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Abstract

In this article we study the treewidth of the display graph, an auxiliary graph structure
obtained from the fusion of phylogenetic (i.e., evolutionary) trees at their leaves. Earlier
work has shown that the treewidth of the display graph is bounded if the trees are in
some formal sense topologically similar. Here we further expand upon this relationship.
We analyse a number of reduction rules, commonly used in the phylogenetics literature
to obtain fixed parameter tractable algorithms. In some cases (the subtree reduction)
the reduction rules behave similarly with respect to treewidth, while others (the cluster
reduction) behave very differently, and the behaviour of the chain reduction is particularly
intriguing because of its link with graph separators and forbidden minors. We also show
that the gap between treewidth and Tree Bisection and Reconnect (TBR) distance can be
infinitely large, and that unlike, for example, planar graphs the treewidth of the display
graph can be as much as linear in its number of vertices. A number of other auxiliary
results are given. We conclude with a discussion and list a number of open problems.

Keywords: Graph Theory, Phylogenetics, Treewidth, Algorithmic Graph Theory, Compu-
tational Biology.

1 Introduction

Phylogenetic trees are used extensively within computational biology to model the history of
a set of species (known as taxa) X; the internal nodes represent evolutionary diversification
events such as speciation [39]. Within the field of phylogenetics there has long been interest
in quantifying the topological dissimilarity of phylogenetic trees and understanding whether
this dissimilarity is biologically significant. This has led to the development of many incon-
gruency measures such as Subtree Prune and Regraft (SPR) distance and Tree Bisection and
Reconnect (TBR) distance [1]. Most of these measures are NP-hard to compute and this is
indeed true for SPR, TBR distances. More recently such measures have also attracted atten-
tion because of their importance in methods which merge dissimilar trees into phylogenetic
networks; phylogenetic networks are simply the generalization of trees to graphs [31].
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Parallel to such developments there has been growing interest in the role of the graph-
theoretic parameter treewidth within phylogenetics. Treewidth is an intensely studied param-
eter in algorithmic graph theory and it indicates, at least in an algorithmic sense, how far an
undirected graph is from being a tree (see e.g. [7, 11, 12] for background). The enormous focus
on treewidth is closely linked to the fact that a great many NP-hard optimization problems
become (fixed parameter) tractable on graphs of bounded treewidth[18]. A seminal paper by
Bryant and Lagergren [16] linked phylogenetics to treewidth by demonstrating that, if a set
of trees (not necessarily all on the same set of taxa X) can simultaneously be topologically
embedded within a single “supertree” - a property known as compatibility - then an auxil-
iary graph known as the display graph has bounded treewidth. Since this paper a small but
growing number of papers at the interface of graph theory and phylogenetics have explored
this relationship further. Much of this literature focuses on the link between compatibility
and (restricted) triangulations of the display graph (e.g. [41, 29, 24, 42]), but more recently
the algorithmic dimension has also been tentatively explored [5, 27, 33]. In the spirit of the
original Bryant and Lagergren paper, which used heavy meta-theoretic machinery to derive
a theoretically efficient algorithm for the compatibility problem, Kelk et al [34] showed that
the treewidth of the display graph of two trees is linearly bounded as a function of the TBR
distance (equivalently, the size of a Maximum Agreement Forest - MAF [1]) between the two
trees, and then used this insight to derive theoretically efficient algorithms for computation
of many different incongruency measures. In that article it was empirically observed that in
practice the treewidth of the display graph is often much smaller than the TBR distance (and
thus also the many incongruency measures for which TBR is a lower bound). This raised
two natural questions. First, in how far can this apparently low treewidth be exploited to
yield genuinely practical dynamic programming algorithms running over low-width tree de-
compositions? There has been some progress in this direction in the compatibility literature
(notably, [5]) but there is still much work to be done. Second, how exactly does the treewidth
of the display graph behave, both in the sense of extremal results (e.g. how large can the
treewidth of a display graph get?) and in the sense of understanding when and why the
treewidth differs significantly from measures such as TBR.

Here we focus primarily on the second question. We begin with a more structural perspec-
tive. We show that, given an arbitrary (multi)graph G on n vertices with maximum degree k,
one can construct two unrooted binary trees T1(G) and T2(G) such that their display graph
D = D(T1(G), T2(G)) has at most O(nk) vertices and edges and G is a minor of D. We
combine this with the known fact that cubic expanders (a special family of 3-regular graphs)
on n vertices have treewidth Ω(n) to yield the result that display graphs on n vertices can
also (in the worst case) have treewidth linear in n. This contrasts, for example, with planar
graphs on n vertices which have treewidth at most O(

√
n) [20]. We also show how a more

specialized construction can be used to embed arbitrary grid minors [17] into display graphs
with a much smaller inflation in the number of vertices and edges.

We then continue by analyzing how reduction rules often used in the computation of
incongruency measures impact upon the treewidth of the display graph. Not entirely sur-
prisingly the common pendant subtree reduction rule [1] is shown to preserve treewidth. The
cluster reduction [4, 36, 14], however, behaves very differently for treewidth than for many
other incongruency measures. Informally speaking, if both trees can be split by deletion of
an edge into two subtrees on X ′ and X ′′, many incongruency measures combine additively
around this common split, while treewidth behaves (up to additive terms) like the maximum
function. We use this later in the article to explicitly construct a family of tree pairs such
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that the treewidth of the display graph is 3, but the TBR distance of the trees (and their
MP distance - a measure based on the phylogenetic principle of parsimony [25, 37, 33]) grows
to infinity. The third reduction rule we consider is the chain rule, which collapses common
caterpillar-like regions of the trees into shorter structures. For incongruence measures it is
often the case that truncation of such chains to O(1) length preserves the measure [1, 15, 45],
although sometimes the weaker result of truncation to length f(k) [44, 43] (for some func-
tion that depends only on the incongruency parameter k) is the best known. We show that
truncation of common chains to length f(tw), where tw is the treewidth of the display graph,
indeed preserves treewidth; this uses asymptotic results on the number of vertices and edges
in forbidden minors for treewidth. Proving that truncation to O(1)-length preserves treewidth
remains elusive; we prove the intermediate result that truncation to length 2 can cause the
treewidth to decrease by at most 1. The case when the chain is not a separator of the display
graph seems to be a particularly challenging bottleneck in removing the “−1” term from this
result. Although intuitively reasonable, it remains unclear whether truncation to length O(1)
is treewidth-preserving, for any universal constant.

In the last two mathematical sections of the paper we prove that, if two trees have TBR
distance 1, or MP-distance 1, then the treewidth of their display graph is 3. However, the
converse certainly does not hold: we construct the aforementioned “infinite gap” examples
where the display graph has treewidth 3 but both TBR distance and MP-distance spiral off
to infinity.

Finally, we reflect on the wider context of these results and discuss a number of open
problems.

In conclusion, we observe that for (algorithmic) graph theorists the interface between
treewidth and phylogenetics continues to yield many new questions which will likely require
a new “phylo-algorithmic” graph theory to be answered. For phylogeneticists the appeal
remains structural-algorithmic: can we convert the apparently low treewidth of display graphs
into competitive, or even superior, algorithms for computation of incongruency measures?

2 Preliminaries

An unrooted binary phylogenetic tree T on a set of leaf labels (known as taxa) X is an
undirected tree where all internal vertices have degree three and the leaves are bijectively
labeled by X. If we (exceptionally) allow some internal vertices of T to have degree two, then
we call these vertices roots (abusing slightly the usual root meaning). When it is understood
from the context we will often drop the prefix “unrooted binary phylogenetic” for brevity.

Let Y ⊆ X. Then, for a tree T we denote by T |Y the tree which is obtained by forming
a minimal subgraph T ′ of T that spans all leaves labeled by Y , and suppressing any vertices
of degree 2.

Central role in this manuscript plays the display graph of two binary phylogenetic trees:

Definition 2.1. Let T1 = (V1 ∪X,E1), T2 = (V2 ∪X,E2) be two trees, both on the same set
of leaf labels X. The display graph of T1, T2, denoted by D(T1, T2), is formed by identifying
vertices with the same leaf label and forming the disjoint union of these two trees, i.e.,
D(T1, T2) = (V1 ∪ V2 ∪X,E1 ∪ E2).

This definition can be extended in a straightforward way to more than 2 trees. We remark
that in [16], the definition of the display graph of two (or more) trees does not necessarily
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insist that the sets of taxa of the trees are identical. Here we will focus on the case where the
two trees are defined on exactly the same set of taxa X.
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Figure 1: An example of the display graph D of two binary phylogenetic trees T1, T2. As we
will see later, we can safely suppress all degree two vertices without altering the treewidth of
D. Observe that by doing that, the resulting display graph D is isomorphic to K4 and thus
has treewidth 3.

For two phylogenetic trees T1, T2 we say that T1 displays T2 if the latter can be obtained
by contracting edges in an induced subtree of the former. We say that two (or more) trees
are compatible if there exists another tree on X that displays all the trees. Note that for
two unrooted binary phylogenetic trees on the same set of labels X compatibility is simply
equivalent to the existence of a label-preserving isomorphism between the two trees.

A tree decomposition of an undirected graph G = (V,E) is a pair (B,T) where B =
{B1, . . . , Bq}, Bi ⊆ V (G), is a multiset of bags and T is a tree whose q nodes are in bijection
with B,

(tw1) ∪qi=1Bi = V (G);

(tw2) ∀e = {u, v} ∈ E(G), ∃Bi ∈ B s.t. {u, v} ⊆ Bi;

(tw3) ∀v ∈ V (G) all the bags Bi that contain v form a connected subtree of T.

The width of (B,T) is equal to maxqi=1 |Bi| − 1. The treewidth of G is the smallest width
among all possible tree decompositions of G. For a graph G, we denote tw(G) the treewidth
of G. Given a tree decomposition T for some graph G, we denote by V (T) the (multi)set of
its bags and by E(T) the set of its edges (connecting bags). Property (tw3) is also known
as running intersection property. We note that the treewidth of any graph G is at most
|V (G)| − 1: consider a bag with all vertices of G. This is a valid tree decomposition of width
|V (G)| − 1. Thus the treewidth is always a finite parameter for any graph.

Another, equivalent, definition of treewidth is based on chordal graphs. We remind that
a graph G is chordal if every induced cycle in G has exactly three vertices. The treewidth
of G is the minimum, ranging over all chordal completions c(G) of G (we add edges until G
becomes a chordal graph), of the size of the maximum clique in c(G) minus one. Under this
definition, each bag of a tree decomposition of G naturally corresponds to a maximal clique
in the chordal completion of G [6].

For a graph G = (V,E) and an edge e = {u, v} ∈ E(G), the deletion of e is the operation
which simply deletes e from E(G) and leaves the rest of the graph G the same. The contraction
of e, denoted G/e, is the operation where edge e is deleted and its incident vertices u, v are
identified. We say that a graph H is a minor of another graph G if H can be obtained by
repeated applications of edge deletions and/or edge contraction, followed possibly by deleting
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isolated vertices, on G1. The order that these operations are performed does not matter and
it will always result in H.

2.1 Phylogenetic distances and measures

Several distances have been proposed to measure the incongruence between (i.e., the dissimi-
larity of) two or more phylogenetic trees on the same set of taxa. The most relevant distances
for the purpose of this article are the so-called Tree Bisection and Reconnect distance and the
Maximum Parsimony Distance which are defined in the following.

Given an unrooted binary phylogenetic tree T on X, a Tree Bisection and Reconnect
(TBR) move is defined as follows [1]: (1) we delete an edge of T to obtain two subtrees T ′

and T ′′. (2) Then we select two edges e1 ∈ T ′, e2 ∈ T ′′, subdivide them with two new vertices
v1 and v2 respectively, add an edge from v1 to v2, and suppress all vertices of degree 2. In
case either T ′ or T ′′ is a single leaf, then the new edge connecting T ′ and T ′′ is incident to
that leaf. Let T1, T2 be two unrooted binary phylogenetic trees on the same set of leaf-labels.
The TBR-distance from T1 to T2, denoted dTBR(T1, T2), is the minimum number of TBR
moves required to transform T1 into T2 (or, equivalently, T2 to T1).

Computing the TBR-distance is essentially equivalent to the Maximum Agreement Forest
(MAF) problem: Given an unrooted binary phylogenetic tree on X and X ′ ⊂ X we let
T (X ′) denote the minimal subtree that connects all the elements in X ′2. An agreement
forest of two unrooted binary trees T1, T2 on X is a partition of X into non-empty blocks
{X1, . . . , Xk} such that (1) for each i 6= j, T1(Xi) and T1(Xj) are node-disjoint and T2(Xi)
and T2(Xj) are node-disjoint, (2) for each i, T1|Xi = T2|Xi. A maximum agreement forest
is an agreement forest with a minimum number of components (such that it maximizes the
agreement), and this minimum is denoted dMAF (T1, T2). In 2001 it was proven by Allen and
Steel that dMAF (T1, T2) = dTBR(T1, T2) + 1 [1].

In order to define the Maximum Parsimony Distance [25, 37, 33] between two unrooted
binary phylogenetic trees T1, T2 both on X, we need first to define the concept of character
on X which is simply a surjection f : X → C where C is a set of states. Given a tree T
on X, and a character f also on X, an extension of f to T is a mapping f ′ from V (T ) to
C such that f ′(`) = f(`), ∀` ∈ X. An edge e = {u, v} with f ′(u) 6= f ′(v) is known as a
mutation induced by f ′. The minimum number of mutations ranging over all extensions f ′

of f is called the parsimony score of f on T and is denoted by lf (T ). Given two trees T1, T2
their maximum parsimony distance dMP (T1, T2) is equal to maxf |lf (T1)− lf (T2)|.

Both the TBR and MP distances are NP-hard to compute [1, 32] and they are also metric
distances i.e., they satisfy the four axioms of metric spaces: (a) non-negativity, (b) identity
of indiscernibles (c) symmetry and (d) triangle inequality [1, 25].

Given an unrooted binary phylogenetic tree T and a distance d (such as TBR and MP),
we define the unit ball or the unit neighborhood of T under d to be ud(T ) = {T ′ : d(T, T ′) =
1} i.e., the set of all trees T ′ that are within distance one from T under the distance d.
Such neighborhoods are important because usually they are building blocks of “local search”
algorithms that try to find trees that optimize some particular criterion. Moreover, the
diameter ∆n(d) is defined as the maximum value d taken over all pairs of phylogenetic trees

1Equivalently we can say that H is a minor of G if H can be obtained by vertex deletions, edge deletions
and edge contractions in G.

2Note that in T (X ′), unlike T |X ′, we do not suppress vertices of degree 2.
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with n taxa (see [40, Section 2.5] for a recent review on various results on the unit ball and
the diameter of several tree rearrangement metrics).

3 Treewidth Distance

The main purpose of this manuscript is to define and study the properties of the treewidth
distance between two phylogenetic trees. As mentioned in the introduction, the study of
treewidth in the context of phylogenetics was triggered by the pioneering work of Bryant &
Lagergren [16] who proved that a necessary condition for a set of trees (not necessarily on the
same set of taxa) to be compatible, is that their display graph has bounded treewidth. They
used this insight to leverage a (theoretical) positive algorithmic result. Here we are interested
in the question: in how far does the treewidth of the display graph itself function directly as
a measure of phylogenetic incongruence? Hence the following natural definition:

Definition 3.1 (Treewidth Distance). Given two unrooted binary phylogenetic trees T1, T2,
both on the same set of leaf labels X, where |X| ≥ 3, their treewidth distance is defined to
be tw(D(T1, T2))− 2 and is denoted as dtw(T1, T2).

It is easy to see that for two unrooted binary phylogenetic trees T1, T2 we have that
dtw(T1, T2) ≥ 0, for |X| ≥ 3. This is a direct consequence of the fact that if |X| ≥ 3 then
the display graph contains at least one cycle and hence tw(D(T1, T2)) ≥ 2. If |X| < 3
then T1, T2 are trivially isomorphic (they are either a single edge or a single vertex) and
it does not make much sense to define a distance between such trees. So we can discard
these boundary cases without any loss of generality in our study. (Of course, the treewidth
of the display graph is still well-defined in these omitted boundary cases). On the other
hand we will leverage the well-known fact that tw(D(T1, T2)) = 2 for two unrooted binary
phylogenetic trees on X, |X| ≥ 3, if and only if T1 and T2 are compatible (see i.e. [27]). As
mentioned earlier, compatibility in this context is the same as label-preserving isomorphism,
so it is natural to speak of equality and write T1 = T2. Note that it was shown in [34] that
tw(D(T1, T2)) ≤ dMAF (T1, T2) + 1 = dTBR(T1, T2) + 2, and hence dtw(T1, T2) ≤ dTBR(T1, T2).

We remark that, because computation of treewidth is fixed parameter tractable [8, 22],
so too is dtw. As we discuss in the final section of the paper it is not known whether dtw
can be computed in polynomial time, but ongoing research efforts by the algorithmic graph
theory community to compute treewidth efficiently in practice (see e.g. [10, 19]) will naturally
strengthen the appeal of dtw as a phylogenetic measure.

A rather easy but important observation, whose proof we include here for completeness,
and that we will use extensively in the rest of the manuscript is that treewidth (and treewidth
distance) are unchanged by edge subdivision and degree-2 vertex suppression operations - with
one trivial exception. We say that a graph is a unique triangle graph if it contains exactly
one cycle such that this cycle has length 3 and at least one of the cycle vertices has degree 2.
A unique triangle graph has treewidth 2.

Given a graph G = (V,E), let e = {u1, u2} ∈ E be any edge of G and v be any degree-2
vertex of G (if there exists any) with neighbors v1, v2. We define the following two operations:

Subdivision of an edge e: This defines a new graph G′ = (V ′, E′) where V ′ = V ∪{w}, w /∈
V and E′ = (E \ {e}) ∪ ({u1, w}, {w, u2}).
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Suppression of a degree-2 vertex v: This defines a new graph G′′ = (V ′′, E′′) where
V ′′ = V \ {v}, E′′ = E \ ({v1, v} ∪ {v, v2}) ∪ {v1, v2}.

Observation 3.1. Let G = (V,E) be a graph, which is not a unique triangle graph and let
e = {u1, u2} ∈ E be any edge of G and v be any degree-2 vertex of G (if any) with neighbors
v1, v2. Consider the following two graphs:

1. G′ = (V ′, E′) where we obtain G′ after a single application of the edge subdivision step
on edge e ∈ E(G), and

2. G′′ = (V ′′, E′′) where G′′ is obtained from G after suppressing a degree-2 vertex v ∈
V (G).

Then we have that:
tw(G) = tw(G′) = tw(G′′).

Proof. For the subdivision of an edge case, let G′ be the resulting graph after the subdivision
of some edge e. It is immediate that the treewidth of G′ is at least q = tw(G) since G is
a minor of G′ and treewidth is non-increasing under minor operations. To show that the
treewidth cannot increase we argue as follows. If G is a tree, then G′ is also a tree and
tw(G) = tw(G′) = 1 and we are done. So, we assume that G is not a tree so q ≥ 2. Take a
bag B of an optimal tree decomposition T of G with largest bag size at least 3, that contains
the endpoints u1, u2 of e. Create a new bag B′ /∈ B(T) : B′ = {u1, u2, w} and attach it to B.
This operation cannot increase the treewidth of the tree decomposition and it is immediate
that the new tree decomposition is a valid one for G′.

Now we will handle the degree-2 vertex suppression operation. This can be simulated
by two edge contraction operations, which are minor operations, so the treewidth cannot
increase. In the other direction (i.e. proving that the treewidth cannot decrease), we see that
if G is a tree the treewidth is immediately preserved. If G is not a tree, let G′′ be the resulting
graph after a single degree-2 vertex suppression operation on a vertex v with neighbors, in
G, v1, v2 such that in G′′ {v1, v2} ∈ E′′. Take an optimal tree decomposition of G′′, let this
be T′′. By assumption that G is not a tree and that G is not a unique triangle graph, G′′

contains at least one cycle. Hence, tw(G′′) ≥ 2 i.e., the size of the largest bag is at least 3.
In T′′, locate a bag A that contains the pair of vertices v1, v2. Such a bag must exists by
definition. Create a new bag A′ = {v1, v, v2} and attach it to A thus creating a new tree
decomposition T′′′. It is immediate that T′′′ is a valid tree decomposition for G with width
the same as the width of T′′, and the claim follows.

Recall that if two unrooted binary trees T1, T2 are incompatible, then tw(D(T1, T2)) ≥ 3,
so the display graph cannot be a unique triangle graph (which has treewidth 2). A single
suppression or subdivision operation is therefore (by Observation 3.1) treewidth-preserving,
meaning that repeated applications of these operations cannot cause the unique triangle graph
to arise, and hence they are also treewidth-preserving. Summarizing,

Observation 3.2. Let T1 and T2 be two unrooted binary phylogenetic trees on the same set of
taxa X. If T1 and T2 are incompatible, then the following operations can be applied arbitrarily
to D(T1, T2) without altering its treewidth: suppression of degree-2 vertices, and subdivision
of edges.

In subsequent sections we will often use Observation 3.2 to (in particular) suppress some
or all of the taxa in the display graph without altering its treewidth.
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3.1 Metric properties of dtw

Given the definition of the treewidth distance, it is tempting to see if indeed such a distance is
a metric distance e.g., it satisfies the four axioms of metric distances. We already argued that
it satisfies the non-negativity condition and trivially it satisfies the identity of indiscernibles
because T1 = T2 ⇔ dtw(T1, T2) = 0 as demonstrated in the previous discussion. The symmetry
condition is also trivially satisfied because D(T1, T2) = D(T2, T1) i.e., the display graph is
identical in both cases and thus has the same treewidth.

13 10 9 2
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4 1

11 7 3 12

8 5 3 9 10 11 7

4

2 12 13 1 6

6 4 1 11 7 10 13 5

9 8

12 32

Figure 2: An example of three trees (from top to bottom: T1, T2 and T3) on a common set
of taxa for which the triangle inequality is violated.

The only case left is to see if dtw satisfies the triangle inequality property: given three
unrooted binary phylogenetic trees T1, T2, T3 all on X is it the case that dtw(T1, T3) ≤
dtw(T1, T2) + dtw(T2, T3)? Unfortunately, this is false as shown in Figure 2. By using appro-
priate software, for example QuickBB [26], we can see that dtw(T1, T2) = 1, dtw(T2, T3) = 2
and dtw(T1, T3) = 4 > dtw(T1, T2) + dtw(T2, T3). We remark that, although mathematically
disappointing, the absence of the triangle inequality is not a great hindrance in practice. Some
other well-known phylogenetic measures, such as hybridization number, also do not obey the
triangle inequality [38].
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4 Diameters on dtw

In this section we explore the question of how large the treewidth of the display graph of
two unrooted binary phylogenetic trees, both on X, can get. More precisely, we consider the
diameter ∆n(dtw) defined as the maximum value dtw taken over all pairs of phylogenetic trees
with n taxa. Somewhat surprisingly, we show that ∆n(dtw) is bounded below and above by
linear functions on n. To prove this, we first present a general result showing how we can
embed an arbitrary graph into display graphs (as minors) without adding too many extra
edges or vertices.

Theorem 4.1. Let G = (V,E) be an undirected (multi)graph with n vertices and maximum
degree d ≥ 2. Then we can construct two unrooted binary phylogenetic trees T1 and T2 such
that both trees have O(nd) taxa, O(nd) nodes and O(nd) edges (and hence their display graph
has O(nd) nodes and edges) and G is a minor of D(T1, T2).

Proof. We start by selecting an arbitrary unrooted binary tree T on n+ 2 taxa. Set T1 := T
and T2 := T . The idea is that the n internal nodes of T1 are in bijection with the n vertices of
G. We will add the edges of G one at a time, in the following manner. If an edge e = {u, v}
of G already exists within T1, the edge is already encoded so there is nothing to do. If not,
we subdivide an arbitrary edge in T2 and let y be the subdivision node. We then introduce
two new taxa xe1 and xe2 and a new vertex z in T2, and add the following edges: {u, xe1},
{xe1, z}, {z, y}, {z, xe2} and {xe2, v}. The first and last of these edges is in T1, the rest are
in T2. In the display graph the path u, xe1, z, x

e
2, v will become the image of the edge {u, v}

(in the embedding of the minor). After encoding all the edges, T1 and T2 will each have
at most k = (n + 2) + 2|E| taxa, so (because T2 remains binary) each will have at at most
k − 2 internal nodes and each at most 2k − 3 edges. Now, observe that the n internal nodes
of T1 might have degree as large as d + 3. To turn T1 into a binary tree we replace each
vertex u, where deg(u) > 3, by a path of t = deg(u) − 2 vertices u1, ..., ut. The first two
edges incident to u are now made incident to u1, the final two edges incident to u are made
incident to ut, and each of the remaining edges is made incident to exactly one of the nodes
u2, ..., ut−1. (When obtaining u from the embedding of G, the idea is that the edges of the
path will be contracted to retrieve u). This transformation does not alter the number of taxa,
so T1 and T2 now have both the same number of internal nodes and edges (i.e. at most k− 2
and 2k − 3 respectively). Due to the fact that G has maximum degree d, |E| ≤ nd/2. We
conclude that both trees each has at most (n+ 2) + nd taxa, at most n(d+ 1) internal nodes
and at most 2n + 4 + 4|E| − 3 ≤ 2n + 1 + 2nd edges. It follows that D(T1, T2) has at most
2n(d+ 1) + ((n+ 2) + nd) nodes in total and at most 4n+ 2 + 4nd edges.

We note that the above construction can be easily computed in polynomial time.
Applying the last theorem to complete graphs leads to a lower bound of

√
n on ∆n(dtw).

However, we can get a better lower bound by using the well known fact that there are cubic
expanders on q vertices with treewidth at least εq, for some constant ε > 0 [28, 23]. By
Theorem 4.1 and its proof, for such a cubic expander graph G with q vertices, there exist
two trees T and T ′ with precisely 4q + 2 taxa such that G is a minor of D(T, T ′). If the
construction of Theorem 4.1 results in two trees with less than 4q + 2 taxa, then we can
always use, without any loss, the reverse of cherry reduction3 to “inflate” them to 4q+ 2. For
any positive integer q, let Gq be a cubic expander on q vertices. Now, for each n, consider a

3See next section: intuitively, a cherry reduction contracts a common cherry (two leaves with a common

9



cubic expander Gq with q = (n − 2)/4 (or its nearest integer) vertices, and let T, T ′ be the
two trees constructed. Then we have tw(D(T, T ′)) ≥ tw(Gq) ≥ ε(n− 2)/4 ≥ ε′n. The upper

bound follows from ∆n(dtw) ≤ ∆n(dTBR) ≤ n− 3−
⌊√

n−2−1
2

⌋
, where the second inequality

follows from [21, Theorem 1.1].

Corollary 4.1. We have ∆n(dtw) = Θ(n) as n→∞. More precisely, there exists a constant
ε > 0 such that εn < ∆n(dtw) < n− 3 for all n ≥ 4.

Figure 3: Embedding grid minors in the display graphs of two unrooted binary trees: grids
with even side length (left; k = 4) and odd side length (right; k = 5). Taxa are shown as
small dots inside the grid. Both trees have exactly (k − 1)2 + 3 taxa.

The construction (and bounds) described in Theorem 4.1 can be refined significantly in
specific cases. Consider the k × k grid graph, which has maximum degree 4 and k2 nodes.
When taking n = k2 the theorem yields a bound of ≈ 13n nodes. However, consider the
construction shown in Figure 3, which distinguishes the cases k even and k odd. The two
sides of the curve indicate the two trees that are needed and the points at which the curve
touches the grid become the taxa of the two trees. (Note that, without the dashed edges, we
would be forced to model the corresponding corners of the grid with degree-2 nodes in the
phylogenetic trees, and phylogenetic trees do not usually contain degree-2 nodes. This minor
technicality only affects two of the four corners of the grid.4)

As in the theorem the degree-4 nodes can be split into two degree-3 nodes. In both the
odd and even cases it can be verified that both the resulting unrooted binary trees have
(k − 1)2 + 3 taxa and thus that the display graph has 3(k − 1)2 + 5 nodes in total. This
is ≈ 3n, a significant improvement on the generic bound. In fact it is not far from “best
possible”. A k×k grid contains (k−1)2 chordless 4-cycles, and because a tree cannot contain
a cycle the embedding of each cycle must pass through at least 2 taxa in the display graph.
Each taxon can be shared by at most two 4-cycles (because the display graph has maximum
degree 3) yielding a lower bound on the number of taxa required of (k − 1)2.

parent) to a single vertex. The inverse operation simply replaces a leaf with a cherry on two leaves with new
labels. As we will see, neither of these operations alter the treewidth of the graph.

4Note that if we “round off” the 4 corners of the grid its treewidth (which is k) is unaffected and the dashed
edges are not required.

10



5 The treewidth of the display graph under phylogenetic re-
duction rules

In this section we investigate the effect of several common phylogenetic reduction rules on the
treewidth of the display graph. We will study the following three rules: (i) common pendant
subtree, (ii) common chain and (iii) cluster reduction rule. Such rules constitute the building
block of many FPT algorithms for computing phylogenetic distances. We will see that the
three reduction rules behave somewhat differently with respect to the treewidth of the display
graph. In particular, we will show how the subtree reduction operation, where compatible
subtrees are collapsed to a single taxon, preserves the treewidth of the display graph. For the
second case, the collapsing of a common chain (a maximal “caterpillar-like” region) in both
trees down to length 2, could potentially decrease the treewidth of the display graph by at
most one. On the other hand we show that if we collapse common chains down to length that
is a function of the treewidth of the display graph, then we preserve the treewidth. The open
question here is if this gap can be understood better i.e., if we can collapse the common chains
to a constant length and preserve the treewidth. Finally, we investigate the cluster reduction
rule where clusters are formed if in each tree there is an edge (called a common split), and
deleting this edge causes both trees to be split into two subtrees on X ′ and X ′′. We will see
that the treewidth of the display graph is (up to additive terms) equal to the maximum of the
treewidth of the two clusters. We note that this is in contrast to other phylogenetic distance
measures which usually behave additively with respect to the distances of the two clusters.

It is well known that compatibility is preserved under the described reductions. For
this reason we will assume that the two input trees T1, T2 on X are not compatible. This
immediately gives us a lower bound on the cardinality of the taxon set, namely |X| ≥ 3 since
any two trees on 2 taxa are by definition compatible (both trees are single edges). Moreover
the treewidth of their display graph is at least 3.

We start with the common pendant subtree rule.

5.1 Subtree Reduction Rule

Let T1, T2 be two unrooted binary phylogenetic trees on the same set of taxa X. A subtree
T is called a pendant subtree of Ti, i ∈ {1, 2} if there exists an edge e the deletion of which
detaches T from Ti. A subtree T , which induces a subset of taxa X ′ ⊂ X, is called common
pendant subtree of T1 and T2 if T1|X ′ = T2|X ′ and if the additional following condition holds:

. Let ei be the edge of tree Ti, i ∈ {1, 2} the deletion of which detaches T from Ti and let
vi ∈ ei, i ∈ {1, 2} be the endpoint of ei “closest” to the taxon set X ′. Let’s say that we
root each Ti|X ′ at vi, thus inducing a rooted binary phylogenetic tree (Ti|X ′)ρ on X ′.
We require that (T1|X ′)ρ = (T2|X ′)ρ.

The previous condition formalizes the idea that the point of contact of the pendant subtree
with the rest of the tree should explicitly be taken into account when determining whether
a pendant subtree is common. (This is consistent with the definition of common pendant
subtree elsewhere in the literature).

In the following we will show that the treewidth of the display graph D(T1, T2) of the two
phylogenetic trees T1, T2 is preserved under the common pendant subtree reduction rule:
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a b c d a b c d

e f

e f

T1 T2

Figure 4: An illustration of the concept of common pendant subtree. If X ′ = {a, b, c, d} we
see that T1|X ′ = T2|X ′ (because of the suppression of the parent of a in T2) but this is not
true if we take into account the “root” location (in bold squares). Here both {e, f} and {c, d}
induce maximal common pendant subtrees.

Common Pendant Subtree (CPS) reduction: Find a maximal common pendant sub-
tree in T1, T2. Let T be such a common subtree with at least two taxa and let XT be its
set of taxa. Clip T from T1 and T2. Attach a single label x /∈ X in place of T on each
Ti. Set X := (X \XT )∪{x} and let T ′1, T

′
2 be the two resulting trees and D(T ′1, T

′
2) = D′

be their resulting display graph.

Theorem 5.1. Suppose that T1 and T2 are a pair of incompatible unrooted binary phylogenetic
trees on X and the pair (T ′1, T

′
2) is obtained from (T1, T2) by one application of the Common

Pendant Subtree reduction. Then dtw(T1, T2) = dtw(T ′1, T
′
2).

y

D(T1, T2)

x

u1

u2

v1

v2

G

D(T ′
1, T

′
2)

v1

v2

Gr

Figure 5: Reduction of a common cherry {x, y} as described in the proof of Theorem 5.1.

Proof. A cherry is simply a size-2 subset of taxa {x, y} that have a common parent, and a
cherry {x, y} is common if it is in both trees.

Let us first consider the case that the pair (T ′1, T
′
2) is obtained from a subtree reduction

on a common cherry {x, y} whose parent is ui in Ti and the parent of ui is vi, i = 1, 2. Then
the display graph D′ = D(T ′1, T

′
2) is obtained from D = D(T1, T2) by replacing the vertex

subset {u1, x, y, u2} with a single vertex r which is connected to v1 and v2 and these are the
only neighbors of r (see Figure 5). Note that v1 6= v2; v1 = v2 could only happen if |X| = 3,
but then the trees would be compatible, contradicting the assumption of incompatibility. So
|X| ≥ 4 and v1 6= v2 are internal nodes of T1 and T2 respectively. Display graphs do not
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contain edges between internal nodes of different trees, so {v1, v2} is not an edge in D. D′

can be obtained from D by applying Observation 3.2: suppress x, suppress y (and delete the
created multi-edge) and then suppress u2. Hence tw(D′) = tw(D). (The surviving vertex u1
assumes the role of r, since labels are irrelevant to treewidth.)

For the more general case: it is easy to see that applying the CPS reduction rule to
a subtree that is not a cherry, can be achieved by iteratively applying the CPS reduction
to common cherries. This is correct because collapsing a common cherry cannot make two
incompatible trees compatible. The result follows.

Note that in the proof of Theorem 5.1 incompatibility is only used to force |X| ≥ 4.
Common cherries can also be collapsed in compatible trees, without altering the treewidth, as
long as |X| ≥ 4. Collapsing a common cherry in two compatible trees with |X| = 3, however,
either creates a multigraph or, if multigraphs are not permitted, causes the treewidth of the
display graph to decrease (to 1). To avoid such uninteresting boundary technicalities we have
focussed only on incompatible pairs of trees.

5.2 Chain Reduction Rule

Let T be an unrooted binary tree on X. For each taxon xi ∈ X, let pi be its unique parent
in T . Let C = (x1, x2, . . . , xt) be an ordered sequence of taxa and let P = (p1, p2, . . . , pt) be
the corresponding ordered sequence of their parents, if P is a path in T and the pi are all
mutually distinct then C is called a chain of length t. A chain C is a common chain of two
binary phylogenetic trees T1, T2 on a common set of taxa, if C is a chain in each one of them.
See Figure 6 for an example. Note that our insistence that the pi are mutually distinct differs
slightly from the definition of chain encountered elsewhere in the literature (see e.g., [33]), in
which p1 = p2 and pt−1 = pt is permitted. However, our more restrictive definition of chain is
only a very mild restriction, since a chain of length t under the traditional definition yields a
chain of length at least (t− 2) under our definition. Our definition ensures that in both trees
neither end of the chain is a cherry, which avoids a number of annoying (and uninteresting)
technicalities. Let vi denote the parent of xi in T1 and ui its parent in T2.

x1

x2

x3

x4x5 x6 x7 x5 x6 x7

x1

x3

x2

x4

Figure 6: An example of two trees with a common chain, which is indexed by taxa
x5, x6, x7, x4.

We now define the common chain reduction rule.

Common d-Chain Reduction Rule (d-cc): Let T1, T2 be two incompatible unrooted bi-
nary phylogenetic trees on a common set of taxa X. Let C be a common chain of T1, T2
of length t ≥ 3. On each Ti, i ∈ {1, 2} clip the chain down to length d ∈ {2, . . . , t − 1}
as follows: Keep the first dd/2e and the last bd/2c taxa and delete all the intermediate
ones (i.e., delete all the taxa with indexes in {dd/2e + 1, . . . , t − bd/2c}) and suppress
any resulting vertices of degree 2. Let C ′ be the new clipped common chain on both
trees.
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Observe that C ′ has dd/2e + bd/2c = d taxa and that in each T1, T2 the parents of the
taxa xdd/2e, xt−bd/2c+1 are connected by an edge. Let D(T1, T2) = D be the display graph of
T1, T2 and D(T ′1, T

′
2) = D′ be the display graph of T ′1, T

′
2 after the application of one chain

reduction rule. Equivalently, D′ can be obtained directly from D by deleting the (t − d)
pruned taxa and suppressing unlabelled degree-2 vertices. In the following we need to argue
that the common chain reduction rule preserves compatibility. To this end, recall that each
edge e in a phylogenetic tree T on X induces a split A|B of X, that is, a decomposition of
X into two non-empty disjoint subsets A and B that are precisely the two sets of taxa in the
two connected components resulted from deleting e from T . Denote the set of splits induced
by the edges in T by Σ(T ). Then the splits-equivalence theorem (see, e.g. Theorem 3.1.4
in [39]) implies that two phylogenetic trees T and T ′ on X are incompatible if and only if
Σ(T ) 6= Σ(T ′).

Proposition 5.1. Let T ′1, T
′
2 be two unrooted binary phylogenetic trees that are obtained after

a single application of the operation k-cc(C) (k ≥ 2) on two phylogenetic trees T1 and T2 that
have a common chain C. If T1, T2 are incompatible phylogenetic trees, then so are T ′1, T

′
2.

Proof. Following the notation used above, let C = (x1, x2, . . . , xt) be the common chain and
let P = (p1, p2, . . . , pt) be the corresponding parents. In addition, let p0 be the vertex incident
to p1 that is neither x1 nor p2.

For i = 1, 2, let Ai|(Bi∪{x1, . . . , xk}) be the split induced by the edge {p0, p1} in Ti. Note
that if A1 6= A2, then A1 ∪ {x1}|B1 ∪ {xk} is a split in Σ(T ′1) but not in Σ(T ′2), by which we
know that T ′1 and T ′2 are incompatible. Therefore, we may assume in the remainder of the
proof that A1 = A2, and hence also B1 = B2. Now consider a split A|B ∈ Σ(T1) \Σ(T2). By
swapping A and B if necessary, we may further assume that {x1, . . . , xt} ( B. Noting that
A|(B \ {x2, . . . , xt−1}) is a split in Σ(T ′1) \Σ(T ′2), we know T ′1 and T ′2 are not compatible.

In fact, due to the fact that T1 and T2 are incompatible (and thus so are T ′1 and T ′2 in
view of Proposition 5.1) we can (by Observation 3.2) safely suppress (in D) all the degree-2
nodes labelled by taxa in C, and (in D′) all the degree-2 nodes labelled by taxa in C ′, without
altering the treewidth of D or D′. Without loss of generality we assume that this suppression
has taken place.

Observe also that the part of D that corresponds to the common chain C now resembles
a 2 × t grid and in D′ is a 2 × d grid. For a common chain C of length t, let g(C) be the
corresponding 2× t grid in D and similarly define g(C ′) in D′ for the clipped common chain
of length d.

Now, assume that we have an optimal tree decomposition T of D of width k, i.e., the
maximum bag size in T is k + 1. First of all, by a standard minor argument, it is immediate
that application of the cc-reduction rule cannot increase the treewidth: the resulting display
graph D′ is a minor of D.

Our strategy will be as follows: Given an optimal tree decomposition T′ for D′, we will
modify it to construct a tree decomposition for D that in the worst case has width at most
tw(D′) + 1, thus proving tw(D′) ≥ tw(D)−1 = k−1. (In some cases we will be able to prove
the stronger result that tw(D) = tw(D′)).

We distinguish two cases.

Case 1: The common chain g(C) is a separator in D. In other words, deleting g(C)
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from D will result in two connected components5. In this case we will show that clipping the
common chain C down to length 2 by applying a 2-cc step preserves the treewidth of D. We
note that an application of a 2-cc step causes g(C ′) to resemble a C4 in D′, where as usual,
C4 is a cycle of length 4.

Lemma 5.1. Let T ′1, T
′
2 be two incompatible unrooted binary phylogenetic trees that are ob-

tained after a single application of the operation 2-cc(C) on T1 and T2 where g(C) is a
separator in D(T1, T2). Then dtw(T1, T2) = dtw(T ′1, T

′
2).

Proof. Let D be the display graph of T1, T2 and D′ the display graph after we clipped the
common chain C down to length 2 and let g(C ′) be the 2 × 2 grid induced by the common
chain in D′. Remember that g(C ′) has 4 vertices {v1, u1, vt, ut} such that {v1, vt} ⊂ V (T1)
and {u1, ut} ⊂ V (T2). Let T′ be an optimal tree decomposition for D′.

Consider the grid g(C ′) in D′ corresponding to the clipped chain C ′ of length d = 2.
We will expand g(C ′) inductively by first inserting the parents v2, u2 of the clipped taxon
x2 (and an edge between them): These two vertices will be inserted in the C4 induced by
{v1, vt, u1, ut}. After the j-th step, j ≤ t−d, of this process, we will have retrieved the parents
of taxa x2, . . . xj+1. Step (j + 1) continues by expanding the current g(C ′′) of length j + 2 by
inserting the parents vj+2, uj+2 in the C4 induced by vj+1, vt, uj+1, ut. We will show how, at
each step, we can update the tree decomposition T′, without increasing its width, so that the
new one will be a valid tree decomposition for the updated display graph.

We will start by proving the base case. For this, we will find helpful the following claim
about the structure of T′.

Claim 5.1. There exists an optimal tree decomposition T′ of D′ such that T′ contains two
adjacent degree-2 bags A1 and A2 where A1 = {v1, u1, vt}, A2 = {vt, u1, ut}.

Proof. Observe that since g(C) is a separator in D, then so is g(C ′) in D′. In D′ we delete the
edges {v1, vt} and {u1, ut} and we obtain, wlog, two connected components D′1 and D′2 such
that {v1, u1} ⊂ V (D′1) and {vt, ut} ⊂ V (D′2). Consider optimal tree decompositions T1, T2

of D′1, D
′
2 respectively. Note that tw(D′1) ≤ tw(D′), tw(D′2) ≤ tw(D′) and tw(D′) ≥ 3. Since

{v1, u1} ∈ E(D′1), there must be a bag B1 ∈ V (T1) that contains {v1, u1}. Similarly, there
must be a bag B2 ∈ V (T2) that contains {vt, ut}. Attach to B1 a new bag A1 = {v1, u1, vt}
and attach to B2 bag A2 = {vt, u1, ut} and join A1, A2 by an edge to create a new tree
decomposition T′ for D′: indeed, it is immediate to see that T′ satisfies all the treewidth
conditions. Moreover, the width of this tree decomposition is max(tw(D′1), tw(D′2), 2). Noting
that 3 ≤ tw(D′) ≤ max(tw(D′1), tw(D′2), 2) ≤ max(tw(D′1), tw(D′2)) ≤ tw(D′) it follows that
it is an optimal tree decomposition of D′.

Given T′ as described in the previous claim, delete bags A1, A2 and consider the following
set of bags: J1 = {v1, v2, u1}, J2 = {v2, u1, u2}, J3 = {v2, vt, u2} and J4 = {vt, u2, ut}. Attach
J1 to B1 (the bag that was adjacent to A1) and J4 to B2 (the bag that was adjacent to A2) and
create a path of bags from J1 to J4. It is easy to argue that this is a valid tree decomposition
D′′, defined as the display graph after the parents of x2 have been added; see Figure 7. First
of all, for conditions (tw1) and (tw2) this is immediate by construction. Indeed, v2 belongs
to J1, J2, J3 and u2 belongs to J2, J3, J4. For (tw2) observe that the edges {v1, vt}, {u1, ut}

5Note that, if g(C) is a separator in D, then the two trees actually have a common split (a term we define
formally in Section 5.3). However, the cluster reduction results in that section have a rather different (and
implicit) flavour and do not imply the results in this section.
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Figure 7: An example of the inductive construction of Lemma 5.1. We construct a new tree
decomposition which facilitates the extra links added by increasing the length of g(C ′) by
one, corresponding to adding the parents of the current missing taxon (in this case x2). The
grey edges are not in the display graph D′ but they indicate the maximal cliques induced by
the size-3 bags that we add in Lemma 5.1.

are not present in g(C ′′) so we do not need to consider them. For the new edges we have
that {v1, v2} ∈ J1, {u1, u2} ∈ J2, {v2, u2} ∈ J3, {v2, vt} ∈ J3 and {u2, ut} ∈ J4. Also, by
leveraging the explicit construction of T′ (in particular: vt, ut 6∈ B1 and u1, v1 6∈ B2) we can
easily verify that (tw3) is true for T′′. Finally, the width of this new tree decomposition is
no greater than the width of T′ because we only add bags of size 3 and, by construction, T′
already contained at least one bag of size 4.

This proves that, for the base case, the treewidth of the new display graph remains
unchanged. For the j-th step, we apply the arguments above where as A1 and A2 we use
the bags {vj , uj , vt} and {vt, uj , ut} which by induction exist and are adjacent. Delete them
and replace them with the following chain of bags, as before: J1 = {vj , vj+1, uj}, J2 =
{vj+1, uj , uj+1}, J3 = {vj+1, vt, uj+1} and J4 = {vt, uj+1, ut}. We continue until we add the
last missing piece of g(C).

Case 2: The common chain C is not a separator in D. We say that the 2 × t grid
g(C) in D that corresponds to the common chain C is not a separator if the deletion of g(C)
from D leaves the display graph D connected. See Figure 6 as an example of such a case
and Figure 8 for an example of their display graph. It is easy to observe that if g(C) is not
a separator in D then neither is g(C ′) in D′. We will show that in this case the treewidth of
D after clipping g(C) down cannot decrease by more than a unit term.

Lemma 5.2. Let T ′1, T
′
2 be the two incompatible unrooted binary phylogenetic trees that are

obtained after a single application of the 2-cc reduction rule on T1 and T2 on a common chain
C such that g(C) is not a separator in D(T1, T2). Then we have dtw(T ′1, T

′
2) ≤ dtw(T1, T2) ≤

dtw(T ′1, T
′
2) + 1.

Proof. As in the separator case, we will alter the tree decomposition T′ for D′ to obtain a
new tree decomposition T′′ that will be valid for D′′ (the display graph with the expanded
2× 3 grid g(C ′′)) and which has width at most tw(D′) + 1. Then, we will argue how we can
increase the length of this 2× 3 grid g(C ′′) to any arbitrary length without further increasing
the width. So, the +1 term might be incurred only when we transfer from the 2×2 to the 2×3
grid but when we retrieve the rest of C we do not have to pay again in terms of increasing
the width. The reason for this is that in the transition from length 2 to 3 we guarantee
that the tree decomposition for the updated situation has a certain invariant property that
we can exploit in order to further increase the length of the grid “for free”. The initial tree
decomposition might however not possess this property and we have to pay potentially a unit
increase in the width of the decomposition to establish it.
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Consider the grid g(C ′) in D′ corresponding to the clipped chain C ′ of length d = 2. It
contains 4 vertices: {v1, vt} ∈ V (T1) and {u1, ut} ∈ V (T2). As in the separator case we will
expand this g(C ′) inductively by first inserting the parents v2, u2 of the clipped taxon x2 and
after the j-th step, j ≤ t− d of this process we will have already retrieved the parents of taxa
x2, . . . xj+1. The (j + 1)th step proceeds by expanding the current g(C ′′) of length j + 2 by
inserting the parents vj+2, uj+2 in the C4 induced by vj+1, vt, uj+1, ut.

For the base case, we will distinguish three cases. In all cases we assume without loss of
generality that T′ is an optimal small tree decomposition of D′. A small tree decomposition
is a tree decomposition where no bag in the tree decomposition is a subset of another (which
thus also excludes the possibility of having two copies of the same bag). It is well-known that
there exist optimal tree decompositions that are also small.

|V (D′)| > 4 and ∃ bag B ∈ V (T′) such that B contains {v1, vt, u1, ut}. As a first step, we
claim that |B| ≥ 5. Indeed, assume for the sake of contradiction that B contains only
these four vertices and take any bag A ∈ V (T′) that is adjacent to B in the tree decom-
position T′. (Such a bag must exist because |V (D′)| > 4.) Consider their intersection
A ∩ B. By the smallness assumption on T′ we have that |A ∩ B| ≤ 3. By standard
properties of tree decompositions (see e.g., [18]) we know that A∩B is a separator in D′

of the following two sets of vertices: FA = ∪v∈V (TA)Bv, FB = ∪v∈V (TB)Bv where TA is
the connected component of T′ that contains bag A and TB is the connected component
of T′ that contains B if we delete the edge {A,B} from E(T′). But observe that A∩B
cannot be a separator for separation FA, FB because A ∩B ⊂ g(C ′) and g(C ′) is not a
separator of D′. A contradiction.

Now we proceed as follows: Create a new bag H1 = {v1, vt, u1, ut, v2} and attach it to
B with an edge. Create a second bag H2 = H1 ∪ {u2} \ {v1} and attach it to H1.

We claim this is a valid tree decomposition for D′′ (which is D′ where g(C ′) has increased
its length by 1). Indeed, property (tw1) is immediate by construction, as is (tw3). For
(tw2) observe that bag H1 takes care of the new edges {v1, v2}, {v2, vt} of g(C ′′) and
the bag H2 of the new edges {v2, u2}, {u1, u2}, {u2, ut}. Note that, because |B| ≥ 5, the
new bags H1 and H2 do not increase the width of the decomposition.

|V (D′)| = 4 and ∃ bag B ∈ V (T′) such that B contains {v1, vt, u1, ut}. This situation can
only occur if D′ is the complete graph on 4 vertices K4 (since we know tw(D′) ≥ 3).
This exceptional case can be dealt with similarly to the previous case, except that the
addition of bags H1 and H2 increase the width of the decomposition by exactly one.
That is, we obtain a decomposition of D′′ of width tw(D′) + 1.

6 ∃B ∈ V (T′) that contains all of {v1, vt, u1, ut}. Note that every chordal completion of D′

must introduce the chord {v1, ut} and/or the chord {vt, u1}. It is well-known that
each maximal clique in a chordal completion induces a bag in a corresponding tree
decomposition, and each bag in a tree decomposition induces a maximal clique in a
corresponding chordal completion. Assume without loss of generality that the chord
{vt, u1} is present6 Then {v1, ut} is not present (because otherwise the corresponding
bag would contain all of {v1, vt, u1, ut}, violating the case assumption.) Hence there
exist two bags A 6= B of T′ that contain the sets of vertices {v1, u1, vt} and {u1, ut, vt}

6If {v1, ut} is present and not {vt, u1} then by topological symmetry of the chain the argument still goes
through: conceptually we are then simply reconstructing the chain in the “opposite” direction.
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respectively (and possibly other vertices). Add the element v1 to B and, in order to
guarantee the running intersection property for v1, add it also to each of the bags in the
unique path from A to B in the tree decomposition T ′ (all these bags contain {u1, vt} by
the running intersection property). This might increase the width of the decomposition
by at most one. We introduce H1 next to B ∪ {v1} and H2 next to H1.

• If adding v1 does increase the width, it is because v1 is added to a bag that already
has maximum size. All maximum-size bags in T′ contain at least 4 vertices (because
tw(D′) ≥ 3) so after adding v1 the maximum-size bags in the decomposition contain
at least 5 vertices. Specifically, adding H1 and H2 cannot further increase the width
of the decomposition and we obtain a decomposition of width at most tw(D′) + 1.

• If adding v1 does not increase the width, then the maximum bag size in our new
v1-augmented decomposition is at least 4 (because |B ∪ {v1}| ≥ 4). Hence, adding
H1 and H2 cannot increase the width of the decomposition by more than 1. So we
again have a decomposition of width at most tw(D′) + 1.

In all the above three cases we end up with a (not necessarily optimal) tree decomposition
in which H1 and H2 are two adjacent size 5 bags (of degree 2 and 1 respectively). This
process can now be iterated without further raising the width of the decomposition because
all added bags will have size at most 5. For example, to add the parents of x3: add a
new bag {v2, u2, vt, ut} next to H2 (“forget” u1 from bag H2) and then add two new bags
{v2, v3, vt, u2, ut} (“introduce” v3) and {v3, vt, u2, u3, ut} (“forget” v2 and “introduce” u3).

In conclusion, from a clipped chain C ′ and its corresponding grid g(C ′) in D′ we can
retrieve the whole original chain by increasing the treewidth of the resulting display graph
by at most 1. Equivalently, clipping a common chain down to length 2 where in the display
graph D(T1, T2) the common chain is not a separator, cannot decrease the treewidth of the
resulting display graph by more than 1.

⇒⇒

Figure 8: The display graph (after the suppression of all vertices of degree two) of the two
trees T1, T2 from Figure 6. Observe that the final graph contains one of the minimal forbidden
minors for treewidth 3, the Moëbius ladder on eight vertices, and tw(D) = 4. Observe also
that if we clip the common chain down to length 2, then the treewidth of D decreases to 3
because the display graph would be in this case the Moëbius ladder on six vertices.

Figure 8 shows that shortening a chain to length 2 might indeed reduce the treewidth of
the display graph by 1. A natural question therefore arises: is there a constant d > 2 such
that, if we clip a chain down to length d, the treewidth of the display graph is guaranteed to
not decrease? This seems like a highly non-trivial question with deep connections to forbidden
minors. But, at least in the case where the common chain is very large with respect to a
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function of the treewidth of the display graph D, we can show that shortening chains to a
length dependent on the treewidth of D does preserve the treewidth.

Theorem 5.2. Let T1, T2 be two incompatible unrooted binary trees and D(T1, T2) their dis-
play graph such that tw(D(T1, T2)) = k. Then, there is a function f(k) such that if there
exists a common chain C of length t > f(k) then we can clip C down to length f(k) such
that tw(D′) = tw(D) (where as usual D′ is the display graph of the trees with the shortened
chains).

Proof. Given that tw(D(T1, T2)) = k ≥ 3 we can as usual without loss of generality suppress
all taxa in the display graph. Now, D(T1, T2) must have as a minor one of the forbidden
minors for treewidth k − 1. Forbidden minors for treewidth k − 1 (where k − 1 ≥ 2) are all
connected simple graphs with minimum degree 3. By the work of Lagergren [35] we know
that the number of edges (and vertices) in forbidden minors for treewidth k is bounded by a
function f ′ of k which is doubly exponential in O(k5). Let d′ = f ′(k− 1). Now, fix the image
of a forbidden minor for treewidth k − 1 inside D. Each vertex v of the minor has degree at
most d′, and (crudely) a degree d′ vertex v can be split into at most ≤ d′ degree-3 vertices on
the image inside D (these are the vertices which via edge contractions will merge to form v).
Hence a common chain longer than (d′)2 must necessarily contain ever more vertices which
are not on the image at all, or which are degree-2 vertices on the image. For a sufficiently
large function f the point is reached that, if the chain is longer than f((d′)2), reducing the
length of the chain by 1 cannot destroy the forbidden minor: either the image survives or a
slight modification of it (with fewer degree-2 vertices) can be embedded in the graph. Hence,
shortening the chain to length f((d′)2) cannot reduce the treewidth below k.

5.3 Cluster Reduction Rule

In this subsection we will study how the treewidth of the display graph relates to the treewidth
of its clusters which are related to common splits:

Definition 5.1. Let T1 and T2 be two unrooted binary phylogenetic trees on the same set of
taxa X. We say that T1 and T2 have a common split X∗|X∗∗ if X∗ and X∗∗ together form a
bipartition of X and, for i ∈ {1, 2}, Ti has some edge ei such that deleting ei separates X∗

from X∗∗ in that tree.

In the following proofs we will refer extensively to Figure 9.

Lemma 5.3. Let T1 and T2 be two incompatible unrooted binary phylogenetic trees on the
same set of taxa X and let X∗|X∗∗ be a common split of T1 and T2. Let p = tw(D(T1|X∗, T2|X∗))
and q = tw(D(T1|X∗∗, T2|X∗∗)). Then

max(p, q) ≤ tw(D(T1, T2)) ≤ max(p, q) + 1.

Proof. First we observe that the lower bound max(p, q) ≤ tw(D(T1, T2)) is immediate, since
both D(T1|X∗, T2|X∗) and D(T1|X∗∗, T2|X∗∗) are minors of D(T1, T2).

For the upper bound, we will first deal with the case when |X∗|, |X∗∗| ≥ 3. Let e1 =
{u1, v1} be the edge that induces the X∗|X∗∗ split in T1, and let e2 = {u2, v2} be the
edge which induces the split in T2. If we delete both the edges {u1, v1} and {u2, v2} from
D(T1, T2) then we obtain a graph with two connected components. Each one of these
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G∗ G∗∗ [G∗] [G∗∗]
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Figure 9: Left: the display graph when T1 and T2 have a common split X∗|X∗∗. Center: the
graphs G∗ and G∗∗ obtained by deleting the two edges inducing the common split. Right:
the graphs [G∗] and [G∗∗] obtained from G∗ and G∗∗ by joining the “roots” together.

two components has two degree-2 vertices, the endpoints of the two deleted edges. One
of these components is a “rooted” version of D(T1|X∗, T2|X∗), which we call G∗, and the
other is a “rooted” version of D(T1|X∗∗, T2|X∗∗), which we call G∗∗ where, in contrast with
D(T1|X∗, T2|X∗), D(T1|X∗∗, T2|X∗∗), we do not suppress the degree-2 vertices v1, v2, u1, u2.
Note that, due to the cardinality constraints on X∗ and X∗∗, p = tw(G∗) and q = tw(G∗∗)
because D(T1|X∗, T2|X∗) can be obtained from G∗ by suppressing the degree-2 vertices which
does not alter the treewidth (because the pathological case of Observation 3.1 does not ap-
ply). Similarly for the other component. Assume without loss of generality that u1 and u2
are in G∗, and v1 and v2 are in G∗∗. Let T∗ and T∗∗ be minimum-width tree decompositions
of G∗ and G∗∗ respectively. Locate a bag B∗ of T∗ that contains u1 and a bag B∗∗ of T∗∗
that contains v1. Introduce a bag {u1, v1} and insert it between B∗ and B∗∗. Clearly, the
width in this merged tree decomposition is not altered. It remains only to ensure that the
decomposition covers the edge {u2, v2}. This can be achieved simply by adding (say) u2 to
every bag in the tree decomposition of G∗∗, which increases the size of all bags by at most
one. The result follows.

Now, we deal with the case where |X∗| ≤ 2 and/or |X∗∗| ≤ 2. First of all, we observe
that since T1, T2 are incompatible by assumption, it is not the case that |X∗|, |X∗∗| ≤ 2 at the
same time. So, at least one of |X∗|, |X∗∗| must be at least 3. Suppose |X∗| = 2 and |X∗∗| ≥ 3.
Observe that in this case tw(G∗) = 2 6= p = 1 but tw(G∗∗) = q ≥ 2, so max(p, q) ≥ 2. Hence
the construction from the previous case - adding bag {u1, v1} and then adding u2 to all bags
- again cannot increase the width of the decomposition by more than 1. The case |X∗| = 1 is
somewhat strange because then D(T1|X∗, T2|X∗) is just a single vertex. However, the upper
bound still goes through because tw(G∗∗) = q ≥ 2 and D(T1, T2) can be obtained from G∗∗

by connecting the two roots of G∗∗ by an edge and then subdividing this new edge with a
single degree-2 vertex. Adding an edge to a graph can increase its treewidth by at most 1,
and edge subdivision is treewidth invariant.

Now, let [G∗] be the graph obtained from G∗ by adding the edge {u1, u2}, and [G∗∗] be
obtained from G∗∗ by adding the edge {v1, v2}. See again Figure 9.

Observation 5.1. tw(G∗) ≤ tw([G∗]) ≤ tw(D(T1, T2)) and tw(G∗∗) ≤ tw([G∗∗]) ≤ tw(D(T1, T2)).
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Proof. The lower bounds are immediate by a standard minor argument. The upper bounds are
also obtained via minors. Specifically, observe that [G∗] can be obtained from D = D(T1, T2)
by completely contracting the part of D that lies between v1 and v2 (i.e. the X∗∗ part of D).
A symmetrical argument holds for [G∗∗] by completely contracting the X∗ part of D.

The following theorem strengthens Lemma 5.3 by adding necessary and sufficient condi-
tions for the lower bound to be attained.

Theorem 5.3. Let T1 and T2 be two incompatible unrooted binary phylogenetic trees on the
same set of taxa X and let X∗|X∗∗ be a common split of T1 and T2. Let p = tw(D(T1|X∗, T2|X∗))
and q = tw(D(T1|X∗∗, T2|X∗∗)). Assume, without loss of generality, that p ≤ q. Then
tw(D(T1, T2)) = max(p, q) if and only if the following holds:

1. (Case p < q): tw([G∗∗]) = tw(G∗∗),

2. (Case p = q): tw([G∗∗]) = tw(G∗∗) and tw([G∗]) = tw(G∗).

Proof. We consider both cases and both directions of implication.

1. (Case p < q, ⇒) Assume p < q and tw(D(T1, T2)) = max(p, q) = q. Now, by Obser-
vation 5.1, tw([G∗∗]) ≤ tw(D(T1, T2)) = q = tw(G∗∗). The bound tw(G∗∗) ≤ tw([G∗∗])
also follows from Observation 5.1, so tw([G∗∗]) = tw(G∗∗).

2. (Case p = q, ⇒) Assume p = q and tw(D(T1, T2)) = max(p, q) = p = q. Both
tw([G∗∗]) = tw(G∗∗) and tw([G∗]) = tw(G∗) follow from Observation 5.1.

3. (Case p < q, ⇐) Observe that the statement tw([G∗∗]) = tw(G∗∗) holds if and only if
there exists a minimum-width tree decomposition of G∗∗ in which v1 and v2 are both
in the same bag B∗∗. So, let us assume the existence of such a tree decomposition T∗∗
and bag B∗∗. Construct a minimum-width tree decomposition T∗ of G∗. Suppose T∗
contains a bag B∗ that contains both u1 and u2. We can merge T∗ and T∗∗ by inserting
bags {u1, v1, u2} and {u2, v1, v2} between B∗ and B∗∗. The size-3 bags do not influence
the width of the decomposition, so tw(D(T1, T2)) ≤ max(p, q), and tw(D(T1, T2)) =
max(p, q) then follows from Lemma 5.3. If no such bag B∗ exists then create it by
first adding (say) u2 to every bag of T∗. The addition of u2 to every bag potentially
increases the width of T∗ by 1, but due to the fact that p < q we have p + 1 ≤ q, so
max(p+ 1, q) ≤ max(p, q) and the earlier argument goes through.

4. (Case p = q, ⇐) This is very similar to the (Case p < q, ⇐) argument. The main
difference is that, due to the strengthened starting assumption, both bags B∗∗ and B∗

are guaranteed to exist. Hence the “If no such bag B∗...” part of the argument will
never be required.

The above results show that the treewidth of the display graph behaves rather differently
around common splits than other phylogenetic incongruence measures. Many such measures
are (essentially) additive (i.e. the distance is the sum of the X∗ and X∗∗ parts) [4, 36,
14], contrasting with the maximum function used in treewidth. As we demonstrate later in
Section 7 this is one of the reasons why treewidth distance can be substantially lower than, for
example, dMAF . A second point worth noting is that, while Theorem 5.3 describes necessary
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and sufficient conditions for the treewidth of the display graph to achieve the lower bound, it
is not yet clear what (phylogenetic) properties of T1 and T2 actually create these conditions.
Expressed differently, and for simplicity focussing on the case p < q: what properties do T1
and T2 need to have to ensure tw([G∗∗]) = tw(G∗∗)? It is perhaps relevant to observe that
the graphs [G∗], [G∗∗] can themselves be viewed, modulo a treewidth-invariant suppression of
a single degree-2 vertex, as display graphs of appropriately rooted phylogenetic trees. Taking
[G∗] as an example: take the two trees T1|X∗ and T2|X∗ and attach a new placeholder taxon
ρ at points u1 and u2, respectively.

6 The unit ball of dtw compared to that of dTBR and dMP

In this section we will compare the unit ball neighborhood of dtw with those of dTBR and
dMP . Recall that given a distance d and a phylogenetic tree T on X the unit neighborhood of
T under d is the set of all phylogentic trees T ′ on X with the property that d(T, T ′) = 1 (see,
e.g.[30, 37], for results that characterise the unit ball neighbourhoods of dTBR and dMP ).
We will begin by comparing treewidth with Maximum Parsimony (MP) unit neighborhoods.

Theorem 6.1. Suppose that T and T ′ are a pair of unrooted binary phylogenetic trees on X
with dMP (T, T ′) = 1 or dTBR(T, T ′) = 1. Then we also have dtw(T, T ′) = 1.

x1

x2

x5

x3

x4

Figure 10: Without loss of generality we can assume that an unrooted binary phylogenetic
tree on 5 taxa has (up to relabelling of taxa) the topology T1.

Proof. First of all, we note that, because both TBR and MP distance are metrics (and thus
satisfy the identity of indiscernibles property) we can assume that T1 and T2 are incompat-
ible. We will first show that the claim is true for the TBR distance. Take two (necessarily
incompatible) binary phylogenetic trees T, T ′ such that dTBR(T, T ′) = 1. By combining the
results of [1] where it was shown that dMAF (T1, T2) = dTBR(T1, T2) + 1 and the result of [34]
where it was shown that tw(D(T1, T2)) ≤ dMAF (T1, T2) + 1 we have that

tw(D(T1, T2)) ≤ dTBR(T1, T2) + 2.

for any two phylogenetic trees T1, T2.
Now if T, T ′ are such that dTBR(T, T ′) = 1 we conclude by the above that tw(D(T, T ′)) ≤ 3

and by the assumption that T, T ′ are incompatible we have that dtw(T, T ′) = 1.
Now we will deal with the Maximum Parsimony distance. Let T, T ′ be two (necessarily

incompatible) unrooted binary phylogenetic trees such that dMP (T, T ′) = 1. Using Theo-
rem 5.1, we assume without any loss of generality that T and T ′ share no common pendant
subtrees. Therefore, we can apply [37, Theorem 6.4] on T, T ′ which characterizes the unit ball
neighborhood of the maximum parsimony distance. There it was shown that dMP (T, T ′) = 1
if and only if either (1) dTBR(T, T ′) = 1, in which case we are done since we are in the
TBR case or (2) dTBR(T, T ′) = 2 and using common pendant subtree (CPS) reductions we
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can transform T and T ′ into a pair of trees with precisely five taxa. (All unrooted binary
phylogenetic trees on 5 taxa are caterpillars and modulo relabelling of taxa there is only one
caterpillar topology on 5 taxa.) Since dtw is preserved by CPS reduction in view of Theo-
rem 5.1, we can assume without loss of generality that T and T ′ both have 5 taxa, and T is
the tree T1 depicted in Fig. 10. Let D = D(T, T ′) be the display graph formed from T and
T ′ in which we subsequently suppress all vertices of degree-2. (Suppression does not alter the
treewidth, by Observation 3.2.) It is easy to observe that D has at most (in fact, exactly) 6
vertices.

Now, assume that tw(D) > 3 so that dtw(T, T ′) > 1. Then, D must have as a minor
one of the forbidden minors for treewidth 3. In other words, one of the forbidden minors
for treewidth 3 can be obtained by a series of edge deletions/contractions on D. There are
precisely 4 forbidden minors for treewidth 3 [3], 2 of which are on 6 vertices or less: the K5 and
the Octahedron graph. Both of them have uniform degree 4. On the other hand, recall that
the degree of each vertex of D is 3 (because T, T ′ are unrooted binary phylogenetic trees), so
each degree-4 vertex of the minor maps to at least 2 vertices of D. This is clearly impossible.
So D cannot contain as a minor any of the forbidden minors for treewidth 3 which shows that
tw(D) ≤ 3. By assumption, T, T ′ are incompatible so tw(D(T, T ′)) = 3⇒ dtw(T, T ′) = 1.

In the following section we will show that the converse of the above claim, namely that
dtw(T1, T2) = 1 ⇒ dMP (T1, T2) = 1 is certainly not true (and that the same holds for the
TBR distance.)

7 On the gap between dtw and dTBR, dMP

The purpose of this section is to explore how far treewidth distance dtw can be from the other
two distances considered in this manuscript, namely maximum parsimony distance dMP and
TBR distance dTBR. In particular we will provide an example of a sequence of pairs of trees
whose treewidth distance is as low as 1 (i.e., the treewidth of their display graph is at most
3) but such that the corresponding TBR and MP distances can be arbitrarily large.
The construction starts with the 2 incompatible quartets (unrooted binary trees on 4 taxa)
T1 = ab|cd and T2 = ac|bd. Without any loss of generality, we assume that both of the
quartets contain a degree-2 vertex in the “middle” namely, vertices u, v respectively. (See
Figure 11). Note that with or without these degree-2 vertices the display graph has treewidth
exactly 3 (by Observation 3.2).

Given a tree T with a single degree-2 vertex we define the following doubling operation as
follows:

Doubling tree operation: Given a tree T , with a unique degree-2 vertex v, the doubling of
T , denoted by (T, T ), is constructed as follows: we take 2 copies of T and we join with
an edge their unique degree-2 vertices. We subdivide this new edge such that (T, T ) has
a unique degree-2 vertex.

This operation will be the base of our construction. We will construct trees T i1 and T i2,
for any step i, inductively as follows: T 1

1 = (T1, T1) and T i+1
1 = (T i1, T

i
1). Similarly for T 2

2 and
subsequently for T i+1

2 = (T i2, T
i
2). Let Di be the display graph of T i1 and T i2. Observe that

since we start from T1, T2 on a common set of 4 taxa {a, b, c, d}, all the new doubled trees are
on the same taxon set by labelling the new leaves appropriately, and so their display graph is
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Figure 11: Top: The two quartets ab|cd and ac|bd and their corresponding display graph
(denoted D0 = D in the proof of Claim 7.1). Bottom: a width-3 tree decomposition of D in
which u, v are in the same bag.

v
=⇒ v1 v2

v

a b c d a b c d a11

T1

T 1
1

b11 c11 d11

Figure 12: An example of doubling the tree T1 = ab|cd. When we create the second copy we
label the taxa of the new copy appropriately to reflect the stage of doubling they appear at
(superscript) and the tree to which they belong (subscript).

well defined and unique. Initially, let D = D0 be the display graph of T 0
1 = T1 and T 0

2 = T2.
We will show that tw(Di) = 3,∀i.
Claim 7.1. For every step i we have that dtw(T i1, T

i
2) = 1. Equivalently, we have that

tw(Di) = 3.

Proof. The proof is by an inductive argument. For the base of the induction, we first construct
a tree decomposition of width 3 with specific properties: see Figure 11.

As is apparent from the base case, we can assume without any loss of generality that the
two degree-2 vertices u, v in T1, T2 respectively, are in the same bag of the tree decomposition
of their display graph D. We will exploit this fact in the following. For the induction step
we assume that the display graph Di formed by T i1 and T i2 has treewidth 3. We will show
a tree decomposition for Di+1 of width equal to the width of the tree decomposition of Di.
We can construct Di+1 from Di as follows: take two copies of Di, let’s call them Di

1 and
Di

2. Each copy Di
j , j ∈ {1, 2} has two degree-2 vertices: one, let’s call it uij is the degree-2

vertex resulting after repeated doubling of the T1 tree and the other, let’s call it vij from
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doubling the T2 tree. For each display graph Di
j let Tij be its tree decomposition which by

the inductive hypothesis has width 3. Moreover, as explained, we can assume without any
loss of generality that the two degree-2 vertices uij and vij are in the same bag Bj . Observe

that Di+1 has two new degree two vertices, u∗, v∗: u∗ will be connected with each uij and v∗

with each vij , j ∈ {1, 2}. Construct Ti+1 as follows: locate the bags Bj that contain {uij , vij},
j ∈ {1, 2}. Such bags exist by the inductive hypothesis. Create the following chain of bags:
B1 − {u∗, ui1, vi1} − {u∗, v∗, vi1} − {u∗, v∗, vi2} − {u∗, ui2, vi2} −B2. It is immediate that Ti+1 is
a valid tree decomposition for Di+1 of width no higher than the width of Ti (and u∗, v∗ are
in the same bag) so the claim follows.

So the treewidth distance dtw of T i1 and T i2 remains 1 for any i. We will now give lower
bounds on dTBR(T i1, T

i
2). We claim that dTBR(T i1, T

i
2) > dTBR(T j1 , T

j
2 ) for i > j. In particular

dTBR(T i+1
1 , T i+1

2 ) > dTBR(T i1, T
i
2), for all i ≥ 0. We will prove the claim using the maximum

agreement forest distance which, by the result of Allen and Steel [1], is equivalent to TBR:
dMAF (T1, T2) = dTBR(T1, T2) + 1. (See the preliminaries for definitions pertaining to agree-
ment forests). First of all, it is not too difficult to verify that (after suppression of the two
degree-2 vertices7) dMAF (T1, T2) = 2.

Let T i+1
j be the two trees obtained after we double T ij , for j ∈ {1, 2} and let dMAF (T i1, T

i
2) =

p ∈ N+. We assume without loss of generality that neither of T i+1
1 , T i+1

2 has a degree-2 vertex.
We distinguish between two cases: Let e1(e2) be the edge used to connect the two copies of
T i1(T i2) to construct T i+1

1 (T i+1
2 ). We say that an edge is deleted by an agreement forest if it

is an edge that is deleted in order to obtain the agreement forest. It is easy to observe that if
e1 is deleted in an agreement forest, then so is e2 because of the symmetric properties of the
constructed graphs T i+1

1 , T i+1
2 . Now, fix m to be an arbitrary maximum agreement forest.

Edges e1(e2) are deleted by m: Note that by deleting e1(e2) we obtain two disjoint copies
of the trees T i1(T i2). In this case we observe that dMAF (T i+1

1 , T i+1
2 ) = 2dMAF (T i1, T

i
2) =

2p since any maximum agreement forest that does not use e1(e2) can and should select
a maximum agreement forest for the pair of trees T i1, T

i
2, and do this twice (since there

are two disjoint copies of these trees).

Neither of these edges is deleted by m: Then these edges are used by the image of some
component C of the agreement forest m. If we split C into two pieces (at the edges
e1 and e2) we increase the size of the agreement forest by 1 and obtain an agreement
forest that does not use either edge e1 or e2. From the previous case we know that
any agreement forest that does not use these edges has at least 2p components. Hence,
dMAF (T i+1

1 , T i+1
2 ) ≥ 2p− 1.

Lemma 7.1. The MAF distance between T i+1
1 and T i+1

2 is at least 2 × dMAF (T i1, T
i
2) − 1 >

dMAF (T i1, T
i
2).

Theorem 7.1. There exists an infinite subfamily of trees T1, T2 such that dtw(T1, T2) = 1
whereas dTBR(T1, T2) is unbounded.

Finally, we turn to dMP :

Theorem 7.2. There exists an infinite subfamily of trees T1, T2 such that dtw(T1, T2) = 1
whereas dMP (T1, T2) is unbounded.

7Agreement forests are unaffected by suppression of degree-2 vertices.
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Proof. In fact, this is a strengthening of the previous theorem because dMP is always a lower
bound on dTBR. Observe that the tree T i1 contains 2i copies of each taxon. We assign all
the copies of taxa a and b the state 0, and all copies of taxa c and d the state 1. It can be
easily verified that the parsimony score of T i1 on such a character is at most 2i (e.g. assign
state 0 to each node that is the common parent of an {a, b} copy, and state 1 to all other
internal nodes). However, on the same character the parsimony score of T i2 will be at least
2 · 2i. To see this, observe that there will unavoidably always be one mutation on the two
edges between each a and c copy, and one mutation on the two edges between each b and d
copy. Hence, dMP (T i1, T

i
2) ≥ 2 · 2i − 2i and this grows to infinity.

8 Discussion and open problems

In this paper we presented several algorithmic and combinatorial results on the treewidth
distance dtw, including its behaviour under three commonly used tree reduction rules and
its diameter and unit ball neighbourhood. There are a number of interesting problems that
remain open, and we discuss some of them below.

A major open question is whether it is NP-hard to compute the treewidth distance dtw
between two trees. This is equivalent to computing the treewidth of the display graph of these
two trees, which is a cubic graph after suppressing all degree-2 vertices. Although computing
the treewidth of general graphs is NP-hard, even for graphs whose maximum degree is at
most 9 [2, 13], it is still unknown whether the treewidth of cubic graphs can be computed
in polynomial time. Hence it is also interesting to understand the complexity of computing
the treewidth of cubic graphs, and whether it has the same complexity of computing that
of display graphs. One can also investigate whether, compared to general graphs, improved
running times and/or approximation ratios can be obtained for approximating the treewidth
of display graphs. (See [9] for a recent overview of approximation algorithms for treewidth).
Irrespective of whether it is an NP-hard problem, it is of interest to explore whether the
structure of display graphs can be leveraged to compute their treewidth quickly in practice.
Aside from treewidth, the structure of display graphs is itself worthy of attention: is it NP-
hard to recognize a display graph (after suppression of degree-2 nodes)?

Another question concerns the common chain reduction, that is, whether there exists a
universal constant d such that reducing common chains to length d, preserves the treewidth of
the display graph? This is likely to require deep insights into forbidden minors - in particular
the way they interact with chain-like regions of graphs (that are not separators). In [33]
a question with a similar flavour has been raised concerning minors and display graphs.
In particular, under which circumstances does the presence of ever larger grid minors in
display graphs, act as a certificate for increasing incongruence (i.e. dissimilarity) between two
phylogenetic trees? Additionally, one can ask whether concepts such as forbidden minors and
forbidden subgraphs require some modification to be useful for the phylogenetics community,
for whom display graphs are not a goal in themselves, but a lens through which to better
understand the trees that form them. In [24, 42], for example, the authors have initiated the
study of (forbidden) phylogenetic minors as a tool to understand the compatibility of sets of
trees. All these minor-related questions appear to be extremely rich and non-trivial.

At the empirical level, initial numerical experiments suggest that treewidth distance can be
“low” compared to traditional phylogenetic distances, such as the well-known TBR distance.
Is this phenomenon more widespread? In how far is this an artefact of the way treewidth
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distance decomposes around common splits? Are there traditional phylogenetic distances
and measures which are verifiably (and/or empirically) close to treewidth distance - and, if
so, why? Finally, and crucially: can we leverage low treewidth distance to develop efficient
algorithms (based on dynamic programming over tree decompositions) for other phylogenetic
distances and measures?
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