover, there exists no split S ∈ Σ(X)− Σ such that Σ ∪ {S} is compatible,
then Σ is said to be maximal compatible. The Split Equivalence Theorem can then
be stated as follows:

Theorem 1.2.3 ([10]). Let Σ be a split system on a set X that contains all trivial
splits on X. Then, there exists a (unique) phylogenetic tree T such that Σ = Σ(T)
if and only if Σ is compatible. Moreover, T is binary if and only if Σ is maximal
compatible.

To obtain the phylogenetic tree postulated in Theorem 1.2.3, Meacham’s Tree
Popping approach ([50]) may be used. This method works as follows:

Starting with T initialized as a star tree, that is, the unrooted phylogenetic tree
on X whose n leaves are joined to a unique interior vertex, the method proceeds
in the form a succession of vertex expansion operations (see Section 1.1). While
Σ(T) 6= Σ, we consider a split S = A|B ∈ Σ − Σ(T), and the necessarily unique
interior vertex v of T such that all the connected components obtained from T by
deletion of v have their set of leaves contained in either A or B. Then, we expand
v to a new edge {vA, vB} in the unique way such that S{vA,vB} = S. Figure 1.8
illustrates this process for the split system represented by the phylogenetic tree T
depicted in Figure 1.7.

1.2.3 Split-networks
As mentioned before, tree-like metrics are totally-decomposable, but the con-
verse is true only if the metric admits a decomposition in term of a compatible
split system. A straightforward consequence of Theorem 1.2.3 is that a totally-
decomposable metric admits at most one such decomposition. The authors of [3]
extend this property, by introducing the notion of weak compatibility as follows:
For S1, S2 and S3 three distinct split on X, we say that S1 = A1|B1, S2 = A2|B2
and S3 = A3|B3 are weakly compatible if A1 ∩ A2 ∩ A3 = ∅ or Ai ⊆ Aj holds for

20

1

2

5

4

3

12|345

1

2

5

4

3

45|123

1

2

5

4

3

Figure 1.8: Building the phylogenetic tree T depicted in Figure 1.7 from the split
system Σ(T). See text for the description of Meacham’s Tree Popping approach.

some distinct i, j ∈ {1, 2, 3}. As in the case of compatibility, we say that a split
system Σ on X is weakly compatible if any three splits in Σ are weakly compatible.
Clearly, if S1 and S2 are two compatible splits on X, then for any split S3 on X,
the splits S1, S2 and S3 are weakly compatible. Thus, a compatible split system
is also weakly compatible. Moreover, we have:

Theorem 1.2.4 ([3]). Let d be a totally-decomposable metric on a set X. Then
there exists a unique weighted split system (Σ, α) satisfying d = d(Σ,α) such that Σ
is weakly compatible.

Note that Theorem 1.2.4 allows us to consider the question of the representabil-
ity of a totally-decomposable metric d that is not tree-like by considering the unique
weighted split system Sd it induces, rather than the metric d itself. We next re-
view popular approaches that have been developed in order to deal with such split
systems. We group these approaches by two main ideas.

Split-graphs. Consider a graph G and a map σ from the edge set E(G) of G
to a finite set C of colors. Such a map is said to be isometric if for any pair of
vertices u and v of G, all edges on a shortest path between u and v have a different
color, and the set of such colors is the same for all shortest paths between u and v.
Following [20], we formally define a split-graph (G, σ) to be a bipartite undirected
connected graph G, that is, a graph with no cycle of odd length, together with an
isometric labelling σ : E(G)→ C of its edges. The key property of such graphs is
the following:

Theorem 1.2.5. Let (G, σ) be a split graph, and let C denote the set of values
taken by σ on E(G). For all c ∈ C, the graph G′ obtained from G by deletion of all
edges e in E(G) satisfying σ(e) = c consists of exactly two connected components.

21

A split network N on X is a split graph (G, σ) some of whose vertices are
labelled by elements of X. Thus, any color c ∈ C directly corresponds to a split Sc
of X, that is, the split obtained by removing all edges e of G satisfying σ(e) = c.
The split system Σ(N) = {Sc : c ∈ C} is called the split system displayed by
N . In the context of split networks, the set of edges sharing the same color is
more important than the color itself so, in general, the coloring of the edges is not
explicitly mentioned. Whenever possible, we draw split networks in such a way
that edges associated to a same split are parallel (see Figure 1.9), so that they can
easily be identified.

4

5 6

1

23

(i)

4

5 6

1

23

(ii)

4

5 6

1

23

(iii)

Figure 1.9: Three distinct split networks on X = {1, 2, 3, 4, 5, 6} representing the
same split system Σ = {123|456, 234|561, 345|612} ∪ {x|X − {x} : x ∈ X}. The
networks in (i) and (ii) are outerplanar, and the network in (iii) is the Bune-
man graph B(Σ) of Σ (see Section 4.3.1 for more on this particular type of split
network).

Note that a split network is not a phylogenetic network in the sense of Sec-
tion 1.1.2, as non-leaf vertices may be labelled by elements of X, and two or more
elements of X may label the same vertex. In fact, a split network N is a phylo-
genetic network in the sense of Section 1.1.2 if and only if the split system Σ(N)
contains all trivial splits on X. Similarly, N is a phylogenetic tree if and only if
Σ(N) is compatible and contains all trivial splits on X, in which case the notions
of displaying a split or a split system boil down to the definition of the respective
concepts introduced in Section 1.2.2.

From a combinatorial point of view, split networks are interesting since for any
split system Σ on X, there exists a network N such that Σ = Σ(N). However,
as suggested by Figure 1.9, such a network is in general non-unique. Among the
several split-networks representing a given split system Σ, Buneman graphs are of
particular interest, due to their attracive combinatorial properties as well as their
links with other mathematical structures (see e. g. [16] and Section 4.3.1 for some
of them).

Splits networks also allow one to take into account the weight of splits. In-
deed, if (Σ, α) is a weighted split system, we can consider the weighted network

22

(N,ω), where Σ = Σ(N) and ω assigns to each edge e of N the weight α(S) of the
split S it corresponds to. By definition, any shortest path between two elements
x, y of X in N is in bijection with a subset Σx,y of Σ(N), which is precisely the
set of splits S of Σ satisfying S(x) 6= S(y) (or equivalently, δS(x, y) = 1). Thus,
we have that the distance d(N,ω) defined by assigning to all pairs x, y ∈ X the
length of a shortest path between x and y in N is precisely the distance d(Σ,α). In
particular, that distance does not depend on the choice of N . Consequently, any
totally-decomposable distance can be represented by a split-network.

Outerplanar networks. In the study of split systems, circular ones play a special
role due to the properties enjoyed by their split-network representation. Following
[3], we say that a split system Σ on X is circular if there exists a circular ordering
x0, x1, . . . xn = x0 of the elements of X such that for all split S = A|B in Σ, A and
B are intervals for that ordering, that is, sets of consecutive elements of X. As an
example, the split system Σ defined in Figure 1.9 is circular, for the lexicographical
ordering on X = {1, . . . , 6}.

Note that a circular split system is weakly compatible (although the converse
is not true in general), but is not necessarily compatible. Moreover, circular split
systems are linked to a particular type of network, called outerplanar. A network,
whether it is a split-network or a phylogenetic network, is said to be outerplanar
if it can be drawn in the Euclidian plane in such a way that:

(O1) No two edges cross.

(O2) The leaves lie outside the network.

A network satisfying Property (O1) only is called planar. As an example,
phylogenetic trees and level-1 networks are both outerplanar. The link between
outerplanar networks and circular split systems was highlighted in [20] in term of
the following result:

Theorem 1.2.6 ([20]). Let Σ be a split system on a set X. There exists an
outerplanar split network N such that Σ(N) = Σ if and only if Σ is circular.

Theorem 1.2.6 is attractive, as it guarantees the existence of a structurally sim-
ple split-network representing a circular split system Σ. The question how such
a split network can be built from a circular split system Σ was answered in [9].
The authors of that paper propose a method, called Neighbor-Net, which is
an adaptation of the Neighbor-Joining algorithm for distances (described in
Section 1.2.1). Indeed, Neighbor-Net does not take as input a split system but
a distance d on X. If d is totally-decomposable and if the underlying split system
Sd of d is circular, then the algorithm builds an outerplanar split-network (N,ω)

23

such that d = d(N,ω) in the sense defined above.

Minimal cuts. As it turns out, minimal cuts of graphs have recently been in-
troduced as an alternative way to display split systems in terms of an unrooted
phylogenetic network ([3, 27]). If N is an unrooted phylogenetic network on X,
a minimal cut of N is the deletion of a set-inclusion minimal set E0 of edge of
N that disconnects N . Since a minimal cut induces a split of X, a split system
Σ(N) can be defined by considering all minimal cuts of N . As in the case of split
networks, we have that if N is a tree, then Σ(N) is the split system induced by N
in the sense defined in Section 1.2.2.

Although the minimal cut approach is less well understood than the split-
network one, some attractive properties hold in case the split system Σ considered
is circular. As a first result, we have:

Theorem 1.2.7 ([27]). Let Σ be a split system on a set X. There exists a level-1
network N on X such that Σ ⊆ Σ(N) if and only if Σ is circular.

As suggested by Theorem 1.2.7, for a given split system Σ on X, there exists
in general no phylogenetic network N such that Σ = Σ(N). Thus, it is of interest
to characterize those split systems for which this equality holds. In case of level-1
network, such a characterization is given in [8]. This characterization is closely
related to the notion of incompatibility, and uses the concept of an “intersection”
between two split. For two distinct splits S1 = A1|B1 and S2 = A2|B2 of X such
that A1∩A2 is non empty, we say that the split A1∩A2|B1∪B2 is an intersection
between S1 and S2.

As is easy to see, two distinct splits S1 and S2 on X can have up to four inter-
sections. More precisely, S1 and S2 have three intersections if they are compatible,
two of which being S1 and S2 themselves, and four distinct intersections if they
are incompatible. Split systems that can be represented by a level-1 network were
characterized in [8] as follows:

Theorem 1.2.8 ([8]). Let Σ be a split system on a set X containing all trivial
splits. There exists a level-1 network N on X satisfying Σ(N) = Σ if and only
if for any pair of incompatible splits S1 = A1|B1 and S2 = A2|B2 in Σ, the four
intersections between S1 and S2 belong to Σ, whereas the split (A1 ∩ A2) ∪ (B1 ∩
B2)|(A1 ∩B2) ∪ (B1 ∩ A2) does not.

In [29], which forms the basis of Chapter 4, we revisit Theorems 1.2.7 and
1.2.8. In addition, we highlight a link between the split-network approach and the
minimal cut approach in case the split system Σ is circular.

24

1.3 Beyond metrics
In Section 1.2.1, a metric d is defined as a map with domain a set Z2 and range in
R≥0. Both these requirements can be weakened, independently from each other,
thus leading to generalizations of the notion of a metric.

1.3.1 Symbolic distances
In the study of evolution, internal vertices of a phylogenetic network may be seen as
evolutionary events. For a rooted phylogenetic tree T onX and two taxa x and y in
X, we can consider them to have arisen from a hypothetical last common ancestor
in T , until an evolutionary event leads them to follow different paths. For example,
for a family G of genes, such an event can be a speciation, that is, a mutation that
leads over time to distinct species, or a genome duplication. The study of such
relations is known as gene homology. In particular, two genes of G are said to be
orthologs if they have arisen from a common ancestor through a speciation event,
and paralogs if they have been separated over time by a duplication event. Recently,
ortholog/paralogs detection have been a topic of interest to biologists, and methods
have been developed to infer, for a pair of genes, whether they are involved in an
orthology or a paralogy relation (see e. g. [47] for an overview). Some of these
methods rely on sets of more than two genes to infer this information, which, as
we shall see, will turn out to be of interest to us. This is the case, for example, in
[57], where the notion of a cluster of orthologous genes is introduced. Others do
not restrict to speciation and duplication events only, but consider a wider set of
events (see e. g. [51]). The existence of such methods motivates the introduction
of maps derived from distances but which do not necessarily take numerical values.

If T is a rooted phylogenetic tree on X such that for each of its internal vertices,
the evolutionary event it corresponds to is known, we can associate to each pair
of elements of X the events corresponding to their last common ancestor in T .
More formally, suppose T is a rooted phylogenetic tree on X. Let Vint(T) denote
the set of internal vertices of T , and let M be a nonempty set that contains all
permissible evolutionary events. Then, a map t : Vint(T) → M induces a map
δ(T,t) : X2 →M ∪ {�} defined as follows (see Figure 1.10 for an example):

δ(T,t) : X2 → M ∪ {�}

(x, y) 7→
{
t(lcaT (x, y)) if x 6= y

� if x = y
(1.1)

The symbol � is not directly related to an evolutionary event, but is necessary
as a sort of “neutral element” for technical reasons. We refer to the pair (T, t) as
a labelled tree, and to the map δ(T,t) as the map represented by that labelled tree.

25

Moreover, a labelled tree (T, t) is said to be discriminating if for all arcs (u, v) of
T such that v is not a leaf, we have t(u) 6= t(v).

•

1 52

◦

3

◦

4

•

(i)

� ◦ • • •
◦ � • • •
• • � • ◦
• • • � ◦
• • ◦ ◦ �

(ii)

Figure 1.10: (i) A rooted phylogenetic tree T on X = {1, 2, 3, 4, 5} together with
a labelling map t of its internal vertices in terms of the set {•, ◦}. (ii) The map
δ represented by (T, t), presented in terms of a symbolic distance-matrix M =
(δ(x, y))x,y∈X on X.

Maps such as the one in Expression 1.1 are known as symbolic distances. For-
mally, a symbolic distance on X is a map δ : X2 →M , where M is a set of size at
least two, satisfying the following two properties:

(S1) There exists an element � ∈M such that for all x, y ∈ X, we have δ(x, y) =
� if and only if x = y.

(S2) For any x, y ∈ X, we have δ(x, y) = δ(y, x).

Clearly, Properties (S1) and (S2) are natural analogues of Properties (M1) and
(M2) respectively for (real-valued) metrics, in the sense that they are equivalent
if Y is the set R≥0 (taking the neutral element � to be 0). However, note that if
M = R≥0, then δ is not necessarily a distance in the usual sense, as it need not
satisfy the triangle inequality.

In order to better understand the link between labelled trees and symbolic
distances, the notion of a symbolic ultrametric was introduced in [6]. A symbolic
ultrametric onX is a symbolic distance onX satisfying the following two additional
properties:

(U1) For any three elements x, y and z in X, at least two of the three values
δ(x, y), δ(x, z) and δ(y, z) coincide.

(U2) There exists no four elements x, y, z and u in X such that:

δ(x, y) = δ(y, z) = δ(z, u) 6= δ(y, u) = δ(u, x) = δ(x, z)

holds (see Figure 1.11(ii) for a graphical representation of that condition).

26

For example, the map represented by the symbolic distance-matrix in Fig-
ure 1.10(ii) is a symbolic ultrametric. Note that (U1) may be viewed as the natural
analogue of the three-point condition (see Section 1.2.1) for ultrametrics. More
precisely, an ultrametric d : X2 → R≥0 satisfies (U1) and (U2), and thus, consid-
ering numbers as symbols, can be seen as a symbolic ultrametric. The converse is
not true in general, as a symbolic ultrametric with image set in R≥0 need not be an
ultrametric, for two reasons. First, as in the case of symbolic distances mentioned
above, such a map does not necessarily satisfy the triangle inequality. Second, the
three point conditions requires, in addition to the correspondence postulated by
(U1), an inequality to be satisfied, whereas no order is required on the image set
of a symbolic ultrametric.

Symbolic ultrametrics were characterized in [6] as follows:

Theorem 1.3.1 ([6]). Let X and M be two sets of size 2 or more, and let δ :
X2 →M be a map. There exists a rooted phylogenetic tree T on X together with a
map t : Vint(T)→M such that δ = δ(T,t) if and only if δ is a symbolic ultrametric.

Note that for a given symbolic ultrametric δ, the labelled tree (T, t) satisfying
δ(T,t) = δ, is not necessarily unique. However, the following holds:

Theorem 1.3.2 ([6]). Let X and M be two sets of size 2 or more. If δ : X2 →M
is a symbolic ultrametric, then there exists a unique discriminating labelled tree
(T, t) satisfying δ(T,t) = δ.

Interestingly, an equivalent of Theorem 1.3.1 and the associated uniqueness
result appeared in [31] in the context of game theory (see also [32] for more details).
Within this context, the leaves of the tree T are seen as end of game situations,
the label set M corresponds to a set of players, and a directed path from the root
of T to a leaf is a sequence of plays.

In [31], a symbolic map on X is seen as an edge-colored unrooted graph Hδ

with vertex-set X and edge set {{x, y} ∈ X2, x 6= y}, where the color associated to
an edge {x, y} corresponds to the value δ(x, y). This representation is interesting,
as it allows one to vizualize conditions (U1) and (U2) in terms of two “forbidden
patterns”, which we depict in Figure 1.11.

As is easy to see, a symbolic map δ : X2 → M is a symbolic ultrametric if
and only if Hδ does not contain a subgraph isomorphic to either ∆ or Π. More
precisely, δ satisfies (U1) (resp. (U2)) if and only if Hδ does not contain a subgraph
isomorphic to ∆ (resp. Π).

An algorithm aimed at building the unique discriminating labelled tree (T, t)
postulated by Theorem 1.3.2 from a given symbolic ultrametric δ on X is presented
in [35]. Called Bottom-Up, this algorithm is agglomerative. In order to describe
it, we first require some more terminology.

27

(i) (ii)

x

y z x

y z

u

∆ : Π :

Figure 1.11: (i) An edge-colored graph ∆ on X = {x, y, z}. (ii) An edge-colored
graph Π on X = {x, y, z, u}. Colors are represented in terms of different edge
styles (plain, dashed and dotted).

Suppose we have a map δ : X2 → M . For x ∈ X and m ∈ M , we put
Nm(x) = {y ∈ X : δ(x, y) = m} and Nm[x] = Nm(x) ∪ {x}. Armed with these
notations, we define an undirected graph G(δ) as follows: The vertex set of G(δ)
is X, and two vertices x and y are joined by an edge if there exists an element
m ∈ M such that Nm[x] = Nm[y]. Finally, we denote by π(δ) the set whose
elements are the vertex sets of the connected components of G(δ), and by π2(δ)
the set of elements of π(δ) of size at least 2.

For example, for X = {1, 2, 3, 4, 5} and M = {�, ◦, •}, consider the map δ :
X2 →M given by the distance-matrix in Figure 1.10(ii). We haveN◦[1] = {1, 2} =
N◦[2] and N•[3] = {1, 2, 3, 4} = N•[4]. Then, the vertex set of the graph G(δ) is
X and its edge set {{1, 2}, {3, 4}}. Consequently, π(δ) = {{1, 2}, {3, 4}, {5}} and
π2(δ) = {{1, 2}, {3, 4}}.

The Bottom-Up algorithm starts with initializing T as n = |X| isolated
vertices, each of which labelled by an element of X. The main observation on
which the algorithm is based is the fact that a connected component of size two
or more in G(δ) corresponds to a pseudo-cherry in the tree we are looking for,
that is, a set of two or more leaves sharing the same parent. This is an extension
of the notion of a cherry, that is a pair of leaves sharing the same parent, to the
non-binary case.

Suppose Y ∈ π2(δ). Then, we define a new vertex v, and add to T the arcs
(v, x) for all x ∈ Y . If π2(δ) is empty, we return the statement that δ is not a
symbolic ultrametric. Next, we define t(v) = δ(x, y), where the choice of x and y
in Y is of no relevance since by definition of Y , δ has the same value on any pair
of distinct elements of Y .

Once this is done for all Y ∈ π2(δ), we update δ by identifying every connected
component in the tree built thus far with one of its leaves. We then iterate that
process until we obtain a labelled tree or the statement that δ is not a symbolic
ultrametric. Note that in the case where a labelled tree (T, t) is returned, this

28

tree represents δ but may not be discriminating. In that case, we collapse all
internal arcs (u, v) of T for which t(u) = t(v) holds into a new node w, and
put t(w) = t(v). As is easy to see, this operation does not modify the symbolic
ultrametric represented by the resulting labelled tree.

In Chapter 2, which is based on [41], we propose an extension of Theorem 1.3.1
and of the Bottom-Up algorithm to the space of level-1 networks.

1.3.2 Dissimilarities
Rather than considering a distance between two elements, it may sometimes be
of interest to consider an equivalent taking into account three elements or more.
Indeed, such an equivalent may turn out to be more accurate than metrics, as they
can potentially capture more information (see e. g. [24, 52]). To formalize this idea,
let 1 ≤ k ≤ |X|. We denote by

(
X
k

)
the set of subsets of X of size exactly k, and

by
(
X
≤k

)
the set of subsets of X of size k or less. We call a map d :

(
X
k

)
→ R≥0

a k-way dissimilarity (or a k-dissimilarity for short). For {x1, . . . , xk} ∈
(
X
k

)
,

we shall write d(x1, . . . , xk) rather than d({x1, . . . , xk}), where the order of the
elements x1, . . . , xk is of no relevance. Clearly, a distance is a particular type of 2-
dissimilarity. We remark in passing that, since the symmetry required by Property
(M2) trivially holds for 2-dissimilarities, a metric can alternatively be defined as
a 2-dissimilarity d with image in R>0, satisfying the triangle inequality (M3).

The following relationship between phylogenetic trees and k-dissimilarities was
observed in [52]. For (T, ω) a weighted phylogenetic tree on X (rooted or un-
rooted), and Y ∈

(
X
k

)
, let (TY , ωY) denote the weighted subtree induced by Y and

let dk(T,ω)(Y) denote the sum of the length of all edges of (TY , ωY). For example,
if (T, ω) is the phylogenetic tree depicted in Figure 1.6(i), then d3

(T,ω)(1, 2, 3) = 5,
and d4

(T,ω)(4, 5, 6, 7) = 8. Clearly, for k = 2, the map d2
(T,ω) obtained this way

coincides with the phyletic distance d(T,ω) defined in Section 1.2.1, as the subtree
induced by two leaves x, y of T is precisely the (unique) path between x and y
in T . As in the case of metrics (Section 1.2.1), we call a k-dissimilarity d on X
tree-like if there exists a weighted tree (T, ω) on X such that d = dk(T,ω). As a first
result, we have:

Theorem 1.3.3 ([52]). Let (T, ω) be an unrooted weighted phylogenetic tree on X
and let k ≥ 2. If 2k + 1 ≤ |X|, then (T, ω) is uniquely determined by the map
dk(T,ω).

This means that if d is a tree-like k-dissimilarity, the unrooted weighted phy-
logenetic tree (T, ω) satisfying d = dk(T,ω) is unique. To decide whether a given
k-dissimilarity d on X is tree-like or not, the authors of [36] propose to look at the

29

restrictions of d to some carefully chosen subsets of X. For d a k-dissimilarity on
X and Y a subset of X of size at least k, we denote by d|Y the restriction of d to(
Y
k

)
. Then, we have:

Theorem 1.3.4 ([36]). Let d be a k-dissimilarity on X, with 2 ≤ k ≤ |X|
2 . Then,

d is tree-like if and only if d|Y is tree-like for all subsets Y of X of size 2k.

In particular, Theorem 1.3.4 suggests that tree-like k-dissimilarities can be
characterized using properties involving 2k elements or less. This is clearly the
case for k = 2 as the two conditions for a 2-dissimilarity to be tree-like (see
Section 1.2.1) are the triangle inequality (M3), involving three elements of X, and
the four-point condition, which involves four elements. The authors of [36] also
note that it is impossible to go below this limit of 2k, as for all k ≥ 3, it is possible
to find a k-dissimilarity d on X that is not tree-like, but is such that d|Y is tree-like
for all subsets Y of X of size 2k − 1.

Interestingly, Theorem 1.3.4 has a rooted equivalent, involving ultrametric
trees. If d is a tree-like k-dissimilarity such that there exists an ultrametric tree
(T, ω) satisfying dk(T,ω) = d, we call d equidistant. As shown in [36], Theorem 1.3.4
also holds when replacing “tree-like” by “equidistant”:

Theorem 1.3.5 ([36]). Let d be a k-dissimilarity on X, with 2 ≤ k ≤ |X|
2 . Then,

d is equidistant if and only if d|Y is equidistant for all subsets Y of X of size 2k.

In Chapter 3, which is based on [39], we combine this approach with the result of
the previous section on symbolic distances to study two different types of symbolic
3-dissimilarities, and the relationship they enjoy with labelled phylogenetic trees.

1.4 Decomposition into smaller structures
It may sometimes be useful to study the structure of a graph G in terms of smaller
graphs induced by G. In the context of phylogenetics, the idea manifests itself
in terms of trying to decompose a phylogenetic network N into smaller networks,
in such a way that such networks contain enough information to allow one to
recover N . In the case of rooted phylogenetic networks, the simplest meaningful
such graphs induced by a network are triplets and trinets, both of which we define
next.

1.4.1 Triplets
Triplets may be thought of as the fundamental building blocks for rooted phyloge-
netic networks. For x, y and z three distinct elements of X, a triplet τ on {x, y, z}

30

is a binary rooted phylogenetic tree on {x, y, z}. If, say, z is a child of the root of
τ whereas x and y are not (as is the case of the triplet τ2 in Figure 1.14), we write
τ = xy|z (or, equivalently, z|xy) to capture the structure of the triplet. A rooted
phylogenetic network N on X is said to display a triplet τ = xy|z if there exists a
vertex v0 of N and two disjoints directed paths respectively from v0 to z and from
v0 to a lowest common ancestor of {x, y}. More generally, a rooted phylogenetic
network N on X is said to display a set of triplets C on X if N displays all triplets
in C.

1 2 3 4 5

(i)

1 2 3 4 5

(ii)

Figure 1.12: The leaves 3,4 and 5 of the rooted phylogenetic network N on X =
{1, 2, 3, 4, 5} depicted in Figure 1.3(iii) induce both the triplets 34|5 ((i), dashed)
and 45|3 ((ii), dashed).

We denote by C(N) the set of triplets displayed by a rooted phylogenetic
network N on X. Note that three elements {x, y, z} ⊆ X may be the leaf set of
more than one triplet in C(N) (see Figure 1.12 for an example), although this is
impossible if N is a phylogenetic tree. In the same way, there might be subsets
{x, y, z} ⊆ X, such that there exists no triplet τ ∈ C(N) with leaf set {x, y, z}.
However, there are no such sets if N is binary. A collection C of triplets on X
satisfying the property that for all distinct x, y, z ∈ X, there exists at least one
triplet τ in C whose leaf set is {x, y, z} is said to be dense1. As we shall see, this
property turns out to be helpful for the purpose of reconstructing phylogenetic
networks from triplets.

A method to build a rooted phylogenetic tree T displaying a given set C of
triplets on X, that is, a phylogenetic tree T satisfying C ⊆ C(T), is presented in
[1]. Called BUILD, it takes as input a collection C of triplets on X, such that no
two triplets in C have the same set of leaves. The algorithm starts by initializing
T as a single vertex ρ, to which a set S(ρ) = X is associated. Essentially, the
methode proceeds by successively adding children to a vertex v of the tree T thus
far constructed.

1Note that this use of the word “dense”, which appears in [44] and has been widely used
since (see e. g.[43, 58, 59]), bears no link with the well-known notion of density in topology.

31

For every vertex v of T of out-degree 0, we consider the associated set S(v) ⊆ X.
If |S(v)| = 2, we call x1 and x2 its two elements. We then add two children x1
and x2 to v. If |S(v)| ≥ 3, we consider the Aho graph π(v), whose vertices are
the elements in S(v), in which two vertices x and y in π(v) are joined by an edge
if there exists a further element z ∈ S(v) such that the triplet xy|z belongs to
C. If π(v) consists of m ≥ 2 connected components π1, . . . , πm, the algorithm
adds m children v1, . . . , vm to v, and defines, for all 1 ≤ i ≤ m, the set S(vi) as
the vertex set of πi. This process is illustrated in Figure 1.13 for the triplet set
C = {12|4, 45|3, 35|1} on X = {1, 2, 3, 4, 5}.

1

2

3

4

5

π(ρ) :

3

4

5

π(v2)

;

;

ρ

v2v1

{1, 2} {3, 4, 5}

{1, 2} {3} {4, 5}

v2

v1 v3

;

1 2 3 4 5

ρ ρ

v2
v3v1

Figure 1.13: The different steps carried out by BUILD to construct a phylogenetic
tree on X = {1, 2, 3, 4, 5} displaying the triplets 12|4, 45|3 and 35|1. See text for
the detailed description of the algorithm.

As is easy to see, BUILD stops either if at some stages, the Aho graph π(v)
constructed along the way for some vertex v consists of a single connected com-
ponent, or if a tree whose leaves l all satisfy |S(l)| = 1 is constructed. In the
first case, there exists no phylogenetic tree displaying all triplets in C, whereas
in the latter, the phylogenetic tree on X obtained by identifying each leaf l with
the unique element of S(l) displays all triplets in C. As it turns out, the BUILD
algorithm also provides a characterization for the uniqueness of the tree displaying
a set of triplets. Indeed, we have:
Theorem 1.4.1 ([1]). Let C be a collection of triplets on a set X. We have:
(i) There exists a rooted phylogenetic tree T on X such that C ⊆ C(T) if and

only if BUILD returns a phylogenetic tree on X.

(ii) There exists a unique rooted phylogenetic tree T on X such that C ⊆ C(T)
if and only if BUILD returns a binary phylogenetic tree on X.

32

Triplets are interesting to us due to their link with symbolic ultrametrics defined
in Section 1.3.1. Indeed, for a given symbolic ultrametric δ on X, we can associate
to δ the set R(δ) of triplets given by:

R(δ) = {xy|z : δ(x, z) = δ(y, z) 6= δ(x, y)}.

It was shown in [55] that there exists a rooted phylogenetic tree onX displaying
all triplets in R(δ). Moreover, if T is the phylogenetic tree returned by BUILD
when applied to R(δ), there exists a map t from Vint(T) to the image set of δ such
that (T, t) is the unique discriminating tree representing δ. The map t can then
be trivially recovered from δ.

The problem of reconstructing a phylogenetic network from a collection of
triplets C seems to be more complex than for phylogenetic trees. Indeed, it was
shown in [60] that this problem is NP-hard. However, it turns out that the property
of density of the input triplet set plays a key role in the simplification of this
reconstruction problem. Indeed, if C is dense, it is possible to build in time O(n3)
a level-1 network N satisfying C(N) = C, if such a network exists ([44]). A similar
result, for level-2 networks, is given in [58].

1.4.2 Encoding properties and trinets
As it turns out, triplets are often too limited to capture the complexity of a rooted
phylogenetic network, in the sense that two non-isomorphic phylogenetic networks
may display the same collection of triplets (see [28]). This can be seen, for example,
in Figure 1.14, where the phylogenetic networks τ3 and τ4, although different, both
display precisely the triplets xy|z and zy|x.

To help overcome this problem, the notion of a trinet, that is, a phylogenetic
network on a setX of size 3, was introduced in [38]. In Figure 1.14, we represent the
14 possible 1-nested trinets as they appear in [38]. For N a phylogenetic network
onX, we say that a trinet τ on {x, y, z} ⊆ X is displayed by a phylogenetic network
N if τ is the subnetwork of N induced by the leaves x, y and z (see Section 1.1.2).

As is easy to see, if N induces a trinet τ that is also a triplet, then N also
displays τ as a triplet in the above sense. Moreover, if N is a phylogenetic tree,
the converse also holds. More precisely, if T is a phylogenetic tree on X, we have
that T displays a triplet xy|z if and only if xy|z is the subtree of T induced by the
leaves x, y, z

As we shall see, trinets τ1, τ2 and τ3 play a key role in Chapter 2. Note also
that according to the definitions given in Section 1.1.3, the trinets τ1 to τ12 are
also level-1 trinets. This is not the case for τ13 and τ14, since they both contain a
vertex belonging to two distinct cycles. Finally, we can see that 5 of these trinets
(τ1, τ11, τ12, τ13 and τ14) are not binary. However, it is interesting to note that
binary networks display only binary trinets.

33

x y z

x y z

x

y

z

x y z

x y z

x y z

x y z

x y z

x y z

x y z

x y z

x y z

τ1 :

τ2 :

τ3 :

τ4 :

τ5 :

τ6 :

τ7 :

τ8 :

τ9 :

τ10 :

τ11 :

τ12 :

x y z

x y z

τ13 :

τ14 :

Figure 1.14: The fourteen 1-nested trinets up to a relabelling of their leaves.

The authors of [38] established the following result:

Theorem 1.4.2 ([38]). 1-nested networks are uniquely determined by the set of
their induced trinets, and can be reconstructed from that set in polynomial time.

This result has been extended in [61] to the space of level-2 networks and tree-
child networks. However, it turns out that this result does not hold in general.
Indeed, two non-isomorphic phylogenetic networks on 4 leaves are presented in
[40], both of which display the same set of trinets.

In Chapter 2, where the idea of network reconstruction from trinets is used, we
restrict ourselves to the space of level-1 networks. Thus, the uniqueness property
postulated by Theorem 1.4.2 holds, which, as we shall see, will turn out to be
useful.

34

Chap. 2

On symbolic 3-dissimilarities and
labelled level-1 networks

Adapted from:

K. T. Huber and G. E. Scholz. Beyond representing orthology relations with
trees. Algorithmica (2018) 80(1): 73-103.

My personal contribution to this work has been the development of the algorithms,
as well as their implementation in Python. I also established the results presented
along the way, and I have written the first draft of the paper.

This chapter addresses the question of the representability of an orthology re-
lation, formalized in terms of a symbolic 3-dissimilarity, by a level-1 phylogenetic
network. We introduce the algorithm Network-Poping, aimed at building such
a network representing a given symbolic 3-dissimilarity, should one exist, and pro-
vide a characterization of those dissimilarities that admit a representation in the
form of a level-1 network.

2.1 Introduction
This chapter is based on [41], an original research work on symbolic 3-dissimilarities
and the newly introduced concept of a labelled level-1 network. The minimal
prerequists for understanding it are the notions discussed in Section 1.3.1. The
starting point of this work is Theorem 1.3.1, characterizing symbolic ultrametrics
in terms of two conditions (U1) and (U2). Let suppose we have got some bio-
logical data on a set of taxa X in the form of a symbolic distance (or symbolic
2-dissimilarity) δ :

(
X
2

)
→ M , where M represents a set of some evolutionary

events. Theorem 1.3.1 ensures that if δ satisfies conditions (U1) and (U2), there is

35

a way to “represent” δ by a labelled phylogenetic tree (see Section 1.3.1 for more
on this). However, it is generally too much to hope for that such a map δ inferred
from real biological data satisfies that characterization. The question we want to
answer here is, what can we do in that case?

To try to overcome this problem, two approaches may be considered. The first
one is to assume that the data are “biased” or “noisy”, and to try to correct the
map δ in such a way that they satisfy the characterization of Theorem 1.3.1. As
shown in [48], however, this often leads to NP-Complete problems.

We focus here on the second approach. Rather than trying to modify the data,
we are looking for structures other than phylogenetic trees to represent them. As
phylogenetic networks stand as a natural extension of phylogenetic trees, the first
task is to extend the notion of a symbolic distance being represented by a tree to
the notion of a symbolic distance being represented by a network.

As we have seen in Section 1.3.1, this notion of representability is directly
related to the concept of a lowest common ancestor. However, although the lowest
common ancestor of a set Y of taxa is unique in a tree, this is not necessarily
the case for phylogenetic networks in general (see Section 1.1.2 and Figure 1.4
for an example of this non-uniqueness). Thus, we have to restrict ourselves to
phylogenetic networks for which this uniqueness property holds.

As it turns out, level-1 networks satisfy this property (Lemma 2.2.1). Although
they are not the only networks in that case, they stand as a good starting point,
due to the relative simplicity of their non tree-like structures, which, by abuse of
terminology, we call cycles in the following (see Section 2.2 for a formal definition).

A further problem that quickly arises is the question of uniqueness. Consider
the symbolic distance δ :

(
{1,2,3}

2

)
→ M = {•,×,�}, defined by δ(1, 2) = •,

δ(1, 3) = � and δ(2, 3) = ×. This is clearly not a symbolic ultrametric, as it
does not satisfy condition (U1) of Theorem 1.3.1, thus it cannot be represented
by a labelled phylogenetic tree. However, all three level-1 networks depicted in
Figure 2.1 satisfy that for any pair x, y ∈ {1, 2, 3}, the symbol assigned to lowest
common ancestor of x and y coincide with δ(x, y). Clearly, this is not suitable from
a uniqueness perspective. To tackle this problem, the key observation is that the
symbol assigned to the lowest common ancestor of all three leaves is different in
all three networks of Figure 2.1. For this reason, symbolic 3-dissimilarities appear
as an interesting alternative to symbolic distances.

As it turns out, distinct level-1 networks on a set X may also induce the same
3-dissimilarity δ. This is for example the case of networks N1, N2 and N3 in
Figure 2.1. Mimicking again the case of labelled phylogenetic trees, which requires
the trees to be discriminating to ensure such a uniqueness, we introduce three mild
properties, up to which this uniqueness holds (Corollary 2.4.5).

This chapter takes the form of a step-by-step development of an algorithm,

36

1

2

3 2

1

3 1

3

2

Figure 2.1: Three distinct level-1 representations of the same 2-dissimilarity δ :(
{1,2,3}

2

)
→ M = {•,×,�} defined by taking lowest common ancestors of pairs of

leaves.

N1 :

a

b

c

d

e

f

g

C1

C2

C3

h

i j

k

N2 :

a

b

c

d

e

f

g

h

i

j

k

N3 :

a

b

c

d

e

f

g

h

k

i

j

C4

Figure 2.2: Three distinct level-1 representations of the same symbolic 3-
dissimilarity δ on X={a,. . . ,k}, with image set M = {◦, •}. In all three cases
the underlying phylogenetic network is a level-1 network.

called Network-Popping aimed at building a unique labelled level-1 network
from the 3-dissimilarity it induces, satisfying these three properties. Along the
way, we characterize level-1 representable symbolic 3-dissimilarities δ on a set X
in terms of eight natural properties (P1) – (P8) enjoyed by δ (Theorem 2.4.1).
Furthermore, we characterize such dissimilarities in terms of level-1 representable
symbolic 3-dissimilarities on subsets of X of size |X| − 1 (Theorem 2.4.8). Within
a Divide-and-Conquer framework the resulting speed-up of algorithm Network-
Popping might allow it to also be applicable to large datasets.

As we shall see, Network-Popping takes as input a 3-dissimilarity on some
set X and is guaranteed to find, in O(|X|6)-time, a level-1 representation for
it if such a representation exists. For this, it relies on four further algorithms,
among which is the Bottom-Up algorithm, introduced in [35] and described in
Section 1.3.1.

This chapter is organized as follows. We present in Section 2.2.1 some basic ter-

37

minology and results on level-1 networks, including Lemma 2.2.1 on the uniqueness
of the notion of a lowest common ancestor in such a network. In Section 2.2.2,
we formally define a labelled level-1 network and explore its relationships with
symbolic 3-dissimilarities. We then introduce in Section 2.2.3 the crucial concept
of a δ-trinet associated to a symbolic 3-dissimilarity and state Property (P1).

In Section 2.3.1, we present algorithm Find-Cycles as well as Properties (P2)
and (P3). In Section 2.3.2, we introduce and analyze algorithm Build-Cycle.
Furthermore, we state Properties (P4) – (P6). In Section 2.3.3, we present algo-
rithms Vertex-Growing and Network-Popping. For the convenience of the
reader, we illustrate all these algorithms by means of the level-1 networks depicted
in Figure 2.2 and the symbolic 3-dissimilarity they induce.

We address in Section 2.4.1 the uniqueness question discussed above (Corol-
lary 2.4.5), and we present algorithm Transform which allows to obtain, from
a labelled level-1 network N , the unique labelled level-1 network N ′ returned by
Network-Popping when applied to the symbolic 3-dissimilarity induced by N .
As part of this we establish Theorem 2.4.1 which includes stating Properties (P7)
and (P8). In Section 2.4.2, we establish Theorem 2.4.8.

In this chapter, unless stated otherwise, X denotes a finite set of size n ≥ 3,
M denotes a finite set of symbols of size at least two and � denotes a symbol not
already contained in M .

2.2 Preliminaries
We start here by formally introducing the notions of a labelled phylogenetic net-
work and of a symbolic 3-dissimilarity. We collect relevant basic terminology and
present some first results.

2.2.1 Rooted level-1 networks
By abuse of terminology, we call a subgraph H of a directed graph G a cycle of
G if the induced subgraph U(H) of U(G) is a cycle. We start with introducing
further terminology on cycles, which will be used throughout this chapter. Let N
be a level-1 network on X. For C a cycle of N we denote by h(C) the unique
hybrid vertex of C (which we shall refer to as the hybrid of C) and we call the
unique tree vertex v of C such that there exists two arc-disjoints directed paths
from v to h(C) the top-vertex of C, denoted by r(C).

In the following, we say that a vertex w is below a vertex v in N if there exists
a directed path from v to w. Having said that, we denote the set of all elements
of X below r(C) by R(C) and the set of all elements of X below h(C) by H(C).
By definition, we have H(C) (R(C). Moreover, for any leaf x ∈ R(C) −H(C),

38

we denote by vC(x) the last ancestor of x in C, that is, the unique vertex v of C
such that x is below v but x is not also below a child of v contained in C. Note
that vC(x) is the parent of x if and only if x is incident with a vertex in C.

Last-but-not-least, we call the vertex sets of the two arc-disjoint directed paths
from r(C) to h(C) the sides of C. Denoting these two paths by P1 and P2,
respectively, we say that two leaves x and y in R(C)−H(C) lie on the same side
of C if the vertices vC(x) and vC(y) are both interior vertices of the same path
Pi, i ∈ {1, 2}, and that they lie on different sides otherwise. For example, denoting
the unique cycle in the network on X = {1, . . . , 7} depicted in Figure 2.3 by C,
we have R(C) = {1, 2, 3, 4, 5, 6} and H(C) = {3, 4}. Furthermore, the sides of C
are the paths {r(C), vC(1), vC(2), h(C)} and {r(C), vC(5), h(C)}, and the leaves 1
and 2 lie on the same side of C whereas the leaves 1 and 5 lie on different sides of
C.

1

2

3 4

5 6

r(C)

h(C)

7

Figure 2.3: A level-1 network on X = {1, . . . , 7} with a single cycle C, of which
we indicate the vertices r(C) and h(C).

As mentioned in Section 1.1.2, the notion of a lowest common ancestor is not
well-defined for phylogenetic networks in general. However the situation changes
in case the network in question is a level-1 network, as the following central result
shows.

Lemma 2.2.1. Let N be a level-1 network on X and assume that Y ⊆ X such
that |Y | ≥ 2. Then there exists a unique interior vertex vY ∈ V (N) such that
Y ⊆ C(vY) and Y 6⊆ C(v′), for all children v′ ∈ V (N) of vY . Furthermore, there
exists two distinct elements x, y ∈ Y such that vY satisfies {x, y} ⊆ C(vY) and
{x, y} 6⊆ C(v′)for all children v′ ∈ V (N) of vY .

Proof. Note first that if N is a level-1 network, and v and w are two vertices of
N such that C(v) ∩ C(w) 6= ∅, we either have C(v) ⊂ C(w)1, which means that

1or the symmetric relation, C(w) ⊂ C(v).

39

there exists a path from w to v, or there exists a hybrid vertex h of N satisfying
C(h) = C(v) ∩ C(w).

Now, let Y ⊆ X, and assume by contradiction that there exists two distinct
vertices v and w satisfying the definition of a lowest common ancestor for Y . This
implies that the set C(v) ∩ C(w) is nonempty, since it contains Y . Suppose first
that C(v) ⊆ C(w). Since there exists a path from w to v, and a path from v to
any element of Y , all vertices v′ on the path from w to v satisfies Y ⊂ C(v′). In
particular, w has a child satisfying this property, which is impossible since w is a
lca for Y .

Thus, we must have Y ⊂ C(h), where h is an hybrid vertex of N . Again, there
exists a path from h to any element of Y , and since C(h) ⊆ C(w), there exists a
path from w to y. For the same reason, this implies that w cannot be a lca for Y .

Now, let v = lcaN(Y) and assume by contradiction that for all pair {x, y} (
Y , lcaN(x, y) 6= v. This means that for each of these pairs, v has a child v′

satisfying {x, y} ⊆ C(v′). Then, there exists at least as many distinct hybrid
vertices reachable through a path from v that do not cross any other hybrid vertex
as there are elements in Y , which is impossible since N is a level-1 network.

Continuing with the terminology of Lemma 2.2.1, we refer to vY as the lowest
common ancestor of Y in N , denoted by lcaN(Y). As in the case of a phylogenetic
tree, we write lca(Y) rather than lcaN(Y) if the network N we are referring to is
clear from the context.

2.2.2 Labelled level-1 networks
Let N be a level-1 network on X. As in Section 1.3.1, we denote the set of interior
vertices of N by Vint(N). Moreover, we denote the set of interior vertices of N
that are not hybrid vertices of N by Vint(N)−.

A labelled (phylogenetic) network (on X) is a pair N = (N, t) consisting of a
phylogenetic network N on X and a labelling map t : Vint(N)− → M . If N is a
level-1 network then N is called a labelled level-1 network. To improve clarity of
exposition we use calligraphic font to denote a labelled phylogenetic network.

Suppose N = (N, t) is a labelled level-1 network on X such that the vertices
in Vint(N)− are labelled in terms of M . Then, we denote by δN :

(
X
≤3

)
→M ∪{�}

the symbolic 3-dissimilarity1 on X induced by N given by δN(Y) = t(lca(Y)) if
|Y | 6= 1, and δN(Y) = � otherwise. For N′ = (N ′, t′) a further labelled level-1
network on X, we say that N and N′ are isomorphic if N and N ′ are isomorphic
as phylogenetic networks, and δN = δN′ .

1Note that δN is not exactly a 3-dissimilarity as defined in Section 1.3.2, as it takes input in(
X
≤3
)
and not in

(
X
3
)
.

40

Conversely, suppose δ is a symbolic 3-dissimilarity onX. In view of Lemma 2.2.1,
we call a labelled level-1 network N = (N, t) on X a level-1 representation of δ if
δ = δN. For ease of terminology, we sometimes say that δ is level-1 representable
if the labelled network we are referring to is of no relevance to the discussion.

As is straightforward to see, any labelled network N = (N, t) that contains an
arc e both of whose end-vertices have the same label induces the same symbolic
3-dissimilarity as the labelled network obtained from N by collapsing e. From
a uniqueness point of view this is clearly undesirable. We therefore call a level-1
representation of δ semi-discriminating ifN does not contain an arc (u, v) such that
t(u) = t(v) except for when there exists a cycle C of N with |V (C) ∩ {u, v}| = 1.
For example, all three labelled level-1 networks depicted in Figure 2.2 are level-1
representations of the same symbolic 3-dissimilarity δ. However N1 and N3 are
semi-discriminating whereas N2 is not as the parents of j and i belong to the same
cycle, are joined by an arc, and have same label.

Note that in case N is a phylogenetic tree on X the definition of a semi-
discriminating labelled level-1 network to that of a discriminating labelled tree as
defined in Section 1.3.1.

Clearly, it is too much to hope for that any symbolic 3-dissimilarity δ has
a level-1 representation. The question therefore becomes: Which symbolic 3-
dissimilarities have such a representation?

2.2.3 δ-triplets, δ-tricycles, and δ-forks
To make a first inroad into the aforementioned question, we next investigate the
links between symbolic 3-dissimilarities and trinets (see Section 1.4.2). As we shall
see, these turn out to be of fundamental importance for our algorithm Network-
Popping (see Section 2.3.3) as well as for our analysis of its properties. Perhaps
not surprisingly, trinets on their own are not strong enough to uniquely determine
labelled level-1 networks in the sense that any two level-1 representations of a
symbolic 3-dissimilarity must be isomorphic. To see this, suppose |X| = 3 and
consider the symbolic 3-dissimilarity δ :

(
X
≤3

)
→ {A,�} that maps X and every

2-subset of X to A. Then the labelled network (τ1, t) where t maps the unique
vertex in Vint(τ1)− to A is a level-1 representation of δ and so is the labelled network
(τ4, t

′), where every vertex in Vint(τ4)− is mapped to A by t′. Note that similar
arguments may also be applied to the level-1 representations involving the trinets
τ4 to τ12 depicted in Figure 1.14.

To be able to state the next result (Lemma 2.2.2), we say that a symbolic 3-
dissimilarity δ satisfies the Helly-type property if, for any three elements x, y, z ∈ X,
we have δ(x, y, z) ∈ {δ(x, y), δ(x, z), δ(y, z)}. This is inspired by the notion of
a Helly family (see e. g. [16]), that is, a collection S of sets such that for all

41

collections S′ ⊆ S with ∩S∈S′S 6= ∅, there exists S1, S2 ∈ S′ such that ∩S∈S′S =
S1∩S2. In other words the intersection between the elements of S′ corresponds the
intersection between two elements of S′, the same way the value of δ on {x, y, z}
corresponds to the value of δ on two out of these three elements if δ(x, y, z) ∈
{δ(x, y), δ(x, z), δ(y, z)}. Note that in the following, we sometimes also refer to
the Helly-type property as Property (P1).

Lemma 2.2.2. Suppose δ is a symbolic 3-dissimilarity on a set X = {x, y, z}
taking values in M ∪ {�}. Then there exists a level-1 representation N of δ if
and only if δ satisfies the Helly-type property. In that case N can be (uniquely)
chosen to be (up to permutation of the leaves of the underlying level-1 network N)
isomorphic to one of the trinets τ1, τ2 and τ3 depicted in Figure 1.14.

Proof. Suppose first that N = (N, t) is a level-1 representation of δ. Then, in
view of Lemma 2.2.1, δ(x, y, z) ∈ {δ(x, y), δ(x, z), δ(y, z)} must hold. Conversely,
suppose that δ(x, y, z) ∈ E := {δ(x, y), δ(x, z), δ(y, z)} holds. By analyzing the
size of E it is straightforward to show that one of the situations indicated in the
rightmost column of Table 2.1 must apply.

|{δ(x, y), δ(x, z), δ(y, z)}| δ(x, y, z) = ... N

1 δ(x, y) = δ(x, z) = δ(y, z) fork
3 δ(y, z) x||yz
2 δ(y, z) 6= δ(x, y) = δ(x, z) x||yz
2 δ(x, y) = δ(x, z) x|yz

Table 2.1: For δ :
(
X
≤3

)
→M� a symbolic 3-dissimilarity we list all labelled trinets

on X = {x, y, z} in terms of the size of E.

With defining a labelling map t : Vint(N)− → M ∪ {�} in the obvious way
using the second column of that table, it follows that N is a level-1 representation
for δ.

Interestingly, all of trinets τ1 through to τ12 can be labelled in such a way that
line 1 in Table 2.1 is satisfied. Similarly, all of trinets τ4 through to τ11 and τ2 can
be labelled so that line 4 in Table 2.1 is satisfied. However only trinet τ3 can be
labelled so that lines 2 or 3 in that table hold. Reflecting our assumption that the
amount of non-treelike signals in a dataset is small, we evoke parsimony regarding
the number of cycles for the four cases discussed in Table 2.1 and focus from now
on on the trinets τ1, τ2 and τ3. We shall refer to them as fork on X = {x, y, z},
triplet z|xy, and tricycle y||xz, respectively.

Armed with Lemma 2.2.2, we make the following central definition. Suppose
that |Y | = 3, that δ is a symbolic 3-dissimilarity on Y , and that N = (N, t) is the

42

level-1 representation of δ found using Table 2.1. Then we call N a δ-fork if N is
a fork on Y , a δ-triplet if N is a triplet on Y , and a δ-tricycle if N is a tricycle on
Y , and we collectively refer to all three of them as a δ-trinet. As is easy to see all
δ-trinets are semi-discriminating.

By abuse of terminology, we shall now refer for a symbolic 3-dissimilarity δ on
X and any 3-subset Y ⊆ X to a δ|Y -trinet as a δ-trinet.

For example, consider δ the symbolic 3-dissimilarity onX = {x, y, z, u} induced
by the labelled level-1 network depicted in Figure 2.4(i). Since δ(x, y) = δ(y, z) 6=
δ(x, y) = δ(x, y, z), Table 2.1 implies that δ|{x,y,z} can be represented by a δ-
tricycle, which we depict in Figure 2.4(ii). Similarly, we have that δ(x, y, u) =
δ(x, u) = δ(y, u) 6= δ(x, y), so by Table 2.1, δ|{x,y,u} can be represented by a
δ-triplet, which we depict in Figure 2.4(iv). Note that the labelled tricycle in
Figure 2.4(iii) is also a representation of δ|{x,y,u}, but, from what precedes, it is
not a δ-tricycle.

x

y
u

z x

y

z

(i) (ii)

x

y

u

x y u

(iii) (iv)

Figure 2.4: (i) A labelled level-1 network N on X = {x, y, z, u}. (ii) and (iv) Semi-
discriminating level-1 representations of δN restricted to {x, y, z} and Y = {u, x, y},
respectively. (iii) A level-1 representation of δN|Y in the form of a labelled trinet
that is not a δN-trinet.

2.3 Three steps for a reconstruction
Armed with these preliminaries results, we now turn our attention to the construc-
tion of the algorithm itself. We build it step by step, bearing in mind the following
question: Given a symbolic 3-dissimilarity δ that is level-1 representable, how can
we build a representation of δ?

2.3.1 Recognizing cycles
In this section, we introduce and analyze algorithm Find-Cycles (see Algorithm 1
for a pseudo-code version). Its purpose is to recognize cycles in a level-1 represen-
tation of a symbolic 3-dissimilarity δ if such a representation exists. As we shall

43

see, this algorithm relies on Property (P1) and a certain graph C(δ) that can be
canonically associated to δ. Along the way, we also establish two further crucial
properties enjoyed by a level-1 representable symbolic 3-dissimilarity.

Suggested by Property (U2), the following property is of interest to us where
δ denotes again a symbolic 3-dissimilarity on X:

(P2) For all x, y, z, u ∈ X distinct for which δ(x, y) = δ(y, z) = δ(z, u) 6= δ(z, x) =
δ(x, u) = δ(u, y) holds there exists exactly one subset Y ⊆ {x, y, z, u} of size
3 such that a tricycle on Y underlies a level-1 representation of δ|Y .

As a first result, we obtain:

Lemma 2.3.1. Suppose δ is a level-1 representable symbolic 3-dissimilarity on X.
Then δ satisfies the Helly-type property as well as Property (P2).

Proof. Note first that Property (P1) is a straightforward consequence of Lemma 2.2.1.
To see that Property (P2) holds, note first that since δ is level-1 representable

there exists a labelled level-1 network (N, t) such that δ(Y) = t(lca(Y)), for all
subsets Y ⊆ X of size 2 or 3. Suppose x, y, z, u ∈ X distinct are such that δ(x, y) =
δ(y, z) = δ(z, u) 6= δ(z, x) = δ(x, u) = δ(u, y). To see that there exists some
Y ⊆ Z := {x, y, z, u} for which (N |Y , t|Y) is a δ-tricycle, assume for contradiction
that there exists no such set Y . By Theorem 1.3.1, N cannot be a phylogenetic tree
on X and, so, N must contain at least one cycle C. Without loss of generality, we
may assume that x ∈ H(C), and y lies on one of the two sides of C. By assumption
δ(y, z) 6= δ(x, z) and so either z and y lie on opposite sides of C, or z and y lie on
the same side of C and vC(y) lies on the directed path from r(C) to vC(z). As can
be easily checked, either one of these two cases yields a contradiction since then
δ(z, u) 6= δ(x, u) = δ(y, u) cannot hold for u, as required.

To see that there can exist at most one such tricycle on Z, assume for con-
tradiction that there exist two tricycles τ and τ ′ with L(τ) ∪ L(τ ′) ⊆ Z. Then
|L(τ) ∩ L(τ ′)| = 2. Choose x, y ∈ L(τ) ∩ L(τ ′). Note that the assumption on the
elements of Z implies that x or y must be below the hybrid vertex of one of τ and
τ ′ but not the other. Without loss of generality we may assume that y is below
the hybrid vertex of τ but not below the hybrid vertex of τ ′. Then y must lie on
a side of the unique cycle C ′ of τ ′. But this is impossible since the unique cycle of
τ and C ′ are induced by the same cycle of N .

We remark in passing that the proof of uniqueness in the proof of Lemma 2.3.1
combined with the structure of a level-1 network, readily implies the following
result.

Lemma 2.3.2. Suppose that δ is a symbolic 3-dissimilarity on X that is level-1
representable by a labelled network (N, t) and that x, y, z ∈ X are three distinct

44

elements such that x||yz is a δ-tricycle. Let C denote the unique cycle in N such
that x ∈ H(C) and y, z ∈ R(C) −H(C), and let x′ ∈ X. If x′||yz is a δ-tricycle
then x′ ∈ H(C) and if x||x′z is a δ-tricycle then x′ ∈ R(C) and x′ and y lie on
the same side of C.

To better understand the structure of a symbolic 3-dissimilarity δ, we next
associate to δ a graph C(δ) defined as follows. The vertices of C(δ) are the δ-
tricycles and any two δ-tricycles τ and τ ′ are joined by an edge if |L(τ)∩L(τ ′)| = 2.
For example, consider the symbolic 3-dissimilarity δN1 induced by the labelled level-
1 network N1 pictured in Figure 2.2. Then the graph presented in Figure 2.5 is
C(δN1).

b||ah

g||ah

f ||ah
e||ah

c||ah

d||ah

d||ak

e||ak

c||ak b||ak

f ||ak

g||ak

c||be

c||bf

c||bg

f ||eg

Figure 2.5: The graph C(δN1), where δN1 is the symbolic 3-dissimilarity induced
by the labelled level-1 network N1 in Figure 2.2.

The example in Figure 2.5 suggests the following property for a symbolic 3-
dissimilarity δ :

(
X
≤3

)
→M ∪ {�} to be level-1 representable:

(P3) If τ and τ ′ are δ-tricycles contained in the same connected component of
C(δ), then

δ(L(τ)) = δ(L(τ ′)).

We collect first results concerning Property (P3) in the next proposition.

Proposition 2.3.3. Suppose δ :
(
X
≤3

)
→M ∪{�} is a symbolic 3-dissimilarity. If

δ is level-1 representable or |M | = 2 holds then Property (P3) must hold. In par-
ticular, if N is a level-1 representation for δ then there exists a canonical injective
map from the set of connected components of C(δ) to the set of cycles of the level-1
network underlying N.

Proof. Suppose first that δ is level-1 representable. Let N = (N, t) denote a level-1
representation of δ. Then δ = δN. Since δN(x, y, z) = t(r(C)) holds for all cycles
C of N , and any x ∈ H(C) and any y, z ∈ R(C) that lie on different sides of C,
Property (P3) follows.

45

Suppose next that |M | = 2. It suffices to show that Property (P3) holds
for any two adjacent vertices of C(δ). Suppose τ and τ ′ are two such vertices
and that x, y, z ∈ X are such that τ = x||yz. Then there exists some u ∈ X
such that either τ ′ = u||yz or τ ′ = x||ru where r ∈ {y, z}. Without loss of
generality we may assume that r = y. In view of Table 2.1, we clearly have
δ(x, y) 6= δ(x, y, z) = δ(y, z). Since, in addition, δ(u, y, z) = δ(y, z) holds in
the former case it follows that δ(L(τ)) = δ(L(τ ′)). In the latter case, we obtain
δ(x, y, u) 6= δ(x, y) and thus, δ(L(τ)) = δ(L(τ ′)) follows in this case too as |M | = 2.
The claimed injective map is a straightforward consequence of Lemma 2.3.2.

Algorithm Find-Cycles exploits the injection mentioned in Proposition 2.3.3
by interpreting for a symbolic 3-dissimilarity δ a connected component C of C(δ)
in terms of two sets HC and R′C . Note that if C ′ is a cycle in the level-1 network
underlying a level-1 representation of δ (if such a representation exists!), the sets
H(C ′) and HC coincide and R′C ⊆ R(C ′) holds.

Input: A symbolic 3-dissimilarity δ on X.
Output: An integer m ≥ 0 and m pairs of subsets (Hi, R

′
i) of X, 1 ≤ i ≤ m, or the

statement “δ is not level-1 representable”.
1 if δ satisfies Property (P1) then
2 Build the graph C(δ);
3 Denote by m the number of connected components of C(δ);
4 for i ∈ {1, . . . ,m} do
5 Let Ki denote a connected component of C(δ);
6 set Hi = {x ∈ X : there exist y, z ∈ X such that x||yz is a vertex of Ki};
7 set R′i = Hi ∪ {y ∈ X : there exist x, z ∈ X such that x||yz is a vertex of Ki};
8 end
9 return m, (H1, R

′
1), . . . , (Hm, R

′
m);

10 end
11 else
12 return δ is not level-1 representable;
13 end

Algorithm 1: Find-Cycles – Property (P1) is checked in Line 1.

For example, for the symbolic 3-dissimilarity δN1 induced by the labelled net-
work N1 depicted in Figure 2.2, algorithm Find-Cycles returns the three pairs
(bcdefg, abcdefgk), (c, bcefg) and (f, efg) where we write x1 . . . x|A| for a set
A = {x1, . . . , x|A|}.

2.3.2 Constructing cycles
We next turn our attention toward reconstructing a structurally very simple level-
1 representation of a symbolic 3-dissimilarity (should such a representation exist).

46

For this, we use algorithm Build-Cycle which takes as input a symbolic 3-
dissimilarity δ and a pair returned by Find-Cycles when given δ.

To state Build-Cycle, we require further terminology. Suppose N is a level-1
network. Then we say that N is partially resolved if all vertices in a cycle of N
have degree three. Note that partially resolved level-1 networks may have interior
vertices not contained in a cycle that have degree greater than three. Thus such
networks need not be binary. If, in addition to being partially resolved, N is such
that it contains a unique cycle C such that every non-leaf vertex of N is a vertex
of C then we call N simple.

Algorithm Build-Cycle (see Algorithm 2 for a pseudo-code version) relies on
a further graph called the TopDown graph associated to a symbolic 3-dissimilarity
δ. For (H,R′) a pair returned by algorithm Find-Cycle when given δ and x ∈
H and S ⊆ R′, that graph essentially orders the vertices of S. Thus, for each
connected component K of C(δ), Build-Cycle computes a level-1 representation
of δ corresponding to K (should such a representation exist).

We start with presenting a central observation concerning labelled level-1 net-
works.

Lemma 2.3.4. Suppose N = (N, t) is a labelled level-1 network, and C is a cycle
of N . Suppose also that x, y, z ∈ X are three elements such that x ∈ H(C),
y, z ∈ R(C) − H(C) and t(vC(z)) = t(r(C)) 6= t(vC(y)). Then, vC(z) lies on the
directed path from vC(y) to h(C) if and only if y|xz is a δN-triplet.

Proof. Put δ = δN. Suppose first that vC(z) lies on the directed path from vC(y)
to h(C). Then lca(x, y, z) = lca(x, y) = lca(y, z) = vC(y) and lca(x, z) = vC(z).
Hence, δ(x, y, z) = δ(x, y) = δ(y, z) = t(vC(y)) 6= t(vC(z)) = δ(x, z). By Table 2.1,
y|xz is a δ-triplet.

Conversely, suppose that y|xz is a δ-triplet. Then, by Table 2.1, we have
δ(x, y, z) = δ(x, y) = δ(y, z) 6= δ(x, z). Since δ(x, y) = t(vC(y)) and δ(x, z) =
t(vC(z)), it follows that δ(x, y, z) = t(vC(y)) 6= t(vC(z)). But then y and z must
lie on the same side of C as otherwise δ(y, z) = t(r(C)) follows which is impossible
by assumption on x, y and z. Thus, either vC(y) must lie on a directed path P
from vC(z) to h(C) or vC(z) must lie on a directed path P ′ from vC(y) to h(C).
However vC(y) cannot be a vertex on P as otherwise lca(y, z) = vC(z) holds and,
so, δ(y, z) = δ(x, z) follows, which is impossible. Thus vC(z) must be a vertex on
P ′.

With N and C as in Lemma 2.3.4, it follows from Lemma 2.3.2, that whenever
algorithm Find-Cycles is given δN as input, it returns a pair (H,R′) such that
H = H(C) and R′ = H(C) ∪ {y ∈ R(C) : t(vC(y)) 6= t(r(C))}. Moreover giving
(H,R′) and δN as input to algorithm Build-Cycle, Lemma 2.3.4 implies that
Build-Cycle finds all elements z ∈ R(C)−R′ for which there exists some y ∈ R′

47

such that vC(z) lies on the path from vC(y) to h(C). However it should be noted
that if z ∈ R(C) − H(C) is such that t(v) = t(r(C)) = t(vC(z)) holds for all
vertices v on the path from r(C) to vC(z) then the information captured by δN for
x, y, and z is in general not sufficient to decide if z and y lie on the same side of
C or not. In fact, it is easy to see that, in general, z ∈ R(C) need not even hold.

We now turn our attention to the aforementioned TopDown graph associated
to a symbolic 3-dissimilarity δ on X which is defined as follows. Suppose that
S (X, and that x ∈ X −S. Then the vertex set of the TopDown graph TD(S, x)
is S and two elements u, v ∈ S distinct are joined by a direct edge (u, v) if u|vx is a
δ-triplet. For example, consider again the dissimilarity δN1 induced by the labelled
level-1 network N1 depicted in Figure 2.2. Then TD({d, e, f, g}, c) is the graph
depicted in Fig 2.6(a). In fact, {d, e, f, g} is a side of the cycle of N1 indicated by
C2.

d

ef

g

(a) ,

c

be

gd

f

(b)

Figure 2.6: For δN1 the symbolic 3-dissimilarity induced by the labelled network
N1 pictured in Figure 2.2, we depict in (a) the TopDown graph TD({d, e, f, g}, c)
and in (b) the CheckLabels graph CL({c}, {b}, {d, e, f, g}) which we formally in-
troduce in Section 2.4.1. In both graphs, the vertices are indicated by a cross. In
the latter graph the value assigned to two vertices under δN1 is indicated in terms
of dashed and non-dashed edges (ignoring directions for the moment) . See text
for details.

Rather than continuing with our analysis of algorithm Build-Cycle we break
for the moment and illustrate it by means of an example. For this we return again
to the symbolic 3-dissimilarity δN1 on X = {a, . . . , k} induced by the labelled
level-1 network N1 depicted in Figure 2.2. Suppose (c, bcefg) is a pair returned
by algorithm Find-Cycle and c||be is the δ-tricycle chosen in line 2 of Build-
Cycle. Then H = {c}, S ′b = {b} and S ′e = {e, f, g} (lines 3 and 4), and Sb =
{b} and Se = {d, e, f, g} (lines 8 and 9). The graph TD(Se, c) is depicted in
Figure 2.6(a). It implies that for the cycle C associated to the pair (c, bcefg) in
a level-1 representation of δN1 , we must have vC(e) = vC(f) = vC(g) and that one
of the two sides of C is {d, e, f, g}. Since |Sb| = 1, the other side of C is {b} (lines

48

Input: A symbolic 3-dissimilarity δ on X that satisfies Property (P1) and a pair (H,R′)
returned by algorithm Find-Cycle when given δ.

Output: Either a labelled simple level-1 network (C, t) on a partition of a subset X ′ of
X such that R′ ⊆ X ′ and H(K) = H holds for the unique cycle K of C, or the
statement “δ is not level-1 representable”.

1 set rep=0 ;
2 Choose a δ-tricycle x||yz, where x ∈ H and y, z ∈ R′ −H;
3 set S′y = {u ∈ R′ : x||uz is a δ-tricycle};
4 set S′z = {u ∈ R′ : x||yu is δ-tricycle};
5 Initialize C as a graph with three vertices respectively labelled by r(C), h(C) and H, and

the arc (h(C), H);
6 if for all x′ ∈ H, y′ ∈ S′y and z′ ∈ S′z, x′||y′z′ is a δ-tricycle and δ(x, y, z) = δ(x′, y′, z′)

then
7 set t(r(C)) = δ(x, y, z);
8 set Sy = S′y ∪ {u ∈ X −R′ : there exists u′ ∈ S′y such that u′|ux is a δ-triplet};
9 set Sz = S′z ∪ {u ∈ X −R′ : there exists u′ ∈ S′z such that u′|ux is a δ-triplet};

10 if for all u1 ∈ Sy, u2 ∈ Sz, δ(u1, u2) = t(r(C)) then
11 for i ∈ {y, z} do
12 set vl = r(C);
13 if TD(Si, x

′) = TD(Si, x
′′) for all x′, x′′ ∈ H and TD(Si, x) does not

contain a directed cycle then
14 set G = TD(Si, x);
15 set rep=rep+1 ;
16 while V (G) 6= ∅ do
17 Add a new child v to vl;
18 set C(v) = {u ∈ Si : u has in-degree 0 in G};
19 Delete from G all vertices in C(v);
20 if for all u, u′ ∈ C(v), x′, x′′ ∈ H ∪ V (G), δ(u, x′) = δ(u′, x′′) then
21 Choose some u ∈ C(v);
22 set t(v) = δ(x, u);
23 Add the leaf C(v) as a child of v;
24 set vl = v;
25 end
26 else
27 Remove all vertices from G;
28 set rep=rep-1 ;
29 end
30 end
31 Add the arc (vl, h(C));
32 end
33 end
34 end
35 end
36 if rep=2 then
37 return C;
38 end
39 else
40 return δ is not level-1 representable;
41 end
Algorithm 2: Build-Cycle – The set R′ is the set H ∪Sy ∪Sz, Property (P4)
is checked in Lines 6, 10, and 20, and Properties (P3), (P6), (P7) and (P8) are
checked in Lines 6, 13, 10 and 20, respectively.– See text for details.

49

11 to 33).
Continuing with our analysis of algorithm Build-Cycle, we remark that the

fact that the TopDown graph TD(Se, c) in the previous example is non-empty is
not a coincidence. In fact, it is easy to see that the graph G defined in line 14 of
Build-Cycle is non-empty whenever δ is level-1 representable. Thus, the graph
C returned by algorithm Build-Cycle cannot contain multi-arcs. Note however
that there might be tricycles induced by C of the form x||uz with u ∈ R′ − S ′y as,
for example, δ(x, z) = δ(x, y) = δ(z, y) = δ(x, u) might hold and thus x||uz is not
a δ-tricycle. Note that similar reasoning also applies to S ′z and the extensions of
S ′y and S ′z to Sy and Sz defined in lines 8 and 9, respectively. Also note that the
sets Sy and Sz are dependent on the choice of the δ-tricycle in line 2. However, line
6 ensures that the labelled simple level-1 network returned by algorithm Build-
Cycle is independent of the choice of that δ-tricycle.

To establish Proposition 2.3.6 which ensures that algorithm Build-Cycle ter-
minates, we next associate to a directed graph G a new graph P (G) by successively
removing vertices of in-degree zero and their incident arcs until no such vertices
remain. As a first almost trivial observation concerning that graph we have the
following straightforward result whose proof we again omit.

Lemma 2.3.5. Let G be a directed graph. Then P (G) is nonempty if and only if
G contains a directed cycle.

Given as input to algorithm Build-Cycle a symbolic 3-dissimilarity δ that
satisfies Property (P1) and a pair (H,R′) returned by algorithm Find-Cycle for
δ we have:

Proposition 2.3.6. Algorithm Build-Cycle terminates.

Proof. As is easy to check the only reason for algorithm Build-Cycle not to
terminate is the while loop initiated in its line 16. For i = 1, 2, this while loop works
by successively removing vertices of in-degree 0 (and their incident arcs) from the
graph TD(Si, x), and terminates if the resulting graph, i. e.P (TD(Si, x)), is empty.
Since line 13 ensures that this loop is entered if and only if TD(Si, x) does not
contain a directed cycle, Lemma 2.3.5 implies that Build-Cycle terminates.

It is straightforward to see that when given a level-1 representable symbolic
3-dissimilarity δ such that the underlying level-1 network is in fact a simple level-1
network the labelled network returned by algorithm Build-Cycle satisfies the
following three additional properties (where we use the notations introduced in
algorithm Build-Cycle).

(P4) For i ∈ {y, z}, we have S ′i = {u ∈ Si : δ(u, x) 6= δ(y, z)} and Sy ∩ Sz =
Sy ∩H = Sz ∩H = ∅.

50

(P5) For all u, v ∈ R := H∪Sy∪Sz and all w ∈ X−R, we have δ(u,w) = δ(v, w).

(P6) For all u, u′ ∈ H and i ∈ {y, z}, the graphs TD(Si, u) and TD(Si, u′) are
isomorphic and do not contain a directed cycle.

Since the quantities on which these properties are based also exist for general
symbolic 3-dissimilarities we next study Properties (P4) - (P6) for such dissimilar-
ities. As a first consequence of Property (P4) combined with Properties (P1) and
(P2), we obtain a sufficient condition under which the TopDown graph TD(Si, x)
considered in algorithm Build-Cycle does not contain a directed cycle (lines 13).
For convenience, we employ again the notation used in Algorithm 2.

Proposition 2.3.7. Suppose that δ :
(
X
≤3

)
→M∪{�} is a symbolic 3-dissimilarity

that satisfies Properties (P1), (P2) and (P4), that (H,R′) is a pair returned by
algorithm Find-Cycles when given δ, and that x, y and z are as specified as in
line 2 of algorithm Build-Cycle. Then the following hold for i = y, z.
(i) If TD(Si, x) contains a directed cycle then it contains a directed cycle of size
3.
(ii) TD(Si, x) does not contain a directed cycle of length 3 whenever |M | = 2
holds.

Proof. (i) By symmetry, it suffices to show the proposition for i = y. Suppose
TD(Sy, x) contains a directed cycle. Over all such cycles in TD(Sy, x), choose
a directed cycle C of minimal length. If |V (C)| = 3, then the statement clearly
holds.

Suppose for contradiction for the remainder that |V (C)| ≥ 4. Suppose a, b, c, d ∈
V (C) are such that (a, b), (b, c), (c, d) are three arcs in C. We next distinguish
between the cases that |V (C)| ≥ 5 and that |V (C)| = 4.

Suppose |V (C)| ≥ 5. Then since a, c ∈ Sy, Lemma 2.3.2 combined with the
minimality of C implies that we either have a δ-fork on {a, c, x} or the δ-triplet
ac|x. Hence, δ(x, a) = δ(x, c) holds in either case. Note that similar arguments
also imply that δ(x, b) = δ(x, d). Since |V (C)| ≥ 5, the arcs (a, d) and (d, a)
cannot be contained in TD(Sy, x) and, using again similar arguments as before,
δ(x, a) = δ(x, d) must hold. In combination, we obtain δ(x, a) = δ(x, b) which is
impossible in view of (a, b) being an arc in TD(Sy, x) and thus δ(x, a) 6= δ(x, b).

Suppose |V (C)| = 4. By the minimality of C, neither (b, d) (d, b), (a, c) nor
(c, a) can be an arc in TD(Sy, x). Using similar arguments as in the previous case,
it follows that δ(x, b) = δ(x, d) and δ(x, a) = δ(x, c). Combined with the facts
that (a, b), (b, c), (c, d) are arcs in C and that (d, a) must also be an arc in C as
|V (C)| = 4, it follows that with A := δ(c, d) and B := δ(b, c) we have

A = δ(x, c) = δ(x, a) = δ(a, b) 6= δ(x, b) = δ(x, d) = δ(d, a) = δ(b, c) = B. (2.1)

51

Note that, δ(a, c) ∈ {A,B} must also hold as otherwise |{δ(a, c), δ(a, b), δ(b, c)}| =
3 and so, in view of Table 2.1, δ|{a,b,c} would be level-1 representable by a δ-
tricycle on {a, b, c}. But then H ∩ {a, b, c} 6= ∅ which is impossible in view of
Property (P4). Similarly, one can show that δ(b, d) ∈ {A,B}. By combining a
case analysis as indicated in Table 2.1 with Equation 2.1, it is straightforward to
see that each of the four detailed combinations of δ(a, c) and δ(b, d) in that table
yields a contradiction in view of Property (P2).

(ii) By symmetry, it suffices to assume i = y. Let |M | = 2 and assume for
contradiction that TD(Sy, x) contains a directed cycle C of size 3. Let s, u, v
denote the 3 vertices of C such that (s, u), (u, v) and (v, s) are the three arcs of
C. Then δ(u, x) 6= δ(s, x) 6= δ(v, s) = δ(v, x) 6= δ(u, v) = δ(u, x) must hold. Since
|M | = 2, this is impossible.

2.3.3 Constructing a level-1 representation
In this section, we present algorithm Network-Popping which allows us to
decide if a symbolic 3-dissimilarity is level-1 representable or not. If it is, then
Network-Popping is guaranteed to find a level-1 representation in polynomial
time.

Network-Popping takes as input a symbolic 3-dissimilarity δ on X and
employs a top-down approach to recursively construct a semi-discriminating level-1
representation for δ (if such a representation exists). For l a leaf whose label set is of
size at least two and constructed in one of the previous steps it essentially works by
either replacing l with a labelled simple level-1 network or a labelled phylogenetic
tree. To compute those networks algorithms Find-Cycle and Build-Cycle are
used, and to construct such trees algorithm Vertex-Growing is employed. At
the heart of the latter lie Proposition 2.3.9 and algorithm Bottom-Up introduced
in [35] and described in Section 1.3.1.

To be able to state algorithm Vertex-Growing, we require again further
terminology. Following [55], we call a collection H of non-empty subsets of X a
hierarchy on X if A ∩ B ∈ {A,B, ∅} holds for any two sets A,B ∈ H. The proof
of the following result is straightforward and thus omitted.

Lemma 2.3.8. Let N be a level-1 network with cycles C1, C2, . . . , Ck, k ≥ 1.
Then, HN = {R(C1), R(C2), . . . , R(Ck)} is a hierarchy on X.

Suppose A is a set of non-empty subsets of X. Then we define a relation ∼(X,A)
on X by putting x ∼(X,A) y if there exists some A ∈ A such that x, y ∈ A, for all
x, y ∈ X. Note first that ∼(X,A) is clearly an equivalence relation whenever A is a
hierarchy. In addition, suppose that A is such that the partition X ′ of X induced
by ∼(X,A) has size two or more. If δ :

(
X
≤3

)
→M ∪{�} is a symbolic 3-dissimilarity

52

such that for any two sets Y, Y ′ ∈ X ′ we have δ(x, y) = δ(x′, y′) for all x, x′ ∈ Y
and y, y′ ∈ Y ′, then we associate to δ the map δ̂ given by

δ̂ :
(
X′

≤2

)
→ M ∪ {�}

{Y1, Y2} 7→
{
� if Y1 = Y2,
δ(y1, y2), where y1 ∈ Y1, y2 ∈ Y2 otherwise.

Note that δ̂ is clearly well-defined and a symbolic 2-dissimilarity on X ′. As-
sociating to a level-1 representation N = (N, t) of δ the set R := {R(C) :
C is a cycle of N}, we have the following result as an immediate consequence.
Proposition 2.3.9. Suppose N is a labelled level-1 network on X and X ′ is the
partition of X induced by the relation ∼(X,R) on X. If |X ′| ≥ 2 then δ̂N is well
defined and satisfies Properties (U1) and (U2). In particular, δ̂N is a symbolic
ultrametric on X ′.

Proof. Put N = (N, t) and δ′ = δ̂N. Note first that for all x, y ∈ X, Lemma 2.3.8
implies that there exists some R ∈ R such that x, y ∈ R if and only if there exists
R′ ∈ R′ := {R ∈ R : R is set-inclusion maximal in R} such that x, y ∈ R′. Let TN
denote the tree obtained from N by first collapsing for every cycle C of N with
R(C) ∈ R′ all vertices below or equal to r(C) into a vertex and then labelling that
vertex by R(C). Put tN := t|V (TN). Then (TN , tN) is clearly a labelled phyloge-
netic tree on X ′. Since N is a labelled level-1 network, it follows that (TN , tN)
is a symbolic discriminating representation of δ̂N. In view of Theorem 1.3.1, the
proposition follows.

Input: A symbolic 3-dissimilarity δ on a set X, a subset Y ⊆ X, and a hierarchy S of
proper subsets of Y .

Output: A discriminating symbolic representation on the partition of Y induced by
∼(Y,S) or the statement “There exists no discriminating symbolic
representation”.

1 Let Y ′ denote the partition of Y induced by ∼(Y,S);
2 Apply the Bottom-Up algorithm to the symbolic ultrametric δ̂ induced by δ on Y ′, as

considered in Proposition 2.3.9;
3 if Bottom-Up returns a labelled tree T then
4 return T;
5 end
6 else
7 return There exists no discriminating symbolic representation. ;
8 end
Algorithm 3: Vertex-Growing – Property (P2) is checked in Line 3.

To illustrate algorithm Vertex-Growing consider again the symbolic 3-
dissimilarity δN1 induced by the labelled level-1 network onX = {a . . . , k} depicted

53

in Figure 2.2. Let M1, M2, and M3 denote the three labelled simple level-1 net-
works returned by algorithm Build-Cycle when given δN1 such that L(M1) = X,
L(M2) = {b, . . . , g} and L(M3) = {e, f, g}. Then the partition of X found in line
1 of algorithm Vertex-Growing when given δN1 and R = {L(Mi) : 1 ≤ i ≤ 3}
is X itself, since any two leaves of X are in relation with respect to ∼(X,R). Thus,
the discriminating symbolic representation returned by Bottom-Up is a single
leaf.

Armed with the algorithms Find-Cycles, Build-Cycle, and Vertex-Growing,
we next present a pseudo-code version of algorithm Network-Popping (Algo-
rithm 4).

To be able to establish in Proposition 2.3.11 that algorithm Network-Popping
returns a semi-discriminating level-1 representation for a symbolic 3-dissimilarity
(if such a representation exists), we require the following technical result.

Proposition 2.3.10. Let δ be a symbolic 3-dissimilarity on X satisfying Prop-
erty (P1), and assume that Network-Popping returns a labelled level-1 network
N on X when given δ as input. Then the restrictions δ|(X≤2) and δN|(X≤2) of δ and

δN to
(
X
≤2

)
, respectively, coincide if and only if δ and δN coincide.

Proof. Put N = (N, t). Also, put δ′ = δ|(X≤2) and δ′N = δN|(X≤2). Clearly, if δ and δN
coincide then δ′ = δ′N must hold.

Conversely, assume that δ′ = δ′N. Let Z = {a, b, c} ∈
(
X
3

)
and put m = δ(Z).

Note that since N is clearly a level-1 representation of δN, Lemma 2.3.1 implies that
δN also satisfies Property (P1). Further note that, up to permuting the elements
in Z, we either have (i) a δ-fork on Z, (ii) a|bc is a δ-triplet, or (iii) a||bc is a
δ-tricycle.

If Case (i) holds then δ(a, b) = δ(a, c) = δ(b, c) = m. Since, by assumption,
δ(Y) = δN(Y) for all Y ∈

(
X
2

)
, we also have δN(a, b) = δN(a, c) = δN(b, c) = m.

Hence, δN(Z) = m = δ(Z) as δ satisfies Property (P1).
If Case (ii) holds then m = δ(a, b) = δ(a, c) 6= δ(b, c). Assume for contradiction

that δN(Z) 6= m. Then, since δN satisfies Property (P1) it follows that δN(Z) =
δN(b, c). By Table 2.1, a||bc must be a δN-tricycle. Hence, there must exist a cycle
C in N such that a ∈ H(C), b and c are contained in R(C) but lie on different
sides of C, and t(r(C)) = δN(Z). Since algorithm Network-Popping completes
by returning N it follows that C is constructed in the while-loop starting in line
16 of algorithm Build-Cycle. But then the condition in line 6 of Build-Cycle
has to be satisfied which implies that t(r(C)) = δ(Z) in view of line 7 of that
algorithm. Hence, m 6= δN(Z) = t(r(C)) = δ(Z) = m which is impossible.

If Case (iii) holds then the while-loop initiated in line 16 of algorithm Build-
Cycle implies that there must exist a cycle C in N such that t(r(C)) = δ(Z) = m.

54

Input: A symbolic 3-dissimilarity δ on X.
Output: A semi-discriminating level-1 representation N = (N, t′) of δ, if such a

representation exists, or the statement “δ is not level-1 representable”.
1 Initialize N as an unique vertex v, labelled by X;
2 set r = 1;
3 Use Find-Cycles(δ) to obtain m ≥ 0 pairs (Hi, R

′
i) of subsets Hi and R′i of X,

1 ≤ i ≤ m;
4 if for all i ∈ {1, . . . ,m}, Build-Cycle(δ;Hi, Ri) returns a labelled simple level-1

network (Ci, ti) as described in that algorithm then
5 put Ri = R(Ci), and R = {R1, . . . , Rm};
6 if for all i ∈ {1, . . . ,m}, and all y, z ∈ Ri, and x /∈ Ri, we have δ(x, y) = δ(x, z) then
7 while there exists a leaf l of N whose label set Vl ⊆ X has two or more elements

AND r 6= 0 do
8 if there exists i ∈ {1, . . . ,m} such that Vl = Ri then
9 identify l with the root of the labelled simple level-1 network

corresponding to Ri and replace N with the resulting labelled level-1
network;

10 end
11 else
12 put Sl = {R ∈ R : R ⊆ Vl};
13 if Vertex-Popping(δ, Vl, Sl) returns a discriminating symbolic

representation T = (T, t) then
14 identify l with the root of T and replace N with the resulting

labelled level-1 network;
15 end
16 else
17 set r = 0;
18 end
19 end
20 end
21 end
22 end
23 if r = 1 AND N is not v then
24 return N := (N, t′) where t′ is canonically obtained by combining the maps t and ti,

1 ≤ i ≤ m;
25 end
26 else
27 return δ is not level-1 representable;
28 end
Algorithm 4: Network-Popping – Property (P5) is checked in Line 6.

55

Since N is returned by algorithm Network-Popping when given δ and N is
clearly a level-1 representation for δN it follows that δN(Z) = t(r(C)) = m =
δ(Z).

As a first result concerning algorithm Network-Popping, we have

Proposition 2.3.11. Suppose δ is a symbolic 3-dissimilarity on X, and Network-
Popping applied to δ returns a labelled level-1 network N. Then δ = δN. In
particular, N is a level-1 representation for δ.

Proof. Put N = (N, t). In view of Proposition 2.3.10, it suffices to show that
δ(a, b) = δN(a, b) holds for all a, b ∈ X distinct. Let a and b denote two such
elements. We distinguish between the cases that either (i) there exists a cycle C
of N such that vC(a) 6= vC(b), or (ii) that no such cycle exists.

Assume first that Case (i) holds. Then a and b lie either on the same side of
C, or one of a and b is below the hybrid h(C) of C and the other lies on a side
of C, or a and b lie on different sides of C. If a and b lie on the same side of C
or one of them is below h(C) then we may assume without loss of generality that
there exists a directed path in C from vC(a) to vC(b). Then line 22 of algorithm
Build-Cycle implies t(vC(a)) = δ(a, b). Since lca(a, b) = vC(a), it follows that
δN(a, b) = t(vC(a)) = δ(a, b), as required.

If a and b lie on different sides of C then x||ab is a δ-tricycle, for x as in line 2 of
algorithm Build-Cycle. Since that algorithm completes, line 7 of that algorithm
implies δ(a, b) = t(r(C)). But then δN(a, b) = t(r(C)) = δ(a, b), as N is returned
by Network-Popping.

For the remainder, assume that Case (ii) holds, that is, there exists no cycle C
of N such that vC(a) 6= vC(b). Consider the vertex v0 ∈ V (N) defined as follows:
if the path from the root ρN of N to lca(a, b) does not contain a vertex that is
also contained in a cycle of N , then put v0 = ρN . Otherwise let v0 denote the
last vertex on a directed path from ρN to lca(a, b) such that v0 belongs to a cycle
Z of N . Note that v0 = lca(a, b) holds if lca(a, b) is also contained in Z. Put
V = C(v1) where v1 is the unique child of v0 not contained in Z, and let V ′ denote
the partition of V induced by ∼(V,Sv0) where for any vertex w ∈ V (N) the set Sw
is defined as in line 12 of algorithm Network-Popping. Let Ra, Rb ∈ V ′ such
that a ∈ Ra and b ∈ Rb. Then line 5 of Network-Popping implies δ̂N(Ra, Rb) =
δN(a, b) and δ̂(Ra, Rb) = δ(a, b). Since N is returned by Network-Popping when
given δ, line 12 of that algorithm implies δ̂(Ra, Rb) = δ̂N(Ra, Rb). Consequently,
δN(a, b) = δ(a, b) holds in this case too.

We conclude this section with some remarks concerning the runtime of algo-
rithm Network-Popping. Suppose X and δ are as in the description of that
algorithm. Then the runtime of Network-Popping manifests itself through

56

(i) pairwise comparisons between δ-tricycles (construction of the graph C(δ)) and
δ-triplets (Algorithm Bottom-Up), respectively, and (ii) comparisons between
elements x of X and (a) δ-tricycles containing x to determine the pair (H,R′)
associated to a given connected component of C(δ) and (b) δ-triplets to obtain
the TopDown graph associated to a given connected component of C(δ). Since
the number of δ-tricycles and of δ-triplets is bounded by the number n(n−1)(n−2)

6 of
3-subsets of X and the number of δ-tricycles and of δ-triplets containing a given
element x ∈ X, respectively, is bounded by the number (n−1)(n−2)

2 of 2-subsets of
X − {x}, it follows that the runtime of Network-Popping is O(n6).

2.4 Encoding and characterization properties
Now that we are ensured the correctness of Algorithm Network Popping, we
can derive from its structure and the previous results some properties of level-1
representable symbolic 3-dissimilarities, and of their representations.

2.4.1 Uniqueness of the output
As is easy to see, there exist symbolic 3-dissimilarities that although they satisfy
Properties (P1) - (P6) are not level-1 representable. The reason for this is that
such 3-dissimilarities need not satisfy the assumptions of lines 10 and 20 in algo-
rithm Build-Cycle. A careful analysis of that algorithm suggests however two
further properties for a symbolic 3-dissimilarity to be level-1 representable. To
state them, we next associate to a symbolic 3-dissimilarity its CheckLabels graph.
Suppose Y0, Y1, and Y2 are three pairwise disjoint subsets of X such that for all
x, x′ ∈ Y0 and all i = 1, 2, the graphs TD(Yi, x) and TD(Yi, x′) are isomorphic
(which is motivated by Property (P6)). Then we denote by CL(Y0, Y1, Y2) the
CheckLabels graph associated to δ, Y0, Y1, and Y2 defined as follows. The vertex
set of CL(Y0, Y1, Y2) is Y0 ∪ Y1 ∪ Y2. Any pair (u, v) ∈ Y1 × Y2 is joined by an
(undirected) edge {u, v}, any pair (u, v) ∈ (Y1 ∪ Y2) × Y0 is joined by a directed
edge (u, v), and two elements u, v ∈ Yi, i = 1, 2, are joined by a directed edge
(u, v) if there exists a direct path from u to v in TD(Yi, x). Finally, to each edge
of CL(Y0, Y1, Y2) with end vertices u and v or directed edge of that graph with tail
u and head v, we assign the label δ(u, v). We illustrate the CheckLabels graph in
Figure 2.6(b) for the network N1 depicted in Figure 2.2.

Using the terminology of algorithm Build-Cycle it is straightforward to ob-
serve that the following two properties are implied by Build-Cycle’s lines 10
and 20 whenever its input symbolic 3-dissimilarity is level-1 representable:

(P7) All undirected edges of CL(H,Sy, Sz) have the same label;

57

(P8) For all vertices u of CL(H,Sy, Sz), all directed edges in CL(H,Sy, Sz) with
tail u have the same label.

As indicated in Table 2.2, Properties (P1) - (P8) are independent of each
other. As we shall see, they allow us to characterize level-1 representable symbolic
3-dissimilarities (Theorem 2.4.1).

Prop. X M δ

(P1) {x, y, z} {D,S} δ(x, y) = δ(x, z) = δ(y, z) = D;
δ(x, y, z) = S.

(P2) {x, y, z, u} {D,S} δ(x, y, z) = δ(y, z, u) = δ(x, y) = δ(y, z) = δ(z, u) = D;
δ(Y) = S otherwise.

(P3) {x1, x2, y, z} {D,S1, S2} δ(xi, y, z) = Si, i ∈ {1, 2};
δ(Y) = D otherwise.

(P4) {x, y, z, u} {D,S} δ(x, y, u) = δ(x, u) = δ(y, z) = δ(x, y, z) = D;
δ(Y) = S otherwise.

(P5) {1, . . . , 5} {D,S} δ(1, 4) = S;
δ(Y) = δN5(Y) otherwise.

(P6) {1, . . . , 6} {D,S} δ(3, 6) = δ(2, 3, 6) = D;
δ(Y) = δN6(Y) otherwise.

(P7) {1, . . . , 5} {D,S} δ(2, 4) = δ(2, 3, 4) = δ(1, 2, 4) = δ(2, 4, 5) = S;
δ(Y) = δN7(Y) otherwise.

(P8) {1, . . . , 5} {D,S} δ(3, 5) = δ(3, 4, 5) = D;
δ(Y) = δN8(Y) otherwise.

Table 2.2: For sets X and M and δ a symbolic 3-dissimilarity on X as indicated,
the property stated in the first column of each row holds whereas the remain-
ing seven properties do not. For i = 5, 6, 7, 8, the networks Ni are depicted in
Figure 2.7.

1

2

3

4

1

2

3

4

5

6

4

5

3

4

5

1

2

3

1

2

N5 N6 N7 N8

Figure 2.7: The networks Ni, i = 5, 6, 7, 8, considered in Table 2.2

Theorem 2.4.1. Let δ be a symbolic 3-dissimilarity on X. Then the following
statements are equivalent (where in (iii)-(v) the input to algorithm Network-
Popping is δ):

58

(i) δ is level-1 representable.
(ii) δ satisfies conditions (P1) - (P8).
(iii) Network-Popping returns a labelled level-1 network which is unique up to
isomorphism.
(iv) Network-Popping returns a level-1 representation for δ.
(v) Network-Popping returns a semi-discriminating level-1 representation for
δ.

Proof. (i) ⇒ (ii): This is an immediate consequence of Lemma 2.3.1, Proposi-
tion 2.3.3, the remark preceding Proposition 2.3.7 and the observation preceding
Table 2.2.

(ii) ⇒ (iii): Assume that δ satisfies Properties (P1) - (P8). Then algorithm
Find-Cycles first constructs the graph C(δ) and then finds for each connected
component K of C(δ) the pair (HK , R

′
K). Since algorithm Build-Cycle relies on

Properties (P3), (P4), (P6) - (P8) being satisfied, it follows that Build-Cycle
constructs for each pair (HK , R

′
K), K a connected component of C(δ), a labelled

simple level-1 network as specified in the output of Build-Cycle. By construc-
tion, the labelled graph N = (N, t) returned by algorithm Network-Popping is
clearly a labelled phylogenetic network. Since, in view of the while loop of that
algorithm starting at line 7, no two cycles in N can share a vertex it follows that
N is in fact a level-1 network. Proposition 2.3.10 combined with the observation
that in none of our four algorithms we have to break a tie implies that N is unique
up to isomorphism.

(iii) ⇒ (iv): This is trivial in view of Proposition 2.3.11.
(iv) ⇒ (v): Suppose algorithm Network-Popping returns a level-1 rep-

resentation N for δ. To see that N is in fact semi-discriminating, note that
algorithms Vertex-Growing and Build-Cycle return a discriminating sym-
bolic representation and a discriminating level-1 representation for its input sym-
bolic 3-dissimilarity, respectively. In combination it follows that N must be semi-
discriminating.

(v) ⇒ (i): This is trivial.

As suggested by the two semi-discriminating level-1 representations N1 and N3
for δN1 depicted in Figure 2.2, the output of algorithm Network Popping when
given a level-1 representable symbolic 3-dissimilarity δ need not be the labelled
level-1 network that induced δ. To help clarify the relationship between both
networks, we require further terminology.

Suppose that (N, t) is a labelled level-1 network. Then we say that a cycle C
of N is weakly labelled if there exists at least one vertex v on either side of C such
that t(v) 6= t(r(C)). More generally, we call a labelled level-1 network (N, t) weakly
labelled if every cycle of N is weakly labelled. For example, the labelled level-1

59

network N2 pictured in Figure 2.2 is weakly labelled (but not semi-discriminating)
whereas the network N3 depicted in Figure 2.2 is semi-discriminating but not
weakly labelled.

Armed with this definition, we can characterize weakly labelled cycles as fol-
lows.

Lemma 2.4.2. Let N = (N, t) be a labelled level-1 network, and let C be a cycle
of N . Then C is weakly labelled if and only if there exists some x ∈ H(C) and
y, z ∈ R(C)−H(C) lying on different sides of C such that x||yz is a δN-tricycle.
Moreover, x′||yz is a δN- tricycle, for all x′ ∈ H(C).

Proof. Put δ = δN. Assume first that there exists some x ∈ H(C) and leaves
y, z ∈ R(C)−H(C) that lie on two different sides of C such that x||yz is a δ-tricycle.
Then δ(x, y, z) = δ(z, y) = t(r(C)). Also δ(x, y) = t(vC(y)) and δ(x, z) = t(vC(z)).
In view of Table 2.1, δ(x, y, z) 6∈ {δ(x, y), δ(x, z)} and, so, t(vC(i)) 6= t(r(C)), for
i = y, z.

Conversely, suppose C is weakly labelled. Let v1, v2 ∈ V (C) denote two vertices
of N that lie on different directed paths from r(C) to h(C) such that t(r(C)) 6∈
{t(v1), t(v2)}. Suppose y, z ∈ X are such that vC(y) = v1 and vC(z) = v2. Then
x||yz must be a δ-tricycle, for all x ∈ H(C). Indeed, δ(x, y) = t(v1) and δ(x, z) =
t(v2) holds. Since δ(y, z) = δ(x, y, z) = t(r(C)) /∈ {δ(x, y), δ(x, z)}, Table 2.1
implies that x||yz is a δ-tricycle.

The remainder of the lemma follows from the fact that, for all x′ ∈ H(C), we
have δ(x′, y, z) = δ(x, y, z), δ(x, y) = δ(x′, y) and δ(x, z) = δ(x′, z).

As a consequence, we can strengthen Proposition 2.3.3 to the following char-
acterization.

Theorem 2.4.3. If N = (N, t) is a labelled level-1 network, the connected compo-
nents of C(δN) are in 1-1 correspondence with the weakly labelled cycles of N .

Implied by Theorem 2.4.3, we have:

Corollary 2.4.4. Let δ be a level-1 representable symbolic 3-dissimilarity on X,
and let N = (N, t) be the level-1 representation of δ returned by algorithm Network-
Popping when applied to δ. Then N is weakly labelled if and only if, for any level-1
representation N′ = (N ′, t′) of δ, the number of cycles in N equals the number of
weakly labelled cycles in N ′. In particular, the number of cycles in N is minimal.

The next algorithm, Transform (Algorithm 5), is not directly part of Network-
Popping. Its aim is to build, from a network N, a semi-discriminating, weakly
labelled and partially resolved level-1 network N′ = (N ′, t′) such that δN = δN′ , in
time linear in the number of vertices of N. We have:

60

Input: A labelled level-1 network N = (N, t) on X.
Output: A semi-discriminating, weakly labelled, partially resolved level-1 network

N′ = (N ′, t′) such that δN = δN′ .
1 set N′ = N;
2 while N′ is not semi-discriminating or not weakly labelled or not partially resolved do
3 Collapse all arcs (u, v) satisfying t′(u) = t′(v) and such that either u and v belong to

the same cycle of N ′ or do not belong to a cycle;
4 for All vertices v of a cycle C of degree 4 or more do
5 Define a new child w of v;
6 set t′(w) = t′(v);
7 if v = r(C) then
8 Redefine the children of v in C as children of w;
9 end

10 else
11 Redefine the children of v outside of C as children of w;
12 end
13 end
14 for All cycles C of N ′ such that (r(C), h(C)) is an arc of N ′ do
15 Remove the arc (r(C), h(C));
16 end
17 Suppress all vertices of degree 2;
18 end

Algorithm 5: Transform

Corollary 2.4.5. Suppose N is a labelled level-1 network and N′ is the level-1
representation for δN returned by algorithm Network-Popping. Then N′ is iso-
morphic with the labelled level-1 network returned by algorithm Transform when
given N as input. In particular, N and N′ are isomorphic if and only if N is semi-
discriminating, weakly labelled, and partially resolved. Furthermore, if δ is a level-1
representable symbolic 3- dissimilarity, then there exists an unique representation
of δ that is semi-discriminating, weakly labelled, and partially resolved.

2.4.2 Characterizing level-1 representability
In this section, we present a characterization of level-1 representable symbolic 3-
dissimilarities on X in terms of level-1 representable symbolic 3-dissimilarities on
subsets ofX of size |X|−1 (Theorem 2.4.8). Combined with the fact that algorithm
Network-Popping has polynomial run time, this suggests that Network-
Popping might lend itself to studies involving large data sets using a Divide-
and-Conquer approach. At the heart of the proof of our characterization lies the
following technical lemma which concerns the question under what circumstances
the restriction of a level-1 representable symbolic 3-dissimilarity δ on X is itself
level-1 representable. Central to its proof is the fact that |X| 6= 4 since, in general,

61

a symbolic 3-dissimilarity δ on a set X of size 4 need not be level-1 representable
but the restriction of δ to any subset of size 3 is level-1 representable. An example
for this is furnished by the symbolic 3-dissimilarity δ on X = {x, y, z, u}, given by
δ(x, y, z) = δ(y, z, u) = δ(x, y) = δ(y, z) = δ(z, u) 6= δ(x, z) = δ(x, u) = δ(y, u) =
δ(x, z, u) = δ(x, y, u).

Using the assumptions and definitions for the elements x, y, and z, and the
sets H, Sz, and Sy made in algorithm Build-Cycle, we have the following result.

Lemma 2.4.6. Suppose δ is a symbolic 3-dissimilarity on X satisfying Properties
(P1), (P2), (P4), and (P6), x||yz is the δ-tricycle chosen in line 2 of algorithm
Build-Cycle, and i ∈ {y, z}. If u,w ∈ Si are joined by a direct path from u to
w in TD(Si, x), then either (u,w) is a directed edge of TD(Si, x) or there exists
v ∈ Si such that both directed edges (u, v) and (v, w) are contained in TD(Si, x).

Proof. By symmetry, we may assume i = y. Suppose there exists a directed path
v0 = u, v1, . . . , vk, vk+1 = w, some k ≥ 0, from u to w in TD(Sy, x) and that (u,w)
is not a directed edge on that path. Then k ≥ 1 and, so, v1 6∈ {u,w}. It suffices
to show that (v1, w) is a directed edge of TD(Sy, x).

Observe first that, in view of Property (P6), (w, u) is not a directed edge
in TD(Sy, x) as otherwise TD(Sy, x) would contain a directed cycle. Combined
with the definition of Sy it follows that either x|uw is a δ-triplet or we have a
δ-fork on {x, u, w}. In either case, δ(u, x) = δ(w, x) holds. Since (u, v1) is a
directed edge in TD(Sy, x), we also have that xv1|u is a δ-triplet. Hence, δ(v1, x) 6=
δ(x, u) = δ(w, x) and so we cannot have a δ-fork on {x,w, v1}. Since, in view of
Property (P4), we cannot have a δ-tricycle on {x,w, v1} either δ(w, v1) = δ(w, x)
or δ(w, v1) = δ(v1, x) follows.

If the first equality holds, then v1x|w is a δ-triplet and, so, (w, v1) is a directed
edge in TD(Sy, x). Consequently, the directed path v1, . . . , vk, w concatenated
with that edge forms a directed cycle in TD(Sy, x), which is impossible in view of
Property (P6) holding. Thus, δ(w, v1) = δ(v1, x) must hold. Consequently, wx|v1
is a δ-triplet and, so, (v1, w) is an edge in TD(Sy, x), as required.

To establish the main result of this section (Theorem 2.4.8), we need to be able
to distinguish between the sets defined in lines 8 and 9 of algorithm Build-Cycle
when given a symbolic 3-dissimilarity δ onX and the restriction δ|Y of δ to a subset
Y ⊆ X with |Y | ≥ 3. To this end, we augment for a symbolic 3-dissimilarity κ on
X the definition of those sets by writing Si(κ) rather than Si, i = y, z.

Observe first that if δ is level-1 representable and Y ⊆ X such that |Y | ≥ 3,
then the restriction δ|Y of δ to Y is clearly level-1 representable. Indeed, a level-1
representation N(δ|Y) of δ|Y can be obtained from a level-1 representation N(δ)
of δ using the following 2-step process. First, remove all leaves in X − Y and
their respective incoming arcs from N(δ) and then suppress all resulting degree

62

two vertices. Next, apply algorithm Transform to the resulting network. This
begs the question of when level-1 representations of symbolic 3-dissimilarities on
subsets of X give rise to a level-1 representation of a symbolic 3-dissimilarity on
X. To answer this question which is the purpose of Theorem 2.4.8 we require the
next result.

Proposition 2.4.7. Let δ be a symbolic 3-dissimilarity on X. Then the following
statements hold.

(i) If |X| ≥ 6 and δ does not satisfy Property (Pi), i ∈ {1, 2, . . . , 8}, then there
exists some Y ⊆ X with 3 ≤ |Y | ≤ 5 such that that property is also not
satisfied by δ|Y .

(ii) If |X| ≥ 6 and δ is not level-1 representable then there exists some Y ⊆ X
with 3 ≤ |Y | ≤ 5 such that δ|Y is also not level-1 representable.

Proof. (i) The proposition is straightforward to show for Properties (P1) and (P2),
since they involve three and four elements of X, respectively. Note that to see
Property (Pi), 3 ≤ i ≤ 8, we may assume without loss of generality that Properties
(Pj), 1 ≤ j ≤ i− 1, are satisfied by δ. For ease of readability, we put Sy := Sy(δ).

If δ does not satisfy Property (P3) then there exists a connected component C
of C(δ) and δ-tricycles τ, τ ′ ∈ V (C) such that δ(L(τ)) 6= δ(L(τ ′)). Without loss of
generality, we may assume that τ and τ ′ are adjacent. Then |L(τ) ∩ L(τ ′)| = 2.
Let x, y, z ∈ X such that τ = x||yz. Then either τ ′ = x′||yz or τ ′ = x||yz′ where
x′, z′ ∈ X. But then Property (P3) is not satisfied either for δ restricted to the
5-set Z = {x, y, z, x′, z′}.

For the remainder, let (H,R′) denote the pair returned by algorithm Find-
Cycles when given δ and let x ∈ H and y, z ∈ R′ such that x||yz is a vertex in
the connected component C of C(δ) corresponding to (H,R′). Suppose δ does not
satisfy Property (P4). Assume first that the second part of Property (P4) is not
satisfied. Then if there exists an element u contained in H ∩ Sy or in H ∩ Sz or in
Sz ∩ Sy then u is also contained in the corresponding intersections involving the
sets Sy(δ|Z) ⊆ Sy and Sz(δ|Z) ⊆ Sz found by Build-Cycle in its lines lines 8 and
9 for δ restricted to Z = {x, y, z, u}. Thus, the second part of Property (P4) does
not hold for δ|Z .

Now assume that the first part of Property (P4) does not hold for δ, that is,
S ′i 6= A := {w ∈ Si : δ(w, x) 6= δ(y, z)}. By symmetry, we may assume without
loss of generality that i = y. Then since S ′y ⊆ A clearly holds there must exists
some w ∈ A − S ′y. Put U = {x, y, z, w}. Then w 6∈ S ′y(δ|U) as w 6∈ S ′y. However
we clearly have that w ∈ Sy(δ|U) and δ|U(w, x) 6= δ|U(y, z). Thus, the first part of
Property (P4) is not satisfied with δ replaced by δ|U .

63

If δ does not satisfy Property (P5) then since y ∈ R := H ∪ Sy ∪ Sz it follows
for u := y and v and w as in the statement of Property (P5) that the restriction
of δ to {x, u, z, v, w} does not satisfy Property (P5) either.

If δ does not satisfy Property (P6) then either (a) there exist elements u, u′ ∈ H
such that TD(Sy, u) and TD(Sy, u′) are not isomorphic or (b) there exists some
u ∈ H such that TD(Sy, u) has a directed cycle C.

Assume first that Case (a) holds. Then there must exist distinct vertices v and
w in Sy such that (v, w) is a directed edge in TD(Sy, u) but not in TD(Sy, u′).
With Z = {v, u, u′, w, z} it follows that Sv(δ|Z) = {v, w}. Since the directed edge
(v, w) is clearly contained in the TopDown graph TD({v, w}, u) associated to δ|Z
but not in the TopDown graph TD({v, w}, u′) associated to δ|Z , Property (P6) is
not satisfied for δ|Z .

Thus, Case (b) must hold. In view of Proposition 2.3.7(i), we may assume
that the size of C is three. Hence, the subgraph G of TD(Sy, u) induced by
Z = V (C) ∪ {z, u} also contains a cycle of length 3. Since G coincides with the
TopDown graph TD(V (C), u) for δ|Z and |Z| = 5 holds, it follows that δ|Z does
not satisfy Property (P6).

If δ does not satisfy Property (P7) then there must exist undirected edges
e = {a, b} and e′ = {a′, b′} in CL(H,Sy, Sz) such that δ(a, b) 6= δ(a′, b′). Then
for at least one of e and e′, say e, we must have that δ(a, b) 6= δ(y, z). Put Z =
{x, y, z, a, b}. Then since {y, z} is also an undirected edge in CL(H,Sy(δ|Z), Sz(δ|Z))
it follows that δ|Z does not satisfy Property (P7) either.

Finally, suppose that δ does not satisfy Property (P8). Considering both al-
ternatives in the statement of Property (P8) together, there must exist vertices
u ∈ Sy and v, w ∈ Sy ∪ H such that both (u, v) and (u,w) are directed edges of
CL(H,Sy, Sz) and δ(u, v) 6= δ(u,w). Independent of whether v, w ∈ Sy or v, w ∈ H
or v ∈ Sy and w ∈ H, it follows that either δ(u, x) 6= δ(u, v) or δ(u, x) 6= δ(u,w).
Assume without loss of generality that δ(u, x) 6= δ(u, v). Note that (u, x) is also a
directed edge in CL(H,Sy, Sz).

If v ∈ H, then δ|Z does not satisfy Property (P8) for Z = {x, y, z, u, v}. So
assume v 6∈ H. Then v ∈ Sy. Since (u, v) is a directed edge in CL(H,Sy, Sz)
it follows that there exists a directed path P from u to v in TD(Sy, x). By
Lemma 2.4.6, either (a) P has a single directed edge or (b) there exists some
v1 ∈ Sy such that both (u, v1) and (v1, v) are directed edges of TD(Sy, x).

If Case (a) holds, then δ|Z does not satisfy Property (P8) for Z = {x, y, z, u, v}.
So assume that Case (b) holds. Then δ|Z′ does not satisfy Property (P8) for
Z ′ = {x, y, z, u, v, v1}. Since the definition of TD(Sy, x) implies that xv|v1 is
a δ-triplet, it follows that δ(x, v) 6= δ(x, v1). Hence, either δ(v, x) 6= δ(v, z) or
δ(v1, x) 6= δ(v, z). By Properties (P3) and (P4) it follows in the first case that
x||vz is a δ-tricycle, and that x||v1z is a δ-tricycle in the second case. Thus, either

64

v or v1 can play the role of y in τ . Consequently, δ restricted to Z = Z ′−{y} does
not satisfy Property (P8).

(ii) This is a straightforward consequence of Theorem 2.4.1 and Proposition 2.4.7(i).

From there, we have:

Theorem 2.4.8. Let δ be a symbolic 3-dissimilarity on a set X such that |X| ≥ 6.
Then δ is level-1 representable if and only if for all subsets Y ⊆ X of size |X| − 1,
the restriction δ|Y is level-1 representable.

Proof. Suppose first that δ is level-1 representable. Then, by the observation
preceding Proposition 2.4.7, δ|Y is level-1 representable, for all subsets Y ⊆ X of
size |X| − 1.

Conversely, suppose that X is such that for all subsets Y ⊆ X of size |X| − 1,
the restriction δ|Y is level-1 representable but that δ is not level-1 representable.
Then, by Proposition 2.4.7 there exists a subset Y ⊆ X with |Y | ∈ {3, 4, 5} such
that δ|Y is also not level-1 representable. But then δ restricted to any subset
Z of X size |X| − 1 that contains Y also is not level-1 representable which is
impossible.

2.5 Conclusion
As we have seen, the work presented in this chapter successfully extends some of
the results reviewed in Section 1.3.1, to labelled level-1 networks. As the notion of
a network representation of a symbolic 3-dissimilarity relies upon the uniqueness
of the lowest common ancestor, it is unlikely that it will be possible to adapt
the results to any type of network without first modifying the current definition
of a network representation. However, level-1 networks are not the only type of
network satisfying this uniqueness property. It is also enjoyed, for example, by
tree-child and tree-sibling networks (which we presented in Section 1.1.3). To be
exhaustive, it might be of interest to study the class of phylogenetic networks for
which any subset of leaves has exactly one lowest common ancestor.

This, however, is unlikely to be straightforward, as the algorithms and the
result established along the way in this chapter are all based on the notion of
a cycle, and especially on the key property that no two cycles intersect, which
characterizes level-1 networks. For this reason, an extension of these results to
other types of networks would probably require a perspective different from the
one adopted here.

Apart from this extension problem, a further interesting feature of the work
presented in this chapter is the introduction of a new mathematical object, which

65

we call a symbolic 3-dissimilarity. Such a map can be seen as a hybrid between a
symbolic distance (Section 1.3.1) and a 3-dissimilarity, the latter being a particular
case of a k-dissimilarities (Section 1.3.2). Given that both symbolic distances and
k-dissimilarities have already been studied for their relations with phylogenetic
trees, the questions becomes, how this new notion of a symbolic 3-dissimilarity fits
in the context of these existing results. This question is the starting point of the
next chapter.

66

Chap. 3

On symbolic 3-way tree-maps and
ultrametrics

Adapted from:

K. T. Huber, V. Moulton and G. E. Scholz. Three-way symbolic tree-maps
and ultrametrics. Journal of Classification, in press.

My personal contribution to this work has been the establishment of the main re-
sults (apart from Theorem 3.2.3), as well as writing the first draft of the paper,
which includes the proofs of all the results presented.

This chapter addresses the question of the representability of a symbolic 3-way
map by a phylogenetic tree, both in the rooted and the unrooted case. For both
cases, we provide a characterization of those maps that admit such a representa-
tion, and highlight some links existing between this problem and other reconstruc-
tion problem, such as, in the rooted case, the reconstruction of a phylogenetic tree
from a set of triplets.

3.1 Introduction
In Chapter 2, we extended a result (Theorem 1.3.1) on symbolic ultrametric and
phylogenetic trees to a result relating a certain type of symbolic 3-dissimilarities
to level-1 phylogenetic networks (Theorem 2.4.1). Inspired by Theorem 1.3.4 char-
acterizing tree-like k-dissimilarities, and its rooted equivalent, Theorem 1.3.5, we
may then ask the question, how do symbolic 3-dissimilarities relate to phylogenetic
trees? This is the question addressed in this chapter, which is based on [39], both
in the rooted and unrooted case. As in the previous chapter, the notions presented

67

in Section 1.3.1 are central, and some parallels are also made with the results in
Sections 1.3.2 and 1.4.1.

Throughout this chapter, we will consider the notion of a 3-way symbolic map
on a set X, that is, a map δ :

(
X
3

)
→ M, where M is a nonempty set. We

successively consider the case of an unrooted (Section 3.2.1) and of a rooted (Sec-
tion 3.2.2) tree, for which, as we shall see, the notions of displaying a 3-way
symbolic map is different.

4 3 1 2 3 4 5

2 5

1A

B A

B

A

B

A

(i) (ii)

Figure 3.1: Two trees which give rise to (i) a three-way symbolic tree-map and (ii)
a three-way symbolic ultrametric.

In the unrooted case, this notion relies on the observation that to each triple
of leaves of a tree T there exists a unique vertex contained in all paths between
these three leaves. Thus, we can assign to a triple the element labelling this unique
vertex. We call maps that arise in this way 3-way symbolic tree-maps.

In Section 3.2.1 we show that a three-way symbolic tree-map uniquely de-
termines its underlying labelled tree (Proposition 3.2.2), and we also give a 4-
and 5-point characterization for such maps (see Theorem 3.2.3). This is analo-
gous for the 4-point condition for tree-metrics presented in Section 1.2.2, and also
generalises the conditions Theorem 1.3.4 for determining when a 3-way dissimi-
larity arises from a tree. To prove this result we introduce a symbolic variant of
the Combinatorial Farris transform (see Section 1.1.2), which allows us to apply
Theorem 1.3.1 for symbolic ultrametrics. Interestingly, an analogous characteriza-
tion have been discovered independently in [31], and an alternative one has been
proposed, also independently, in [30]. We discuss the differences and similarities
between all three approaches at the end of Section 3.2.1.

In Section 3.2.2, we turn our attention to obtaining three-way symbolic maps
from rooted trees. One way to define a symbolic map could be to take, for each
triple of leaves, the set of symbols consisting of the symbols labelling the least
common ancestor of all pairs of leaves in the triple. However, as we shall see in
Section 3.2.2, this does not suffice to capture the tree. Even so, if we consider

68

the values assigned to a triple to be multisets instead of sets, then we can in fact
recover the underlying labelled tree in case |X| ≥ 5 (Lemma 3.2.7). We call such
maps 3-way symbolic ultrametrics. In Section 3.3.1 we give 3-, 4- and 5-point
conditions which ensure that a three-way symbolic map into size 3 multisets of
symbols is a three-way symbolic ultrametric. This is somewhat surprising since
for three-way dissimilarities, according to Theorem 1.3.5, a 6-point condition is
required to ensure that they can be represented by a rooted tree in an analogous
way.

In Section 3.3.2, we conclude by considering an alternative approach for de-
ciding whether or not a three-way symbolic map is a symbolic ultrametric. This
approach is based on the BUILD algorithm for triplets (see Section 1.4.1). Ap-
plying this algorithm to three-ways maps has the advantage that only sets of size
three need to be considered to decide when a three-way symbolic map is a tree or
symbolic map, as opposed to sets of size up to 5, which could lead to improved
computing times in practice.

Throughout this chapter, unless stated otherwise, X denote a finite set of size
n ≥ 3, and M a finite set of symbols of size two or more.

3.2 Two types of maps for two types of trees
We start by considering 3-way symbolic maps that arise from labelled unrooted
trees and from labelled rooted trees successively.

3.2.1 3-way symbolic tree-maps for unrooted trees
As mentioned before, for any three leaves x, y, z of a phylogenetic tree T , the
three paths between x and y, between x and z and between y and z have exactly
one vertex in common. We call this vertex the median vertex of x, y and z in T ,
denoted bymedT (x, y, z). Thus, a labelled unrooted tree T = (T, t) induces a 3-way
symbolic map δT :

(
X
3

)
→ M , defined by putting, for all x, y, z ∈ X, δT(x, y, z) =

t(medT (x, y, z)). For example, if T is the tree depicted tree in Figure 3.1(i), we
have δT(1, 3, 5) = A.

If for a 3-way symbolic map δ :
(
X
3

)
→M , there exists a labelled unrooted tree

T such that δ = δT, we say that δ is a 3-way symbolic tree-map, and that T is a
representation of δ. We now characterize such maps. To do this, we define a sym-
bolic Farris transform, the definition of which is adapted from the Combinatorial
Farris transform described in Section 1.1.2 as follows:

Suppose T = (T, t) is a labelled unrooted tree on X. Pick a leaf r ∈ X, and
define a rooted phylogenetic tree Tr on X − {r} as follows: direct all edges of T
away from r, and remove r and its outgoing edge. This induces a bijection ψr

69

from the set of internal vertices of T to the set of internal vertices of Tr. Hence
the map tr : V (Tr) → M which takes any internal vertex v of Tr to M given by
tr(v) = t(ψ−1

r (v)) is well-defined, and the pair Tr = (Tr, tr) is a labelled rooted
tree.

Now, suppose that δ is the 3-way symbolic tree-map induced by T, and that
Dr is the symbolic ultrametric on X induced by Tr.

Lemma 3.2.1. For all x, y ∈ X − {r}, we have Dr(x, y) = δ(x, y, r).

Proof. It suffices to note that via the symbolic Farris transform, the median vertex
of x, y and r in T becomes the last common ancestor of x and y in Tr. Denoting
the latter by v, we then have Dr(x, y) = tr(v) = t(ψ−1

r (v)) = t(medT (x, y, r)) =
δ(x, y, r).

Motivated by this observation, for a 3-way symbolic map δ :
(
X
3

)
→ M and

some r ∈ X, we define

δr :
(
X−{r}

2

)
→ M

{x, y} 7→ δ(x, y, r).

Interestingly, Lemma 3.2.1, together with the Bottom-Up algorithm described
in Section 1.3.1 allows us to check if a 3-way symbolic map is a tree-map, and to
build its representation if this is the case, as follows. Suppose δ :

(
X
3

)
→ M is a

3-way symbolic map. Pick any r ∈ X. Then, using the Bottom-Up algorithm,
we can check whether or not the map δr is a symbolic ultrametric. If this is not
the case, then by Lemma 3.2.1, δ is not a 3-way symbolic tree-map. Otherwise,
if (T, t) is the representation of δr returned by Bottom-Up, then we can simply
check whether or not this leads to a representation of δ by attaching the leaf r to
the root of T . If this is possible then δ is a 3-way symbolic tree-map, otherwise it
is not.

Lemma 3.2.1 also allows us to prove a uniqueness result.

Proposition 3.2.2. Let δ :
(
X
3

)
→M be a 3-way symbolic tree-map. There exists

a unique discriminating labelled unrooted tree T representing δ.

Proof. Let r ∈ X and consider the map δr :
(
X−{r}

2

)
→M . By Lemma 3.2.1, δr is

a symbolic ultrametric, and thus, admits a unique discriminating representation
Tr. Moreover, this representation is obtained from a representation of δ, using the
symbolic Farris transform. This operation is clearly invertible, and preserves the
property of being discriminating. Thus, the labelled unrooted tree T obtained from
Tr by inverting the symbolic Farris transform is necessarily the only discriminating
representation of δ.

70

We now state the main result of this section:

Theorem 3.2.3. Suppose that |X| ≥ 4 and that δ :
(
X
3

)
→M is a 3-way symbolic

map. Then δ is a 3-way symbolic tree-map if and only if δ satisfies the following
two conditions:

(C1) For all {x, y, z, u} ∈
(
X
4

)
, either

δ(x, y, z) = δ(x, y, u) = δ(x, z, u) = δ(y, z, u)

or two of these four are equal and so are the remaining two.

(C2) There does not exist {x, y, z, u, v} ∈
(
X
5

)
such that

δ(v, x, y) = δ(v, y, z) = δ(v, z, u) 6= δ(v, z, x) = δ(v, x, u) = δ(v, u, y).

In order to prove Theorem 3.2.3, we start with a useful lemma.

Lemma 3.2.4. Suppose that |X| ≥ 4 and let δ :
(
X
3

)
→ M be a 3-way symbolic

map satisfying (C1) and (C2). Then for all r ∈ X, the map δr is a symbolic
ultrametric.

Proof. Let r ∈ X. We need to show that δr satisfies Properties (U1) and (U2).
To see that δr satisfies (U1), consider three elements x, y, z ∈ X −{r}. Since δ

satisfies (C1) the set {δ(r, x, y), δ(r, x, z), δ(r, y, z)} contains at most two distinct
elements. As this set is precisely the set {δr(x, y), δr(x, z), δr(y, z)}, (U1) follows.

To see that (U2) holds, assume for contradiction that there exist four elements
x, y, z, u ∈ X − {r} such that δr(x, y) = δr(y, z) = δr(z, u) 6= δr(z, x) = δr(x, u) =
δr(u, y). This implies δ(r, x, y) = δ(r, y, z) = δ(r, z, u) 6= δ(r, z, x) = δ(r, x, u) =
δ(r, u, y), which is impossible in view of (C2).

Note that the converse of Lemma 3.2.4 is not true in general. Consider for
example the sets X = {1, . . . , n}, n ≥ 4, M = {A,B} and the map δ :

(
X
3

)
→

M defined for x, y, z ∈ X by δ(x, y, z) = A if 1 ∈ {x, y, z} and δ(x, y, z) = B
otherwise. Clearly, δ does not satisfy (C1), as we have δ(1, 2, 3) = δ(1, 2, 4) =
δ(1, 3, 4) 6= δ(2, 3, 4). However, we have δ1(x, y) = A for all x, y ∈ X − {1}, which
is clearly a symbolic ultrametric. In fact, for any 2 ≤ k ≤ n we have δk(x, y) = A
if 1 ∈ {x, y} and δk(x, y) = B otherwise and, so, δk is also a symbolic ultrametric
on X − {k}.

Armed with Lemma 3.2.4, we can now prove Theorem 3.2.3.

71

Proof. Assume first that δ is a 3-way symbolic tree-map, and denote by T = (T, t)
its representation. To see that δ satisfies (C1), consider four elements x, y, z, u ∈
X. Two cases may occur. If medT (x, y, z) = medT (x, y, u) = medT (x, z, u) =
medT (y, z, u), it follows immediately that δ(x, y, z) = δ(x, y, u) = δ(x, z, u) =
δ(y, z, u). Otherwise, there exists two pairs, say {x, y} and {z, u}, such that
the path between x and y and the path between z and u are disjoint. In this
case, we have medT (x, y, z) = medT (x, y, u) 6= medT (x, z, u) = medT (y, z, u).
If t(medT (x, y, z)) = t(medT (x, z, u)), it follows that δ(x, y, z) = δ(x, y, u) =
δ(x, z, u) = δ(y, z, u). Otherwise, we have δ(x, y, z) = δ(x, y, u) 6= δ(x, z, u) =
δ(y, z, u). Thus, δ satisfies (C1).

To see that δ satisfies (C2), assume for contradiction that there exists x, y, z, u, v ∈
X such that δ(v, x, y) = δ(v, y, z) = δ(v, z, u) 6= δ(v, z, x) = δ(v, x, u) = δ(v, u, y).
We can apply the symbolic Farris transform to T and v, thus obtaining a labelled
rooted tree Tv which, by Lemma 3.2.1, is a representation of δv, implying that
δv is a symbolic ultrametric. But, by definition, δv satisfies δv(x, y) = δv(y, z) =
δv(z, u) 6= δv(z, x) = δv(x, u) = δv(u, y), which contradicts (U2).

Conversely, assume that δ satisfies Properties (C1) and (C2), and let r ∈ X.
By Lemma 3.2.4, the map δr is a symbolic ultrametric. Thus there exists a labelled
rooted tree Tr = (Tr, tr) on X − {r} representing δr. Consider the labelled un-
rooted tree T = (T, t) on X defined as follows. First, add a new vertex r to Tr and
the edge (ρTr , r). Then consider all edges in the resulting tree to be undirected.
Let t : Vint(T)→M denote the map given by t(v) = tr(v), for all v ∈ Vint(T). We
claim that for all {x, y, z} ∈

(
X
3

)
, we have δ(x, y, z) = t(medT (x, y, z)), that is, T

is a representation of δ. To prove this it suffices to consider two cases. Suppose
{x, y, z} ∈

(
X
3

)
.

Case 1: {x, y, z} ⊆ X −{r}. Without loss of generality, δr(x, z) = δr(y, z) = tr(u)
and δr(x, y) = tr(v), where u and v are vertices of Tr, and v is below or equal
to u in Tr. In this case medT (x, y, z) is the image of v in T . By (C1) and since
δ(x, z, r) = δ(y, z, r), we have δ(x, y, z) = δ(x, y, r) = tr(v) = t(medT (x, y, z)).
Thus, T is a representation of δ in this case.

Case 2: r ∈ {x, y, z}, say r = z. If we denote by v the last common ancestor of x
and y in Tr, then medT (x, y, z) is the image of v in T . Hence δ(x, y, r) = δr(x, y) =
tr(v) = t(medT (x, y, r)). Thus, T is a representation of δ in this case, too.

As for Theorem 1.3.1, an equivalent for Theorem 3.2.3 appears in [31] in the
context of game theory. Moreover, an alternative characterization for 3-way sym-
bolic tree-maps can also be found in [30]. The arguments found in [31] bear
similarities to the ones presented here, as this work also relies, for a symbolic 3-
way map δ on X, on the symbolic 2-way maps Dr, r ∈ X on X − {r} introduced

72

above. This leads to a four-point and a five-point conditions for δ to be tree-like,
that are respectively equivalent to conditions (C1) and (C2).

The approach developed in [30], however, is quite different. In this paper,
a 3-way symbolic map δ on a set Y of size five is seen as edge-labelled graphs
(see Section 1.3.1 for a reminder on such graphs) (Hδ, dδ) on Y , where dδ(x, y) is
defined, for x, y ∈ X distinct, as δ(Y − {x, y}). From there an exhaustive study
of all such graphs leads to two conditions for a symbolic 3-way map to be tree-
like. As it turns out, the first condition is precisely (C1). The second condition,
however, is stated as follows:

(C2)’ There does not exist {x, y, z, u, v} ∈
(
X
5

)
such that the image set of δ|{x,y,z,u,v}

contains exactly two elements, and δ maps five subsets of {x, y, z, u, v} of size
three to one of these elements, and the remaining five to the second one.

Interestingly, Properties (C2) and (C2)’ are not equivalent. More precisely,
we can easily see that (C2)’ implies (C2), but the converse is not true in gen-
eral. However, the equivalence holds under the assumption that Property (C1) is
satisfied.

3.2.2 3-way symbolic ultrametrics for rooted trees
In the last section, we considered the problem of deciding when a 3-way symbolic
map arises from a labelled unrooted tree. In this section, we start to consider that
problem for their rooted counterparts. As we shall see, it suffices to decide this for
all subsets of X of size 5. In the context of this, note that if we consider 3 distinct
leaves x, y, z of a rooted phylogenetic tree T on X we can naturally identify two
internal vertices of the tree given by the set {lcaT (x, y), lcaT (x, z), lcaT (y, z)} (in
contrast to unrooted phylogenetic trees where we can identify only one, namely
the median of the 3 leaves). A natural approach to obtain a 3-way symbolic map
δ from a labelled rooted tree T = (T, t) might therefore be to take δ(x, y, z) to be
the set {t(lcaT (x, y)), t(lcaT (x, z)), t(lcaT (y, z))} for x, y, z ∈ X distinct. However,
as can be seen in Figure 3.2 such a map does not necessarily uniquely capture T.
For this reason, we shall consider instead maps to multisets.

To formalize this, let M = M3 denote the set of multisets {a, b, c} with a, b, c ∈
M . As it will be useful later on, we shall also sometimes denote an element in
M as a sum. So, for example, for the element {a, a, b} ∈ M with a, b ∈ M , we
sometimes also write 2a+b. By abuse of terminology, we say that a labelled rooted
tree T = (T, t) on X represents a 3-way symbolic map δ :

(
X
3

)
→ M (or that δ is

represented by T) if for all distinct x, y, z ∈ X, we have

δ(x, y, z) = {t(lcaT (x, y)), t(lcaT (x, z)), t(lcaT (y, z))}.

73

1 2 3 4

B

B

A

5

A

1 2 5 4

B

B

A

3

A

Figure 3.2: Two labelled rooted trees on X = {1, 2, 3, 4, 5}
with labelling maps t and t′ on M = {A,B}, respectively,
for which the sets {t(lcaT (x, y)), t(lcaT (x, z)), t(lcaT (y, z))} and
{t′(lcaT (x, y)), t′(lcaT (x, z)), t′(lcaT (y, z))} coincide, for any three elements
x, y, z ∈ X distinct.

If such a labelled rooted tree T exists, we say that δ is a 3-way symbolic ultrametric
(on X) and that T is a representation for δ. For example, if T is the labelled rooted
tree depicted in Figure 3.1(ii), we have δT(1, 3, 5) = {A,A,A}.

Note that we can think of δ as a symbolic analogue of a tree-like symbolic 3-
dissimilarity (see Section 1.3.2 and Theorem 1.3.5). Also note that if δ is a 3-way
symbolic ultrametric onX then its representation T canonically induces a symbolic
ultrametric Dδ on X in view of Theorem 1.3.1. For the convenience of the reader
we picture forM = {A,B,C} in Figure 3.3 all seven discriminating labelled rooted
trees Ti, 1 ≤ i ≤ 7, on {1, 2, 3, 4}, up to isomorphism. Furthermore, we present in
Table 3.1 the values of the map δ̂i :

(
X
3

)
→M that is represented by Ti.

The following useful observation follows immediately from Property (U1).

Lemma 3.2.5. Let δ :
(
X
3

)
→M be a 3-way symbolic ultrametric. Then, for any

three distinct elements x, y, z ∈ X, the number of distinct elements in the multiset
δ(x, y, z) is at most two.

Now, for a subset Y of X of size four or more, let δ|Y denote the restriction
of δ to

(
Y
3

)
⊆
(
X
3

)
. Clearly, if δ is a 3-way symbolic ultrametric, then δ|Y is a

3-way symbolic ultrametric for all subsets Y ⊆ X with |Y | ≥ 4 . Indeed, if T is a
representation of δ, then the subtree TY of T induced by Y is a representation of
δ|Y . Furthermore, we obtain a discriminating representation of δ|Y by collapsing
all edges of TY both of whose end vertices have the same label.

Intriguingly, except for δ̂3, the maps δ̂i, i ∈ {1, . . . , 7} − {3} uniquely capture
Ti in the sense that Ti is the unique labelled rooted tree that represents δ̂i. In view
of this, we say for a subset Y ⊆ X of size four that δ|Y is of type δ̂i, i ∈ {1, . . . , 7}
if there exists a bijection between Y and {1, 2, 3, 4} and a bijection between the
image of δ|Y and the image of δ̂i such that δ|Y and δ̂i coincide up to these bijections.
Since Table 3.1 is exhaustive, we have:

74

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

T1 : T2 : T3 : T4 :

T5 : T6 : T7 :

A A A A

A A A

B B B B C

B A

B

C

B

Figure 3.3: All possible discriminating labelled rooted trees Ti, 1 ≤ i ≤ 7, on
{1, 2, 3, 4}, up to a relabelling of the leaves.

i 1 2 3 4 5 6 7
δ̂i(1, 2, 3) 3A 2A+B 2A+B 2A+B 3B A+2B 2B+C
δ̂i(1, 2, 4) 3A 2A+B 2A+B 2A+B 2A+B 3A 2A+C
δ̂i(1, 3, 4) 3A 3A 2A+B 2A+C 2A+B 2A+B 2A+B
δ̂i(2, 3, 4) 3A 3A 2A+B 2A+C 2A+B 2A+B 2A+B

Table 3.1: For 1 ≤ i ≤ 7 and M = {A,B,C}, we present the values of the map δ̂i
represented by the labelled rooted trees Ti in Figure 3.3. The trees Ti are given in
terms of their index i in the top row.

Proposition 3.2.6. Suppose that |X| ≥ 4, that δ :
(
X
3

)
→M is a 3-way symbolic

map, and that Y ⊆ X is a subset of size four. Then δ|Y :
(
Y
3

)
→ M is a 3-way

symbolic ultrametric on Y if and only if there exists i ∈ {1, . . . , 7} such that δ|Y is
of type δ̂i. Moreover, if i 6= 3, the representation of δ|Y is unique.

In the last result we have seen that a 3-way symbolic ultrametric on a set of
size four may have more than one representation by a labelled tree. However, as
we shall now show this does not happen for sets of size five.

Lemma 3.2.7. If Y is a set of size five and δ :
(
Y
3

)
→ M is a 3-way symbolic

ultrametric on Y , then δ has a unique discriminating representation.

Proof. It suffices to show that if δ is a 3-way symbolic ultrametric on Y , then the
symbolic ultrametric D = Dδ :

(
Y
2

)
→ M induced by δ is unique. Since δ is a

3-way symbolic ultrametric on Y , there exists a subset Y0 of Y such that δ|Y0 is

75

δ(1, 2, 3) 2A+B δ(1, 4, 5) 2A+B
δ(1, 2, 4) 2A+B δ(2, 3, 4) 3A
δ(1, 2, 5) 3B δ(2, 3, 5) 2A+B
δ(1, 3, 4) 3A δ(2, 4, 5) 2A+B
δ(1, 3, 5) 2A+B δ(3, 4, 5) A+2B

Table 3.2: For M = {A,B} and X = {1, 2, 3, 4, 5} we present a 3-way symbolic
map δ :

(
X
3

)
→ M which is not a 3-way symbolic ultrametric on X but whose

restriction to any subset Y ⊂ X of size four is a 3-way symbolic ultrametric on Y .

not of type δ̂3. Thus, the discriminating representation T0 of δ|Y0 is unique, and
so is the restriction DY0 of all symbolic ultrametric D :

(
Y
2

)
→ M induced by δ.

Then, the value of D(x0, x), where x ∈ Y0 and x0 is the unique element contained
in Y − Y0 is uniquely determined by δ and DY0 .

Note that, as the example in Table 3.2 shows, it is not true in general that a
3-way symbolic map δ that restricts to a 3-way symbolic ultrametric on all subsets
Y of X of size four is a 3-way symbolic ultrametric on X. However, as promised
above, we now show that considering sets of size five is enough to ensure this.

Theorem 3.2.8. Suppose that |X| ≥ 5 and that δ :
(
X
3

)
→M is a 3-way symbolic

map. Then, δ is a 3-way symbolic ultrametric if and only if δ|Y is a 3-way symbolic
ultrametric for all Y ⊆ X of size five.

Proof. The fact that a 3-way symbolic ultrametric on X restricts to such an ul-
trametric on all subsets of X of size five is clear.

Conversely, assume that δ|Y is a 3-way symbolic ultrametric for all Y ⊆ X of
size five. For such a set Y , we denote by TY = (TY , ty) the unique (by Lemma 3.2.7)
discriminating labelled tree that represents δ|Y and byDY the symbolic ultrametric
induced by TY .

Clearly, if there exists a map D :
(
X
2

)
→ M such that for all subset Y ⊆ X

of size five, then the restriction of D to
(
Y
2

)
coincides with DY , then D satisfies

δ(x, y, z) = {D(x, y), D(x, z), D(y, z)}. Moreover, since DY is a symbolic ultra-
metric on any subset Y ⊆ X of size five, and given that the property of being a
symbolic ultrametric is based on a four-point condition, we have that such a map
D, if it exists, is also a symbolic ultrametric. Thus, if D is well-defined, then δ is
a 3-way symbolic ultrametric.

To show that D is well-defined, assume for contradiction that there exists x
and y in X and two distinct subsets Y1 and Y2 of X of size five, both containing x
and y, such that DY1(x, y) 6= DY2(x, y). We may assume without loss of generality

76

that I = Y1 ∩ Y2 has size four. Moreover, we claim that x, y, Y1 and Y2 can be
chosen such that δ|I is not of the form δ̂3, as defined in Table 3.1.

To prove this claim, consider the case where δ|I is of type δ̂3 (otherwise, the
claim trivially holds). Assume Y1 = {x, y, z, t, u1} and Y2 = {x, y, z, t, u2}, which
implies I = {x, y, z, t}. Both the subtree of TY1 induced by I and the subtree
of TY2 induced by I are of the form T3 in Figure 3.3, and are not isomorphic.
We can assume that one has cherries x, y and t, z and the other has cherries
x, z and t, y. Then, we have not only that DY1(x, y) 6= DY2(x, y), but also that
DY1(x, z) 6= DY2(x, z), DY1(z, t) 6= DY2(z, t), and DY1(y, t) 6= DY2(y, t). Moreover,
it is easy to check that there exists a subset Y ∗ ⊂ I of size three such that neither
δ|Y ∗∪{u1} nor δ|Y ∗∪{u2} is of type δ̂3.

Since Y ∗ is a subset of I of size three and in view of the four inequalities listed
above, there exists two elements x′, y′ ∈ Y ∗ such that DY1(x′, y′) 6= DY2(x′, y′). If
we denote by Y ′ the set Y ∗ ∪ {u1} ∪ {u2}, we have that both Y ′ ∩ Y1 and Y ′ ∩ Y2
have size four, and that at least one of DY ′(x′, y′) 6= DY1(x′, y′) or DY ′(x′, y′) 6=
DY2(x′, y′) holds. If the first inequality holds, the claim is then satisfied for x′, y′, Y ′
and Y1. Otherwise, it is satisfied for x′, y′, Y ′ and Y1, which completes the proof
of the claim.

Now, in light of the claim, the representation TI of δ|I is unique, and so is the
symbolic ultrametricDI that it induces. Moreover, DI is precisely the restriction of
DY1 to I, and the restriction ofDY2 to I. In particular, we haveD(x, y) = DY1(x, y)
and D(x, y) = DY2(x, y), which contradicts DY1(x, y) 6= DY2(x, y).

3.3 Characterizations of 3-way symbolic ultra-
metrics

To characterize 3-way symbolic ultrametrics on sets of size five or more, two distinct
approaches can be considered. We now present both of them successively.

3.3.1 A five-point characterization
We focus here on using the result in the last section to derive conditions for char-
acterizing 3-way symbolic ultrametrics that are analogous to conditions (U1) and
(U2) for symbolic ultrametrics.

In the following, we shall consider expressions of the form ∑
m∈M αmm where

αm is a real, for all m ∈ M , which arise when we take linear combinations of
multisets in M. We shall say that such an expression ∑

m∈M αmm is valid for
M if the coefficient for each element in M is contained in N. For example, for
M = {a, b}, if S1 = 2a + b, S2 = 2b + a and S3 = 3a are multisets in M, then

77

we have 1
3(S1 + S2) = a + b, which is valid for M , but S3 − S1 = a − b and

1
2(S1 + S3) = 5

2a + 1
2b which are not valid for M . Note that in this notation, the

sum corresponds to the union of multisets, and the difference, if valid, corresponds
to the removal of some elements from a multiset.

Now, suppose that δ :
(
X
3

)
→M is a 3-way symbolic map. Let Y = {x, y, z, u, v}

be a subset of X. Let νY (δ) denote the vector

(δ(x, y, z), δ(x, y, u), . . . , δ(z, u, v)).

In addition, suppose that DY :
(
Y
2

)
→M is a map such that

δ(a, b, c) = {DY (a, b), DY (a, c), DY (b, c)}

for all a, b, c ∈ Y , and let µY (δ) denote the vector

(DY (x, y), DY (x, z), . . . , DY (u, v)).

By definition of DY , it is straightforward to check that AµY (δ) = νY (δ), where

A =

1 1 0 0 1 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0
1 0 0 1 0 0 1 0 0 0
0 1 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 1
0 0 0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 1 1 1

Note that the matrix A is invertible (see [36]) with inverse

A−1 = 1
6

2 2 2 −1 −1 −1 −1 −1 −1 2
2 −1 −1 2 2 −1 −1 −1 2 −1
−1 2 −1 2 −1 2 −1 2 −1 −1
−1 −1 2 −1 2 2 2 −1 −1 −1
2 −1 −1 −1 −1 2 2 2 −1 −1
−1 2 −1 −1 2 −1 2 −1 2 −1
−1 −1 2 2 −1 −1 −1 2 2 −1
−1 −1 2 2 −1 −1 2 −1 −1 2
−1 2 −1 −1 2 −1 −1 2 −1 2
2 −1 −1 −1 −1 2 −1 −1 2 2

78

Consider the product µY (δ) = A−1νY (δ). Then, as the rows of A−1 are indexed
by pairs of elements in Y , it is straightforward to check by considering the {p, q}th
row for p, q ∈ Y distinct, and putting {e, f, g} = Y − {p, q}, that the multiset

SYp,q(δ) := 1
6(2(δ(p, q, e)+δ(p, q, f)+δ(p, q, g)+δ(e, f, g))−

∑
a,b∈Y−{p,q}

(δ(p, a, b)+δ(q, a, b)))

reduces to SYp,q(δ) = {DY (p, q)}. Using the above identity as a definition for
SYp,q(δ) where Y is a set of size five δ :

(
X
3

)
→ M is a 3-way symbolic map and

p, q ∈ Y are distinct we have the following result.

Proposition 3.3.1. Suppose that |X| ≥ 5, that δ :
(
X
3

)
→M is a 3-way symbolic

map, and that Y ⊆ X has size five. There exists a map DY :
(
Y
2

)
→ M such that

δ(a, b, c) = {DY (a, b), DY (a, c), DY (b, c)} for all a, b, c ∈ Y if and only if for all
p, q ∈ Y distinct, SYp,q(δ) is valid for M . In particular, SYp,q(δ) is a singleton set in
this case.

Proof. For p, q ∈ Y distinct, put Sp,q(δ) = SYp,q(δ). Suppose first that the map DY

exists. Then in view of the discussion preceding the proposition, it follows that
Sp,q(δ) is valid for M for all p, q ∈ Y distinct, as {DY (p, q)} = Sp,q(δ) holds in this
case.

To see the converse, assume that Sp,q(δ) is valid for M for all {p, q} ⊂ Y .
Let p, q ∈ Y distinct. We claim that Sp,q(δ) is a singleton set. To see this, put
A = 2(δ(p, q, e) + δ(p, q, f) + δ(p, q, g) + δ(e, f, g)) and B = ∑

a,b∈Y−{p,q}(δ(p, a, b) +
δ(q, a, b)). Then since Sp,q(δ) is valid for M , every element in B must also be an
element in A. Hence, Sp,q(δ) must contain 1

6(|A−B|) = 1 element as |A| = 24 and
|B| = 18. This proves the claim. Let sp,q(δ) denote the unique element in Sp,q(δ).
Then it is straightforward to see that the map DY :

(
Y
2

)
→M defined by putting

DY (p, q) = sp,q(δ), for all p, q ∈ Y distinct, satisfies the stated property.

We now present conditions for characterizing when a 3-way symbolic map is a
3-way symbolic ultrametric. For Σ ∈ M, we define the elements m(Σ) and n(Σ)
of M as follows:

• If Σ contains a single element A ∈ M repeated three times, we put m(Σ) =
n(Σ) = A.

• If Σ contains two distinct elements, we define m(Σ) as the element of Σ
appearing twice and n(Σ) as the element appearing only once.

• If Σ contains three distinct elements, we put m(Σ) = n(Σ) = ∅.

Note that if Σ contains two or fewer distinct elements, then Σ = {m(Σ),m(Σ), n(Σ)}.

79

Theorem 3.3.2. Suppose that |X| ≥ 5 and that δ :
(
X
3

)
→M is a 3-way symbolic

map. Then δ is a 3-way symbolic ultrametric if and only if the following hold:

(D1) For all subsets Y ⊆ X of size five and all x, y ∈ Y distinct, the multiset
SYx,y(δ) is valid for M .

(D2) For all x, y, z ∈ X, δ(x, y, z) contains at most two distinct elements.

(D3) For all x, y, z, u ∈ X with δ(x, y, z) = δ(y, z, u) 6= δ(x, y, u) = δ(x, z, u)
holding, we have m(δ(x, y, z)) = m(δ(x, y, u)).

Proof. Assume first that δ is a 3-way symbolic ultrametric. By Theorem 3.2.8 and
Proposition 3.3.1 it follows that Properties (D1) and (D2) must hold. To see that
Property (D3) holds too let x, y, z, u ∈ X be such that δ(x, y, z) = δ(y, z, u) 6=
δ(x, y, u) = δ(x, z, u). Since δ|{x,y,z,u} is a 3-way symbolic ultrametric, Proposi-
tion 3.2.6 combined with Table 3.1 implies that δ|{x,y,z,u} is either of type δ̂3 and
δ̂5. Clearly, m(δ̂i(x, y, z)) = m(δ̂i(x, y, u)) holds for i = 3, 5 and, so, Property (D3)
follows.

Conversely, assume that δ satisfies Properties (D1) - (D3). Consider a subset
Y ⊆ X of size five. By Proposition 3.3.1, there exists a map DY :

(
Y
2

)
→ M

such that δ(x, y, z) = {DY (x, y), DY (x, z), DY (y, z)} for all x, y, z ∈ Y . We claim
that DY is a symbolic ultrametric. For this it suffices to show that DY satisfies
Property (U2) as Property (U1) is a direct consequence of Property (D1). To
see that DY satisfies Property (U2), assume for contradiction that there exist
x, y, z, u ∈ Y such that DY (x, y) = DY (y, z) = DY (z, u) 6= DY (z, x) = DY (x, u) =
DY (u, y). Put A = DY (x, y) and B = DY (z, x). Then δ(x, y, z) = δ(y, z, u) =
2A + B 6= A + 2B = δ(x, y, u) = δ(x, z, u). Since, m(δ(x, y, z)) = A 6= B =
m(δ(x, y, u)) also holds this is impossible in view of Property (D3). Thus, DY also
satisfies Property (U2) and, so, is a symbolic ultrametric, as claimed.

Since DY is a symbolic ultrametric there exists a labelled rooted tree T that
representsDY . Combined with the definition ofDY it follows that T also represents
δ|Y . Thus, δ|Y is a 3-way symbolic ultrametric and, so, δ|Y is a 3-way symbolic
ultrametric for all subsets Y ⊆ X with |Y | = 5. By Theorem 3.2.8, it follows that
δ is a 3-way symbolic ultrametric.

Note that Properties (D1) - (D3) are independent of each other. Indeed, that
Property (D2) is independent of Properties (D1) and (D3) and that Property (D3)
is independent of Properties (D1) and (D2) is a direct consequence of the fact that
Properties (U1) and (U2) are independent of each other. To see that Property (D1)
is independent of Properties (D2) and (D3), consider the 3-way symbolic map
δ :
(
X
3

)
→M{A,B} defined, for all x, y, z ∈ X, by putting δ(x, y, z) = 2A+B. The

map δ always satisfies (D2) and (D3), but if |X| ≥ 5, δ does not satisfy (D1).

80

3.3.2 Triplets as an alternative
In this section we are interested in determining when a 3-way symbolic map δ on
X, |X| ≥ 5, is a a symbolic ultrametric. Clearly, using the conditions given in the
results above this can be done by examining every subset X of size 5. However, we
now show how to do this using a triplet-based approach, which essentially reduces
the problem to considering subsets of X of size 3.

The next proposition highlights some straightforward links between triplets
and 3-way symbolic ultrametrics. In the following, we denote the set underlying a
multiset A by A.

Proposition 3.3.3. Let T = (T, t) be a labelled rooted tree that is a discriminating
representation for δT. For x, y, z ∈ X distinct:

- If xy|z is a triplet displayed by T , then t(lca(x, z)) = t(lca(y, z)) = m(δT(x, y, z))
and t(lca(x, y)) = n(δT(x, y, z))

- If T does not display any triplet on {x, y, z}, then |δT(x, y, z)| = 1.

To state a consequence of Proposition 3.3.3, we say that a labelled tree T =
(T, t) can be recovered from δT if for any other labelled tree T′ = (T ′, t′) for which
δT(x, y) = δT′(x, y) holds for all x, y ∈ X distinct we have that T and T ′ are
isomorphic and t = t′.

Corollary 3.3.4. Let T = (T, t) be a labelled tree that is discriminating for δT. If
the set of triplets displayed by T is given then T can be recovered from δT.

Proof. Put δ = δT, let t : Vint(T)→M and let R denote the set of triplets displayed
by T . In view of Theorem 1.3.1, it suffices to show that the 2-way symbolic map
Dδ :

(
X
2

)
→M given as follows equals the symbolic ultrametric DT on X induced

by T. Suppose x, y ∈ X distinct. If there exists some z ∈ X − {x, y} such that
no triplet on {x, y, z} is contained in R then we define Dδ(x, y) to be the element
in δT(x, y, z). If there exists some z ∈ X − {x, y} such that xy|z ∈ R then we put
Dδ(x, y) = n(δT(x, y, z)) and if xz|y ∈ R then we put Dδ(x, y) = m(δT(x, y, z)).

In view of Proposition 3.3.3, the mapDδ is clearly well-defined. SinceDδ(x, y) =
t(lca(x, y)) = DT(x, y) clearly holds for all x, y ∈ X distinct the corollary fol-
lows.

In light of Corollary 3.3.4, it is of interest to understand when, for a labelled
tree T = (T, t), the set of triplets displayed by T can be recovered from δT. The
labelled tree T3 in Figure 3.3, suggests that this is not always possible. In fact, as
we shall show, it suffices to exclude a special type of labelled tree which we define
next.

81

A fixed-cherry tree on X with |X| ≥ 4 is a labelled tree T = (T, t) such that
the root ρT of T has two children v and w, with t(v) = t(w) 6= t(ρT) and such that
v is parent of two elements x1 and x2 of X and w the parent of all elements in
X−{x1, x2}. In that case, we refer to {x, y} as fixed cherry of T. For example, the
labelled tree T3 in Figure 3.3 is a fixed-cherry tree on X = {1, 2, 3, 4}. Note that
for x, y, z ∈ X distinct the 3-way symbolic ultrametric δT induced by a fixed-cherry
tree T = (T, t) satisfies δT(x, y, z) = {t(w), t(w), t(w)} if neither x1 nor x2 belong
to the set {x, y, z}, and δ(x, y, z) = {t(ρT), t(ρT), t(w)} else. We call such a 3-way
symbolic map a fixed-cherry map for T. More generally, we call a 3-way symbolic
map δ :

(
X
3

)
→M a fixed cherry map if there exists some fixed cherry-tree T such

that δ = δT. The following observation is straightforward to check.

Lemma 3.3.5. Suppose that |X| ≥ 5 and that δ is a 3-way symbolic map on X.
Then δ can be represented by a fixed-cherry tree if and only if δ is a fixed-cherry
map.

Note that a triplet xy|z with x, y, z ∈ X is displayed by a fixed-cherry tree with
fixed cherry {x1, x2} if and only if either {x, y} = {x1, x2} or z ∈ {x1, x2}, and
x, y ∈ X − {x1, x2} hold. In particular, if |X| > 4 and δ is a fixed-cherry map for
a fixed-cherry tree T = (T, t), then the elements in the fixed cherry can be easily
identified from δ, and therefore also all of the triplets displayed by T .

We now consider how to recover the triplets displayed by the phylogenetic tree
underpinning a labelled tree T in case T is not a fixed-cherry tree. Given a labelled
tree T = (T, t) and a subset Y of X of size five or more, we denote by TY = (TY , tY)
the unique (see Lemma 3.2.7) discriminating representation TY of δ|Y . We first
start with a useful lemma.

Lemma 3.3.6. Let T = (T, t) be a labelled tree that is a discriminating represen-
tation for δT and let Y ⊆ X such that |Y | ≥ 5. If τ is a triplet displayed by TY
then τ is a triplet displayed by T .

Proof. It suffices to note that TY is obtained from T by first taking the subtree T ′
of T induced by Y , and then collapsing edges of T ′ both of whose ends have the
same label under the restriction t′ of t to V (T ′). Clearly, TY is a discriminating
representation of δ|Y . Note that, by Lemma 3.2.7, such a representation is unique.

It is well-known (see e. g. [55]) that the set R of triplets displayed by T ′ is
contained in the set of triplets displayed by T . Since the process of collapsing
edges of T ′ removes triplets from R, but does not add any, it follows that a triplet
displayed by TY is also displayed by T .

We next present the main result of this section.

82

Theorem 3.3.7. Suppose that |X| ≥ 4 and that T = (T, t) is a labelled tree that is
a discriminating representation for δT but not a fixed-cherry tree. Let x, y, z ∈ X
be pairwise distinct. Then T displays the triplet xy|z if and only if one of the
following two properties holds:

(T1) There exists some u ∈ X such that δT(x, u, z) = δT(y, u, z) 6= δT(x, y, u) and
if |δT(x, y, u)| = 1 then δT(x, y, u) 6= δT(x, y, z).

(T2) There exists u ∈ X such that |{δT(x, u, z), δT(y, u, z), δT(x, y, u)}| = 3 and
m(δT(x, u, z)) = m(δT(y, u, z)) 6= m(δT(x, y, u)).

Proof. Put δ = δT. Assume first that x, y, z ∈ X are such that T displays the
triplet xy|z. Put v = lca(x, z) and w = lca(x, y). We proceed using a case-analysis
on the structure of T . Since T is not a fixed-cherry tree we need to consider the
following (not necessarily disjoint) cases: (a): w is not a child of v, (b): v is not
the root of T or has out-degree three or more, (c): w has a child that is neither x
nor y, and (d): there exists a vertex v0 on the path from v to z with t(v0) 6= t(w).

x u y zx y u z x y z u x y z u

v0

w

v

w

v0

v

w

v

v0

w

v

v0

(a) (b) (c) (d)

Figure 3.4: Cases (a) to (d) for the case-analysis carried out in the proof of Theo-
rem 3.3.7. See text for details.

Case (a): Consider the parent v0 of w, and an element u in X that is below
v0 but not below w (see Figure 3.4(a)). Since T is a discriminating representation
for δT, we have t(v0) 6= t(w). Hence, δ(x, u, z) = δ(y, u, z) = {t(v0), t(v), t(v)} and
δ(x, y, u) = {t(w), t(v0), t(v0)}. Consequently, δ(x, u, z) = δ(y, u, z) 6= δ(x, y, u).
Note that if t(v) = t(w), then δ(x, y, z) = {t(w), t(v), t(v)} and, so, |δ(x, y, z)| = 1.
But then δ(x, y, u) 6= δ(x, y, z) as |δ(x, y, u)| = 2. Hence, the second condition in
Property (T1) holds, too. So assume that t(w) 6= t(v). But then |δ(x, y, u)| = 2
and so the second condition in Property (T1) does not apply.

Case (b): Consider an element of u ∈ X such that v0 := lca(u, z) = lca(u, x)
(see Figure 3.4(b)). If w is not a child of v then Property (T1) follows by Case (a).
So assume that w is a child of v. Then t(v) 6= t(w) as T is a discriminat-
ing representation for δT. Since δ(x, u, z) = δ(y, u, z) = {t(v), t(v0), t(v0)} and
δ(x, y, u) = {t(w), t(v0), t(v0)} we have δ(x, u, z) = δ(y, u, z) 6= δ(x, y, u). Since

83

the choice of v0 implies that |δ(x, y, u)| 6= 1 the second condition in Property (T1)
does not apply. Hence, Property (T1) is also satisfied in this case.

Case (c): Then there is some u ∈ X below w that is neither x nor y. We
may assume without loss of generality that w = lca(y, u). Put v0 = lca(x, u) (see
Figure 3.4(c)). Note that v0 = w may hold. Clearly, δ(x, u, z) = {t(v0), t(v), t(v)},
δ(y, u, z) = {t(w), t(v), t(v)} and δ(x, y, u) = {t(v0), t(w), t(w)}. If v0 6= w then
δ(y, u, z) 6= δ(x, u, z) 6= δ(x, u, y). Hence, |{δ(y, u, z), δ(x, u, z), δ(x, u, y)}| = 3.
Since m(δ(x, u, z)) = t(v) = m(δ(y, u, z)) and m(δ(x, y, u)) = t(w), Property (T2)
follows. So assume that v0 6= w. Then δ(y, u, z) = δ(x, u, z) = {t(w), t(v), t(v)}
and δ(y, u, x) = {t(w), t(w), t(w)}. In view of Property (T1) holding in case of
Case (a), we may assume without loss of generality that w is a child of v. Since
T is a discriminating representation of δT we have t(v) 6= t(w). Hence, δ(y, u, z) =
δ(x, u, z) 6= δ(x, y, u). Since |δ(x, y, z)| = 1 and |δ(x, y, z)| 6= 1, Property (T1)
follows in this case, too.

Case (d): Let u ∈ X such that v0 = lca(z, u) (see Figure 3.4(d)). Then
δ(x, u, z) = δ(y, u, z) = {t(v0), t(v), t(v)} and δ(x, y, u) = {t(w), t(v), t(v)}. If
t(w) = t(v0) we have δ(x, u, z) = δ(y, u, z) = δ(x, y, u). In view of Property (T1)
holding if Case (a) applies, we may assume without loss of generality that w is a
child of v. Hence, t(w) 6= t(v) because T is a discriminating representation for δ.
But then |δ(x, y, u)| 6= 1 and, so, the second condition in Property (T1) does not
apply.

Conversely, let x, y, z ∈ X distinct. Assume first that there exists some u ∈
X − {x, y, z} such that Property (T1) is satisfied for the namesakes of u, x, y,
and z. Assume for contradiction that the triplet xy|z is not displayed by T .
Consider the restriction δ′ of δ to {x, y, u, z} and let T′ = (T ′, t′) denote the
unique discriminating representation of δ′. Then in view of the first condition
in Property (T1), the out-degree of the root ρT ′ cannot be four. Hence, one of
the triplets x|yz and y|xz must be displayed by T ′ and T ′ is either resolved or
unresolved. Assume first that T ′ is resolved. Then a straight forward case analysis
concerned with adding u to the triplet x|yz implies that that triplet cannot be
displayed by T ′. Swapping the roles of x and y in that argument also implies that
the triplet y|xz cannot be displayed by T ′ either. Thus, T ′ must be unresolved
and, so, either ρT ′ has out-degree three or one of the children of ρT ′ has out-degree
three.

If T ′ displays the triplet x|yz and the out-degree of ρT ′ is three then |δ(y, u, z)| =
1. Hence, δ(x, y, u) = δ(x, y, z) in view of Property (T1) which is impossible. Thus,
one of the children of ρT ′ has out-degree three. But this is impossible in view of
the first condition in Property (T1). Similar arguments imply that the triplet
displayed by T ′ cannot be y|xz either. Thus, T ′ must display the triplet xy|z.
Consequently, either ρT ′ is the parent of u and z or x, y, and u have the same

84

parent. But the former cannot hold in view of the first condition in Property (T1)
and the latter cannot hold in view of the second condition in that property.

Assume next that there exists some u ∈ X −{x, y, z} such that Property (T2)
is satisfied for the namesakes of u, x, y, and z. Assume for contradiction that
the triplet xy|z is not displayed by T . Consider again the restriction δ′ of δ to
{x, y, u, letT′ = (T ′, t′) the unique discriminating representation δ′. In view of
Table 3.1, there must be at least two subsets Y and Y ′ of {x, y, z, u} of size three
satisfying δ(Y) = δ(Y ′). Since |{δ(x, u, z), δ(y, u, z), δ(x, y, u)}| = 3, it follows that
{x, y, z} must be one of these subsets.

If δ(x, y, z) = δ(x, y, u), thenDT (x, u) = m(δ(x, u, z)) andDT (y, u) = m(δ(y, u, z))
must hold. Indeed, since δ(x, y, u) = δ(x, y, z), one of the following two cases must
hold: (α) DT (x, z) = DT (x, u) and DT (y, z) = DT (y, u). (β) DT (x, z) = DT (y, u)
and DT (y, z) = DT (x, u). However Case (β) implies δ(x, z, u) = δ(y, z, u), which
is impossible in view of the assumption that {δ(x, y, u), δ(y, z, u), δ(x, z, u)} has
size three. Thus, Case (α) must hold. But then DT (x, u) = m(δ(x, u, z)) and
DT (y, u) = m(δ(y, u, z)), as required.

Since, by assumption, we also have m(δ(x, u, z)) = m(δ(y, u, z)) we obtain
DT (x, u) = DT (y, u). Since DT (x, u) and DT (y, u) are both elements in the multi-
set δ(x, y, u), we therefore have m(δ(x, u, z)) = DT (x, u) = m(δ(x, y, u)), which
is impossible in view of (T2). Thus, we either have δ(x, y, z) = δ(x, u, z) or
δ(x, y, z) = δ(y, u, z). Note that the roles of x and y are interchangeable here,
so we may assume without loss of generality that δ(x, y, z) = δ(y, u, z).

Using similar arguments as before, we haveDT (x, z) = m(δ(x, u, z)),DT (x, y) =
m(δ(x, u, y)), andDT (y, z) = m(δ(y, u, z))in this case. By Property (T2), we there-
fore have DT (x, z) = DT (y, z) 6= DT (x, y). Thus xy|z is a triplet in T ′, and by
Lemma 3.3.6, it is also a triplet in T .

As a direct consequence of Lemma 3.3.5 and Theorem 3.3.7 it is possible to
decide whether or not a 3-way symbolic map δ on a set X with |X| ≥ 5 is a 3-way
symbolic ultrametric and, if so, construct the labelled tree T for which δT = δ
holds as follows.

First, check if δ is a fixed-cherry map. If this is the case, then δ is a 3-way
symbolic ultrametric and T can be easily constructed. If not, then compute the
set Tr(δ) of triplets xy|z of X satisfying (T1) or (T2), and use it as input to
the BUILD algorithm. If there is no tree displaying Tr(δ), then δ is not a 3-
way symbolic ultrametric. Otherwise, using the tree T that is constructed from
the BUILD algorithm and the map δ, it is straightforward to decide if there is
a labelling map t for T such that (T, t) represents δ. If this is the case, then
δ is a 3-way symbolic ultrametric with the computed labelled tree (T, t) as a
representation, otherwise it is not.

Note that BUILD may return a tree T from Tr(δ) even if the map δ is not a

85

3-way symbolic ultrametric. For example, let M = {A,B} and consider the map
δ :

(
X
3

)
→ M where X = {1, 2, 3, 4, 5}, and δ(x, y, z) = 3A if {x, y, z} = {3, 4, 5},

and δ(x, y, z) = 2A+B otherwise. Although this map is clearly not representable
we have that Tr(δ) = {34|1, 34|2, 35|1, 35|2, 45|1, 45|2}, and it is easy to check that
there exists a phylogenetic tree on X whose set of displayed triplets is Tr(δ).

3.4 Conclusion
The work presented in this chapter successfully introduces links between symbolic
3-way maps and phylogenetic trees in both the rooted and the unrooted case, and
provides interesting results extended the existing ones on symbolic ultrametrics
and k-dissimilarities. It is then natural to ask: What can be said about symbolic
k-way map, for a value of k of four or more? A questions that might be interesting
in this context is the following: Since the Symbolic Farris transform introduced in
Section 3.2.1 trivially relates 3-way tree maps to symbolic ultrametrics, does a sim-
ilar relationship holds for k-way tree maps and (k− 1)-way symbolic ultrametrics,
when k id greater than three?

Also, the idea of a minimal number of elements to restrict to in order to check
if a map can be represented by a phylogenetic tree is fundamental both in this
chapter and in the previous work focusing on k-dissimilarities (see Section 1.3.2).
One of the reason for this is that it allows to build the representation of a 3-
dissimilarity or of a symbolic 3-way map on X, should such a representation exist,
by constructing the representations of the considered map on smaller subsets of
X. This is the Divide-and-Conquer approach, already discussed in Chapter 2.
As mentioned in the introduction of this chapter, one of the surprising result it
contains is that although six points are necessary to check whether a 3-dissimilarity
can be represented by a rooted phylogenetic tree (Theorem 1.3.5), only five points
are required in the case of symbolic 3-way maps. Does this difference remain
for k ≥ 4, or is the progression of this number with regard to k, linear for k-
dissimilarities, faster in case of symbolic maps?

86

Chap. 4

On circular split systems,
1-nested networks and the
Buneman graph

Adapted from:

P. Gambette, K. T. Huber and G. E. Scholz. Uprooted phylogenetic net-
works. Bulletin of Mathematical Biology (2017) 79(9): 2022-2048.

My personal contribution to this work has been the establishment of the main re-
sults (apart from Theorem 4.2.10), as well as writing the first draft of the paper,
which includes the proofs of all the results presented.

This chapter addresses the question of the representability of a circular split
system by an unrooted phylogenetic network. We successively consider two distinct
approaches, based on minimal cuts and split graphs respectively, the latter in terms
of a particular split-graph known as the “Buneman graph” of a split system, and
then propose a bridge between these two approaches.

4.1 Introduction
In this chapter, which is based on [29], we focus on the more usual notion of a
distance. More precisely, we consider here distances arising from split systems. The
only prerequisites for reading this chapter are the notions presented in Section 1.2.2
and 1.2.3, which focus on splits and split systems, and on the way such objects
can be represented in terms of networks.

As we have seen in Section 1.2.3, two distinct notions of displaying a split
system Σ by a network coexist. The first one considers the notion of a minimal

87

1 2 3 4 5 6 7

Figure 4.1: A phylogenetic network on X = {1, . . . , 7} displaying all splits on X.

cut, and the second one is based on the concept of a split-network. We have also
mentioned that these approaches coincide if any two splits in Σ are compatible,
or equivalently, if the network representing Σ is a tree. The latter equivalence is
guaranteed by Theorem 1.2.3, which also ensures, if the aforementioned condition
is satisfied, the uniqueness of the tree representing Σ. In case of networks, however
many questions remain unanswered.

Consider first the minimal-cut approach. If the split system Σ is not com-
patible, it is not true in general that there exists a phylogenetic network N
such that Σ = Σ(N). This is the case, for example, of the split system Σ =
{12|345, 13|245, 14|235, 15|234} on X = {1, 2, 3, 4, 5}. However, it is always pos-
sible to find a network N satisfying Σ ⊆ Σ(N), as the phylogenetic network on
X = {1, . . . , 7} depicted in Figure 4.1 displays all splits in Σ(X). Thus, the need
to characterize splits systems that arise from a phylogenetic, and the need for
optimality criteria if this is not the case.

In this chapter, we address these questions in the context of circular split
systems, which extend the notion of a compatible split system but still enjoy some
attractive properties. As we have seen in Section 1.2.3, the split system induced
by a 1-nested network is always circular (Theorem 1.2.7). Moreover, such a split
system can be represented by an outerplanar split-network (Theorem 1.2.6). As
suggested by Figure 4.2, similarities can be observed between a 1-nested network
N and a particular split-network, known as the Buneman graph, representing the
split system Σ(N). Indeed, the 1-nested network depicted in Figure 4.2(i) can be
obtained from the split network depicted in Figure 4.2(ii) by removing all non-bold
edges, collapsing two cut-edges, and suppressing resulting degree two vertices. We
propose a generalization of this process, as a bridge between both approaches.

The outline of this chapter is as follows. In Section 4.2.1, we introduce rele-
vant basic terminology relative to the minimal-cut approach for displaying a split
system, and to the main differences between trees and networks in this regard. In
Section 4.2.2, we state a closure rule for split systems which underpins our key
tool: the I-intersection closure of a split system. In Section 4.2.3, we characterize
maximal circular split systems (Theorems 4.2.10) and present our 1-nested equiva-
lence to Theorem 1.2.3 in the form of Theorem 4.2.12 and its Corollary 4.2.13. We

88

7

6 5

8

4

3

21

C1 C2

N :

v

(i)

7

6 5

8

4

3

21

B1

B2

(ii)

B(Σ(N)) :

φ

Figure 4.2: (i) A level-1 (unrooted) phylogenetic network N . (ii) A split network
onX in the form of the Buneman graphB(Σ(N)) on the split system Σ(N) induced
by N . In both Figures, the dashed line indicates the split 234|15678.

then move on to the split-network approach, considering a particular such network
associated to a split system, the Buneman graph. We use Section 4.3.1 to present
a definition and review some relevant properties which will be of interest for the
purpose of the following sections. In Section 4.3.2, we introduce and study the
novel notion of a Marguerite, which stand as a tool for understanding the struc-
ture of the biconnected components of a Buneman graph. Finally, we highlight
in Section 4.3.3 a link between the minimal cut and the split network approaches
in the form of Theorem 4.3.8, which ensures that the Buneman graph of a split
system associated to a 1-nested network N can be used to uniquely recover N (up
to isomorphism and a mild condition) in polynomial time.

In this chapter, X denotes a finite set of size n ≥ 3. Also, unless stated
otherwise, split systems on X are assumed to contain all trivial splits on X. The
reason for this is that the split system induced by a phylogenetic network must
contain all such splits.

4.2 The minimal cut approach
We present here relevant basic definitions concerning split systems and 1-nested
networks. We introduce and describe the key concept of a I-intersection, that we
then use to unlock some of the main results of this chapter.

4.2.1 Displaying splits
In case of a phylogenetic tree T , there is a trivial bijection between the split system
Σ(T) and the edge set of T . The situation is different for phylogenetics network
in general, as a split S displayed by a phylogenetic network N may be obtained

89

by removal of more than one edge of N (as is the case for the split 234|56781 in
Figure 4.2(i)). For a given split in Σ(N), there also may be more than one set of
edges of N whose removal induces the split S. Consider for example the leaf 1
in the 1-nested network N depicted in Figure 4.2(i). The deletion of the edge e1
incident to that leaf induces the split 1|X − {1}. However, the deletion of both
edges adjacent to e1, which is clearly a minimal cut of N , also displays the split
1|X − {1}.

To take into account these differences, we now introduce further terminology,
which will be used throughout this chapter. For the following, let N be a 1-nested
network.

The multiplicity of a split S ∈ Σ(N) is the number of distinct minimal cuts of
N that induce S. We call a split S of N of multiplicity two or more an m-split
of N . Also, we say that a split S is displayed by a cycle C of N if there exists a
minimal cut of N inducing S that is contained in the edge set of C. If a m-split S
of N is displayed by a cycle C, in the sense that it can be obtained by removal of
a pair of edges of C, we also sometimes refer to S as a split of C. As an example,
the split 1|X − {1} displayed by the network N depicted in Figure 4.2(i) is, as
discussed above, a m-split of N that is also a split of C1.

Note that in case N is a 1-nested network, a minimal cut ES of N contains
either one or two edges. Also, if e = {u, v} is an edge of N such that neither u nor
v is contained in a cycle of N then e must be a cut-edge of N and the multiplicity
of the split Se induced by deleting e is one. Moreover, if e = {u, v} is a cut-edge
of N where u or v is contained in a cycle C of N , say u, then Se is also induced
by deleting the edges of C incident with u. Thus, the multiplicity of a given split
in Σ(N) can either be one, two, or three.

Furthermore, the split system Σ(N) induced by a 1-nested network N on X
is the same as the one induced by the resolution of N to a level-1 network by
repeatedly applying the following two replacement operations:

(a) A vertex v of a cycle C of N incident with l ≥ 2 edges e1, . . . , el not contained
in C is replaced by an edge one of whose vertices is v and the other is incident
with e1, . . . , el, and

(b) A cut-vertex v shared by two cycles C1 and C2 is replaced by a cut-edge one
of whose vertices is contained in C1 and the other in C2.

However, the multi-sets of splits induced by both networks are clearly different,
as the addition of a new cut-edge by applying (a) or (b) to a 1-nested network
induces a new way to display a split that is already present in Σ(N). We call
a 1-nested network N ′ a partial-resolution of a 1-nested network N if N ′ can be
obtained from N by partially resolving vertices of N . Moreover, we call a partial-
resolution N ′ of N a maximal partial-resolution of N if all vertices contained in

90

7

6 5

8

4

3

21

C1 C2

N ′ :

u v

Figure 4.3: A maximal partial resolution N ′ of the network N depicted in Fig-
ure 4.2(i). As in Figure 4.2(i), the dashed line indicates the split 234|15678.

a cycle of N ′ have degree three. In this case, we also call N ′ maximal partially-
resolved. As an example, the network N ′ depicted in Figure 4.3 is a maximal
partial resolution of the network N depicted in Figure 4.2(i). We obtain N ′ from
N by applying operation (a) to the vertex adjacent to the leaves 3 and 4, and
operation (b) to the vertex v.

Finally, as can be seen in Figure 4.4, the split system induced by a network
N containing a cycle C of length three is the same as the split system of the
network N ′ obtained after deletion of the edges of C and identification of all three
vertices in C. Thus, we invoke parsimony to add the requirement that all cycles
in a 1-nested network must have length four or more.

2

3

1

2

3

1

Figure 4.4: Two distinct 1-nested networks on X = {1, 2, 3} inducing the same
split system.

4.2.2 A characterization in terms of I-intersections
We now introduce and study the I-intersection closure of a split system. As we have
seen in Section 1.2.2, the number and the properties of the intersection between two
splits S1 and S2 depends on whether these two splits are compatible or not. As we
shall see, more difference will soon appear between these two distinct situations.
To make the distinction clear, if S1 and S2 are incompatible, we refer to the

91

intersections of S1 and S2 as incompatible intersection, or I-intersection for short,
and denote it by ι(S1, S2) rather than int(S1, S2). See Figure 4.2.2 an illustration.

S1

S2

1

6

2

5

4

3

Figure 4.5: For a simple level-1 network on {1, . . . , 6}, we depict the splits S1 and
S2 in terms of two straight bold lines and the four splits that make up ι(S1, S2) in
terms of four dashed lines.

Figure 4.2.2 suggests that every split in ι(S1, S2) is displayed by the same
cycle that displays S1 and S2. Establishing that this is indeed the case is the
purpose of Proposition 4.2.2. To state it in its full generality we next associate to
a split system Σ of X the intersection closure Int(Σ) of Σ, that is, Int(Σ) is a
(set-inclusion) minimal split system that contains Σ and is closed by intersection.
For example, for Σ = {12|345, 23|451} on X = {1, 2, 3, 4, 5}, we have Int(Σ) =
Σ ∪ {1|2345, 2|3451, 3|4512, 13|452, 123|45}.

We start our analysis of Int(Σ) with remarking that Int(Σ) is indeed a closure,
that is, Int(Σ) trivially satisfies the following three properties

(i) Σ ⊆ Int(Σ).

(ii) Int(Int(Σ)) = Int(Σ).

(iii) If Σ′ is a split system on X for which Σ ⊆ Σ′ holds then Int(Σ) ⊆ Int(Σ′).

The next lemma implies that the intersection closure of a split system is well-
defined.

Lemma 4.2.1. Suppose Σ is a split system on X and Σ′ is a (set-inclusion)
minimal superset of Σ that is closed by intersection. Then Σ′ = Int(Σ) must hold.

Proof. Since Σ′ contains Σ and is intersection closed we can obtain Σ′ via a (finite)
sequence Σ = Σ0 (Σ1 (Σ2 (. . . (Σk = Σ′, k ≥ 1, of split systems Σi such
that, for all 1 ≤ i ≤ k, Σi := Σi−1∪ ι(Pi) where Pi is a 2-set contained in Σi−1 and
ι(Pi) is not contained in Σi−1. We show by induction on i that Σi ⊆ Int(Σ) holds.

92

Clearly, if i = 0 then Σ0 = Σ is contained in Int(Σ). So assume that Σi ⊆
Int(Σ) holds for all 1 ≤ i ≤ r, for some 1 ≤ r ≤ k, and that Σr is obtained from
Σr−1 by intersection of two splits S1, S2 ∈ Σr−1. Since, by induction hypothesis,
Σr−1 ⊆ Int(Σ) it follows that S1 and S2 are contained in Int(Σ). Since Int(Σ)
is intersection-closed, ι(S1, S2) ⊆ Int(Σ) follows. Hence, Σr = Σr−1 ∪ ι(S1, S2) ⊆
Int(Σ), as required. By induction, it now follows that Σ′ ⊆ Int(Σ). Reversing the
roles of Σ′ and Int(Σ) in the previous argument implies that Int(Σ) ⊆ Σ′ holds
too which implies Σ′ = Int(Σ).

We remark in passing that similar arguments as the ones used in the proof
of Lemma 4.2.1 also imply that the I-intersection closed (set-inclusion) minimal
superset I(Σ) of a split system Σ is also well-defined (and obviously satisfies Prop-
erties (i) – (iii)). We will refer to I(Σ) as I-intersection closure of Σ.

We next turn our attention to the I-intersection closure of a split systems
induced by a 1-nested network.

Proposition 4.2.2. Suppose N is a 1-nested network on X and S1 and S2 are
two incompatible splits contained in Σ(N). Then ι(S1, S2) ⊆ Σ(N).

Proof. Note first that two splits S and S ′ induced by a 1-nested network are
incompatible if and only if they are displayed by pairs of edges in the same cycle
C of N . For i = 1, 2, let {ei, e′i} denote the edge set whose deletion induces the split
Si. Then since S1 and S2 are incompatible, we have {e1, e

′
1}∩{e2, e

′
2} = ∅ and none

of the connected components of N obtained by deleting ei and e′i contains both
ej and e′j, for all i, j ∈ {1, 2} distinct. Without loss of generality, we may assume
that when starting at edge e1 and moving clockwise through C we first encounter
e2, then e′1 and, finally e′2 before returning to e1. Then it is straightforward to
see that a split in ι(S1, S2) is displayed by one of the edge sets {e1, e2}, {e2, e

′
1},

{e′1, e′2}, and {e′2, e1}. Thus, ι(S1, S2) ⊆ Σ(N).

Combined with the definition of the I-intersection closure, we obtain the fol-
lowing result.

Corollary 4.2.3. The following statements hold:

(i) If Σ is a circular split system for some circular ordering of X then I(Σ) is
also circular for that ordering.

(ii) If N is a 1-nested network on X then Σ(N) is I-intersection closed. Fur-
thermore, N displays a split system Σ on X if and only if N displays I(Σ).

The next observation is almost trivial and is used in the proof of Theorem 4.2.5.

93

Lemma 4.2.4. Suppose x ∈ X and S1, S2, and S3 are three distinct splits of X
such that S3(x) ⊆ S1(x), S3 and S2 are compatible and S1 and S2 are incompatible.
Then S3(x) ⊆ S2(x).

Proof. Since S2 and S3 are compatible either S2(x) ⊆ S3(x) or S3(x) ⊆ S2(x) or
S3(x) ⊆ S2(x) must hold. If S2(x) ⊆ S3(x), then S2(x) ⊆ S1(x) which is impossible
since S1 and S2 are incompatible. If S3(x) ⊆ S2(x) held then ∅ 6= S1(x)∩ S2(x) ⊆
S3(x) ∩ S2(x) = S2(x) ∩ S2(x) = ∅ follows which is impossible.

For clarity of presentation, we remark that for the proof of Theorem 4.2.5, we
can assume that if a given split S of a 1-nested network N has multiplicity at
least two in the multi-set of splits induced by N then S is displayed by a cycle C
of N (rather than by a cut-edge of N). Furthermore, we denote the split system
of X induced by a cycle C of a 1-nested network N on X by Σ(C). Clearly,
Σ(C) ⊆ Σ(N) holds.

Theorem 4.2.5. Suppose Σ is a split system on X that contains all trivial splits
of X. Then the following hold:

(i) There exists a 1-nested network N on X such that Σ = Σ(N) if and only if
Σ is circular and I-intersection closed.

(ii) A maximal partially-resolved 1-nested network N is binary if and only if there
exists no split of X not contained in Σ(N) that is compatible with every split
in Σ(N).

Proof. (i): Assume first that there exists a 1-nested network N onX such that Σ =
Σ(N). Then arguments similar to the ones used in [27] to establish that the split
system induced by a level-1 network is circular imply that Σ(N) is circular. Hence,
Σ must be circular. That Σ is I-intersection closed follows by Corollary 4.2.3(ii).

Conversely, assume that Σ is circular and I-intersection closed. Then there
clearly exists a 1-nested network N such that Σ ⊆ Σ(N). Let N be such that
|Σ(N)| is minimal among all 1-nested networks on X satisfying that set inclusion1.
Without loss of generality, we may assume that N is maximal partially-resolved.
We show that, in fact, Σ = Σ(N) holds. Assume for contradiction that there
exists a split S0 ∈ Σ(N) − Σ. Since Σ(N) must contain all trivial splits of X it
follows that S0 cannot be a trivial split of X. In view of the remark preceding
Theorem 4.2.5, S0 is induced by either (a) deleting a cut-edge e = {u, v} of N and
neither u nor v are contained in a cycle of N or (b) deleting two distinct edges of
the same cycle of N .

Assume first that Case (a) holds. Then collapsing e results in a 1-nested
network N ′ on X for which Σ ⊆ Σ(N ′) holds. But then |Σ(N ′)| < |Σ(N)| which

1We refer to Section 4.3.1 for a construction of such a network

94

is impossible in view of the choice of N . Thus, Case (b) must hold, that is, S0
is induced by deleting two distinct edges e = {u, v} and e′ = {u′, v′} of the same
cycle C of N . Let x and y be two elements of X for which there exists a path
from u and v, respectively, which does not cross an edge of C. Consider the sets
Σx := {S ∈ Σ ∩Σ(C) : S(x) ⊆ S0(x)}, and Σy := {S ∈ Σ ∩Σ(C) : S(y) ⊆ S0(y)}.
If Σx is non-empty then choose some Sx ∈ Σx such that |Sx(x)| is maximal among
the splits contained in Σx. Similarly, define the split Sy for Σy if Σy is non-
empty. Otherwise let Sx be the m-split of C such that Sx(x) ⊆ S0(x). Similarly,
let Sy be the m-split of C such that Sy(y) ⊆ S0(y) in case Σy is empty. Then
Corollary 4.2.3(ii) implies that the split

S∗ = Sx(x) ∪ Sy(y)|Sx(x) ∩ Sy(y)

is contained in Σ(N) (see Figure 4.6(i) for an illustration).

S0

S∗

x

y

y′′

x′′

z
Sx

Sy

x

y

y′′

x′′

z

u

v

u′′

v′′

(i) (ii)

Figure 4.6: (i) An illustration of the reduction process considered in the proof
of Case (a) of Theorem 4.2.5. (ii) Again for that theorem, the graph G′ obtained
from N by adding subdivision vertices r and r′.

We next show that S∗ is compatible with every split in Σ. To this end we first
claim that every split S ′ ∈ Σ that is incompatible with S∗ must be compatible
with at least one of Sx and Sy. To see this, let S ′ ∈ Σ such that S ′ and S∗ are
incompatible. Then S ′ must be displayed by C. For contradiction, assume that S ′
is incompatible with both of Sx and Sy. Let z ∈ X such that S∗(x) 6= S∗(z) and
let u′′ ∈ V (C) such that Sx(x) is the interval [u, u′′]. Choose some element x′′ ∈ X
such that there exists a path from x′′ to u′′ that does not cross an edge contained
in C. Similarly, let v′′ ∈ V (C) such that Sy(y) is the interval [v′′, v]. Choose some
element y′′ ∈ X such that there exists a path from y′ to v′′ that does not cross an
edge contained in C. Then since S ′ is incompatible with Sx and Sy and displayed
by C it follows that S ′(x′′) = S ′(y′′) = S ′(z). Hence, S∗(z) ⊆ S ′(z). But then S∗

95

and S ′ are not incompatible which is impossible. Thus S ′ cannot be incompatible
with both of Sx and Sy, as claimed.

To see that S∗ is compatible with every split in Σ, we may, in view of the
above claim, assume without loss of generality that S ′ is compatible with Sx.
Then Lemma 4.2.4 applied to S ′, S∗, and Sx implies Sx(x) (S ′(x). We distin-
guish between the cases that (α) Sy and S ′ are compatible and (β) that they are
incompatible.

Case (α): Since Sy and S ′ are compatible, similar arguments as above imply
that Sy(y) (S ′(y). Then the definition of S∗ combined with the assumption that
S ′ and S∗ are incompatible implies that S ′(x) 6= S ′(y). But then S ′ and S0 must
be compatible, and so, S ′(x) ⊆ S0(x) or S0(x) ⊆ S ′(x) must hold. If S ′(x) ⊆ S0(x)
held then S ′ ∈ Σx which is impossible in view of the choice of Sx as Sx(x) (S ′(x).
Thus, S0(x) ⊆ S ′(x) must hold. But then Sy(y) (S ′(y) ⊆ S0(y) and so S ′ ∈ Σy

which is impossible in view of the choice of Sy. Thus, Case (β) must hold.
Case (β): Since Sy and S ′ are incompatible the split

S ′′ = S ′(x) ∩ Sy(y)|S ′(x) ∪ Sy(y)

is contained in Σ because Σ is I-intersection closed and clearly displayed by C.
Note that x ∈ S ′′(y) and so S ′′(x) = S ′′(y) must hold. Moreover, since S ′ and S∗
are incompatible, we cannot have S ′′(x) = Sx(x) as Sx and S∗ are compatible. But
then S0 and S ′′ cannot be compatible. Indeed, if S0 and S ′′ were compatible then
since y ∈ S0(y) ∩ S ′′(y), x ∈ S0(y) ∩ S ′′(y), and, because of Sx(x) (S ′(x), also
S0(y)∩S ′′(y) = S0(x)∩S ′′(y) = S0(x)∩ (S ′(x)∪Sy(y)) ⊆ S0(x)∩Sx(x) 6= ∅ holds,
it follows that S ′′(y) ⊆ S0(y), as required. Hence, S ′′(x) = S ′′(y) ⊆ S0(y) = S0(x)
and so S ′′ ∈ Σx which is impossible in view of the choice of Sx as Sx(x) 6= S ′′(x)
and S0(x) 6= S ′′(x). Thus, S0 and S ′′ must be incompatible. But this is also
impossible since the interval on C corresponding to S ′′(x) contains the interval
[x, z] which induces the split S0. Consequently, S0 and S ′′ must be compatible.
This final contradiction completes that proof that S∗ is compatible for every split
in Σ.

To conclude, let G be a new graph obtained from N by adding a subdivision
vertex r and r′, respectively, to each of two edges whose deletion induces the
split S∗ (see Figure 4.6(ii) for an illustration). Then, the graph G′ obtained from
G by identifying r and r′ is again a 1-nested network on X. By construction,
S0 ∈ Σ̂ := {S ∈ Σ(N) : S is incompatible with S∗} clearly holds and so Σ(G′) =
Σ(N)− Σ̂ (Σ(N). Since, by the above, every split in Σ is compatible with S∗ it
follows that Σ ⊆ Σ(G′). But this impossible in view of the choice of N . Hence,
the split S0 cannot exist and, thus, Σ = Σ(N).

(ii) Suppose N is a maximal partially-resolved 1-nested network. Assume first
that N is binary and, for contradiction, that there exists some split S of X not

96

contained in Σ(N) that is compatible with every split in Σ(N). Then S ′ cannot be
a trivial split of X. Let N ′ be the graph obtained from N by deleting from each
cycle of N one of its edges and suppressing resulting degree two vertices. Clearly
N ′ is a phylogenetic tree on X. Since every non-leaf vertex of N has degree three
every such vertex in N ′ must also have degree three. Hence, by Theorem 1.2.3,
Σ(N ′) is a maximal compatible split system onX. Since S is compatible with every
split of Σ(N) and Σ(N ′) ⊆ Σ(N) it follows that Σ(N ′) ∪ {S} is also compatible
which is impossible in view of the maximality of Σ(N ′).

Conversely, assume that there exists no split of X not contained in Σ(N) that
is compatible with every split in Σ(N). Then if N is not binary it contains a vertex
v of degree k ≥ 4, that, since N is partially resolved, does not belong to a cycle
of N . Let X1, . . . , Xk be the partition of X obtained by deletion of v (suppressing
incident edges). Then there exist i, j ∈ {1, . . . , k} distinct, say i = 1 and j = 2,
such that the split S := X1∪X2|

⋃k
i=3Xi is compatible with every split in N . Since

S does not belong to Σ(N) this is impossible.

Note that Theorem 4.2.5(i) provides a way to decide for a split system Σ if
there exists a 1-nested network N such that Σ = Σ(N) holds. However it does not
provide a tool for constructing such a network. The provision of such a tool is the
purpose of the next two sections.

4.2.3 The analogue of the Split Equivalence Theorem
As is easy to see, any circular split system on some set X can be represented in
terms of a 1-nested network NΣ on X by first considering a a cycle C of length |X|,
then assigning the elements of X to the vertices of C according to their induced
circular ordering and, finally, attaching to each vertex v of C a pendant edge e
and shifting the element of X labelling v to the degree one vertex of e. As in the
rooted case (see Chapter 2), we call such a network a simple level-1 network.

For the split system Σ on X = {1, . . . , 8} comprising of all splits of the
form x|X − {x} where x ∈ X := {1, . . . , 8} and the splits 81|234567, 78|123456,
781|23456, 234|56781, 34|567812, 345|67812, 2345|6781, 3456|7812 and 56|78123,
the network NΣ is generally not optimal. Put differently, NΣ displays a total of(
|X|
2

)
distinct splits of X (including those in Σ) whereas the 1-nested network N

depicted in Figure 4.2(i) also displays all splits of Σ but postulates fewer additional
splits.

This section is devoted to clarifying the above observation. In particular, we
show next that for any circular split system Σ on X it is possible to construct
a, in a well-defined sense, optimal 1-nested network on X in O(n(n + |Σ|2)) time
(Theorem 4.2.12). Central to our proof is Theorem 4.2.10 in which we characterize
circular split systems whose I-intersection closure is (set-inclusion) maximal in

97

terms of their so called incompatibility graphs. As a consequence, we obtain
as Corollary 4.2.13 the 1-nested analog of the fundamental “Splits-Equivalence
Theorem” (Theorem 1.2.3) for phylogenetic trees.

We start with introducing some more terminology. Suppose Σ is a circular
split system on X. Then we say that Σ is maximal circular if for all circular split
systems Σ′ on X that contain Σ, we have Σ = Σ′. As the next result illustrates,
maximal circular split systems of X and simple 1-nested networks on X are closely
related.

Lemma 4.2.6. A split system Σ on X is maximal circular if and only if there
exists a simple level-1 network N on X such that Σ = Σ(N).

Proof. Let Σ be a split system on X. Assume first that Σ is maximal circular.
Then there exists a simple level-1 network N on X such that Σ ⊆ Σ(N). Since
Σ(N) is clearly a circular split system onX the maximality of Σ implies Σ = Σ(N).

Conversely, assume that N is a simple level-1 network such that Σ = Σ(N).
Then since Σ(N) is a circular split system on X so is Σ. Assume for contradiction
that Σ is not maximal circular, that is, there exists a split S = A|Ā ∈ Σ that is
not contained in Σ(N). Then A and Ā are both intervals in the circular ordering
of X induced by Σ(N). Hence, S is induced by a minimal cut of N . Consequently,
S ∈ Σ(N) which is impossible.

Note that since a maximal circular split system on X must necessarily contain
all splits of X of the form A|B with |A| = 2 obtainable as a minimal cuts in
the associated simple level-1 network on X, it follows that that ordering of X is
unique. The next result suggests that systems of such splits suffice to generate a
maximal circular split system. To state it, suppose σ : x1, ..., xn−1, xn, xn+1 := x1
is a circular ordering of X and put Σσ := {{xi, xi+1}|X − {xi, xi+1} : 1 ≤ i ≤ n}.
Clearly, Σσ is a circular split system on X.

In view of Lemma 4.2.6, we say that a circular ordering displays a split system
Σ if Σ is displayed by the simple level-1 network associated to Σ.

Lemma 4.2.7. I(Σσ) is a maximal circular split system on X, for any circular
ordering σ of X.

Proof. Since the result is trivial for n = 3, we may assume without loss of generality
that n ≥ 4. Let σ : x1, ..., xn−1, xn, xn+1 := x1 be a circular ordering of X.
We proceed by induction on the size 1 ≤ l ≤ n

2 of a split S displayed by σ,
that is, the size of the smaller set that compose S. Suppose first that l = 1.
Then there exists some i ∈ {1, . . . , n} such that S = xi|X − {xi}. Clearly, S1 =
{xi, xi−1}|X−{xi, xi−1} and S2 = {xi, xi+1}|X−{xi, xi+1} are contained in Σσ and
incompatible. Hence, S = S1(xi)∩S2(xi)|X−(S1(xi)∩S2(xi)) ∈ ι(S1, S2) ⊆ I(Σσ).

98

Now assume that l ≥ 2 and that all splits of X displayed by σ of size at
most l − 1 are contained in I(Σσ). Since S is displayed by σ, there exists some
i ∈ {1, . . . , n} such that S = [xi, xi+l−1]|X− [xi, xi+l−1]. Without loss of generality
we may assume that i = 1. Then S = [x1, xl]|X − [x1, xl]. Consider the splits
S1 = [x1, xl−1]|X − [x1, xl−1] and S2 = {xl−1, xl}|X − {xl−1, xl} displayed by σ.
By induction, S1, S2 ∈ I(Σσ) since the size of S2 is two and that of S1 is at most
l−1. Furthermore, S1 and S2 are incompatible. Since S = S1(xl−1)∪S2(xl−1)|X−
(S1(xl−1) ∪ S2(xl−1)) ∈ ι(S1, S2) ⊆ I(Σσ), the lemma follows.

We next employ Lemma 4.2.7 to obtain a sufficient condition on a circular
split system Σ for its I-intersection closure to be maximal circular. Central to
this is the concept of the incompatibility graph Incomp(Σ) associated to a split
system Σ. The vertex set of that graph is Σ and any two splits of Σ are joined by
an edge in Incomp(Σ) if they are incompatible. We denote the set of connected
components of Incomp(Σ) by π0(Σ) and, by abuse of terminology, refer to the
vertex set of an element in π0(Σ) as a connected component of Incomp(Σ). For
example, Incomp(Σσ) is a cycle of length |Σσ| whenever n ≥ 5. Furthermore, Σ is
compatible if and only if |Σ0| = 1 holds for all Σ0 ∈ π0(Σ).

We next clarify the relationship between the incompatibility graph and I-
intersection closure of a split system.
Lemma 4.2.8. Suppose Σ is a split system on X. Then for any two distinct
connected components Σ1,Σ2 ∈ π0(Σ) and any splits S1 ∈ I(Σ1) and S2 ∈ I(Σ2)
we must have that S1 and S2 are compatible.

Proof. Assume for contradiction that there exist two connected components Σ1,Σ2 ∈
π0(Σ) and splits S1 ∈ I(Σ1) and S2 ∈ I(Σ2) such that S1 and S2 are incompatible.
Then S1 ∈ Σ1 and S2 ∈ Σ2 cannot both hold as otherwise Σ1 = Σ2. Assume
without loss of generality that S1 /∈ Σ1. Let Σ0 := Σ1 (Σ1 (. . . (Σk := I(Σ1),
k ≥ 1, be a finite sequence such that, for all 1 ≤ i ≤ k, a split in Σi either belongs
to Σi−1 or is an I-intersection between two splits S, S ′ ∈ Σi−1 and ι(S, S ′) 6⊆ Σi−1.
Then, there exists some i∗ > 0 such that S1 ∈ Σi∗ − Σi∗−1. After possibly re-
naming S1, we may assume without loss of generality, that i∗ is such that for all
1 ≤ i ≤ i∗−1 there exists no split in Σi that is incompatible with S2. Hence, there
must exist two splits S and S ′ in Σi∗−1 distinct such that S1 ∈ ι(S, S ′). Since S2
and S1 are incompatible, it follows that S2 is incompatible with one of S and S ′,
which is impossible by the choice of i∗.

Armed with this result, we next relate for a split system Σ the sets π0(I(Σ))
and π0(Σ) in Lemma 4.2.9. In particular, we show that I(Σ) can be obtained as
the intersection closure of the connected components of Incomp(Σ). Also, the set
of connected components of I(Σ) can be obtained as the connected components of
the intersection closure of the connected components of Icomp(Σ).

99

Lemma 4.2.9. Suppose Σ is a split system on X. Then the following hold

(i) I(Σ) =
⋃

Σ0∈π0(Σ)
I(Σ0).

(ii) π0(I(Σ0)) ⊆ π0(I(Σ)), for all Σ0 ∈ π0(Σ). In particular, π0(I(Σ)) =
⋃

Σ0∈π0(Σ)
π0(I(Σ0)).

Proof. (i) Let Σ0 ∈ π0(Σ) and put A := ⋃
Σ′∈π0(Σ) I(Σ′). Note that since Σ =⋃

Σ′∈π0(Σ) Σ′, we trivially have Σ ⊆ A ⊆ I(Σ). To see that I(Σ) ⊆ A note that
Lemma 4.2.8 implies that any two incompatible splits in A must be contained
in the same connected component of I(Σ) and so must be their I-intersection.
Hence, A is I-intersection closed. Since Σ ⊆ A we also have I(Σ) ⊆ I(A) = A.
Thus A = I(Σ).

(ii) Suppose Σ0 ∈ π0(Σ) and let A ∈ π0(I(Σ0)). To establish that A ∈
π0(I(Σ)) note that since A is connected in Incomp(I(Σ0)) it also is connected
in Incomp(I(Σ)). Hence, it suffices to show that every split in A is compat-
ible with every split in I(Σ) − A. Suppose S1 ∈ A and S2 ∈ I(Σ) − A =
(I(Σ)− I(Σ0))∪ (I(Σ0)−A). If S2 ∈ I(Σ0)−A then, by definition, S1 and S2 are
compatible. So assume that S2 ∈ I(Σ)− I(Σ0). Then Lemma 4.2.9(i) implies that
S2 is compatible with every split in I(Σ0) and, thus, with S1 as A ⊆ I(Σ0).

To establish the next result which is central to Theorem 4.2.12, we require a
further notation. Suppose Σ is a split system on X. Then we denote by Σ− the
split system obtained from Σ by deleting all trivial splits on X.

Theorem 4.2.10. Let Σ be a circular split system on X. Then I(Σ) is a maximal
circular split system on X if and only if the following two conditions hold:
(i) for all x, y ∈ X distinct, there exists some S ∈ Σ− such that S(x) 6= S(y),
(ii) Incomp(Σ−) is connected.
Moreover, if (i) and (ii) hold then there exists an unique, up to isomorphism and
partial-resolution, simple 1-nested network N on X such that Σ ⊆ Σ(N).

Proof. Let X = {x1 . . . , xn} and let σ denote the circular ordering on X under
which xi precedes xi+1 for all i ∈ {1, . . . , n − 1}, and xn precedes x1. Note that
this circularity allows us to consider indices to be modulo n, meaning that in the
following, we may write xn+1 for x1, xn+2 for x2, or x0 for xn. We may assume
without loss of generality that Σ is circular for that ordering.

Assume first that (i) and (ii) hold. We first show that I(Σ−) is maximal
circular. To this end, it suffices to show that Σσ ⊆ I(Σ−) since this implies that
I(Σσ) ⊆ I(I(Σ−)) ⊆ I(I(Σ)) = I(Σ). Combined with the fact that, in view of
Lemma 4.2.7, I(Σσ) is maximal circular, it follows that I(Σσ) = I(Σ−) = I(Σ).
Hence, I(Σ) is maximal circular.

100

Assume for contradiction that there exists some i ∈ {1, . . . , n} such that the
split S∗ = xixi+1|xi+2, . . . , xi−1 of Σ2 is not contained in I(Σ). Then, by as-
sumption, there exist two splits S and S ′ in Σ such that S(xi) 6= S(xi−1) and
S ′(xi+1) 6= S ′(xi+2). Let PSS′ denote a shortest path in Incomp(Σ) joining S and
S ′. Without loss of generality, let S and S ′ be such that the path PSS′ is a short as
possible. Let S0 = S, S1, ..., Sk = S ′ denote that path. The next lemma is central
to the proof.
Lemma 4.2.11. For all 0 ≤ j ≤ k, we have Sj(xi) = Sj(xi+1).

Proof. First observe that Sj(xi) = Sj(xi−1) and Sj(xi+1) = Sj(xi+2) must hold for
all 0 < j < k. Indeed, if there existed some j ∈ {1, . . . , k − 1} such that Sj(xi) 6=
Sj(xi−1) then the path Sj, Sj+1, . . . , Sk would be shorter than PSS′ , in contradiction
to the choice of S and S ′. Similar arguments also imply that Sj(xi+1) = Sj(xi+2)
holds for all j ∈ {1, . . . , k − 1}.

Assume for contradiction that there exists 0 ≤ j ≤ k such that Sj(xi) 6=
Sj(xi+1). Without loss of generality, we may assume that, for all 0 ≤ l ≤ j − 1,
we have Sl(xi) = Sl(xi+1). Then since a trivial split cannot be incompatible
with any other split on X we cannot have j ∈ {0, k}. Thus, the splits Sj−1
and Sj+1 must exist. Note that they cannot be incompatible, since otherwise the
path from S to S ′ obtained by deleting Sj from PSS′ is shorter than PSS′ which is
impossible. So Sj−1 and Sj+1 must be compatible. Clearly, xi ∈ Sj+1(xi)∩Sj−1(xi).
We next establish that Sj+1(xi) ∩ Sj−1(xi) = ∅ cannot hold implying that either
Sj+1(xi) ∩ Sj−1(xi) = ∅ or Sj+1(xi) ∩ Sj−1(xi) = ∅.

Indeed, let q ∈ {1, . . . , n} such that Sj = xi+1 . . . xq|xq+1 . . . xi. We claim
that xq ∈ Sj+1(xi) ∩ Sj+1(xi). Assume by contradiction that xq ∈ Sj−1(xi) and
that i ≤ q. Then Sj−1(xi) is an interval of X containing {xi, xq}. Hence, either
Sj−1(xi) ⊇ [xi, xq] ⊇ Sj(xi+1) or Sj−1(xi) ⊇ [xq, xi] ⊇ Sj(xi). But both are
impossible in view of the fact that Sj−1 and Sj are incompatible.

Now assume that Sj+1(xi) ∩ Sj−1(xi) = ∅, that is, Sj+1(xi) ⊆ Sj−1(xi). We
postulate that then Sj+1(xi) ⊆ S0(xi) must hold which is impossible since xi−1 ∈
Sj+1(xi) and S0(xi) 6= S0(xi−1). Indeed, the choice of S and S ′ implies that Sj+1
and Sl must be compatible, for all 0 ≤ l ≤ j − 2. By Lemma 4.2.4 applied to
Sj−1, Sj−2, and Sj+1 it follows that Sj+1(xi) ⊆ Sj−2(xi). Repeated application of
this argument implies that, for all 0 ≤ l ≤ j − 2, we have Sj+1(xi) ⊆ Sl(xi), as
required.

Finally, assume that Sj−1(xi) ∩ Sj+1(xi) = ∅, that is, Sj−1(xi) ⊆ Sj+1(xi).
Then similar arguments as in the previous case imply that Sj−1(xi) ⊆ Sk(xi). But
this is impossible since xi+1, xi+2 ∈ Sj−1(xi) and Sk(xi) = Sk(xi+1) 6= Sk(xi+2).
Thus, Sj(xi) = Sj(xi+1) must hold for all 0 ≤ j ≤ k. This concludes the proof of
Lemma 4.2.11.

101

Continuing with the proof of Theorem 4.2.10, we claim that the splits

Tj := Tj−1(xi) ∩ Sj(xi)|Tj−1(xi) ∪ Sj(xi)

where j ∈ {1, . . . , k} and T0 := S0 are contained in I(Σ). Assume for contradiction
that there exists some j ∈ {0, . . . , k} such that Tj 6∈ I(Σ). Then j 6= 0 because
S ∈ I(Σ), and j 6= 1 since T1 ∈ ι(S, S1) and S, S1 ∈ Σ. Without loss of generality,
we may assume that j is such that for all 1 ≤ l ≤ j − 1, we have Tl ∈ I(Σ). Then
Tj−1 and Sj cannot be incompatible and so Tj−1(xi) ⊆ Sj(xi), or Sj(xi) ⊆ Tj−1(xi),
or Sj(xi) ⊆ Tj−1(xi) must hold. But Sj(xi) ⊆ Tj−1(xi) cannot hold since then
Sj−1(xi) ⊆ Tj−2(xi) ∪ Sj−1(xi) = Tj−1(xi) ⊆ Sj(xi) which is impossible as Sj−1
and Sj are incompatible. Also, Sj(xi) ⊆ Tj−1(xi) cannot hold since then Sj(xi) ⊆
Tj−1(xi) = Tj−2(xi)∩Sj−1(xi) ⊆ Sj−1(xi) which is again impossible as Sj−1 and Sj
are incompatible. Thus, Tj−1(xi) ⊆ Sj(xi) and so Tj(xi) = Tj−1(xi). Consequently,
Tj = Tj−1 ∈ I(Σ) which is also impossible and therefore proves the claim. Thus,
Tj ∈ I(Σ), for all 0 ≤ j ≤ k. Combined with Lemma 4.2.11 it follows that, for
all 0 ≤ j ≤ k, we also have Tj(xi) = Tj(xi+1). Consequently, {xi, xi+1} ⊆ Tk(xi).
Combined with the facts that Tk(xi) is an interval on X and xi−1 /∈ S0(xi), and
similarly, xi+2 /∈ Sk(xi) it follows that {xi, xi+1} = Tk(xi). Hence, S∗ = Tk ∈ I(Σ),
which is impossible. Thus, Σσ ⊆ I(Σ−) and so I(Σσ) = I(Σ−).

Conversely, assume that I(Σ) is maximal circular. Then I(Σ) clearly satisfies
Properties (i) and (ii) that is, for all x, y ∈ X distinct there exists some S ∈ I(Σ)−
such that S(x) 6= S(y) and Incomp(I(Σ)−) is connected. We need to show that
Σ also satisfies Properties (i) and (ii). Assume for contradiction that Σ does not
satisfy Property (i). Then there exist x, y ∈ X distinct such that for all splits
S ∈ Σ−, we have S(x) = S(y). Let S ∈ I(Σ) such that S(x) 6= S(y) and let
S1, S2, . . . , Sl = S denote a sequence in I(Σ) such that Si ∈ ι(Si−1, Si−2), for
all 3 ≤ i ≤ l. Without loss of generality we may assume that l is such that
Si(x) = Si(y), for all 3 ≤ i ≤ l − 1. Then Sj(x) = Sj(y), for all j ∈ {l − 1, l − 2}
and thus S(x) = S(y) which is impossible.

Next, assume for contradiction that Σ does not satisfy Property (ii). Let Σ1
and Σ2 denote two disjoint connected components of Incomp(Σ−). For i = 1, 2, let
Ai ∈ π0(I(Σi)−) such that Σi ⊆ Ai. Then, 2 ≤ |Σi| ≤ |Ai|, for all i = 1, 2. Com-
bined with Lemma 4.2.9(ii), we obtain A1,A2 ∈ π0(I(Σ)−). Since Incomp(I(Σ)−)
is connected, it follows for i = 1, 2 that Ai ⊆ I(Σi)− ⊆ I(Σ)− = Ai. Thus,
I(Σ1)− = I(Σ−) = I(Σ2)− and so the incompatibility graphs Incomp(I(Σ1)−),
Incomp(I(Σ)−) and Incomp(I(Σ2)−) all coincide. Suppose S ∈ Σ1 and S ′ ∈ Σ2
and let P denote a shortest path in Incomp(I(Σ)−) joining S and S ′. Then there
must exist incompatible splits S and S ′ in P such that S ∈ Σ1 ⊆ I(Σ1)− and
S ′ ∈ I(Σ1)− = I(Σ2)− which is impossible in view of Lemma 4.2.8.

The remainder of the theorem follows from the facts that, by Lemma 4.2.7, I(Σ)
is maximal circular that, by Lemma 4.2.6, there exists a simple level-1 network N

102

such that I(Σ) = Σ(N), that by Corollary 4.2.3(ii), a 1-nested network displays
displays I(Σ) if and only if it displays Σ, and that the split system Σσ uniquely
determines the underlying circular ordering of X.

Armed with this characterization, we are now ready to establish Theorem 4.2.12.

Theorem 4.2.12. Given a circular split system Σ on X, it is possible to build,
in time O(n(n + |Σ|2)), a 1-nested network N on X such that Σ ⊆ Σ(N) holds
and |Σ(N)| is minimal. Furthermore, N is unique up to isomorphism and partial-
resolution.

Proof. Suppose Σ is a circular split system on X. Put {V1, . . . , Vl} = π0(Σ).
Without loss of generality we may assume that there exists some j ∈ {1, . . . , l}
such that |Vi| = 1 holds for all 1 ≤ i ≤ j − 1 and |Vi| ≥ 2 for all j ≤ i ≤ l.
Since Incomp(Σ) has l − j + 1 connected components with at least two vertices
there exist l − j + 1 simple 1-nested networks Ni such that Vi ⊆ Σ(Ci) holds for
the unique cycle Ci of Ni. By Theorem 4.2.10, it follows for all j ≤ i ≤ l that
Σ(Ci) = I(Vi) and that Qi ⊆ I(Vi), where Qi denotes the set of m-splits of Ci.

We claim that the split system Σ′ on X given by

Σ′ =
j−1⋃
i=1

Vi ∪
l⋃
i=j

Qi ∪
⋃
x∈X
{x|X − x}

is compatible.
Since Σ is circular there exists a 1-nested network N on X such that Σ ⊆ Σ(N).

Without loss of generality, we may assume that N is such that |Σ(N)| is minimal
among such networks. For clarity of exposition, we may furthermore assume that
N is maximal partially-resolved. Then for all j ≤ i ≤ l there exists a cycle Zi
in N such that Vi ⊆ Σ(Zi). In fact, I(Vi) = Σ(Zi) must hold for all such i.
Combined with the minimality of Σ(N), it follows that there exists a one-to-one
correspondence between the cycles of N and the set A := {I(Vi) : j ≤ i ≤ l} that
maps a cycle C of N to the split system ΣC ∈ A such that for some i∗ ∈ {j, . . . , l}
we have ΣC = I(Vi∗) and Vi∗ ⊆ Σ(C). Furthermore, for all 1 ≤ i ≤ j − 1 there
exists a cut-edge ei of N such that the split Sei induced on X by deleting ei is the
unique element in Vi.

Let T (N) denote the phylogenetic tree on X obtained from N by first shrinking
every cycle Z of N to a vertex vZ and then suppressing all resulting degree two
vertices. Since this operation clearly preserves the splits in Qi, j ≤ i ≤ l, and also
does not affect the cut-edges of N (in the sense that a cut edge of T (N) might
correspond to a path in N of length at most 3 involving a cut-edge of N and one
or two m-splits), it follows that Σ′ = Σ(T (N)). Since any split system displayed
by a phylogenetic tree is compatible the claim follows.

103

Since, in addition, Σ′ also contains all trivial splits on X, it follows by the
“Splits Equivalence Theorem” (see Section 4.1) that there exists a unique (up
to isomorphism) phylogenetic tree T on X such Σ(T) = Σ′. Hence, T (N) and
T must be isomorphic. But then reversing the aforementioned cycle-shrinking
operation that gave rise to T (N) results in a 1-nested network N ′ on X such that
Σ(N) = Σ(N ′). Consequently, N ′ and N are isomorphic and so Σ ⊆ Σ(N ′). Note
that similar arguments also imply that N is unique up to partial-resolution and
isomorphism.

To see the remainder of the theorem, note first that finding Incomp(Σ) can
be accomplished in O(n|Σ|2) time. Combined with the facts that X has at most
n cycles and any binary unrooted phylogenetic tree on X has 2n− 3 cut-edges it
follows that N ′ can be constructed in O(n2 + n|Σ|2) time.

In consequence of Theorems 4.2.5 and 4.2.12, we obtain the 1-nested analogue
of the “Splits Equivalence Theorem” (Theorem 1.2.3) for phylogenetic trees.

Corollary 4.2.13. Suppose Σ is a split system on X that contains all trivial splits
of X. Then there exists a 1-nested network N on X such that Σ = Σ(N) if and
only if Σ is circular and I-intersection closed. Moreover, if such a network N exists
then it is unique up to isomorphism and partial-resolution and can be constructed
in O(n(n+ |Σ|2)) time.

4.3 Optimality and the Buneman graph
We investigate here the interplay between the Buneman graph B(Σ) associated
to a circular split system Σ and a 1-nested network displaying Σ. More precisely,
we first associate to a circular split system Σ a certain subgraph of B(Σ) which
we obtain by replacing each block of B(Σ) by a structurally simpler graph which
we call a marguerite. As it turns out, marguerites hold the key for constructing
optimal 1-nested networks from circular split systems.

4.3.1 The Buneman graph
The Buneman graph is a special type of split network (see Section 1.2.3). Among
other properties, it is presented in [18] as a generalization of the “Splits Equivalence
Theorem” (Theorem 1.2.3) to non compatible split systems and split-networks. We
follow [16] for the definitions and terminology.

For Σ a split system on X, the vertices of the Buneman graph B(Σ) are the
maps φ : Σ→ P(X), where P(X) denote the power set of X, such that:

(B1) φ(S) ∈ S for all S ∈ Σ.

104

(B2) φ(S) ∩ φ(S ′) 6= ∅ for any two distinct S, S ′ ∈ Σ.

As is easy to see, the vertex set of B(Σ) is nonempty, since for any x ∈ X, the
associated Kuratowski map φx : S 7→ S(x) satisfies both properties. Then, two
vertices φ and φ′ of this graph are joined by an edge if they differ in exactly one
element, that is, if the set φ4φ′ = {S ∈ Σ : φ(S) 6= φ′(S)} has size one.

Figure 4.7(ii) illustrates these definitions for the split system Σ = {S1, . . . , S5}
on X = {1, 2, 3, 4, 5} defined in Figure 4.7(i). Each vertex φ of that graph is
represented as a binary sequence of size five, where for 1 ≤ i ≤ 5, the ith element
of φ is 0 if φ(Si) is the first element of Si, and 1 otherwise. Note that this notation
is arbitrary, as neither the split system Σ nor the splits it contains are ordered.
As an example, the map 00011 on the top right corner is the map φ : Σ → P(X)
defined by φ(S1) = 12; φ(S2) = 1; φ(S3) = 15; φ(S4) = 1245; and φ(S5) = 123.
In particular, φ is the Kuratowski map φ1. The other Kuratowski maps are φ2 =
01111, φ3 = 11101, φ4 = 11110 and φ5 = 11010. Finally, note that two sequences
are joined by an edge if and only if they differ in exactly one element, which is a
direct consequence of this definition and the way an edge of the Buneman graph
is defined.

S1 = 12|345

1|2345

15|234

3|1245

45|123

(i)

2

1

54

3

(ii) (iii)

S2 =

S3 =

S4 =

S5 =

00011

1101011110

01111

11101
01011

11111
11011

Figure 4.7: (i) A split system Σ = {S1, . . . , S5} on X = {1, . . . , 5}. (ii) The
Buneman graph B(Σ). (iii) The split-network representation of B(Σ). (see text
for details).

The idea behind the definition is the following: Each edge {φ, φ′} of B(Σ)
is trivially associated to a unique split S ∈ Σ, that is, the split S satisfying
φ(S) 6= φ′(S). For a given split S ∈ Σ, we can then consider the set ES(B(Σ)) of
edges of B(Σ) associated to S. This set of edges has two properties (see e. g. [16]):

105

It is nonempty, and the deletion of all edges of ES(B(Σ)) from B(Σ) divides B(Σ)
into two connected components, one of which containing all the maps φ ∈ V (B(Σ))
such that φ(S) = A, the others the maps φ ∈ V (B(Σ)) such that φ(S) = B. In
particular, one connected component contains the Kuratowski maps {φx : x ∈ A},
and the other the maps {φx : x ∈ B}. Thus, after identifying each Kuratowski
map φx with the corresponding element x ∈ X, we get back to the definition of a
split network representing Σ (see Figure 4.7(iii)). In particular, Σ is compatible if
and only if B(Σ) is a tree.

It is also possible to define a distance DB(Σ) on the vertex set of B(Σ). For
any two vertices φ and φ′, we can define DB(Σ) as the number of splits S ∈ Σ such
that φ(S) 6= φ′(S), that is, DB(Σ)(φ, φ′) = |φ4φ′|. Clearly, DB(Σ) is a metric. By
definition, φ and φ′ are joined by an edge in B(Σ) if and only if DB(Σ)(φ, φ′) = 1,
and as we already noticed, the split S ∈ Σ associated to an edge {φ, φ′} is precisely
the unique element of φ4φ′. However, as a split network, B(Σ) enjoys the more
general property that for two vertices φ and φ′ and a split S ∈ φ4φ′, any shortest
path between φ and φ′ crosses exactly one edge associated to S. In particular,
there is a trivial bijection between the edges in a given shortest path between φ
and φ′ and the set φ4φ′, and thus, DB(Σ)(φ, φ′) corresponds to the length of the
shortest path between φ and φ′. This generalizes the distance induced by a split
network on X over the set X.

If we consider as the vertex set the maps φ : Σ → P(X) satisfying (B1) only,
the graph H(Σ) obtained using the same definition for edges is isomorphic to the
hypercube of dimension |Σ|. To see that, we go back to the sequence notation
introduced above. The vertex set of H(Σ) is the set of all binary sequences of
size |Σ|, and two such sequences are joined by an edge if they differ in exactly one
element. This is precisely the definition of the hypercube of dimension |Σ|, and
this gives a trivial bijection between the splits in Σ and the dimensions of H(Σ).

Since the Buneman graph B(Σ) can be obtained from H(Σ) by removing all
vertices not satisfying (B2), it can be seen as a subgraph of this hypercube. More
precisely, it has been shown in [18] the B(Σ) is an isometric (and thus, connected)
subgraph of H(Σ). As a consequence, we remark that B(Σ) is isomorphic to the
hypercube H(Σ) if all splits in Σ are pairwise incompatible, since in that case, all
maps φ : Σ→ P(X) satisfying (B1) also satisfy (B2).

The Buneman graph of a split system Σ has many properties, and share links
with different areas of mathematics. We focus here only on the properties playing
a role in the following sections.

For a vertex φ of B(Σ), we denote by min(φ(Σ)) the set-inclusion minimal
elements in φ(Σ) := {φ(S) : S ∈ Σ} and by Σ(φ) the set of pre-images of the
elements in min(φ(Σ)) under φ. We have:

Proposition 4.3.1 ([19]). Let Σ be a split system on X and φ a vertex of B(Σ).

106

The vertices of B(Σ) adjacent to φ are precisely the maps φ′ : Σ → P(X) such
that φ′(S∗) = φ(S∗) for a given split S∗ ∈ Σ(φ), and φ′(S) = φ(S), otherwise. In
particular, |Σ(φ)| is the degree of φ in B(Σ).

Proposition 4.3.1 provides an alternative way to build the Buneman graph
B(Σ), without having first to list the maps φ : Σ → P(X) satisfying (B1) and
(B2). Starting from any Kuratowski map φx, x ∈ X as a single vertex, we can
find the vertices adjacent to φx using the set Σ(φx). We can repeat this process
for each of the vertices created this way, until all vertices φ in the graph thus far
constructed have degree |Σ(φ)|.

The next two properties link the Buneman graph of a split system Σ with
the incompatibility graph Inc(Σ) defined in Section 4.2.3. For any two distinct
compatible splits S = A|B and S ′ = A′|B′ of X there must exist a unique element
in {A,B,A′, B′}, say A, such that A∩A′ 6= ∅ and A∩B′ 6= ∅ both hold. Denoting
that unique element by max(S|S ′), and by π0(Σ) the set of connected components
of Inc(Σ), we have:

Proposition 4.3.2 ([19]). Let Σ be a split system on X. For Σ1,Σ2 ∈ π0(Σ)
distinct we have max(S1|S2) = max(S1|S ′2), for all S1 ∈ Σ1 and all S2, S

′
2 ∈ Σ2.

In consequence, for Σ1,Σ2 ∈ π0(Σ) we can define the set max(Σ1|Σ2) as
max(S1|S2), where the choice of S1 ∈ Σ1 and S2 ∈ Σ2 has no relevance. This
then allows to state the next proposition:

Proposition 4.3.3 ([19]). Let Σ be a split system on X. The biconnected com-
ponents of B(Σ) are in 1-1 correspondence with the connected components of
Inc(Σ). More precisely, the map Θ : Σ0 ∈ π0(Σ) 7→ {φ ∈ V (B(Σ)) : φ(S) =
max(S|Σ0) for all S ∈ Σ− Σ0} is a bijection.

As in Section 1.1.3, we now call a biconnected component of a Buneman graph
B(Σ) a block of B(Σ). In Figure 4.2(ii), we indicate the blocks of the Buneman
graph B(Σ(N)) by B1 and B2 respectively.

We conclude this short review with introducing a notion that will be of par-
ticular interest to us in Section 4.3.3. A subset Y ⊆ Z of a (proper) metric space
(Z,D) is called a gated subset of Z if there exists for every z ∈ Z a (necessarily
unique) element yz ∈ Y such that D(y, z) = D(y, yz)+D(yz, z) holds for all y ∈ Y .
We refer to yz as the gate for z in Y . We have:

Proposition 4.3.4 ([19]). Let Σ be a split system on X and Σ0 ∈ π0(Σ). The
subgraph B(Σ0) of B(Σ) induced by Σ0 is gated (with regard to the metric DB(Σ)).
For every map φ ∈ V (B(Σ)), the map φΣ0 given by

φΣ0 : Σ(N)→ P(X) : S 7→
{

φ(S) if S ∈ Σ0
max(S|Σ′) otherwise,

107

is the gate for φ in B(Σ0).

Continuing with the terminology of Proposition 4.3.4, we denote byGates(B(Σ))
the set of all vertices φ of B(Σ) for which there exists a block B of B(Σ) such that
φ is the gate for some x ∈ X in B.

4.3.2 Marguerites and Blocks
In this section, we first focus on the Buneman graph of a maximal circular split
system and then introduce and study the novel concept of a marguerite.

To illustrate these definitions, consider again the Buneman graph depicted in
Figure 4.2(ii) and the splits S = 78|1 . . . 6 and S ′ = 18|2 . . . 7 both of which are
displayed by that graph. Then for the marked vertex φ, we have φ(S) = {7, 8}.
The block marked B1 in that Figure corresponds via Θ to the connected component
Σ0 = {S, S ′} and max(S ′|Σ0) = X − {2, 3, 4}.

For the following, assume that k ≥ 4 and that Y = {X1, . . . , Xk} is a partition
of X. For clarity of exposition, also assume that |Xi| = 1, for all 1 ≤ i ≤ k,
and that the unique element in Xi is denoted by i. Further, assume that σ is the
lexicographical ordering of X where we put k+1 := 1. Let Σk denote the maximal
circular split system displayed by σ bar the trivial splits of X. Since Σk contains
all 2-splits displayed by σ it follows that |π0(Σk)| = 1. Hence, B(Σk) is a block in
view of Property 4.3.3. To better understand the structure of B(Σk) consider for
all 1 ≤ i ≤ k and for all 0 ≤ j < k − 3 the map:

φji : Σk → P(X) : S 7→
{
S(i) if S(i) ⊆ [i− j, i]
S(i) otherwise.

For example, for k = 6 and k = 8 the map φ2
1 is indicated by a vertex in Fig-

ure 4.8(i) and (ii), respectively.
To establish the next result, we associated to every element i ∈ X the split

system Σ(i)+ := {S ∈ Σk : S(i+ 1) = S(i) 6= S(i−1)}. Then the partial ordering
“�i” defined, for all S, S ′ ∈ Σk, by putting S �i S ′ if |S(i)| ≤ |S ′(i)|, is clearly a
total ordering of Σ(i)+ with minimal element S+

i = [i, i+ 1]|X − [i, i+ 1]

Lemma 4.3.5. For any k ≥ 4 the following statements hold:

(i) For all i ∈ {1 . . . , k} and all 0 ≤ j < k− 3 the map φji is a vertex of B(Σk),
φk−3
i = φ0

i+1 holds, and ∆(φji , φ
j+1
i) = {[i − j − 1, i]|X − [i − j − 1, i]}. In

particular, {φji , φ
j+1
i } is an edge in B(Σk).

(ii) For all i ∈ {1 . . . , k} and all 1 ≤ j < k − 3, the map

ψji : Σk → P(X) : S 7→
{
φji (S) if S = S+

i

φji (S) otherwise.

108

1

23

4

5 6

φ2
1

1

2

3

4

5

6 8

7

φ2
1

(i) (ii)

Figure 4.8: For k = 6, we depict in (i) the Buneman graph B(Σ6) in terms of bold
and dashed edges and the associated 6-marguerite M(Σ6) in terms of bold edges.
In addition, we indicated the vertex φ2

1 of B(Σ6). We picture the 8-marguerite in
(ii) and indicate again the vertex φ2

1.

is a vertex in B(Σk) that is adjacent with φji . Moreover ψk−3
i = ψ0

i+1 and
{ψji , ψ

j+1
i } is an edge in B(Σk).

Proof. (i) Suppose i ∈ {1 . . . , k} and 0 ≤ j < k − 3. To see that φji ∈ V (Σk), we
distinguish between the cases that (a) j = 0, (b) j = k− 3, and (c) 1 ≤ j ≤ k− 4.
Let i ∈ {1, . . . , k}.

Assume first that (a) holds and let S ∈ Σk. Then φ0
i (S) = S(i) must hold

since Σk does not contain trivial splits. Moreover, φ0
i (S) = S(i) holds if and only

if S(i) ⊆ {i} if and only if S is the trivial split i|X − i. Thus, φ0
i is a vertex in

B(Σk) in this case.
Assume next that (b) holds. We claim that φk−3

i = φ0
i+1. Assume again

that S ∈ Σk. Observe that since i − (k − 3) ≡ i + 3 (mod k) we have S(i) ⊆
{i− (k− 3), . . . , i} if and only if {i+ 1, i+ 2} ⊆ S(i). We distinguish between the
cases that (α) S(i) = S(i+ 1) and (β) S(i) 6= S(i+ 1).

Assume first that Case (α) holds, that is, S(i) = S(i+1). Then {i+1, i+2} 6⊆
S(i). Combined with the observation made at the beginning of the proof of this
case, we obtain S(i) 6⊆ {i − (k − 3), . . . , i} and, so, φk−3

i (S) = S(i) = S(i + 1) =
φ0
i+1(S).
Next, assume that Case (β) holds, that is, S(i) 6= S(i+ 1). Then i+ 1 ∈ S(i).

Since S cannot be a trivial split it follows that i+2 ∈ S(i) must hold too. Combined
again with the observation made at the beginning of the proof of this case, it follows
that S(i) ⊆ {i− (k− 3), . . . , i}. Thus, φk−3

i (S) = S(i) = S(i+ 1) = φ0
i+1(S) which

109

completes the proof of the claim. In combination with Case (α), φk−3
i ∈ B(Σk)

follows.
So assume that (c) holds. Combining (a) with Property 4.3.1 and the fact that

φ0
i (S) = φ1

i (S) for all S ∈ Σk − {S+
i } and φ0

i (S+
i) = φ1

i (S+
i), it follows that φ1

i is a
vertex of B(Σk). Similar arguments imply that if φli is a vertex in B(Σk) then so
is φl+1

i . This concludes the proof of Case (c).
That ∆(φji , φ

j+1
i) = {[i− j − 1, i]|X − [i− j − 1, i]} holds for all i ∈ {1 . . . , k}

and 0 ≤ j < k − 3 is an immediate consequence of the construction.
(ii) Suppose i ∈ {1 . . . , k} and 1 ≤ j < k − 3. Then ψji must be a vertex

of B(Σk) that is adjacent with φji in view of Property 4.3.1 as S+
i ∈ Σφji . That

ψ1
i = ψk−3

i−1 holds is implied by the fact that the two splits in which ψk−3
i and ψ1

i+1
differ from φ0

i+1 are incompatible. That {ψji , ψ
j+1
i } is an edge in B(Σk) follows

from the fact that {φji , φ
j+1
i } is an edge in B(Σk).

Bearing in mind Lemma 4.3.5, we next associate to B(Σk) the k-marguerite
M(Σk) on X, that is, the subgraph of B(Σk) induced by the set of maps φji and
ψli where 1 ≤ i ≤ k, 0 ≤ j < k − 3 and 1 ≤ l < k − 3. We illustrate this definition
for k = 6, 8 in Figure 4.8. Note that if k or X are of no relevance to the discussion
then we shall simply refer to a k-marguerite on X as a marguerite.

Clearly, B(Σk) and M(Σk) coincide for k = 4, 5. To be able to shed light
into the structure of k-marguerites for k ≥ 6, we require some more terminology.
Suppose k ≥ 4 and i ∈ {0, . . . , k}. Then we call a vertex of M(Σk) of the form
φ0
i an external vertex. Moreover, we call for all 0 ≤ j < k − 3 an edge of M(Σk)

of the form {φji , φ
j+1
i } an external edge. Note that since M(Σk) is in particular

a subgraph of the |Σk|-dimensional hypercube, any split in Σk not of the form
i, i+ 1|X − {i, i+ 1} is displayed in terms of four parallel edges of M(Σk) exactly
two of which are external.

4.3.3 Gates
In this section we establish that any partially-resolved 1-nested network N can be
embedded into the Buneman graph associated to Σ(N).

To be able to establish that any 1-nested partially-resolved network N can
be embedded as a (not necessarily induced) subgraph into the Buneman graph
B(Σ(N)) associated to Σ(N), we require again more terminology. Suppose N is
a partially-resolved 1-nested network and v is a non-leaf vertex of N . Then v is
either incident with three or more cut-edges of N , or there exists a cycle Cv of N
that contains v in its vertex set. In the former case, we choose one of them and
denote it by ev. In addition, we denote by xv ∈ X an element such that ev is not
contained in any path in N from xv to v. In the latter case, we define xv to be an
element in X such that no edge of Cv is contained in any path in N from v to xv.

110

Theorem 4.3.6. Suppose N is a 1-nested partially-resolved network on X. Then
the map ξ : V (N) − X → Gates(B(Σ(N))) defined by mapping every non-leaf
vertex v ∈ V (N) to the map

ξ(v) : Σ(N)→ P(X) : S 7→
{

max(S|Σ∗) if S ∈ Σ(N)− Σ∗
S(xv) else

is a bijection between the set of non-leaf vertices of N and the gates of B(Σ(N))
where Σ∗ = {Sev} if v is contained in three or more cut-edges of N and Σ∗ =
Σ(Cv)− else. In particular, ξ induces an embedding of N into B(Σ(N)) by mapping
each leaf x of N to the leaf φx of B(Σ(N)) and replacing for any two adjacent
vertices v and w of a cycle C of N of length k the edge {v, w} by the path φ0

i :=
ξ(v), φ1

i , . . . , φ
k−3
i := ξ(w).

Proof. Suppose N is a 1-nested network and put Σ = Σ(N). To see that ξ is
well-defined suppose v ∈ V (N)−X. Then v is either contained in three or more
cut-edges of N or v is a vertex of some cycle C of N . In the former case we obtain
{Sev} ∈ π0(Σ(N)) and in the later we have C = Cv and Σ(Cv)− ∈ π0(Σ). In
either case, the definition of the element xv combined with Property 4.3.4 implies
ξ(v) ∈ Gates(B(Σ)).

To see that ξ is injective suppose v and w are two non-leaf vertices of N such
that ξ(v) = ξ(w). Assume for contradiction that v 6= w. It suffices to distinguish
between the cases that (i) v and w are contained in the same cycle, and that (ii)
there exists a cut edge e′ on any path from v to w.

To see that (i) cannot hold, suppose that v and w are vertices on a cycle C of
N . Then, S(xv) = max(S|Σ(C)−) = S(xw) must hold for the m-split S obtained
by deleting the two edges of C adjacent to v which is impossible. Thus (ii) must
hold. Hence, there must exist a cut-edge e′ on the path from v to w. Then
ξ(v)(Se′) 6= ξ(w)(Se′) follows which is again impossible. Thus, ξ must be injective.

To see that ξ is surjective suppose g ∈ Gates(B(Σ)). Then there exists some
xg ∈ X and some block B of B(Σ) such that g is the gate for xg in B. Let
ΣB ∈ π0(Σ(N)) denote the connected component that, in view of Property 4.3.3,
is in one-to-one correspondence with B. If there exists a cycle C of N such that
Σ(C)− = ΣB then let vg be a vertex of N such that no edge on any path from vg to
xg crosses an edge of C. Then, by construction, ξ(vg) = g. Similar arguments show
that ξ(vg) = g must hold if ΣB contains precisely one split and thus corresponds
to a cut-edge of N . Hence, ξ is also surjective and thus bijective.

The remainder of the theorem is straightforward.

Theorem 4.3.6 implies that by carrying out the two steps (a) and (b) stated
in Corollary 4.3.7 any 1-nested partially-resolved network N induces a 1-nested
network N(Σ(N)) such that the split system Σ(N(Σ(N))) induced by N(Σ(N))
is the split system Σ(N) induced by N .

111

Corollary 4.3.7. Let Σ be a split system on X for which there exists a 1-nested
network N such that Σ = Σ(N). Then N(Σ) can be obtained from B(Σ) by
carrying out the following steps:

(a) For all x ∈ X, replace each leaf φx of B(Σ) by x.

(b) For all blocks B of B(Σ) that contain a k-marguerite M for some k ≥ 4,
first add the edges {φ0

i , φ
0
i+1} for all i ∈ {1, . . . , k} where k+ 1 := 1 and then

delete all edges and all vertices of B not of the form φ0
i for some 1 ≤ i ≤ k.

We next show that even if the circular split system under consideration does
not satisfy the assumptions of Corollary 4.3.7, steps (a) and (b) still give rise to
a, in a well-defined sense, optimal 1-nested network.

Theorem 4.3.8. Let Σ be a circular split system on X that contains all trivial
splits on X. Then N := N(Σ) is a 1-nested network such that:

(i) Σ ⊆ Σ(N),

(ii) |Σ(N)| is minimal among the 1-nested network satisfying (i),

(iii) A vertex v of a cycle C of N is partially resolved if and only if the splits
displayed by the edges of C incident with v belong to Σ.

Moreover N is unique up to isomorphism and partial-resolution.

Proof. (i) & (ii): Suppose for contradiction that there exists a 1-nested network
N ′ such that Σ ⊆ Σ(N ′) and |Σ(N ′)| < |Σ(N(Σ))|. Without loss of generality, we
may assume that N ′ is such that |Σ(N ′)| is as small as possible. Moreover, we may
assume without loss of generality that N ′ and N(Σ) are both maximal partially-
resolved. To obtain the required contradiction, we employ Corollary 4.2.13 to
establish that N ′ and N(Σ) are isomorphic.

Since Σ ⊆ I(Σ) it is clear that I(Σ) contains all trivial splits ofX. Furthermore,
since Σ is circular, Corollary 4.2.3(i) implies that I(Σ) is circular. Since I(Σ)
is clearly I-intersection closed and, by Property (Bi), I(Σ) is the split system
displayed by G(I(Σ)) it follows that I(Σ) comprises all splits displayed by N(I(Σ)).
Hence, by Corollary 4.2.13, up to isomorphism and partial-resolution, N(I(Σ)) is
the unique 1-nested network for which the displayed split system is I(Σ).

We claim that I(Σ) = Σ(N ′) holds too. By Corollary 4.2.3(iii), we have I(Σ) ⊆
Σ(N ′). To see the converse set inclusion assume that S ∈ I(Σ). Then S is either
induced by (a) a cut-edge of N ′ or (b) S is not an m-split and there exists a cycle
C of N ′ that displays S. In case of (a) holding, S ∈ Σ follows by the minimality
of |Σ(N ′)|. So assume that (b) holds. Then there must exist some connected
component ΣC ∈ π0(Σ) that displays S. Hence, by Property 4.3.3, there exists

112

some block BC of B(Σ) such that the split system displayed by BC is ΣC . Hence,
ΣC is also displayed by N(Σ). Since, as observed above, Σ(N(Σ)) = I(Σ) we also
have Σ(N ′) ⊆ I(Σ) the claim follows.

(iii) Suppose C is a cycle of N and v is a vertex of C. Assume first that v is
partially-resolved. Then there exists a cut-edge e of N that is incident with v. Note
that the split Se displayed by e is also displayed by the two edges of C incident
with v. In view of Corollary 4.3.7, the cut-edges of N are in 1-1 correspondence
with the cut-edges of B(Σ), so we obtain Se ∈ Σ.

To see the converse assume that e1 and e2 are the two edges of C incident
with v such that the split S displayed by {e1, e2} is contained in Σ. Then S is
compatible with all splits in Σ − {S}. By Property 4.3.3, it follows that there
exists a cut-edge e in B(Σ) such that Se = S. Combined with Corollary 4.3.7, it
follows that v is partially resolved.

4.4 Conclusion
The questions raised by this work are similar to the ones discussed at the end
of Chapter 2. Indeed, here as well as in Chapter 2, we have extended existing
results on phylogenetic trees to 1-nested networks, which can be seen as a first
step towards a generalization to any type of phylogenetic network.

Split systems have proven to be very powerful for phylogenetic tree reconstruc-
tion. In the context of this, it turns out that one of the difficulties to obtain such
a generalization lies in the fact that if the requirement for a split system Σ to be
circular is dropped, then the structure of a network representing Σ becomes much
more complex.

Uniqueness of the network representation of a split system also seems to become
a major problem outside of the space of circular split systems. If we consider for
example the split system Σ of all splits of the set {1, . . . , 7}, we have seen that the
network N depicted in Figure 4.1 is a representation of Σ. However, any network
obtained from N by a permutation of its leaves is also a representation of Σ. Since
a network similar in essence to the network in Figure 4.1 can easily be constructed
for any set X, and since this permutation property is independent of the size of
X, this implies that for all set X, there exists at least |X|!/2 distinct phylogenetic
networks representing the split system Σ(X). Moreover, all these networks are
isomorphic as graphs (as only leaf labels are modified), meaning that no criteria
based on topological complexity can be used to differentiate between them.

Finally, we have seen that if Σ is circular, the minimal superset of Σ that can be
represented by a phylogenetic network is unique, and is precisely the I-intersection
closure I(Σ) of Σ. This uniqueness is generally also lost when we do not require
Σ to be circular.

113

In view of these observations, the results presented in this chapter suggest
that circularity for split systems is a very special and powerful property. Thus, a
generalization of these results to more general split systems does not seem to be
straightforward, and probably requires the development of alternative tools and
techniques.

114

Chap. 5

On introgression and multiple
rooted networks

Adapted from:

G. E. Scholz, A.-A. Popescu, M. I. Taylor, V. Moulton and K. T. Huber.
OSF-Builder: A new tool for reconstructing and representing phylogenetic
histories involving introgression. submitted,

except for Section 5.2.1, which provides an overview of the framework in which
this work takes place. My personal contribution to this work has been to assess the
performance of the algorithm OSF-Builder applied to real biological datasets,
and to conduct the simulation study. I also wrote the first draft for the parts of
the paper related to both of these tasks, as well as the first draft for the description
of the inner-working of the algorithm and the worked example. As a support to
the paper comes a Python implementation of the algorithm OSF-Builder. The
development of this algorithm, as well as the implementation of its first version,
is due to Andrei-Alin Popescu. To this first version, I added a certain number of
improvements, among which are the possibility to run the software on a species
forest of more than two trees, a graphical output (of the type of Figure 5.1) to help
“read” the results, and the possibility for the user to try (and compare the output
from) different orderings of the trees in the species forest.

This chapter proposes a new method to reconcile a set of species trees and an
allele tree, using the novel concept of an “overlaid species forest”. We introduce
the algorithm OSF-Builder, aimed at finding such a reconciliation, and study
its properties and performances.

115

5.1 Introduction
In this chapter, adapted from [54], we introduce and study a new type of event-
based reconciliation problem. Roughly speaking, reconciliation problems can be
seen as the research for an “embedding” of a rooted phylogenetic tree T0 into
a further one T1, whose set of leaves are different but related in some way (see
Section 5.2.1 for a formal definition). Such an embedding has to take into account
the relationships between both sets of leaves, and to be optimal, it has to minimize
an overall cost induced by a set of pre-given events.

As we shall see in Section 5.2.1, the solution of a reconciliation problem gener-
ally takes the form of a map from the vertex set of T0 to the set of arcs and vertices
of T1. Motivated by some recent works on gene introgression (see e. g. [2] or [62]),
we extend this approach to the problem of a reconciliation of an allele tree G into
a set of lineage trees F , which we shall refer to as a species forest (see Section 5.2.2
for all the terminology). The choice to map the vertices of G “inside” a set F of
rooted phylogenetic trees, rather than inside a single tree, results in the existence
of arcs (u, v) of G such that u and v are mapped to distinct trees of F .

In the context of gene introgression, these arcs, which we shall refer to as
contact arcs, can be thought of as postulated introgression events. To identify
them, we present a new model for introgression which captures the idea that an
allele can spontaneously arise within a lineage and that introgression is rare. To
formalize this we allow the root of the allele tree G to be mapped to any vertex
of a lineage tree (i. e. not necessarily its root) of F and invoke parsimony to
minimize the number of contact arcs necessary to reconcile G with the trees in F .
Adapting the Fitch-Hartigan algorithm ([25], see Section 5.3.1 for a description of
that algorithm) enables us to then find an optimal embedding in G into the forest
F , which we call an Overlaid Species Forest or OSF for short.

To represent an OSF, we essentially add new arcs, corresponding to the con-
tact arcs postulated by the OSF, between the trees in F , thus mimicking the con-
struction behind the idea of a tree-based network (see Section 1.1.3). The graph
obtained this way differs from a phylogenetic network as defined in Section 1.1.2
in the fact that it may have more than one vertex of in-degree zero. In Figure 5.1
we present an example of an OSF that we computed for a set F consisting of 7
lineage trees L1, . . . , L7 given in [46] (see Section 5.4.2 for the details). Here the
lineage trees are depicted in different colors and the contact arcs are given as red
dashed arrows. Note that the OSF has three roots, respectively the roots of the
lineage trees L1, L2 and L5.

We begin this chapter by defining and reviewing event-based reconciliation
problems involving two rooted phylogenetic trees (Section 5.2.1). We then formal-
ize the allele tree-species forest reconciliation problem (Section 5.2.2) and define
all the concept and notation related to that problem. As a central tool for its reso-

116

H_godmani

H_metharme

H_aoede

L2
H_hecuba

L4

L1

H_doris
H_hierax

H_xanthocles

H_wallacei

L7

H_egeria
H_astraea

H_burneyi
L3

H_pardalinus

He_pseudoc

H_luciana

H_hecale

H_athis

H_nattareri

H_ethilla

H_besckei

H_ismenius

H_numata

L5 He_rorainna

Hm_plessini

Hm_cythera

Hm_bellula

Hm_amandus

Ht_timareta

Hm_amaryllis

Ht_thelxinoe

Hm_rosina

Hm_vulcanus

Hm_melpomene

Ht_contigua

Hm_meriana

Hm_ecuador

Ht_florencia

Hm_thelxiopeia

Hm_aglaope

Hm_malleti

L6

Ht_ssp_nov

H_tristero

H_heurippa

H_pachinus

H_cydno

Figure 5.1: An OSF depicting introgression events of the dennis allele in [46]
of the optix gene from the Heliconius melpomene lineage (L7) into the Heliconius
timareta lineage (L6) and from lineage L4 into the Heliconius elevatus lineage (L5).
To help readability, arcs are directed from left to right.

lution, we introduce in Section 5.3.1 the Fitch-Hartigan algorithm and present
some of its key features. We conclude the first part by presenting our model for
introgression and the OSF-Builder algorithm (Section 5.3.2).

Sections 5.4.1 and 5.4.2 present the output of OSF-Builder on two real bi-
ological dataset, Scaevola and Heliconius respectively, the latter being the one
depicted in Figure 5.1. In addition to this, we use the Scaevola dataset as a
worked example to describe in details the inner-working of the algorithm. Also,
we use the Heliconius dataset to investigate the effect of the initial ordering of the
trees in the species forest on the postulated contact arcs. Then, we conduct a sim-
ulation study to investigate the performances of OSF-Builder in the presence
of noise. We present its setup and what is meant by “noise” in Section 5.5.1, and

117

its results in case of noise in the allele tree and in the species forest respectively
in Sections 5.5.2 and 5.5.3. For some theoretical results on the algorithm OSF-
Builder and on the graph-representation of an OSF, some of which mentioned
in this chapter, we refer the reader to Appendix A.

5.2 Preliminaries

5.2.1 Tree reconciliation
It is sometimes of interest to “compare” phylogenetic trees that are not defined on
the same set of taxa. This may be the case, for example, if their respective set of
leaves share a particular relationship, such that a host-parasite relationship (as in
[5] for example), or an gene-species relationship (as in [15] and [51]). As such pairs
can be expected to evolve together, the idea of reconciliation studies is to try to
explain the evolution of one in terms of the other.

Given two rooted phylogenetic trees T0 and T1, on two sets X0 and X1 respec-
tively, and a map φ : X0 → X1 relating the elements in X0 with the elements of
X1, we call a map φ : V (T0)→ V (T1)∪E(T1) that satisfies the following properties
an embedding of T0 into T1:

(E1) For all x ∈ X0, we have φ(x) = φ(x).

(E2) For all vertices u, v of T0 such that φ(u) 6= φ(v), if u is an ancestor of v, then
there exists no directed path in T1 from φ(v) to φ(u).

Condition (E1) ensures that φ is an extension of φ, and condition (E2) guarantees
that the ancestor relationship are, if not necessarily preserved, not broken. The
underlying idea is to “represent” T0 inside T1, as suggested by Figure 5.2.

a b c d1 d2 A B C D A B C D

(i) (ii)

T0 : T1 :

Figure 5.2: (i) Two phylogenetic trees T0 and T1 on {a, b, c, d1, d2} and {A,B,C,D}
respectively. (ii) An embedding of T0 (dashed) in T1 (whose edges are represented
as tubes).

118

Reconciliation problems aim at finding an embedding satisfying a certain num-
ber of conditions (see [63] for a detailed although non-exhaustive review). Most
of the time, these conditions take the form of event-based parsimony. To better
understand this concept, we will separate both parts of it.

The first part, event-based, means that we can interpret the behavior of φ on
specific parts of the tree T0 as evolutionary events. Although the definition of these
events may change from one author to another, the underlying idea is to compare,
for an internal vertex v of T0 with children1 v1 and v2, the relative position of
φ(v1) and φ(v2) with φ(v) in T1. For example, in [5], all internal vertices of T0
are mapped to arcs of T1. If v is such a vertex and a = φ(v), we denote by w
the head of a, by w1 and w2 the children of w if w is not a leaf of T1, and by v1
and v2 the children of v (see Figure 5.3). Then, the authors of [5] consider four
events, called cospeciation, duplication, loss and switch, respectively defined (up
to a permutation of v1 and v2) as follows:

- If φ(v1) = (w,w1) and φ(v2) = (w,w2), the event is a cospeciation (Fig-
ure 5.3(i)).

- If φ(v1) = φ(v2) = a, the event is a duplication (Figure 5.3(ii)).

- If φ(v1) is an arc of T1 that is neither (w,w1) nor (w,w2) but lies on a directed
path from w to a leaf of T1, the event is a loss (Figure 5.3(iii)).

- If φ(v1) is an arc of T1 that can not be reached from w via a directed path,
the event is a switch (Figure 5.3(iv)).

w•
a

w1
•

w2
•

v•

v1
•

v2
•

(i)

w•
a

w1
•

w2
•

v•

v1
•

v2
•

(ii)

w•
a

w1
•

w2
•

v•

v1
•

v2
•

(iii)

w•
a

w1
•

w2
•

v•
v1
•

v2
•

(iv)

Figure 5.3: For a vertex v of a tree T0 (dashed), four possible mappings of the
children v1 and v2 of v to arcs of T1 with regard to the image a of v in T1. Each of
these mappings corresponds to a particular co-evolutionary event: (i) Cospeciation.
(ii) Duplication. (iii) Loss. (iv) Switch. See text for details.

1We assume here that both trees are binary.

119

Based on the knowledge indicating e. g. how likely an event is, a cost c ∈ R
can be assigned to each of them. Then, the idea of a parsimony framework means
that the goal is to find an embedding that minimizes the overall cost.

5.2.2 Model of introgression
We begin by introducing our model of introgression, which also involves introduc-
ing some terminology. The starting point of our model is the observation that in
many introgression studies, lineage information is available for the species under
consideration, and that these lineages are sometimes uniquely identifiable by the
alleles of a gene not involved in the identification of those lineages. In case of
introgression, species of a lineage carry both lineage specific and lineage foreign
alleles of that gene making such species potential indicators of introgression. A
useful way to represent introgression therefore is to add in branches that connect
one lineage tree with another so that the information provided by both the lineage
trees and the allele tree is displayed in a single structure. To obtain our model,
we make the following additional biologically motivated assumptions.

(A1) Introgression is relatively rare.

(A2) An allele can only originate in one tree of the species forest.

(A3) If an allele has introgressed from one lineage into a different lineage then it
cannot introgress back into that lineage unless the start of the first introgres-
sion event precedes the end of the second one. (i. e. we do not allow directed
cycles)

(A4) The allele composition of a species x is the sum of the allele that identifies
the lineage x belongs to and all the alleles that x obtained via introgression
events. (In particular, we do not allow losses).

(A5) The only other permissible evolutionary events are speciation and whole
genome duplication.

Assumption (A1) motivates the use of a parsimony framework for modeling in-
trogression, Assumption (A2) is motivated by the observation that lineages some-
times carry a specific allele and Assumption (A3) reflects time consistency. As-
sumption (A4) captures the idea that the aimed for model of introgression displays
both the lineage trees and the allele tree. To formalize our problem subject to the
assumptions above we require some terminology and notation. We distinguish in
this chapter two types of phylogenetic trees, depending on the nature of the el-
ements labelling their leaves. Thus, we call a phylogenetic tree whose leaves are
species a species tree, and a phylogenetic tree whose leaves are alleles an allele tree.

120

We also call a set F of one or more species trees on pairwise distinct leaves sets a
species forest, in which case we refer to the trees in F as lineage trees. Note that
V (F) = ⋃

T∈F V (T) and that L(F) = ⋃
T∈F L(T). For F a species forest and G

a gene tree, we refer to a map φ : L(G) → L(F) as an allele-species map. This
can be understood as the assignment to a given allele a ∈ L(G) of the species
A ∈ L(G) that carries this allele. To facilitate readability, we always denote the
species that contains an allele by the capitalization of its first letter, without the
index if the allele has one (i. e. A for a or for a1, Ch for ch). Finally, we refer to
the triple (F,G, φ) as an AS-forest (for Allele-Species forest). Such an AS-forest
is depicted in Figure 5.4(i).

G :

a1 b1 c1 d1 h1 i1 h2 i2

(i)

(ii)

A B C D E H I J K

j1 A B C D E H I J K

S1 : S2 :

Figure 5.4: (i) An allele tree G and two species trees S1 and S2. (ii) An OSF for
the trees in (i).

To formalize the aforementioned idea of adding additional arcs to the trees in
a species forest F based on the information provided by an allele tree G, we use
a map ψ from the set of vertices of G into the set of vertices of F . The purpose
of that map is to capture, for every arc (u, v) of G, whether both u and v are
contained in the same tree of F or not. To make this more precise, suppose F
is a species forest, G is an allele tree, φ is an allele-species map and ψ is a map
from V (G) to V (F). Inspired by the works on reconciliation problems described
in Section 5.2.1, we call ψ an overlaid species forest or OSF, for short, for F and
G and φ if ψ satisfies the following three properties:

(F1) If u ∈ L(G) is an allele of species U ∈ L(F), then ψ(u) = U .

(F2) If u and v are two vertices of G such that u is an ancestor of v in G, and

121

ψ(u) and ψ(v) belong to the same tree T of F , then ψ(u) is an ancestor of
ψ(v) in T .

(F3) If v is a vertex of G such that ψ(v) is a vertex of a given tree T of F , then
there exists an offspring taxon g of v such that φ(g) is a species of T .

Note that in case a species forest F contains a single tree, then the problem of
finding an OSF for F and G boils down to finding a reconciliation map for a species
tree and a gene tree under parsimony where the only two permissible evolutionary
events are speciation and duplication (see Section 5.2.1). Indeed, if the forest
F contains a single tree, Property (F1) reduces to Property (E1), Property (F2)
implies Property (E2), and Property (F3) trivially holds. Also, note that for any
species forest F on X, any allele tree G and any allele-species map φ, there always
exists an OSF for F , G and φ. Indeed, a map ψ : V (G) → V (F) satisfying
ψ(g) = φ(g) for all leaves g of G, and such that ψ(v) is the root of a given tree T
in F for all internal vertices v of G satisfies Properties (F1) and (F2), and satisfies
Property (F3) provided that T is chosen in such a way that the image set of φ
contains at least one leaf of T .

A representation of an OSF ψ is a rooted directed acyclic graph H obtained
from F by adding, for all edges (u, v) of G such that ψ(u) and ψ(v) belong to two
distinct trees of F , the arc (ψ(u), ψ(v)). We call these new arcs contact arcs for
this OSF. By abuse of terminology, we also refer to the network H as an overlaid
species forest (OSF) for the AS-forest (F,G, φ). For the AS-forest depicted in
Figure 5.4(i), we represent such a network in Figure 5.4(ii), in which the contact
arcs are represented as dashed arrows.

5.3 Building an optimal OSF
As is easy to see, an OSF can potentially postulate a large number of contact arcs
and therefore need not be optimal in the sense of Assumption (A1). To tackle the
problem of finding an optimal OSF (in the sense of that assumption), we adapt
the well-known Fitch-Hartigan algorithm [25].

5.3.1 The Fitch-Hartigan Algorithm
The Fitch-Hartigan algorithm has been introduced in [25]. Its initial purpose
is to reconstruct an optimal, in a sense to be define, explanation of the observable
diversity of a character shared by a set of taxa.

Given a rooted phylogenetic tree T on X with root ρ, and a map χ : X → C
from X to a nonempty set C as in Figure 5.5(i), the key point is to find an
extension χ : V (T)→ C of χ minimizing the number of arcs (u, v) of T such that

122

χ(u) 6= χ(v). Such arcs are called jumps, and we denote this minimal number by
m(T, χ). Figure 5.5(ii) and (iii) show two distinct such extensions, for the initial
situation depicted in Figure 5.5(i).

1 2 3 4 5

(i)

1 2 3 4 5

(iii)

1 2 3 4 5

(ii)

Figure 5.5: (i) A phylogenetic tree T on X = {1, 2, 3, 4, 5} and a coloring of its
leaves as a map χ : X → C = {◦, •,×}. (ii) and (iii) Two distinct optimal exten-
sions of χ to the vertex set of T . The jumps for these extensions are represented
as dashed arcs. (see text for details).

The Fitch-Hartigan algorithm proceeds in two steps. The Bottom-up step
recursively defines two maps: σ : V (T) → C, which can be seen as a “first selec-
tion” of elements of C that can possibly be associated to a vertex v ∈ V (T) and
l : V (T) → N recording the minimal number of jumps in the subtree rooted at
v. We initialize these maps on X by putting, for all x ∈ X, σ(x) = {χ(x)} and
l(x) = 0. Indeed, for x ∈ X, χ(x) is the only possible choice for χ(x), and the
subtree rooted at x does not contain any jump. Now consider a vertex v of T and
assume that, for all children v1, . . . , vk, k ≥ 2, of v the set σ(vi) and the value l(vi)
are known. Then we put :

f(v) = max
c∈C
|{i ∈ {1, . . . , k} : c ∈ σ(vi)}|

and define σ(v) as the set of characters c ∈ C realizing this maximum. In other
word, σ(v) is the set of character that are the most frequent among the children
of v. We also put l(v) = ∑k

i=1 l(vi) + k− f(v). This step is depicted in Figure 5.6.
Note that if v has only two children v1 and v2, we have σ(v) = σ(v1)∩σ(v2) if this
intersection is nonempty, and σ(v) = σ(v1) ∪ σ(v2) otherwise. In the first case,
we have l(v) = l(v1) + l(v2), and in the latter, l(v) = l(v1) + l(v2) + 1. These
observations make the recursive definitions of σ and l easier to handle in case the
tree T we consider is binary.

Once all vertices of T have been processed, and the maps σ and l completely
defined, the minimal numbers of jumps m(T, χ) of jumps an extension of χ realizes
is given by l(ρ). The Top-Down step of the Fitch-Hartigan algorithm then

123

1 2 3 4 5

{◦}0 {×}0

{◦, •}1

{◦, •,×}2

Figure 5.6: The Bottom-up step of the Fitch-Hartigan algorithm applied to
the input (T, χ) depicted in Figure 5.5(i). Each internal vertex v is labelled by the
set σ(v), and the value of l(v) is shown as index of this set (see text for details).

allows to find an extension χ realizing this minimum. We start by choosing an
element of σ(ρ) which we define as χ(v). Then, for all v ∈ V (T) whith ancestor u
for which χ(u) has been defined, we put χ(v) = χ(u) if χ(u) ∈ σ(v). Otherwise,
we can choose any element of σ(v) to be χ(v). The map depicted in Figure 5.5(ii)
has been obtained this way from Figure 5.6 after assigning the symbol ◦ ∈ C to
the root of T as an initial choice.

The Fitch-Hartigan algorithm is attractive due to its fast runtime. Indeed,
processing all vertices of T can be done in O(|X|) time, and for each of these
vertices, all the characters in C have to be tested in the the Bottom-up step. This
gives a runtime of O(|X|.|C|) for the algorithm.

Clearly, as choices have to be made, the resulting map χ is in general non
unique. Moreover, there may exist extensions χ of χ realizing this minimal number
of jumpsm(T, χ), but can not be recovered using the Fitch-Hartigan algorithm.
This is the case of the extension χ depicted in Figure 5.5(iii). A method for
counting the number of optimal solutions for a given input has been developed in
[4]. As this method presents little interest to this chapter and is quite technical,
we describe it in Section A.3 for the sake of completeness.

5.3.2 The algorithm OSF-Builder
We next provide an outline of OSF-Builder and refer to Section 5.4.1 for a
worked example. OSF-Builder takes as input a species forest F , an allele tree
G and an allele-species map φ : L(G) → L(F). We can assume without loss of
generality that F , G and φ are such that for all trees T in F , there exists an allele
g ∈ L(G) such that φ(g) ∈ L(T). Put F = (F,G, φ). Then OSF-Builder finds
an overlaid species forest ψ∗F : V (G) → V (F) postulating a minimal number of

124

contact arcs. For the following, we denote that minimal number by t(F,G, φ), or
t(F).

OSF-Builder works by first assigning to each allele v in L(G) the tree Pv in F
that contains the species φ(v) in its leaf set (Step 0). Referring to this assignment
as a map P : L(G) → F from the leaf set of G into the trees of F defined by
putting P (v) := Pv, the algorithm then applies the Fitch-Hartigan algorithm to
G and P to find an extension P : V (G) → V (F) of P to a map from the vertex
set of G to the trees in F (Step 1). Note that by virtue of the Fitch-Hartigan
algorithm, the number of arcs (u, v) of G for which the tree P (u) of F associated
to u is distinct from the tree P (v) of F associated to v is as small as possible.

In the final step, OSF-Builder considers each interior vertex v of G in turn
to obtain the vertex ψ∗F(v) in the tree P (v) of F that v is assigned to via ψ∗F.
More precisely, OSF-Builder first associates to every vertex v of G the subset
Uv ⊆ L(F) of all species in F that contain an offspring allele of v. Subsequent to
this, it considers the subset U ′v of species in Uv that are also contained in the leaf set
of the tree P (v) of F (i. e. U ′v = Uv ∩L(P (v))). Note that, by virtue of the Fitch-
Hartigan algorithm, the set U ′v is nonempty. Finally, the last common ancestor of
the species in U ′v with regards to the tree P (v) is taken by OSF-Builder to be
ψ∗F(v).

The construction of the map P is done using the Fitch-Hartigan algorithm, and
as we have seen, this is done inO(|L(G).|F |) time. The last part of OSF-Builder,
which derives the map ψ∗F from the map P , requires to consider for all internal
vertices v the leaves that lie below v, so this second part runs in O(|L(G)|2) time.
Recalling that we required for all tree T in F to have a leaf l belonging the the
image of φ, we have |F | ≤ |L(G)|, and thus, O(|L(G).|F |) ⊆ O(|L(G)|2). Then,
the overall runtime of OSF-Builder is O(|L(G)|2).

Since we might have to break ties in the top-down step of the Fitch-Hartigan
algorithm, an OSF resulting from the above approach need not be unique. To
overcome this problem, we may assume that the trees in the species forest F are
ordered in some way. In the case that we have to break a tie, we then do this
in favor of the first one in that ordering, thus ensuring that for a given ordering
κ of F , the output ψκF of OSF-Builder is unique. From the AS-forest depicted
in Figure 5.4(i), we obtain the OSF depicted in Figure 5.4(ii) for the ordering
κ1 = (S1, S2), and the OSF depicted in Figure 5.7(i) for the ordering κ2 = (S2, S1).
The OSF depicted in Figure 5.7(ii) is also an optimal one, but cannot be obtained
using OSF-Builder. The existence of such OSFs is due to the fact, mentioned
before, that the Fitch-Hartigan algorithm may not recover all extensions χ of a
leaf-coloring map χ minimizing the number of jumps.

125

A B C D E H I J K

A B C D E H I J K

a1 b1 c1 d1 h1 i1 h2 i2j1

a1 b1 c1 d1 h1 i1 h2 i2j1

w0

w0

(i)

(ii)

Figure 5.7: (i) - (ii) Graphical representations of two distinct OSFs for the AS-
forest F = (F,G, φ) pictured in Figure 5.4(i). For both of them, we represent both
the arcs in G that give rise to its contact arcs as well as the contact arcs themselves
in terms of dashed arrows.

5.4 Real biological dataset
We now illustrate the applicability of OSF-Builder on two real biological data
sets. The first is a small data set that concerns homoploid hybridization in Scaevola
(goodentaceae), which we use to explain how OSF-Builder works. The second
is a larger data set and concerns wing pattern evolution in Heliconous butterflies.

5.4.1 The Scaevola (goodentaceae) dataset
Mounting evidence suggests that homoploid speciation has played an important
role in plant evolution [37]. To help better understand this, the authors of [37]
studied a clade of seven Scaevola (goodeniaceae) species found on the Hawaiian
islands. For these species which include the hybrid species Scaevola procera and
Scaevola kilaueae they constructed phylogenetic trees based on their alleles for
the ITS region (among other regions). They attributed the discordance between
trees to the hybrid origin of S.procera and S.kilaueae and summarized the resulting
evolutionary scenario for all seven species in terms of a phylogenetic network. From
this network we first derived a species tree and then used that tree to obtain a pair
of lineage trees based on the clades in [37]. We depict that pair in Figure 5.8(i).

Using that pair of lineage trees as species forest and the phylogenetic tree for

126

L1 : L2 : G :

Gi Co K Ch Ga M ch k m ga gi co

(i) (ii)

(iii)

Gi Co K Ch MGa

(iv)

Figure 5.8: (i): The two lineage trees L1 and L2 obtained from the species
network in [37]. (ii): The allele tree G obtained from the ITS region considered
in [37]. (iii): The OSF found by OSF-Builder for the lineage tree pair and the
allele tree in Figure 5.8(i) and (ii). (iv): A depiction of the found OSF in terms
of the species tree (heavy edges) and the allele tree for the ITS gene where Gi
is Scaevola gaudichaudii, Co is Scaevola coriacea, K is S.kilaueae, Ch is Scaevola
chamisioniana, Ga is Scaevola gaudichaudiana, M is Scaevola mollis.

the ITS region of those six species from [37] as allele tree (see Figure 5.8(ii)),
we computed an OSF which we depict in Figure 5.8(iii). In Figure 5.8(iv) we
present an alternative representation of that OSF in terms of a tubelike structure
in heavy edges (species tree) and a tree in lighter edges (allele tree). The bottom
arc joining both lineage trees represents the introgression event between S.coriacea
and S.chamisioniana that was postulated in [37] (giving rise to S.kilaueae). The
second contact arc (i. e. the arc in the horizontal gray “tube” joining both lineage
trees) is due fact that, as indicated in the figure, the two lineage trees are on
sister clades of the species tree and therefore, that arc may or may not suggest
introgression.

We now explain how OSF-Builder generates the OSF in Figure 5.8(iii) using
Figure 5.9. Let L1 and L2 denote the two lineage trees depicted in Figure 5.8(i)
that make up the species forest F , let G denote the allele tree in Figure 5.8(ii) and
let φ denote the allele species map for G and F . Then OSF-Builder first applies
the bottom-up step of the Fitch-Hartigan algorithm to assign to each vertex v of

127

G a set σ(v) of trees of F . We illustrate this assignment in Figure 5.9(i), where
we write i rather than Li for i = 1, 2 to improve readability of the figure. For
example, vertex v1 of G has children k and ch which are both leaves mapped to
tree L1 and tree L2, respectively. Thus, σ(v1) = {L1, L2}. In the case of vertex u1
of G, all three of its children v satisfy L2 ∈ σ(v), and only one satisfies L1 ∈ σ(v).
Thus, σ(u1) = {L2}.

(i) (ii)

G :

ch k m ga gi co

G :

ch k m ga gi co

{1, 2}

{2}

{1} 1

2

2v1

u1

v1

u1

Gi Co K Ch Ga M

(iii)

Figure 5.9: (i) and (ii): an illustration of the bottom up (i) and top-down phase (ii)
of the Fitch-Hartigan part of the OSF-Builder algorithm applied to the lineage
tree pair and the allele tree from Figure 5.8. (iii): The obtained OSF for that
input.

Once all vertices of the allele tree have been assigned a set of trees in F this
way, the top-down step of the Fitch-Hartigan algorithm associates the tree L1 to
the root ρG of G as that tree is the sole element in σ(ρG). Next, it associates to
each vertex v of G the tree T associated to its parent if T ∈ σ(v) (case of v1), and
the unique tree in σ(v) otherwise (case of u1) -see Figure 5.9(ii).

It is clear from Figure 5.9(ii) that the generated OSF will have two contact
arcs since it contains two branches for which the labels of the end nodes differ.
These are the arc from the root of L1 to u1 and the arc from v1 to k. Next, for
each non-leaf vertex v of G the found label (e. g. lineage tree L2 for u1) is used
to identify the vertex in F that is the last common ancestor of the species in that
tree that carry an offspring taxa of v. For example, the offspring taxa of u1 that
are assigned to L2 via φ are m, ga and ch. The species containing them are M, Ga
and Ch respectively, and their last common ancestor in L2 is the root of that tree.
We depict in Figure 5.9(iii) the OSF found for G, F and φ. The found contact arcs
are given in terms of dashed arrows. We remark in passing that we push out a leaf

128

in a generated OSF in case that leaf is involved in a contact arc, thus preventing
the creation of labelled vertices that are not leaves.

5.4.2 The Heliconius butterfly dataset
In [13] it was suggested that introgression played a role in the evolution of wing
pattern in Heliconius butterfly species. To investigate this further, the authors of
[62] studied the evolutionary relationships between 71 Heliconius butterfly species
based on the dennis and ray allele, both of which are known to be implicated
in wing pattern production. In particular, they found that the dennis allele in-
trogressed from H.melpomene into H.timareta and from an ancestor of Heliconius
luciana, Heliconius pardalinus and H.elevatus into H.melpomene and that the ray
allele also introgressed from H.melpomene into H.timareta, and, in addition, also
into H.elevatus (see [62]).

All four of these events were identified from a qualitative point of view using
OSF-Builder (see Figure 5.1). Furthermore Figure 5.1 suggests that introgres-
sion between these lineages did not only occur once but multiple times including
backcrossing and that the dennis allele might have introgressed into H.melpomene
via H.timareta. The former is particularly interesting given that the authors of
[62] aised the question if multiple introgression events might have occurred be-
tween these lineages. To better understand how the order used by OSF-Builder
to resolve ties influences the construction of an OSF, we ran it with all possible
(7!=5040) orderings of the forest. We depict our findings in Table 5.1, where we
present the number of contact arcs supported by an OSF for that dataset.

1 2 3 4 5 6 7
1 � 252 252 0 0 0 252
2 1008 � 2520 630 0 0 630
3 1008 2520 � 630 0 0 630
4 1008 630 630 � 2520 2520 2520
5 0 0 0 0 � 2520 0
6 0 0 0 0 2520 � 5040
7 1008 630 630 2520 0 5040 �

Table 5.1: For 1 ≤ i 6= j ≤ 7, we present in line i column j the number of times
we observe a contact arc from lineage Li to lineage Lj, over all 5040 orderings of
seven lineage trees L1, . . . , L7.

Interestingly, out of the 42 = 7 × 6 possible contact arcs between the seven
lineages we only observe 26 different ones and out of those only 10 occur more

129

than half the time. Out of those 10, the contact arc from lineage H.melpomene
(L6) to H.timareta (L7) and from (L7) to (L6) were recovered under every ordering
suggesting that there is strong signal in the data concerning introgression between
these two lineages. The remaining contact arcs of high frequencies involve lineages
that are sister cherries in the species tree from [13] (see Figure 5.10 for a simplified
version of that tree) and appear highly symmetric. This could be due to the fact
that OSF-Builder breaks ties based on lineage age and that such information is
not available from that species tree (i. e. out of the 5040 orderings, L4 precedes
lineage L5 a total of 5040/2 = 2520 times and so does lineage L6 for lineage L7).

From a parsimony point of view it also suggests that it might be of interest to
investigate if introgression has indeed occurred between the ancestor of lineages L4
to L5 and the ancestor of lineages L6 to L7. The high frequency of the contact arcs
involving lineages L2 and L3 could be an artifact of the OSF construction, since
those lineages are “neighbors” in the species tree in [13] (see also Figure 5.10).

L1

L2

L3

L4

L5

L6

L7

Figure 5.10: A simplified version of the Heliconious butterfly species tree from [13].
Contacts aecs postulated by OSF-Builder are represented as dashed arrows.

5.5 Simulation study
We now use a simulation study to assess the performance of OSF-Builder in the
presence of noise.

5.5.1 Method
To study the effect of noisy input data we simulated two scenarios as follows. Using
the software SimCoal [21] with default settings, we generated a phylogenetic tree
T on 100 leaves. From that tree T , we derived a species forest F , by removing a
random set of non-trivial arcs (and suppressing resulting in-degree and out-degree

130

one vertices). Next, we added contact arcs between the trees in F to obtain
an OSF, which we call OSF1, from which we derive allele tree G and a map
φ : L(G) → L(F). Finally, we randomly simulate noise in G and in the trees
within F , whilst fixing the other, to produce a new allele tree G′ and species forest
F ′, respectively. We repeated this several times, and we then computed an OSF
for the pair so generated and compared it with the perfect scenario.

To simulate noise in an allele tree G, motivated by Theorem A.2.2, we rely
on the notion of a SPR-operation (for Subtree Prune and Regraft), which we now
describe.

Suppose T is a binary phylogenetic tree on X and T0 is a proper subtree of
T , that is, the root of T0 is not the root ρT of T . Let v ∈ V (T) denote the root
of T0. Then we refer to the following two step process as an SPR-operation on
v and T (see e. g. [55]). In the first step, we delete T0 and the incoming arc of
its root. If v is not a child of ρT then we also suppress the resulting degree two
vertex. If v is a child of ρT then we declare the other child w of ρT the root of
the tree obtained from T by collapsing the outgoing arc of ρT . Let T ′ denote the
resulting phylogenetic tree on X−L(G). In the second step we either (i) subdivide
an arc in T ′ by a new vertex w and add T0 to T ′ via the new arc (w, v) or (ii)
add a new incoming arc a to the root of T ′ and graft T0 onto T ′ via the new arc
(tail(a), v). Note that in case the knowledge of v is of no relevance then we refer
to an SPR-operation on T and v as just an SPR-operation on T .

We considered three separate cases to obtain a new allele tree G′ from G. In the
first case, we randomly applied one SPR-operation to G to obtain G′, in the second
case we applied three such operations to G and in the third case we applied five
such operations to G. The original species forest and the respective allele trees G′
we then used as input to OSF-Builder. Denoting the output of OSF-Builder
for F and G′ by OSF2, we then repeated this process 100 times for each of the
three chosen number of operations resulting in a total of 300 AS-forests. For each
case we then measured the difference between OSFs OSF1 and OSF2 in terms of
the difference of number of contact arcs postulated for G and G′, respectively.

Using a similar approach, we simulated noise in the species forest F to obtain a
new species forest F ′. More precisely, we deleted a randomly chosen subtree from
a randomly chosen tree T in F and then added that subtree to a tree in F other
than T , repeating this process one, three and five times respectively. By abuse of
terminology and due to the similarities of this operation with an SPR-operation
on a tree, we shall refer to this process as an SPR-operation on F . Each of the
resulting species forests F ′, we then combined with the allele tree G and used as
input to OSF-Builder. Denoting the output of OSF-Builder for G′ and F
generated by OSF-Builder again by OSF2, we then measured, again over 100
runs per considered case, the difference between OSFs OSF1 and OSF2 in terms

131

G :

a1 b1 c1 d1 h1 i1 h2 i2

Allele tree

G′ :

a1 b1 h1 i1 c1 d1 h2

Perturbation

i2

OSF-Builder

OSF1 :

OSF2 :

?

(i) (ii)

(iii)(iv)

A B C D E H I J K

A B C D E H I J K

Figure 5.11: A schematic outline of our simulation study in the case of noise in
the input allele tree. (i) An OSF OSF1 (ii): An allele tree G obtained from OSF1.
(iii): The allele tree G′ obtained from G by application of one SPR-operation to
G. (iv) The OSF OSF2 generated by OSF-Builder when given G′ and F as
input.

of the difference of number of contact arcs postulated for F and F ′, respectively.

5.5.2 Noise in the allele tree
For the case where the species forest F is fixed and the allele tree G is varied,
we depict in Figure 5.12 the distribution of the differences t(F,G′, φ)− t(F,G, φ).
Here, G′ is an allele tree obtained from G by applying to G one, three, or five
SPR-operations. As expected, the larger the number of operations is the more the
number of contact arcs differs between G and G′. Having said this, in the majority
of the cases, and irrespective of the number of SPR-operations, this difference is
in terms of at most one contact arc. A potential reason for this might be that,
mimicking the data sets analyzed in [46], the number of taxa for the trees in F
is very diverse ranging from a tree in F on 74 taxa to a tree on just two taxa.
Put differently, trees with a large number of taxa have a higher chance of being
affected by an SPR-operation on G than ones with a small number of leaves.
Consequently, an SPR-operation on G can result in the cutting and regrafting of a
subtree G′ of G onto G such that the affected parts of G and G′ are mapped into
the same tree in F under their respective OSFs. Since contact arcs can only be

132

added by the OSF-Builder algorithm between trees of F and not within a tree
of F , the difference in topology between G and G′ does not therefore contribute
to the number of postulated contact arcs for G′.

Figure 5.12: For F , G, G′ and φ as described in the text, we depict the distribution
of t(F,G′, φ) − t(F,G, φ) over 100 runs. The x-axis is labelled by t(F,G′, φ) −
t(F,G, φ) and the y-axis gives the percentage for how often a difference is observed.
Note that the value of −1 on the x-axis means that G′ postulates one contact arc
less than G.

The fact that the two trees G and G′ underpinning Figure 5.12 have a similar
number of contact arcs does not necessarily imply that they have contact arcs in
common. This is because the optimality criterion employed by the OSF-Builder
algorithm to find an OSF forG is dependent on the topology ofG and that topology
can be substantially affected by an SPR-operation.

In Figure 5.13, we depict the number of contact arcs that are common to G
and G′. Note that the bars are not to be understood in a cumulative manner but
as absolute values, i. e. the OSFs containing k of the contact arcs common to G
and G′ are not included in the count of the OSFs that contain k+ 1 of the contact
arcs common to G and G′.

In line with our observations for Figure 5.12, the number of times that a contact
arc is shared by G and G′ is highest when the number of operations applied to G
to obtain G′ is small. In fact, if we applied only one such operation to G, then
in 60% of the cases all eight of the contact arcs postulated by G are recovered by
OSF-Builder when given G′ as the gene tree. Furthermore, in a reassuring 92%
of the cases at least seven of the eight contact arcs postulated for G were recovered
when given G′.

5.5.3 Noise in the species forest
We now turn our attention to the case where the allele tree G is fixed and the
noise affects the species forest F . We depict in Figure 5.14 the distribution of the

133

Figure 5.13: For F , G and G′ as described in the text, we depict the distribution
of the number of original contact arcs recovered, for 100 runs (see text for details).
The x-axis is labelled by number of potential contact arcs and the y-axis by the
percentage of times that such a number was observed. For ease of readability,
contact arc numbers which were not observed are omitted.

differences t(F ′, G, φ)−t(F,G, φ) where F ′ is a forest obtained from F by applying
one, three, or five SPR-operations to F , respectively.

Figure 5.14: For F , F ′ and G as described in the text, we depict the distribution
of t(F ′, G, φ)− t(F,G, φ) over 100 runs (see text for details). The labelling of the
axis is as in Figure 5.12.

The distribution highlighted by Figure 5.14 is similar to the one observed in
Figure 5.12, in the sense that the larger the number of operations applied to F
is, the more F and F ′ differ in their number of contact arcs. Taken together,
Figs. 5.12 and 5.14 suggest that, in general, the difference t(F ′, G, φ)− t(F,G, φ)
is higher than t(F,G′, φ) − t(F,G, φ) when where F ′ and G′ are obtained from
F and G respectively via the same number of SPR-operations. In other words,
it seems that noise in the species forest has a greater effect on OSF-Builders
ability to recover an OSF than noise in an allele tree. A potential reason for this
might be that the applied SPR-operations require the OSF-Builder algorithm
to break up an “introgressed” subtree of G (i. e. the root of that subtree is the tip

134

of an contact arc) in F ′ whereas this subtree is not broken up in F , thus increasing
the number of contact arcs.

This observation is consistent with our theoretical observations, summarized
in Theorems A.2.3 and A.2.2, that the range of values for t(F ′, G, φ) − t(F,G, φ)
is larger than the range of values for t(F,G′, φ)− t(F,G, φ).

5.6 Conclusion
In this chapter, we have presented a new approach that allows us to generate net-
works for exploring data were introgression is suspected to have occurred. We have
investigated it both from a theoretical and a practical point of view involving two
biological datasets and simulation studies. Our results are encouraging and indi-
cate that OSF-Builder could be a useful new tool for studying this phenomenon.
Moreover, the approach is fast (e. g. for the Heliconious butterfly dataset it took
3.8s to run on a HP laptop running Windows 10), which should be useful in light
of the ever increasing amounts of data.

As we have seen, OSF-Builder depends on the ordering of the trees in the
input forest which it employs to break ties. The default ordering in its current
version is based on the age of the lineage trees in the forest. Bearing in mind that
lineages correspond to subtrees in the species tree T from which they were derived,
we break ties between lineages in favor of a lineage for which that root is closest
to the root of T . In case there is still a tie (which can e. g. happen if two lineages
are part of a cherry in T) then we randomly break it. In view of the fast runtime
of OSF-Builder, the user can run the program several times each time changing
that order (as in the Heliconious butterfly example in Section 5.4.2) to get an
idea of which contact arcs are more common than others. Even so, it might be of
interest to develop alternative ways to choose orderings for the lineages trees to
allow OSF-Builder to break ties. For example, it could be worth investigating
weighting schemes for the lineage trees based on either confidence values for the
trees or the size of their leaf sets (or a combination of both). In a similar vein,
it could also be possible to investigate how an introgression scenario is affected
by the choice of lineage trees. For example a lineage tree could be replaced by
sub-lineages corresponding to subtrees of the species tree whose roots are further
away from the root of that tree.

The OSF-Builder method has some limitations. For example, the simula-
tions suggest that it can be difficult to detect deep events. This is probably to be
expected since deeper signals tend to get confounded by more recent ones. More-
over, contact arcs found by OSF builder can be due to the fact that the allele tree
shares branches with the species tree from which the lineages were derived (as in
the Scaevola data set in Section 5.4.1), and such shared branches are more likely

135

to occur closer to the root of the allele tree. It might therefore be interesting to
develop ways to distinguish between contact arcs that are shared and represent
true introgression events from those that do not. A starting point for this might
be to compare the set of contact arcs of an OSF with the arc set of the species tree
from which the lineage trees underlying the OSF were derived. Another limitation
of our approach is the use of parsimony. Hence, it might be worth exploring if our
optimization criterion could be replaced with a more sophisticated one which takes
into account costs of introgression events. For example, different costs could be
assigned to introgression events based on their source trees and/or their recipient
trees. Developing a probabilistic model might also be useful in this regards. In
addition, it could be of interest to try extending our underlying model to include
other types of events (such as losses or horizontal gene transfer, which in that case
would correspond to a contact arc within a single lineage) as those described in
Section 5.2.1.

Finally, from a more theoretical point of view, it might be of interest to de-
velop ways that would allow one to compare OSFs and to better understand their
combinatorial properties. Appendix A presents some first results in that direction.

136

Conclusion and future work

A common theme for all scientific research is the fact that new results lead to new
questions, and answering them raises even more new and interesting questions.
The new results contained in this thesis contribute to in this ever-expanding pat-
tern.

As an illustration of that fact, we have successfully expanded, in Chapters 2,
3 and 4, some of the results reviewed in Chapter 1 to more general frameworks.
In Chapter 2 we generalized some results that are known for phylogenetic trees
to 1-nested networks, a type of phylogenetic networks that both enjoy attractive
combinatorial properties and are relevant to evolutionary biology. More precisely,
we addressed the question of the representability of symbolic maps, that are maps
with range a set of symbols as opposed to real-valued maps, by such networks,
when phylogenetic trees turn out to be inappropriate. Such type of maps arise,
for example, in the context of reconciliation problems using orthology relations.

Chapter 3 remains within the realm of phylogenetic trees. However, it expands
the notion of a symbolic distance, that is, a map returning a non-numeric value for
a set of two elements,to the notion of a symbolic 3-way map, which takes as input a
set of three elements instead of two. In particular, we addressed the question of the
representability of such a map by a phylogenetic tree. For this, we distinguished
between two cases, unrooted trees and rooted trees, and we successfully settled
this question for both cases.

Chapter 4 follows the same pattern as Chapter 2, in that it generalizes results
on phylogenetic trees to 1-nested networks. More precisely, we addressed the ques-
tion of the representability of split systems, that is, sets of bipartitions of a set.
Called splits, these structure can arise, for example, from morphological data for a
taxa set. In addition to characterizing those split systems that can be represented
by 1-nested networks, we have also proposed a “bridge” between two distinct ways
of representing a split system.

Thus, by going deeper into questions that have been answered for simple cases,
we successfully developed in these three chapters some alternative that may be

137

used in situations where these simple cases turn out to be inapplicable or unsatis-
factory. By doing so, new questions have arisen, along the line of “what could the
next step be?”, “what if these new approaches are still inapplicable?”, or “what
can we learn from these results?”. Some of these questions are proposed in the
conclusion of each chapter, together with some leads towards their resolution, and
an anticipation of the difficulties possibly lying ahead.

In Chapter 5, we have proposed a new method for reconciling a set of phylo-
genetic trees with a further one, inspired by existing reconciliation methods. In
particular, we were interested in devising a method that allows us to infer intro-
gressions events, which can be seen from a graphical point of view as “links” joining
a phylogenetic tree with a further one. That method is accompanied with an im-
plementation, an assessment of its performance on both synthetic and real data,
and some theoretical results (which, in order to ease the reading of Chapter 5,
we present in Appendix A). As mentioned at the end of Chapter 5, improving
that method and understanding its properties, by expanding the aforementioned
theoretical results, are two challenges among others. In particular, we proposed
at the end of this chapter some directions into which some improvements of the
method could be undertaken.

Along the way, this work has also lead to the introduction of a new type of
phylogenetic network, which we called multiple rooted networks, admitting more
than a single root. The space of multiple rooted networks stands in itself as a new
field of study for mathematicians and computer scientists. The definition of such
a network as a phylogenetic network for which the requirement of having only one
root is dropped is, in many aspects, similar to the definition, given in the intro-
duction, of a phylogenetic network as a phylogenetic tree for which the property of
not containing a cycle is dropped. Put differently, a (single-rooted) phylogenetic
network is a particular case of a multiple rooted phylogenetic network in the same
respect that a phylogenetic tree is a particular case of a phylogenetic network. As
we have seen throughout this thesis, of which it is one of the key features, many
theoretical results on phylogenetic trees have been expanded to phylogenetic net-
works since their introduction. Given that multiple-rooted networks turned out
to be useful for representing introgression scenarios, the question becomes, how
to extend theoretical results on single-rooted phylogenetic networks to multiple
rooted ones.

138

Appendix A

Some properties of OSF-Builder

We present here some key theoretical results for the algorithm OSF-Builder,
introduced in Chapter 5 (Section 5.3.2). Most of these results appear in the Ap-
pendix of [54], that is, the paper on which Chapter 5 is based. In particular,
we follow all definitions and terminology introduced in Chapter 5. All of the re-
sults (apart from the work described in Section A.3 which, as mentioned in the
introduction of that section, comes from [4]) are the product of my own work.

Each of the Section is dedicated to an attractive property enjoyed by the algo-
rithm OSF-Builder. First, we show in Section A.1 that the OSF we construct
for a given set of lineage trees F and allelle tree G is optimal in the number of
contact arcs that are added to F (Theorem A.1.2), and we bound in Section A.2
the number of contact arcs postulated by OSF-Builder when the allele tree
(Theorem A.2.2) and the species forest (Theorem A.2.3) are slightly modified. We
present in Section A.3 a method to count the number of possible outputs for the
Fitch algorithm, described in [4], which we then slightly modify in order to get the
number of distinct OSFs that may be obtained from a given input. In Section A.4,
mimicking the definition of a tree-based network given in [26] (see Section 1.1.3),
we introduce the class of forest-based network, and we provide a characterization
of forest-based networks that can be obtained as an output of OSF-Builder
(Theorem A.4.2).

A.1 Optimality
Suppose that X is a finite non-empty set and that T is a phylogenetic tree on X.
Suppose that u, v ∈ V (T). Then we put u �T v if u is an ancestor of v in T . In
case there is no ambiguity as to the tree we are referring to or that tree is of no
relevance to the discussion, we also write u � v rather than u �T v.

For the following, suppose that F is an AS-forest with underlying species forest

139

F , allele tree G, and allele-species map φ. Suppose that v ∈ V (G). Then we
associate to v the set

Λ(v) = {φ(g) : g ∈ CG(v)}

of all species in F that carry an offspring allele of v, and the set

F (v) = {S ∈ F |L(S) ∩ Λ(v) 6= ∅}

of all trees in F which contain a leaf (i. e. a species) that carries an offspring allele
of v. Note that both Λ(v) 6= ∅ and F (v) 6= ∅ hold.

Our first result (Lemma A.1.1) ensures that for any ordering κ of the trees
in F , the map ψκF : V (G) → V (F) defined in Section 5.3.2 for an AS-forest
F′ = (F ′, G′, φ′) is indeed an OSF for F. We denote the powerset of a set Y by
P(Y) and refer to the map σ : V (G)→ P(F) underpinning ψ∗F as label-set map for
ψ∗F.

Lemma A.1.1. For any AS-forest F the map ψ∗F is an OSF.

Proof. Suppose F = (F,G, φ) and put ψ = ψF. We need to show that ψ satisfies
Properties (F1) – (F3). To see Property (F1), suppose x ∈ L(G). Choose Px to be
the unique tree in F that contains φ(x) in its leaf set. Then Λ(x) = {φ(x)}. Then
ψ(x) = lcaPx(L(Px) ∩ Λ(x)) = lcaPx({φ(x)}) = φ(x). Consequently, ψ|L(G) = φ.

To see Property (F2), suppose u, v ∈ V (G) such that Pu = Pv and u �G v.
Then LG(v) ⊆ LG(u) and, so, Λ(v) ⊆ Λ(u). Hence, ψ(u) = lcaPu(L(Pu)∩Λ(u)) �
lcaPv(L(Pv) ∩ Λ(v)) = ψ(v). Finally, Property (F3) is an immediate consequence
of the definition of ψ and the set Λ(v) where v ∈ V (G).

The definition of ψ∗F combined with Lemma A.1.1 implies the following opti-
mality result for ψ∗F.

Theorem A.1.2. For any ordered AS-forest F, the map ψ∗F is an optimal OSF
for F.

We also remark that the inner workings of the Fitch-Hartigan algorithm imply
that the OSF returned by OSF-Builder when given F , G, and φ always also
minimizes the number of contact arcs on any subtree G′ of G. Put differently, for
any ordering κ of the trees in F , the OSF ψκF restricted to the vertex set of G′ is
an OSF for F′ = (F,G′, φ). However, it should be noted that that OSF need not
necessarily be of the form ψ∗F′ .

This property is not true in general, as can be seen on Figure 5.7. If we look
at the subtree G′ of G rooted at w0, we can see that the number of contacts
arcs contained in G′ is one for the first OSF, and two in the second one. This is
consistent with our previous observation that the second OSF is not of the form

140

ψ∗F, whereas the fist one is. Note that due to the fact that OSF-Builder uses
a slightly modified version of the Fitch-Hartigan algorithm, the converse does not
hold in general. This means that there may exist minimal OSFs for an AS-forest
F = (F,G, φ) that are not on the form ψ∗F but still satisfy the property that the
number of contact arcs in any subtree G′ of G is minimal.

A.2 Stability
To perform our theoretical noise analysis, we require further terminology. Suppose
T is a phylogenetic tree on X. Then T is called a caterpillar tree if every interior
vertex is adjacent to either one or two leaves. For the following, assume that
F = (F,G, φ) is an ordered, binary AS-forest, and that G is binary. Also, we
associate to ψ∗F and a directed path P from ρG to a further non-leaf vertex v
of G a new AS-forest called a P -induced AS-forest FP = (FP , GP , φP) which we
define as follows. Let v1, v2 ∈ V (G) denote the two children of v. Then GP is the
caterpillar tree obtained from G by collapsing (i) for every vertex w ∈ V (P)−{v}
the subtree of G rooted at the child of w not crossed by P into a new leaf and
(ii) the subtrees rooted at v1 and v2 into a new leaf. Let FP denote the forest
obtained from F by collapsing all subtrees T of trees in F with ρT ∈ U := {u ∈
V (F) : there exists w ∈ L(GP) such that u = ψ∗F(w)} into a new leaf. Note that
LP := L(F) − ⋃u∈U C(u) ∪ U . Also, note that FP might contain trees with one
or two leaves. Abusing terminology, we also refer to such trees as phylogenetic
trees for the remainder of this section. Let φP : L(GP) → LP denote the map
that assigns to every leaf y ∈ L(GP) a leaf w ∈ L(FP) if w = ψ∗F(y) holds and
φ(y) otherwise. For example, if P is the path from the root of G to w0 in the OSF
depicted in Figure 5.7(i), we represent the P -induced AS-forest in Figure A.1.

A1 C1 H1

T1 : T2 : G :

w0

a1 c1 h1

Figure A.1: The P -induced AS-forest for ψ the OSF depicted in Figure 5.4 (i) and
P the path from the root of G to w0.

The SPR-operation introduced in Section 5.5.1 naturally lends itself as a tool
for comparing two phylogenetic trees T and T ′ on X by computing the minimal
number of SPR-operations that have to be carried out to transform T into T ′.
That number is commonly referred to as the SPR-distance between T and T ′,

141

denoted by dSPR(T, T ′). Note that the property that T ′ can be obtained from T
via a sequence k ≥ 2 random SPR-operations, which we used in the simulation
study described in Section 5.5.1, does not mean that dSPR(T, T ′) = k, but only
that dSPR(T, T ′) ≤ k. Indeed, a shorter sequence of SPR-operations allowing to
obtain T ′ from T may exist.

Lemma A.2.1. Suppose F = (F,G, φ) is an ordered, binary AS-forest and G0 is
a subtree of G rooted at a vertex v1 ∈ V (G) that is neither ρG nor a child of ρG.
Suppose further that G′ is a phylogenetic tree on X − L(G0) obtained from G by
first deleting G0 and the incoming arc of its root and then suppressing the resulting
degree two vertex. Then both F0 = (F,G0, φ0 := φ|L(G0)) and F′ = (F,G′, φ′ :=
φ|L(G′)) are ordered binary AS-forests and

t(F0) ≤ t(F)− t(F′) ≤ t(F0) + 1, (A.1)

Proof. As F is an ordered, binary AS-forest it is immediately clear that F0 and F′

are also ordered, binary AS-forests.
To see that Inequality (A.1) holds, let v ∈ V (G) denote the parent of v1. Let κ

denote the ordering of F . Then since v 6= ρG there must exist a vertex u ∈ V (G)
that is the parent of v. Let v2 ∈ V (G) denote the other child of v and let u1
denote the other child of u. Put ψ := ψκF and let σ : V (G) → P(F) denote the
label-set map underlying ψ. Also, put ψ′ = ψκF′ . Let σ′ : V (G′) → P(F) denote
the label-set map underlying ψ′. Let P denote the directed path in G from ρG to
v. Clearly, σ′(w) = σ(w) if w 6∈ V (P) and ψ0 := ψ∗F0 = ψ|V (G0). Then, it suffices
to show that

0 ≤ t(FP)− t(F′P) ≤ 1, (A.2)

where FP and F′P denote the P -induced ordered, binary AS-forests for F and F′,
respectively, defined above.

To establish Inequality (A.2), we perform induction on the number k ≥ 2 of
arcs on P . If k = 2 then GP is the caterpillar tree on {u1, v1, v2} and G′P is the
phylogenetic tree on {u1, v2}. Clearly, tF′P ≤ 1. If tF′P = 1 then tFP ≤ 2 and if
tF′P = 0 then tFP ≤ 1. Hence, Inequality (A.2) holds.

Suppose for the remainder that 3 ≤ k and assume that Inequality (A.2) holds
whenever P has 2 ≤ k′ ≤ k − 1 arcs. Let w ∈ V (GP) denote the non-leaf child
of ρP := ρGP and let w′ ∈ V (GP) denote the leaf of GP adjacent with w. Also,
let x ∈ V (P) denote the leaf of GP adjacent with its root ρGP . Then w, x ∈ G′P
and σ(x) = σ′(x). Since GP is binary and a caterpillar tree, we have for all
z ∈ V (P) that σ′(ρP) ⊆ σ(u). Combined with the fact that σ′(ρP) ⊆ σ′(w) and
that σ(ρP) 6= ∅, it follows that there exists a tree T ∈ σ(w′) = σ′(w′) such that
T ∈ σ(ρGP)∩σ′(ρGP). Consequently, (ρP , w) is a contact arc for ψ if and only if it
(ρG′P , w) is a contact arc for ψ′. Combined with the induction hypothesis applied

142

to the P-induced ordered, binary AS-forests obtained from F and F′ by removing x
and ρP and the arcs (ρP , x) and (ρ,w) in case of GP and ρG′P and the arcs (ρG′P , x)
and (ρG′P , w) in case of G′P , Inequality (A.2) follows. This concludes the induction
step and thus the proof of the lemma.
Theorem A.2.2. Suppose F = (F,G, φ) and F′ = (F,G′, φ) are two ordered
binary AS-forests. Then, 0 ≤ |t(F)− t(F′)| ≤ dSPR(G,G′).
Proof. Clearly, the stated lower bound holds. To see the stated upper bounds,
it suffices to show that if dSPR(G,G′) = 1 then t(F) − t(F′) ≤ 1. Suppose
dSPR(G,G′) = 1. Let G0 denote the subtree of G to whose root ρG an SPR-
operation on G is applied. Clearly, the tree G1 obtained from G′ in the first
step of the SPR operation on G is a phylogenetic tree on X − L(G0). Put
F0 = (F,G0, φ|L(G0)) and F1 = (F,G1, φ|L(G1)). By Lemma A.2.1, it follows that

t(F0) ≤ t(F)− t(F1) ≤ t(F0) + 1

and
t(F0) ≤ t(F′)− t(F1) ≤ t(F0) + 1.

Taken in combination, |t(F)− t(F′)| ≤ 1 follows.

As it turns out, both bounds stated in Theorem A.2.2 are sharp. Continuing
with the notation from Theorem A.2.2, an example for the stated lower bound
is provided by the subtree G0 containing all contact arcs for ψ∗F and ψ∗F′ . An
example for the stated upper bound is furnished by the AS-forests F and F′ whose
unique representations are depicted in Figure 5.4(i) and Figure A.2, respectively as
|t(F)− t(F′)| = 1 = dSPR(G,G′). It is worth noting however that Theorem A.2.2
does not imply that ψ∗F and ψ∗F′ must have contact arcs in common.

We continue this section by turning our attention to the question of measuring
the difference between representations of OSFs in terms of the difference between
their underlying species forests. To this end, note first that an SPR-operation
affecting a single tree T in the underlying species forest of an AS-forest F does not
influence the minimum number of contact arcs of an OSF for F. Thus, we turn
our attention to species forests F where two distinct trees of F are affected by an
SPR-operation. We again require further terminology.

Suppose F = (F,G, φ) is an AS-forest F and T0 is a subtree of some tree in F .
Then we put γF(T0) := {g ∈ L(G) : φ(g) ∈ L(T0)}. For example, for the AS-forest
F depicted in Figure 5.4(i) and the subtree T0 of T1 rooted at the parent of C, we
have γF(T0) = {c1, d1}.
Theorem A.2.3. Suppose F = (F,G, φ) is an ordered, binary AS-forest and T1 ∈
F . Assume that T2 is the phylogenetic tree obtained from T1 by performing an SPR
operation on T1 and the root ρT0 of a subtree T0 of T1 where ρT0 6= ρT1 Denoting
the resulting ordered binary AS-forest by F′ we have 0 ≤ |t(F′)− t(F)| ≤ |γF(T0)|.

143

(i) (ii)

a1 b1 c1 d1 h1 i1 h2 i2 A B C D E H I J K

G′ :

Figure A.2: (i) A phylogenetic tree G′ obtained from the phylogenetic tree G in
Figure 5.4 by applying one SPR operation to G and the parent of c1 and d1. (ii)
A representation for ψ∗F where {T1, T2}, G′, φ are the ordered species forest, allele
tree, and allele-species map underlying F, respectively. For F′ the ordered binary
AS-forest depicted in Figure 5.4(i), we have t(F′)− t(F) = 1.

Proof. Clearly, the stated lower bound holds. To see the stated upper bound,
suppose F = (F,G, φ), F′ = (F ′, G, φ) and T0 are as in the statement of the
proposition. Note that L(F) = L(F ′). We perform induction on n := |γF(T0)| ≥ 0.
If n = 0, then the proposition clearly holds as no contact arc of an OSF for F shares
a vertex with T0.

So suppose |γF(T0)| = n + 1 and assume that the proposition holds for all
F, F′ and T0 for which |γF(T0)| ≤ n where F, F′ and T0 are as their canonical
namesakes in the statement of the proposition. Let g ∈ γF(T0) and let G′ denote
the phylogenetic tree obtained from G by deleting g and its incoming arc (sup-
pressing the resulting degree two vertex). Put φ′ := φ|L(G′), F1 = (F,G′, φ′), and
F2 = (F ′, G′, φ). Then

t(F)− t(F′) = t(F)− t(F1)
+t(F1)− t(F2)
+t(F2)− t(F′).

Since |γF′(T0)| = n clearly holds, it follows by induction hypothesis that −n ≤
t(F1)− t(F2) ≤ n. Moreover, Lemma A.2.1 implies that 0 ≤ t(F)− t(F1) ≤ 1 and
−1 ≤ t(F2) − t(F′) ≤ 0. In summary, we obtain −n − 1 ≤ t(F) − t(F′) ≤ n + 1.
Hence, |t(F)− t(F′)| ≤ n− 1 which concludes the proof of the induction step and,
thus, the proof of the proposition.

As in the case of Theorem A.2.2, the bounds stated in Theorem A.2.3 are sharp.
For the lower bound this follows from the base case of the induction underlying
the proof of Theorem A.2.3. For the upper bound an example is furnished by the
AS-forest depicted in Figure A.3.

144

A B D E F G

T1 : T2 : T3 :

HC I J

G :

a1 b1 a2 b2bl al ak bk h j

u

v

Figure A.3: An ordered, binary AS-Forest F = ({T1, T2, T3}, G, φ) such that ψ∗F
has precisely one contact arc i. e. the arc (u, v). Application of an SPR operation
to T1 and leaf B results in an ordered, binary AS-forest F′ such that the contact
arcs of ψ∗F′ are (u, v) plus the k dashed arcs of G.

A.3 Number of optimal solutions
In [4], the Fitch-Hartigan algorithm is used as a tool towards an explanation of
the difference in size of the shells of some species of turtles. The authors propose
a method to count the number of optimal extensions χ of χ for a given initial
condition (T, χ), which they call the Enumeration Recursion Formula. The idea
is to associate to each vertex v of T two maps Sv : C → N and Tv : C → N. For
c ∈ C, Sv(c) represents the minimal number of jumps in the subtree rooted at v
that can be obtained by labelling v with c ∈ C, and Tv(c) represents the number
of possible labellings of the vertices below v that produce this minimal number of
jumps. For ρ the root of T , the number of possible optimal extensions χ of χ is
then given by: ∑

p∈argmin
c∈C

{Sρ(c)}
Tρ(p).

The maps Sv and Tv are recursively defined as follows. If v is a leaf of T , we
put for c ∈ C:

Sv(c) =
{

0 if χ(v) = c
∞ otherwise.

and
Tv(c) =

{
1 if χ(v) = c
0 otherwise.

145

If v is a non leaf vertex with children {v1, . . . , vk}, k ≥ 2, we put for c ∈ C:

Sv(c) =
k∑
i=1

min
p∈C
{Svi(p) + I(p 6= c)}

and
Tv(c) =

k∏
i=1

∑
p∈κic

Tvi(p)

where
κic = argmin

p∈C
{Svi(p) + I(p 6= c)}.

This method can be used to count the number of optimal OSFs for a given AS-
forest F = {F,G, φ}. However, it takes into account a situation that, translated
to the OSF framework, is forbidden by one of the properties defining an OSF.
More precisely, consider the labelled tree in Figure 5.5(iii), where the symbols ×, •
and ◦ are thought of as distinct trees in a species forest. That tree contains an
internal vertex mapped to the tree ×, whereas none of the leaves below that vertex
is mapped to ×. This is in contradiction with Property (F3), thus that mapping,
although optimal in the number of jumps, does not correspond to an OSF.

To deal with this problem, it suffices to slightly modify the definition of the
maps Tv. For v an internal vertex of T and c ∈ C, we define Tv(c) using the
formula above only if there exists a leaf x ∈ C(v) such that φ(x) = c. Otherwise,
we put Tv(c) = 0. Roughly speaking, this means that the formula does not record
labellings such that a vertex v is labelled with an element c ∈ C whereas no leaf
below v is labelled with c.

Note that in the context of OSFs, using this enumeration method on an AS-
forest F = {F,G, φ} only allows to count the different possible affectations of
vertices of G to trees of F . However, once for all vertex v of G, the tree T ∈ F to
which v is mapped via an OSF is known, there may be different vertices in T to
which v may be mapped. Thus, this method does not count the number of possible
OSFs in the strict sense, but only the number of distinct associations vertices of
G-trees of F .

A.4 Representing OSFs in terms of graphs
The nature of an OSF ψ for an AS-forest F naturally lends itself to a represen-
tation in terms of a graph obtained via adding contact arcs for ψ to the arc set
of the species forest underpinning F. To make this more precise, we require more
terminology. Suppose N is a positive integer. Then we call a graph N a m-rooted

146

network (on X) if L(N) = X and N has exactly m roots, that is, vertices of in-
degree 0. If the number m of roots is of no relevance, we simply refer to N as a
multiple rooted netork. Clearly, a phylogenetic tree is a special case of a 1-rooted
network.

Suppose F = (F,G, φ) is an AS-forest and ψ is an OSF for F. Clearly, we can
refer to such a map ψ as an OSF without having to precise the AS-forest it is
associated to, as all informations about the AS-forest is contained in ψ. Consider
the multiple rooted network N obtained graph from F by carrying the following
two steps:

(i) For all contact arcs (u, v) of G, add to F the arc (ψ(u), ψ(v)).

(ii) For all elements x of L(F) labelling a non-leaf vertex of N , rename x as ux
and add to N the arc (ux, x).

The first step aims at representing contact arcs for ψ in N . By abuse of
terminology, we also refer to these arcs as contact arc of N . The second step
ensures that the leaf sets of F and N are the same, which may not be the case
after step (i) if some contact arcs of N are of the form (u, x) or (x, u), where u is
a vertex of F and x a leaf of F .

Although each root of N is the root of a given tree in F , the number m of roots
of N is not necessarily equal to the size of the forest |F |. Indeed, some contact
arcs of N may be of the form (u, r), where u is a vertex of F and r the root of a
tree in F . In that case, r is not a root of N , as it has an incoming arc. We then
have {r ∈ V (F) : r is a root in F} ⊆ {r ∈ V (N) : r is a root in N}.

Note that the network N obtained by applying (i) and (ii) successively is not
binary. It can be made binary by applying the following steps for all contact arcs
(u, v) of N : First, we subdivide the incoming arcs of u and v that is not a contact
arc (if such an arc exists) by introduction of the vertices u0 and v0 respectively.
Then, we replace in N the arc (u, v) by the arc (u0, v0). We call the network N ′
obtained this way a binary representation of the OSF (F,G, ψ). The important
information provided by a contact arc (u, v) of N , that are, the sets C(u) and C(v)
are clearly not affected by this transformation. However, such a representation may
not be unique.

Clearly, any OSF ψ has a unique representation. However, it should be noted
that a multiple rooted network can be a representation for more than one OSF ψ
even if the AS-forest underpinning F is the same in both pairs. An example for
this is furnished in terms of the AS-forest F = (F,G, φ) depicted in Figure A.4.
With putting ρi = ρTi for all i = 1, 2 the maps ψ, ψ′ : V (G) → V (F) which both
assign to every vertex in u ∈ V (G)− {v, w} the indicated label in X ∪ {ρ1, ρ2, ρ3}
and differ in v and w in that ψ(v) = ρ2, ψ(w) = ρ1, ψ′(v) = ρ1, and ψ(w) = ρ2

147

are clearly minimum OSFs for F. However ψ and ψ′ have the same representation
as the contact arcs for both ψ and ψ′ are (ρ3, ρ1), (ρ1, ρ2), (ρ3, ρ2) and (ρ2, ρ1).

A B C D E F G H

T1 : T2 : T3 :

I J K L

a c e g i k j l b d f h

v w

G :

ρ1 ρ2 ρ3 ρ3 ρ1 ρ2

ρ3ρ3

ρ3

Figure A.4: An AS-forest F consisting of the depicted species forest F =
{T1, T2, T3} on {A,B, . . . , L}, allele tree G on = {a, b, . . . , l} and allele-species
map φ. The representation of ψ and ψ′ are the same where the OSFs ψ, ψ′ :
V (G)→ V (F) are as indicated. See text for details.

Although some multiple rooted networks are representations of OSFs it is
clearly too much to hope for that every such network enjoys that property. We
next turn our attention to characterizing multiple rooted network for which this
is the case. We start with introducing further terminology.

Suppose N is a multiple rooted network with leaf set X. Then we denote by
Et = Et,N a non-empty set of arcs of N whose deletion results in a forest Ft = FEt
of N such that (after suppressing any vertices with indegree and outdegree one
that might result) (i) every tree T ∈ Ft is a phylogenetic tree with L(T) ⊆ X
and (ii) Et = {(u, v) ∈ E(N) : there exist T, T ′ ∈ Ft distinct such that u ∈
V (T) and v ∈ V (T ′)}. Clearly, for any allele tree G for which there exists such a
set Et ⊆ A(N) and an allele-species map φ : L(G)→ L(Ft) the triple (Ft, G, φ) is
an AS-forest.

As is easy to check, a representation N of an OSF ψ with contact arcs Et
contains a vertex r0 ∈ V (N) such that the following property is satisfied:

(*) every arc a = (u, v) ∈ Et can be reached from r0 via a directed path Pa and
there exists no arc (u′, v′) ∈ Et − a on Pa such that v and u′ belong to the
same tree T ∈ F and CT (v) ∩ CT (u′) = ∅.

Indeed, the vertex r0 = ψ(ρG), where rhoG is the root of the allele tree G, satisfies
(*). In view of this, we say for a multiple rooted network N that some non-empty
set Et ⊆ E(N) is valid if there exists some r0 ∈ V (N) such that Property (*) is
satisfied for Et.

148

The next result lies at the heart of the proof of Theorem A.4.2 which provides
structural insight into a representation of an OSF. To help establish it, we require
again more terminology. Suppose G1 and G2 are two phylogenetic trees with
V (G1)∩V (G2) = ∅. Then we denote by G1∧G2 the phylogenetic tree on L(G1)∪
L(G2) obtained from G1 and G2 by adding a new vertex ρ to V (G1) ∪ V (G2) and
two new arcs (ρ, ρG1) and (ρ, ρG2) to E(G1) ∪ E(G2).

Proposition A.4.1. Suppose N is a multiple rooted network on X and Et =
EN,t 6= ∅ is valid for N . Then there exist an AS-forest Ft and an OSF ψt for Ft
such that N is a representation for ψt. In particular, there exists an order κ on
Ft such that ψt = ψκFt holds.

Proof. It suffices to show that there exists an ordered AS-forest Ft such that N is
a representation for ψ∗Ft . We use induction on n := |Et| ≥ 1. Put F = Ft = FEt .
Let r0 ∈ V (M) such that Property (*) is satisfied for Et.

Suppose n = 1. Then there exist trees T, T ′ ∈ F distinct and a unique arc
a ∈ Et such that u := tail(a) ∈ V (T) and v := head(a) ∈ V (T ′). Let Gu and Gv

denote two phylogenetic trees such that Gu and Tu are isomorphic and Gv and T ′v
are isomorphic. Let φu : L(Gu)→ L(Tu) and φv : L(Gv)→ L(Tv) denote the maps
induced by the underlying bijections. Clearly, G0 := Gu ∧ Gv is a phylogenetic
tree on X ′ := L(Gu) ∪ L(Gv). Consider the map φ : L(G0) → L(F) given by
φ(x) = φu(x) if x ∈ V (Gu) and φ(x) = φv(x) if x ∈ V (Gv). Let κ denote some
ordering of F such that, when starting at the minimal element of κ, we encounter
T ′ before T ′. Clearly, F := (F,G0, φ) is an ordered AS-forest. Also, it is easy to
check that ψκF maps all vertices of Gu to vertices of T , all vertices of Gv to vertices
of T ′, and the root of G0 to u. Furthermore, the only contact arc for ψκF is a. That
N is a representation for ψκF is straightforward to see.

Now, suppose n > 1 and assume that the stated characterization holds true for
all multiple rooted networks N ′ where all non-empty subsets E ′t = Et,N ′ ⊆ E(N)
of size n−1 that are valid for N ′. Let a ∈ Et denote an arc of N such that no arc in
Et− a can be reached from u := tail(a) via a directed path. Out of the connected
components of N obtained by removing a, let N ′ denote the one which contains
u in its vertex set. Note that N ′ is clearly a k-network with k ∈ {m,m − 1} and
that Et − a ⊆ E(N ′). Putting E ′t = Et,N ′ := Et − a and F ′t := FE′t it follows that
|F ′t | = |Ft| − 1 if a is a cut-arc of N and that F ′t = Ft if it is not.

Since N enjoys Property (*) for r0 and r0 6∈ V (T ′) it follows that E ′t is valid
for N ′. Since |E ′t| = n− 1 the induction hypothesis implies that there must exist
an ordering κ′ of the trees in F ′t , a phylogenetic tree G′ and an allele-species map
φ′ : L(G′)→ L(F ′t) such that N ′ is a representation for ψ∗F′ where F′ = (F ′t , G′, φ′).
Put ρ′ = ρG′ and let σ′ := σκ′ : V (G′) → (F ′t) denote the label-set map for
ψ′ := ψ∗F′ .

149

To obtain Ft, we first construct the allele tree Gt underlying Ft. Let T, T ′ ∈ Ft
such that u ∈ V (T) and v := head(a) ∈ V (T ′). Put F0 = {T, T ′}. As in the base
case of the induction, let Gu and Gv denote two phylogenetic trees such that Tu
and Gu are isomorphic and T ′v and Gv are isomorphic. Again, put G0 := Gu ∧Gv

and ρ0 = ρG0 . Denote by φ0 : L(G0) → L(F0) the map induced by the bijections
χu : V (Tu) → V (Gu) and χv : V (T ′v) → V (Gv) underlying the isomorphisms
between Gu and Tu and between Gv and T ′v, respectively. Let P denote a directed
path from ψ′(ρ′) to u in N ′. We distinguish between the cases that (α) P contains
an arc a′ = (u′, v′) ∈ E ′t, and (β) that P does not contain such an arc.

Case (α): Let P ′ denote the directed path from ρ′ to ψ′−1(u) in G′ that
corresponds to P . Let at = (ut, vt) denote the arc in G′ for which ψ′(ut) = u′

and ψ′(vt) = v′ holds. Let Gt denote the tree obtained from G′ and G0 by first
subdividing at by adding a new vertex w0 and then adding the arc (w0, ρ0). Put
ρt = ρGt . Note that Gt is clearly a phylogenetic tree on L(G′) ∪ L(G0).

We next define an ordering κ for Ft by putting κ = κ′ if Ft = F ′t . If Ft 6= F ′t then
we define κ as the ordering obtained from κ′ by adding T ′ as new maximal element
to κ′. We first show that κ is well-defined. For this, it suffices to consider the case
that Ft 6= F ′t . So assume that Ft 6= F ′t . Then T ′ 6∈ Ft. Employing a straightforward
minimality argument, we have σ(z) = σ′(z), for all z ∈ V (G′)− V (P ′).

u v

v′

(i) (ii)

Gu Gv

u′
a

a′ T T ′

ρ′

ρ

χ(u)

a

G0

G′

w0

vt
ut χ(v)

r0

Tu T ′
v

Figure A.5: (i) The situation in N in case (α). (ii) The construction of Gt (see
text for details).

Since ρu := ρGu and ρv := ρGv are the only two children of ρ′ and Gu and Gv are
isomorphic with subtrees of T and T ′, respectively, it follows that σ(ρ0) = {T, T ′}.
Since ψ′(vt) = v′ ∈ V (T), we also have T ∈ σ(vt). Thus, w0 cannot be the tail
of a contact arc of ψt := ψ∗Ft . Since vt and ρ0 are the only two children of w0 we
either have σ(w0) = {T} or σ(w0) = {T, T ′}. In the first case, P κ

v = P κ
vt = P κ

ρ = T
follows. The second case implies {T, T ′} ⊆ σ(vt) = σ′(vt). Since P κ

vt = T ′ and
(ut, vt) is a contact arc for ψ′, it follows that P κ

ut 6∈ σ(vt). Consequently, κ is
well-defined, as required. Note that similar arguments also imply in the case that
Ft = F ′t that, when starting at the minimal element of κ, we first encounter T and
then T ′.

150

We claim that ψt|V (Gt) = ψ′. Suppose z ∈ V (Gt). If z ∈ V (G′) but not
an ancestor of w0 then σ(z) = σ′(z). By the definition of κ, it follows that
ψt(z) = ψ′(z). If z ∈ V (P ′) − w0 and an ancestor of w0 then the definition
of a label-set map implies σ(w) ⊆ σ(vt). Since a is a contact arc of ψt and
T ′ 6∈ {T} = σ(vt), we obtain ψt(z) = ψ′(z) by the definition of κ. This completes
the proof of the claim.

We next analyze ψt(z) where z ∈ V (G0) ∪ {w0}. Note first that employing
arguments similar to the ones used in the former of the two previous claims, we
also obtain P κ

w0 = T . In turn, this implies that ψt(w0) = v′. Moreover the choice of
a implies σ(χu(u))∩σ(χv(v)) = ∅. Hence σ(ρ0) = σ(χu(u))∪σ(χv(v)). Combined
with the definition of κ, it follows that ψt(χu(u)) = ψt(ρ0) = u. Furthermore, since
for all y ∈ V (Tu), we have σ(y) = σ′(χu(y)) it follows that ψt(χu(y)) = ψ′(χ(y)),
for all such y. Finally since σ(χv(y)) = {T ′} for all y ∈ V (Tv) it follows that
ψt(χv(y)) = y.

Combined with the previous claim, it follows that the set of contact arcs for ψt
equals the set of contact arcs for ψ′ augmented by {a}. Since N ′ is a representation
for ψ′ it follows that N is a representation for (ψt. This concludes the proof of this
Case (α).

Case (β): Assume that P does not contain an arc in Et. Then r0 ∈ V (T) as
u ∈ V (T). In that case, we put Gt = G0 ∧G′. Then the map φt : L(Gt)→ L(Ft)
defined as in Case (α) is clearly an allele-species map, and Ft = (Ft, Gt, φt) is an
ordered AS-forest with ordering κ := κ′. Again, we put ψt := ψ∗Ft .

To see that N is a representation for ψt, we first claim that ψt|V (G′) = ψ′. To
see the claim note that since G′ is the subtree of Gt rooted at ρ′, we have for
all vertices w ∈ V (G′) that σ(w) = σ′(w). Therefore, it suffices to show that
ψt(ρ′) = ψ′(ρ′).

u v

T0 T1

r0

(i) (ii)

Gu Gv G′

ρ(G0) ρ(G′)

ρ(G)

Figure A.6: (i): The situation in N in case (β). (ii): The construction of Gt (see
text for details).

To this end, note first that, as in the previous case, σ(ρ0) = {T, T ′} must hold
by construction. Also, note that since r0 ∈ V (T) and, as was observed above,
r0 and ψ′(ρ′) are vertices of the same tree of Ft, it follows that ψ′(ρ′) ∈ V (T).
Consequently, T ∈ σ(ρ′) ∩ σ(ρ0) and, so, T ∈ σ(ρt). Since σ is a label-set map for

151

Ft and ρ′ and ρ0 are the only children of ρ, it follows that either σ(ρt) = {T} or
σ(ρt) = {T, T ′}. In the first case, P κ

ρt = P κ
ρ′ = P κ

ρ0 = T ∈ F ′t ⊆ Ft follows which
implies the claim. In the second case, we have that T is encountered before T ′ when
starting at the minimal element f κ as ψ′(ρ′) ∈ V (T) and σ(ρt) ⊆ σ(ρ′) = σ′(ρ′).
Hence, {T, T ′} = σ(ρt) =⊆ σ(ρ′) = σ′(ρ′). Consequently, P κ

ρt = P κ
ρ′ = P κ

ρ0 =
T0 ∈ F ′t ⊆ Ft must hold again which implies the claim in this case too. Similar
arguments as in Case (α), imply that N is a representation for ψt.

Armed with Proposition A.4.1, we next establish one of our main results.

Theorem A.4.2. Suppose N is a m-rooted network on X and Et 6= ∅. Then Et
is valid for N if and only if there exists an AS-forest F = (Ft, G, φ) and an OSF
ψ∗F for F such that N is a representation of ψ∗F.

Proof. Assume first that there exists an AS-forest (Ft, G, φ) and an OSF ψ for F
such that N is a representation for ψ. Then the set of contact arcs of N is Et.
Also, every contact arc of N can clearly be reached from the vertex r0 := ψ(ρG)
via a directed path.

It remains to show that r0 satisfies the second part of Property (*). Assume
that a ∈ Et and that T, T ′ ∈ Ft distinct such that u := tail(a) ∈ V (T) and
v := head(a) ∈ V (T ′). Then, by the definition of an OSF, there exists a directed
path P from r0 to u in N . Assume for contradiction that there exists an arc
a′ ∈ Et − a on P such that with u′ := tail(a′) and v′ := head(a′) we have S(u′) =
S(v) = T ′ and CT ′(u′)∩CT ′(v) = ∅. Then there is a directed path in N from u′ to
v. Putting u′′ = ψ∗

−1
F (u′) and v′′ = ψ∗

−1
F (v), it follows that there exists a directed

path from u′′ to v′′ in G. Hence, CG(v′′) ⊆ CG(u′′) and, so, Λ(u′′) ⊆ Λ(v′′). Since
S(u′) = S(v) = T ′ it follows that CT ′(v) ∩ CT ′(u′) which is impossible.

Conversely, assume that Et is valid for N . Then Proposition A.4.1 implies that
there exists an ordered AS-forest F = (Ft, G, φ) such that N is a representation of
ψ∗F.

152

Appendix B

List of algorithms

Various methods and algorithms are described throughout this thesis. The fol-
lowing provides an exhaustive list of these algorithm, together with some key
information and a brief description.

B.1 Reviewed algorithms
These algorithms are presented in this thesis either because they are used in one or
more of the original research works, or for the sake of completeness in the literature
review. We indicate the pages in which a description can be found.

- UPGMA ([56]): Builds an ultrametric tree T from a distance d such that
the distance induced by T is d if and only if d is an ultrametric (page 17).

- Neighbor-Joining ([53]): Builds a weighted unrooted tree T from a dis-
tance d such that the distance induced by T is d if and only if d is tree-like
(page 17).

- Meacham’s Tree Popping ([50]): Builds an unrooted phylogenetic tree
representing a split system Σ is Σ is compatible, or returns the statement
that Σ is not compatible (page 20).

- Neighbor-Net ([9]): Builds an outerplanar split-networkN from a distance
d, such that the distance induced by N is d if and only if d is totally-
decomposable and the underlying split system Sd is circular (page 23).

- Bottom-Up ([35]): Builds a labelled rooted tree T representing a symbolic
distance δ if δ is a symbolic ultrametric, or returns the statement that δ is
not a symbolic ultrametric (page 27).

153

- BUILD ([1]): Builds a rooted tree T displaying a set of triplets C if such
a tree exists, or returns the statement that there exist no tree displaying all
triplets in C (page 31). Used in Chapters 2 and 3.

- Fitch-Hartigan ([25]): Labels the internal vertices of a rooted tree T with
labelled leves, in order to minimize the number of arcs (u, v) of T such that
u and v have different labels (page 122).

B.2 New algorithms
These algorithm are the outcome of original research works that I have been car-
rying on during my PhD. The exact credits can be found in the Introduction of
the relevant chapters.

- Find-Cycles ([41], Chapter 2): Sub-algorithm of Network-Popping.

- Build-Cycle ([41], Chapter 2): Sub-algorithm of Network-Popping.

- Vertex-Growing ([41], Chapter 2): Sub-algorithm of Network-Popping.

- Network-Popping ([41], Chapter 2): Builds a labelled level-1 network N

representing a symbolic 3-dissimilarity δ if such a network exists, or returns
the statement that δ is not level-1 representable.

- Transform ([41], Chapter 2): Transforms a labelled level-1 network N into
a semi-discriminating, partially resolved and weakly labelled network N′ such
that N and N′ represent the same symbolic 3-dissimilarity.

- OSF-Builder ([54], Chapter 5): Builds an optimal OSF ψ : V (G)→ V (F)
from an AS-forest F = (F,G, φ).

154

Index

ancestor, 10
arc

contact arc, 116, 122

blob, 13
block, 13, 107

cherry, 28
pseudo-cherry, 28

cut
cut-edge, 6
cut-vertex, 7
minimal cut, 24

cycle, 6
of a rooted network, 38

dissimilarity, 29
equidistant, 30

distance
phyletic, 16
symbolic, 26

edge
collapsing, 7
external, 110

embedding, 118

Farris transform
combinatorial, 12
symbolic, 69

forest
AS-forest, 121
species forest, 121

gate, 107
graph

Buneman graph, 22, 104
connected, 6
directed, 7
subgraph, 5
underlying graph, 7
undirected, 5

hierarchy, 52

labelled network, 40
level-1, 40
partially resolved, 47
semi-discriminating, 41
weakly labelled, 59

labelled tree, 25
discriminating, 26
fixed-cherry tree, 82

Marguerite, 110
metric, 15

totally-decomposable, 19
tree-like, 16

OSF, 116, 121, 122

path, 6
phylogenetic network

k-nested, 13
level-k, 13
outerplanar, 23
rooted, 8

155

INDEX

tree-based, 14
tree-child, 14
unrooted, 8

phylogenetic tree
caterpillar, 141
rooted, 9
star tree, 20
unrooted, 8

split, 18
compatible, 20
intersection, 24
m-split, 90
multiplicity, 90
split-network, 22
trivial, 18
weakly compatible, 20

split system, 18
circular, 23
compatible, 20
incompatibility graph, 99
intersection closure, 92

SPR
distance, 141
operation, 131

subnetwork/subtree, 11
induced by a subset, 11
rooted at a vertex, 11

tricycle, 42
trinet, 33
triplet, 30, 42

Aho graph, 32
dense set, 31

ultrametric, 17
symbolic, 26
tree, 17

vertex
hybrid, 9
median, 69

tree-vertex, 9

156

References

[1] A. V. Aho, Y. Sagiv, T. G. Szimansky, and J. D. Ullman. Inferring a tree from
lowest common ancestors with an application to the optimization of relational
expressions. SIAM Journal of Computing, 10(3):405–421, 1981. 31, 32, 154

[2] M. A. Alexandrou, C. Oliveira, M. Maillard, R. A. R. McGill, J. Newton,
S. Creer, and M. I. Taylor. Competition and phylogeny determine community
structure in Müllerian co-mimics. Nature, 469:84–88, 2011. 116

[3] H.-J. Bandelt and A. W. M. Dress. A Canonical Decomposition Theory for
Metrics on a Finite Set. Advances in Mathematics, 92:47–105, 1992. 19, 20,
21, 23, 24

[4] P. Bastide, M. Mariadassou, and S. Robin. Detection of adaptive shifts on
phylogenies using shifted stochastic processes on a tree. Journal of the Royal
Statistical Society, 79(4):1067–1093, 2017. 124, 139, 145

[5] C. Baudet, B. Donati, B. Sinaimeri, P. Crescenzi, C. Gautier, C. Matias,
and M.-F. Sagot. Cophylogeny reconstruction via an approximate Bayesian
computation. Syst. Biol., 55:1–30, 2015. 118, 119

[6] S. Böcker and A. W. M. Dress. Recovering symbolically dated, rooted trees
from symbolic ultrametrics. Advances in Mathematics, 138:105–125, 1998. 26,
27

[7] M. Bordewich and C. Semple. A universal tree-based network with the mini-
mum number of reticulations. arXiv:1707.08274, 2017. 15

[8] U. Brandes and S. Cornelsen. Phylogenetic graph models beyond trees. Dis-
crete Applied Mathematics, 157(10):2361–2369, 2010. 24

[9] D. Bryant and V. Moulton. Neighbor-Net: An agglomerative method for
the construction of phylogenetic networks. Molecular Biology and Evolution,
21(2):255–265, 2004. 23, 153

157

REFERENCES

[10] P. Buneman. The recovery of trees from measures of dissimilarity. Mathe-
matics in Archeological and Historical Sciences, Edimburgh University Press,
pages 387–395, 1971. 3, 17, 20

[11] G. Cardona, M. Llabrés, F. Rosselló, and G. Valiente. A distance metric for a
class of tree-sibling phylogenetic networks. Bioinformatics, 24(13):1481–1488,
2008. 14

[12] G. Cardona, F. Rosselló, and G. Valiente. Comparison of tree-child phylo-
genetic networks. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 6:552–569, 2007. 14

[13] K. K. Dasmahapatra, J. R. Walters, A. D. Briscoe, J. W. Davey, A. Whib-
ley, N. J. Nadeau, A. V. Zimin, D. S. T. Hughes, L. C. Ferguson, S. H.
Martin, C. Salazar, J. J. Lewis, S. Adler, S.-J. Ahn, D. A. Baker, S. W. Bax-
ter, N. L. Chamberlain, R. Chauhan, B. A. Counterman, T. Dalmay, L. E.
Gilbert, K. Gordon, D. G. Heckel, H. M. Hines, K. J. Hoff, P. W. H. Holland,
E. Jacquin-Joly, F. M. Jiggins, R. T. Jones, D. D. Kapan, P. Kersey, G. Lamas,
D. Lawson, D. Mapleson, L. S. Maroja, A. Martin, S. Moxon, W. J. Palmer,
R. Papa, A. Papanicolaou, Y. Pauchet, D. A. Ray, N. Rosser, S. L. Salzberg,
M. A. Supple, A. Surridge, A. Tenger-Trolander, H. Vogel, P. A. Wilkin-
son, D. Wilson, J. A. Yorke, F. Yuan, A. L. Balmuth, C. Eland, K. Gharbi,
M. Thomson, R. A. Gibbs, Y. Han, J. C. Jayaseelan, C. Kovar, T. Mathew,
D. M. Muzny, F. Ongeri, L.-L. Pu, J. Qu, R. L. Thornton, K. C. Worley, Y.-
Q. Wu, M. Linares, M. L. Blaxter, R. H. ffrench Constant, M. Joron, M. R.
Kronforst, S. P. Mullen, R. D. Reed, S. E. Scherer, S. Richards, J. Mallet, and
W. O. M. . C. D. Jiggins. Butterfly genome reveals promiscuous exchange of
mimicry adaptations among species. Nature, 487(7405):94–8, 2012. 129, 130

[14] M. Deza and M. Laurent. Geometry of Cuts and Metrics. Springer, Berlin,
1997. 19

[15] J.-P. Doyon, S. Hamel, and C. Chauve. An efficient method for exploring
the space of gene tree/species tree reconciliations in a probabilistic frame-
work. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics, 9(1):26–39, 2012. 118

[16] A. Dress, K. T. Huber, J. Koolen, V. Moulton, and A. Spillner. Basic Phylo-
genetic Combinatorics. Cambridge University Press, 2012. 22, 41, 104, 105

[17] A. W. Dress, K. T. Huber, and V. Moulton. Some uses of the farris transform
in mathematics and phylogenetics. a review. Annals of Combinatorics, 11:1–
37, 2007. 12

158

REFERENCES

[18] A. W. M. Dress, M. Hendy, K. T. Huber, and V. Moulton. On the number
of vertices and edges of the Buneman Graph. Ann. Comb., 1:339–352, 1997.
104, 106

[19] A. W. M. Dress, K. T. Huber, J. Koolen, and V. Moulton. Blocks and cut
vertices of the Buneman graph. Siam J. Discrete Mathematics, 25(4):1902–
1919, 2011. 106, 107

[20] A. W. M. Dress and D. H. Huson. Constructing Splits Graphs. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 1(3):109–115,
2004. 21, 23

[21] L. Excoffier, J. Novembre, and S. Schneider. Simcoal: A general coalescent
program for the simulation of molecular data in interconnected populations
with arbitrary demography. Hered., 91(6):506–509, 2000. 130

[22] J. S. Farris, A. G. Kluge, and M. J. Eckardt. A numerical approach to
phylogenetic systematics. Systematic Zoology, 19:172189, 1970. 12

[23] J. Felsenstein. An alternating least squares approach to inferring phylogenies
from pairwise distances. Syst. Biol., 46(1):101–111, 1997. 16

[24] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, 2003. 29

[25] W. M. Fitch. Toward defining the course of evolution: minimum change for
a specific tree topology. Syst. Zool., 20:406–416, 1971. 116, 122, 154

[26] A. R. Francis and M. Steel. Which phylogenetic networks are merely trees
with additionals arcs? Syst. Biol., 64(5):768–777, 2006. 14, 139

[27] P. Gambette, V. Berry, and C. Paul. Quartets and unrooted phylogenetic
networks. J Bioinform Comput Biol, 10(4), 2012. 12, 13, 24, 94

[28] P. Gambette and K. T. Huber. On encodings of phylogenetic networks of
bounded level. Journal of Mathematical Biology, 61(1):157–180, 2012. 33

[29] P. Gambette, K. T. Huber, and G. E. Scholz. Uprooted phylogenetic networks.
Bulletin of Mathematical Biology, 79(9):2022–2048, 2017. 4, 24, 87

[30] S. Grünewald, Y. Long, and Y. Wu. Reconstructing unrooted phylogenetic
trees from symbolic ternary metrics. arXiv:1702.00190, 2017. 68, 72, 73

[31] V. Gurvich. Some properties and applications of complete edge-chromatic
graphs and hypergraphs. Soviet Math. Dokl., 30(3):803–807, 1984. 27, 68, 72

159

REFERENCES

[32] V. Gurvich. Decomposing complete edge-chromatic graphs and hypergraphs.
Discrete Applied Math., 157:3069–3085, 2009. 27

[33] D. Gusfield. ReCombinatorics: the algorithms of ancestral recombination and
explicit phylogenetic networks. MIT Press, 2014. 8, 13

[34] M. Hayamizu and K. Fukumizu. On the existence of infinitely many universal
tree-based networks. Journal of theoretical biology, 396:204–206, 2016. 15

[35] M. Hellmuth, M. Hernandez-Rosales, K. T. Huber, V. Moulton, P. F. Stadler,
and N. Wieseke. Orthology relations, symbolic ultrametrics and cographs. J.
Math. Biol., 66(1-2):399–420, 2013. 27, 37, 52, 153

[36] S. Herrmann, K. T. Huber, V. Moulton, and A. Spillner. Recognising treelike
k-dissimilarities. Journal of Classification, 29(3):321–340, 2012. 29, 30, 78

[37] D. Howarth and D. Baum. Genealogical evidence of homoploid hybrid spe-
ciation in an adaptive radiation of scaevola (goodeniaceae) in the hawaiian
islands. Evolution, 59(5):948–961, 2005. 126, 127

[38] K. T. Huber and V. Moulton. Encoding and constructing 1-nested phyloge-
netic networks with trinets. Algorithmica, 66(3):714–738, 2013. 33, 34

[39] K. T. Huber, V. Moulton, and G. E. Scholz. 3-way symbolic tree maps and
3-way symbolic ultrametrics. Journal of Classification, 2017. 4, 30, 67

[40] K. T. Huber, V. Moulton, L. van Iersel, and T. Wu. How much information
is needed to infer reticulate evolutionary history ? Syst. Biol., 64(1):102–111,
2015. 34

[41] K. T. Huber and G. E. Scholz. Beyond representing orthology relations by
trees. Algorithmica, 80(1):73–103, 2018. 4, 29, 35, 154

[42] D. Huson and R. Rupp. Summarizing multiple gene trees using cluster net-
works. WABI 2008: Algorithms in Bioinformatics, pages 296–305, 2008. 10

[43] D. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks. Cambridge
University Press, 2010. 5, 8, 31

[44] J. Jansson, N. B. Nguyen, and W.-K. Sung. Algorithm for combining rooted
triplets into a galled tree. SIAM Journal of Computing, 35(5):1098–1121,
2006. 31, 33

[45] J. Jansson and W.-K. Sung. Nonbinary tree-based phylogenetic networks.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2016. 15

160

REFERENCES

[46] K. M. Kozak, N. Wahlberg, A. F. E. Neild, K. K. Dasmahapatra, J. Mallet,
and C. D. Jiggins. Multilocus species trees show the recent adaptive radiation
of the mimetic heliconius butterflies. Syst. Biol., 64(3):505–524, 2015. 116,
117, 132

[47] D. M. Kristensen, Y. I. Wolf, A. R. Mushegian, and E. V. Koonin. Compu-
tational methods for gene orthology inference. Brief. Bioinf., 12(5):379–91,
2011. 25

[48] M. Lafond and N. El-Mabrouk. Orthology relation and gene tree correction:
complexity results. WABI 2015, Algorithms in Bioinformatics, 9289:966–79,
2015. 36

[49] T. Marcussen, S. R. Sandve, L. Heier, M. Spannagl, M. Pfeifer, The Inter-
national Wheat Genome Sequencing Consortium, K. S. Jakobsen, B. B. H.
Wulffe, B. Steuernagel, K. F. X. MAyer, and O.-A. Olsen. Theoretical and
computational considerations of the compatibility of qualitative taxonimic
characters. Science, 1250092, 2014. 1

[50] C. A. Meacham. Theoretical and computational considerations of the com-
patibility of qualitative taxonimic characters. NATO ASI Series Vol. G1,
pages 304–314, 1983. 20, 153

[51] L. Nakhleh. Computational approaches to species phylogeny inference and
gene tree reconciliation. Trends in Ecology & Evolution, 28(12):719–728, 2013.
25, 118

[52] L. Pachter and D. Speyer. Reconstructing trees from subtree weights. Applied
Mathematics Letters, 17(6):615–621, 2004. 29

[53] N. Saitou and M. Nei. The Neighbour-Joining method : a new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution, 4:406–
425, 1987. 17, 153

[54] G. E. Scholz, A.-A. Popescu, M. Taylor, V. Moulton, and K. T. Huber. OSF-
Builder: A new tool for constructing and representing phylogenetic histories
involving introgression. submitted, 2017. 4, 116, 139, 154

[55] C. Semple and M. Steel. Phylogenetics. Oxford University Press, 2003. 17,
33, 52, 82, 131

[56] R. R. Sokal and C. D. Michener. A statistical method for evaluating sys-
tematic relationships. University of Kansas Scientific Bulletin, 28:1409–1438,
1958. 17, 153

161

REFERENCES

[57] R. Tatusov, E. V. Koonin, and D. J. Lipman. A genomic perspective on
protein families. Science, 278:631–637, 1997. 25

[58] L. J. J. van Iersel, J. Keijsper, S. M. Kelk, L. Stougie, F. Hagen, and
T. Boekhout. Constructing level-2 phylogenetic networks from triplets.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
6(4):667–681, 2009. 31, 33

[59] L. J. J. van Iersel and S. M. Kelk. Constructing the simplest possible phylo-
genetic network from triplets. Algorithmica, 60(2):207–235, 2011. 31

[60] L. J. J. van Iersel, S. M. Kelk, and M. Mnich. Uniqueness, intractability
and exact algorithm : reflections on level-k phylogenetic networks. Journal
of Bioinformatics and Computational Biology, 7(4):597–623, 2009. 33

[61] L. J. J. van Iersel and V. Moulton. Trinets encode tree-child and level-2
phylogenetic networks. Journal of Mathematical Biology, 68(7), 2013. 34

[62] R. W. R. Wallbank, S. W. Baxter, C. Pardo-Diaz, J. J. Hanly, M. S. H.,
J. Mallet, K. K. Dasmahapatra, C. Salazar, M. Joron, N. Nadeau, W. O.
McMillan, and C. D. Jiggins. Evolutionary novelty in a butterfly wing pattern
through enhancer shuffling. PLoS Biol., 14(1):e1002353, 2016. 116, 129

[63] N. Wieseke, M. Bernt, and M. Middendorf. Unifying parsimonious tree rec-
onciliation. Lecture Notes in Computer Science, 8126, 2013. 119

162

	Preface
	Contents
	Figures
	Introduction
	1 Phylogenetics and Mathematics: a brief overview
	1.1 Basic definitions
	1.1.1 Directed and undirected graphs
	1.1.2 Phylogenetic trees and networks
	1.1.3 The variety of phylogenetic networks

	1.2 Distances and splits
	1.2.1 Trees and distances
	1.2.2 The Split Equivalence Theorem
	1.2.3 Split-networks

	1.3 Beyond metrics
	1.3.1 Symbolic distances
	1.3.2 Dissimilarities

	1.4 Decomposition into smaller structures
	1.4.1 Triplets
	1.4.2 Encoding properties and trinets

	2 On symbolic 3-dissimilarities and labelled level-1 networks
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Rooted level-1 networks
	2.2.2 Labelled level-1 networks
	2.2.3 -triplets, -tricycles, and -forks

	2.3 Three steps for a reconstruction
	2.3.1 Recognizing cycles
	2.3.2 Constructing cycles
	2.3.3 Constructing a level-1 representation

	2.4 Encoding and characterization properties
	2.4.1 Uniqueness of the output
	2.4.2 Characterizing level-1 representability

	2.5 Conclusion

	3 On symbolic 3-way tree-maps and ultrametrics
	3.1 Introduction
	3.2 Two types of maps for two types of trees
	3.2.1 3-way symbolic tree-maps for unrooted trees
	3.2.2 3-way symbolic ultrametrics for rooted trees

	3.3 Characterizations of 3-way symbolic ultrametrics
	3.3.1 A five-point characterization
	3.3.2 Triplets as an alternative

	3.4 Conclusion

	4 On circular split systems, 1-nested networks and the Buneman graph
	4.1 Introduction
	4.2 The minimal cut approach
	4.2.1 Displaying splits
	4.2.2 A characterization in terms of I-intersections
	4.2.3 The analogue of the Split Equivalence Theorem

	4.3 Optimality and the Buneman graph
	4.3.1 The Buneman graph
	4.3.2 Marguerites and Blocks
	4.3.3 Gates

	4.4 Conclusion

	5 On introgression and multiple rooted networks
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Tree reconciliation
	5.2.2 Model of introgression

	5.3 Building an optimal OSF
	5.3.1 The Fitch-Hartigan Algorithm
	5.3.2 The algorithm OSF-Builder

	5.4 Real biological dataset
	5.4.1 The Scaevola (goodentaceae) dataset
	5.4.2 The Heliconius butterfly dataset

	5.5 Simulation study
	5.5.1 Method
	5.5.2 Noise in the allele tree
	5.5.3 Noise in the species forest

	5.6 Conclusion

	General Conclusion
	A Some properties of OSF-Builder
	A.1 Optimality
	A.2 Stability
	A.3 Number of optimal solutions
	A.4 Representing OSFs in terms of graphs

	B List of algorithms
	B.1 Reviewed algorithms
	B.2 New algorithms

	Index
	References

