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Abstract 

This PhD thesis employs and further develops models from environmental, 

epidemiological and macroeconomic studies to construct an interdisciplinary 

‘Disaster Footprint Model’ based on input-output techniques for assessing the 

cascading indirect economic loss resulting from both ‘rapid-onset’ and ‘persistent’ 

natural disasters that were happened in the UK or China at different points in time.  

Each natural disaster will undermine physical capital and inhabitants differently in 

the form of destructions to infrastructures, roads, buildings, death or injuries, which 

are normally termed as ‘direct impacts’ of a disaster. Unfortunately, the tragedy is 

not over. Direct impacts of a disaster will disrupt the economic activity when 

machineries are out of order and labourers cannot attend the work, which will 

further trigger the economic output of the affected industries or regions due to the 

shrinking capital and labour productivity. Indeed, the initial reduction in output level 

of the affected industry or region can spill over those unaffected industries and 

regions through industrial and regional interconnectedness in the sense that each 

industry/region sells its outputs to or purchases commodities from other 

industries/regions. As a result, indirect economic loss can constitute a considerable 

share in total economic loss of a natural disaster. The significant role of indirect 

economic loss has been well documented given that the industrial and regional 

interdependencies have become unprecedentedly tightened under globalization in 

the contemporary world. In this respect, input-output model is a good candidate to 

cope with the cascading indirect economic loss from a disaster due to its root in ‘a 

circular economy’. An input-output model was developed by Wassily Leontief based 

on the concept of ‘a circular economy’, suggesting that social production and 

reproduction activities enclose the use of high-efficiency resources and 

environmentally friendly. Specifically, the production of the labourers will be used in 

the process of nature cycle while the natural resources will be used in the perpetual 

cycle (Liu et al, 2016). Labourers simultaneously act as consumers and economic 
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production will be partially consumed by consumers and partially by other industries. 

In this respect, an input-output model takes the form of matrix and records the 

inter-industrial transaction flows. For ‘rapid-onset’ disasters that arrive rapidly with 

few days or without warnings, despite that a number of hybrid input-output based 

models have been proposed, they have heavily relied on accurate estimation of 

physical capital damages without conscientiously considering the distinctive 

characteristics of these disasters where their models might become invalidated. For 

‘persistent’ disasters that persist longer and whose effects will be gradually realized 

over time, their ‘invisible’ health impacts provoke challenges for existing disaster risk 

modelling and little attention has been attached to constrained labour productivity 

in a post-disaster economy. Meanwhile, existing assessment tools in health costs 

studies mainly stem from a patient’s standpoint and quantify the disease burden at a 

microeconomic level, thus uncovering the need for investigating the macroeconomic 

implications from these health impacts. Environmental, health and economic 

problems are intertwining with one another in an environment-health-economy 

nexus. Any single phenomenon is resulting from a complexity of multi-factors and 

thus, should be solved by integrating these studies instead of keeping them as 

separate entities.   

Inspired by this, Chapter 4 designs an interdisciplinary methodological framework 

that bridges environmental or meteorological studies, epidemiological studies and 

macroeconomic analysis. The framework allows several input-output based options 

to consider the distinctive feathers of a natural disasters where the traditional 

disaster modelling cannot function well, to understand and incorporate the health 

impacts through an angel of reducing labour availability and productive time, and to 

capture the cascading indirect economic loss triggered by industrial and regional 

interdependencies from a macroeconomic perspective. To verify the feasibility and 

applicability of the approach, Chapter 5, 6 and 7 select four case studies that include 

the economic assessments of a typical flood with special characteristics occurred in 
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the UK; one on China’s air pollution in 2012; and two on China’s heat waves in 

Nanjing and Shanghai in 2013 and 2007, respectively. 

After applying the approach on four cases covering both ‘rapid-onset’ and ‘persistent’ 

natural disasters, the thesis illumes future research with several important 

conclusions that 1) Disaster risk studies should attach equal significance to loss in 

capital productivity and labour productivity; 2) Air pollution and heat waves should 

be considered analogously as a natural disaster that affects human capital more than 

physical capital and thus, they should be investigated more deeply in disaster risk 

studies; 3) Disaster risk modelling should be conducted with additional attention on 

disaster characteristics; 4) Existing approaches used in health cost assessments 

generally take the patient’s perspective in evaluating the economic burden of a 

particular disease, which is insufficient for investigations of the macroeconomic 

implications on the entire economic system because industrial interdependencies 

and indirect economic losses are extremely important for such macroeconomic 

evaluations; 5) Input-output techniques and its modified forms are able to provide 

more modelling options for disaster risk assessment and management; 6) The 

developed interdisciplinary approach can successfully bridge environmental or 

meteorological studies, epidemiological studies and macroeconomic analysis. It also 

allows to consider the distinctive feathers of a natural disasters, to understand and 

incorporate the health impacts through an angel of reducing labour availability and 

productive time, and to capture the cascading indirect economic loss triggered by 

industrial and regional interdependencies; 7) The estimation based on such 

interdisciplinary model can be more accurate and effective once more 

comprehensive and sophisticated dataset are available, such as the occupational 

disease incidence rate and required time for each outpatient visit.  
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Chapter 1: Introduction 

1.1 Natural Disaster: A Global Threat 

Increasing production and consumption under economic development has put a 

strain on the environment, polluting the earth and further exacerbating climate 

change. The world population have experienced increasing intensity and frequency 

of natural disasters. Natural disaster stands for any catastrophic event resulting from 

the natural processes of the earth, examples include floods, hurricanes, tornadoes, 

earthquakes, tsunamis and other geologic processes that only happened to 

populated areas (Basicplanet, 2013). In this thesis, we also treat PM2.5 air pollution as 

a natural disaster that could cause substantial damages to human health because it 

has been included in the Beijing Municipal Meteorological Disaster Prevention 

Statute as a ‘meteorological disaster’ (Asia Pacific, 2016). Natural disasters have 

become a threat to global population and economy by inducing millions of lives loss 

and enormous economic loss. The magnitude of a natural disaster is evaluated 

according to the resulting deaths, economic loss and the ability of the population to 

reconstruct the environment.   

Gory and terrifying scenes are always centered around natural disasters. The Yellow 

River flood occurred in China, July 1931 is a series of devastating floods that was 

caused by the heavy snowstorms in the winter and the following spring thaw. 

Regardless the flood protection organizations, such as the Huai River Conservancy 

Commission, and flood control project, such as the Three Gorges Dam, the severe 

floods still resulted in up to 4 million deaths (Basicplanet, 2013). Another major 

natural catastrophe, the Indian Ocean earthquake and tsunami occurred along the 

west coast of Sumatra, Indonesia on 26 December, 2004. The undersea earthquake 

resulting from the Indian Plate subduction is the third-largest earthquake on the 

seismograph record with a moment magnitude between 9.1 and 9.3 that eventually 

resulted in 280,000 fatalities, according to the report from the Indonesian Minister 
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of Health (BBC News, 2012). If we say floods and earthquakes are the ‘visible 

murders’, air pollution and heat waves are analogously the ‘invisible killers’ that 

gradually place human beings under risks. Millions of people in China are currently 

breathing toxic air substances, which has become one of the most serious topics in 

environmental issues in China by resulting in widespread environmental and health 

problems, including increasing risks for heart and respiratory diseases, stroke and 

lung cancer (Greenpeace, 2017). 2013 will be remembered as the year that deadly, 

suffocating smog consumed China. In mid-January 2013, Beijing and the surrounding 

regions were terribly hit by the PM2.5 pollution. The air quality index (AQI) in Beijing 

soared at 993, far exceeding levels health officials deem extremely dangerous (Wong, 

2013). As a consequence, the local emergency departments were crowded with 

thousands of respiratory patients and injection rooms have run out of beddings and 

nursing staffs. The ‘airpocalypse’ in Beijing was jokingly named as ‘air pollution crisis’. 

It sparked outrage among the Chinese public and placed China under global media 

spotlights (Wong, 2013). Another ‘intangible murder’, heat waves, spread in the 

Europe in 2003. It was recorded as the hottest summer in Europe since 1540 and 

caused nearly 70,000 deaths. Auxerre, Yonne in France experienced 8 consecutive 

days with daily maximum temperature over 40 ℃ and the entire countries 

encountered the greatest death toll at 14,802 deaths among all affected European 

countries (Fouillet et al, 2006; Conti et al, 2005; Grize et al, 2005). The increasing 

frequency and intensity of heat waves are endangering the population in both 

developed and developing world.  

Recurring floods and drought, earthquakes, air pollution and heat waves are all parts 

of the same unfolding story. Global population is confronted with the superpower of 

the nature. These events are shaping our planet, affecting where and how we live, 

challenging human’s capacity to adapt to the evolving world.   
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1.2 Research Motivation 

Each natural disasters has distinctive characteristics that affects physical capital and 

human capital to different extent and cause the interruption to economic activities. 

They can be either ‘rapid-onset’ or ‘persistent’. Existing disaster research has mostly 

studied the socioeconomic consequences resulting from floods or storms that are 

generally rapid-onset, destroying, and whose outcomes are readily visible, such as 

the damages to roads, buildings and other infrastructures. On the contrary, air 

pollution and heat waves normally would not cause much damages to physical 

capital but seriously threaten human health. These effects can be long-lasting and 

‘persistent’ and equally impede economic functioning by preventing labourers from 

going to work or reducing their productivity. However, such ‘persistent’ disasters are 

yet to be thoroughly investigated in the disaster risk literature, or even rarely 

classified in the natural disaster category. To quantify these ‘invisible’ health impacts 

resulting from air pollution or heat waves appears to be a challenge for disaster risk 

analysis.   

Meanwhile, a natural disaster can cause both direct economic loss, referring to the 

primary damages to the physical infrastructure or injuries and mortality that can be 

realized immediately after the occurrence of a disaster; and indirect economic loss, 

referring to the knock-on effects that are triggered from the direct damages of a 

disaster. This includes the degradation in both labour and capital productivity due to 

the initial loss from the impacted assets, injuries and deaths, as well as the sum of 

production loss during the post-disaster economic recovery process until labour and 

capital productivity are brought back to the pre-disaster level. It has been well 

documented that direct economic loss is no longer sufficient for disaster risk 

assessment and management (Hallegatte, 2008). Indeed, the inter- and 

intra-relationships between each economic sectors have been increasingly tightened 

through trade and globalization. This indicates the possibility that the impacts on a 

directly-affected sector/region can be cascaded and eventually spill over those 
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unaffected sectors/regions through the interconnecting production supply chains 

and other economic mechanisms. Indirect economic loss will constitute a 

considerable share of the total socioeconomic burden of a disaster and seriously 

exacerbate the initial loss from the impacted assets and population. Therefore, to 

capture these cascading effects resulting from the reductions in capital and labour 

productivity as well as sectoral and regional interdependencies along the production 

supply chains is highly meaningful for understanding the macroeconomic 

consequences of a disaster and developing a comprehensive disaster risk assessment 

system. Despite that a number of advanced models have been constructed to 

analyze the direct and indirect economic loss of a disaster, there still lacks a 

systematic framework that is able to quantitatively incorporate a disaster’s direct 

economic impacts on physical and human capital, initial economic impacts resulting 

from the reductions in physical and labour productivity as well as the cascading 

indirect economic impacts along production supply chains as a result of sectoral and 

regional interdependencies. 

1.3 Research Question, Objectives and Contributions 

Given the outlined research gaps remaining in existing literature, this research is 

conducted to answer ‘how to quantify and incorporate total economic loss from a 

natural disaster event into a methodological framework?’ Therefore, this thesis 

introduce a new concept of ‘disaster footprint’ to denote the total economic loss 

resulting from a disaster event in terms of the total reduction in aggregated 

production. This includes the initial reduction in supply of industrial primary inputs 

or industrial final demand as a result of disaster-induced loss in capital and labour 

productivity; and the cascading indirect economic loss resulting from sectoral and 

regional interdependencies. It also aims to construct a disaster footprint framework 

for natural disasters that is able to quantify and incorporate all these economic 

impacts. The specific objectives of this research are: 
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 Providing a review on the quantitative assessment methods for damages to 

physical capital from rapid-onset disasters (floods), as well as the quantitative 

assessment methods for health impacts from persistent disasters (air pollution 

and heat waves) (Chapter 2). 

 Providing a review on quantitative methods for assessing cascading indirect 

economic impacts along production supply chain with a particular focus on 

input-output modelling framework; Describing the evolvements of input-output 

analysis and its variations and applications to ecological, environmental and 

disaster studies (Chapter 3). 

 Constructing a disaster footprint framework that is able to quantify and 

incorporate the resulting damages to physical capital and health impacts from 

certain meteorological conditions and thereby, the indirect economic impacts 

caused by the reductions in capital and labour productivity as well as their 

cascading indirect economic impacts along production supply chain, which is due 

to sectoral and regional interdependencies (Chapter 4). 

 Applying the interdisciplinary framework that bridges existing models from 

environmental/meteorological, epidemiological and macroeconomic studies, 

onto both ‘rapid-onset’ and ‘persistent’ natural disasters that occurred 

worldwide at different point in time to measure and contrast their cascading 

indirect economic impacts from different types of natural disasters (Chapter 5, 6 

and 7). 

 From the modelling results in each chosen case, providing policy implications for 

governments and authorities, and showing directions for future risk research 

(Chapter 8). 

This research aims to contribute from the following aspects. Firstly, the 

interdisciplinary approach will bridge existing models in environmental or 

meteorological study, epidemiological study and macroeconomic analysis, and it will 

be tailored according to the distinctive characteristics of either ‘rapid-onset’ (eg. 

Floods) or ‘persistent’ natural disasters (eg. Air pollution, heat waves). The built 
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framework will allow us to feed the disaster-induced damages to physical capital and 

human health into a macroeconomic model so that the cascading economic loss 

along the economic production chains can be assessed. Secondly, the framework will 

be further applied onto selective empirical cases that are yet to be investigated in 

current disaster literature. They include both ‘rapid-onset’ and ‘persistent’ natural 

disasters that occurred in the UK and China at different points in time to measure 

and contrast the cascading indirect economic impacts from different types of natural 

disasters. By doing so, the validity of the framework can be tested in real cases and 

future disaster risk studies can leapfrog to a more comprehensive risk assessment 

and management system with macroeconomic views. Meanwhile, by focusing the 

case studies in the UK and China, the research is expected to contribute to the 

disaster preparation and management in both developed and developing countries, 

especially for the developing world, where the disaster protection mechanisms 

appear to be less developed and population are thus more vulnerable.  

1.4 Research Scope and Selection of Study Sites 

As the proposed approach in this research is developed based on an input-output 

model, the study scope is limited to a single year with unchanged technological 

status. Thus, this research aims to estimate the impacts of either ‘rapid-onset’ or 

‘persistent’ disaster on the production level of the entire economic system at a city, 

regional or national level within a single year instead of considering any further 

impacts resulting from the disaster event that might occurred in the sequencing 

years.  

The four selected case studies base in either the UK or China. We chose these case 

studies because: firstly, the chosen cases are representable for natural disaster with 

distinctive feathers that invalidate existing disaster risk assessment tools. Secondly, 

the UK is a country that frequently suffered from floods while China is currently 

experiencing severe air pollution and heat wave issues. Indeed, regardless a number 

of disaster studies, they tend to focus more on developed countries. However, 
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developing countries like China, due to its underdeveloped disaster protection 

infrastructure, the population appear to be more vulnerable. Thus, the studies on 

China’s air pollution and heat waves are expected to contribute the disaster 

literature for the developing world to facilitate better disaster preparation and 

management. Thirdly, from the empirical side, chosen studies are yet to be fully 

investigated in existing disaster literature and therefore, they are new cases to 

extend the current boundary of disaster studies.   

1.5 Thesis Outline 

The document has been divided into eight chapters. Both Chapter 2 and 3 can be 

categorized as literature review sections. Chapter 2 mainly reviews the direct 

damages from natural disasters and the quantitative assessment methods. It covers 

not only the damages to physical capital from ‘rapid-onset’ disasters, such as floods, 

and the developed assessment tools among existing literature; but also the health 

impacts from ‘persistent’ disasters, such as air pollution and heat waves, as well as 

the health models from existing epidemic studies that quantify the resulting health 

impacts. The chapter also introduces the economic loss assessments in existing 

literature that translate disaster-induced physical capital damages and health 

impacts into monetary units.  

With respects to cascading indirect economic impacts caused by sectoral and 

regional interdependencies, Chapter 3 is a literature review on input-output analysis 

that comprehensively revisits the evolvements of input-output techniques, its 

variations and applications on ecological, environmental and disaster risk studies. 

Both Chapter 2 and 3 outline the progresses and remaining blanks regarding natural 

disaster risk studies, which pave the roads for constructing the disaster footprint 

framework in Chapter 4.  

Chapter 4 develops a disaster footprint framework that is able to quantify and 

incorporate the resulting damages to physical capital and health impacts from 
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certain meteorological conditions and thereby, the initial economic impacts caused 

by the reductions in capital and labour productivity as well as their cascading indirect 

economic impacts along production supply chain, which is due to sectoral and 

regional interdependencies. This interdisciplinary approach links environmental or 

meteorological study, epidemiological study and macroeconomic analysis with the 

consideration of distinctive characteristics of either ‘rapid-onset’ (eg. Floods) or 

‘persistent’ natural disasters (eg. Air pollution, heat waves).  

The disaster footprint framework constructed in Chapter 4 is applied onto both 

‘rapid-onset’ and ‘persistent’ natural disasters that occurred worldwide at different 

points in time to measure and contrast the cascading indirect economic impacts 

from different types of natural disasters in Chapter 5, 6 and 7. They are the results 

chapters that totally encompass 4 cases studies, which include one study on floods 

occurred around Christmas time in York, UK, 2015; one studies on air pollution in 

China 2012; and two studies on heat waves in two Chinese cities, Shanghai and 

Nanjing during 2007 and 2013, respectively. Due to the distinctive characteristics of 

each natural disaster, each case in Chapter 5, 6 and 7 presents a separate 

methodology, findings and policy implications, in which the methodology is 

neatened from the main framework developed in Chapter 4 with additional 

consideration of the disaster characteristics.  

Chapter 8 summarizes the main findings and lessons from the above case studies 

with policy recommendations for government authorities. It also highlights the 

research novelty, contributions and remarks on the directions for future research 

within the context of health costs assessment and disaster risk studies.  

Finally, the thesis ends with the reference list, covering journal articles, books, online 

sources and other data sources. Appendices provide detailed information regarding 

observations on meteorological conditions, definitions for terminologies and the list 

of assumptions underlying the current study. 
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Chapter 2: ‘Shambles in Post-Disaster World’: 

Direct Impacts and Assessment Tools 

This chapter provides an overview of the direct damages from natural disasters and 

existing quantitative assessment methods. It covers the direct damages to physical 

capital from ‘rapid-onset’ disasters, health impacts from ‘persistent’ disasters as well 

as available modelling tools to assess these impacts. Meanwhile, it reviews economic 

loss assessments studies that interpret disaster-induced physical capital damages 

and health impacts into monetary units. In particular, this chapter is designed: 

1. To describe the direct impacts from ‘rapid-onset’ and ‘persistent’ disasters; 

2. To investigate existing modelling tools for assessing the direct impacts from 

natural disasters; 

3. To examine the available approaches in economic loss assessments, which 

interpret these direct impacts in the form of monetary loss and assist disaster 

burden analysis. 

2.1 Rapid-onset Disasters: Floods and Earthquakes 

‘Rapid-onset’ disasters refer to those natural disasters that arrive rapidly with few 

days or without warnings, such as floods and earthquakes (Development Workshop, 

2017). The consequences can be easily observed immediately after the disaster’s 

occurrence, which are usually destructive and devastating. Severe rapid-onset 

disasters can cause substantial direct economic impacts due to the damages to 

physical capital, such as the destructions to roads, bridges, buildings and 

infrastructure; and to the inhabitants in the form of injuries and mortalities.  

With regards to floods, the direct economic impact normally refers to the direct 

consequences of a flood that include the short-term physical damages on natural 

resources, people and tangible assets (Merz et al, 2004). These short-term damages 
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are normally resulting from the physical contact of the flood water with people, 

property, infrastructure or other objects (Merz et al, 2004). Direct economic impacts 

from a flood is often measured by government authorities (eg. China) or insurance 

companies (eg. UK) through primary data surveys and interviews. Alternatively, they 

can be estimated based on damage functions or loss functions. The damage 

functions assess the direct monetary damage to a building according to the 

inundation depth and the type or use of the building. The central concept underlying 

such estimation is from the observation of Grigg and Helweg (1975) who suggest 

that buildings with similar type or use share the similar depth-damage curves 

regardless of their actual values. Developing damage functions for specific buildings 

relies on both actual and synthetic data sources. Actual data come from damage 

data collection during the flood aftermath while synthetic data are generated from 

‘what-if analyses’ in which case the damages will be estimated for a certain flood 

scenario (Merz et al, 2004). Apart from building type and inundation depth, flood 

damage also depends on factors including flow velocity, inundation duration, 

sediment concentration, flood warning and the quality of external response towards 

floods (Smith, 1994; Penning-Rowsell et al, 1994). In this respect, the most 

comprehensive approach in damage functions might be the Blue Manual of 

Penning-Rowsell that differentiates the stage damage curves for commercial 

property from those for residential dwellings in the UK (Merz et al, 2004). More 

recently, HAZUS-MH Flood Loss Estimation Model was developed by the Federal 

Emergency Management Agency (FEMA) in the US. It is a nationally applicable 

standardized methodology that employs Geographic Information Systems (GIS) 

software in mapping the flooding data (FEMA, 2017). The model contains over 900 

damage curves for various types of infrastructure and building, based on which the 

direct damages from the floods and shelter needs can be estimated (Scawthorn et al, 

2006). Similarly, an earthquake can cause ruinous destructions to physical 

infrastructure. The Earthquake Loss Estimation Methodology in HAZUS methodology 

also facilitates a consistent set of loss estimations. The methodology calculates the 
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direct economic loss from the earthquake based on the repair and replacement of 

building stocks, building contents and inventory (Brookshire et al, 1997).  

In the case studies from Chapter 5 in this thesis, the primary and initial reduction in 

industrial value added or final demand due to capital and labour productivity loss is 

referred as direct economic loss while the secondary cascading economic loss 

resulting from industrial and regional interdependencies is specifically termed as 

indirect economic loss. The purpose of doing so is to highlight the important role of 

industrial and regional interdependencies in macroeconomic costs assessments.   

2.2 Persistent Disasters: Air Pollution and Heat Waves 

Compared with ‘rapid-onset’ disasters, ‘persistent’ disasters refer to natural 

disasters that persist longer and whose effects will be gradually realized over time. 

Although air pollution, heat waves, droughts, and other environmental degradation 

normally last for days or months, they should be equally considered as natural 

disasters due to their damage to inhabitants in terms of the health impacts 

(Development Workshop, 2017). 

2.2.1 Air Pollution and Impacts on Human Health 

Particulate air pollution is an air-suspended mixture of solid and liquid particles with 

various number, size, shape, surface area, chemical composition, solubility and origin 

(Arden Pope III and Dockery, 2006). They have severely impacted human health and 

it is associated with increasing risks for mortality, hospital admissions and outpatient 

visits due to respiratory and cardiovascular diseases (Xia et al, 20161). The size 

distribution of total suspended particles in the ambient air includes coarse particles, 

fine particles and ultrafine particles, from which fine particles are primarily from 

                                                      
1
 The previous study on China’s air pollution 2007 has been published in Xia, Y., et al. (2016). 

"Assessment of socioeconomic costs to China’s air pollution." Atmospheric Environment 139: 

147-156. 
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direct emissions derived from combustion processes in terms of vehicle use of 

gasoline and diesel, coal burning to generate power, and smelters, cement plants 

and steel mills during industrial production processes (Arden Pope III and Dockery, 

2006). Regarding the fine particle matter, the most common indicator is PM2.5, which 

refers to particles with an aerodynamic diameter equal or less than 2.5 µm and was 

identified as the main contributing factor to the severe smog in China (Zhao et al, 

2014; Huo et al, 2014). The serious haze in China, 2013 should be deeply memorized, 

which has brought China under the global media spotlights. The daily average PM2.5 

concentration in Capital Beijing far exceeds the health safety standards suggested by 

the World Health Organization (WHO) (Guan et al, 2014a).  

Research on ambient pollution can be dated back to the 1990s when the National 

Ambient Air Quality Standards (NAAQS) was promulgated by the US Environmental 

Protection Agency (EPA) after a lawsuit by the American Lung Association in 1997 

(Arden Pope III and Dockery, 2006). The standard imposed new regulatory limits on 

PM2.5 pollution. Later in 2006, new NAAQS for PM2.5 was raised after a review of the 

scientific literature. Public health policy have primarily focused on PM2.5 because it 

was suggested to play the greatest role in damaging human health by increasing the 

risks of respiratory disease, cardiovascular disease, Chronic Obstructive Pulmonary 

Disease (COPD) and lung cancer (Greenpeace, 2017). On the one hand, PM2.5 

contains more toxic components, including sulfates, nitrates, acids or metals. On the 

other hand, its diameter is small enough to be breathed deeply into the lungs, 

suspended for longer and penetrate into indoor places (Wilson and Suh, 1997).  

The earliest studies on short-term air pollution exposure change and mortality 

employed formal time series modelling based on Poisson regression to examine the 

relationships between air pollution at common levels and daily mortality counts 

(Schwartz and Dockery, 1992; Dockery et al, 1992; Schwartz, 1993). Along with the 

time series studies, case-crossover study design appear to be another early 

methodological innovation for air pollution epidemic studies. The approach adapts 

the common retrospective case-control design, in which exposure at the time of 
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death was contrasted with the exposure without death occurrence and thereby, the 

excess risk can be assessed using conditional logistic regression (Neas et al, 1999; Lee 

et al, 1999; Pope, 1999). Early studies on short-term exposure to particulate air 

pollution and mortality are mainly single-city daily time series mortality analysis or 

the meta-analyses of these single-city time series studies (Dockery and Pope, 1994; 

Ostro, 1993; Schwartz, 1994; Levy et al, 2000; Anderson et al, 2005). One of the few 

multicity time series studies is a study of six US cities (Schwartz et al, 1996) in which 

strongest association was found between daily mortality counts and PM2.5. 

Thereafter, Burnett et al (2000) investigated the relationships between daily 

mortality counts and various measures of air pollution for eight Canada’s cities, 

where statistically significant PM-mortality relationships were discovered. One of 

largest-scale multicity daily time-series studies appears to be the National Morbidity, 

Mortality, and Air Pollution Study (NMMAPS) based on the replication of several 

early single-city studies, where the levels of PM2.5 was found to be associated with 

all-cause mortality and cardiovascular and respiratory illness (Samet et al, 2000). By 

that time, daily time series studies of acute exposures for either single-city or 

multi-cities have both focused on short-term acute PM effects without much 

attention on the PM effects on long-term mortality rates, life shortening and 

exacerbating the progress of chronic disease. By 1997, two cohort-based studies 

have approved the effects on mortality counts from chronic exposure to PM2.5, 

including the Harvard Six Cities Study (Dockery et al, 1993) and the ACS study (Pope 

et al, 1995) that covered over 8,000 and 500,000 adults, respectively and were 

reanalyzed in 1997. The mortality effects of PM turn to be much stronger in 

long-term cohort studies than short-term daily time series studies due to the 

substantial difference in time scales of exposure. The huge gap between the 

mortality effects inspired studies of intermediate time scales of exposure and daily 

time series studies with longer time scales or extended distributed lags (Arden Pope 

III and Dockery, 2006). Examples can be the study of Clancy et al (2002) for Dublin, 

Ireland, where statistically significant decreases were found in the deaths of 

nontrauma, cardiovascular and respiratory deaths after adjusting for temperature, 
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day of week, respiratory epidemics and so on; the study of Zeger et al (1999) that 

proposed frequency decompositions for both mortality counts and air pollution data, 

suggesting a larger PM effects with relatively longer time scales. With a growing 

number of improved long-term cohort studies on air pollution and mortality, the 

concentration-response relationships, the shape of the function as well as the 

existence of a counterfactual concentration level have been better understood. 

Ostro (1993) examined the shape of concentration-response function and the 

counterfactual threshold for 14 winters in London during 1958-1972 where mortality 

effects exist even for the winters but no threshold was discovered. Similarly, no 

threshold was found by Schwartz and Marcus (1990), which replotted the London 

data and showed a steeper shape at lower concentration levels. After that, a number 

of studies set about to exploring the PM-mortality concentration-response 

relationships and the shape of functions in daily time series studies of multiple cities 

(eg. Schwartz and Zanobetti, 2000; Schwartz et al, 2001; Daniels et al, 2000; Dominici 

et al, 2003; Dominici et al, 2002 & 2003; Samoli et al, 2005). The shape of 

concentration-response functions from several daily time series mortality studies 

and most illustrated a linear-like relationship. Similarly, cross-sectional and 

prospective cohort studies examining the concentration-response relationships have 

been conducted. The long-term cohort studies modelling the 

concentration-response relationships mainly focused on PM2.5 pollution and show 

that the mortality effects of PM2.5 can be modeled as linear or log linear, where the 

slope is steeper at lower concentration levels than at higher concentration levels. In 

particular, the extended analysis of the ACS study assessed exposure-response 

relationships between disease-specific mortality and long-term exposure to PM2.5, 

including all-cause, cardiopulmonary and lung cancer, from which long-term 

exposure to PM2.5 was most significantly associated with lung cancer death.  

Before the mid-1990s, the majority of research emphasized on respiratory disease, 

such as asthma, obstructive pulmonary disease and lung function (Arden Pope III and 

Dockery, 2006). Starting from the mid-1990s, epidemic studies on 



 15 

concentration-response relationships turn to more focus on hospitalizations for 

cardiovascular disease (Burnett et al, 1995; Schwartz and Morris, 1995; 

Pantazopoulou et al, 1995; Poloniecki et al, 1997; Schwartz, 1997). To differentiate 

according to the time scale, Schwartz (2001) and Souza et al (1998) focused on 

long-term pollution exposure and cardiovascular disease risk whereas Peters et al 

(2001) and Peters et al (2004) emphasized on the short-term exposure and the 

relationships with cardiovascular disease risks in Boston area and Southern Germany, 

respectively. Studies concerning other specific disease types include physiologic 

measures of cardiac risk (Pope et al, 1999; Demeo et al, 2004; Gong et al, 2005), 

accelerated progression of Chronic Obstructive Pulmonary Disease (Brauer et al, 

2001; Churg et al, 2003), lung function (Schwartz, 1989; Chestnut et al, 1991; Tashkin 

et al, 1994; Raizenne et al, 1996; Ackermann-Liebrich et al, 1997), pulmonary 

inflammation (Nemmar et al, 2002, 2003, 2003 & 2005; Tan et al, 2000; van Eeden 

and Hogg, 2002; van Eeden et al, 2001; Terashima et al, 1997; Mukae et al, 2000, 

2001; Fujii et al, 2002; Goto et al, 2004; Suwa et al, 2002), altered cardiac autonomic 

function (Schwartz et al, 2005), vasculature alterations (Brook et al, 2004; van Eeden 

et al, 2005) and modulated host defenses and immunity (Thomas and Zelikoff, 1999; 

Zelikoff et al, 2002 & 2003).  

Since PM2.5 is the main component for China’s air pollution, this research focuses 

particularly on PM2.5 air pollution in China and the major health endpoints2, including 

mortality, hospital admissions and outpatient visits for respiratory disease, 

cardiovascular disease, COPD and lung cancer.  

2.2.2 Heat Waves and Impacts on Human Health 

In relating heat waves with population health, Figure 2.1 summerizes the main 

pathways via which heath waves influence labour health and then, the economic 

system with four main causal stages. The pathway involves firstly, identifying extreme 

                                                      
2
 Health endpoint refers to occurrence of a disease, symptom, sign or labouratory abnormality that 

constitutes one of the target outcomes of the trial. 

https://en.wikipedia.org/wiki/Disease
https://en.wikipedia.org/wiki/Symptom
https://en.wikipedia.org/wiki/Medical_sign
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weather events, such as heat waves period (in orange), which requires the precise 

definition of heat wave. There are many ways to define heat waves. With changing 

climatic means and variability, it is important to incorporate duration and intensity 

into the definition of heat waves (McCarthy et al, 2001; McMichael et al, 2006; 

McMichael et al, 2008; Bobb et al, 2011). Following Meehl and Tebaldi (2004) and 

Bobb et al (2011), ‘heat waves’ is defined by involving two temperature thresholds T1 

and T2 which are the 97.5th and 81st percentiles of the maximum temperatures 

distribution in observations, respectively. ‘Heat waves’ is then referred to the longest 

time period consisted of consecutive days that at least three consecutive days whose 

daily highest temperature are all above T1; none of the days during the entire period 

whose daily highest temperature is below T2 and the average daily highest 

temperature during the whole period is above T1 (Meehl and Tebaldi, 2004).  

Then, heat wave was related to direct health outcomes based on exposure-response 

relationships (in red in Figure 2.1). ‘Exposure’ refers to human’s exposure to heat that 

is above minimum-risk threshold while ‘response’ include the excess relative risks for 

mortality and morbidity rates for certain disease types, such as respiratory disease, 

cardiovascular disease and stroke (see section 2.2.2.1 (a) and (b)). The increasing 

frequency and intensity of heat waves will also cause changes in outburst and 

prevalence of some infectious diseases as well as the yields of agricultural products 

that might induce malnutrition, especially among children (see section 2.2.2.1 (c)). 

Both changes will also contribute to excess mortality and morbidity counts but in a 

more indirect way. At the same time, heat exposure will also result in subclinical 

impacts which is termed as ‘presenteeism’ (see section 2.2.2.2). These impacts 

include work productivity loss among self-paced workers due to heat-induced mental 

distractions and reducing cognitive skills, and work capacity loss among outdoor 

workers as a result of occupational health and safety regulations. Concerning 

translating the health impacts into industrial labour time loss and further into 

macroeconomic implications (shown in grey and yellow in Figure 2.1, respectively), 

more details can be found in Chapter 4.  
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There are several factors are notice-worthy in Figure 2.1 (in light green ellipses). 

Firstly, mitigation policies stand for those preventive interventions targeting the CO2 

emission resulted from increasing anthropogenic activities. With different mitigation 

targets, temperature increase at 2090-2099 relative with 1980-1999 is estimated at 

1.8℃, 2.8℃ and 3.4℃ under low- (B1), middle- (A1B) and high-emission (A2) 

scenarios, respectively (Hübler et al, 2008; Baccini et al, 2011). Secondly, adaptation 

policies aim to reduce the negative health impacts from heat waves, including 

physiological, behavioural, cultural and technological adaptations (Roklöv and 

Forsberg, 2008; McMichael et al, 2006; Kovats et al, 2005; McMichael et al, 2008; 

Keatinge et al, 2000). Besides, as health impacts of heat waves can be affected by 

both climatic and non-climatic factors, demographical factors including population 

growth and age structure as well as socioeconomic factors involving GDP growth can 

also act as moderators to influence the current and future vulnerability among 

populations and result in distinctive heat exposure-response relationships across 

countries (McMichael et al, 2006; McMichael et al, 2008; McMichael et al, 2004; 

Keatinge et al, 2000; McMichael et al, 2003; Kinney et al, 2008). Therefore, different 

thresholds with minimum level of mortality and morbidity level as well as disease 

occurrence rate should be applied in analyzing heat waves-health exposure-response 

relationships. Populations in countries with overall high mean summer temperatures 

tend to better adapt to heat events (Roklöv and Forsberg, 2008; McMichael et al, 

2006) while populations in low-income countries are more vulnerable to severe 

health impacts and sub-clinical effects from heat waves due to less developed 

ventilation, healthcare services or air conditioning coverage (McMichael et al, 2006; 

Kovats et al, 2005; Keatinge et al, 2000).  
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Figure2.1 Influencing pathways of heat waves on human health and economy 

The diagram summerizes the main pathways via which heath waves influence labour health and then, 

the economic system with four main causal stages. 
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2.2.2.1 Heat Waves Induced Physical Health Impacts 

This section discusses the physical health impacts of heat waves, ranging from direct 

effects on heat-related mortality and morbidity to indirect effects on vector-borne 

diseases and malnutrition through degradation in agricultural yield. 

(a). Direct Effects on Heat-related Mortality 

Exposure-mortality relationship is used to detect number of heat-attributable deaths 

in a city when temperature rises above certain threshold corresponding to the 

minimum level of heat-related mortality (Roklöv and Forsberg, 2008; Baccini et al, 

2011). Such ‘optimal temperature’ may differ across geographical locations due to 

different climatic and non-climatic factors and thus, should be determined 

individually for each study location. Although heat waves can be regarded as the 

environmental effect of climate change, the extrapolation of long-term climate 

change-health relationship from short-term weather-health relationship is 

problematic with the difficulties in monitoring the effects of long-term climate 

change on specific diseases and controlling the effects of the changing non-climatic 

factors on population health in the future. This means that current estimation of 

exposure-mortality relationship is based on the observations of recent past and 

present short-term climate variation (McMichael et al, 2006; Kovats et al, 2005; 

McMichael et al, 2004; Campbell-Lendrum et al, 2002, p205).  

Existing studies on modeling the heat waves-mortality relationships generally stay at 

a city level and most of them were conducted in developed countries, such as OECD 

countries, Japan and North America (Basu and Samet, 2002; Honda et al, 2007; 

Curriero et al, 2002). Studies show that focusing on the thermal stress, 

heat-mortality follows a J-shaped relation with steeper slope at higher temperature 

and majority of heat-related deaths are caused by respiratory and cardiovascular 

diseases (Roklöv and Forsberg, 2008; McMichael et al, 2006; Baccini et al, 2011; Patz 

et al, 2005). Roklöv and Forsberg (2008) analysed the temperature-mortality 

relationship with specific focus on respiratory and cardiovascular diseases in 

Stockholm, Sweden during 1998-2003. Apart from specifying age groups, they also 
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compared the effects of lag structure between high and low temperatures. They 

concluded that ‘comfortable’ temperature in Stockholm was 11℃, above which 

every ℃ rise will result in a 1.4% increase in cumulative general relative risk (RR) 

with more significant harm on the respiratory conditions of the elderly (>74 years). 

Indeed, they suggested heat tends to have more direct mortality effects than cold. 

Similar J-shaped heat-mortality relationship was confirmed by Baccini et al (2011), 

who estimated the number of heat-related deaths across 15 European countries 

during the 1990s. Three main contributions were achieved in their study. Firstly, 

city-level threshold and slope above the threshold of the heat effect were combined 

into Mediterranean and North-Continental cities using Bayesian random-effects 

meta-analysis models. Secondly, a Monte Carlo approach was employed to evaluate 

the uncertainty in city-level threshold and slope above the threshold of the heat 

effect and most importantly, Baccini et al (2011) projected the heat effect on 

mortality by 2030 based on three selected IPCC CO2 emissions scenarios with 

different combinations of changing demographical, socioeconomic and technological 

factors. Although their results reveal an increasing trend of heat effect on mortality, 

especially under warming scenarios, potential linkages between the developments of 

non-climatic factors and future heat effect on mortality is more difficult to be 

predicted (McMichael et al, 2006; Kovats et al, 2005; McMichael et al, 2004; 

Campbell-Lendrum et al, 2002, p205). Whereas most existing European studies 

highlight the significance of developing more efficient CO2 mitigation and heat 

adaptation strategies by warning the rising heat effect on mortality, Keatinge et al 

(2000) rebuilt the confidence that European population is able to adapt successfully 

to a 2℃ increase of global warming. I indicate that their ‘optimistic’ results may be 

due to the offsets by the substantial decrease in short-term cold-related mortality 

during the winter and the relatively small focus group for the observational study 

(65-74 years only) in Northern Europe while in some European countries, such as 

Budapest, Rome and Valencia, large numbers of heat-attributable deaths have been 

also observed from younger age groups (Baccini et al, 2011). It is crucial to consider 

heat effect on mortality among the youth as these groups constitute a large 
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proportion of active labour supporting industrial economic production. However, 

Keatinge et al (2000) still stressed the potential obstacles in achieving same pace 

between physiological acclimatization and behavioural, technological adaptations.  

Compared with developed countries, low-income developing countries are more 

likely to suffer from heat-related mortality with less developed protective 

infrastructure. Therefore, understanding how populations in low-income countries 

respond to heat appears to be equally important for developing a sustainable world 

in the face of global urbanization and the resulting ‘urban heat island effect’ 

(McMichael et al, 2006). Xu et al (2009) projected a 40-50 days’ increase in heat 

wave durations in middle-lower reaches of Yangtze River Basin (YRB) of China while 

the upper reaches may subject to more excessive increase. As a hub city in lower 

reaches of the YRB, Nanjing has experienced frequent extremely high temperature 

events. The severe heat wave during July and August 2010 caused dramatic rise in 

cardiovascular mortality (Wu et al, 2013). With the focus on this particular case 

study, Chen et al (2015) conducted a sub-city level study to examine the spatial 

variations of stroke mortality risks between rural and urban districts in Nanjing 

during 2010 and also compared them with two reference periods in 2009 and 2011, 

respectively. The significantly higher stroke mortality relative risk (RR) in rural 

districts (RR=1.89, 95% CI: 1.63-2.17), including Luhe, Lishui and Gaochun, 

underscores the fact that rural districts with lower socioeconomic level and air 

conditioning coverage tend to have higher vulnerability to heat wave event (Chen et 

al, 2015). In other words, the population vulnerability towards heat-related mortality 

depends on not only how much they are exposed, but also the capability of them in 

coping with high temperature. Meanwhile, at the city level, McMichael et al (2008) 

selected 12 cities from middle- or low-income countries to describe the different 

responses towards heat by diverse populations. Results across 12 cities generally 

confirmed a U-shaped relations between temperature and cardiorespiratory 

mortality. Heat threshold shows a wide range across cities from 16-31℃, implying 
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the geographical variations in heat threshold which depend on a mix of climatic and 

non-climatic factors.  

(b) Direct Effects on Heat-related Morbidity 

Effects of heat waves on mortality have been better documented than those on 

morbidity in episode studies (Michelozzi et al, 2009). Nevertheless, in quantifying the 

economic impacts of heat wave induced health impacts on labour through the 

perspectives of reduced labour time, heat wave resulting hospital admissions are 

innegligible. In European countries, Michelozzi et al (2009) evaluated the effects of 

heat on respiratory and cardiovascular hospital admissions across 12 European cities. 

Similar approach with Baccini et al (2011) was applied to figure out the city level 

thresholds and slope above the threshold. Random effect meta-analysis was used in 

grouping 12 cities into Mediterranean and North-Continental cities. Compared with 

the severer impacts of heat waves on cardiovascular mortality, more significantly 

positive relations were found between high temperature and respiratory admissions 

than cardiovascular admissions and especially for the elderly (>75 years) in 

Mediterranean cities. Earlier studies have been aware of the potential harm of heat 

on respiratory systems which however indicated a more indirect pathway of 

influence. Hales et al (1998) suggested that increasing average temperature will 

accelerate the prevalence of asthma in New Zealand. Similar arguments can be found 

in Curson (1993) and McMichael et al (2003) that heat will change the life cycle of 

plants and animals which may further induce asthma prevalence in Australia. While it 

is feasible to quantify the relationships between short-term high temperature and 

respiratory admissions, it becomes more complicated to infer effect of long-term 

climate change on a specific disease, such as asthma due to the multi-causality of 

disease initiation and the unclear mechanism for their relationships (McMichael et al, 

2003). Similar studies in Europe can be also found in Kovats et al (2004) and Tataru et 

al (2006). 

North America has also reported extensively heat-morbidity studies. The severer 

impacts of extreme temperature on respiratory conditions for the elderly are also 



 23 

true at the city level of North America. Lin et al (2009) investigated the effects of 

temperature and humidity on daily respiratory and cardiovascular admissions in New 

York city during 1991-2004. They noticed that with the health risk threshold at 

29-36℃, per ℃ increase above the threshold will cause a 2.7-3.1% rise in respiratory 

admissions and 1.4-3.6% rise in lagged cardiovascular admissions while even greater 

increases in respiratory admissions can be realized among the elderly at 4.7%. In a 

country level study, Knowlton et al (2009) analyzed the effects of 2006 California heat 

waves on both hospital admissions and emergency department (ED) visits in which 

effects on different age and race groups were specified. Excess morbidity and 

elevated rate ratios(RRs) can be seen during the heat waves with greater influences 

on both the youngest and the elderly group as well as cardiovascular patients. It is 

interesting to notice that even regions with relatively modest temperature can suffer 

substantial effects on morbidity, confirming the fact that acclimatization and 

adaptive capacity determine the health risks and population vulnerability.  

In this respect, different demographic and socioeconomic structures of developing 

countries may potentially affect their population acclimatization and adaptive 

capacity and thus, the overall vulnerability. With burgeoning population and 

geographical uneven development status, Chinese population may encounter higher 

vulnerability towards more frequent heat waves. However, I found few studies on 

measuring the heat effect on morbidity outcomes in China. Ma et al (2011) 

investigated the effects of heat waves on daily admissions in Shanghai during 

2005-2008. Results showed a 2% increase in total hospital admissions during the 

heat period, with relatively higher impacts on cardiovascular (8%, 95% CI: 5-11%) 

than respiratory admissions (6%, 95% CI: 0-11%). It is undoubted that more cities like 

Shanghai will be affected if the projected increase in heat waves durations among 

the YRB becomes true (Xu et al, 2009). Therefore, there remains a need for 

replicating the study results from developed nations in China.  
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(c) Indirect Effects on Infectious Diseases and Malnutrition through Degraded 

Agriculture 

Apart from the comparatively direct effects on mortality and morbidity, heat waves 

can also affect population health through indirect pathways of infectious diseases 

and malnutrition resulting from degraded agricultural production. The reproductions 

of biting insects that transmit viruses and bacteria are also sensitive to increasing 

temperature. Rapid proliferation of both salmonella and cholera bacteria in warmer 

environment have been already recognized3 while most studies try to establish the 

linkages between infectious diseases and climate change as a whole rather than 

more specific apparent temperature. Based on present or past climate 

variation-disease relationships, they modeled the changes in future climate 

sensitivity of vector-borne diseases with typical focuses on malaria and dengue fever 

in tropical world (McMichael et al, 2004). Researches in South Asia and South 

America have started exploring the relationships between malaria and El Niño 

Southern Oscillation (ENSO) (Bouma and Kaay, 1996; Bouma and Dye, 1997; Bouma 

et al, 1997). ENSO induces the temperature and rainfall fluctuations worldwide. In 

South America, it is suggested that the reduced rainfall during the warm event (El 

Niño) are associated with malaria prevalence which is more likely to occur with 

drought in humid climates or excess rainfall in arid regions (Bouma and Dye, 1997). 

Frequent El Niño events in Venezuela have raised the Malaria mortality and 

morbidity by 36% (95%CI, 3.7-69.3%) and Malaria mortality shows a stronger 

relationship with drought in the preceding year of disease outbreaks. However, in 

poorer African countries, although the close relationship between malaria 

transmission and the anomalies of the max temperature in Kenya’s highlands has 

been confirmed, study results on such linkages remain ambiguous (Patz et al, 2005).  

Rising global temperature can also affect the reproduction of Aedes and aegypti 

mosquitoes, which are the major vector of dengue fever (Patz et al, 2005). In 

Thailand, the spatial-temporal dynamics of dengue hemorrhagic fever (DHF) have 

been captured in DHF incidence study by Cummings et al (2004) using a wavelet 

analysis method. They indicated that the 3 years’ DHF periodic cycle started from 
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Bangkok and moved radially. Wavelet approach was also applied in another study in 

Thailand, Cazelles et al (2005) analyzed the associations between climate viability 

and dengue epidemics during 1983-1997 and they concluded that the 3 years’ cycle 

(Cummings et al, 2004)  may be resulted from the El Niño and climate viability 

remains significant in shaping interannual pattern of dengue epidemics. Recently, 

Bouzid et al (2014) adopted a Generalized Additive Model (GAM) to model the 

dengue fever risk as a function of both climatic variables and socioeconomic factors, 

which were later applied to estimate the future dengue incidence in Europe under 

three climate change scenarios. Results reveal that whereas most European are 

currently at low dengue risk, the risks are expected to increase under certain climate 

change scenarios and especially in coastal areas of the Mediterranean and North 

Eastern areas of Italy. European cities with warmer temperatures and greater 

population density are more likely to suffer higher dengue risks in the future (Bouzid 

et al, 2014; Rogers et al, 2014). While the higher temperature is necessary for certain 

vector existence, high temperature and vector presence are not sufficient in 

themselves for the disease occurrence (Rogers et al, 2014). Indeed, the occurrence of 

infectious diseases depend on both climatic and socioeconomic factors as population 

may get well protected by developing disease control programs and healthcare 

services (McMichael et al, 2006; McMichael et al, 2004; Patz et al, 2005; Bouzid et al, 

2014; Rogers et al, 2014).  

Higher global temperature can also impose knock-on health effects on population 

health through the impacts on food production and water supplies (McMichael et al, 

2006). In the studies of crop yields and world food trade, exposure distributions 

regarding temperature and precipitation are linked with crop yields, which are 

further used as inputs in world food trade model to add in non-agricultural factors 

including market forces, government policies, agricultural trends, economic and 

technological conditions. The model results appear to be the approximation of 

national food availability which is finally used to calculate per capita food availability 

of each country. Preliminary studies correlated the model output with direct 
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measure of malnutrition for the 1990s at the model regional level and implied a 

positive relationship between food unavailability and incidence of underweight, 

especially among children (<5 years) (McMichael et al, 2004). As with infectious 

diseases, the occurrence of malnutrition and its resulting diseases can be affected by 

both climatic and socioeconomic factors. Moreover, it depends on the productivity 

and economic capacity for those regions with food poverty problems (McMichael et 

al, 2004; Parry et al, 1999) as well as the ability of the world food trade system in 

adapting to the changing production (Dyson, 1999). Due to the great uncertainties in 

predicting future socioeconomic evolvements and the fact that infectious diseases 

and malnutrition affect only certain age groups in certain countries, they are not 

sufficiently representative for the entire global working population. Thus, I will 

neither specify infectious diseases and malnutrition here nor consider fitting them 

into my proposed economic modeling framework in the following sections.  

2.2.2.2 Heat Waves Induced Sub-clinical impacts 

Heat effect on labour capacity and productivity can be analogous to the disability 

induced by heat induced clinical health effects (Kjellstrom et al, 2009; Zander et al, 

2015). Regarding the reduced work capacity, the most commonly accepted indicator 

for occupational health safety is the Wet Bulb Globe Temperature (WBGT) index by 

United States military (Kjellstrom et al, 2009; Dunne et al, 2013). The index was 

developed based on meteorological records and it provides thresholds for 

environmental heat stress for different work intensity, based on which international 

standard states the proportions of working hours that break periods are required 

(International Organization for Standardization, 1989). Therefore, if no break time is 

required, a worker’s work capacity is 100% while if 75% rest time is required (31℃ 

for 500 Watts work intensity), work capacity is reduced to 25% (Kjellstrom et al, 

2009). Figure 2.2 shows the risk functions relating hourly workplace heat levels 

measured by WBGT with percentage of remaining work capacity according to two 

epidemiological studies (Wyndham and Sahu), a best fit function (Hothaps) and ISO 

standard values (Nr 7243, 1989). The diagram reveals a steeper slope under ISO 
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standards, indicating that in order to protect heat-vulnerable workers, greater 

reductions in working time and output production can be expected under the ISO 

standards. Therefore, enforcing ISO standards, extreme workplace heat exposure will 

result in increasing productive time loss for the sake of labour health protection. In a 

city level study, it was reported that the average work capacity for a heavy work 

intensity worker (500 Watts) is only 20% at noon during May in Delhi, India 

(Kjellstrom et al, 2009). Similarly, Dunne et al (2013) measured the global reduced 

work capacity as a function of WBGT during 1948-2011 and suggested a 10% 

decrease in work capacity during the peak months due to heat waves. Indeed, future 

further decrease in work capacity was estimated across different Representative 

Concentration Pathways (RCP) scenarios. They predicted a further 10% reduction in 

global work capacity by 2050 and an extra 5% reduction beyond 2050 by 2200 even 

with the active CO2 emissions mitigation (RCP 4.5) to limit the future global 

temperature rise within 2℃. Despite recognized approaches preventing reduced 

work capacity, these approaches generally expose a fundamental aim in minimizing 

workplace health damages, which however, hardly improve or even exacerbate work 

productivity. 

 

(Modified from: Tord Kjellstrom, 2014) 

Figure2.2 Exposure-response functions for labour in moderate intensity work (300 Watts) 

Existing studies often treat work capacity and productivity as inter-convertible. 

However, I suggest that these two terms should be treated differently as the former 

stems from labour safety perspectives while the latter is more related with the 
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mental distractions for self-paced workers and can be termed as ‘presenteeism’. 

Whereas the previously discusses WGBT index and ISO standards both relate to work 

capacity under heat exposure, the negative effects of heat exposure on occupational 

productivity has been recognized early in the 1970s (Axelson, 1973), yet their 

quantified relationships have been rarely discovered. These negative impacts may 

include concentration lapses, low-quality decision making and reduced cognitive 

performance (McMorris et al, 2006; Gaoua et al, 2011), which will caused 

‘presenteeism’ among labour. Zander et al (2015) investigated the productivity loss 

due to heat stress induced ‘presenteeism’ among 1,726 Australia adults during 

2013-2014. The cost of productivity loss in the sample group was extrapolated to 

assess the annual economic burden of productivity loss among entire Australian 

workforce due to heat waves. Their results show that 7% of the sample had had 

more than one day being absent from work due to heat during the past 1 year while 

70% reported they had more than one day being less productive, which were 

equivalent with an additional 13.3 working days’ loss. Data were collected by work 

productivity and activity impairment (WPAI) questionnaire, which is an instrument 

designed to study the economic burden of diseases in health economics (Zander et al, 

2015). Lofland et al (2004) reviewed 11 workplace productivity loss survey 

instruments which are all designed from societal perspectives. Both Osterhaus 

technique and Migraine Work and Productivity Loss Questionnaire (MWPLQ) were 

designed for measuring the work productivity loss due to migraine headache. Health 

and Labour Questionnaire (HLQ) is also meaningful to patients while Worker 

Productivity Index (WPI) is designed specifically for customer services workers. The 

latter has become a gold standard for absenteeism data for such particular 

occupation as it provides an objective measure regarding workers’ absenteeism by 

electronically monitoring their working time through computer-based system. WPAI 

was firstly designed to assess presenteeism due to broad range of diseases by asking 

employees the percentages of health induced working time loss, impairment while 

working, activity impairment and the overall work impairment score. The above 5 

survey instruments not only capture ‘presenteeism’ in terms of productivity loss, but  
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data on ‘presenteeism’ are measured in working time loss so that they can be readily 

quantified into monetary term (Lofland et al, 2004). 

2.2.3 Economic Loss Assessment 

While translating the health impacts into economic loss, Human Capital Approach 

(HCA), Contingent Valuation Approach (CVA) and the Friction Cost Approach (FCA) 

appear to be the commonly used methods. Stemming from the patients’ standpoints, 

HCA measures the economic burden of disease based on the Potentially Productive 

Years of Life Loss (PPYL) and discounted value of future earnings (Johnson et al, 2005). 

This means that HCA is a function of an individual’s compensation and it tends to 

provide critical information regarding the monetary benefit of reductions in 

disease-related mortality and morbidity (see Equation 2.1). One of the few studies on 

assessing the economic burden of heat induced work productivity loss in Australia 

also applied HCA (Zander et al, 2015). Based on the information obtained from WPAI 

questionnaire, individual economic loss from absenteeism were calculated by 

multiplying number of days absent per year with daily income while loss from 

presenteeism were obtained by multiplying number of hours per less productive day 

with number of less productive day per year and further with hourly income rate. 

Following these steps, total economic burden of all Australian labour due to heat 

stress resulting productivity loss during 2013-2014 reached US$6.2 billion (95% CI: 

5.2-7.3 billion) with a majority of economic burden came from workers who spent 

little working time outside, such as most expensive loss of managers (Zander et al, 

2015). In another cost study in Germany (Hübler et al, 2008), potential costs from 

heat-related hospitalizations and productivity loss under future climate change 

scenario were projected separately, based on the general costs for each admission 

case in each federal state and the wage share of the reference year in Germany, 

respectively. The latter is similar to a HCA and attached great weight on patients and 

workers. This study, although appears to be one of the very few cost study on 

quantitatively modeling the heat-economic costs relationships, has involved great 
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uncertainties because it applied the quantitative relationships of heat-hospitalization 

and heat-productivity loss from other countries (Johnson et al, 2005; Bux, 1987) onto 

Germany without considering the distinctive thresholds and responses of 

populations in different countries determined by both climatic and socioeconomic 

factors. Other studies using HCA can be found in Bradley et al (2007) and Wan et al 

(2004).  

           
          

     
    

  

    
                                       (2.1) 

         : Discounted value of future earnings; 

 : Gender; 

  : Starting age for gender  ; 

  : Life expectancy for starting age for gender  ; 

    : Economic activity rate for age   and gender  ; 

   : Annual wages for age   and gender  ; 

 : Discounted rate. 

On the contrary, CVA focuses on the Willingness-To-Pay of households to avoid the 

mortality or morbidity risks of a disease (see Equation 2.2), where data on individual 

Willingness-To-Pay are obtained through surveys and interviews. Studies using CVA 

can be found at national scale (Zeng and Jiang, 2010), provincial scale (Wang and 

Mullahy, 2006) and city scale (Kan and Chen, 2004). Mitchell and Carson (1989) 

suggested that CVA is the only effective means to value the utility of a commodity 

through fictive markets. Thus, it has been widely applied on environmental 

economics and other research areas when the subject of interests has neither price 

nor physical market.  

  
 

 
                                                     (2.2) 

 : Value of life; 
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C: Cost of life-saving good and services; 

 : Reduced probability of dying. 

FCA measures costs of productivity loss based on the length and frequency of friction 

periods and the costs occurred due to friction period (Koopmanschap, 1994) (see 

Equation 2.3). Friction period refers to the time required to replace a sick worker in 

order to return to the previous productivity level while friction costs can involve the 

production loss appeared until an absent work is replaced, the productivity loss of 

the new worker and all expenses associated with recruitment and training (Lofland et 

al, 2004). A FCA has the basic assumption of same productivity level in paid work 

between A and B (  
    

 ), suggesting that after B’s replacement for A, production 

level will return to the level before A’s sickness. Therefore, FCA follows an employer 

perspective in which the costs are evaluated at a microeconomic or individual level 

to estimate production loss occurred only during the friction period (Brouwer and 

Koopmanschap, 2005).  

  
    

    
    

                                          (2.3) 

  
    

    
  

  
    

    
  

  
    

    
    

  

  
 : Total amount of time available to person A; 

  
 : Time spent on paid work when person A is healthy; 

  
 : Time spent on unpaid work when person A is healthy; 

  
 : Time spent on leisure when person A is healthy; 

  
 : Total time available for unemployed person B; 

  
 : Time spent on unpaid work for unemployed person B; 

  
 : Time available for leisure for unemployed person B; 
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 : The status that person A is ill; 

 : The status that B is employed. 

2.2.4 Research Gap in Health Costs Assessment 

Despite that all approaches can provide useful information about the potential 

monetary benefits of any reductions in health effects or the economic burden for 

healthcare sectors, each approach encounters certain drawbacks. Regarding HCA, as 

it heavily relies on PPYL, it neglects the roles of children and the elderly as well as 

disease-induced morbidity. Indeed, its reliance on discounted value of future 

earnings indicates the exclusion of people who are not officially paid or those outside 

the labour market. Similar problem also exists for FCA. Indeed, workers playing 

crucial roles in industry production process do not necessarily receive higher wage 

rates. This is potentially the reason that men or indoor-working managers accounted 

for the majority of costs from productivity loss as Zander et al (2015) suggested 

because men and managers usually receive higher salaries than women or 

salespersons. Therefore, using the labour compensations as a key indicator for costs 

of health impacts might be misleading and simply summing up the employees’ 

compensations or employers’ replacement costs does not comprehensively reflect 

the effects on the whole population or the national economy. With respects to CVA, 

it quantifies health costs based on respondents’ risk perceptions that can be 

completely different and unmeasurable within different social structures and 

healthcare systems (Kan and Chen, 2004). Besides, its applicability might be limited 

in developing countries. This is because, firstly, there is always a lack of market 

research among consumers in developing countries, which might deteriorate the 

accuracy of study results; and secondly, Willingness-To-Pay of households may be 

lower than the actual value of the commodity as a result of the relatively low income 

in developing countries (Yang et al, 2002). Although a FCA tends to provide indirect 

economic loss resulting from labour sickness during the friction period, its estimation 

is conducted at a microeconomic level by focusing on employer or employee. 
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However, a national economic system consists of many economic agents interacting 

with each other. Production in a particular sector can affect other sectors in the 

economy through production supply and demand chains. In other words, changing 

production in a sector will influence sectors that provide its primary inputs with a 

focus on the backward linkages along demand side of the economy. Meanwhile, it 

can also affect sectors that purchase its outputs as inputs in their production 

processes, referring the forward linkages on the supply side of the economy. In the 

face of globalization, such relationships between industries, sectors and regions have 

become unprecedentedly tightened. Thus, although all the three approaches can 

provide meaningful microeconomic information regarding the monetary benefits 

from reducing mortality or morbidity rates, the results can hardly represent the 

macroeconomic impacts of disease-induced health outcomes on national GDP, 

especially in the cascading economic impacts occurred along production supply chain 

because neither of them considers industrial and regional interdependencies and 

their focus on individuals at a microeconomic level. In this respect, assessing the 

cascading indirect economic impacts on national economy should take such 

relationships into account by perceiving labour as a principle for economic activities 

and the diminishing labour time as a result of health impacts that will not only 

reduce the output level in a single sector but also other interconnecting sectors along 

production chains due to sector and regional interdependencies (see Chapter 3). 

Therefore, I suggest that to evaluate the total economic impacts, analyses should 

touch upon both micro and macroeconomic levels as a combination of economic 

burden for healthcare sectors, patients, employees and economic production 

processes.  
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Chapter 3: ‘The Illusion of Direct Impacts’: 

Cascading Indirect Economic Impacts 

This chapter provides the literature review on input-output analysis from the origin 

of the concept, to its later evolvements by Wassily Leontief and the variations in the 

basic Leontief input-output framework, and further to its extensive applications on 

ecological, environmental and disaster risk studies. In the light of the research topic 

of this document, this chapter particularly emphasizes on the applications of 

input-output model on disaster risk studies. The specific objectives of this chapter 

are: 

1. To trace the concept of input-output and production of circular flows back to 

the 17th century when the early conceptualizations of input-output systems 

were sketched in terms of the production relationships in the economic 

system (section 3.1); 

2. To describe the structure of basic Leontief input-output model and explain 

the mathematical meanings for its key variations (section 3.2); 

3. To discuss the extensive applications of input-output techniques (section 3.3) 

on ecological studies (section 3.3.1), environmental studies (section 3.3.1) 

and disaster risk studies (section 3.3.2). 

3.1 Input-Output Analysis: The Origin and Evolvements  

An input-output analysis was developed by Wassily Leontief in the 1930s that is an 

analytical quantitative framework to examine the complex interrelationships 

between economic sectors within an economic system. Input-output analysis is 

developed with the central idea of the circular flow of the economy in equilibrium, 

which can be seen from the PhD thesis of Leontief (1928) as he stated that 

“Economic analysis should rather focus on the concept of circular flow which 
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expresses one of the fundamental 'objective' features of economic life” (quoted after 

Kurz et al. 1998). The key concept of ‘a circular economy’ was largely inspired by 

economic concepts from early classical political economy, including ‘productive 

interdependences within an economy’ and ‘social surplus’ (William Petty) as well as 

‘general equilibrium analysis’ (Léon Walras). For instances, by saying “Labour is the 

Father and active principle of Wealth, as Lands are the Mother”, William Petty 

highlighted the productive interdependence in an economic system with labour 

division and his belief in the interconnections between production, distribution and 

disposal of the national wealth. He also pointed out that the agricultural surplus is 

equivalent with the rent of the land that is the difference between corn output and 

corn input, part of which constitutes the subsistence of labourers. His idea regarding 

the agricultural surplus was later known as the concept of social surplus. In the light 

of Petty’s idea on interdependence and surplus, Cantillon (1755) reemphasized that 

all societal members relied on the production of land for reproduction. This is the 

very first time when the concept of reproduction was mentioned (Kurz et al, 1998).  

Later in 1758, a French economist, François Quesnay suggested that the production 

of commodities rely on commodities in his work “Tableau Économique”. Quesnay 

sketched a circulated process of reproduction with commodities and money 

circulating among production, distribution and expenditure. He also discovered two 

goods flows between three classes during the reproduction process, including the 

productive class, such as farmers, the proprietary class, such as landlords, as well as 

the sterile class, such as merchants. Practically, farmers produce agricultural 

commodities. The difference between the value of agricultural commodities and 

costs of agricultural inputs is paid to landlords as rent for purchasing agricultural and 

industrial products, while merchants working in the manufacturing sectors do not 

generate a surplus directly but produce means of production for agricultural sector  

and thus, they are categorized as non-productive class (Kurz et al, 1998). Quesnay’s 

sagacity in pointing out the intersectoral flows was later praised in Leontief’s work in 

1936 that “The statistical study presented ... may be best defined as an attempt to 
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construct, on the basis of available statistical materials, a Tableau Économique of the 

United States for 1919 and 1929” (Leontief 1936, p.105). Despite that Tableau 

Économique confronts several limitations, especially in mix producers and 

consumers, as well as physical and monetary flows, it largely contributes to and 

paves the way for the development of input-output analysis (Miller and Blair, 2009).   

After a century, another French economist, Léon Walras constructed a general 

equilibrium theory in 1874. He suggested that an economy contains both consumers 

and producers. The former tends to maximize their utilization while the latter 

maximizes the profits. Consumers also act as labourers who provide fixed capitals to 

producers for production. In return, commodities produced by producers will be sold 

to consumers again for revenue. Walras also designated a set of production 

coefficients to measure the required quantities of various factor inputs to produce a 

single unit of a certain product, which appears to be similar with the technical 

coefficients in the basic Leontief input-output model (Miller and Blair, 1985, p2). 

Similarities and differences exist between the two approaches. On the one hand, 

both approaches possess the theoretical background of general equilibrium and 

concern interdependence between national income and product (Davar, 2005). On 

the other hand, the mutual interdependence suggested by Walras depends on the 

prices of factor inputs and outputs, which are further determined by the supply of 

factor inputs and the demand of outputs. In contrast, Leontief interpreted such 

interdependence in a more implicit way. Monetary term is the only uniform 

measurement in a basic Leontief input-output model. Moreover, Leontief also added 

public sector (government), capital formation and exports in final consumption 

category, while tax and imports in primary input category as complements (Davar, 

2005). Thereafter, with the advantages in capturing the interrelationships between 

sectors and regions based on the concept of ‘a circular economy’, Leontief 

input-output model has been continuously developing and advancing, and its 

application boundary has been extended towards ecological, environmental and 

disaster risk studies.  
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3.2 Leontief Basic Input-Output Model and its Variations 

In 1930, Wassily Leontief made a significant step towards a systematic input-output 

analysis by applying the framework to measure the direct and indirect input 

requirements of industrial sectors in the US. An input-output table demonstrates a 

detailed flow regarding the goods and services between producers and consumers, 

which also assigns all economic activities to either production or consumption 

categories. By presenting the inter-industrial transactions within the entire economy 

in a transparent and linear array, an input-output model allows to evaluate the 

knock-on effects along value chains while its objectivity remains. The original 

input-output model is subject to several shortcomings. For example, as it is a static 

model, it implies the fixed-proportion approach in the production functions with 

fixed prices and without inputs or imports substitution (Cole, 2003; Greenberg et al, 

2007; Okuyama, 2007 & 2009; Rose, 2004). Therewith, input-output techniques have 

continuously improving and its application boundary has been broaden towards 

many fields, including ecological, environmental and disaster risk studies, at different 

levels, from local, national to global level (Miller and Blair, 2009, p2).  

3.2.1 Structure of a Leontief Input-Output Model 

The following content and chapters may contain many mathematical symbols, 

formulas and equations. To clarify, matrices are indicated by bold, upright capital 

letters (e.g. X); vectors by bold, upright lower case letters (e.g. x), and scalars by 

italicised lower case letters (e.g. x). Vectors are columns by definition, so that row 

vectors are obtained by transposition, indicated by a prime (e.g. x  ). A diagonal 

matrix with the elements of vector x on its main diagonal and all other entries equal 

to zero are indicated by a circumflex (e.g. x̂ ). 

The structure of a basic Leontief input-output table can be presented in Table 3.1 

below. The structure encompasses four quadrants, including intermediate 

transactions (Processing sectors), final demand, primary inputs for production 
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(Payments sectors) and primary requirements for final demand (Payments sectors). 

Among them, the quadrant of intermediate transactions describes the intermediate 

sells, purchases and deliveries between production sectors in an economy and each 

of them produces a distinctive product (boxes in yellow). The quadrant of final 

demand illustrates the sales to final consumers that include households, 

governments and exports (boxes in blue). Meanwhile, the information regarding the 

value of required inputs for production are provided in the quadrant of primary 

inputs, which contains fixed capital, land rental, employees’ compensations and 

taxes (boxes in green). It also illustrates the primary inputs required for the final 

consumption (boxes in grey). Each inter-industrial flow z represents a transaction 

from a corresponding column sector among selling sectors to a corresponding row 

sector from a buying sector. The total output x in each sector is the sum of all items 

in the corresponding row from intermediate transactions 


n

j

Zij
1

 and final demand fi. 

Similarly, the total input x’ used in each sector is the sum of the corresponding 

column items, which includes the inter-industry input purchases and required value 

added (v’) to produce the given amount of outputs in this sector.  

The basic Leontief input-output model is essentially a demand-driven model. In 

other words, the technology of production is determined by the final demand of the 

users of the product (Duchin and Lange, 1994, p28). This implies the possibility of 

coordination or transformation in the economic structure once households’ 

consumption patterns and lifestyle evolve over time.  
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     Table3.1: Structure of a Basic Leontief Input-Output Table    (Unit: Dollar) 

  Processing Sectors (Buying) Final Demand  Total Output 

Processing 

Sectors 

(Selling) 

   1  ….    j  ….   n 

1 

….. 

j 

….. 

n 

z11 z1j z1n f1 x1 

zj1 zjj zjn fj xj 

zn1 znj znn fn xn 

Payments 

Sectors 

Value Added  v’1 v’j v’n v’f  

Total 

Input 

 x’1 x’j x’n   

(Modified from Xia et al, 2016) 

3.2.2 Mathematical Interpretations of a Leontief Input-Output Model 

A Leontief input-output model presents an economy where sectors are interacting 

with each other and each of them produces an unique commodity either for final 

consumption by the final users or for intermediate transactions by other sectors 

(Miller and Blair, 2009, p2). The monetary value of the transaction from sector i to j 

is represented as zij and final demand of sector I is designated as fi. Each sector 

needs to produce commodities that are sufficient to fulfil intermediate transactions 

and final demand (Xia et al, 2016). In an economy with n sectors, the total output of 

sector i is shown in Equation 3.1. 

xi = zi1+....+zij+....+zin+fi =       i = 1, 2, …, n                (3.1) 

n: the number of economic sectors of an economy; 

xi: the total output of sector i; 

fi: the total final demand for sector i's product; 

zin: the intermediate delivery from ith sector to the nth sector; 




n

j

Zij
1

: the monetary value sum of sector i’s output in all other sectors. 





n

j

fiZij
1
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With the notation, Equation 3.1 can be summarized as matrix term in Equation 3.2. 

                                                               (3.2) 

By dividing zij by xj (the total output of jth sector) one can obtain the ratio of input to 

output zij/xj, denoted as aij in Equation 3.3. It is known as the technical coefficient or 

direct requirement coefficient that reflects the requirement from economic sector i 

to produce one monetary unit of product in economic sector j. It also measures the 

production efficiency under current technology. 

                                                                                      (3.3) 

With the notion of technical coefficients, Equations 3.1 can be rewritten as Equation 

3.4 or 3.5. 

2222221212

1112121111

yxaxaxaxax

yxaxaxaxax

nnjj

nnjj




                     (3.4) 

. 

. 

. 

ininjijiii yxaxaxaxax  2211
 

. 

. 

. 

nnnnjnjnnn yxaxaxaxax  2211
        or, 

 

xi =   ifxa
j

ijij                                                (3.5)                      

Equation 3.4 and 3.5 can be transformed into matrix term in Equation 3.6. 

                                                             (3.6) 

A: the nn matrix of technical coefficients; 
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x: the output matrix for n sectors; 

f: the final demand matrix for n sectors. 

The technical coefficient matrix A can be displayed in Table 3.2. 

Table3.2: Technical Coefficients (A Matrix) for an n-sector Economy 

Sectors         1       ....        j          ....        n 

1 

..... 

j 

..... 

n 

z11 / x1 = a11 z1j / xj = a1j z1n / xn = a1n 

zj1 / x1 = aj1 zjj / xj = ajj zjn / xn = ajn 

zn1 / x1 = an1 znj / xj = anj znn / xn = ann  

(Modified from Xia et al, 2016) 

Equation 3.6 can be rearranged as Equation 3.7.  

       -        ,        -                                 (3.7)  

       -      is known as the Leontief inverse matrix, which measures how a 

dollar’s worth of change in final demand of a sector affects the total output value 

across the economy through inter-industrial linkages. In other words, it evaluates the 

total accumulative effects including direct and indirect effects on sectoral output 

from the changes in final demand. Thus, it reflects the technical change in an 

economy in terms of input-output relations between economic sectors (Miller and 

Blair, 2009, p13).   

The basic Leontief input-output model has several assumptions. Firstly, the total 

output of sector j in a given period of time determines the inter-industrial flow from 

sector i to j, suggesting a demand-driven feature for the basic input-output model. 

Thus, zij depends entirely on xj. Secondly, technical coefficient aij is fixed that indicate 

the fixed relationships between a sector’s input and output. It will change only when 

the technology in the economy is improved. Additionally, fixed proportions 

assumption holds for primary inputs of production. In other words, the Leontief 

production function requires the same proportional increases in all inputs to expand 

the output in the same proportion (Miller and Blair, 2009, p13).  
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3.2.3 A Rotated View of Leontief Input-Output Model 

Changes in production of a sector can affect other sectors in the economy through 

two directions, including those that provide its primary production inputs and those 

that purchase their production inputs for it (Miller and Blair, 2009, p543). The 

relationships embodied in the latter are described by a supply-driven input-output 

model, which is derived from a Leontief input-output model with a focus on supply 

side of an economy. As it is a rotated view of a Leontief model, they are two sides of 

the same coin. By rotating the vertical view of Table 3.1 to a horizontal view, 

allocation coefficients B can be obtained, which are similar with technical 

coefficients A but describe the distributions of sectoral output across all the 

remaining sectors. The allocation coefficients are assumed to be fixed in a 

supply-driven input-output model. For each column in Table 3.1, the sectoral input 

can be interpreted as: 

                                                           (3.8) 

B: the nn matrix of allocation coefficients; 

x: the output matrix for n sectors; 

v: the value added matrix for n sectors. 

From Equation 3.8, a supply-driven input-output model can be obtained as Equation 

3.9 and 4.0.  

       -          -                                       (3.9) 

so                                                        (3.10) 

G, G’: output/Ghosh inverse and the element gij indicates the value of each unit of primary 

inputs in sector i that enters sector j.  

Therefore, a supply-driven input-output model describes the impacts of change in primary 

input in a single sector on the outputs of all the remaining sectors. 
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3.3 The Applications of Input-Output Model 

This section introduces the recent applications of input-output techniques on 

ecological, environmental and disaster risk studies by reviewing the model 

developments and modifications. It particularly emphasizes on disaster risk study 

domain by covering both historical approaches and contemporary developments.  

3.3.1 Applications in Ecological and Environmental Studies 

The input-output techniques were initially applied on environmental problems by 

Cumberland in 1966 as he introduced a model that adds columns and rows into an 

input-output table to investigate both environmental benefits and costs resulting 

from economic development (Table 3.3). In his approach, q and c stand for the value 

of sector-specific environmental benefits and costs, respectively, measured as 

positive and negative correspondingly. r is the subtraction of q and c, representing 

the net effects on environment from economic development. b is the costs for 

cleaning up the pollution, normally paid by the public or private sectors (Richardson, 

1972). However, his model has the limitation in ignoring the flows between 

environment and economy.   

 

Table3.3: Cumberland’s Input-Output Based Environmental Approach 

A f X 
Cost of 

Environmental 

Restoration b 

V’ 

  x’ 

Environmental Benefit q  

Environmental Cost   c     

Environmental Balance r =(q-c)    

    

(Modified from: Richardson, 1972) 

 

Later, Daly (1968) and Isard (1972) proposed an ‘economic-ecological model’ which 

can reflect the intra- and interrelationships between environment and economy 
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(Table 3.4 and 3.5). In Daly (1968)’s model, an input-output table was divided into 

four sub-matrices to represent flows between industries, flows within ecosystem, 

flows from industries to ecosystem and flows from ecosystem to industries. 

Nevertheless, his model is subject to shortcomings in mixing up non-priced 

ecological commodities with priced economic commodities. Compared with Daly’s 

model, the model proposed by Isard (1972) is similar but using production 

coefficients. His model also allows to include various ecological commodities in each 

sector and different substances in ecological sectors. Both Daly and Isard’s models 

are comprehensive which fully implemented land, water, chemical reactions in the 

air. However, their models are limited by the data requirements, especially regarding 

environmental subsystems and their interactions (Richardson, 1972).  

Table3.4 Daly's Model                         Table3.5 Isard's Model 

 

 Industry 
Ecological 

processes 
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Flows between 

industries 

Flows from 

industry to the 

ecosystem 

Ec
o
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p
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 Flows from the 

ecosystem to 

industry 

Flows within 

the ecosystem 

 

 Industry 
Ecological 

processes 
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ie

s 

Ec
o
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o

m
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Axx Axe 

Ec
o
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gi

ca
l 

Aex Aee 

(Modified from: Miller and Blair, 2009, p446) 

Inspired by Daly and Isard’s models and the difficulties in obtaining data, Victor 

(1972) introduced a model with limited scope that is first to capture the material 

flows (Table 3.6). The model typically focuses on flows from environment to 

economy in terms of ecological commodities, as well as flows from economy to 

environment in terms of the wastes. Indeed, his model is able to differentiate the 

expressions for economic and ecological data (Miller and Blair, 2009, p446).  
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Table3.6: Victor’s Model 

 Commodities Industries 
Household 

Consumption 

Total 

Output 

Ecological 

Commodities 

Commodities  U e q R 

Industries V   x S  

Value added  W    

Total Inputs q’ x’    

Ecological 

Commodities 
P M    

Econnomic sectors: U (inputs of industrial economic commodities), V (outputs of 

industrial economic commodities), e (final demand), q (gross output of economic 

commodity), x (industrial total outputs), q’ (sums of V), x’ (sums of U and W); 

Ecological sectors: R (outputs of ecological commodities from final demand), S 

(industrial discharges of ecological commodities), P (inputs of ecological 

commodities in conjuction with final demand), M (industrial inputs of ecological 

commodities).  

(Modified from: Miller and Blair, 2009, p446) 

Leontief (1970) employed the input-output techniques to develop a 

pollution-abatement model (Table 3.7). The row vector of pollution generation 

stands for emissions generated from each industry during production while the 

column vector of pollution abatement describes emissions eliminated by the 

pollution abatement industries. However, the model was heatedly debated by many 

scholars (eg. Chen, 1973; Steenge, 1978; Qayum, 1991; Arrous, 1994, Victor, 1972), 

from which Victor (1972) argued that the model neglects the material balance 

principle and Steenge (1978) critisized the model because abatement costs might 

need to be reallocated if the duality between price effect and the real world crashes 

under externality effects.  
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Table3.7 Pollution-abatement Model 

                                                            unit: dollar 

 Manufacturing Services 
Pollution 

Abatement 

Final 

Demand 

Total 

Output 

Manufacturing     

Services     

Pollution 

Generation 
    

(Modified from: Miller and Blair, 2009, p447) 

Another popular application of input-output techniques is the physical input-output 

tables (PIOTs). In the 1990s, the statistical offices in some European countires firstly 

displayed input-output tables in physical terms in order to analyze the physical 

economic structure and comprehend the research on economy-environment 

relationships (Hubacek and Giljum, 2003). PIOTs has been widely applied on material 

flows accounting (Kratterl and Kratena, 1990; Kratena et al, 1992; Stahmer et al, 

1997; Pedersen, 1999; Stahmer, 2000), energy accounting (Bullard and Herendeen, 

1975; Machado et al, 2001), land use (Hubacek and Giljum, 2003), pollution diversion 

(Stahmer et al, 1997) and resource management (Strassert, 2001). The PIOTs record 

flows of all the transactions of goods and services in physical units, including both 

the production flows between production sectors and the material flows between 

economy and environment. It was developed based on the theory of material 

balance, which suggests that the net material accumulation should equal to the 

difference between total inputs and total outputs. In other words, physical inputs in 

a sector should equal to its physical outputs and also the consumption of households 

(Giljum and Hubacek, 2009). Compared with the PIOTs, monetary input-output 

tables (MIOTs) have played a significant role in economic policy analysis that serve as 

a foundation for national economic accounting system and was used widely in early 

works on land use (Hubacek and Giljum, 2003). The difference between MIOTs and 

PIOTs can be observed in Figure 3.1 For the quadrant of intermediate transactions 

between industries, the two approaches are comparable except that PIOTs record 

the intra-industry flows in physical units. Major differences occur in the other two 
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quadrants. PIOTs take environment into consideration by adding a source of raw 

materials in the primary input and a sink for residuals in the output of the economy 

in a way that incorporates the non-priced resource flows (Hubacek and Giljum, 2003). 

It is noteworthy that although the compilation of PIOTs largely follows the procedure 

of the monetary tables, the two tables cannot be converted two tables even if with 

the detailed information of prices provided because prices shown in an input-output 

table can be largely different from the real prices as a result of sector aggregation 

(Stahmer et al, 1997; Hubacek and Giljum, 2003; Giljum et al, 2004; Dietzenbacher et 

al, 2007). Nevertheless, PIOTs have the weakness in the use of a uniform unit, ‘tons’, 

to aggregate different qualities (Hubacek and Giljum, 2003; Suh, 2004; Giljum et al, 

2004; Giljum and Hubacek, 2004). Besides, there is a lack of standardized 

methodology for the PIOTs compiled (Hubacek and Giljum, 2003). 

MIOT (in monetary terms)  PIOT (in physical terms) 

1st quadrant 2nd quadrant  1st quadrant 2nd quadrant 

Interindustry 

deliveries 

Final demand  Interindustry 

deliveries 

Final demand 

Residuals 

3rd quadrant   3rd quadrant  

Value added 

Imports 

  Primary inputs 

Imports 

 

 

(Modified from: Hubacek and Giljum, 2003) 

Figure3.1 The difference between MIOTs and PIOTs 

Compared with the applications of input-output techniques on energy and material 

flows, the applications on water-related issues tend to be fewer. Ireri and Carter 

(1970) appear to be the very first study that extends an interregional input-output 

model with water-use coefficients to evaluate the water in production flows 

between California and Arizona. Similary, Duchin and Lange (1994, p28) employed 

the water-use coefficients to assess the water embodied in production for Indonesia 

and for the globe, respectively. There emerges a number of studies measuring the 
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effects on water resources from economic production and domestic demand in the 

late 1990s, including Yoo and Yang, 1999; Lenzen and Foran, 2001; Duarte et al, 2002; 

Leistritz et al, 2002 and Wang et al, 2005. One typical study can be Bouhia (2001) in 

which she combines a water resource allocation model based on a linear 

programming model with a static input-output model to construct a hydro-economic 

model. Water was shown in both monetary and physical terms balanced in material 

balance accounts. Specifically, Bouhia (2001) not only developed a set of water 

multipliers that allow her to assess the effects of different development scenarios of 

water demand but also added a column of ‘change in the Natural Stock of Water’ 

into the final demand quadrant to represent the waste water that is assumed to be 

deposited after the first production process and withdrawal by other sectors 

afterwards in order to feed back to the economic system. Meanwhile, with a 

different focus on water quality and water pollution, Thoss and Wiik (1974) applied a 

generalized input-output model on water pollution in the Ruhr. Both Ni et al (2001) 

and Okadera et al (2006) employed the input-output techniques to account for 

pollution discharge in Shenzhen and Chongqing, China, respectively. 

3.3.2 Applications in Disaster Risk Studies 

Earlier works on economic loss assessment of natural disasters mostly focus on the 

direct damages to physical infrastructure using the methods discussed in section 2.1. 

Assessing the disaster-induced economic disruptions merely based on direct 

economic impact is insufficient because it ignores the indirect economic impact 

(Rose, 2004). Indirect economic impacts can arise in two main ways. The first is the 

reduced capital and labour productivities as a result of disaster’s direct damages to 

physical capital (in the case of ‘rapid-onset’ disasters) and its health impacts (in the 

case of ‘persistent’ disasters) as well as the cascading economic impacts along 

production supply chains due to sectoral and regional interdependencies. Imaging a 

region is terribly hit by floods that destroy several roads, bridges, machineries and 

buildings, people cannot go to work due to the traffic disruptions and destructed 
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workplaces, and factories cannot perform productions due to the broken machines. 

As a result of the direct damages to these physical capital, effective working time, 

labour productivity and capital productivity will decrease, all contributing to the loss 

in economic outputs. Similarly, in the case of air pollution and heat waves, human 

health is severely harmed in terms of increasing mortality and hospitalization counts 

among respiratory and cardiovascular patients. It will inevitably induce substantial 

labour time loss that undermine labour productivity and economic production. The 

other is the impacts of production loss in a single sector on its customer 

(‘downstream’) and supplier (‘upstream’) sectors. Its theoretical basis is the concept 

of ‘a circular economy’ that underlines important sectoral and regional 

interdependencies (Leontief, 1928). Any initial impacts on a sector’s production can 

be cascaded through such linkages and eventually spill over the remaining sectors. 

Therefore, indirect economic impacts can constitute a considerable share of the total 

socioeconomic burden of a disaster and is critical for disaster risk assessment and 

management. This was also approved by Hallegatte (2008) when he concluded that 

the ratio of total-to-direct economic loss rises with the increasing severity and 

magnitude of natural disaster.  

A proper disaster risk assessment for systematic risk management thus requires not 

only to incorporate the accumulated output loss resulting from capital and labour 

productivity loss during economic recovery process if there is any, but also to 

capture the cascading economic impacts due to sectoral and regional 

interdependencies. This is significant for reducing vulnerability3 while improving the 

resilience2 of the affected regions (Okuyama, 2009; Rose, 2004; Veen & Logtmeijer, 

2003). To cope with the industrial and regional interdependencies in disaster risk 

assessment, both input-output techniques and Computable General Equilibrium 

(CGE) model are able to capture these interdependencies regardless certain inherent 

                                                      
3
 The Intergovernmental Panel on Climate Change (IPCC) defines vulnerability as the ‘degree to which a system 

is susceptible to injury, damage, or harm’ and resilience as the ‘degree to which a system rebounds, recoups, or 

recovers from a stimulus’ (Burton, Challenger, Huq, Kein, & Yohe, 2001). 
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limitations. The CGE model analyzes the macroeconomic context of markets by 

allowing instantaneous price adjustments, which can loop back into economic 

activities (Carrera et al, 2015). Therefore, a CGE model is often critisized by its over 

optimism in market flexibility regardless the various adaptive capabilities in the real 

world (Carrera et al, 2015; Rose, 1995). In contrast, although an input-output model 

contains rigidity in technological ties, it appears to be a suitable candidate to study 

an economy in equilibrium and thus, it is useful for analyzing disaster risks where 

such equilibrium and balances might be broken down by a natural disaster. With the 

advantages in coping with sectoral and regional interdependencies, input-output 

techniques have been modified and developed to overcome the rigidity problem 

surrounding the basic static input-output model and thereby, to be applied in a 

dynamic context of natural disaster. In the case studies of this thesis, the primary 

and initial reduction in industrial value added or final demand due to capital and 

labour productivity loss is referred as direct economic loss while the secondary 

cascading economic loss resulting from industrial and regional interdependencies is 

termed as indirect economic loss. The purpose of doing so is to highlight the 

important role of industrial and regional interdependencies in macroeconomic costs 

assessments.   

3.3.2.1 The Inoperability Input-Output Model (IIM) 

In order to assess the sectoral damages in productivity, some authors (Haimes & 

Jiang, 2001; Haimes et al, 2005; Santos & Haimes, 2004; Santos, 2006) introduced a 

concept of ‘expected inoperability’ to represent the risk from natural disasters, which 

reflects the system risk and probability of limitation in performing the planned 

natural or engineered functions. The Inoperability Input-Output Model (IIM) was 

developed based on this concept by assuming a direct relation between the level of 

transactions and the interdependency among economic sectors. Its initial purpose 

lies in evaluating the propagation of perturbations and disturbances within a system 

of interconnected and interdependent infrastructure and sectors (Haimes and Jiang, 

2001; Haimes et al, 2005). It can be applied in various fields of natural disaster, 
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ranging from risk modelling, risk assessment to risk management for 

economic-based engineering systems on a large scale (Crowther and Haimes, 2005). 

The formula of the physical-based model is presented in Equation 3.11.   

               
      

   
    

 
                         (3.11) 

xp: output state and the resulting vector of inoperability of various infrastructures; 

Ap: physical interdependency matrix that measures the interdependency between 

various physical subsystems within the larger system; 

cp: the disturbance or perturbation input to the interconnected infrastructures in the 

form of natural events; 

As can be seen from Equation 3.11 that the model seems to share the similar 

appearance with a basic Leontief input-output model. However, Haimes and Jiang 

(2001) added the superscript P to adapt and differentiate from the Leontief model. 

The physical IIM improves the capacity of the basic Leontief model by enabling 

acurate representation of the complexity and interdependency within a physical 

system. Its roots in input-output analysis allow users to intuitively assess the 

cascading impacts on each of the remaining subsystems from a perturbation to a 

single subsystem (Crowther and Haimes, 2005). However, the physical model is 

limited by unavailability for transactional data. To cope with the data issue, the 

demand-reduction IIM and supply-reduction IIM were developed by Santos and 

Haimes (2004). A demand-reduction IIM is a system model that shows logical 

interdependencies between sectors and infrastructures based on the use of 

commodities by using equilibrium economic transactional data. In contrast, a 

supply-reduction IIM reflects the interdependencies from the perspectives of 

industrial commodity production (Crowther and Haimes, 2005). The demand-side 

model can be shown in Equation 3.12 with its key elements shown from Equation 

3.13 to Equation 3.15.    

                                                       (3.12) 

                                                          (3.13) 

            -1   
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                                     (3.14) 

                 
  

       

   
                         (3.15) 

q: demand reduction inoperability; 

A*: demand interdependency matrix, which was developed based on technical 

coefficient matrix A using the data from Use and Make matrices of the Bureau of 

Economic Analysis (BEA); 

c*: the primary disturbance to demand 

P: the transformation matrix to equate physical IIM with a demand-reduction IIM. 

A supply-reduction IIM can be derived from a demand-reduction IIM by shifting the 

focus from users’ inoperability to suppliers’ inoperability. It is shown in Equation 

3.16. 

                                                          (3.16) 

q(s): supply reduction inoperability; 

A(s)*: supply interdependency mtrix, which was also developed based on technical 

coefficient matrix A using the data from Use and Make matrices of the Bureau of 

Economic Analysis (BEA); 

z*: the primary disturbance to supply. 

The approach has been applied to assess the cascading effects resulting from the 

disturbances to a national power outage (Crowther and Haimes, 2005). The ability of 

IIM to capture both interdependency and propagating effects from disturbance, 

Crowther and Haimes were able to assess the economic loss caused by both users’ 

inability to receive power during the power outage, and the suppliers’ inability to 

satisfy electricity demand (Crowther and Haimes, 2005). Alongside, they suggested 

that such approach can equally guide risk management policy with a focus on port 

security. In this respect, IIM adds insights to a more comprehensive and systematic 

views on potential system risks from changes in risk management policy. It has been 

broadly applied to critical infrastructure systems (eg. Santos and Haimes, 2004; Lian 

et al, 2006). It has been also extended to a multiregional level by presenting the 
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spatially explicit concepts of intraregional and multiregional interdependency 

matrices, which has later applied to evaluate the geographical risk in various regions 

in the US (Crowther and Haimes, 2010).  

Nevertheless, these models encounter several limitations due to the embodied 

assumptions. The first assumption lies in the fixed production procedures, suggesting 

constant technology and proportionality. This assumption is related with the basic 

assumption in the Leontief model. Secondly, supplies of raw materials are normally 

larger than demand while IIM ignores the overcapacity of local resources or 

possibility for substitutions. Thirdly, the resolution of model elements cannot exceed 

those from the Bureau of Economic Analysis (BEA) (Haimes et al, 2005). Indeed, Rose 

(2004, p25), by suggesting that “full multiplier effects are likely to take place only in 

short-duration hazard situations,” pointed out the strictness for the duration of 

disturbances. On the one hand, the models do not consider possibilities for 

substitutions. The exclusion of substitutions can only occur when the duration of 

disturbances is relatively short. Otherwise, substitutions will alter the technical 

multipliers in the affected system. On the other hand, the duration of disturbances 

cannot be too short because short duration of disturbances might be easily 

overcome. Therefore, to fit these assumptions, a disturbance should be both short 

enough to avoid substitutions and long enough to take effects to the interdependent 

systems (Crowther and Haimes, 2005). 

3.3.2.2 The Dynamics of Post-disaster Recovery 

The IIM allows to assess the efficacy of risk management by measuring the economic 

impacts of disturbances with and without risk mitigation measures (Haimes and 

Chittester, 2005). However, concerning temporary and risk management evaluations, 

the way a particular system recovers, the costs of such recovery as well as the 

measures to minimize the loss during recovery process requires us to consider the 

dynamic nature of post-disaster economy.  
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To cope with the dynamic post-disaster recovery, Leontief (1986) himself extended 

the static basic input-output model to a dynamic input-output model (Blanc and 

Ramos, 2002; Miller and Blair, 2009, p2). The traditional dynamic input-output 

model can be shown in Equation 3.17 and 3.18. 

                             or,                       (3.17) 

           -                                            (3.18) 

x(t): a vector of sectoral output at time t; 

Y(t): a vector of final demand at time t; 

B: a matrix of capital coefficients, which measures the willingness of the economy to 

invest in capital resources, including machines, land or software. 

When the dynamic input-output model reaches an equilibrium, it will becomes a 

static model as shown in Equation 3.6. x’(t)=0 suggests an equilibrium. However, 

after revisiting Equation 3.18, Blanc and Ramos (2002) argued that the B matrix has 

to be negative or zero so that it can produce an economic behaviour coincided with 

the static Leontief model no matter what the initial situation or final demand is 

(Blanc and Ramos, 2002). Therefore, matrix B should be understood as the 

short-term countercyclical policy rather than long-term growth. Indeed, in the case 

that B=-I, what the dynamic model really describes is the adjustment level of the 

economic production following an imbalances between total supply and total 

demand at time t (Lian and Haimes, 2006). Facing that the dynamic process is not 

completely deterministic as short-term economic behaviour of sectors can be 

affected by myriad factors, a Dynamic Inoperability Input-Output Model (DIIM) was 

proposed by adding a stochastic component that describes the production 

adjustment rates. As an extension for the IIM, a DIIM incorporates the recovery 

processes of economic sectors during the aftermath of a disruptive event and 

describes the temporal nature of sector recoveries pursuant to a disaster based on 

the interdependency and resilience of the sectors (Lian and Haimes, 2006; Santos et 

al, 2009). The DIIM follows the Equation 3.19. 
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                          -                               (3.19) 

q(t+1): inoperability vector at time t+1; 

q(t): inoperability vector at time t; 

K: resilience matrix; 

c*(t): vector of the initial disturbances. 

The resilience matrix K plays a vital role in differentiating DIIM from IIM because it is 

generated from the dynamic extension to describe the recovery process of the 

sectors. Higher value in resilience indicates faster pace to recover and the time 

length needed to recover to normalcy is used as an indicator for the value in 

resilience (Santos et al, 2009). Despite that the DIIM has been widely applied in 

disaster impact analysis and economic recovery modelling (Haimes et al, 2005; 

Okuyama, 2007; Arkhtar and Santos, 2013; Santos, 2006; Xu et al, 2011), the 

assumption of economic equilibrium in the disaster aftermath is yet to be fully 

addressed in these models. 

3.3.2.3 Post-disaster Imbalances Model 

To restore the economic equilibrium appears to be the primary aim for any 

post-disaster recovery strategy. However, it is not an easy task because post-disaster 

situation is often characterized by vast disruptions and enduring disequilibrium. As I 

previously mentioned in section 3.2.2, the assumption of fixed proportions between 

primary inputs holds in a basic Leontief input-output model. Unfortunately, 

disproportional damages to these primary inputs always occur in the disaster 

aftermath, as Steenge and Bočkarjova (2007, p208) stated that “In modelling efforts, 

I should recall that a disaster will affect these categories differently…”. This can 

happen in either case that residential neighbourhoods are more physically affected 

than industrial and service quarters, or workers are relatively unharmed but 

workplaces are terribly hit by the natural disaster. In both cases, primary inputs will 

not be shrunk by the same proportion and the corresponding intermediate inputs 

cannot produce sufficient goods and services to fulfil the remaining final demand 
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(Steenge and Bočkarjova, 2007). Considering the disproportions between the 

production capacity in the ‘surviving’ establishments and the needs from the 

‘surviving’ labourers, Steenge and Bočkarjova (2007) introduced a Post-disaster 

Imbalances Model based on a closed Leontief model, which enables to trace the 

supply and demand for each commodity and allows a set of outputs to be circulated 

as a set of inputs in the next round. The basic formula describing the pre-disaster 

economy is shown from Equation 3.20 to 3.25.  

                                                      (3.20) 

                                                       (3.21) 

By rearranging Equation 3.20 and 3.21, we can have: 

 
    

   
  

 
 
   

 
 
                 or,                    (3.22) 
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If we designate  

   
  
   

      
 
 
                                      (3.24) 

Equation 3.23 will become Equation 3.25. 

                                                    (3.25) 

 

    

 
     

  
    
   

     

   

  

  

 
  

    

   

  

 
  

    

  

A: the matrix of input coefficients; 

l’: row vector of direct labour input coefficients; 

x: vector of total output; 

f: vector of final demand; 

L: scalar for total employment; 

M: a matrix with the Perron-Frobenius eigenvalue equal to one; 

q: the corresponding positive eigenvector. 
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The left-hand side of Equation 3.25 stands for the total inputs in an economy while 

the right-hand side is the total outputs in an economy. It essentially describes an 

economy’s potential to be self-reproducible when sectoral capacities are at level q in 

a context of equilibrium. From Equation 3.20 to 3.25, Steenge and Bočkarjova (2007) 

have moved from a formulation based on an open Leontief model to a formulation 

based on a closed Leontief model. It is noteworthy that fixed coefficients assumption 

only holds in matrices A and l’ while the remaining elements will change 

correspondingly. In other words, if f changes, x, L and h will also change.  

Then, Steenge and Bočkarjova (2007) introduced (n+1) parameters           , 

which can be presented as an (n+1)*(n+1) diagonal matrix in Equation 3.26. It shows 

the fraction of production capacity loss in sector i. 

   
  

 
 

 
    

                                           (3.26) 

When   is a (n+1) dimensional zero matrix, it describes a pre-disaster situation with 

full employment and without idle capacity. In contrast, if   is not the zero matrix, 

post-disaster imbalances appear and Equation 3.25 will become Equation 3.27. 

                                                   (3.27) 

In Equation 3.27, unless      , which indicates proportional shrink in primary 

inputs, proportional reduction in production capacity of primary inputs and 

economic output cannot be replicated. In a closed Leontief model, a set of outputs 

from the previous round will be fed back into production in the next round as a set 

of inputs. After a natural disaster, the possible inputs that can be circulated into the 

next round can be illustrated as Equation 3.28. 

                                                    (3.28) 

 

    

 
     

  
    
   

     

   

   

     
  

  
  

  
  

     
       

  

  

 
  

    

    

  
 
  

    

  

t: the column vector of the row sums of the left side of Equation 3.28. 



 58 

It is noteworthy that Equation 3.28 is not an input-output equation because t is just 

a matrix of row-wise addition and there is no equilibrium here. The consumption 

possibilities at post-shock stage with remaining capacity cannot satisfy the real 

remaining final demand measured by workers’ real wage. To restore the pre-disaster 

proportions, a recovery approach that is able to modify Equation 3.28 in order to 

obtain an eigenvector system suggested in Equation 3.25 should be selected. In this 

respect, a Post-disaster Imbalances Model can provide a benchmark to guide 

post-disaster economic recovery strategy. Apart from this, their work appears to be 

the first that formally introduces the concept of Event Account Matrix (EAM) in the 

input-output modelling based on Cole et al (1993)’s initial idea in event matrix. Cole 

et al (1993) indicated that an event matrix should specify not only the magnitude of 

damage to sectoral components, but also the goal for recovery and recovery time 

scale. The matrix is a mathematical component that expresses the damage fraction 

regarding the sectoral production capacity and allows keeping track of post-disaster 

imbalances and possible bottlenecks.  

However, Steenge and Bočkarjova (2007)’s work was developed based on fictional 

flooding scenarios and therefore, some practical issues are yet to be fully 

investigated, such as transportation, utility services and communication systems. 

This is based on their assumptions that substitutions of importable commodities are 

always available from non-affected areas regardless the remaining capacity in 

transportation sector. Indeed, their model cannot fully capture the dynamic nature 

of post-disaster economic recovery.  

3.3.2.4 An Adaptive Regional Input-Output Model (ARIO) 

In order to cope with the dynamic post-disaster recovery, Hallegatte (2008) 

proposed an hybrid modelling framework, an Adaptive Regional Input-Output Model 

(ARIO), to analyse the economic impacts of natural disasters and the recovery phase. 

His model contributes in two aspects. On the one hand, on the part of Steenge and 

Bočkarjova (2007), the model also considers sector production capacity as a result of 
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the shock on the supply side and the cascading impacts resulting from sector 

interdependencies. On the other hand, the model introduces adaptive behaviour of 

producers and consumers in response to a lack of inputs. The model was designed 

for a regional economy, where sectors produce commodities for intermediate 

transactions of other sectors as well as final demand of local consumers, import 

commodities from outside the region and export commodities outside the region.  

(a). Basic Structure of the ARIO 

The original state of the pre-disaster economy can be presented as Equation 3.29. 

                                                        (3.29) 

  : the vector of sectoral outputs; 

  : the vector of final demand. 

After a natural disaster, the post-disaster economy can be illustrated as Equation 

3.30. 

                                                                  
      

      (3.30) 

     the vector of local final demand; 

 : the vector of export; 

  : reconstruction needs resulting from disaster damages to households, such as 

the damages to dwellings; 

 : reconstruction needs from the damages to industries in terms of physical capital 

loss; 

   : total final demand.  

It is the first time that reconstruction needs from both damages to household 

dwellings and damages to industrial physical capital were incorporated into a 

disaster economic modelling.  

Following Equation 3.30, the first guess production can be interpreted using 

Equation 3.31. 

                                                    (3.31) 
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      : total demand of sector i at time 0 before the disaster’s occurrence that 

includes both total final demand and intermediate demand from other sectors.  

In a pre-disaster economy, total output can satisfy total demand, indicating a 

balance between supply and demand.  

Then, sectoral remaining production capacity was considered by assuming the same 

proportional reduction in sectoral physical capital and its production capacity. Xmax 

stands for sectoral production capacity. It is compared with the first-guess 

production     shown in Equation 3.31. The production of sector i is thus the 

minimum between production capacity and first-guess production from total final 

demand    , following the concept of post-disaster imbalances suggested by 

Steenge and Bočkarjova (2007) (Equation 3.32).  

                                                       (3.32)  

       : production capacity of sector i. 

In addition, Hallegatte (2008) raised two possible situations. In the first situation, the 

remaining production capacity of a sector is able to satisfy its post-disaster total 

demand, including intermediate demand from industries, final demand of local 

households, demand from exports and reconstruction demand, then no problems 

occur. In the second situation, if the remaining production capacity of a sector is not 

sufficient to fulfil its total demand, then a manipulable rationing scheme takes place, 

which requires the sector to satisfy intermediate demand as a priority, household 

demand as a second, export demand as a third and reconstruction needs as an extra. 

However, a supply bottleneck may occur when a sector’s remaining production 

capacity cannot even satisfy the totality of its intermediate demand. In such case, 

the remaining output will be proportionally distributed to other sectors according to 

the post-to-pre-disaster output ratio. It is also the first time that possible supply 

bottleneck issue and rationing scheme were raised. To present the possible 

bottleneck in formula, we have Equation 3.33. 

When            ,                        
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then                           
     

     
                      (3.33) 

     : the first guess regarding the production of sector j that is required to fulfil 

intermediate demand from other sectors; 

     

     
     : production of sector i is bounded by ratio  

     

     
 when a supply 

bottleneck occurs. Overall, production of sector i is constrained by the production 

and supply from all other sectors.  

Meanwhile, to consider that a sector producing less also demands less from other 

sectors, Hallegatte (2008) fed such backward impacts into Total Demand    using 

Equation 3.34. 

                                                      (3.34) 

The new        will be used in Equation 3.32 and 3.33 until converge to 

       . During the recovery, the ARIO allows damages to industrial physical 

capital and household dwelling to reduce by certain amounts from reconstruction at 

each time stage (Equation 3.35). The model will continue running until     

    which suggests the final value of total demand equals to that of production and 

each sector is able to fulfil its total demand without any remaining reconstruction 

needs. 

                
  
                                       (3.35) 

              
  
       

(b). Specific Supporting Equations 

When considering the production capacity, Hallegatte (2008) also incorporated the 

factor of overproduction capacity as descried in Equation 3.36. The production 

capacity of a sector is suggested to be a function of the original production capacity, 

the damage fraction of production capacity and overproduction capacity.  

                
     

     
                                    (3.36) 

     : sectoral production capital before the disaster; 
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    : sectoral overproduction capacity; 

   
     

     
 : the remaining production capacity in a sector that is assumed to be 

consistent with the percentage of remaining production capital.  

Secondly, price sensitivity and macroeconomic condition were included in the model 

using Equation 3.37. Local final demand is a function of adapted local final demand, 

local macroeconomic condition and price elasticity of local final demand while 

exports is a function of the adapted exports and price elasticity of export demand.  

                                                         (3.37)     

                                   

            : adapted local final demand for sector i; 

     : adapted export demand for sector i;   

 : local macroeconomic indicator, measured by the current-to-pre-disaster total 

earning ratio; 

 : price elasticity.  

In addition, as a major progress of ARIO, Hallegatte (2008) considered the adaptive 

behaviour in final demand from the consumers’ perspectives and in intermediate 

consumption from the producers’ perspectives. One the one hand, if the substitution 

for a good is available and transportable, local final demand will adapt and decrease 

towards zero once the production of this sector cannot fully satisfy its total demand 

that requires local final demand to be rationed. This is also true for demand of 

exports in a sector. Such adaptive behaviour can be shown in Equation 3.38.  

             
            

      
            

  

    
 

  
                                (3.38) 

      
            

      
     

  

  
 

  
                          

    
     

 : parameters describing the pace of adapted local final demand and adapted 

export demand decrease. They are the time characteristics for local consumers and 

importers from outside the region to leave the local producers. 
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Similarly, local producers will shift to imports from outside the region if a sector 

producing a transportable commodity cannot fulfil the total demand (Equation 3.39). 

       
            

      
      

  

  
 

  
                               (3.39) 

     
            

      
      

  

  
 

  
      

    : imports of sector j from outside the region; 

  
 : time characteristic that describes the pace of intermediate consumption 

decreases and local producers shift to imports.  

In the opposite situation where local producers become able to satisfy total demand 

again, consumers, outsider importers and other local producers will shift back to 

local producers again.  

Hallegatte (2008) later applied this new framework on assessing the total economic 

loss of Katrina’s landfall in NewOrleans in 2005 and the storm surge risks under a sea 

level rise scenario in Copenhagen (Hallegatte et al., 2011). More recently, Wu et al 

(2012) employed the ARIO to evaluate the total economic loss resulting from the 

most destructive earthquake in China since 1949, the Wenchuan Earthquake 

occurred in Sichuan Province in 2008. They found that indirect loss account for over 

40% of direct economic loss and the regional economy is expected to recover during 

8 years. On their part, the model has been also applied to measure the ripple effects 

and spatial heterogeneity of total economic loss based on a scenario analysis that  

the Wenchuan earthquake happens in Beijing, the Capital city in China (Zhang et al, 

2017). The ARIO, although can be regarded as a significant step towards dynamic 

disaster recovery modelling, it ignores the constraints from loss in labour 

productivity, either from disaster-induced health effects or from disruptions to 

transportation. Indeed, important imbalances and nexus between capital 

availabilities and labour productivity have been neglected, where disproportions 

between primary inputs of production might occur (Koks et al., 2016). As the 
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assumption of fixed proportions between factor inputs holds throughout the 

input-output model, considering remaining production seldom based on capital 

degradation is a major drawback associated with the ARIO. 

3.3.2.5 A Flood Footprint Model 

Based on the former ARIO, Li et al (2013) laid the foundation of a flood footprint 

model by incorporating labour availability. The term ‘flood footprint’ is a novel 

damage accounting framework that is used to describe the total socioeconomic 

impact that is both directly and indirectly caused by a flood event to the flooded 

region and wider socioeconomic systems. The model was developed as a monthly 

model based on dynamic inequalities in a post-disaster imbalanced economy. A 

series of dynamic inequalities serves as the theoretical foundation and can be 

interpreted in Figure 3.2. These inequalities occur between remaining labour 

production capacity and remaining capital production capacity, remaining labour 

production capacity and post-disaster total production, post-disaster total 

production and post-disaster total demand. To explain this in details, let us recall the 

Post-disaster Imbalances Model in section 3.3.2.3. 

 

Figure3.2 Post-disaster imbalanced economy with inequalities 

The diagram demonstrates the post-disaster economic inequalities occur between remaining labour 

production capacity and remaining capital production capacity, remaining labour production capacity 

and post-disaster total production, post-disaster total production and post-disaster total demand, 
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shown in red arrows. The left-hand side denotes the supply-side of the economy while the right-hand 

side shows the demand-side of the economy. 

                                                       

                                                        

By introducing the labour constraints in Equation 3.17, we then have: 

 
    

   
  

 
 
   

 
 
                 or,                     

 
  
   

  
 
 
   

 
 
                                        

when  

   
  
   

      
 
 
                                       

then we have 

                                                     

A: the matrix of input coefficients; 

l’: row vector of direct labour input coefficients; 

x: vector of total output; 

f: vector of final demand; 

L: scalar for total employment; 

M: a matrix with the Perron-Frobenius eigenvalue equal to one; 

q: the corresponding positive eigenvector. 

Equations above describe a pre-disaster economy in equilibrium, which is also a 

closed Leontief model. After the disaster’s occurrence, I introduced parameters 

  
      

     shown in Equation 3.40, then the demand side of the economy can be 

derived as Equation 3.41 and 3.42. It is noteworthy that this time the    is slightly 

different from the one in Equation 3.26 as it includes time characteristics.   is 

obtained from an Event Account Matrix (EAM). 

     
 

 
 

 
    
                                            (3.40) 
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                                  or,              (3.41) 

   
                                                  (3.42) 

    
 : damage fraction of sector n+1 at time step t; 

   
 : degraded total demand at time step t. 

Equation 3.41 suggests that degraded total demand    
  is determined by final 

demand f’ and    
  can be also understood as the total production required to fulfil 

such final demand over time. In contrast, Equation 3.42 implies that    
  depends 

on both the intermediate demand satisfied by current production capacity and total 

final demand. This requires a balance between the two elements.  

Now focusing on the economic supply side, with regards to labour, the degraded 

labour production capacity can be seen in Equation 3.43. Constrained by the labour, 

the degraded total production can be written as Equation 3.44 because of the 

assumptions of fixed proportions in primary inputs (Miller and Blair, 2009, p2). 

  
    

       
         

    
                               (3.43) 

  
 : degraded labour production capacity; 

  
 : total regional employment at time step t that is influenced by sectoral damage 

fraction. 

   
                                                  (3.44) 

   
 : degraded total production. 

Since the model is a closed Leontief model, the current production constrained by 

labour will determine the total demand of labour, that is,    
  is constrained by    

 . 

At each time step during recovery process, an equilibrium should be stored between 

total production capacity, total demand and labour production capacity and thereby, 

to continue recovering until it reaches a balance between the totality of inputs and 

totality of outputs in the economy, as shown in Equation 3.45 and 3.46.   

      
        
 

        
            

    

     
                          (3.45)                       
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                              (3.46) 

        
 ,         

 : the balances of total output and total employment required to 

reach the balance between total production, total demand and labour production 

capacity at time step t; 

           : total output and total employment required to reach a balance between 

them; 

     : a balanced total output and employment.  

Similarly, Koks, et al. (2014) uses a Cobb-Douglas function to estimate the direct 

damages from labour and capital constraints, and the indirect damages during the 

recovery process through the ARIO model. The study becomes a compatible example 

with Li et al’s study as it also incorporates restrictions in the productive capacity of 

labour through another approach. Incorporating labour constraints seems to be a 

great step towards more realistic and comprehensive disaster impact modelling, 

however, a major drawback is that the model treats imports as an exogenous 

variable by exogenously adding available imports to remaining production to fulfil 

both intermediate needs and final demand. Indeed, Li et al (2013) set both capital 

and labour recovery path exogenously that means the damage fraction of sectoral 

capital in next round do not really depend on the recovery from last round. This will 

inevitably deteriorate the applicability and practicability of his model in the real 

disaster cases.  

3.3.2.6 A Hypothetical Extraction Method (HEM) 

Focusing on the intersectoral and interregional linkages rather than the dynamic 

post-disaster recovery, Paelinck et al (1965) and Strassert (1968) proposed a 

Hypothetical Extraction Method (HEM) to measure the role of a sector in an 

economy typically in multisectorial models by investigating its ‘keyness’ in terms of 

economic relevance. The HEM method was first proposed to estimate the relative 

importance of certain sectors for the entire economy. This was done by introducing 

the concept of hypothetical extraction of the sector, thereby assuming that the 
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interruption of its services could not be remedied by imports and other substitutions. 

The reduction in overall production level after extracting certain economic sectors 

gives the importance of the sector. It has been later re-formulated by Meller and 

Marfan (1981) and Cella (1984). Once an economic sector is hypothetically 

eliminated from the economic system, the HEM can be used to estimate the effects 

of this extraction on other sectors and on the wider economic system. Thus, the 

difference between the output level of the other sectors before and after the 

extraction reflects the linkages between the extracted sector and the rest of the 

economy, where these linkages can be further decomposed into backward and 

forward linkages4 (Ali, 2015). Linkage analysis based on a HEM has been broadly 

applied on studies of water use (Duarte et al, 2004), key sector analysis (Andreosso 

O’Challaghan and Yue, 2004), economic importance of a wide range of sectors, 

including agriculture (Cai and Leung, 2004), real estate sector (Song and Liu, 2007) 

and construction sector (Song et al, 2006), as well as the role of energy and 

non-energy efficiency gains (Guerra and Sancho, 2009). In Guerra and Sancho 

(2009)’s work, the external interactions of energy sectors are eliminated while the 

external input purchases of non-energy sectors are removed at the same time. Doing 

so can reflect the sensitivity of non-energy sectors towards energy efficiency gains. 

Those sectors encountering substantial output loss are considered to have high 

sensitivities to efficiency gains. By using an adapted HEM, their work can not only 

help identify key sectors for energy efficiency policies, but also explore the origins of 

rebound effect from energy efficiency improvements (Guerra and Sancho, 2009). 

Recently, the HEM has been reformulated again by several researchers, including 

Dietzenbacher et al (1993), who adapted the basic HEM to measure regional linkages, 

as well as Dietzenbacher and Lahr (2013) and Temurshoev and Oosterhaven (2014), 

who extended the basic rationale underlying the HEM to a global-level analysis by 

considering international trade between regions and countries. In Dietzenbacher and 

                                                      
4
 Backward linkages refer to the linkages between a sector and other sectors that supply inputs to it 

while forward linkages refer to the linkages between a sector and other sector that purchase output 

from it (Miller and Blair, 2009, p556). 
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Van der Linden (1997), a whole region was hypothetically extracted within an 

interregional setting to examine the economic significance of the region with regards 

to interregional linkages. Zhao et al. (2016) investigated sectoral CO2 emission 

linkages in China at the regional level by integrating the HEM with a multi-regional 

input-output (MRIO) model. Nevertheless, applications of the HEM on disaster risk 

studies seem to be fewer compared with those on environmental or resource studies. 

Los (2004) suggested that the HEM can be equally meaningful for the assessment of 

sectoral or industrial shutdown in the cases of financial crises, such as the cases for 

the downfall of the Dutch aircraft manufacturer Fokker and the cease of the Belgian 

national airline Sabena that both caused the shutdown of the whole national 

industry. In these cases, the HEM can be used to evaluate the economic impacts of 

the ‘extractions’ of these companies on the economic systems. One of the few 

studies applying HEM on disaster impact analysis is Nozaki and Oosterhaven (2014) 

who adopted a regional HEM to measure the economic impacts from production and 

infrastructure shocks on the Japanese interregional economy, including 3 aggregated 

sectors for each of the 9 regions. Their hypothetical scenario allows the production 

in the non-disaster economies not to be affected by the production shock and thus, 

enables the imports and exports between regions despite that the imports will 

change proportionally according to the change rate in regional final demand. For 

instances, imports in the region under infrastructure shock is expected to increase 

proportionally while decrease in non-disaster regions (Nozaki and Oosterhaven, 

2014). In a recent paper, Oosterhaven (2017) put forward an important ‘caveat’ 

regarding the use of the HEM in disaster studies. The core of Oosterhaven’s criticism 

concerned the use of zero’s in horizontal rows of the matrix of input coefficients. 

These zeros can be problematic if substitution possibilities exist between domestic 

and foreign deliveries. In my view, this criticism, on the other hand, supports the use 

of the HEM in typical cases where substitution possibilities do not exist. Oosterhaven 

might be right in his judgment in standard cases. However, in the case of a complete 

shut-down of a particular sector, including its transport and transmission functions, 

the use of zeroes –as I have put forward- is allowed. The ‘complete disappearance’ 
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of the supply-demand mechanism of the products of the sector in question were 

witnessed while no substitution or replacement takes place because of the special 

nature of the sector (see section 5.1.1). Before proceeding to the empirical part of 

this study, I will devote some words to the HEM.    

Starting with the basic formula of the HEM, here I shall recall the basic Leontief 

model for an economy with n sectors (Equation 3.47). In the equation, the 

technology as represented by matrix A is given, final demand (f) is determined 

exogenously and output (x) endogenously. 
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Now due to a major catastrophe, suppose that a sector or sectors completely or 

partially lose its or their backward or forward linkages with the remaining economy, 

a new technical matrix A’ will be obtained as Equation 3.48.  
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A new final demand vector may arise when a major catastrophe alters the patterns 

of household and government consumption. Households may spend more on life 

necessities and less on luxury and entertainment while government may spend more 

on reconstruction and health care services. If so, a new final demand matrix f’ can be 

obtained as Equation 3.49.    
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A new economy with altered technology and final demand will be obtained as 

Equation 3.50.  
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Finally, the economic impacts of the disaster can be measured as the difference 

between the old and new total outputs. In a matrix notation, this can be illustrated 

as Equation 3.51.  

  -      -  
- 
  -   -   

- 
                                  (3.51) 

There are two points are particularly worth consideration when applying the HEM. 

Firstly, there are variants. Therefore, it is important to determine the specific variant 

of the HEM to be used in the study and before applying it. Following Miller and Blair 

(2009, p563), a column of a sector in an input-output table should be replaced by a 

column of zeroes if it cannot buy any intermediate inputs from other sectors; the 

backward linkages of this sector no longer exist. Analogously, a row of a sector in an 

input-output table should be replaced by a row of zeroes if it has no intermediate 

sales to other sectors and its forward linkages no longer exist. Both should be 

replaced by zeroes if both backward and forward linkages of a sector cease. Secondly, 

it is also crucial to decide how large a percentage of a sector’s backward and forward 

linkages should be reduced. In other words, whether the sector should be eliminated 

completely or partially and if the total capacity of the sector is put out of work. In 

this respect, there are two main approaches to implementing the HEM. Following 

the original HEM, as developed by Strassert (1968) and implemented by Schultz 

(1977), ‘extraction’ simply means completely removing the backward and forward 

linkages of a sector or replacing its row and column elements with zeros in the 

technical coefficient matrix. Alternatively, Cella (1984) improved the original 

extraction method by differentiating economic activities across all economic sectors 

into two categories: intermediate sales and purchases with other sectors and 

self-reproducible sales and purchases. Thus, an extracted sector no longer sells or 

purchases any intermediate products to or from other sectors, and its technical 
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coefficients will be partially replaced with zeros while the others remain the same 

(Ali, 2015; Zhao et al., 2016). Although such an economic assumption seems 

intuitively unrealistic because all technical coefficients are dependent on each other, 

Dietzenbacher and Van Der Linden (1997) validated this assumption by introducing 

imports to sustain the original technical production process. There is another, 

important point with regards to Oosterhaven’s negative view of the method 

(Oosterhaven, 2017). In his criticism, Oosterhaven points out that there is a 

difference between applying HEMs to backward and to forward effects. Using HEM 

for studying the impacts of upstream, backward effects is correct and poses no 

problem in terms of interpretability. However, interpreting the extraction of a row of 

the coefficients matrix to represent the forward, downstream impacts of the 

extracted sector is faulty (Oosterhaven, 2017, p8) because “it only measures the 

direct impacts of the complete disappearance of the demand for an industry’s 

intermediate sales” (Oosterhaven, 2017, p8).  

3.3.2.7 The Mixed Model 

The mixed model can be derived from a standard demand-side input-output model 

but with exogenously set final demands in some sectors and gross outputs in the 

remaining sectors (Miller and Blair, 2009, p593). This is common in a country with 

planned economy, such as China, where certain amount of increase in agricultural 

output might be set as a target by the end of the next planning period. Therefore, 

the model has been broadly applied in agricultural and resource economics 

(Tanjuakio et al, 1996; Papadas and Dahl, 1999; Petkovich and Ching, 1978; Eiser and 

Roberts, 2002; Leung and Pooley, 2002).  

The mixed model can be obtained by rearranging the basic Leontief model. For an 

economy with three sectors, the original economy can be interpreted as Equation 

3.52. 

                                                  (3.52) 
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a: sectoral technical coefficient; 

f: sectoral final demand; 

x: sectoral output. 

Now assuming final demand for sector 1 and 2 (f1, f2) and the output level for sector 

3 (x3) are set exogenously. By moving all exogenous variables to the right-hand side 

of the equations while the endogenous variables to the left, Equation 3.52 will 

become Equation 3.53. 

                                               (3.53) 

                              

                           

Alternatively, it can be presented in a matrix notation as Equation 3.54. 
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Let    
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The endogenous variables can be solved based on the exogenous variables as: 

 
  
  
  

       
  
  
  

                                         (3.55) 

Indeed, apart from determining the endogenous variables from set targets in some 

exogenous variables, the mixed model can also help evaluate, for example, the 

potential impacts of a rise in the output in a sector on the output or final demand of 

the remaining sectors (Miller and Blair, 2009, p593).   

3.3.3 Research Gap in Disaster Risk Analysis 

Regardless the hybrid models shown in section 3.3.2 in existing disaster risk studies, 

they largely focus on ‘rapid-onset’ disasters, such as floods and hurricanes, in which 
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case the accurate estimation will heavily depend on the quantification of industrial 

physical capital damages, from which the loss in industrial production capacity loss 

can be inferred based on an Event Accounting Matrix (EAM). However, they tend to 

neglect two critical points. On the one hand, each ‘rapid-onset’ disaster can take 

different forms with distinctive characteristics and affect physical and human capital 

differently. Damages to physical capital do not necessarily happen in a natural 

disaster. In such a case, existing disaster modelling frameworks that mainly rely on 

assessment of industrial physical capital damage might lose its efficacy. On the other 

hand, some natural disasters persist longer and take longer to realize their effects on 

the society and economy, such as air pollution and heat waves, which have rarely 

discussed in current disaster risk studies. The possible reason is that these disasters 

normally cause little damage to physical infrastructure but substantial health 

impacts on human beings. To quantify these ‘invisible’ effects impose a challenge for 

disaster risk analysis. However, considering the health impacts on human is equally 

important because they constitute principle factor inputs during production as 

labourers. As a result, the degradation in labour productivity and capacity can 

equally impede economic activity. Indeed, as a disaster may affect physical and 

human capital differently, there may exist disproportional shrinks between physical 

and labour production capacity. As the assumption of fixed proportion in primary 

inputs holds throughout an input-output model, disaster-induced health impacts 

may result in imbalances between post-disaster labour and capital production 

capacity, which constrain the total post-disaster production. Therefore, 

incorporating these impacts appears to be equally important for disaster risk 

assessment and management, as well as post-disaster recovery strategies to restore 

the balances.  
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Chapter 4: Development and Implications of 

a Disaster Footprint Framework  

After summarizing the research gaps in existing health costs assessment and disaster 

risk studies, this chapter develops an interdisciplinary approach that combines 

environmental or meteorological studies, epidemiological studies and 

macroeconomic analysis. The economic part of the approach is constructed based 

upon input-output techniques and thus, it is able to capture the cascading indirect 

economic impacts resulting from industrial and regional interdependencies. The 

approach introduces a new concept of ‘disaster footprint’ that denotes total 

economic loss measured by total reduction in aggregated production resulting from 

a natural disaster with a specific focus on the cascading indirect economic loss along 

economic production chains. The total economic loss incorporate not only the 

industrial initial reductions in both supply of primary inputs (value added) and final 

demand, but also the cascading indirect economic loss as a result of backward and 

forward linkages between interconnecting economic sectors within the economic 

system. By utilizing the interdisciplinary approach, health impacts can be integrated 

into disaster risk studies and industrial interdependency analysis through the lens of 

labour with additional consideration on disaster characteristics of either ‘rapid-onset’ 

or ‘persistent’ natural disasters. The specific tasks for this chapter are: 

1. To sketch the overall methodological framework of the ‘disaster footprint 

model’; 

2. To introduce the main components of the model as well as details in specific 

methods or equations from environmental/meteorological, epidemiological 

and macroeconomic studies that bridge these three fields; 

3. Regarding the macroeconomic part of the approach, to propose several 

possible ways to feed health impacts into the input-output based economic 

models that can successfully reflect the macroeconomic implications from 
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these health impacts. For each method, the rationale, basic equation, data 

requirements, advantages and disadvantages will be provided together with 

a simple numerical example based on fictive scenario.  

4.1 Overall Methodological Framework 

Figure 4.1 portrays the overall methodological framework of the interdisciplinary 

‘disaster footprint’ model that is able to bridge environmental and meteorological 

studies (box in red), epidemiological studies (box in blue), industrial impact analysis 

(box in grey) and macroeconomic analysis (box in orange). Key elements belonging 

to one particular study are shown in the same colour as small circles shown in the 

right of the diagram. They are connected with labelled arrows that represent the 

detailed methods employed to actualize certain specific objectives displayed in the 

small circles. It can be observed from the diagram that the developed 

methodological framework constitutes a flow, which originates from environmental 

or meteorological studies that help identify a particular natural disaster event, which 

can be either ‘rapid-onset’ or ‘persistent’. Thereafter, it has been separated into two 

directions. On the one hand, if the disaster under investigation is a ‘persistent’ 

disaster, either PM2.5 air pollution or heat waves, the next step will evaluate the 

resulting clinical health and sub-clinical impacts based on developed 

exposure-response relationships or findings from existing epidemiological studies, 

from which the productive working time loss can be estimated and possible impacts 

on final demand and industrial value added can be examined depending on whether 

a demand-driven or supply-driven input-output model will be pursued to trace the 

cascading indirect economic loss along economic production chains. On the other 

hand, if the disaster is ‘rapid-onset’, both industrial physical capital damages and 

injuries or deaths among labour should be analyzed, depending on the distinctive 

characteristics of the disaster in consideration, based on which potential balances or 

imbalances between post-disaster remaining capital production capacity and labour 

production capacity can be detected. The loss of connection with other sectors for 
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the affected sectors will be inferred based on loss in overall production capacity loss. 

The loss in connections with other sectors will be further regarded analogously as 

the extraction of this sector from the economic system for a certain period by using 

a Hypothetical Extraction Method (HEM) to trace the economic impacts on the 

remaining sectors and economy. The chosen four case studies employ selective 

input-output based approaches that are most appropriate for the distinctive 

characteristics of each case. However, I also propose several other approaches based 

on input-output techniques to facilitate more analysing angles and modelling options. 

Eventually, the model is expected to provide useful macroeconomic implications for 

disaster-induced total economic loss, including both direct and indirect economic 

loss. The following sections tend to specifically explain detailed methods 

incorporated in each environmental and meteorological studies, epidemic studies, 

industrial impact analysis and macroeconomic analysis.  

 

Figure4.1 Overall methodological framework 

Figure 4.1 portrays the overall methodological framework of the interdisciplinary ‘disaster footprint’ 

model that is able to bridge environmental and meteorological studies (box in red), epidemiological 
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studies (box in blue), industrial impact analysis (box in grey) and macroeconomic analysis (box in 

orange). Key elements belonging to one particular study are shown in the same colour as small circles 

shown in the right of the diagram. They are connected with labelled arrows that represent the detailed 

methods employed to actualize certain specific objectives displayed in the small circles. 

4.2 Environmental and Meteorological Studies 

4.2.1 Air Quality Simulation Models for Assessing PM2.5 Concentrations 

For PM2.5 air pollution, air pollutant emission inventories were used to estimate the 

provincial PM2.5 concentration levels among 30 Chinese provinces using air quality 

simulation modelling. The anthropogenic emissions for China were obtained from 

the Multi-resolution Emission Inventory for China (MEIC), which is a 

technology-based and bottom-up air pollutant emission inventory used in China 

since 1990 and has been continuously updated by Tsinghua University in China. The 

inventory initially contained the anthropogenic emissions for 10 types of air 

pollutants and greenhouse gases emissions from over 700 emission sources. More 

recently, it has further refined and updated by incorporating unit-based emissions 

data for power plants, cement and high-resolution vehicle emission at a national 

level (Xia et al, 2016). Air quality simulation models used include the offline-coupled 

Weather Research and Forecasting (WRF) model (v.3.5.1 http://www.wrf-model.org/) 

and Community Multi-scale Air Quality (CMAQ) model (v5.0.1, 

http://www.cmascenter.org/) with 14 layers’ vertical resolution from the surface to 

tropopause in which the height of first layer is 38m. The CMAQ model was invented 

by the US Environmental Protection Agency (EPA) and its domain includes the 127 × 

172 East Asia grid cells that cover the entire China by 36 km × 36 km grid squares. It 

is a three dimensional (3D) Eulerian air quality model system for simulating various 

pollutants at different scales from local to continental. Simulations were run for the 

four model months (January, April, July and October) in the study to obtain the 

annual PM2.5 concentration while the meteorological fields at 36 km horizontal grid 

spacing were generated by WRF with 23 vertical layers using the reanalyzed data 

http://www.wrf-model.org/
http://www.cmascenter.org/
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from the US National Centers for Environmental Prediction (NCEP). The initial and 

boundary conditions were derived from the final NCEP analysis data (FNL) and were 

used to drive the CMAQ model. The land-use/land-cover and topographical data 

were obtained from the default WRF input dataset. The anthropogenic and natural 

source emission inputs were derived from MEIC and MEGAN (Model of Emissions of 

Gases and Aerosols from Nature) (Xia et al, 2016).  

4.2.2 Heat Wave Period Identification 

There are various ways to define a heat wave. It is suggested that the definition of a 

heat wave tends to have considerable impacts on its added effects (Chen et al, 2015). 

The length of heat wave can be completely different under distinct heat wave 

definitions (eg. Anderson and Bell, 2011; Son et al, 2012; Tian et al, 2013; Peng et al, 

2011; Huang et al, 2010, etc). For consistency, this paper defines a heat wave as a 

period of at least 3 consecutive days with daily maximum temperature beyond 35℃, 

daily average temperature beyond 31.3℃ and daily average temperatures exceed 

97th percentile during the study period. Certain length of heat wave periods can be 

identified with this definition. For comparison purpose, especially in analyzing the 

heat impact on excess deaths and hospitalization, selecting a near-term summer 

reference period for each identified heat wave to control potential time-varying 

confounding effects appears to be crucial for epidemic studies in the next step. The 

selected reference period should have the same duration and distribution of days of 

the week (DOW) as each corresponding heat wave and excludes the days 

immediately after the heat wave (Basu and Samet, 2002; Ma et al, 2011). The data 

on daily temperature for Nanjing during 2013 and Shanghai during 2007 were 

obtained by Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 

from Nanjing meteorological monitoring station and Shanghai Baoshan 

meteorological monitoring station, respectively.  
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4.3 Epidemiological Studies 

4.3.1 Health Endpoints of PM2.5 Air Pollution 

Epidemic studies on PM2.5-induced health outcomes have linked PM2.5 air pollution 

with various health endpoints by using exposure-response relationships. They 

describe the changes in effect on an organism resulting from different levels of 

exposure to a risk factor after certain length of exposure time, which can be applied 

on either individuals or the whole population (Burnett et al, 2014). For PM2.5 

pollution, I specifically focus on its impacts on mortality, hospital admissions and 

outpatient visits for certain disease types. I referred to an integrated 

exposure-response (IER) model developed by Burnett et al (2014) that could describe 

several patterns in relative risks (RRs) which are considered as a prior applicable to 

exposure-response models. The model takes the similar shape with several burden 

assessment models as log-linear and linear (Cohen et al, 2004) and a power function 

(Pope et al, 2011b) to estimate the RRs for PM2.5-induced mortality, hospital 

admissions and outpatient visits. 

For disease-induced mortality, an IER model captures concentration-response 

relationships with a specific focus on ischemic heart disease (IHD), stroke, chronic 

obstructive pulmonary disease (COPD) and lung cancer (LC). The RRs for the 

mortality estimation function for the four diseases are shown in Equation 4.1. 

For z<zcf RRIER(z) = 1                  (4.1) 

For z≥zcf RRIER(z) = 1+α｛1-exp[-ɤ(z-zcf)
δ
]｝   

z : the PM2.5 exposure in micrograms per meter cubed; 

zcf : the counter-factual concentration level below which no additional health risk is 

assumed; 

δ: the strength of PM2.5 and ɤ is the ratio of RR at low-to-high exposures.  

For morbidity risk, I calculated cardiovascular and respiratory hospital admissions 

and outpatient visits for all causes using a log-linear response function and the RRs 

for each category of morbidity was calculated using Equation 4.2. 
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  (4.2) 

β : the parameter that describes the depth of the curve. They are the 

exposure-response coefficients to quantify the relationship between different levels 

of PM2.5 exposures and the resulting health outcomes. 

Then, the calculated RR was then converted into a population attributable fraction 

(PAF) by using Equation 4.3 that measures the proportional decrease in mortality or 

morbidity counts that will occur once exposure to a risk factor decreased to an 

alternative ideal exposure scenario (WHO, 2017). 

 

      (4.3) 

Thereafter, excess counts of PM2.5 disease-induced mortality, hospital admissions 

and outpatient visits were calculated using Equation 4.4. 

E = AF×B×P    (4.4) 

 

E: PM2.5-induced mortality and morbidity counts; 

B: the national level incidence of a given health effect, which was applied for all 

provinces because of limited data; 

P: the size of the exposed populations. 

4.3.2 Health Endpoints for Heat Waves 

To assess the health endpoints of heat waves, I referred to Ma et al (2011) in 

calculating excess hospital admissions and excess deaths. By assuming little changes 

occurred in population and socioeconomic structures of the cities under analysis, 

same duration and DOW distribution between each heat wave and each 

corresponding reference period enable the ratio comparison between two periods to 

reflect the relative impact of the heat wave. For the heat-induced excess deaths, 

all-cause mortality were considered and were calculated as the difference in number 

of mortality between heat wave period and its corresponding reference period, 

while the heat-induced hospital admissions, mainly for cardiovascular and 

respiratory admissions, were calculated as the difference in numbers of hospital 

admissions between the two periods. The heat-induced outpatient visits were 

x
RR e



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calculated based on Sun et al (2014). I also calculated The RRs for heat-induced 

mortality, cardiovascular admissions and respiratory admissions were calculated by 

dividing the number of mortality/admissions during heat wave (study period) by 

number of mortality/admissions during corresponding reference period with the 95% 

confidential intervals (CIs) for the RRs. The calculation process can be interpreted in 

Equation 4.5 to 4.8. 

                                                   (4.5)                                       

      : the heat-induced excess number of non-accidental mortalities; 

   : the number of mortalities during the heat wave; 

   : the number of mortalities during the reference period.  

 

                  
  

  
                                     (4.6)                               

                   
  

  
                                    (4.7)                               

                 : the rate ratio for heat-induced mortality; 

                    the rate ratio for heat-induced admissions of a certain disease.  

 

                           
 

 
 

 

 
)]                      (4.8)                

s: the numbers of mortality or disease-specific admissions during heat wave (study 

period); 

r: the number of mortality or disease-specific admissions during the reference period 

(Rothman et al, 2008; Ma et al, 2011).  

Then, the counts of heat-induced death, hospital admissions and outpatient visits 

were estimated using Equation 4.2 and 4.3 in section 4.3.1.  

 

 

E = AF×B×P    

AF: the population attributable fraction that measures the fraction of the affected 

population that can be attributed to extreme heat; 

RR: the rate ratios for a particular health endpoint in investigation; 

‘1’: the counterfactual risk ratio using a theoretical-minimum-risk exposure 

distribution. In this case, it reflects the temperature level below which there is no 

additional health risks; 

E: the total affected counts of a particular health endpoint that are attributable to 
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extreme heat; 

B: the national level admission incidence of a given health effect; 

P: the exposed population (WHO, 2017).  

The daily counts of death data were obtained from the China Information System of 

Death Register and Report of Chinese Center for Disease Control and Prevention 

(China CDC). The causes of death were coded by China CDC according to the 

International Classification of Diseases, Tenth Revision (ICD-10): non-accidental 

disease (A00-R99), cardiovascular disease (I00-I99) and respiratory disease (J00-J99).  

4.4 Industrial Impact Analysis 

4.4.1 Mortality and Morbidity Counts among Labour 

Mortality and morbidity counts were scaled down to mortality and morbidity counts 

among labour using employment-population ratio. It can be presented in Equation 

4.9 to 4.11. 

                       
 

 
                                  (4.9) 

                          
 

 
                               (4.10) 

                            
 

 
                               (4.11) 

           ,              ,               : counts of mortality, hospital admissions and 

outpatient visits among labour; 

L: Total employment; 

P: Total population. 

For PM2.5 air pollution, the distribution of the mortality and morbidity counts into 

industries was based on the occupational respiratory conditions incidence rate from 

the Bureau of Labour Statistics in the US due to the lack of occupational illness data 

in China. The data suggest that manufacturing workers entail the highest respiratory 

condition incidence rate at 2.1%, followed by workers in services sectors at 1.8%, 
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natural resources and mining sector at 1.5% and construction sector at 1.2%. 

However, the data follows the US sector categorization. As a result, 30 industries in 

China were re-categorized into four large sectors suggested by the US sector 

categorization. The mortality and morbidity counts were firstly assigned to these 

four sectors and sectoral mortality and morbidity counts were further distributed 

into industries according to the industry-to-sector output ratio (Xia et al, 2016). 

However, due to the data unavailability for occupational disease incidence rates for 

heat, mortality and morbidity counts among labour were assigned to industries using 

industry-total employment ratios.  

4.4.2 Sub-clinical Effects on Labour Productivity and Capacity 

Sub-clinical effects on productivity and capacity were considered only for heat waves. 

For heat-induced productivity loss due to mental distraction or reduced cognitive 

skills, due to the lack of a quantitative relationship between heat exposure and the 

resulting productivity loss, a 12% reduction (Bux, 2006) was assumed in productive 

working time for workers working indoors with light work intensity (Zander et al, 

2015).  Meanwhile, for heat-induced work capacity loss due to workplace safety 

standards, assumptions were made according to the real summer average humidity 

in Chinese cities, which requires a 45 minutes’ relief time per hour for outdoor 

workers with high work intensity (Occupational Health and Safety, 2010). 

4.4.3 Industrial Reduced Labour Time 

All labourers in China were assumed to work 8 hours a day and 250 days per year. 

Each death will result in a total 250 working days lost regardless different disease 

types. Each cardiovascular admission will result in 11.9 working days lost while each 

respiratory admission causes 8.4 working days lost (National Bureau of Statistics of 

China, 2016). It was assumed that 4 hours (0.5 working day) were required for each 

outpatient visit and each outpatient visits the clinic once during the study year. Due 

to the lack of data on the required time and frequency of outpatient visits in China, 
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the previous assumptions were made based on the current status of Chinese medical 

system where no pre-booking and follow-up services are available. I believed the use 

of a daily 4 hours can provide a conservative prediction in model results considering 

time for queueing, inquiry and medical treatment. It is noteworthy that no holiday 

that might be potentially embodied in the working days lost was considered.  

After this, working time lost from all mortality, admissions and outpatient visits were 

summed up to obtain the total time loss for these health endpoints, which was 

further compared with the original working time without any disaster-induced health 

impacts to calculate the percentage reductions in industrial working time (Equation 

4.12). 

  
                                                                  

        
 

                                                         (4.12) 

             ,            ,         ,                 : counts of mortality, 

cardiovascular admissions, respiratory admission and outpatient visits in industry I; 

    : Total employment in industry i; 

 : percentage reductions in productive working day in industry i. 

4.4.4 Shrinking Wage and Extra Health-care Expenditure 

As a result of disaster-induced health impacts, on the one hand, loss in labour 

productive time indicates a loss in disposable wage and purchasing power if no 

compensatory behaviour was accounted. On the other hand, extra expenditure on 

health-care services can induce a ‘crowd-out’ effect on the consumption by 

households and government as the cost burden was partially borne by patients (20%) 

and partially by Chinese government (80%).  

Considering the constraining effects of health outcome on disposable wage, the 

industrial labour day loss calculated in the last section 4.4.3 were multiplied by 

industrial daily salary in that year to estimate the reduction in workers’ earnings in 

each sector, where the results were summed up and eventually multiplied by 
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household expenditure-earnings ratio to reflect the ‘real’ reduction in households’ 

final demand. Sectoral daily wage was calculated by dividing sectoral annual average 

compensation from National Statistical Yearbook by 250 days (Equation 4.13).  

                         
 

 
                          (4.13) 

    : the overall reduction in households’ purchasing power; 

    : the wage rate in industry i; 

 

 
: expenditure-earnings ratio. 

Considering the crowd-out effects of medical cost burden on the consumption of 

household and government, total extra medical expenditure should be firstly 

estimated as shown in Equation 4.14. The costs of each cardiovascular, respiratory 

admission and outpatient visits were obtained as 6413.3, 3042.8 and 211.0 Yuan5, 

respectively from China’s Health and Family Planning Statistical Year and China 

Health Statistical Yearbook (National Bureau of Statistics of China, 2016). The total 

extra medical expenditure was partially borne by both government (80%) and 

partially by patients/households (20%). Medical costs for any heat-induced mortality 

were not considered in the current study.  

                                                                  (4.14) 

 : total extra health-care expenditures; 

       ,        ,            : costs of each cardiovascular, respiratory admission and 

outpatient visits; 

         ,         ,                : counts of cardiovascular admissions, respiratory 

admissions and outpatient visits among labour. Counts in each category outside the 

labour market were not considered because it is the wage for labourers that 

generate the final demand and their consumption.  

From above, reducing household purchasing power and crowd-out effects of rising 

medical burden will both shrink households and government’s consumption on 

                                                      
5
 Yuan is a monetary unit for Chinese RenMinBi and it is equivalent with 0.15 USD and 0.11 GBP (2017). 
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other commodities or public services with disproportional reductions in final 

consumption of other sectors according to the original consumption patterns of 

households and government, which suggest the adverse ranking in their original 

consumption or investment with an underlying assumption that commodities 

occupying large proportions of final consumption are considered as necessities and is 

less likely to reduce in the face of decreasing disposable wage and constrained 

budgets.  

4.5 Input-Output Based Macroeconomic Analysis   

Another major limitation of existing approaches for health costs assessment, such as 

HCA and CVA, is their similar focus on patients’ economic burden at microeconomic 

level (Wan et al, 2004 & 2005; Nam et al, 2010). I suggest that same attention should 

be attached on impacts on wider economic systems at macroeconomic level in 

health costs assessment, with additional emphasis on inter-industrial and 

interregional linkages. The seven proposed input-output based methods (shown in 

yellow in Figure 2.1 from section 2.2.2) are able to capture these crucial industrial 

and regional interdependencies. In this respect, the Leontief input-output 

framework is an effective way to capture the inter-industrial relationships but a 

great challenge here is how to incorporate the disaster-induced health effects, which 

are generally measured in the numbers of people affected, into an input-output 

model or its modified forms. This would require the translation of health outcome 

into suitable inputs for an input-output model, such as loss in labour productive 

working time or induced changes in households’ real wages. The remaining of this 

section provides details on several methods developed based upon input-output 

techniques to understand the macroeconomic implications of disaster-induced 

health impacts as well as the resulting labour capacity and productivity loss. A simple 

numeric example will be provided with the basic or modified forms of equations, 

data input requirements, preliminary results, advantages, disadvantages and policy 

implications to help interpret each proposed method. Differences in estimation 
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results regarding the macroeconomic impacts in terms of economic output can be 

observed from these methods. 

Let us start with a simple numerical example. Suppose that a simple economy with 

only two sectors 1 and 2 with technical coefficient matrix 









12.014.0

4.0250.
A  , final 

demand matrix 









30

55
f and total output matrix 










50

100
x . Table 4.1 presents the 

basic input-output table for such 2-sector economy. Without any disaster-induced 

health effects, all labourers in this economy are assumed to be healthy and work for 

8 hours a day and 250 working days a year as full-time with full productivity.  

Table4.1 Standard Input-Output Table for a 2-Sector Economy 

 

4.5.1 Constrained Production for Final Demand 

Firstly, the problem can be examined from a relatively straightforward perspective of 

constrained production for final demand.  

Underlying rationale: Considering an arbitrary case that all labours are suffered from 

severe health impacts from a natural disaster that induce a 50% loss in their 

productive time, as the input-output model assumes fixed proportion in input 

investment during production, it can be inferred that the loss of productive working 

time will cause the same proportional reduction in the output level. Thus, this 

reflects a decrease of 50% in the output level, which will further trigger the output 

available for final consumption, which is a key indicator for social benefits measured 
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by the reduced economic outputs available for household consumption.  

Basic equation: 

)(* ΔfLΔx

Lfx




                                             (4.15) 

  : changes in industrial output level; 

L: Leontief inverse for this 2-sector economy; 

  : changes in final consumption available for households. 

Preliminary results:  











25

50
'x and 










15

522
'

.
f  

x’: new output level; 

f’: new final consumption. 

Advantages: This method is able to directly reflect the impacts of disaster-induced 

health impacts on productive time loss and social benefits in terms of total economic 

outputs available for consumption for households.  

Disadvantages: Main uncertainties exist in the assumption of same proportional 

reductions in productive time and output level. Such linear relationship does not 

necessarily hold in real case where other factor inputs also exist, such as land and 

physical capital, possible substitution of factor inputs is possible and sick labour may 

be replaced by someone else to maintain the same production level.  

Policy implications: As final consumption is the only source for social benefits, the 

constrained production for final demand therefore refers to a loss in social benefits, 

measured by the reduced economic outputs available for household consumption. 

The policy implication in this respect is that loss in production for final consumption 

can be understood as a loss in social benefits as the inter-industrial sales are 

assumed to have no ‘welfare’ at all and all social benefits come from final 

consumption while social costs come from the use of labour (Dofman et al, 1958).  



 90 

4.5.2 Changes in Real Wages 

Secondly, the problem can be considered from the perspective of a closed Leontief 

model where labour income as a source for generating household consumption 

(Steenge and Bočkarjova, 2007).  

Underlying rationale: Health effects might induce changes in labours’ real wages in 

terms of final demand available and cause changes in final consumption per head. 

For example, all workers in sector 1 have suffered from degraded health status and 

50% loss in their productive working time, in order to achieve the original production 

level x1, it now needs doubled number of unhealthy labour because two unhealthy 

workers whose productivity have become halved can produce the same amount of 

output as a healthy worker. In this respect, there are two possible outcomes 

depending on the changes in their compensations. If each gets half of their original 

nominal wage as productive working time has reduced by 50%, total real wages will 

remain the same and nothing changes. However, if due to some social protection 

policies, the employer has to keep their nominal wages at the original level, total real 

wages will then become halved because the number of employed workers has been 

doubled now and economic surplus is insufficient to pay out. The shrinking final 

demand can be traced backwards along production chains to estimate the cascading 

indirect economic impacts from this initial changes in final demand.  

Basic equations: 

)(* ΔfLΔx

Lfx




 and 










30

522
'

.
f due to halved real wages.             (4.16) 

Preliminary results:  











42.47

52.65
'x  

Advantages: This method allows to investigate the cascading effects of shrinking real 

wages and constrained household final demand on the production chains from a 
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demand-driven perspective. It is able to detect how changes in dollar value of final 

demand in a single sector or several sectors affect the gross production of the 

economy. Without the replacement of workers or compensatory behaviour, the 

nominal wage will become less due to labour time loss resulting from sickness, which 

suggests a shrink in their purchasing power. Meanwhile, extra health-care 

expenditure will also exert crowd-out effect on consumptions with fixed budget. Both 

of them will constrain households’ final demand, which turns to be similar with the 

case described above.  

Disadvantages: Uncertainties firstly exist in social protection policies that determines 

the changes in workers’ real wages. Indeed, to truly reflect changing in household 

final demand from changes in their real wages requires to consider macroeconomic 

variables, such as propensity to consume as well as consumption behaviour and 

preference. Additionally, a Leontief input-output model has several basic 

assumptions of a partial equilibrium model, including the determinant role of 

industrial output to industrial intermediate transactions, a fixed relationships 

between a sector’s input and output as well as fixed proportions among industrial 

inputs (Miller and Blair, 2009, p2). Although such partial equilibrium model may not 

fully reflect the real-world economic phenomena, it is still powerful to study 

equilibrium in constricted markets. 

Policy implication: This method sheds lights on the effects of possible changes in 

labour’s real wage on their final demand and in turn, on the entire economic system 

through the backward linkages. However, to analyze how changes in labour real 

wages will actually affect their consumption behaviour requires to precisely evaluate 

macroeconomic multipliers, price elasticity, marginal propensity to consume and so 

forth, which might be subject to data unavailability.  

4.5.3 A Supply-driven Input-Output Model 

The impacts of disaster-induced productive time loss on the economy can be also 
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analyzed from a supply-driven perspective by capturing the forward linkages along 

production supply chains. The supply-driven input-output model takes an alternative 

representation of traditional input-output model by using a Ghosh-type coefficient 

matrix to describe the output allocation of a particular sector across all the other 

sectors. The model is an example of an input-output modification for calamity 

modelling, although it does not include a discussion of the essence of perturbations.  

Underlying rationale: In this method, percentages reduced in industrial .productive time 

due to various health endpoints is perceived as an indicator for percentages 

reductions in industrial value added, which can be further fed into a supply-driven 

input-output model. Assuming that labour in sector 1 lose 20% of working time due 

to disaster-induced health effects, an equivalent 20% decrease can be thus expected 

in value added of sector 1 since human capital is a major components of sectoral 

value added. The new value added will be 









24

48.8
v  .  

Basic equations: 

       -          -      with 









24

48.8
v new                    (4.17) 

                                                        

B: matrix of allocation coefficients; 

x: the output matrix; 

v: the value added matrix. 

G, G’: output/Ghosh inverse and the element gij indicates the value of each unit of primary 

inputs in sector i that enters sector j.  

Preliminary results:  











45.9603

82.2252
x'

 

Advantages: A supply-driven input-output model provides a solution for the major 
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drawback of conventional input-output model, which input-output model is rigid and 

limited to demand driven type. It provides flexibility to allow an input-output model 

to be supply driven by considering supply constraints incurred endogenously during 

model stimulations. Besides, the model provides a chance to view productive time 

loss as an indicator and feed the degraded labour due to natural disasters back to 

production processes by using industrial value added decreases to detect the overall 

drop in output within the wider economic system.  

Disadvantages: A fundamental problem in the model is that according to Ghosh 

model, any primary input increase in a single sector will be transmitted to output 

increases in all its downstream sectors without corresponding increases in primary 

inputs in these sectors (Oosterhaven, 1988 & 1989). Both Dietzenbacher (1997) and 

Oosterhaven (1996) reinterpreted the model as a price model by fixing quantity in 

order to overcome its implausibility, in which Δv reflects changes in costs of primary 

inputs while Δx shows changes in values of outputs. In this respect, the model will 

become analogous with a cost-push input-output model.  

Policy implications: The method is able to perceive productive time loss as an 

indicator for degradation in factor input of labour in value added that can trace 

forward to estimate the cascading indirect economic effects along the production 

supply chain. Therefore, it is a good candidate model to reflect the macroeconomic 

impacts of changes in value added (degradation in labour time) on the entire 

economy by capturing industrial interdependencies and indirect economic losses. 

4.5.4 The Post Disaster Imbalances Model 

When regarding health problem as a consequence of particular types of disasters 

that affect more on the human capital than physical capital, the post-disaster 

imbalances model can be used to detect the output changes when an economy 

reaches a new equilibrium (Steenge and Bočkarjova, 2007).  

Underlying rationale: This approach was developed based on a closed Leontief model 
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with equilibrium by introducing labour factor into a standard Leontief equation. Any 

disastrous event will break the balances in the economy and cause changes in labour 

real wages and their final demand for instances. Thereafter, the economy will restore 

to a new equilibrium with new output level (Steenge and Bočkarjova, 2007).  

Basic equations:  

    or                              (4.18) 

Mq = q 

L: value of total employment 

l’: direct labour coefficient matrix. Fixed coefficient assumption only applies to the 

matrices A and l’ in M. The left hand-side of the equation refers to the total inputs 

required in the production while the right hand-side refers to the total outputs. The 

equation describes an economy in perfect equilibrium and If consumption preference 

f changes, x and L will change correspondingly to achieve a new equilibrium (Steenge 

and Bočkarjova, 2007).  

M: a n*n matrix of input coefficients and its Perron-Frobenius eigenvalue is equal to 

unity, suggesting that the economy needs all inputs to be self-reproducible and it has 

no surplus for consumption without endangering the capacity of reproducing 

(Steenge and Bočkarjova, 2007).  

In the original situation, L = 260 and  3.60.8l'  so that the basic equation can be 

written as Equation 4.19. 
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                      (4.19) 

If the reduced productive working time has induced a rise in technical coefficient 

because more inputs are required to produce the original level of outputs now due 

to degraded productivity and slight reduction in final demand in both sectors 

because of possible changes in labour’s real wages and their final demand (can be 

seen in section 5.3.2), then two parameters α=1.5 and β=0.876 can be introduced 
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into the equation M. The new equation at equilibrium will be shown as Equation 4.20, 

from which new output levels for industry 1 and 2 can be resolved.  
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                    (4.20) 

Preliminary results:  











80.51

89.91
x'  

Advantages: This method provides a mathematical based solution for evaluating the 

effect of disaster-induced imbalances on gross output of the economy, which might 

be caused by degradation in labour productivity, availability and direct labour 

coefficients. Indeed, it uncovers how changes in industrial technical coefficient, direct 

labour coefficient, employment or final demand will affect the gross output. 

Reversely, the approach can be also used to explore changes in these variables that 

are required to restore new economic balances. 

Disadvantages: Major challenges lie in the precise values for parameters α and β. 

Besides, the use of a closed Leontief input-output model that assumes labour income 

as the only source for generating household final demand may not fully consistent 

with real economic phenomenon (Steenge and Bočkarjova, 2007).  

Policy implications: In a relatively longer term, this method provides useful guidelines 

and solid mathematical evidence for the recovery process of post-disaster economy, 

especially in restoring the economic balances. If degraded labour health have 

induced changes in direct labour coefficients and technical coefficients, or changes in 

real wages result in changes in consumption behaviour, this method can serve as a 

mathematical foundation to trace the overall output loss by introducing different 

values of α and β.  
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4.5.5 Hypothetical Extraction Method (HEM) 

The impacts of a sector’s hypothetical extraction from an economic system on other 

sectors can be evaluated by the HEM, which prominently focuses on industrial 

interdependencies.  

Underlying rationale: The HEM allows to follow the hypothetical extreme case by 

either completely or partially extracting a single or a group of sectors by extracting 

the backward, forward or both linkages relating to a sector. Now assuming that 

sector 1 ceases as a result of severe health impact induced by a natural disaster, all 

its labour, as assumption in fixed proportions between inputs holds in Leontief 

input-output model, this means that sector 1 will be completely extracted from the 

economy and it will no longer has intermediate transactions with other sectors (both 

backward and forward linkages will be eliminated). The final consumption of both 

sectors are assumed to be unchanged as relatively short period in consideration 

appears to be insufficient for either households or government to react immediately 

and adapt their consumption behaviour.  

Basic equations: 

x - x’ = (I-A)-1f - (I-A’)-1f’ = Lf - L’f’                              (4.21) 

A’: new technical coefficient matrix after extraction of certain sectors (Table 4.2); 

x’: new output matrix; 

f’: new final demand matrix (assume the same in our case).     

Table4.2 New Technical Coefficient Matrix following an Original HEM 
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Preliminary results:  











34.09

55
x'

 

Advantages: An HEM allows to detect the influence from the extraction of a certain 

sector, either completely or partially, on the production level of the remaining 

sectors and the entire economy.  

Disadvantages: Firstly, it is challenging to determine the specific variant of the HEM 

to be used in the study and before applying it. Whether it should be eliminated by a 

row, a column or all together from the original technical coefficient matrix will 

depend on the distinctive disaster characteristics and damage fractions in industrial 

production capacity. Secondly, it is difficult to decide the precise percentage of a 

sector’s backward and forward linkages should be reduced that can truly reflect the 

real economic phenomenon. As it is challenging to estimate the percentage of 

extraction from a single indicator, such as productive time loss in our case of heat 

waves, it is difficult to derive the new technical coefficient matrix and final demand 

matrix. Indeed, the model does not consider the ripple effect of changing demand 

on price once changes in final demand occur. As have been discussed in section 

3.3.2.6, Oosterhaven (2017) put forward an important ‘caveat’ regarding the use of 

the HEM in disaster studies with specific criticism on the use of zero’s in horizontal 

rows of the matrix of input coefficients. He argued that these zeros can be 

problematic if substitution possibilities exist between domestic and foreign 

deliveries. This criticism, nevertheless, supports the use of the HEM in typical and 

some extreme cases where substitution possibilities do not exist.  

Policy implications: The method can not only detect the linkages between sectors 

but also determine sector with key significance by identifying the impact of its 

hypothetical extraction on an economy’s total output. Besides, in the case of 

disasters, it can help estimate the effects of reducing backward or forward linkages 

of a sector on the remaining economy if percentages reduction can truly reflect the 
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post-disaster economy. Therefore, the HEM is useful in key sector identification, 

disaster risk assessment, preparation and adaptation.     

4.5.6 The Mixed Model 

The mixed model can be derived from the standard Leontief equation through a set 

of mathematical rearrangements and it is useful to measure the required output 

level for certain final demand level that is set exogenously by government in order to 

sustain the minimum level of social benefits (Miller and Blair, 2009, p593). 

Underlying rationale: The mixed model is particularly useful when final demand of 

certain sectors or gross output level of certain sectors are set exogenously with the 

highlights on industrial interdependencies under some policy targets. The situation 

can also happen when the output of a particular sector is fixed at certain amount on 

hand at warehouses, awaiting transportation and delivery to buyers (Miller and Blair, 

2009, p594). Here, it helps to calculate the endogenous gross output level required 

to meet the final demand level exogenously set by government.  

Basic equations:      
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f1 and f2 are set exogenously according to a minimum level of social benefits as 









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20

40
'f while the remaining are endogenous, the equations can be rearranged as 

Equation 4.22 above, where all endogenous variables are assigned to the left while 

all exogenous variables to the right.  

Preliminary results:  
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









34.11

71.52
x'  

Advantages: The mixed model is particularly effectively in determining the required 

amount of endogenous variables, such as gross output, when final demand of 

certain sectors or gross output level of certain sectors are set exogenously with the 

highlights on industrial interdependencies under some policy targets.  

Disadvantages: The mixed model is more useful to determine the required output 

level for certain exogenously set final demand target and thereby, it is meaningful for 

target-setting during post-disaster economic recovery. However, it provides little 

information regarding the real magnitude of health impacts on production supply 

chain where no clear government target exists.  

Policy implications: Using mixed model, endogenous variable can be related with 

exogenous variables so that it is able to estimate the required amounts in 

endogenous gross output levels in both sectors from the exogenous targets in final 

demands. In the case of natural disasters, there might be a large drop in final 

demand of both sectors if the real wages have been altered substantially by reducing 

productive time. In order to maintain a minimum level of social benefits, the 

government now decides to impose basic lines for final demand. In this respect, 

mixed model can be used to estimate the amounts of gross outputs required so that 

the targets of final demand can be met.   

4.6 Data Sources and Input-Output Table 

Data on air pollutant emissions were obtained from the Multi-resolution Emission 

Inventory for China (MEIC) while data on city-level daily temperature were obtained 

from local meteorological monitoring stations. For data on household consumption, 

industrial output and employment at a local or national level, I referred to Office for 

National Statistics for the UK dataset and Provincial and National Statistical Yearbook 

in relevant years in China. For required time for certain health endpoints and their 
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average expenditures, data were gathered from the Health Statistical Yearbook in 

study years. The data on counts of mortality and morbidity were acquired from the 

China Information System of Death Register and Report of Chinese Center for Disease 

Control and Prevention (China CDC). The causes of death were coded by China CDC 

according to the International Classification of Diseases, Tenth Revision (ICD-10): 

non-accidental disease (A00-R99), cardiovascular disease (I00-I99) and respiratory 

disease (J00-J99). I also referred to the relevant recent epidemiological studies, the 

WHO reports and the Bureau of Labour Statistics in the US to collect data on the 

relative risks for certain disease, the national level incidence of a given health effect 

and occupational disease incidence rates, respectively when the specific data for 

China were not available. The input-output tables used in the case studies from 

Chapter 5, 6 and 7 were acquired either from Bureau of Provincial Statistics regarding 

the provincial input-output tables, or from Mi et al (2017) for the multiregional 

input-output table in China during 2012. Each table contains detailed vectors in final 

demand, including rural and urban household consumption, government 

expenditure, fixed capital formation, capital inventory changes and exports whereas 

in value added, including labour compensations, net production tax, fixed capital 

depreciation and operation profit. They describe the inter-industrial and 

interregional relationships for a total of 42 industries in a single province (single 

regional input-output table) or 900 industries across 30 Chinese provinces in 2012, 

respectively (multiregional input-output model). All model calculations were 

conducted using MATLAB R2003a (The MathWorks, Inc., Natick, Massachusetts, 

United States). 

The next three chapters will employ suitable methods from those proposed above 

with respects to the characteristics of real cases in assessing the macroeconomic 

impacts from both ‘rapid-onset’ and ‘persistent’ natural disasters happened either in 

the UK or China at different points in time. By applying the interdisciplinary approach 

in real cases, cascading indirect economic impacts from industrial and regional 

interdependencies can be evaluated and distinctive disaster characteristics can be 
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considered. Chapter 5, 6 and 7 apply the disaster footprint model to assess the 

cascading indirect economic impacts from both ‘rapid-onset’ and ‘persistent’ natural 

disasters happened either in the UK or China at different points in time. They are the 

results chapters that totally encompass four cases studies using selective 

input-output based models from those that have been introduced in Chapter 4 to 

represent various types of natural disasters, including one study on floods occurred 

around Christmas time in York, UK, 2015; one studies on air pollution in China, 2012; 

and two studies on heat waves in two Chinese cities, Shanghai and Nanjing during 

2007 and 2013, respectively. Due to the distinctive characteristics of each natural 

disaster, each case study will present with a background, a distinctive methodology, 

findings and a summary with policy implications, embodied assumptions and 

sensitivity analyses. The methodology of each case study is neatened from the 

principle disaster footprint framework with additional consideration regarding the 

unique characteristics of the nature disaster under investigation. The specific tasks of 

the following three chapters are: 

1. To assess the macroeconomic impacts from the shutdown of IT services 

sector due to floods on local economy of York in 2015; 

2. To evaluate the health impacts among 30 Chinese cities in 2012 due to PM2.5 

air pollution and the resulting macroeconomic loss along production supply 

chain and compare with those from 2007 (Xia et al, 2016); 

3. To examine the cross-regional economic impacts due to industrial and 

regional interdependencies resulting from the pollution-induced health 

impacts in China, 2012; 

4. To identify the health impacts of heat waves in Shanghai, 2007 and the 

resulting macroeconomic loss along production supply chain; 

5. To measure the health impacts of heat waves in Nanjing, 2013 and the 

resulting macroeconomic loss along production supply chain; 

6. To conduct sensitivity analysis for selective case studies in order to verify the 

accuracy and variance regarding model results. 
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Chapter 5: Application of a Disaster Footprint 

Framework for Cascading Indirect Economic 

Impacts of UK Urban Flood, 2015 

The case below focuses on floods in urban areas. Studying such floods is relatively 

new. Floods have a number of characteristics and can vary widely in scale and scope. 

In many cases a substantial part of infrastructure is lost, which means that modelling 

efforts may become very complex, having to focus on impact and reconstruction at 

the same time. Some floods, however, are different. In this study, I focus on one of 

those cases, the ‘Christmas’ flood in York (UK), 2015.  

This case is special in the sense that little infrastructure was lost or damaged, while 

one sector (IT services) was knocked out for a limited time. These characteristics 

cause the standard modelling techniques not to be appropriate anymore. An 

alternative, however, is provided by the hypothetical extraction method, or HEM, 

which has earlier been tested in studies to identify so-called key sectors. There, 

however, is the restriction in that the HEM only performs satisfactorily in cases 

where no realistic substitutes exist for inputs from sectors that have been hit. This 

was the case in the York flood and that the HEM performs very well.           

The empirical part of this case study shows that a three days’ shutdown of the IT 

services caused a £3.24m loss in York, which is equivalent with 1% of the monthly 

GVA of York city (£396m). The services sector (excluding IT services) sustained the 

greatest loss at £0.80m, caused by business support sector which was predominantly 

hit. It is also the first time to apply a HEM in this type of flood on a daily basis in this 

type of risk analysis. 

5.1 Background  

Flooding was widespread in the UK during the 2015 Christmas season, putting 

thousands of roads, railways, houses and buildings at risk. The most severe flooding 
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occurred on the night of Christmas Day (25 December 2016) and lasted till Boxing 

Day (27 December 2016) (BBC, 2015). The city of York was hard hit by the flood, 

where especially homes and businesses in the city centre experienced severe 

flooding after the banks of the River Ouse burst (BBC, 2015). The flooding led to a 

broad IT service shutdown. The flood knocked out the power to BT’s York exchange 

while the broadband cables were damaged by flood water in the York BT exchange. 

As a consequence, thousands of York homes and businesses experienced phone and 

broadband services outage (The Guardian, 2015). Shops could not accept card 

payments and cash machine services from Natwest, Lloyds and Yorkshire Bank were 

out of order (The Guardian, 2015). As broadband services are usually physical 

products that are mostly provided by local service carriers, they cannot 

readily/straightforwardly be substituted by services from elsewhere. As a result, the 

IT outages disrupted almost all commercial transactions and economic activities 

within York for three days during Christmas and Boxing Day; a newsman described 

York during those days vividly as a ‘ghost town’ (The Guardian, 2015).  

Traditional ways of flood and disaster modelling become less useful here due to 

several reasons. Most important is that existing flood and disaster modelling (such as 

approaches based on the recently presented adaptive models) heavily rely on 

quantifying the damages to infrastructures as a direct and tangible consequence of 

flooding. However, there was not much damages to infrastructure in the York flood, 

which makes it difficult to implement standard ways of disaster modelling. Instead, 

the flood induced substantial indirect and intangible costs from the IT service 

shutdown, where no direct alternatives were available. As York is a core commercial 

hub of the region Yorkshire and the Humber, an IT service blackout can seriously 

affect upstream and downstream sectors that rely on those services to sustain their 

business activities, particularly so during the busy Christmas season where the timing 

of the flooding undoubtedly exacerbated its economic impact. The flood knocked 

out the IT services in York for exactly three days, without any adaptive processes 
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being available as substitutes. Both points imply the need for a more appropriate 

approach to better fit the distinctive characteristics of the York flood.   

Here the so-called HEM was applied by perceiving the three days’ IT shutdown as the 

‘extraction’ of IT services sector from the York economy for three days. An HEM is 

able to measure the overall reduction in the production level after extracting 

selected economic sectors from the economy. For flood and disaster researches, the 

method becomes an option when some sectors partially or completely lose their 

connections to other sectors or if the sector inputs must be adapted due to 

technology change or market development. The HEM was applied in the context of 

the York flood in 2015 to determine the total indirect economic loss. The HEM was 

structured on a daily basis because the flood induced exactly three days’ of 

shutdown of the IT services sector in York. Such approach is able to quantify the 

economic impact on the gross output level when a sector/sectors is/are 

hypothetically extracted from the economic system. Therefore, for a York-type of 

flood, the HEM actually provides an excellent way to assess total economic loss. 

5.2 Methodology  

(a). A Basic Leontief Input-Output Model  

Let me recall the traditional input-output model that is based on the assumption of a 

one-to-one relationship between a sector and its characterizing product. Starting 

from: 

                                                            

       -        ,        -                                 

A: the nn matrix of technical coefficients; 

x: the output matrix for n sectors; 

f: the final demand matrix for n sectors; 

       -     : the Leontief inverse matrix.    
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(b). The Hypothetical Extraction Method (HEM) 

The technology under a basic Leontief model is represented by matrix A as given, 

final demand (f) is determined exogenously and output (x) endogenously. The 

pre-disaster economy can be shown as Equation 5.1.  
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Suppose now that sector 1 ceases production due to a major catastrophe. 

Consequences can be modelled if I follow the HEM concept to completely extract 

sector 1 from the economy. This then means that there will be no longer any 

intermediate transactions with the other sectors. This extraction can be achieved by 

simply removing its backward and forward linkages with other sectors. Thus, the 

extracted n x n matrix turns into a new technical coefficient matrix A’ with first row 

and first column equal ‘zero’ (Equation 5.2).  

 























nnn

n

aa

aa
A









2

222

0

00

'                                     (5.2) 

A new final demand vector may arise when a major catastrophe alters the patterns 

of household and government consumption. Households may spend more on life 

necessities and less on luxury and entertainment while government may spend more 

on reconstruction and health care services. However, the current study considers 

neither changes in the final demand vector nor imports because: Firstly, the time 

period in consideration is relatively short-term and is insufficient for consumers and 

government to react in a way that changes their consumption behaviour. Secondly, 

although outages of some products can sometimes be compensated from imports, IT 

services are generally provided by local carriers in York. Therefore, I assume that 

there is no immediate import available for IT services during the 3-day outage. The 

new economy after shock can be interpreted as Equation 5.3.  



 106 





















































































'

'

'

'

0

00

'

' 11

2

222

1

nnnnn

n

n f

f

x

x

aa

aa

x

x




















                        (5.3) 

where 'x  is the new output level while 'f  is the new final demand for the 

correspondingly reduced final-demand vector (see Miller and Blair, 2009, p563).  

In matrix notation, the difference in total output then can be obtained by Equation 

5.4. 

  -      -  
- 
  -   -   

- 
                                    (5.4)              

(c). Deriving a City-level Input-Output Table from a National Table  

Firstly, due to the lack of city-level technical coefficients, the regional technical 

coefficients of Yorkshire and the Humber was derived from the UK national table 

using the Flegg and Webber scaling-down approach (Miller and Blair, 2009, p475). 

Then, the regional technical coefficients were applied to York in the current study by 

assuming the city of York has the same technical coefficients as Yorkshire and the 

Humber region. 6 This study uses the Augmented Flegg Location Quotients (AFLQ) 

technique to obtain the regional coefficients matrix for Yorkshire and The Humber 

from the national statistics. The technique seeks to correct the national technical 

coefficients to obtain the regional technology. Regional economies, clearly, can 

substantially differ from national economies in terms of trading relationships. Also, 

intermediate purchase from other regions should be regarded as a leakage under a 

regional economy but as domestic production under a national economy. For this 

purpose, data on industrial employment of the regional economy is used to re-scale 

the national coefficients to better reflect the regional economic structure of 

Yorkshire and the Humber. The process consists of adjusting the national coefficients 

to the regional scale, by measuring the relative size of each industry for the regional 

                                                      
6
 Input-output tables are traditionally developed at the national level by the relevant statistical 

bureaus. This also is the case for the UK where Supply and Use tables, the building blocks of IO tables, 

are produced yearly by the Office for National Statistics.  
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economy, in relation to the relative size of the same industry for the national 

economy; adjusting by certain parameters to consider the commercial traffic 

between the regional economy and other regions, and the possible specialization of 

an industry within the region. Then, the regional technical coefficient,    , is derived 

from the national technical coefficients,    , when re-sized by a regional-economy 

parameter or location quotient     , like in Equation 5.5.  

 rij = lqij * aij    

      
                              

                                
  

            (5.5) 

where rij is the amount of input from industry i needed to produce one unit of 

output in industry j. Here I apply one of the most widely used location quotients, 

    , the AFLQ. I start from the so called simple location quotients (SLQ), to assess the 

relative importance of each regional industry i, as described in Equation 5.6. 
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            (5.6) 

where TRE is total employment in the region, TNE is total employment in the country, 

    employment in the supplying region, while     accounts for national 

employment in the same sector.  

Then, the cross-industry LQ (CILQ) has been derived from the SLQ to assess the 

relative importance of a supplier industry i, regarding the purchasing industry j as 

shown in Equation 5.7. 
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As intermediate sales between regions were often treated as domestic production in 

the CILQ, it will underestimate the regional imports. In a later contribution, Flegg and 

Webber (1997) refined the regionalization in the Flegg LQ (FLQ) to correct for the 

persistence of underestimation of regional imports in the CILQ through the 
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parameter   TNETRE /1  to obtain the FLQ. Including the parameter δ allows 

to refine  TNE/TRE1log 2   by changing its degree of convexity and with 0 ≤ δ 

< 1 (Flegg and Webber, 1997). An increasing δ indicates an increasing allowance for 

interregional imports while δ = 0 occurs when FLQij = CILQij. Finally, in the AFLQ 

(Equation 5.8), one last parameter was added to cover the possibility of regional 

specialization in some sectors, )1(log2 iSLQ . The effect of applying the logarithmic 

transformation to SLQj is that a larger region is more likely to have a bigger 

allowance for regional imports than a smaller region (Round, 1978).   

 
)]1([log** 2 jijij SLQCILQAFLQ                  (5.8) 

 

Secondly, the data of final consumption for the 46 sectors in Yorkshire and the 

Humber were scaled down to city-level data for York based on the city-to-regional 

gross value added (GVA) ratio in 2015, which was calculated as 4.7%. Based on the 

final consumption in York, I derived the city-level input-output table for York by 

assuming it has the same technical coefficient with York and the Humber region. 

Then, the data of the aggregated final consumption for the 46 York sectors were 

divided by 365 to obtain the daily value of each sector’s final consumption, and the 

results were multiplied by three to calculate the sectors’ total final consumption 

during the three-day shutdown period of the IT services sector. I assumed that final 

consumption did not change during the flooding because of the relatively short time 

period for households and the government to react.  

(d). Developing a Hypothetical Extraction Model for York in 2015 

In view of the above, the IT service sector can be treated as a ‘key’ sector in the 

economy of York when considering its domestically supplied inputs (Miller and Blair, 

2009, p563). Given that the sector’s output can hardly be replaced with imports 

during the severe flood, I proposed a 100% extraction of the IT service sector’s 

linkages with other sectors under the original HEM. As a result, in current study, 
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both the backward and forward linkages of the IT services sector were eliminated 

(set to ‘0’) in the technical coefficient matrix, representing a complete blackout of IT 

services. Then, the newly obtained technical coefficient matrix—with a ‘0’ column 

and row for the IT services sector and data for three days’ worth of sector final 

consumption in York—was used in Equation 5.1 to calculate the new sector output 

level required to support three days’ final consumption. Finally, this new output level, 

without IT service support, was compared with the original output level for satisfying 

three days’ of final consumption with IT services in place.  

In order to consider the excessive transaction volumes during the Christmas 

shopping period, an upper bound for the results was provided following the same 

methods but employing different values for final demand during the three-day IT 

outages. Due to the lack of daily sales data for York, I assumed the same monthly 

trend in household expenditure as the UK. According to data from Office for National 

Statistics (2016), household expenditure on food, drink and tobacco, clothing and 

footwear and other household goods during December are 16%, 42% and 31% 

higher than those of other non-Christmas months during 2015. Therefore, I adjusted 

in this way the original three days’ final demand that was calculated from the 

input-output table. 

5.3 Results and Discussions 

(a). Total Economic Loss 

After a three-day shutdown of IT services, the proposed HEM revealed total 

economic loss of £3.24 million, of which the IT services sector suffered the largest 

part, £1.83 million (56.48%); the remaining £1.41 million (43.52%) in loss were 

distributed among the remaining 44 economic sectors. The results re-emphasize the 

importance of considering indirect economic loss in disaster risk assessment, as over 

40% of the economic loss in the present case resulted from the cascading effects of 

sectoral inter-dependencies.  
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(b). Sectoral Economic Loss 

As pointed out above, excluding the IT services sector, the remaining sectors 

suffered a total of £1.41 million in economic loss due to the three-day shutdown of 

the IT sector. This substantial indirect loss resulted from the many 

interdependencies between these sectors and the IT services sector. Thus, 

unsurprisingly, the services sector suffered the greatest economic loss among the 3 

broad sectors (£0.80 million), accounting for 57% of the total economic loss (not 

including direct loss suffered by the IT services sector) (Figure 5.1). 

 

Figure5.1 Economic loss in 3 broad sectors 

The pie chart shows the proportions of economic loss in 3 broad sectors, namely, manufacturing, 

services sectors and other (agricultural and mining, energy supply and construction). Percentages are 

displayed inside the circle.  

According to the 2011 Census in the city of York from Neighbourhood Statistics 

(Office for National Statistics, 2011), the local economy is mainly led by the service 

sector including Wholesale and Retail Trade, Human Health and Social Work 

Activities, Education and Accommodation and Food Service Activities, while 

Agriculture, Forestry and Fishing, Mining and Quarrying as well as Manufacturing 

occupy only a small portion of the economy. Therefore, I specifically focus on the 

economic loss occurred in the service sector in the city of York. Among the 25 
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industries in that sector, the business support services sector sustained the greatest 

indirect economic loss from the IT service shutdown (£0.18 million), followed by 

other professional services sector (£0.09 million) (Figure 5.2). Additionally, the 

financial and insurance (£0.075 m), architectural (£0.076 m), legal and accounting 

(£0.054 m), warehousing and postal (£0.049 m), wholesale trade (£0.045 m) and 

head offices and management (£0.036 m) sectors were also negatively affected by 

the IT service shutdown.  

 

Figure5.2 The top 10 service sub-sectors suffering the greatest indirect economic loss in York, UK in 

2015 

The scatter diagram shows the 10 service sub-sectors suffering the greatest economic loss among the 

45 total sectors in York, UK in 2015 due to the three-day IT service shutdown resulting from the 2015 

York flood. The different sectoral indirect economic loss originate from their different levels of 

dependency on the IT services sector. The y-axis shows the value of economic loss measured in millions 

of dollars and the spot sizes represent the different magnitudes of economic loss in each sector.  

Notably, findings suggest that a number of manufacturing sub-sectors were also 

affected by the shutdown of the IT services, with an overall loss of £0.49 million, 

accounting for 35% of the total non-IT services sector economic loss (Figure 1). 

Among the 15 manufacturing industries, the computer sector, likely due to its close 

relationship to IT services, suffered the greatest economic loss (£0.09 m), followed 

by other manufacturing (£0.063 m), metals (£0.055 m) and non-metallic (£0.053 m) 

sectors. Other sectors, including agricultural and mining, energy supply and 
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construction sectors totally occupy some 8% of the total economic loss. These results 

are in line with the recent remarkable growth in IT outsourcing in the UK. Miozzo 

and Grimshaw (2005) reported that large service firms, client organizations and 

manufacturing companies in the UK have outsourced IT services to multinational 

technology and computer services suppliers. The technical and social division of 

labour during manufacturing production has largely inspired the rise of 

knowledge-intensive business services (KIBS) (Miozzo and Soete, 2001), which tend 

to be IT-intensive and based on social and institutional knowledge (Miozzo and 

Grimshaw, 2005). Meanwhile, products from the traditional professional services, 

computer, R&D and engineering services sectors are mostly intangible services that 

require continuous interaction with both customers and suppliers (Miles, 1993). As a 

result, firms in the manufacturing and services sectors have become increasingly 

reliant on IT services, which explains why industries in both the manufacturing and 

services sectors in York suffered severe economic when the IT services sector was 

made non-functional due to the flooding.  

5.4 Recapitulation, Conclusions and Uncertainties 

This case study has dealt with modelling the impact of floods in urban areas. 

Focusing on this type of flood is a relatively new area. Partly this is to be explained 

from the fact that many cities lie in delta-area which may even be below sea-level, 

which signals a higher risk for flooding. Modelling floods in cities also poses new 

challenges from a modelling point of view. Today’s models have to address three 

main issues, i.e. 1) the loss of infrastructure, 2) the rise of various new or alternative 

processes because many sectoral connections have been interrupted, manifesting 

itself in newly appearing adaptation and substitution processes and 3) the 

reconstruction issues. For cities these issues can be formidable, see e.g. Hallegatte 

(2008) or Li et al (2013).  

However, there are exceptions. Sometimes the type of flood can be such that little 

infrastructure is lost or damaged. This can, e.g. be due to the time profile of the 
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flood. Also, it may be that various substitution processes were not put in place 

because time was limited, or for technical or organizational reasons. For these types 

of disasters, the standard adaptive models cannot be used. One important reason 

here is that many parameters have to be newly calibrated, or ‘neglected’, which 

severely affects the performance of the model. In such a case, an alternative method 

may be available, the hypothetical extraction method or HEM, for short. The HEM 

has been used extensively in key sector analysis where the importance of a particular 

sector is determined by hypothetically removing this sector from the available tables 

or models. Because a severe flood disconnects many parts of an economy, applying 

this concept (i.e. ‘removing’ a sector) to disaster analysis may provide an alternative. 

Here, however, is a problem. This is related to the fact that the services of a sector 

which is severely hit, and therefore cannot deliver to its customers, can be replaced 

by substitutes, from other areas. This makes applying HEM questionable and has led 

to severe criticism of the method. 

However, certain floods have characteristics that are different from the standard 

cases. One such flood was the ‘Christmas’ flood in York (UK), 2015. The flooding 

lasted three days, while little infrastructure was lost. The IT services sector was 

completely knocked out, while other sectors were relatively unhurt. The services in 

question were such that within the relevant time span no alternatives could be 

offered. This meant that the conditions were right for applying the HEM to estimate 

the loss involved. Because input-output tables at city level were not available, I used 

the Flegg and Webber ‘scaling down’ method as a first approximation. The outcomes 

were  that a three-day shutdown of IT services caused £3.24 million in economic 

loss in York during 2015; of these loss, the IT services sector itself accounted for 

£1.83 million, and the remaining 44 sectors suffered £1.41 million of the total 

economic loss. The services sector (excluding IT services sector) bore most of the 

economic loss (£0.80 million) due to its heavy reliance on IT services. Within the 

services sector, the business support services sector, other professional services 

sector and financial and insurance sector suffered the greatest reductions in output 
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out of all the sectors, as firms in these fields are more likely to outsource IT services 

for KIBS (Miozzo and Grimshaw, 2005).  

Further research along this line is certainly required. First, the present study utilized 

an original HEM approach, which means that both backward and forward linkages of 

a sector were simply removed from the economy. This was motivated above in 

terms of the sector in question (IT) being for a limited time and to a very large 

degree isolated from the rest of the economy (thereby bringing HEM use in line with 

recent criticism). Nonetheless, there can be a further differentiation between a 

sector’s internal and external linkages, as suggested by Cella (1984). Second, possible 

changes in final demand were not considered in the present study due to the 

relatively short time period of the outage. It is equally important to model the 

changes in consumer behaviour in risk assessments of more ‘persistent’ disaster 

events. Additionally, due to the lack of daily data on household expenditure in York, I 

could not specifically detect the exact value of sales during the three-day IT outages. 

In this respect, the current study opens up new research avenues when applying the 

HEM onto flood research and disaster risk studies once more accurate data on daily 

household consumption or city-level input-output table become available.    

5.5 Sensitivity Analysis 

Due to data unavailability, the averaged daily final demand was used in calculating 

the economic loss of three days’ IT service shutdown by employing an HEM. 

However, considering that large volumes of transaction should have involved in the 

special Christmas period during which the floods occurred, this sensitivity analysis 

refers to the data on the monthly trend on consumption value of the York city to test 

the variation range of model results. By using alternative dataset on final demand, 

the total economic loss resulting from three-day shutdown of IT services in York is 

expected to rise to £4.23 million when considering the excessive volumes of 

transactions during the Christmas season. 
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Chapter 6: Application of a Disaster Footprint 

Framework for Cascading Indirect Economic 

Impacts of Air Pollution, China, 2012 

Serious haze has put China under international spotlight. It can cause various 

contaminant diseases that further induce substantial labour time loss along 

production supply chain. It is associated with cardiovascular and respiratory diseases 

and high mortality and morbidity, which could be translated to reduced labour 

availability and time. In assessing the disease burden of PM2.5 pollution, health 

studies rarely consider such macroeconomic impacts by capturing industrial 

interlinkages while disaster studies seldom involve air pollution and the resulting 

health impacts. The following case study adopted a supply-driven input-output 

model to estimate the monetary value of total output loss resulting from reduced 

working time caused by diseases related to air pollution across 30 Chinese provinces 

in 2012. Before that, the provincial concentration levels of PM2.5 pollution were 

utilized to investigate the health impacts that are attributable to air pollution. The 

developed input-output model is able to cope with the indirect cascading effects 

along interregional production supply chains. Results show the total economic loss of 

398.23 billion Yuan7  with the majority comes from Eastern China (39%) and 

Mid-South (30%). The total economic loss is almost equivalent with 1% of China’s 

GDP in 2012 with a totality of 82.19 million affected labourers. Changes can be 

observed at provincial economic loss from the early study in 2007 (Xia et al, 2007) as 

Henan and Jiang become two provinces entailing the greatest loss with largest 

PM2.5-induced mortality and morbidity counts. Study on 2012 also examines the 

cross-regional economic impacts in order to underline the important role of indirect 

                                                      
7
 Yuan is a monetary unit for Chinese RenMinBi and it is equivalent with 0.15 USD and 0.11 GBP (2017). 
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economic loss. Mid-South, North China and Eastern China account for the majority of 

indirect economic loss across all regions at 24.65, 16.99 and 12.17 billion Yuan, 

respectively, where it indicates that geographical distance plays a role in determining 

interregional trade and regional interlinkages. Given that the majority of economic 

loss originate from secondary industry, it also specifically analyzes the key 

sub-industries in secondary industry that account for the greatest proportions in 

both direct and indirect economic loss in each great region in China. In North China, 

Northwest and Southwest, a considerable part of their indirect economic loss are 

originated from Manufacturing industries outside the region. The second largest 

source in these three regions that accounts for economic loss from secondary 

industries in other regions is Energy, with the greatest amount occurs in North China 

at 2.32 billion Yuan. In contrast, Coal and Mining accounts for the majority of indirect 

loss from secondary industries outside the region for Eastern China, Mid-South and 

Northeast at 37.4% (10.83 billion Yuan), 33.4% (3.65 billion Yuan) and 24.4% (1.30 

billion Yuan), respectively, which might be caused by the different economic 

structures and dependences between North China, Northwest, Southwest and 

Eastern China, Mid-South, Northeast. When turning to the economic loss from 

secondary industry inside the region, Regions show heterogeneity. Coal and Mining 

accounts for the largest part of inner-regional economic loss in North China and 

Northwest at 42.4% and 43.8%, respectively, Equipments and Energy are two major 

sources for inner-regional economic loss Eastern China and Southwest, while Metal 

and Non-metal and Manufacturing constitute considerable proportions in 

inner-regional economic loss from secondary industries in Mid-South.  

 

The proposed interdisciplinary modelling approach provides an alternative method 

for health-cost measurement with additional insights on inter-industrial and 

interregional linkages along production supply chains, thereby, it highlights the 

importance of integrating interdependency analysis into health costs assessment 

and air pollution into disaster studies from a health-impact perspective. By doing so, 

future policymakers and researchers could obtain an alternative macroeconomic 
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tool to better conduct cost-benefit analysis in any environmental or climate change 

related policy design, and to comprehend health costs studies in its macroeconomic 

side. 

6.1 Background 

Millions of people in China frequently breath toxic air substances, which has become 

one of the most serious topics in environmental issues in China by resulting in 

widespread environmental and health problems, including increasing risks for heart 

and respiratory diseases, stroke and lung cancer (LC) (Greenpeace, 2017). As air 

pollution has long-term health impacts that evolves gradually over time, 

understanding the health and socioeconomic impacts of China’s air pollution 

requires continuous efforts. 

Serious air pollution in China has largely inspired epidemic studies that examine 

specific health outcomes from air pollution, as well as health costs assessments that 

translate health outcomes into monetary loss. Existing epidemic studies simulate a 

exposure-response relationships between Particulate Matter (PM) concentration 

levels and relative risks (RRs) for a particular disease while health costs assessments 

frequently stem from patients’ perspective at microeconomic level, by evaluating 

either their willingness-to-pay (WTP) for avoiding disease risk or the potentially 

productive years of life loss (PPYLL). However, when perceiving unhealthy labourers 

as degradation in labour input, macroeconomic implications for production supply 

chains lack investigation. Meanwhile, as the health effects of air pollution are built 

up slowly over time which implies the lasting nature of air pollution, it has been 

rarely studied in current disaster risk literature. Differing from rapid-onset disaster 

analysis (flood, hurricane, earthquake, etc) that normally reply on quantifying 

damages to physical capital, air pollution affect more human capital than physical 

capital and the resulting health impacts are relatively invisible and unmeasurable. As 

a result, linking PM concentrations with health endpoints and further with 
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macroeconomic impacts require an interdisciplinary approach that integrates all the 

three elements into one.  

6.2 Methodology 

(a). Methodological Framework 

 

Figure6.1 Methodological framework 

Figure 6.1 illustrates the overall methodological framework developed. It involves four main parts that 

are distinguished with four colours (boxes on the left and flow chart on the right). Detailed methods 

that connect each part in the flow chart were shown above the arrows. 

PM2.5 concentration levels for 30 provinces of China were first identified from 

emission inventory using air quality simulation model. The relative risks (RRs) for 

PM2.5-induced mortality (IHD, Stroke, COPD and LC), hospital admissions 

(cardiovascular and respiratory diseases) and outpatient visits (all causes) were 

estimated using an Integrated Exposure-Response (IER) model, based on which 

population attributable fraction (PAF) can be calculated to estimate counts of 

PM2.5-induced deaths, admissions and outpatient visits. Additionally, counts of 

mortality, hospital admissions and outpatient visits for 2012 were further translated 
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into productive working time loss that was compared with the industrial original 

working time without any PM2.5-induced health effects (full employment and full 

productivity) to derive the percentages reduction in industrial value added. 

Moreover, reductions in industrial value added served as an input in the 

supply-driven input-output model to measure the total indirect economic loss 

incurred along the production supply chain, which is measured as the total loss in 

output level. Finally, macroeconomic implications regarding industrial and provincial 

economic loss can be obtained from my model results.  

(b). Estimating Provincial PM2.5 Concentration Levels 

To estimate the provincial PM2.5 concentration levels, air pollutant emission 

inventories were used to predict provincial PM2.5 concentration levels among 30 

Chinese provinces using air quality simulation modelling. The anthropogenic 

emissions for China were obtained from the Multi-resolution Emission Inventory for 

China (MEIC), which is a technology-based and bottom-up air pollutant emission 

inventory used in China since 1990. The inventory initially contained 10 types of air 

pollutants and more recently, it has incorporated cement and high-resolution vehicle 

emission at a national level (Xia et al, 2016). Air quality simulation models used 

include the offline-coupled Weather Research and Forecasting (WRF) model and 

Community Multi-scale Air Quality (CMAQ) model with 14 layers’ vertical resolution. 

The CMAQ model domain includes the 127 × 172 East Asia grid cells that cover the 

entire China by 36 km × 36 km grid squares. Simulations were run for the four model 

months (January, April, July and October) in the study year to obtain the annual 

PM2.5 concentration while the meteorological fields at 36 km horizontal grid spacing 

were generated by WRF with 23 vertical layers. The initial and boundary conditions 

were derived from the final NCEP analysis data (FNL) and were used to drive the 

CMAQ model. The land-use/land-cover and topographical data were obtained from 

the default WRF input dataset. The anthropogenic and natural source emission 

inputs were derived from MEIC and MEGAN (Model of Emissions of Gases and 

Aerosols from Nature) (Xia et al, 2016). I also referred to Chinese provincial PM2.5 
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concentration levels estimated by Geng et al (2015), where the authors improved 

the method for estimating long-term surface PM2.5 concentrations using satellite 

remote sensing and a chemical transport model to assess the provincial PM2.5 

concentration levels in China during 2006-2012. The model domain includes a map 

of surface PM2.5 concentrations at 0.1° × 0.1° over China using the nested-grid 

GEOS-Chem model with the most updated bottom-up emission inventory and 

satellite observations from MODIS and MISR instruments (Geng et al, 2015).  

(c). Estimating Health Impacts from PM2.5 Concentration Levels 

Epidemic studies on PM2.5-induced health outcomes have linked PM2.5 air pollution 

with various health endpoints by using exposure-response coefficients. The case 

studies focus on the impacts of PM2.5 pollution on mortality, hospital admissions and 

outpatient visits. I referred to an integrated exposure-response (IER) model 

developed by Burnett et al (2014) to estimate the relative risks (RRs) for 

PM2.5-induced mortality (IHD, Stroke, COPD, LC), hospital admissions (cardiovascular 

and respiratory diseases) and outpatient visits (all causes).   

For disease-induced mortality, an IER model captures concentration-response 

relationships with a specific focus on ischemic heart disease (IHD), stroke, chronic 

obstructive pulmonary disease (COPD) and lung cancer (LC). The relative risks (RRs) 

for the mortality estimation function for the four diseases were shown in Equation 

6.1. 

For z<zcf RRIER(z) = 1                  (6.1) 

For z≥zcf RRIER(z) = 1+α｛1-exp[-ɤ(z-zcf)
δ
]｝   

z : the PM2.5 exposure in micrograms per meter cubed; 

zcf : the counter-factual concentration level below which no additional health risk is 

assumed; 

δ: the strength of PM2.5 and ɤ is the ratio of RR at low-to-high exposures.  

Then, the calculated RR was then converted into an attributable fraction (AF) in 

Equation 6.2. The attributable fraction measures the proportional decrease in 

disease or mortality population that will occur once exposure to a risk factor 

decreased to an alternative ideal exposure scenario (WHO, 2017). 
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      (6.2) 

Additionally, excess counts of PM2.5 disease-induced mortality were estimated in 

Equation 6.3. 

E = AF×B×P    (6.3) 

E: PM2.5-induced mortality counts; 

B: the national level incidence of a given health effect, which was applied for all 

provinces because of limited data; 

P: the size of the exposed populations. 

For morbidity, I calculated cardiovascular and respiratory hospital admissions and 

outpatient visits for all causes using a log-linear response function and the RRs for 

each category of morbidity was calculated using Equation 6.4. 

  (6.4) 

β : the parameter that describes the depth of the curve and was listed in Table 6.1. 

They are the exposure-response coefficients to quantify the relationship between 

different levels of PM2.5 exposures and the resulting health outcomes. Counts of 

PM2.5-induced hospital admissions and outpatient visits were analogously estimated 

using Equation 6.2 and 6.3. 

Table6.1 Concentration-response Coefficients for Morbidity 

Health impacts Coefficient References 

Cardiovascular HA 0.0009059 

Health risks of air 

pollution in Europe – 

HRAPIE project 

Respiratory HA 0.001882 

Health risks of air 

pollution in Europe – 

HRAPIE project 

Outpatient visits 0.000389241 Xu et al. (1995) 

(Modified from: Xia et al, 2016) 

(d). Estimating Industrial Labour Time Loss 

Each labourer is assumed to work 8 hours every day and 250 days during 2012. For 

PM2.5-induced mortality, each death will result in a total 250 working days lost 

regardless different disease types. For PM2.5-induced morbidity, each cardiovascular 

admission will result in 11.9 working days lost while each respiratory admission 

x
RR e



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causes 8.4 working days lost (Health Statistical Yearbook, 2016). Meanwhile, it was 

assumed that 4 hours (0.5 working day) were required for each outpatient visit and 

each outpatient visits the clinic once during the study year. Due to the lack of data 

on the required time and frequency of outpatient visits in China, such assumption 

was made based on the current status of Chinese medical system where no 

pre-booking and follow-up services are available. Then, provincial mortality, hospital 

admissions and outpatient visits counts were scaled down to counts among labour 

according to labour-population ratios across all the 30 provinces during the year 

(Provincial Statistical Yearbook, 2008 & 2013). I further distributed provincial 

mortality, admissions and outpatient counts into 30 industries. It is worth noting that 

the distribution of the mortality and morbidity counts into industries was based on 

the occupational respiratory conditions incidence rate from the Bureau of Labour 

Statistics in the US due to the lack of occupational illness data in China. The data 

suggest that manufacturing workers entail the highest respiratory condition 

incidence rate at 2.1%, followed by workers in services sectors at 1.8%, natural 

resources and mining sector at 1.5% and construction sector at 1.2% (Bureau of 

Labour Statistics, 2007). However, the data follows the US sector categorization. As a 

result, 30 industries in China were re-categorized into four large sectors suggested 

by the US sector categorization. The mortality and morbidity counts were firstly 

assigned to these four sectors and sectoral mortality and morbidity counts were 

further distributed into industries according to the industry-to-sector output ratio 

(Xia et al, 2016). Differentiating the disease incidence rates for various occupations is 

important because workers in different sectors normally have different working 

environment with different exposures to PM2.5 pollution. .Additionally, labour time 

loss for each case of mortality, admission and outpatient visit were multiplied by 

industrial counts of mortality, admission and outpatient in each province 

respectively, where the results were summed up to derive the industrial total labour 

time loss due to PM2.5-induced mortality and morbidity for 2012. Moreover, I 

compared the industrial total labour time loss with the original labour time with full 

employment and labour productivity when there is no PM2.5-induced health impacts. 
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The results show the percentage reductions in industrial working time, which were 

used as an indicator for percentage reductions in industrial value added for 2012 in a 

supply-driven input-output model by considering labour as the major component for 

industrial value added (Xia et al, 2016).  

(e). Estimating Indirect Economic Loss on Production Supply Chain 

I employed a supply-driven input-output model to evaluate the indirect economic 

loss due to PM2.5-induced mortality and morbidity along production supply chain for 

both years. A supply-driven input-output model was derived from a traditional 

Leontief input-output model by rotating the view of the basic model. The basic 

model is: 

                                                            

       -        ,        -                                 

A: the nn matrix of technical coefficients; 

x: the output matrix for n sectors; 

f: the final demand matrix for n sectors; 

       -     : the Leontief inverse matrix.    

A supply-driven input-output model takes a rotated view of Leontief input-output 

model that shows an opposite influencing direction between sectors. It suggests that 

production in a sector can affect sectors purchasing its outputs as inputs during their 

production processes and it has a supply-side focus. A supply-driven input-output 

model is used to calculate the impact of changes in primary inputs on sectoral gross 

production. The basic structure of a supply-driven model is shown in Equation 6.5 

and 6.6.  

x’ = v’ (I-B)
-1

 (6.5) 

x’ = v’ G, G = (I-B)
-1   

 (6.6) 

B: the allocation coefficient (direct-output coefficient) matrix that is calculated by 

dividing Zi by Xi. It refers to the distribution of sector i’s outputs in sector j. 

Assumption of fixed allocation coefficients in the economy also holds for a 

supply-driven input-output model;  



 124 

V: the industrial value added matrix, including capital and labour input; 

G: the Ghosh inverse matrix, which measures the economic impacts of changes in a 

sector’s value added on other sectors’ output level (Miller and Blair, 2009, p543).  

6.3 Results and Discussions 

Firstly, regarding the total number of affected labour and total economic loss, the 

total economic loss resulting from PM2.5-induced health outcomes in China 2012 is 

398.23 billion Yuan, which corresponds to almost 1% of national GDP in 2012. The 

total number of affected labour in China is 0.80 million for PM2.5-induced mortality, 

2.22 million for PM2.5-induced hospital admissions and 79.17 million for 

PM2.5-induced outpatient visits (Figure 6.2). Figure 6.2 presents the provincial counts 

of PM2.5-induced mortality, hospital admissions, outpatient visits and economic loss 

with least severe and most severe situation shown from green to red. For total 

populations of PM2.5-induced mortality and morbidity, among 30 provinces, Henan 

and Shangdong province have the largest total counts of PM2.5-induced mortality 

and morbidity, which is consistent with the findings in 2007 study (Xia et al, 2016). 

Guangdong province has the greatest counts of PM2.5-induced hospital admissions at 

291 thousands, where a substantial increase can be observed at 175 thousands 

compared with results in 2007 (Xia et al, 2016). It almost doubles its provincial count 

of outpatient visits and triples its mortality counts. Meanwhile, increase can be 

observed in both counts for Northwest region, including Shanxi, Gansu, Qinghai, 

Ningxia and Xinjiang provinces. Specifically, the count of hospital admissions in 

Shanxi province in 2012, 100 thousands, also doubles that of 2007, which was at 50 

thousands (Xia et al, 2016). Even sharper increase of admission counts can be seen in 

Xinjiang province, where the number is almost 7 times of that from 2007 (Xia et al, 

2016). 
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Figure6.2 Provincial counts of PM2.5-induced mortality, hospital admissions, outpatient visits and 

economic loss in China, 2012 

Figure 6.2 presents the provincial counts of PM2.5-induced mortality, hospital admissions, outpatient 

visits and economic loss with least severe and most severe situation shown from green to red. 

Secondly, concerning economic loss by provinces, regions and industries, at the 

provincial level (Figure 6.2), economic loss of Henan province exceeds that of Jiangsu 

province in 2007 (55.90 billion Yuan) and becomes the province suffering the 

greatest economic loss at 56.37 billion, accounting for 14% of the total economic loss 

in China. This is followed by Jiangsu province at 45.32 billion Yuan and Shangdong 

province at 43.23 billion Yuan. This is because all the three provinces have the 

largest counts of PM2.5-induced mortality and morbidity, which result in substantial 

provincial labour time loss. I also calculated the economic loss in six China’s great 

regions. Eastern China and Mid-South appear to be the two regions suffering the 

greatest economic loss that amount at 153.39 and 119.21 billion Yuan and account 

for 39% and 30% of total economic loss in China, 2012. It is in line with the findings 

from 2007 study (Xia et al, 2016), where the economic loss of these two regions are 

115.33 and 80.88 billion Yuan respectively. Therefore, there has been a remarkable 
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rise in economic loss for Mid-South region. Meanwhile, economic loss by three 

industries is displayed in Figure 6.3. Primary industry includes agriculture and fishing, 

where the economic loss is 19.12 billion Yuan. Secondary industry includes all 

manufacturing sectors, energy and construction and it entails the greatest 

proportion of economic loss at 320.06 billion Yuan (80% of total economic loss). 

Tertiary industry accounts for the remaining 15% of total economic loss at 59.05 

billion Yuan.  

 

Figure6.3 Economic loss in three industries in China, 2012 

Figure 6.3 presents the proportions of economic loss by three industries, where secondary sector 

suffered the greatest percentage of economic loss due to air pollution. 

Additionally, this case study also examined the cross-regional economic losses 

between six Great Regions in China. As one significant advantage for input-output 

model is to capture the industrial and regional interdependencies, it is effective to 

measure the propagating disaster-induced indirect economic loss along production 

supply chain. I traced the cross-regional economic loss due to their interlinkages, 

such as interregional trade, as shown in Figure 6.4. The diagram demonstrates the 

interregional economic impacts due to their interdependencies. The left-hand side 

shows the regional indirect economic loss while the right-hand side denotes the 
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sources for these indirect economic loss. The proportion of regional indirect loss 

among regional total economic loss is displayed next to each region’s name on the 

left-hand side. Although the majority of regional economic loss come from the direct 

economic loss occurred within the region across almost all the six regions, Northeast, 

Eastern China and Northwest still entail great indirect economic loss from other 

regions, which occupies 31%, 21% and 30% of the total regional economic loss, 

respectively. In Northeast, a totality of 18% of its total regional economic loss is 

originated from North China and Mid-South, including 1.84 billion Yuan from North 

China and 1.85 billion Yuan from Mid-South. Similarly, Mid-South is responsible for 9% 

of the economic loss in Eastern China at 13.36 billion Yuan. It accounts for even 

larger proportion of regional economic loss in Northwest at 13%. Meanwhile, 

Eastern China also accounts for another 8% of the total regional economic loss in 

Northeast, which amounts at 1.66 billion Yuan. Overall, Mid-South accounts for the 

largest amount of indirect economic loss in other Chinese regions at 24.65 billion 

Yuan, which is followed by North China and Eastern China at 16.99 and 12.17 billion 

Yuan, respectively. This finding highlights the increasing significance in capturing the 

industrial and regional interdependencies and indirect economic loss in disaster risk 

analysis because such interdependencies can largely raise the overall economic loss 

far beyond the direct economic loss and constitute a noticeable component of total 

economic loss. 

 

Figure6.4 Cross-regional economic loss 
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The esankey diagram shows the cross-regional economic loss analysis that focus on regional indirect 

economic loss only. The left-hand side measures the regional indirect economic loss while the 

right-hand side stands for the sources for indirect economic loss across six China’s great regions. 

Moreover, as secondary industry plays a vital role in Chinese economy and entails 

greatest economic loss among the three industries, I specifically analyzed the 

regional economic loss that are directly and indirectly resulting from secondary 

industries both inside and outside a region. Focusing on secondary industry, Figure 

6.5 illustrates both direct and indirect economic loss originating from each region 

and outside the region. The inner ring denotes the direct economic loss originating 

from secondary industry inside the region while the outer ring stands for the indirect 

economic loss from secondary industries in other regions. Percentage shown on the 

inner ring shows the proportion of direct economic loss regarding total regional 

economic loss and percentages shown on the outer ring are the proportions of 

indirect loss from other region relative to total regional indirect economic loss 

resulting from all outside secondary industries. As can be seen from the diagram, 

despite that the majority of economic loss resulting from secondary industry are 

originated from inside the region for all the six great regions in China, in Northwest 

and Northeast, economic loss attributed to secondary industries outside the region 

still constitute a considerable share due to industrial and regional interdependencies. 

Secondary industries in the Mid-South, Eastern China and North China become three 

major sources for indirect economic loss across all the six regions. For instances, in 

Northwest, economic loss from secondary industries in Mid-South, Eastern China 

and North China account for 14%, 6% and 6% of total regional indirect loss from 

secondary industries outside the region, at 2.20, 0.99 and 0.90 billion Yuan, 

respectively. Similarly, in Northeast, economic loss from secondary industries in 

these three regions occupy 10%, 8% and 9% of total regional indirect loss from 

secondary industries outside the region, at 1.66, 1.33 and 1.46 billion Yuan, 

respectively. This is resulting from their geographical distance to Mid-South, Eastern 

China and North China, as well as close trade relationships with these three regions. 

The significant roles of Mid-South and Eastern China in interregional trade have been 
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early confirmed by Sun and Peng (2011), where they pointed out the export-oriented 

nature for trades in Eastern China and Mid-South, and their close trade relations 

with Northwest regions with respects to imports of raw materials. Likewise, it is 

noticeable that indirect economic loss is more likely to come from neighbour-regions, 

which highlights the possibility that short geographical distance might accelerate 

interregional trade and strengthen regional interlinkages.  

 

Figure6.5 Regional direct and indirect economic loss from secondary industry 

Figure 6.5 illustrates both direct and indirect economic loss originating from each region and outside 

the region. The inner ring denotes the direct economic loss originating from secondary industry inside 

the region while the outer ring stands for the indirect economic loss from secondary industries in other 

regions. Percentage shown on the inner ring shows the proportion of direct economic loss regarding 

total regional economic loss and percentages shown on the outer ring are the proportions of indirect 

loss from other region relative to total regional indirect economic loss resulting from all outside 

secondary industries. 

Furthermore, the secondary industry was also broken down into 7 sectors in order to 

examine the major economic loss sources among secondary industries inside and 

outside the region. They include Coal & Mining, Manufacturing, Fuel processing & 

Chemicals, Metal & Non-metal, Equipments, Energy and Constructions as displayed 

in Figure 6.6. The inner circle shows the economic loss from secondary industry 
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inside the region. The size of the inner circle stands for the different proportions of 

inner-regional economic loss relative to total regional economic loss. Colours 

demonstrate economic loss from 7 sectors in secondary industry inside the region. 

Meanwhile, the outer circle indicates the economic loss from secondary industries 

outside the region. Economic loss resulting from 7 sectors are shown in black and 

white. Percentages shown on the outer circle are the proportions of indirect loss 

from other regions relative to total regional indirect economic loss. In North China, 

Northwest and Southwest, most of their indirect economic loss from secondary 

industries outside the region comes from Manufacturing with 27.0%, 26.7% and 

22.2%, respectively. The second largest source in these three regions that accounts 

for economic loss from secondary industries in other regions is Energy, with the 

greatest amount occurs in North China at 2.32 billion Yuan, followed by Northwest at 

1.29 billion Yuan and Southwest at 1.26 billion Yuan. In contrast, Coal and Mining 

accounts for the majority of indirect loss from secondary industries outside the 

region for Eastern China, Mid-South and Northeast at 37.4% (10.83 billion Yuan), 

33.4% (3.65 billion Yuan) and 24.4% (1.30 billion Yuan), respectively. One possible 

underlying reason is that economies in Northwest, North China and Southwest are 

mainly dominated by Coal and Mining but relying on imports of Manufacturing 

products from other regions, whereas Eastern China, Mid-South and Northeast have 

more prosperous Manufacturing industries but tend to heavily depend on imports of 

raw materials from Coal and Mining industries in Northwest, North China or 

Southwest. With regards to the economic loss from secondary industry inside the 

region, it shows diversified patterns across six great regions. Coal and Mining 

accounts for the largest part of inner-regional economic loss in North China and 

Northwest at 42.4% and 43.8%, respectively, Equipments and Energy appear to be 

two major sources for inner-regional economic loss Eastern China and Southwest, 

while Metal and Non-metal and Manufacturing constitute considerable proportions 

in inner-regional economic loss from secondary industries in Mid-South, which reach 

21.86 billion Yuan and 21.61 billion Yuan, occupying 27.4% and 27.1%, respectively.  
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Figure6.6 Economic loss from 7 sectors in secondary industry inside and outside the region 

The diagram measures the economic loss originating from 7 subsectors in secondary industry inside 

and outside each of the six great regions. The inner circle shows the economic loss from secondary 

industry inside the region. The size of the inner circle stands for the different proportions of 

inner-regional economic loss relative to total regional economic loss. Colours demonstrate economic 

loss from 7 sectors in secondary industry inside the region. Meanwhile, the outer circle indicates the 

economic loss from secondary industries outside the region. Economic loss resulting from 7 sectors are 

shown in black and white. Percentages shown on the outer circle are the proportions of indirect loss 

from other regions relative to total regional indirect economic loss. 

6.4 Policy Implications, Conclusions and Uncertainties 

International newspaper headlines have been frequently occupied by China’s serious 

PM2.5 pollution with terrifying photos. PM2.5 has seriously undermined human health 

by inducing contaminant diseases, such as IHD, Stroke, COPD and LC. These diseases 

have resulted in increasing numbers of mortality and morbidity that cause little 

physical capital damages but substantial labour degradation in terms of productive 

working time loss along production supply chain. Indeed, as the industrial and 

regional interconnectedness have become unprecedentedly tightened under 

globalization, the cascading indirect economic loss of degraded labour time can be 

considerable due to these interdependencies. Therefore, there is a growing need to 
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explore the macroeconomic implications of PM2.5-induced health effects that can 

also capture industrial and regional interdependencies. However, existing health 

costs studies using HCA and CVA assess the health costs at microeconomic level 

without an investigation over these linkages on the production supply side. 

Meanwhile, existing disaster risk studies rarely involve PM2.5 pollution as a disaster 

that harm human capital more than physical capital. Thus, the situation described in 

the current case study differs from that in Chapter 5 because labour constraints from 

pollution-induced health impacts need to be incorporated here. Methods focusing 

on the damages to infrastructure seem to be inefficacious here when measuring the 

‘damages’ to human health, such as the ARIO (section 3.3.2.4) and Flood Footprint 

Model (section 3.3.2.5). For an approach is able to cope with the macroeconomic 

impacts from ‘invisible’ health impacts, it should firstly, consider both labour 

constraints and industrial and regional interdependencies; secondly, integrate risk 

analysis, impact analysis and interdependency analysis because it is significant for 

key sector identification to strengthen post-disaster economy recovery strategies 

and develop more sustainable policies (Xia et al, 2016).   

The current case study applies the interdisciplinary approach by combining 

environmental, epidemiological and macroeconomic studies to assess the 

macroeconomic impacts of PM2.5-induced health effects in China during 2012. In the 

model, environmental phenomenon was related with health endpoints using an 

integrated exposure-response model, reduction in labour time were estimated 

based on the pollution-induced mortality and morbidity counts, and industrial 

reducing labour time was perceived as an indicator for industrial reducing value 

added, which was further fed back into a supply-driven input-output model. By doing 

so, health studies can be integrated into impact evaluation and interdependency 

analysis.  

The results are threefold. Firstly, the total economic loss from China’s air pollution 

during 2012 amount at 398.23 billion Yuan with the majority comes from Eastern 

China (39%) and Mid-South (30%). The total economic loss is equivalent with 1.0% of 
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China’s GDP in 2012 and the total number of affected labourers rises to 82.19 million. 

Compared with study in 2007 (Xia et al, 2016), although secondary industry remains 

the industry encountering the most economic loss (80%), changes can be noticed for 

economic loss at provincial level. Henan and Jiangsu become two provinces that 

suffering the greatest economic loss at 56.37 and 45.32 billion Yuan respectively, 

followed by Shangdong province with total economic loss at 43.23 billion Yuan. 

Henan and Shangdong provinces also have the largest numbers of PM2.5-induced 

mortality, hospital admissions and outpatient visits. Secondly, the study highlights 

the cascading indirect economic loss triggered by industrial and regional 

interdependencies in health costs assessment. In 2012, indirect economic loss 

constitutes a significant part of total regional economic loss in Northeast, Eastern 

China and Northwest, which occupies 31%, 21% and 30% of the total regional 

economic loss, respectively. Overall, Mid-South accounts for the largest amount of 

indirect economic loss in other Chinese regions at 24.65 billion Yuan, which is 

followed by North China and Eastern China at 16.99 and 12.17 billion Yuan, 

respectively. Additionally, the study specifically focuses on 7 sectors in secondary 

industry and differentiates economic loss from these sectors inside the region from 

those outside the region. In Northwest and Northeast, economic loss attributed to 

secondary industries outside the region still constitute a considerable share due to 

industrial and regional interdependencies at 31% and 34% of total regional economic 

loss, respectively. Secondary industries in the Mid-South, Eastern China and North 

China become three major sources for indirect economic loss across all the six 

regions. Indeed, I also suggest that indirect economic loss is more likely to come 

from neighbour-regions, which highlights the possibility that short geographical 

distance might accelerate interregional trade and strengthen regional interlinkages. 

In North China, Northwest and Southwest, most of their indirect economic loss are 

originated from Manufacturing industries outside the region with 27.0%, 26.7% and 

22.2%, respectively. The second largest source in these three regions that accounts 

for economic loss from secondary industries in other regions is Energy, with the 

greatest amount occurs in North China at 2.32 billion Yuan. In contrast, Coal and 
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Mining accounts for the majority of indirect loss from secondary industries outside 

the region for Eastern China, Mid-South and Northeast at 37.4% (10.83 billion Yuan), 

33.4% (3.65 billion Yuan) and 24.4% (1.30 billion Yuan), respectively. Such distinctive 

compositions of outer-regional economic loss might be due to the different 

economic structures and dependences between North China, Northwest, Southwest 

and Eastern China, Mid-South, Northeast. Turning to the economic loss from 

secondary industry inside the region, Regions show heterogeneity. Coal and Mining 

accounts for the largest part of inner-regional economic loss in North China and 

Northwest at 42.4% and 43.8%, respectively, Equipments and Energy are two major 

sources for inner-regional economic loss Eastern China and Southwest, while Metal 

and Non-metal and Manufacturing constitute considerable proportions in 

inner-regional economic loss from secondary industries in Mid-South. 

There are some final remarks for policymakers and researchers here from this typical 

air pollution issue. On the one hand, given that the prosperous interregional trade, 

policymakers are required to conscientiously consider these increasingly 

strengthened industrial and regional linkages in climate change mitigation and 

adaptation policy design based on a better understanding of implications resulting 

from any climate change-induced health issues at both micro and macroeconomic 

levels. Meanwhile, sufficient adaptation measures are required to be implemented 

along with the climate change mitigation strategies in operation. The purpose of this 

is to expand the economy beyond the regional geography and natural endowment, 

and to release the current reliance of economy on labour-intensive sectors (Mauricio 

Mesquita, 2007). On the other hand, researchers on epidemic studies should actively 

integrate these interdependencies into future health costs evaluation while 

researchers on disaster risk analysis should not lose sights on ‘persistent’ disasters as 

described in this study, which affect more human capital and may imply degradation 

in production factor inputs.  

Due to data unavailability in several aspects, the current study is subject to some 

uncertainties that on the other hand, open up more research space for scholars. 



 135 

Firstly, labour time loss resulting from outpatient visits was estimated as 4 hours per 

visit in order to provide a realistic boundary for study results when specific time loss 

data is not available. This assumption was made according to Chinese medical 

system which has no pre-booking and follow-up services. I suggest that such 

conservative assumption could provide a lower boundary in model results. Secondly, 

the distribution of the mortality and morbidity counts into industries was based on 

the occupational respiratory conditions incidence rate from the Bureau of Labour 

Statistics in the US due to the lack of occupational illness data in China. The data 

suggest that manufacturing workers entail the highest respiratory condition 

incidence rate at 2.1%, followed by workers in services sectors at 1.8%, natural 

resources and mining sector at 1.5% and construction sector at 1.2%. However, the 

data follows the US sector categorization. As a result, 30 industries in China were 

re-categorized into four large sectors to be aligned with the US sector categorization. 

The mortality and morbidity counts were firstly assigned to these four sectors and 

sectoral mortality and morbidity counts were further distributed into industries 

according to the industry-to-sector output ratio. Therefore, model results can be 

more accurate when data on industrial disease incident rates in China become 

available because outdoor workers in some sectors appear to be more directly 

exposed to PM2.5 pollution than indoor workers in other sectors. To differentiate the 

disease incidence rates for various occupations is crucial because workers in 

different sectors normally have different working environment with different 

exposures to PM2.5 pollution. Thirdly, the study employs a supply-driven input-output 

model is frequently criticized in its ignorance regarding the effect of changing output 

on further changes in industrial value added and possible nonlinear relationships 

between labour inputs and economic outputs in sectors dominated by monetary 

capital (Miller and Blair, 2009, p543). However, it is still found to be a suitable 

candidate model to reflect a more straightforward linkage between changing value 

added and the entire economy in a way that captures industrial and regional 

interrelationships and indirect economic loss along production supply chain.  
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6.5 Sensitivity Analysis 

This section provides a sensitivity analysis for the case study on China’s air pollution 

in 2012 to test the impacts of alternative data or assumptions regarding time 

required for each cardiovascular admission, each outpatient visit, equal distribution 

of mortality and morbidity counts into industries and industrial specific air pollutant 

exposure levels on the modelling results in terms of total economic loss resulting 

from PM2.5-induced health effects.  

6.5.1 Timed Required for Each Cardiovascular Hospital Admission 

In the case study of this chapter, each cardiovascular admission will require 11.9 

working days. However, according to Wang and Li (2008), more severe symptom in 

cardiovascular disease will require over 30 days for each admission. Without 

considering the possible weekends or holidays, I tested the variation range in total 

economic loss when each cardiovascular admission takes 30, 60 and 90 working days, 

respectively. The results can be observed in Table 6.2. It shows a rising trend from 

417.49 to 481.31 billion Yuan for 2012. Regardless the increase in working days lost 

for each cardiovascular admission, the variation range in test results is relatively 

small.  

Table6.2 Varying Working Day Lost for Each Cardiovascular Admission 
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6.5.2 Required Times for Each Outpatient Visit 

In the study, it was assumed that 4 hours (0.5 working day) were required for each 

outpatient visit and each outpatient visits the clinic once during the study year. Due 

to the lack of data on the required time for each outpatient visit in China, this 

assumption was made based on the current status of Chinese medical system where 

no pre-booking and follow-up services are available. Therefore, this section tests the 

impacts of alternative time required for each outpatient visit on the modelling 

results as shown in Table 6.3. As can be seen from the tables, the total economic loss 

rise from 366.58 to 461.53 billion Yuan with the rising amount of time required for 

each outpatient visit from 2 to 8 hours, confirming the impacts of required time for 

outpatient visit on the overall model results. The results tend to be more sensitive to 

the required outpatient time due to a relatively large size of pollution-induced 

outpatients. This indicates the needs for more accurate data on frequency and time 

required for outpatient visits in order to further improve the accuracy of model 

results. However, I suggested that the current assumptions concerning outpatient 

visits are consistent with the ongoing situation in Chinese medical system in a 

background of extreme air pollution condition throughout the year and thus, they 

tend to provide a conservative estimation in total economic loss by considering time 

for queuing, inquiry and medical treatment. It is noteworthy that no holiday that 

might be potentially embodied in the working days lost was considered. 

Table6.3 Varying Time Required for Each Outpatient Visit 
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6.5.3 Equal Distribution of Mortality and Morbidity Counts in Industries 

Another assumption in this case study is the distribution of mortality and morbidity 

counts into industries, which was based on the occupational respiratory conditions 

incidence rate from the Bureau of Labour Statistics in the US due to the lack of 

occupational illness data in China. The data suggest that manufacturing workers 

entail the highest respiratory condition incidence rate at 2.1%, followed by workers 

in services sectors at 1.8%, natural resources and mining sector at 1.5% and 

construction sector at 1.2%. When equally assigning these counts into a total 

number of 886 industries in terms of 896 deaths, 813 cardiovascular admissions, 

1688 respiratory admissions and 89362 outpatient visits, the total economic loss 

become 446.55 billion Yuan. Such case, however, can hardly happen in the real case.  

6.5.4 Distribution of Mortality and Morbidity Counts based on 

Industrial Exposure Rates 

I also employed another approach in distributing counts of mortality, hospital 

admissions and outpatient visits from Xia et al (2016) that was based on the data 

related to occupational exposures to harmful substances or environments (Bureau of 

Labour Statistics, 2007). It sketches a relatively comprehensive picture regarding the 

exposure coefficients for all industries and the belonging sub-industries for 4 main 

sectors, including natural resources and mining, manufacturing, construction and 

service. The 30 Chinese industries in each province from our multi-regional 

input-output table were mapped into each of these sectors. For those industries 

with combinative features, including food and beverage and tobacco manufacturing; 

financial activities and rental and leasing; electric power generation, transmission 

and distribution; water, sewage and other systems; and wholesale and retail trade, I 

summed up the exposure coefficient for each industry and used the averaged 

industrial values for those with missing data. For example, regarding the 

construction sector that is normally regarded as a principle sector in the US, is 
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however classified as a sub-industry under secondary industry in China without any 

further specification. Therefore, for the construction sector, the total number of 

exposure cases was calculated as 182. The overview of occupational exposures to 

harmful substances or environments is summarized in Table 6.4. Mortality, hospital 

admissions and outpatient visits counts in each province were assigned to industries 

according to these exposure proportions. For industries without output, I focused on 

the industrial-to-total provincial proportions. The total economic loss based on such 

distribution of mortality and morbidity counts was 344.89 billion Yuan. Therefore, 

model results were not significantly affected by the ways to assign mortality and 

morbidity counts. Since the US sector categorization tends to attach greater 

importance to service sector, it might be inconsistent with the Chinese economic 

structure. The model estimations can be more robust once the specific dataset for 

different occupational exposure levels is available in China.  
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Table6.4 Occupational Exposure to Harmful Substances or Environment 

    

      

    

(Source: US Bureau of Labour Statistics) 
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Chapter 7: Application of a Disaster Footprint 

Framework for Cascading Indirect Economic 

Impacts of Heat Wave, China 

The southeast region of China is frequently affected by summer heat waves, such as 

Nanjing and Shanghai, two metropolitan cities in China, have been frequently 

affected by summer heat waves. Extreme heat can not only induce health outcomes 

in terms of excess mortality and morbidity (hospital admissions) but can also cause 

productivity losses for self-paced indoor workers and capacity losses for outdoor 

workers due to occupational safety requirements. There are two possible ways to 

understand the macroeconomic implications from these health impacts in the 

economic system, focusing on the production supply side and demand side, 

respectively. On the one hand, all of these effects can be translated into productive 

working time losses, thus creating a need to investigate the macroeconomic 

implications of heat waves on production supply chains. By perceiving labour as a 

key primary input, industrial reducing labour time can be an indicator for industrial 

reducing value added so that it can be fed into a supply-driven input-output to trace 

all cascading indirect economic loss triggered by industrial and regional 

interdependencies. Following this, the developed approach is similar with the one in 

Chapter 5 but to combine meteorological, epidemiological and economic analyses 

rather than environmental studies on emission inventory or pollutant concentrations. 

On the other hand, the degraded labour productivity and productive working time 

also indicates a loss in disposable wage and purchasing power when moving 

labourers from the production supply side to consumers on the production demand 

side. Meanwhile, increasing hospital admissions and outpatient visits will raise the 

economic burden of health-care services for both households and government. With 

budget constraints, rising health-care expenditure will impose ‘crowd-out effects’ on 

consumption and investment on other commodities and services by households and 
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government. Reducing productive working time was used as an indicator for loss in 

disposable wage and purchasing power of households and extra expenditure on 

health-care services as an indicator for the ‘crowd-out’ effects that both cause a 

shrink in final demand category of the economy. Following a demand-driven 

input-output model, the initial net impact on final demand can be traced along the 

production chains to evaluate all cascading indirect economic impacts resulting from 

these backward linkages. 

The following context contains two cases studies on Nanjing and Shanghai, using the 

distinctive approaches as discussed above. Regardless the focus on different linkages, 

they have the same root in ‘a circular economy’ and are actually two sides of the 

same coin. They attempt to describe the impacts from a macroeconomic scope 

through two different angles.  

The first study, by adopting a supply-driven input-output model, the results show a 

total economic loss of 27.49 billion Yuan8 for Nanjing in 2013 due to the heat wave, 

which is equivalent to 3.43% of the city’s gross value of production in 2013. The 

manufacturing sector sustained 63.1% of the total economic loss at 17.34 billion 

Yuan. Indeed, based on the ability of the input-output model to capture indirect 

economic loss, the results further suggest that although the productive time losses in 

the manufacturing and service sectors have lower magnitudes than those in the 

agricultural and mining sectors, they can entail substantial indirect losses because of 

industrial interdependencies. In contrast, the second study utilizing a demand-driven 

input-output model to assess the economic loss from heat waves in Shanghai during 

2007. Instead of focusing on the production supply-side, the approach evaluates the 

economic impacts resulting from industrial backward linkages by perceiving health 

impacts as an indicator for reducing labour wage and extra expenditure on 

health-care services by households and government that both lead to a shrinking 

final demand. The second study concludes that a ten days’ heat wave has caused a 

                                                      
8
 Yuan is a monetary unit for Chinese RenMinBi and it is equivalent with 0.15 USD and 0.11 GBP (2017). 
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total economic loss of 323.71 million Yuan with 845 thousands affected labourers in 

which the majority of economic loss come from the tertiary sector at 157.35 million 

Yuan, accounting for almost half of the total economic loss in Shanghai. At a sectoral 

level, Agriculture and Technological service sectors ranked among the top ten 

sectors suffering the greatest direct, indirect and total economic loss, highlighting a 

need for special key sector protection in disaster preparation and adaptation. 

Besides, huge gaps between direct and indirect economic loss can be observed from 

Finance and Wholesale and Retailing sectors, which reemphasizes the significant role 

of cascading indirect economic loss due to industrial and regional interdependencies.  

7.1 Assessment of the Economic Impacts of Heat Waves: A 

Case Study of Nanjing, China – A Supply-driven Approach 

7.1.1 Background 

Climate change has become the most significant threat to the health of the global 

population by inducing more frequent extreme weather events. The resulting 

disastrous events can affect populations either directly through floods or hurricanes 

or indirectly through heat waves and cold spells (Haines et al, 2009). The increasing 

frequency and intensity of heat waves seriously affect both developed and 

developing countries (Field, 2012). In 2003, an extreme heat wave event occurred in 

Europe and caused nearly 20,000 deaths (Fouillet et al, 2006; Conti et al, 2005; Grize 

et al, 2005). Developing countries also encounter considerable adverse effects from 

heat waves. South-eastern China has suffered extreme heat waves that have 

frequently broken historic records (Sun et al, 2014). As a result, a rising health 

burden associated with heat wave events has been observed moving from the North 

towards the South. However, because of their less-developed heat protection 

infrastructure and strategies, developing countries such as China are more likely to 

suffer severe health outcomes from heat waves. Thus, more effort should be devoted 

to detecting the health impacts of heat waves in these countries.  
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It is important to convert health outcomes into monetary terms to develop 

sophisticated cost-benefit analyses of public health programs. However, in translating 

‘invisible’ health outcomes into more ‘visible’ monetary losses, existing approaches 

such as the Contingent Valuation Approach (CVA) and the Human Capital Approach 

(HCA) are better at evaluating the microeconomic costs of the potential burden of a 

particular disease from a patient’s perspective (Wan et al, 2004). Therefore, the 

results of these approaches do not fully reflect the macroeconomic impacts of a 

particular disease on the economic system and production supply chain. When 

considered at a broad macroeconomic level, an individual (the patient under 

consideration) acts as labour during the production process of an industry. When 

he/she is away from work due to sickness or becomes less productive or less capable 

of performing work due to safety regulations, there is a potential loss of productive 

working time. From a supply-driven perspective where labour is regarded as a major 

component of industrial input, such a loss further implies output loss for an industry, 

which will in turn influence other industries because of industrial interdependencies 

(Miller and Blair, 2009, p2). Considering these industrial interdependencies becomes 

significant in macroeconomic assessments because such interconnections may result 

in substantial indirect loss and raise the total loss far beyond the initial output loss in 

a single industry.  

Heat waves differ from floods or hurricanes in the sense that they are relatively 

‘persistent’ and cause little damage to physical capital but substantial harm to human 

health, and they can therefore analogously disrupt economic activities. However, 

such ‘persistent’ events have hardly been considered in existing disaster risk analyses 

because their ‘invisible’ damages to human health can invalidate existing disaster 

modelling frameworks that heavily focus on quantifying the physical capital loss, such 

as the ARIO (section 3.3.2.4) or Flood Footprint Model (section 3.3.2.5). Therefore, 

the current study specifically focuses on the heat wave event happened in Nanjing, 

Jiangsu Province, China, in 2013. The interdisciplinary approach integrates 

meteorological, epidemiological and macroeconomic analyses to assess the total 
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indirect economic impacts on the production supply chain of Nanjing city from 

heat-induced diseases, productivity losses due to mental distractions under extreme 

heat, and capacity losses with occupational work safety regulations. The employed 

supply-driven input-output model allows productive working time losses due to the 

degradation of health, productivity and capacity to be perceived as an indicator for 

potential changes in the value added of the economy that will be traced along the 

supply chain to detect the total cascading indirect economic loss due to industrial 

interdependencies.  

7.1.2 Methodology 

(a). Methodological Framework 

 

Figure7.1 Methodological framework 

Figure 7.1 is analogous with Figure 6.1 in section 6.2 (a) but accommodates to the distinctive 

characteristics of heat waves. It illustrates the overall methodological framework employed in this 

study. It involves four main parts that are distinguished with four colours (boxes on the left and flow 

chart on the right). Detailed methods that connect each part in the flow chart refer to the 
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corresponding sections and equations (in purple).  

The heat wave period was identified in Nanjing in 2013 according to the selected 

heat wave definition. The heat-induced excess mortality and morbidity rates were 

then estimated based on quantitative relationships between heat exposure and 

health outcomes from existing epidemiological studies. Meanwhile, heat-induced 

‘presenteeism’, including both work productivity and capacity loss, were inferred 

based on existing studies, ISO safety standards and recommended actions based on 

Humidex readings. Additionally, heat-induced mortality, morbidity, productivity and 

capacity loss were translated into productive working time loss, which was further 

compared with the original working time without the heat effect to derive the 

percentage reduction in industrial value added. Moreover, the reduction in value 

added serves as an input in the supply-driven input-output model to measure the 

total indirect economic loss incurred along the production supply chain, which is 

measured as the total loss in output. Finally, macroeconomic implications can be 

obtained from our model results.  

(b). Identify Heat Wave Period 

There are various ways to define a heat wave. In this study, I followed the heat wave 

definition of Ma et al (2011) as a period of at least 7 consecutive days with 1) a daily 

maximum temperature above 35.0 ℃ and 2) daily mean temperatures above the 97th 

percentile for the period from 2005–08 for each station. As a result, 5/8–18/8/2013 

was identified as the heat wave in Nanjing in 2013 as shown Figure 7.2 and Table 7.1.  

 

Figure7.2 Identified heat wave period in Nanjing, 2013 

5/8–18/8/2013 was identified as the heat wave in Nanjing in 2013. 
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Table7.1 Observed Temperature from Stations in Nanjing, 2013 

 

(c). Heat-induced Mortality and Morbidity in Nanjing 

For heat-induced mortality in Nanjing, I selected a near-term summer reference 

period to control for potential time-varying confounding effects. The selected 

reference period has the same duration and distribution of days of the week (DOW) 

as the heat wave period and excludes the days immediately after the heat wave 

(Basu and Samet, 2002; Ma et al, 2011). The heat-induced excess deaths (all causes) 

were calculated as the difference in number of mortalities between the study period 

and the reference period using Equation 7.1. 

                (7.1) 

      : the heat-induced excess number of non-accidental mortalities; 

   : the number of mortalities during the heat wave; 

   : the number of mortalities during the reference period.  

The daily counts of death data were obtained from the China Information System 

Death Register and the Report of the Chinese Center for Disease Control and 

Prevention (China CDC) from 1 January 2007 to 31 December 2013. The causes of 

death were coded by the China CDC according to the International Classification of 

Diseases, Tenth Revision (ICD-10): non-accidental disease (A00-R99).  

For heat-induced morbidity in Nanjing, I considered excess hospital admissions for 

respiratory and cardiovascular diseases. Because of a lack of records and data for 

Nanjing, I had to refer to similar episode studies on heat-induced morbidity in other 

cities. I employed the RRs (rate ratios) from Ma et al’s (2011) study in Shanghai 

because Shanghai is located very close to Nanjing and has similar meteorological 

conditions, social context, and environment and population structure, and I therefore 

assumed that the populations would have similar vulnerabilities to heat exposure. 
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The RRs for the two diseases were used in Equation 7.2 to calculate the population 

attributable fraction (PAF) and were further used in Equation 7.3 to estimate the 

population counts affected by a particular health endpoint.  

 

(7.2) 

E = AF×B×P   (7.3) 

AF: the population attributable fraction that measures the fraction of the affected 

population that can be attributed to extreme heat; 

RR: the rate ratios for a particular health endpoint in investigation; 

‘1’: the counterfactual risk ratio using a theoretical-minimum-risk exposure 

distribution. In this case, it reflects the temperature level below which there is no 

additional health risks; 

E: the total affected counts of a particular health endpoint that are attributable to 

extreme heat; 

B: the national level admission incidence of a given health effect; 

P: the exposed population (WHO, 2017).  

The RRs for cardiovascular and respiratory hospital admissions are 1.08 (95% CI) and 

1.06 (95% CI), respectively (Ma et al, 2011).  

(d). Productivity and Capacity Loss 

For heat-induced productivity loss due to mental distraction or reduced cognitive 

skills, I assumed that excess heat only induces productivity loss for workers in the 

manufacturing, energy supply and service sectors, who mostly work indoors with 

light work intensity (Zander et al, 2015). However, as existing studies have not 

identified a quantitative relationship between heat exposure and the resulting 

productivity loss, I referred to Bux (2006) and assumed a 12% reduction in productive 

working time for workers in the three sectors. Bux (2006) suggested that the 

reduction in productive time for indoor self-paced workers can range from 3% to 12% 

under moderate or extreme heat. Considering that the daily average and maximum 

temperatures in Nanjing far exceeded those in Bux (2006), there was extreme heat 

during the heat wave in Nanjing in 2013 that resulted in a 12% loss of productive 

time. 
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For heat-induced work capacity loss due to workplace safety regulations, I assumed 

that excess heat only affects the work capacity of workers in the agricultural, mining 

and construction sectors, who mostly work outdoors with heavy work intensity and 

are directly exposed to heat. I estimated the work capacity loss in terms of working 

time loss for outdoor workers using the Humidex plan, which was developed based 

on different humidity and temperature ranges to protect workers from heat stress 

(Occupational Health and Safety, 2010). According to Nanjing Meteorology (2016), 

the summer average humidity in Nanjing ranges from 45% to 70%, which 

corresponds to 45 minutes per hour of relief time required for outdoor workers with 

high work intensity (Figure 7.3; Occupational Health and Safety, 2010). 

 

(Source: Modified from Occupational Health and Safety, 2010) 

Figure7.3 Humidex-based heat response plan (humidity range and corresponding relief time 

required are highlighted in red box) 

(e). Productive Working Time Loss 

I assumed that each worker in Nanjing works 8 hours per day and 250 days in 2013. 

Each heat-induced death therefore results in 250 working days lost. Each 

cardiovascular admission causes 11.9 working days lost, and each respiratory 

admission causes 8.4 working days lost (National Bureau of Statistics of China, 2016). 

Heat-induced outpatient visits and weekends lost for admissions are not considered 
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in the current study. Mortality and hospital admission counts were scaled down to 

mortality and hospital admission counts among labourers using the city 

labour-population ratio (Nanjing Statistical Yearbook, 2014) and further distributed 

into 42 industries according to the industrial-total output ratio (IO table). Meanwhile, 

extreme heat also results in a 12% loss of daily working time for indoor workers in 

the manufacturing and service sectors during the 14 days of the heat wave 

(5/8–18/8/2013), while it induces a daily loss of 6 hours (45 minutes times 8 hours 

per day) of working time for outdoor workers in the agricultural, mining and 

construction sectors during the heat wave period due to the occupational health 

safety plan. The reductions in industrial working time are summed and compared 

with the original industrial working time when there is no heat wave and thus no 

heat-induced health impact or productivity or capacity loss. The calculated 

percentage reduction in industrial working time is used as an indicator for the same 

percentage reduction in industrial value added that is used as an input in the 

supply-driven IO model in the next step. I did so by considering labour as a major 

component of industrial value added.  

(f). A Supply-driven Input-Output Model 

A supply-driven input-output model was derived from a traditional Leontief 

input-output model with the rotated view. The Leontief model assumes that sectors 

interact within an economic system, and each sector produces a distinct commodity 

that is used for either final consumption or the inputs for other sectors during 

production processes. Recall the traditional Leontief model: 

                                                            

       -        ,        -                                 

A: the nn matrix of technical coefficients; 

x: the output matrix for n sectors; 

f: the final demand matrix for n sectors; 

       -     : the Leontief inverse matrix.    
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Production in a particular industry could influence other sectors in the economy in 

two directions. The Leontief model suggests that production affects sectors that 

provide its primary inputs; thus, it focuses on the demand side of the economy. 

However, production could also affect sectors that purchase its outputs as inputs in 

their production processes; thus, it focuses on the supply side of the economy. A 

supply-driven input-output model is used to calculate the sectoral gross production 

changes caused by changes in the amount of primary inputs, including capital and 

labour. It has been mentioned in section 6.2 (e) regarding Equation 6.5 and 6.6. Let 

us revisit the equations for a supply-driven input-output model.  

x’ = v’ (I-B)
-1

 

x’ = v’ G, G = (I-B)
-1    

 

B: the allocation coefficient (direct-output coefficient) matrix that is calculated by 

dividing Zi by Xi. It refers to the distribution of sector i’s outputs in sector j. 

Assumption of fixed allocation coefficients in the economy also holds for a 

supply-driven input-output model;  

V: the industrial value added matrix, including capital and labour input; 

G: the Ghosh inverse matrix, which measures the economic impacts of changes in a 

sector’s value added on other sectors’ output level (Miller and Blair, 2009, p543).  

Because there is no city-level input-output table for Nanjing, I scaled down the 

provincial input-output table for Jiangsu Province for 2012 using the Nanjing-Jiangsu 

population ratio and assuming the same technology for Nanjing and Jiangsu province. 

Employment and output data were obtained from the Nanjing Statistical Yearbook 

2014.  

7.1.3 Results and Discussions 

(a). Industrial Reduced Productive Working Time 

The 14-day heat wave in Nanjing in 2013 caused a substantial loss in labour 

productive working time along the production supply chain by inducing excess 

mortality and hospital admission rates, mental distractions that reduce the cognitive 

skills and productivity of indoor workers (manufacturing, energy supply and services) 
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as well as the work capacity of outdoor workers (agriculture, mining and 

construction). The average percentage reduction in industrial productive working 

time is 2.50% across all 42 industries in Nanjing in 2013 compared with full 

productivity and capacity without any heat effect. The greatest losses in industrial 

productive working time occur in the agricultural (4.50%), mining (4.22%) and 

construction (4.20%) sectors, where most labourers work outdoors (Figure 7.4). 

These workers have higher work intensity and are more directly affected by extreme 

heat during a heat wave, and their working capacity is more likely to be constrained 

by occupational health and safety regulations. Compared with outdoor industries, 

workers in the manufacturing, energy supply and service sectors encounter 

productive time loss in terms of degraded productivity resulting from heat-induced 

mental distractions (Zander et al, 2015). Their percentage reductions in productive 

time are 0.69%, 0.70% and 0.67%, respectively (Figure 7.4).  

 

Figure7.4 Percentage reduction in industrial productive working time for Nanjing heat wave 2013 

The greatest losses in industrial productive working time occur in the agricultural (4.50%), mining 

(4.22%) and construction (4.20%) sectors, where most labourers work outdoors. 

(b). Industrial Economic Loss 

By using heat-induced productive working time loss as an indicator for reductions in 

industrial value added, which further serve as an input for the supply-driven 

input-output model, the results show that this single heat wave event, together with 

the resulting impacts on health, work productivity and capacity, caused a total 
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economic loss of 27.49 billion Yuan for Nanjing in 2013 (Figure 7.5), which is 

equivalent to 3.43% of the city’s gross value of production in 2013. The 

manufacturing sector was the most severely hit and suffered the majority of the 

total economic loss (63.1%, 17.34 billion Yuan), followed by the service sector (14.3%, 

3.93 billion Yuan) and the construction sector (10.7%, 2.95 billion Yuan; see Figure 

7.5). The industrial heat-induced economic loss depicted in the diagram shows the 

values for both the initial reduction in industrial value added due to productive time 

loss and the cascading effects that occurred along the production supply chain 

resulting from industrial interdependencies. To emphasize the important role of 

sector interdependencies in disaster risk analyses and disaster impact assessments, 

the next subsection will present a direct and indirect impact analysis in order to 

compare and contrast the relative magnitudes of the direct and indirect economic 

losses.  

 

Figure7.5 Heat-induced industrial economic loss, Nanjing 2013 

The manufacturing sector was the most severely hit and suffered the majority of the total economic loss 

(63.1%, 17.34 billion Yuan), followed by the service sector (14.3%, 3.93 billion Yuan) and the 

construction sector (10.7%, 2.95 billion Yuan). 

(c). Direct and Indirect Impact Analysis 

The direct and indirect impact analysis highlights the significance of industrial 

interdependencies. As shown in Figure 7.6, all sectors except agriculture experienced 

a greater indirect economic loss resulting from the interdependencies than the 

direct economic loss resulting from the initial decrease in value added. Of the 17.34 
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billion Yuan of total economic loss in the manufacturing sector, 88% came from 

indirect economic loss, while the remaining 12% was from direct economic loss. The 

indirect loss was over seven times greater than the direct loss in the manufacturing 

sector, potentially because of its close industrial relationships with the other sectors 

and the rest of the economy. An even wider direct-indirect loss gap can be observed 

in the energy supply sector, where the indirect economic loss accounted for 90% 

(828.54 million Yuan) of the total economic loss. The service sector also showed a 

greater indirect loss than direct loss at 2.28 billion Yuan (58%) and 1.65 billion Yuan 

(42%), respectively. The results show that although the potential productive time 

loss for work productivity of self-paced indoor workers was less than that for the 

work capacity constraints of outdoor workers, the former did not necessarily entail 

less economic loss because the initial reduction in productive time or industrial value 

added was not sufficient to reflect the relative magnitudes of the economic loss 

between sectors. Although the productive time of the indoor industries of 

manufacturing, energy supply and services decreased by only 0.69%, 0.70% and 

0.67%, respectively, these sectors can still cause considerable indirect economic loss 

as a result of their close linkages with other ‘upstream’ and ‘downstream’ industries. 

This situation is particularly true for Jiangsu Province, where the manufacturing and 

service sectors lead the provincial economy. In contrast, the agricultural and mining 

sectors encountered greater direct economic loss than indirect loss, mainly because 

the labour in these sectors features high work intensity, and therefore, the work 

capacity is more constrained by external heat conditions due to certain occupational 

health and safety regulations. 
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Figure7.6 Direct and indirect impact analysis 

The bar chart shows the direct and indirect impact analysis across five broad industries. All sectors 

except agriculture experienced a greater indirect economic loss resulting from the interdependencies 

than the direct economic loss resulting from the initial decrease in value added. 

7.1.4 Policy Implications, Conclusions and Uncertainties  

Given the increasing frequency of heat waves and their severe impacts on human 

beings, there are a growing number of studies examining heat-induced health 

impacts on mortality and morbidity as well as translating the heat-induced health 

impacts into monetary units in terms of health cost assessments. However, I found 

that 1) the existing episodic studies on heat mostly focus on developed countries, 

whereas studies on developing countries, whose social and economic structures are 

entirely different from those in the developed world, are non-existent; 2) the 

existing episodic studies on heat mostly quantify the heat-mortality relationship and 

lack quantitative analyses of heat’s effect on morbidity, productivity and capacity 

loss due to mental distractions and safety regulations; 3) the existing approaches 

used in health cost assessments generally take the patient’s perspective in 

evaluating the economic burden of a particular disease, which is insufficient for 

investigations of the macroeconomic implications on the entire economic system 

because industrial interdependencies and indirect economic losses are extremely 
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important for such macroeconomic evaluations; and 4) heat waves can be 

analogously viewed as a ‘persistent’ disaster that affects human capital more than 

physical capital. However, the challenge of quantifying the invisible effects on human 

capital prevents their integration into disaster risk studies. Considering all of the 

above, this study develops an interdisciplinary approach by combining 

meteorological, epidemiological and economic analyses to investigate the 

macroeconomic impacts of heat waves on the economy of Nanjing in 2013. By 

adopting a supply-driven input-output model, labour is perceived as a key factor 

input, and any heat effect on humans can be viewed as a degradation of productive 

time and human capital. With this interdisciplinary tool, this study shows a total 

economic loss of 27.49 billion Yuan for Nanjing in 2013 due to the heat wave, which 

is equivalent to 3.43% of the city’s gross value of production in 2013. The 

manufacturing sector suffered 63.1% of the total economic loss at 17.34 billion Yuan. 

Indeed, with the input-output model’s ability to capture indirect economic losses, 

the results further suggest that although the productive time losses in the 

manufacturing and service sectors have lower magnitudes than those in agriculture 

and mining, they can entail substantial indirect loss because of industrial 

interdependencies. This conclusion highlights the importance of incorporating 

industrial interdependencies and indirect economic assessments into disaster risk 

studies because even for a small percentage reduction in the primary inputs of a 

sector, such interdependencies can raise the total economic loss far beyond the 

direct economic loss measured by reduced industrial value added. As a result, the 

current study contributes to filling the four research gaps described above among 

existing studies on heat epidemiology, health cost assessments and disaster risk 

analyses.  

The current study makes several assumptions and thus is subject to uncertainties 

that open up new research directions for future studies. First, heat-induced 

productivity loss due to mental distractions was assumed to induce a 12% loss of 

daily productive time during the heat wave period. I made this assumption based on 
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Bux (2006) by considering the heat wave in Nanjing in 2013 to be an extreme one 

and because of the lack of identified quantitative relationships between heat 

exposure and productivity loss. Second, it was assumed that extreme heat exposure 

would only limit work productivity for workers in the manufacturing, energy supply 

and service sectors, where workers mostly work indoors, as well as the work capacity 

of workers in the agricultural, mining and construction sectors, where workers 

generally work outdoors and are more likely to be harmed by direct heat exposure. 

There is no differentiation between indoor and outdoor workers within the same 

industry, which might lessen the accuracy of the results. Third, because of the lack of 

quantitative relationships or records on heat admission and heat outpatient visits for 

Nanjing, a heat admission study conducted in Shanghai in 2011 (Ma et al, 2011) was 

referred in this study without considering any heat effect on increasing rates of 

outpatient visits for other diseases. Future studies should account for heat-induced 

outpatient visits once such data are available because they also constitute a major 

aspect of productive time loss that should be considered in any macroeconomic 

assessment of heat-induced health impacts. Finally, the current study employed a 

supply-driven input-output model by perceiving labour as a key primary input and 

reduced productive time as an indicator of reduced value added. Therefore, the 

current study provides a way to incorporate health impacts into disaster risk 

analyses using the input-output model and an alternative approach for health cost 

assessments to evaluate health impacts using other microeconomic tools, such as 

CVA and HCA. It is a good candidate model to reflect the macroeconomic impacts of 

changes in value added (degradation in labour time) on the entire economy by 

capturing industrial interdependencies and indirect economic losses. It does not 

consider any extra compensation for working during the hot days and the resulting 

positive effects on economic activities due to rising wages.  
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7.1.5 Sensitivity Analysis 

This section presents a sensitivity analysis for the case study on Nanjing heat wave in 

2013 to test the impacts of alternative data or assumptions on the modelling results 

in terms of total economic loss resulting from PM2.5-induced health effects. These 

alternative assumptions involve: 1) percentages of labour time loss due to 

heat-induced productivity loss; 2) industries are affected by both productivity and 

capacity loss regardless the indoor or outdoor working environment; 3) time 

required for break during heat wave period/working hours lost due to heat-induced 

capacity loss; and 4) required time for each case of heat-induced cardiovascular 

admission.  

7.1.5.1 Percentages of Labour Time Loss due to Productivity Loss 

In the case study, heat-induced productivity loss due to mental distractions was 

assumed to induce a 12% loss of daily productive time during the heat wave period 

according to Bux (2006), as a result of a lack in the quantitative relationships 

between heat exposure and productivity loss. Therefore, this section will test the 

total economic loss when extreme heat in Nanjing induces a 10%, 20% or 30% 

reduction in productive working time for indoor workers during the heat wave 

period. The results from alternative assumptions are displayed in Table 7.2. With 

percentage reduction in labour time due to productivity loss increases from 10% to 

30%, the total economic loss rise from 25.74 to 43.22 billion Yuan.  

Table7.2 Percentage Productive Working Time Reduced 
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7.1.5.2 Industries Affected by Both Productivity and Capacity Loss 

The second assumption in the case study is that extreme heat exposure would only 

limit work productivity for workers in the manufacturing, energy supply and service 

sectors, where workers mostly work indoors, as well as the work capacity of workers 

in the agricultural, mining and construction sectors, where workers generally work 

outdoors and are more likely to be harmed by direct heat exposure. Here, model 

results will be tested when both indoor and outdoor workers are affected by 

productivity loss and capacity constraints with the same reductions in labour time as 

in the case study. The total economic loss based on this assumption rise significantly 

to 95.65 billion Yuan as a result of considerable increase in total labour time loss. 

7.1.5.3 Labour Hours Loss due to Capacity Loss 

Additionally, the study assumes heat-induced capacity constraints would cause a 

daily loss of 6 hours (45 minutes times 8 hours per day) of working time for outdoor 

workers. The model results will be tested based on the alternative daily working 

hours lost at 2, 4 and 8 hours, respectively. The results are shown in Table 7.3. 

Compared with figures in Table 7.2, the results appear to be less sensitive to capacity 

constraints than to productivity loss, which highlights the importance in considering 

potential impacts of heat-induced mental distractions and in ensure the size of 

self-paced labourers that will suffer from heat-induced mental distractions or 

degraded cognitive skills.  

Table7.3 Labour Hours Loss due to Capacity Constraints 
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7.1.5.4 Timed Required for Each Cardiovascular Hospital Admission  

Finally, the study also makes assumption on time required for each cardiovascular 

admission. Thus, I tested the variation range in total economic loss when each 

cardiovascular admission takes 30, 60 and 90 working days, respectively. The results 

for the alternative required time are provided in Table 7.4. The results only change 

slightly, suggesting that model results are not sensitive towards changes in time 

required for each cardiovascular hospital admission. 

Table7.4 Varying Working Day Lost for Each Cardiovascular Admission 

 

 

7.2 Assessment of the Economic Impacts of Heat Waves: 

Shanghai Case – A Demand-driven Approach 

7.2.1 Background 

Global warming has become unprecedentedly severe since the 1970s that can be 

mainly attributable to anthropogenic activities (Parry et al, 2007). The world 

economic expansion during the past decades largely rely on fossil fuel consumption 

that dramatically increased greenhouse gasses (GHGs) emission and exacerbated 

global warming. The Intergovernmental Panel on Climate Change (IPCC) also 

anticipates a 1.4-5.8℃ rise in world average temperature by 2100 (Smithson, 2002). 

Meanwhile, anthropogenic related global warming seriously affect human health in 

return through more frequent heat waves and cold spells. Heat waves in Europe 

during August, 2003 caused over 15,000 excess deaths only regarding France (Roklöv 
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and Forsberg, 2008). As developed countries, developing countries such as China, 

has also suffered noticeable climate change and is more frequently impacted by heat 

waves in summer during the last decade (China National Development and Reform 

Commission, 2007). Heat waves can influence an economic system through the 

resulting health outcomes on human capital. On the one hand, it is suggested that 

heat waves are positively related with non-accidental mortality and morbidity 

(hospital admissions and outpatient visits), especially for cardiovascular and 

respiratory diseases (Ma et al, 2011). As labour is a key productive factor during 

production process, such health outcomes will degrade labour productivity by 

reducing productive working time that further indicates a loss in disposable wage 

and purchasing power if there is no compensatory behaviour. On the other hand, 

increasing hospital admissions and outpatient visits raise the economic burden of 

health-care services for both households and government. With budget constraints, 

rising health-care expenditure will impose ‘crowd-out effects’ on consumption of 

other commodities and services and investments by households and the government, 

respectively. From an economic perspective, heat waves, health outcomes and its 

socioeconomic impacts are interacting and thus, should be integrated as a whole in 

analyses. However, most existing health studies on heat waves in China focus on 

either heat-induced mortality or heat-induced morbidity instead of investigating 

both in the study. The analyses mainly stem from an epidemiological perspective 

without considering the economic impacts of the resulting health outcomes. Even 

though methods have been developed for health costs assessment (eg. Human 

Capital Approach, Contingent Valuation Approach), they tend to provide insights on 

patients’ economic burden (Wan et al, 2004; 2005) without much information on the 

cascading indirect economic loss that is resulting from sectoral/regional 

interdependencies (Xia et al, 2016). Given such interdependencies, reduction in a 

single sector due to the health-related loss in labour productivity can affect sectors 

that purchase inputs from / sell outputs to it. The initial effects of heat-induced 

health outcome on sectoral production will ultimately spill over the unaffected 

sectors, regions and the entire economic system through such interdependencies. 
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Alongside, heat waves can be also perceived as a physical hazard (Basu and Samet, 

2002) which however have been rarely analysed in disaster risk studies. It is 

analogous to flood and hurricane in the sense that it can also disrupt the economic 

functioning by exerting substantial impacts on human capital rather than physical 

capital. Focusing on the heat wave in Shanghai during 2007, this study employs a 

demand-driven input-output model to assess the macroeconomic impacts of the 

heat-induced mortality and morbidity on the local economy of Shanghai. With the 

emphasis on backward linkages, the proposed method is able to uncover how 

indirect economic loss is cascaded and accumulated from the initial reduction in final 

demand category. In the model, reducing productive working time resulting from 

heat-induced health impacts is used as an indicator for loss in disposable wage and 

purchasing power of households. It also provides an alternative approach for health 

risk assessment through the angle of labour productivity at macroeconomic level 

that emphasizes the interdependencies along production supply chains. Meanwhile, 

the interdisciplinary framework enables to integrate health costs assessment and 

economic impact evaluation simultaneously into disaster risk studies. For 

policymakers and government, such framework can not only establish more solid 

scientific ground for risk and impact assessment of heat waves, but also provides 

vivid evidence for potential benefits in improving health status of population as well 

as constructing health care and protection schemes, climate change mitigation and 

adaptation strategies.  

7.2.2 Methodology 

(a). Methodological Framework 

Figure 7.7 presents the methodology framework used to estimate socioeconomic 

impacts of heat-induced mortality and morbidity in Shanghai for heat wave year 

during 2007. The framework involves six components to incorporate health 

effects of heat waves into an input-output analysis.  
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Figure7.7 Methodology framework 

Figure 7.7 presents the methodology framework used to estimate socioeconomic impacts of 

heat-induced mortality and morbidity in Shanghai for heat wave year during 2007. The framework 

involves six components to incorporate health effects of heat waves into an input-output analysis, 

which will be explained in details in the following section (b) to (f).  

(b). Identifying Heat Waves and Reference Periods in Shanghai during 2007 

There are various ways to define heat waves and Chen et al (2015) suggested 

considerable impacts of heat wave definitions on added effects. The length of heat 

wave can be completely different under distinct heat wave definitions (eg. Anderson 

and Bell, 2011; Son et al, 2012; Tian et al, 2013; Peng et al, 2011; Huang et al, 2010, 

etc). For consistency, this study defines a heat wave as a period of at least 3 

consecutive days with daily maximum temperature over 35℃, daily average 

temperature over 31.3℃ and daily average temperatures exceed 97th percentile 

during the study period. With this definition, 24th July to 2nd August in 2007 was 

identified as a heat wave with a totality of ten days. I also chose a near-term summer 
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reference period for each identified heat wave to control potential time-varying 

confounding effects. The selected reference period has the same duration and 

distribution of days of the week (DOW) as each corresponding heat wave and 

excludes the days immediately after the heat wave (Basu and Samet, 2002; Ma et al, 

2011). The reference period is 10th to 16th July and 7th to 9th August, 2007. The data 

on daily temperature during 2007 were obtained by Institute of Atmospheric Physics, 

Chinese Academy of Sciences, Beijing from Shanghai Baoshan meteorological 

monitoring station.  

(c). Heat-induced Mortality and Morbidity in Shanghai 

For identified heat wave during 2007, I followed the same way of Ma et al (2011) in 

calculating excess hospital admissions and excess deaths in Shanghai. The 

assumption of little changes in Shanghai population and same duration and DOW 

distribution between each heat wave and each reference period enable the ratio 

comparison between two periods to reflect the relative impact of the heat wave. The 

heat-induced excess deaths (all causes) were calculated as the difference in number 

of mortality between heat wave period and its corresponding reference period, 

while the heat-induced hospital admissions (cardiovascular and respiratory 

admissions) as the difference in numbers of hospital admissions between the two 

periods. The heat-induced outpatient visits were calculated based on Sun et al 

(2014). Let us recall the Equation 7.1 that have been introduced in section 7.1.2 (c).  

                

      : the heat-induced excess number of non-accidental mortalities; 

   : the number of mortalities during the heat wave; 

   : the number of mortalities during the reference period.  

The rate ratios (RRs) for heat-induced mortality, cardiovascular admissions and 

respiratory admissions were calculated by dividing the number of 

mortality/admissions during heat wave (study period) by number of 

mortality/admissions during corresponding reference period (Equation 7.4 and 7.5). 

                  
  

  
                                     (7.4)                               
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                                    (7.5)                               

                 : the rate ratio for heat-induced mortality; 

                    the rate ratio for heat-induced admissions of a certain disease. 

We also calculated the 95% confidential intervals (CIs) for the RRs by Equation 7.6. 

                           
 

 
 

 

 
)]                      (7.6)                

s: the numbers of mortality or disease-specific admissions during heat wave (study 

period); 

r: the number of mortality or disease-specific admissions during the reference period 

(Rothman et al, 2008; Ma et al, 2011).  

Then, the counts of heat-induced death, hospital admissions and outpatient visits 

were estimated using Equation 7.2 and 7.3 in section 7.1.2 (c).  

 

 

E = AF×B×P    

AF: the population attributable fraction that measures the fraction of the affected 

population that can be attributed to extreme heat; 

RR: the rate ratios for a particular health endpoint in investigation; 

‘1’: the counterfactual risk ratio using a theoretical-minimum-risk exposure 

distribution. In this case, it reflects the temperature level below which there is no 

additional health risks; 

E: the total affected counts of a particular health endpoint that are attributable to 

extreme heat; 

B: the national level admission incidence of a given health effect; 

P: the exposed population (WHO, 2016).  

The daily counts of death data were obtained from the China Information System of 

Death Register and Report of Chinese Center for Disease Control and Prevention 

(China CDC). The causes of death were coded by China CDC according to the 

International Classification of Diseases, Tenth Revision (ICD-10): non-accidental 

disease (A00-R99), cardiovascular disease (I00-I99) and respiratory disease (J00-J99).  

(d). Constraining Effects of Health Outcomes on Household Purchasing Power 

In order to translate health impacts of heat into suitable input for a demand-driven 

input-output model, I suggest two types of impacts of health outcome on the 
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consumption of households and government. Firstly, as all workers are also 

consumers for final consumption, the resulting health outcomes will cause 

substantial loss in labour productive time, which further constrain their disposable 

wage and purchasing power. Secondly, excess numbers of hospital admissions and 

outpatient visits indicate an increasing cost burden for medical treatment that is 

partially borne by patients (20%) and partially by Chinese government (80%). With 

budget constraints, extra health-care costs will crowd out consumption of 

households and government on other commodities and public services. I assumed 

that the disproportional reductions in consumptions of other products will depend 

on the original consumption pattern across those sectors excluding health-care 

services sector.  

Considering the constraining effects of health outcome on disposable wage, I started 

by converting health outcome into labour productive time loss. I first scaled down 

the numbers of mortality, hospital admissions and outpatient visits to the numbers 

among labour using employment-population ratio in Shanghai during each study 

year (Shanghai Statistical Yearbook). Heat-induced mortality, hospital admissions 

and outpatient visits among labour were further distribute into 42 economic sectors 

according to sector-city output ratio. I assumed that each employee works 8 hours 

per day and 250 days, each case of mortality will result in 250 working days’ loss, 

each case of cardiovascular admissions will cause 11.9 working days lost and each 

case of respiratory admissions will cause 8.4 working days lost and each outpatient 

visit require 4 hours (National Bureau of Statistics of China, 2016). These 

assumptions remain unchanged throughout 2007. Weekends during the working day 

lost are not considered in the current study due to lack of data. We multiplied work 

day lost for each case of mortality, hospital admissions and outpatient visits by 

numbers of mortality, hospital admissions and outpatient visits in each sector to 

obtain the sectoral productive time loss. I further multiplied sectoral working day 

loss by sectoral daily salary in that year to estimate the reduction in workers’ 

earnings in each sector, where the results were summed up and eventually 
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multiplied by household expenditure-earnings ratio in Shanghai during the year to 

reflect the reduction in households’ purchasing power. Sectoral daily wage was 

calculated by dividing sectoral annual average compensation (National Bureau of 

Statistics of China, 2016) by 250 days.  

(e). Crowd-out Effects of Extra Medical Costs on Household and Government 

Consumption 

Considering the crowd-out effects of medical cost burden on the consumption of 

household and government, I firstly estimated total extra medical expenditure by 

multiplying the averaged costs of each admission case and each outpatient visit by 

the number of hospital admissions and outpatient visits among labour. The costs of 

each cardiovascular, respiratory admission and outpatient visits were obtained from 

China’s Health and Family Planning Statistical Year and 2007 China Health Statistical 

Yearbook (National Bureau of Statistics of China, 2016). For those years with missing 

data, I estimated the costs by yearly average inflation rate during that year. The 

missing data on 2007 was estimated by adjusting the costs in 2006 with yearly 

average inflation rate in 2007, 4.82% (inflation.eu, 2016). The costs of each 

cardiovascular, respiratory admission and outpatient visit during 2007 can be thus 

calculated as 6413.3, 3042.8 and 211.0 Yuan, respectively. I assumed the total extra 

medical expenditure is borne by both government (80%) and patients/households 

(20%), which also holds constant throughout 2007. Medical costs for any 

heat-induced mortality were not considered in the current study.  

From above, reducing household purchasing power and crowd-out effects of rising 

medical burden will both shrink households and government’s consumption on 

other commodities or public services. I suggest disproportional reductions in final 

consumption of other sectors according to the original consumption patterns of 

households and government. On the one hand, the aggregate loss in household 

purchasing power was distributed into 42 industries (including health-care services 

sector) based on the adverse ranking in industrial-total ratios of household final 

consumption with an underlying assumption that commodities occupying large 
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proportions of final consumption are considered as necessities and is less likely to 

reduce in the face of decreasing disposable wage. On the other hand, extra medical 

costs borne by household and government were added into the household final 

consumption and government expenditure on health-care services sector, 

respectively whereas the equivalent amounts were deducted from expenditures on 

other sectors’ commodities and public services using the same approach as shrinking 

disposable wage. Lastly, households’ constrained consumption in all 42 industries 

due to wage loss and the crowd-out effect of increasing medical costs on household 

and government final consumption in other sectors were summed up to obtain the 

net impacts on the final demand of 42 sectors during that year, which would serve as 

an input in the demand-driven input-output model at next step. We assumed each 

economic sector only produces one distinct product. Data on final consumption were 

obtained from Shanghai Input-output Table (42 sectors) in 2007.  

(f). A Demand-driven Input-Output Model 

The calculated reductions in final demand serve as an input for a demand-driven 

input-output model to trace the cascading effects resulting from initial reductions in 

final demand. The Leontief model assumes that outputs of interacting industries in 

an economic system are used for both final consumption and intermediate 

transactions. Recalling the equations for Leontief model, 

                                                            

       -        ,        -                                 

A: the nn matrix of technical coefficients; 

x: the output matrix for n sectors; 

f: the final demand matrix for n sectors; 

       -     : the Leontief inverse matrix.    
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7.2.3 Results and Discussions 

(a). Heat-induced Mortality and Morbidity Counts in Shanghai, 2007 

Table 7.5 demonstrates the heat-induced excess numbers of death, hospital 

admissions for two diseases and all-cause outpatient visits that were calculated 

based on the counts in each category during heat wave period and the reference 

period. The number of cardiovascular admissions is 4 times of the number of 

respiratory admissions while the relative risk for heat-induced outpatient visits 

appears to be the highest among the four categories.  

Table7.5 Excess Counts in Mortality and Morbidity due to Heat Wave in Shanghai, 2007 

 Heat wave 

period 

Reference 

period 

Excess 

counts 

Relative risks（RR）

（95%CI） 

Mortality 1334 1243 91 1.07（0.99，1.16） 

Cardiovascular admissions 4051 3752 299 1.08（1.05，1.11） 

Respiratory admissions 1361 1289 72 1.06（1.00，1.11） 

Outpatient visits    1243631 1.10（1.07，1.13） 

(b). Economic Loss through Backward Linkages 

By evaluating the macroeconomic impacts of heat wave-induced health impacts in 

Shanghai during 2007, results suggest that the 10 days’ heat wave has affected a 

totality of 845 thousands labourers in Shanghai in terms of excessive mortality, 

hospital admissions and outpatient visits, which occupy 16.9% of the total 

employment in Shanghai. When perceiving these health impacts as degradation in 

labour availability and productive working time, these health impacts can be 

translated into a 0.035% reduction in the productive labour year in Shanghai during 

2007. The reducing wage as a result of working time loss and the crowd-out effect as 

a result of extra health-care expenditure by government and households have 

caused the final demand to shrink measured as ‘direct economic loss’ here. Such 

direct economic loss amounted at 227.17 million Yuan (except the extra expenditure 

on health-care services). The initial decrease in final demand was further triggered 

by industrial interdependencies that raised the total economic loss to 323.71 million 

except Chemicals, Transportation, Construction, Neighbourhood service and 
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Health-care service sector, where the reductions in final demand led to an increase 

in their output level due to their close industrial interconnectedness with 

Health-care or medical services. I therefore only focused on the sectors that suffer 

economic loss. The backward linkages between sectors have resulted in a totality of 

indirect economic loss at 96.54 million Yuan, accounting for almost 30% of the total 

economic loss. Among three major industries, tertiary industry entailed the most 

substantial economic loss at 157.35 billion Yuan, which encompasses 69% as direct 

economic loss at 109.31 billion Yuan while the remaining 31% as indirect economic 

loss at 48.05 million Yuan. This was followed by secondary industry that accounted 

for 30% of the total economic loss in Shanghai, 2007. Secondary industry 

encountered a greater proportion of indirect economic loss than tertiary industry for 

46% that valued at 44.51 million Yuan (Figure 7.8). Figure 7.8 illustrates the 

economic loss in 3 major industries in Shanghai, 2007 with details on the proportions 

of direct and indirect economic losses.  

 

Figure7.8 Economic loss by 3 industries and their components 

Figure 7.8 illustrates the economic loss in 3 major industries in Shanghai, 2007 with details on the 

proportions of direct and indirect economic losses in three grey and black pie charts. 



 171 

Focusing on specific sectors, Figure 7.9 presents the top ten sectors that were most 

severely hit in terms of direct, indirect and total economic loss due to heat wave in 

Shanghai, 2007, measured in million Yuan. Agriculture sector suffered the greatest 

direct economic loss at 59.23 million Yuan in terms of value reduced in sectoral final 

demand, followed by Technological service sector and Public infrastructure sector at 

43.65 and 21.66 million Yuan, respectively. They are also the three sectors that 

encountered the greatest total economic loss. Turning to indirect economic loss, 

Technological service sector become the one entailing the greatest loss at 13.46 

million Yuan, which is followed by Transportation and Food manufacturing sectors 

that suffered a loss of 10.08 and 10.07 million Yuan, respectively. The top ten sectors 

suffering the greatest direct economic loss accounted for over 83% of the total direct 

economic loss while those entailing the most substantial total economic loss also 

constituted a considerable share of the total economic loss at 73%. It is noteworthy 

that Agriculture and Technological service sectors have been both listed on all of the 

three economic loss rankings, indicating the sensitivity of these two sectors towards 

heat-induced final demand shrink from the perspectives of backward linkages. In 

disaster preparation and adaption for future disaster events in Shanghai, the local 

government should take particular cautiousness in protecting these ‘key’ sectors in 

order to prevent further economic loss.  
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Figure7.9 Top 10 sectors suffering the greatest direct, indirect and total economic loss 

Figure 7.9 presents the top ten sectors that were most severely hit in terms of direct, indirect and total 

economic loss due to heat wave in Shanghai, 2007. Agriculture and Technological service sectors have 

been both listed on all of the three economic loss rankings. 

As the tertiary sector accounted for the majority of total economic loss, the 

following analysis compares direct and indirect economic loss with a specific 

emphasis on the tertiary sector. Figure 7.10 shows the direct and indirect economic 

loss for all service sectors. The x axes stands for the indirect economic loss while the 
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y axes is the direct economic loss and both are measured in million Yuan. The size of 

each circle differentiates the total economic loss of these sectors. It can be observed 

that the direct and indirect combinations vary across sectors with the largest gap 

between direct and indirect economic loss for Public infrastructure and Education 

sectors, where direct economic loss both occupy 99% of the total economic loss. On 

the contrary, the indirect economic loss entailed by Finance and Wholesale and 

Retailing sectors significantly outweigh the direct economic loss, accounting for 92% 

and 83% of their total economic loss, respectively. Such direct and indirect impact 

analysis appears to be meaningful to identify sectors suffering more direct economic 

loss and those encountering greater indirect economic loss. In disaster preparation 

schemes, particular key sector protection strategies should be designed and 

implemented in order to prevent degradation in final demand of those sectors 

suffering direct loss while prevent cascading indirect loss resulting from the 

tightened inter-industrial backward linkages of those largely entailing indirect loss. 

 

Figure7.10 Direct and indirect economic loss for service sectors 

Figure 7.10 shows the direct and indirect economic loss for all service sectors. The x axes stands for 

the indirect economic loss while the y axes is the direct economic loss and both are measured in 

million Yuan. The size of each circle differentiates the total economic loss of these sectors. 
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7.2.4 Policy Implications, Conclusions and Uncertainties 

Under the background of climate change, the globe has been affected by extreme 

heat and summer heat more frequently. Examples are the heat waves in Europe 

during 2013, which resulted in over 20 thousands deaths. The South China is also 

suffered from heat waves. However, the heat protection infrastructure and 

mechanisms in the developing countries are generally less developed compared with 

those in the developed world that exacerbate the vulnerability of populations in 

developing countries during heat waves. The relationships between extreme heat 

and the relative risks of mortality and morbidity due to several diseases have been 

well documented in existing epidemic studies with a particular focus on respiratory 

and cardiovascular diseases. Altogether, the increasing frequency and intensity of 

heat waves have inspired studies on revealing the heat-health-economy nexus in a 

number of developing countries. Unfortunately, established methods in health cost 

assessment studies mostly ignore the possible cascading economic impacts resulting 

from industrial and regional interdependencies at a macroeconomic level. To reflect 

the macroeconomic impacts of a heat wave event on the economic system more 

comprehensively, the above study has linked meteorological, epidemiological and 

economic studies to build up an interdisciplinary framework based on a 

demand-driven input-output model that is able to incorporate heat waves and the 

resulting health impacts into disaster risk analysis and simultaneously, capture the 

industrial and regional interdependencies. The developed approach was applied on a 

real heat wave case happened in Shanghai during 2007. Compared with a 

supply-driven input-output model, the demand-driven model considered 

heat-induced health impacts as an indicator for both reducing labour wage and extra 

health-care expenditure by households and government that both constrained the 

final demand. Using the demand-driven input-output model allows to trace the 

shrinking final demand backwards along the industrial backward linkages so that the 

induced cascading indirect economic loss can be effectively evaluated. The study 

results unfold that the ten days’ heat wave has resulted in a total economic loss at 
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323.71 million Yuan in Shanghai during 2007 with 845 thousands affected labourers 

in terms of health impacts. Almost half of the economic loss came from the tertiary 

sectors at 157.35 million Yuan. On the one hand, focusing on sectors, Agriculture 

sector suffered the greatest direct economic loss at 59.23 million Yuan in terms of 

value reduced in sectoral final demand, followed by Technological service sector and 

Public infrastructure sector at 43.65 and 21.66 million Yuan, respectively. They are 

also the three sectors that encountered the greatest total economic loss. Meanwhile, 

Technological service sector become the one entailing the greatest loss at 13.46 

million Yuan, followed by Transportation and Food manufacturing sectors that 

suffered a loss of 10.08 and 10.07 million Yuan, respectively. Agriculture and 

Technological service sectors both ranked among the top ten sectors entailing the 

greatest direct, indirect and total economic loss that underlines their needs to be 

protected in disaster protection and preparation schemes. On the other hand, 

focusing on the sectors from the tertiary industry, sectors like Education and Public 

infrastructure and Education sectors, direct economic loss both occupy 99% of the 

total economic loss. On the contrary, the indirect economic loss entailed by Finance 

and Wholesale and Retailing sectors significantly outweigh the direct economic loss, 

accounting for 92% and 83% of their total economic loss, respectively. The 

direct-indirect combinations in sectoral total economic loss show heterogeneity 

across sectors, which provide local government in Shanghai insightful implications 

regarding key area protection for these critical sectors. 

The study is subject to uncertainties to certain degrees, which mostly are 

surrounding data unavailability issue. Firstly, in calculating the productive working 

time loss from various health endpoints, the study made assumption on required 

time for each outpatient visit due to a lack of systematic statistics on outpatient 

visits. The assumption was made in line with several characteristics embodied in 

current Chinese medical system in which no pre-booking or follow-up services are 

available. Secondly, heat-induced mortality and morbidity counts into industries 

were assigned to industries according to industry-total employment due to a lack of 
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occupational heat-induced disease incidence rates in China. Provided with more 

comprehensive dataset, the model results will be more accurate by better reflecting 

the real situation where some workers working outdoors may be more directly 

exposed to heat and thus, tend to have higher disease incidence rates than those 

who work indoors with better cooling systems. Thirdly, no compensatory behaviour 

was considered in estimating the labour time loss from various health endpoints. 

This is also consistent with the fact that no extra pay will be made for overtime work 

in China. Moreover, the costs required for each case of admissions and outpatient 

visits were an average because the study did not tend to differentiate case by case 

and the estimation was based on an averaged situation. Furthermore, in predicting 

the consumption behavioural changes for households and government, due to the 

lack of relevant data, assumptions were made based on their final demand data 

shown in the 2007 Shanghai input-output table. Lastly, no macroeconomic variables, 

such as the price elasticity of demand, inflation or market deficiency was considered 

in the current study as a basic Leontief input-output model describes an economy in 

equilibrium.  

7.2.5 Sensitivity Analysis 

This section shows a sensitivity analysis for the case study on Shanghai heat wave 

during 2007 to test the impacts of alternative data or assumptions on the model 

results by considering different time required for each cardiovascular hospital 

admission, different time required for each outpatient visit and same proportional 

shrinks among commodities in the face of reducing wage and extra health 

expenditure regardless the initial consumption/investment patterns of households 

and the government.  

7.2.5.1 Time Required for Each Cardiovascular Hospital Admission 

The variation range of model results was tested when each cardiovascular admission 

takes 30, 60 and 90 working days. The results for these alternatives required time 
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can be observed from Table 7.6. The variation range of the results is small with rising 

time required for each cardiovascular hospital admission. 

Table7.6 Varying Working Day Lost for Each Cardiovascular Admission 

 

7.2.5.2 Time Required for Each Outpatient Visit 

4 hours assumption also holds for the case study as a result of the lack of data on the 

required time for each outpatient visit in China. Therefore, the impacts on the 

modelling results will be tested using different time required for each outpatient visit, 

2, 6 and 8 hours. The results are shown in Table 7.7. With the increasing time 

required for each outpatient visit, the total output loss rise from 273.86 million Yuan 

at 2 hours’ loss per outpatient visit, to 424.69 million Yuan at 8 hour’ loss per 

outpatient visit, suggesting that the total economic loss is relatively sensitive to 

timed required for each outpatient visit, which might be resulting from relatively 

large counts of heat-induced outpatients.  

Table7.7 Varying Time Required for Each Outpatient Visit 

 

7.2.5.3 Same Proportional Shrinks among Commodities 

An important assumption in the study is the shrinks among commodities are 

disproportional and largely depend on the original consumption or investment 
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patterns of households and the local government. Therefore, I tested the total 

economic loss resulting from an alternative way of shrink, which implies same 

proportional reductions across all industrial commodities despite of the initial 

consumption or investment pattern. With the same proportional shrinks, the total 

economic loss along the demand side of the economy in Shanghai becomes 340.24 

million Yuan, which tends to be similar with the results shown in the case study. 
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Chapter 8: Conclusions and Achievements 

By focusing on one of the global threats, natural disasters, this thesis comprehends 

existing modeling tools and explores new opportunities for quantitative research on 

disaster risk analysis by proposing an interdisciplinary methodological framework – 

Disaster Footprint Framework – that bridges environmental/meteorological, 

epidemiological and macroeconomic studies to access the cascading indirect 

economic loss resulting from industrial and regional interdependencies along 

economic production chains. The developed approach respects distinctive 

characteristics of natural disasters by differentiating ‘persistent’ natural disasters 

from ‘rapid-onset’ ones with regards to the different impacts on physical and human 

capital. On the one hand, the approach provides alternative ways to evaluate the 

total economic loss for a special case of ‘rapid-onset’ disaster where existing disaster 

modelling tools lose efficacy due to the damages to ‘soft’ services without 

substitution possibilities. On the other hand, the approach explores new 

opportunities to reveal the disaster-health-macroeconomic implications nexus for 

‘persistent’ natural disasters. The macroeconomic part of the interdisciplinary 

framework is built on input-output techniques, which not only enables to capture 

industrial and regional interdependencies but also allows one to incorporate labour 

constraints as a result of disaster-induced health impacts. This chapter firstly 

recapitulates the cases studies in Chapter 5, 6 and 7, followed by an overview of 

overall methodological contribution of this PhD thesis to both health costs studies 

and disaster risk analysis. The chapter ends with presenting the limitations 

surrounding the proposed methodological framework and case studies, which on the 

other hand, illume research directions for future studies. 

Finally, the thesis arrives at several vital remarks from the case studies. Firstly, 

disaster risk studies should attach equal significance to loss in capital productivity 

and labour productivity. Then, air pollution and heat waves should be perceived 
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analogously as a natural disaster that affects human capital more than physical 

capital and thus, they should be investigated more deeply in disaster risk studies. In 

addition, disaster risk modelling should be conducted with additional attention on 

disaster characteristics. Moreover, existing approaches used in health cost 

assessments generally take the patient’s perspective in evaluating the economic 

burden of a particular disease, which is insufficient for investigations of the 

macroeconomic implications on the entire economic system because industrial 

interdependencies and indirect economic losses are extremely important for such 

macroeconomic evaluations. In this respect, the input-output techniques and its 

modified forms are able to provide more modelling options for disaster risk 

assessment and management. Further, the developed interdisciplinary approach can 

successfully bridge environmental or meteorological studies, epidemiological studies 

and macroeconomic analysis. It also allows to consider the distinctive feathers of 

natural disasters, to understand and incorporate the health impacts through an 

angel of reducing labour availability and productive time, and to capture the 

cascading indirect economic loss triggered by industrial and regional 

interdependencies. Last but not least, the estimation based on such interdisciplinary 

model can be more accurate and effective once more comprehensive and 

sophisticated datasets become available, such as those on the occupational disease 

incidence rates and required time for each outpatient visit.  

8.1 Concluding Remarks on Case Studies 

In the background of climate change, the increasing frequency and intensity of 

natural disasters have put the globe and the world population in danger by resulting 

in substantial damages to physical infrastructure and numerous deaths and injuries. 

These natural disasters can take different forms, either ‘rapid-onset’ with terrifying 

destructive impacts to the society and without any warnings in advance, or 

‘persistent’ with considerable ‘invisible’ health effects that persist over time. As 

capital and labour are two principle factor inputs during economic production, the 
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damages to either of them can impede economic activities and functioning. It is until 

recently that the tricks in potential post-disaster imbalances between remaining 

capital and labour production capacity have drawn more attention by disaster risk 

studies with particular focuses on cascading indirect economic impacts from 

interconnecting economic sectors and post-disaster economic reconstruction 

process. However, existing disaster risk modelling tends to attach greater weights to 

the evaluation of capital production capacity based on accurate quantification of 

physical capital damages resulting from ‘rapid-onset’ disasters, such as floods, 

earthquakes and hurricanes. To quantify the intangible health impacts from 

persistent environmental or meteorological phenomenon where minimal physical 

capital loss can be observed exert great challenges for existing disaster risk 

assessment and management. Indeed, even for ‘rapid-onset’ disasters, the tangible 

capital damages do not necessarily occur as a result of wide variety in disaster time 

length and resulting impacts on infrastructures and humans. On the other hand, 

early health studies on ‘persistent’ environmental phenomenon, such as air pollution 

and heat waves, generally conclude with specific health endpoints in epidemiological 

analysis, or microeconomic implications in studies on health costs assessment. Both 

of them stem from the perspectives of patients and thus, cannot fully reflect the 

potential health impacts on an entire economic system at a macroeconomic level. 

Due to difference in scope, a distinctive instructional method should be provided to 

serve as a scientific tool for assessing the total economic impacts of health endpoints 

on a national economy.  

Focusing on a special case of urban floods in York during the Christmas period in 

2015, Chapter 5, by applying an HEM that was widely utilized in linkage analysis, 

indicates that a three-day complete shutdown of IT services can induce a £3.24m 

loss in York, which is equivalent with 1% of the monthly GVA of York city, where 

almost half of the total economic loss at £1.41m are entailed by other sectors 

excluding the IT service sector itself as a result of sectoral interdependencies. The 

case study proves with solid evidence that the HEM is an effective method that can 
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be equally applied on disaster risk analysis, especially for such situations that no 

specific physical capital damages can be detected but certain ‘soft’ services are 

completely ceased due to the disaster event. Turning to a ‘persistent’ natural 

disaster, Chapter 6 examines the total economic loss resulting from China’s PM2.5 

pollution in 2012 that amounts at 398.23 billion Yuan with substantial health impacts 

on 82.19 million Chinese labourers, where nearly two thirds of the total loss can be 

attributed to indirect economic loss resulting from industrial and regional 

interdependencies. The results highlight the significance of capturing indirect 

cascading economic impacts in disaster risk assessment. Alongside, the case study 

approves that a supply-driven input-output model provides a chance to integrate 

disaster-induced health effects into macroeconomic analysis by perceiving labour as 

a key primary input during industrial production, degrading health status as an 

indicator for productive time loss, and productive time loss as a sign for reducing 

industrial value added. With the same focus on ‘persistent’ disasters, Chapter 7 

conducts two case studies to estimate the economic loss from a different type of 

‘persistent’ disaster – heat waves – in Nanjing 2013 and Shanghai 2007 by using a 

supply-driven input-output model and a demand-driven input-output model, 

respectively. For the Nanjing heat wave case, the study examines the economic loss 

from both heat-induced clinical health impacts and sub-clinical impacts in terms of 

productivity loss due to mental distractions and capacity limits constrained by 

occupational safety standards. Both effects can result in substantial labour time loss, 

which again, are viewed as indicators for reductions in value added and fed back into 

a supply-driven model. Results show that the 14 days’ heat wave caused a totality of 

27.49 billion Yuan loss for Nanjing in 2013, which is equivalent to 3.43% of the city’s 

gross value of production in 2013. Health impacts, productivity loss and capacity 

constraints can considerably reduce productive working time by an overall 2.50%. In 

the case study on Shanghai heat wave, health impacts and extra required 

expenditure on medical services are perceived as a sign for reducing labour wage 

and shrinking consumption on other commodities because of the crowd-out effect 

from extra medical expenses. Both of them can further induce a shrink in final 
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demand, which are fed into a demand-driven model to evaluate the propagating 

economic loss along industrial backward linkages from the initial shrinks in final 

demand. Results suggest that the 10 days’ heat wave has affected almost 17% of 

total labourers in Shanghai by inducing excessive mortality, hospital admissions and 

outpatient visits. These health impacts can be translated into a 0.035% reduction in 

the productive labour year in Shanghai during 2007. Direct economic loss in terms of 

initial reductions in final demand is evaluated at 227.17 million Yuan, which are 

further triggered by industrial interdependencies that raised the total economic loss 

to 323.71 million. By following a demand-driven input-output model, the case study 

illumes an alternative way to understand and measure the macroeconomic loss from 

disaster-induced health impacts through a lens of shrinking final demand.  

8.2 Research Contributions 

This PhD thesis constructs a Disaster Footprint Methodological Framework based on 

input-output techniques to investigate and incorporate the resulting damages to 

physical capital and health impacts, output loss caused by the reductions in capital 

and labour productivity, as well as their cascading macroeconomic impacts along 

economic production chains resulting from sectoral and regional interdependencies 

into disaster risk assessment. By linking up environmental or meteorological study, 

epidemiological study and macroeconomic analysis, the proposed approach not only 

allows one to feed the disaster-induced damages to physical capital and human 

health into a macroeconomic model so that the cascading economic loss along the 

production chains can be assessed, but also enables to accommodate according to 

the distinctive characteristics of either ‘rapid-onset’ (eg. Floods) or ‘persistent’ 

natural disasters (eg. Air pollution, heat waves) in the real cases that occurred 

worldwide at different points in time. Main methodological achievements are 

summerized as follows: 

1. The Concept of Disaster Footprint 
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The developed methodological framework introduces a new concept of ‘disaster 

footprint’ to denote total economic loss resulting from a disaster event. This includes 

the initial reduction in supply of industrial primary inputs or industrial final demand 

as a result of disaster-induced loss in capital and labour productivity; and the 

cascading indirect economic loss resulting from sectoral and regional 

interdependencies. The economic loss is measured by total reductions in aggregated 

production resulting from a natural disaster with a specific emphasis on the 

cascading indirect economic loss along economic production chains. The approach 

refers direct economic loss of a natural disaster as the physical damages to basic 

infrastructures, deaths and injuries, as well as the primary changes in industrial value 

added and final demand as a result of both capital and labour production capacity 

loss, and differentiates it from the indirect economic loss propagating along the 

economic production chains. The total economic loss therefore should incorporate 

not only the industrial initial reductions in both supply of primary inputs (value 

added) and final demand due to the loss in both capital and labour production 

capacity, but also the cascading indirect economic loss as a result of backward and 

forward linkages between interconnecting economic sectors within the economic 

system. In this respect, the proposed approach comprehends existing understanding 

of total economic impacts from a natural disaster by providing a new measurement 

as an instruction for disaster impact analysis.  

2. Industrial and Regional Interdependencies in Health Costs Studies 

Existing approaches in health costs assessment can provide useful microeconomic 

information about the potential monetary benefits of any reductions in health effects 

or the economic burden for healthcare sectors due to their standpoints of patients. 

Apart from a relatively aggressive indicator of labour salary used in HCA and limited 

applicability of CVA, especially in developing countries, a common problem for both 

approaches appears to the ignorance of important industrial and regional 

interdependencies. A national economy consists of a number of interconnecting 

economic agents. Production in a particular sector can affect other sectors in the 
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economy through production supply and demand chains. This implies that changing 

production in a single sector can influence both sectors that provide its primary 

inputs and purchase its outputs as inputs during their production processes. In the 

face of globalization, such relationships between industries, sectors and regions have 

become unprecedentedly tightened, highlighting the significance of considering 

industrial and regional interdependencies in the assessment of disaster-induced 

macroeconomic impacts on national GDP. In this respect, the proposed 

interdisciplinary approach, by rooting in an input-output model, is able to evaluate 

the cascading indirect economic impacts on national economy as a result of these 

interdependencies. Specifically, the approach allows one to loop any health impacts 

and endpoints predicted by epidemiological studies into a macroeconomic 

input-output based framework by perceiving labour as a principle for economic 

activities and the diminishing labour time as a consequence of health impacts. 

3. Health Impacts and ‘Persistent’ Natural Disasters in Disaster Risk Studies 

Despite that numbers of hybrid models have been developed in existing disaster risk 

studies, most of them largely depend on accurate quantification of industrial 

physical capital damages and the estimation of industrial loss in capital production 

capacity, which are normally the case for ‘rapid-onset’ natural disasters that arrive 

rapidly with few days or without warnings and whose destroying impacts is 

observable immediately after the disaster’s occurrence (Development Workshop, 

2017). However, exceptions always exist when a ‘rapid-onset’ disaster takes 

different forms with distinctive characteristics from in which there is little or even no 

damage to physical capital but serious interruptions of the local-provided ‘soft’ 

services. In such cases, the root of traditional disaster modelling frameworks that 

mainly rely on assessment of industrial physical capital damage will be shaken. 

Indeed, some natural disasters persist longer and take longer to realize their effects 

on the society and economy, regardless their substantial harms on human health, 

they are yet to be thoroughly investigated in disaster risk analysis because 

quantifying these ‘invisible’ effects is a challenge. Incorporating these health impacts 
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on human is equally important because labour constraints and changing 

consumption behavior can equally deteriorate economic functioning. As a disaster 

may affect physical and human capital differently, there may exist disproportional 

shrinks between physical and labour production capacity, which both contribute to a 

shrinking total post-disaster production. Therefore, incorporating these impacts 

appears to be equally important for disaster risk assessment and management, as 

well as post-disaster recovery strategies to restore the balances. In this respect, the 

proposed interdisciplinary approach bridges environmental/meteorological, 

epidemiological and macroeconomic studies and provides several feasible ways to 

incorporate disaster-induced health impacts into economic impact assessment 

according to various disaster characteristics. Following this, the approach carried out 

in this thesis enriches current disaster risk analysis by enabling to incorporate 

epidemic studies into disaster impact analysis and economic interdependency 

analysis. Focusing on the health impacts, it considers not only the physical health 

endpoints in terms of disease-induced mortality and morbidity, but also the 

sub-clinical effects in terms of mental distractions and capacity constraints from a 

natural disaster that can equally degrade labour availability. Besides, the framework 

will be further applied onto selective empirical cases that are yet to be investigated 

in current disaster literature. The four chosen case studies include both ‘rapid-onset’ 

and ‘persistent’ natural disasters that occurred in the UK and China at different 

points in time to measure and contrast the cascading indirect economic impacts 

from different types of natural disasters. By doing so, the validity of the framework 

can be tested in real cases and future disaster risk studies can leapfrog to a more 

comprehensive risk assessment and management system with macroeconomic views. 

Meanwhile, by focusing the case studies in the UK and China, the research is 

expected to contribute to the disaster preparation and management in both 

developed and developing countries, especially for the developing world, where the 

disaster protection mechanisms appear to be less developed and population are thus 

more vulnerable. 
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8.3 Limitations and Direction for Future Research 

Being an interdisciplinary approach that covers three divergent fields, assumptions 

and uncertainties turn to be inevitable for such brand new galaxy. Results in each 

case study from the results chapters (Chapter 5, 6 and 7) are subject to uncertainties 

and limitations to certain degree, which have been already discussed and tested 

through sensitivity analysis at the end of each case study in Chapter 5, 6 and 7. These 

limitations and uncertainties are mostly resulting from the data unavailability in 

which assumptions have to be made. The following firstly revisited broader sets of 

limitations and uncertainties relative to assumptions and results from sensitivity 

analysis. Secondly, it provides readers with ideas and speculations to further extend 

based on these uncertainties. 

The first case on York floods during 2015 Christmas time utilized an original HEM 

approach with both backward and forward linkages of IT services being eliminated 

for three days. This is largely inspired by the unique characteristics of the York case 

where IT service sector being for a limited time and to a very large degree isolated 

from the rest of the economy and no substitutions are available because the services 

is provided locally. To apply the approach on other types of natural disaster thus 

requires researchers to be cautious in determining the exact percentages to be 

extracted from backward, forward or both linkages and even to differentiate internal 

and external linkages of a sector as suggested by Cella (1984). Besides, the study 

does not consider possible change in final demand by assuming that three days are 

too short to respond by households. In future research, such changes can happen 

when the disaster under investigation lasts longer enough for adaptive consumption 

behaviour. Moreover, due to the lack of exact daily data on household expenditure 

in York and the city-level input-output table, the exact value of sales during the 

three-day IT outages cannot be calculated while the city-level table is obtained using 

the Augmented Flegg Location Quotients (AFLQ) technique. Therefore, new research 
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opportunities would emerge once more accurate data on daily household 

consumption or city-level input-output table become available. 

The second case on China’s air pollution during 2012 adopted a supply-driven 

input-output model by regarding labour time loss as an indicator for reduction in 

value added and thereby, looping the value added changes into the model. A 

supply-driven input-output model is frequently criticized as it neglects the effect of 

changing output on further changes in industrial value added and possible nonlinear 

relationships between labour inputs and economic outputs in sectors dominated by 

monetary capital (Miller and Blair, 2009). However, it is still found to be a suitable 

candidate model in the case to reflect a more straightforward linkage between 

changing value added and the entire economy in a way that captures industrial and 

regional interrelationships and indirect economic loss along production supply chain. 

It can be corrected by considering the model as a price model (Miller and Blair, 2009, 

p551). Besides, some major assumptions lie in the allocations of mortality and 

morbidity counts among industries and time required for each outpatient visit due to 

a lack of systematic data on occupational disease-specific incidence rates and 

average time for outpatient visit. As a result, the study referred to the US 

occupational disease incidence rates and made assumption on time required for 

each outpatient visit based on current status of Chinese medical system. A sensitivity 

analysis was also conducted to test the model results for alternative assumptions, 

which suggests that model results tend to be more sensitive to changes in outpatient 

visit time than the way to assign mortality and morbidity counts across industries. 

Therefore, researchers should be dedicated to developing a more comprehensive 

dataset regarding these information for China based on which the accuracy of model 

estimation can be further improved in future studies.  

The third case on Nanjing heat wave in 2013 also employed a supply-driven 

input-output model. It also encounters uncertainties from the assumptions on 

percentage reduction in labour time due to heat effect on productivity; number of 

labour hours lost from capacity constraints; type of labour affected by productivity 
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and capacity degradation; and no compensatory behaviour after recovery. Due to a 

lack of quantitative relationship between heat exposure and productivity loss as well 

as occupational exposure levels, the study made assumption based on Bux (2006) 

and the normal summer meteorological condition in Nanjing. Accuracy of model 

results can be further improved once such data become available for China because 

indoor and outdoor workers might encounter different heat exposures as a result of 

distinctive working environment. From the sensitivity analysis, study results tend to 

be more sensitive towards the extent of productivity loss than to the level of 

capacity loss. Thus, future studies on global heat waves should specifically focus 

potential impacts of heat-induced mental distractions and in ensure the size of 

self-paced labourers that will suffer from heat-induced mental distractions or 

degraded cognitive skills.  

The final case on heat wave in Shanghai during 2007 utilized a standard 

demand-driven input-output model in which potential impacts from heat-induced 

health effects on final demand was traced back along the demand-side of the 

economy. Although the model is good for analyzing an economy in equilibrium, it is 

subjects to uncertainties due to the lack of a comprehensive dataset, especially on 

occupational heat-induced disease incidence rates to distribute mortality and 

morbidity counts into industries and the consumption behavioural changes for 

households and government in estimating the disproportional shrinks among 

commodities in the face of reducing wage and extra medical expenditures. Besides, 

no macroeconomic variables, such as the price elasticity of demand, inflation or 

market deficiency were considered in the current study as a basic Leontief 

input-output model describes an economy in equilibrium. However, in this thesis, I 

have tried best to predict consumption behaviour changes from the original 

consumption/investment patterns of households and the government suggested in 

the final demand categories in the input-output model, which appears to be a 

relatively reliable estimation with current data availability. This, on the other hand, 

opens up new research avenue for future scholars in specifying industrial heat 
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exposure, industrial disease incidence rates and more accurate track of post-disaster 

consumption patterns.  

Meanwhile, there is other limitations surrounding the input-output model. Firstly, an 

input-output model generally focuses on a single year’s time frame a city, regional or 

national level. This means that our proposed framework can be only used to 

estimate the economic impacts on a city, region or nation during a year instead of 

considering any persistent impacts during the sequencing years. It can neither be 

applied on several connecting regions because of the lack in multi-regional 

input-output tables. Secondly, an input-output model has limitations in inflexibility, 

regarding the price or substitutions for demand and supply (Hallegatte, 2008). This 

indicates that the model does not consider discounted value of economic output and 

suppliers cannot seek for substitutive factor inputs when several labourers become 

absent for sickness. Additionally, the model does not consider any productive 

capacity or possibility of overproduction capacity (Hallegatte, 2008). Data on 

inter-industrial transaction flows are estimated and calculated based on the 

assumption of industrial full production capacity.  
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Appendices 

Appendix A – 1 Observation on Heat Wave from Xuzhou Meteorological Station 

Xuzhou 

No. 58027 

Daily average 

temperature 

℃ 

Daily max 

temperature 

℃ 

Daily average 

temperature from 

9am-9pm ℃ 

5 Aug 2013 31.5 35.4 33.9 

6 Aug 2013 32.9 37.0 35.3 

7 Aug 2013 33.6 37.6 35.7 

8 Aug 2013 32.6 36.2 34.5 

9 Aug 2013 32.1 36.5 34.8 

10 Aug 2013 32.1 37.1 35.1 

11 Aug 2013 34.4 38.3 36.8 

12 Aug 2013 32.6 35.9 34.2 

13 Aug 2013 32.9 37.6 35.1 

14 Aug 2013 32.2 37.1 35.1 

15 Aug 2013 33.6 38.3 36.1 

16 Aug 2013 33.1 36.9 35.3 

17 Aug 2013 33.2 38.2 35.6 

18 Aug 2013 31.6 35.3 33.1 

 

Appendix A – 2 Observation on Heat Wave from Nanjing Meteorological Station 

Nanjing 

No. 58238 

Daily average 

temperature 

℃ 

Daily max 

temperature 

℃ 

Daily average 

temperature from 

9am-9pm ℃ 

23 July 2013 31.2 36.2 34.2 

24 July 2013 32.5 36.9 34.9 

25 July 2013 32.5 36.6 35.0 

26 July 2013 32.3 37.3 35.1 

27 July 2013 32.7 36.6 34.5 
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28 July 2013 32.3 36.2 34.5 

29 July 2013 32.7 36.3 34.9 

30 July 2013 33.2 37.2 35.7 

31 July 2013 31.9 37.7 32.0 

5 Aug 2013 32.0 35.5 34.4 

6 Aug 2013 33.7 38.7 36.7 

7 Aug 2013 33.9 39.0 37.2 

8 Aug 2013 34.6 39.3 37.6 

9 Aug 2013 34.6 39.1 37.2 

10 Aug 2013 34.5 40.1 35.6 

11 Aug 2013 33.7 39.8 37.0 

12 Aug 2013 32.9 40.0 35.0 

13 Aug 2013 32.2 38.3 35.5 

14 Aug 2013 32.9 37.9 35.7 

15 Aug 2013 32.4 37.2 34.3 

16 Aug 2013 31.7 36.9 34.3 

17 Aug 2013 32.3 38.3 35.5 

18 Aug 2013 32.0 37.4 35.1 

 

Appendix A – 3 Observation on Heat Wave from Dongtai Meteorological Station 

Dongtai 

No. 58251 

Daily average 

temperature 

℃ 

Daily max 

temperature 

℃ 

Daily average 

temperature from 

9am-9pm ℃ 

5 Aug 2013 31.1 36.2 33.7 

6 Aug 2013 32.9 36.9 35.2 

7 Aug 2013 32.8 37.2 35.1 

8 Aug 2013 33.3 37.2 35.6 

9 Aug 2013 33.4 37.5 35.8 

10 Aug 2013 32.8 36.3 34.0 

11 Aug 2013 32.1 37.3 34.5 

12 Aug 2013 31.5 36.5 34.1 
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13 Aug 2013 30.9 35.7 33.8 

14 Aug 2013 31.5 36.3 34.2 

15 Aug 2013 31.6 35.9 34.1 

16 Aug 2013 30.7 35.4 33.5 

17 Aug 2013 30.9 36.2 33.9 

18 Aug 2013 30.3 35.6 32.8 

 

Appendix A – 4 Observation on Heat Wave from Lyusi Meteorological Station 

Lyusi 

No. 58265 

Daily average 

temperature 

℃ 

Daily max 

temperature 

℃ 

Daily average 

temperature from 

9am-9pm ℃ 

23 July 2013 32.7 37.0 35.3 

24 July 2013 32.8 37.0 35.2 

25 July 2013 33.3 37.8 34.7 

26 July 2013 32.4 37.0 33.9 

27 July 2013 32.0 36.1 33.7 

28 July 2013 33.0 36.8 35.0 

29 July 2013 33.3 37.5 35.3 

30 July 2013 33.6 37.6 35.6 

6 Aug 2013 33.0 38.6 35.7 

7 Aug 2013 32.6 38.0 34.9 

8 Aug 2013 33.3 38.1 35.5 

9 Aug 2013 33.3 37.7 35.2 

10 Aug 2013 32.1 37.6 34.4 

11 Aug 2013 30.5 35.9 32.8 

12 Aug 2013 30.3 35.8 32.3 

(Data from Chinese Academy of Sciences, 2013) 
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Appendix B – Observed Excess Deaths from Respiratory and Cardiovascular Diseases 

during 2013 heat waves in 20 Chinese Cities 

City name Total excess deaths City name Total excess deaths 

Shenyang 155 Hefei 333 

Beijing 98 Chengdu 412 

Tianjin 565 Wuhan 23 

Yinchuan 35 Hangzhou 69 

Taiyuan 6 Chongqing 379 

Jinan 189 Ningbo 35 

Zhengzhou 161 Changsha 444 

Shanghai 531 Fuzhou 64 

Xian 167 Guiyang 26 

Nanjing 656 Kunming 26 

(Data from China CDC, 2017) 
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Appendix C – Definitions for Terminologies 

Natural disaster: any catastrophic event resulting from the natural processes of the 

earth, examples include floods, hurricanes, tornadoes, earthquakes, tsunamis and 

other geologic processes that only happened to populated areas. In this thesis, we 

also treat PM2.5 air pollution as a natural disaster that could cause substantial 

damages to human health because it has been included in the Beijing Municipal 

Meteorological Disaster Prevention Statute as a ‘meteorological disaster’. 

Rapid-onset disaster: natural disasters that arrive rapidly with few days or without 

warnings, such as floods and earthquakes. 

Persistent disaster: natural disasters that persist longer and whose effects will be 

gradually realized over time. 

Disaster footprint: Total economic loss resulting from a disaster event in terms of the 

total reduction in aggregated production. This includes the initial reduction in supply 

of industrial primary inputs or industrial final demand as a result of disaster-induced 

loss in capital and labour productivity; and the cascading indirect economic loss 

resulting from sectoral and regional interdependencies. 

Direct economic loss: the primary and initial reduction in industrial value added or 

final demand due to capital and labour productivity loss. 

Indirect economic loss: the secondary cascading economic loss resulting from 

industrial and regional interdependencies. 

Backward linkages: the linkages between a sector and other sectors that supply 

inputs to it. 

Forward linkages: the linkages between a sector and other sector that purchase 

output from it. 

Upstream industries: sectors that sell outputs to a sector. 

Downstream industries: sectors that purchase a sector’s output as input for their 

production processes. 

Health endpoints: occurrence of a disease, symptom, sign or labouratory 

abnormality that constitutes one of the target outcomes of the trial. 

Morbidity: disease-induced hospital admissions and outpatient visits. 

Relative risk: the ratio of the probability of an event happening in an exposed group 

to the probability of the event happening in a non-exposed group. 

https://en.wikipedia.org/wiki/Disease
https://en.wikipedia.org/wiki/Symptom
https://en.wikipedia.org/wiki/Medical_sign
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Population attributable fraction: the proportional decrease in mortality or morbidity 

counts that will occur once exposure to a risk factor decreased to an alternative ideal 

exposure scenario. 

Exposure-response relationship: changes in effect on an organism resulting from 

different levels of exposure to a risk factor after certain length of exposure time. 
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Appendix D – List of Underlying Assumptions 

Case 1:  

1. No possible change in final demand because three days are too short to 

respond by households; 

2. Daily household final demand follows the averaged level instead of 

considering the excessive transaction volume during Christmas period; 

3. Technical coefficients for the city of York are same with those for the 

Yorkshire and Humber region. 

Case 2: 

1. The allocation of mortality and morbidity counts among industries follows 

the US occupational disease incidence rates, that is manufacturing workers 

entail the highest respiratory condition incidence rate at 2.1%, followed by 

workers in services sectors at 1.8%, natural resources and mining sector at 

1.5% and construction sector at 1.2%; 

2. Each Chinese labourer works 8 hours a day and 250 days a year; 

3. Each mortality will cause a whole working year loss, each cardiovascular 

admission will cause 11.9 working days’ loss, each respiratory admission will 

cause 8.4 working days’ loss and each outpatient visit will lead to 4 hours 

working day loss; 

4. No replacement of sick labourers are available; 

5. No compensatory working behaviour are considered; 

6. No overproduction capacity are considered; 

7. No change in price and technological status. 

8. Labour time is a direct indicator for industrial value added. 

Case 3: 

1. Extreme heat during heat wave will cause a daily 12% reduction in labour 

time for indoor self-paced workers for the heat wave period; 

2. Outworkers will require 45 minutes’ relief time per hour of working time 

during heat wave period due to working safety regulations, and this is termed 

as work capacity loss; 

3. Workers from Agriculture, Mining and Construction sectors are outdoor 

workers and affected by work capacity loss while workers from 

manufacturing and services sector are indoor workers and affected by work 

productivity loss due to mental distractions; 

4. Each mortality will cause a whole working year loss, each cardiovascular 

admission will cause 11.9 working days’ loss, each respiratory admission will 
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cause 8.4 working days’ loss and each outpatient visit will lead to 4 hours 

working day loss; 

5. Each Chinese labourer works 8 hours a day and 250 days a year;  

6. No compensatory behaviour after recovery; 

7. No overproduction capacity are considered; 

8. No change in price and technological status; 

9. Labour time is a direct indicator for industrial value added. 

Case 4: 

1. The allocation of mortality and morbidity counts among industries follows 

industrial labour proportions; 

2. Consumption behavioural changes after shrinking wage and crowd-out effect 

are based on the original consumption patterns of households and 

government; 

3. Each mortality will cause a whole working year loss, each cardiovascular 

admission will cause 11.9 working days’ loss, each respiratory admission will 

cause 8.4 working days’ loss and each outpatient visit will lead to 4 hours 

working day loss; 

4. Each Chinese labourer works 8 hours a day and 250 days a year;  

5. No compensatory behaviour after recovery; 

6. No macroeconomic variables, such as the price elasticity of demand, inflation 

or market deficiency were considered 

7. No overproduction capacity are considered; 

8. No change in price and technological status. 

 


