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Abstract

We characterize the Shapley value using (together with standard condi-
tions of efficiency and equal gains in two-player games) a condition of ‘un-
dominated merge-externalities’. Similar to the well-known ‘balanced con-
tributions’ characterization, our characterization corresponds intuitively to
‘threat points’ present in bargaining. It derives from the observation that all
semivalues satisfy ‘balanced merge-externalities’. Our characterization is ap-
plicable to useful, narrow sub-classes of games (including monotonic simple
games), and also extends naturally to encompass games in partition function
form.
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1. Introduction

In this paper, we provide a new characterization of the Shapley value
(Shapley, 1953). The distinctive axiom of this characterization can be inter-
preted as a condition of balance between the threats that players can make
to one another in an unmodelled bargaining process.

A motivation for our characterization lies in our interpretation of Shap-
ley’s own understanding of his contribution. Shapley (1953) presents the
value as a proposal about how players will ‘evaluate . . . the prospect of hav-
ing to play a game’, and treats this as an answer to a foundational problem
in the theory of games. The implication is that Shapley’s project is to find
general principles that characterize the expected utility outcomes of rational
play in abstract games. Shapley and Shubik (1969) later describe the value
as addressing ‘the idea of “fair division” in a socio-economic situation’, but
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they continue by explaining: ‘This solution seeks to evaluate each person’s
position in the game a priori, taking into account both his own strategic op-
portunities and his bargaining position’ (our italics). In other words, Shapley
and Shubik see the value as also a normative proposition, based on a con-
ception of ‘fairness’ that seems to correspond with the expected outcome of
bargaining between rational individuals – a conception that is characteristic
of social contract theory.1 Taking this perspective, it is natural to look for
bargaining foundations for the Shapley value. One approach is to model bar-
gaining as a noncooperative game. Various authors have taken this approach,
showing for specific models of the bargaining process that – at least under
some conditions – the Shapley value matches utility expectations (Gul, 1989;
Hart and Mas-Colell, 1996; Pérez-Castrillo and Wettstein, 2001; McQuillin
and Sugden, 2016). In this paper we adopt a different strategy, by aiming
to explicitly capture the notion of a player’s bargaining position within an
axiomatic characterization.

Of the many existing characterizations of the Shapley value, some already
can be interpreted as offering a defence of the claim that the value would be
the outcome of rational bargaining. In particular, we would suggest that the
‘balanced contributions’ characterization due to Myerson (1980) does this.
Our characterization, based on an idea of ‘merge-externalities’, shares with
the balanced contributions characterization the fact that it references sub-
games that could be thought of as ‘threat points’ and could plausibly be
used as such by players themselves bargaining over a prospective coalitional
surplus. The balanced contributions characterization relates closely to sub-
sequent noncooperative models (Hart and Mas-Colell, 1996; Pérez-Castrillo
and Wettstein, 2001) in which there is a possibility, during bargaining, that
players leave the game. Our ‘merge externalities’ characterization relates
similarly to models (Gul, 1989; McQuillin and Sugden, 2016) in which, dur-
ing bargaining, players have opportunities to form intermediate coalitions
instead of forming the grand coalition in a single step.

Our characterization also shares with the balanced contributions charac-
terization a useful virtue of applicability to narrow sub-classes of cooperative
games. Our characterization complements the balanced contributions char-
acterization by the fact that it is applicable to different sub-classes of games.
In particular, our conditions can also be used to characterize (on the sub-

1In social contract theories such as those of Rawls (1971) and Binmore (1998), social
states are defined to be just if and only if they would be the outcome of rational bargaining
in a hypothetical ‘original position’. Principles of fairness enter such theories through the
specification of the original position, but the contracting parties are assumed to make
rational use of whatever bargaining opportunities they are allowed.
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class of simple monotonic games) the measure of voting power proposed by
Shapley and Shubik (1954), now known as the Shapley-Shubik power index.
In addition, our characterization has an advantage of being readily extensi-
ble to games in partition function form (first proposed by Thrall and Lucas,
1963), which are applicable to modelling, for example, collusion and merger
in imperfectly competitive industries, research alliances, trade blocs, and
international environmental agreements.

To fix ideas, consider the ‘glove game’ (of Shapley and Shubik, 1969)
comprising a player set N = {1, 2, 3} and a characteristic function v : 2N → R

such that v(S) = 1 wherever coalition S contains player 1 plus at least one
other player, and v(S) = 0 otherwise. (The intuition is that player 1 starts
with a right-handed glove, players 2 and 3 both start with left-handed gloves,
and a pair of gloves has a worth of 1.) Suppose players’ ‘expectations’ in this
game are given by the imputation (φ1, φ2, φ3).

The balanced contributions idea, applied to this game, runs as follows.
Consider three subgames, prospectively formed by one or other player leaving
and taking her glove with her. The subgames have player sets N1 = {2, 3},
N2 = {1, 3}, and N3 = {1, 2}, and ‘expectations’, respectively, of (0, 0),
(0.5, 0.5) and (0.5, 0.5).2 For any distinct i, j, k ∈ {1, 2, 3}, the consequence
for player i of j leaving the game can be measured by the resulting change in
i’s expectation – that is, i’s expectation in the subgame with player set {i, k},
minus φi. If players use these subgames as threat points, then the threats
(which we could also term ‘leave-externalities’) become balanced whenever,
for each pair of players i, j, the consequence for i of j leaving the game equals
the consequence for j of i leaving the game. The balance conditions solve to
give φ1 = φ2+

1
2
= φ3+

1
2
. Combining this result with the efficiency property

φ1 + φ2 + φ3 = 1 gives the Shapley value imputation, φ1 =
2
3
, φ2 = φ3 =

1
6
.

Our ‘merge-externalities’ approach runs in the following (similar) way.
Consider instead the six subgames prospectively formed by some player i
leaving but first giving her glove to some other. (This event might be in-
terpreted as a ‘merger’ between i and j that allows j to take full control
of the combined resources of the two players.) These subgames have player
sets N(1,2) = {2+1, 3} (corresponding to 1 having given her resources to 2),
N(1,3) = {2, 3+1}, N(2,1) = {1+2, 3}, N(2,3) = {1, 3+2}, N(3,1) = {1+3, 2},
N(3,2) = {1, 2+3}, with associated expectations, respectively, of (1, 0), (0, 1),
(1, 0), (0.5, 0.5), (1, 0), and (0.5, 0.5).3 For any distinct i, j, k ∈ {1, 2, 3}, the

2The expectations for these two-player games can be derived by re-applying the bal-
anced contributions and efficiency principles, or by directly applying a principle that in
two-player games players split any coalitional surplus equally.

3The expectations for these two-player games are derived by directly applying a prin-
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consequence for player i of j leaving the game and giving her resource to
k can be measured by the resulting change in i’s expectation – that is, i’s
expectation in the subgame with player set {i, k+j}, minus φi. If players use
these subgames as threat points, then an imbalance between threats exists
whenever, for some pair of players i, j, the consequence for i of j leaving the
game and giving her resource to the third player k is strictly worse than the
consequence for j of i doing the same. The threats are again balanced only
by φ1 = φ2+

1
2
= φ3+

1
2
and hence, with the efficiency property, the Shapley

value imputation. We will show that this result generalizes to all transferable
utility games in characteristic function form. In games with more than three
players one may not want to require that for every third party k the conse-
quence for i of j leaving and giving her resource to player k is no worse than
that for j of i doing the same (‘balanced merge-externalities’), but rather
that for some third party k this weak inequality holds (we call this ‘undom-
inated merge-externalities’). We are able to characterize the Shapley value
by combining the condition of ‘undominated merge-externalities’ with the
efficiency condition and the condition that, in two-player games, surplus is
divided equally.

It may be noticed that the merge-subgames considered in the argument
above have been used previously - originally by Lehrer (1988) and then for
example in Nowak (1997) and Casajus (2012) - in characterizations of the
Banzhaf value.4 But to the best of our knowledge ours is the first paper to
use amalgamation subgames of this type in a characterization of the Shapley
value. In characterizing the Banzhaf value, Lehrer (1988) and others refer to
the internal effect of the amalgamation. Our approach refers instead to the
external effect.

Normative economics is often based on an underlying conceit of a so-
cial planner, modelled as an agent – in effect, a benevolent despot – who
maximizes her preferred conception of social welfare and is not subject to in-
stitutional constraints.5 Insofar as its recommendations are directed at such
an entity, there is arguably no need to give these recommendations any ‘bar-
gaining foundation’ at all. But in the real world, generally, no such entity
exists. The great advantage of the Shapley-Shubik approach is that their

ciple that in two-player games players split any coalitional surplus equally.
4Haller (1994) and Malawski (2002), also characterizing the Banzhaf value, use closely-

related ‘proxy agreement’ subgames, differing only in that (after a bilateral merger) an
additional null-player also remains.

5Buchanan (1987) identifies this conceit when he endorses Wicksell’s (1896/1958) ar-
gument that ‘economists should cease proffering policy advice as if they were employed by
a benevolent despot’.
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recommendations - so long as they do have a bargaining foundation - can
be directed at the bargaining agents themselves. The role of the normative
economist need not be so much to ‘whisper in the ear’ of the social planner,
as to advise the bargaining agents that if they were to hold out for a negoti-
ated agreement, the agreement that is now being proposed (in this case, the
Shapley value) is the best they could reasonably expect.

In Section 2 below we formalize our merge-externalities characterization
of the Shapley value, and show that all ‘semivalues’ give rise to merge-
externalities that are ‘balanced’. We also explain why, if ‘value’ is interpreted
in terms of the expectations of rational bargainers, it is natural to impose
the condition that surplus is divided equally in two-player games. In Section
3 we show that none of the components of our characterization is redun-
dant. By using a substitute for the efficiency axiom, we can characterize
the Banzhaf value; by using alternative substitutes for the two-player axiom,
we can characterize the equal division solution and the Shapley value of the
homomollifier. (Contrary to the characterizations in other sections, the char-
acterizations in Section 3 are intended only to illustrate formal properties: we
do not argue that the combinations of conditions considered in this section
are necessarily congruent with any specific conception of bargaining.) In Sec-
tion 4 we note that in order to interpret our characterization of the Shapley
value as a point of balance between threats, one might want to require that
merge-externalities are negative. By weakening the requirement of undomi-
nated merge-externalities to one of undominated merge-threats (permitting
merge-externalities to be dominated if they are non-negative) we provide a
characterization of the Shapley value that holds for specific types of games.
It is for these games that the ‘bargaining foundation’ is most compelling. In
Section 5 we discuss the applicability of our characterization to monotonic
simple games. In Section 6 we apply the merge-externalities axioms to a
solution for games in partition function form.

2. Balanced merge-externalities and the Shapley value

Let Γ denote the set of transferable utility games in characteristic function
form, generically (N, v) with N denoting a set of players and with v : 2N → R

having the property v(∅) = 0.
We define, for any (N, v) ∈ Γ, and for any i, j ∈ N , subgames L((N, v), i) ∈

Γ and M((N, v), (i, j)) ∈ Γ using:

L((N, v), i) ≡ (N \ {i}, v′),
∀S ⊆ (N \ {i}) , v′(S) = v(S).
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M((N, v), (i, j)) ≡ (N \ {i}, v′),
∀S ⊆ (N \ {i}) , v′(S) =

{
v(S) where j /∈ S
v(S ∪ {i}) where j ∈ S

.

L((N, v), {i}) - which we may term a ‘leave-subgame ’ - is the subgame that
arises naturally from (N, v) if i ‘leaves, taking her resources with her’. In
this subgame, relative to (N, v), coalitional payoffs remain unchanged, but
coalitions containing player i are no longer possible. M((N, v), (i, j)) - which
we may term a ‘merge-subgame’ - is the subgame that arises naturally from
(N, v) if i and j ‘merge’ (under the control of j). In this subgame, relative
to (N, v), coalitions containing player i are no longer possible but coalitions
containing j receive a payoff as if - in the game (N, v) - they also contained i,
other coalitional payoffs remaining unchanged. Since it is the external effects
of the merger in which we are going to be interested, it does not matter to
us by what process the ‘merge’ occurs: the intuition may be that i ‘leaves,
giving her resources to j’ or that i ‘is bought-out by j’, or that in any other
sense i and j combine to form a single, amalgamated entity.6

A solution (or ‘value’ in the terminology of Shapley, 1953), generically φ,
associates with each (N, v) ∈ Γ and each i ∈ N a real number φi(N, v), in
some sense representing i’s utility expectation in the game (N, v).

We define some possible conditions on any solution φ. The first condition
is efficiency.7

Efficiency. ∀(N, v) ∈ Γ,
∑

i∈N φi(N, v) = v(N).

The second condition, equal gains in 2-player games, is a weaker variant
of a condition often termed (originally by Hart and Mas-Colell, 1989) ‘stan-
dardness for two-player games’. As noted by Hart and MasColell, this can
be straightforwardly derived from more basic conditions: in particular, any
solution that (on the domain of 2-player games) satisfies covariance under
addition of a constant to one player’s utilities (TU-covariance) and that as-
signs symmetric expectations in perfectly symmetric games (equal treatment
of equals) must satisfy equal gains in 2-player games.

6Although, notationally, j ‘remains’ in the merge subgame, the relevant intuition is just
that one player remains instead of two, and that this single entity represents a symmetric
amalgam of i and j in the original game. This is the same notion of merging as used in
Lehrer (1988).

7The efficiency condition is so-named for convenience and by convention, though the
name itself is apt only on the sub-class of cohesive games. We have defined Γ to include
non-cohesive games, but the results in this paper would all also hold on the sub-class of
cohesive games.
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TU covariance captures the idea that payoffs players can obtain without
cooperation are irrelevant to the division of surplus strictly generated by
cooperation. So wherever (N, v̄) is an inessential game, φi(N, v̄ + v′) equals
v̄({i}) + φi(N, v′). If a ‘solution’ were interpreted as something to be chosen
by a social planner, this condition would express a contestable normative
principle. But in the context of bargaining, it expresses a much more intuitive
idea – that payoffs that would be achieved whatever the outcome of the
bargaining process cannot feature in threats or offers made between ideally
rational players.

Any axiomatized solution concept must respect whatever symmetries are
built into the theoretical framework that is being used. Thus, if players can be
identified only by arbitrary labels (such as 1, 2, . . .), equal treatment of equals
is unavoidable. In our modelling framework, however, players can sometimes
be distinguished by having different histories of previous mergers. (In the
glove game example, when the player set is {i, k+j}, one player has been
involved in a previous merger while the other has not.) We implicitly assume
that rational behavior at any point in a bargaining process is independent of
the history of how that point was reached.

Equal-gains in 2-player games. ∀(N, v) ∈ Γ, |N | = 2 → ∀i, j ∈ N,
φi(N, v)− v({i}) = φj(N, v)− v({j}).

The next condition, balanced contributions, is included here just for pur-
poses of comparative discussion. (For purposes of comparison we could term
this ‘balanced leave-externalities’.) It specifies a symmetry of consequences:
the effect (on utility expectation) for one player i, of another, j, ‘leaving’, is
the same as the effect on j of i leaving.

Balanced contributions (or ‘balanced leave-externalities’). ∀(N, v) ∈
Γ, ∀i, j ∈ N, φi (L((N, v), j))− φi(N, v) = φj (L((N, v), i))− φj(N, v).

Our remaining conditions also specify symmetries of consequences. In
the first of these, balanced merge-externalities, for every triple of players, i,
j and k, the effect on i of j merging with k is the same as the effect on j of
i merging with k.

Balanced merge-externalities. ∀(N, v) ∈ Γ, ∀i, j, k ∈ N,
φi (M((N, v), (j, k)))− φi(N, v) = φj (M((N, v), (i, k)))− φj(N, v).

Balanced merge-externalities may be viewed as a rather strong condition.
Our next condition, undominated merge-externalities, is (prima facie) a much
weaker variant of the same idea. It requires only that, for each pair of players
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i and j, if there exist further players, there should be some third party k such
that the effect on i of j merging with k is no worse than the effect on j of i
merging with k.

Undominated merge-externalities. ∀(N, v) ∈ Γ, |N | > 2 → ∀i, j ∈ N,
∃k ∈ (N \ {i, j}) , φi (M((N, v), (j, k)))−φi(N, v) � φj (M((N, v), (i, k)))−
φj(N, v).

The Shapley value, φSh, is defined using (for any (N, v) ∈ Γ, and for
any i ∈ N):

φSh
i (N, v) =

∑
S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! (v(S ∪ {i})− v (S)) .

The Shapley value belongs to a class of solutions known as semivalues
(due to Dubey, Neyman and Weber, 1981). A solution φ is termed a semi-
value when it satisfies, for some probability measure ξ on [0, 1], the following:

∀(N, v) ∈ Γ, ∀i ∈ N, φi(N, v) =
∑

S⊆N\{i}
p
|N |
|S| (v(S ∪ {i})− v (S)) ,

where (for any positive integer n and non-negative integer s < n)

pns ≡
∫ 1

0

ts (1− t)n−s−1 dξ(t).

It is well known (due to Myerson, 1980) that efficiency and balanced con-
tributions together characterize the Shapley value, and it is also known (see
Sánchez, 1997) that all other semivalues also satisfy balanced contributions.
We report two similar results with respect to balanced merge-externalities.

Proposition 1. Every semivalue φ satisfies balanced merge-externalities.

Proposition 2. A solution φ satisfies efficiency, equal-gains in 2-player games
and undominated merge-externalities if and only if φ = φSh.

(We prove Propositions 1 and 2 in the Appendix.)
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3. Balanced merge-externalities and other solutions

It is straightforward to confirm that there is no redundancy within the
characterization expressed in Proposition 2, by briefly noting other well-
known solutions. Clearly, the nucleolus (Schmeidler, 1969) satisfies efficiency
and equal-gains in 2-player games (but not undominated merge-externalities).
Also, the Banzhaf value satisfies equal-gains in 2-player games and undom-
inated merge-externalities (but not efficiency), and the equal division value
satisfies efficiency and undominated merge-externalities (but not equal-gains
in 2-player games). In this section we formalize these observations as further
characterizations.

The Banzhaf value, φBz, is defined using (for any (N, v) ∈ Γ, and for
any i ∈ N):

φBz
i (N, v) =

∑
S⊆N\{i}

v(S ∪ {i})− v (S)

2|N |−1
.

Dubey and Shapley (1979) noted that φBz and φSh are “fundamentally very
similar”, in the sense that replacing efficiency, in a conventional character-
ization of φSh, with the following condition (here called Bz-sum), obtains
φBz.

Bz-sum. ∀(N, v) ∈ Γ,
∑

i∈N φi(N, v) =
∑
i∈N

∑
S⊆N

v(S)−v(S\{i})
2|N|−1 .

The following proposition reproduces this similarity, using our merge-
externalities approach.

Proposition 3. A solution φ satisfies equal-gains in 2-player games, un-
dominated merge-externalities and Bz-sum if and only if φ = φBz.

(We prove Proposition 3 in the Appendix. Notice that the Banzhaf value
is another semivalue, and therefore also satisfies balanced merge-externalities.)

While balanced contributions combined only with efficiency character-
izes the Shapley value, our characterizations using merge-externalities have
required an additional condition: equal gains in 2-player games. Merge-
externalities conditions - unlike balanced contributions - have no bearing in 2-
player games, because there are no third-parties to whom merge-externalities
can accrue. As previously noted, equal gains in 2-player games derives di-
rectly from more primitive conditions: TU-covariance and equal treatment
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of equals.8 A simple example of a 2-player game condition that violates TU-
covariance (but fulfils equal treatment of equals) has sometimes been termed
‘egalitarian standardness for 2-player games’.9 A weaker variant would be
the following condition, equal-division in 2-player games.

Equal-division in 2-player games. ∀(N, v) ∈ Γ, |N | = 2 → ∀i, j ∈ N,
φi(N, v) = φj(N, v).

The equal division solution, φED, is defined using (for any (N, v) ∈ Γ,
and for any i ∈ N):

φED
i (N, v) =

v(N)

|N | .

The following result - that efficiency, equal-division in 2-player games, and
undominated merge-externalities together characterize the equal division so-
lution - is then very straightforward.10

Proposition 4. A solution φ satisfies efficiency, equal-division in 2-player
games and undominated merge-externalities if and only if φ = φED. Balanced
merge-externalities is also satisfied by φ = φED.

(We prove Proposition 4 in the Appendix.)
An intuitive example of a 2-player game condition that violates equal

treatment of equals (but fulfils TU-covariance) arises if we modify our notion
of a merger, to one of consolidation: so that if one entity has formed through
more mergers than another, then the two need not be treated symmetrically.
To represent this idea, for any (N, v) ∈ Γ let Π(N) denote the set of all par-
titions of N . For any π ∈ Π(N) we define a quotient game (N, v)π ≡ (π, vπ),
with for any S ⊆ π, vπ(S) = v

(⋃
S∈S S

)
. We fix a game (N, v) ∈ Γ and we

then consider the set - which we denote Q(N, v) - of quotient games based on
(N, v), Q(N, v) ≡ {(N, v)π : π ∈ Π(N)}. For any (N, v)π ∈ Q(N, v) and for
any I, J ∈ π, we define a subgame M((N, v)π, {I, J}) ≡ (N, v)(π\{I,J})∪{I∪J},
which is the subgame that comes about if I and J consolidate.

8It is useful also to note that, as it is used in conjunction with either efficiency or Bz-
sum, equal gains in 2-player games could be replaced in our characterizations with balanced
contributions in 2-player games: i.e. ∀(N, v) ∈ Γ, |N | = 2 → ∀i, j ∈ N,φi (L((N, v), j))−
φi(N, v) = φj (L((N, v), i))− φj(N, v).

9See for example van den Brink and Funaki (2009).
10Notice that while all ‘semivalues’ satisfy balanced merge-externalities, Proposition 4

demonstrates that the converse is not true. The equal division solution is not a semivalue,
but it satsifies balanced merge-externalities nevertheless.
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Note that the players of a game in Q(N, v) are represented by sets, and
they therefore have a cardinality property (proportionate to the number of
mergers through which the player has formed) which is referenced in the
following 2-player game condition (defined only on Q(N, v)).

Equal per-capita gains in 2-player games. ∀(π, vπ) ∈ Q(N, v), |π| =
2 → ∀I, J ∈ π, φI(π,v

π)−vπ({I})
|I| = φJ (π,v

π)−vπ({J}})
|J | .

To obtain characterizations within this framework, we define conditions
(exactly analogous to those related to merge-externalities, but again defined
only on Q(N, v)) of balanced and undominated consolidation-externalities.

Balanced consolidation-externalities. ∀(π, vπ) ∈ Q(N, v), ∀I, J,K ∈
π,
φI

(M((π, vπ), {J,K}))−φI(π, v
π) = φJ

(M((π, vπ), {I,K}))−φJ(π, v
π).

Undominated consolidation-externalities. ∀(π, vπ) ∈ Q(N, v), |π| >
2 → ∀I, J ∈ π, ∃K ∈ π \ {I, J}, φI

(M((π, vπ), {J,K})) − φI(π, v
π) �

φJ

(M((π, vπ), {I,K}))− φJ(π, v
π).

We define hv : 2N → R (termed the homomollifier of v by Charnes,
Rousseau, and Sieford, 1978) using:

∀S ⊆ N, hv(S) =
|S|
|N |(v(N)− v(N \ S)) + |N | − |S|

|N | v(S).

Efficiency, equal-gains in 2-player games, and undominated consolidation-
externalities characterize, on the sub-class Q(N, v), the Shapley value. But
efficiency, equal per-capita gains in 2-player games, and undominated consolidation-
externalities together characterize, on the same sub-class, a solution which
can be termed the ‘Shapley value of the homomollifier’.11

Proposition 5. (i) A solution φ satisfies, on the sub-class Q(N, v), effi-
ciency, equal-gains in 2-player games and undominated consolidation-externalities
if and only if for any (N, v)π ∈ Q(N, v), φ ((N, v)π) = φSh ((N, v)π).

(ii) A solution φ satisfies, on the sub-class Q(N, v), efficiency, equal per-
capita gains in 2-player games and undominated consolidation-externalities
if and only if for any (N, v)π ∈ Q(N, v), φ ((N, v)π) = φSh ((N, hv)

π).

11This solution arises, in a bargaining framework, in Gul (1989). In addition to the
‘bargaining game’ with which Gul gives a noncooperative foundation for the Shapley value,
Gul describes a ‘partnership game’ which - in three player environments - implements the
Shapley value of the homomollifier.
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(We prove Proposition 5 in the Appendix. Proposition 5 can also be
re-written with balanced consolidation-externalities in place of undominated
consolidation-externalities.)

4. Externalities as ‘threats’

One advantage shared by both the balanced contributions characteriza-
tion of the Shapley value and the merge-externalities characterization of our
Proposition 2, is that the axioms seem to translate intuitively to reference
points (‘threat points’) to which players may realistically appeal while bar-
gaining over the division of surplus. Balanced contributions can be inter-
preted as an equilibrium among ‘threats’ to simply walk away from negoti-
ations. A violation of undominated merge-externalities can be interpreted
as a disequilibrium among ‘threats’ to ‘sell-up to’, ‘buy-out’, or ‘join forces
with’ other players. Whether one, or other, or both courses of action (walk-
ing away, or selling-up) are actually possible will of course depend on the
specific situation of interest. Moreover, for the possibilities to actually be
perceived, by other players, as ‘threats’, we might suppose that the external
consequences should be negative. Whether the external consequences (of a
player leaving, or of two players merging) are positive or negative will depend
on the underlying game (N, v).

We aim to capture this idea - that only negative externalities consti-
tute threats - by two possible further relaxations of the undominated merge-
externalities condition. The first condition, undominated merge-threats, per-
mits merge-externalities to be dominated if none of these externalities are
negative. The second condition, undominated-or-equivocal merge-threats,
goes further and permits merge-externalities to be dominated if any of these
externalities are non-negative.

Undominated merge-threats. ∀(N, v) ∈ Γ, |N | > 2 → ∀i, j ∈ N,
Either: ∃k ∈ (N \ {i, j}) ,
φi (M((N, v), (j, k)))− φi(N, v) � φj (M((N, v), (i, k)))− φj(N, v)).
Or: ∀k ∈ (N \ {i, j}) , φi (M((N, v), (j, k)))− φi(N, v) � 0.

Undominated-or-equivocal merge-threats.
∀(N, v) ∈ Γ, |N | > 2 → ∀i, j ∈ N,
Either: ∃k ∈ (N \ {i, j}) ,
φi (M((N, v), (j, k)))− φi(N, v) � φj (M((N, v), (i, k)))− φj(N, v)).
Or: ∃k ∈ (N \ {i, j}) , φi (M((N, v), (j, k)))− φi(N, v) � 0.

Following Gul (1989), we say that (N, v) is value-additive if and only
if for any π ∈ Π(N), and for any I, J ∈ π, φSh

I∪J
(M((N, v)π, {I, J})) �

12



φSh
I ((N, v)π) + φSh

J ((N, v)π). Following McQuillin and Sugden (2016) we say
that there are no positive value-externalities in (N, v) if and only if for any
π ∈ Π(N), and for any I, J,K ∈ π, φSh

I

(M((N, v)π, {J,K}))−φSh
I ((N, v)π) �

0. We let Γ̂ ⊂ Γ denote the set of all games that are value-additive, and Γ̃ ⊂ Γ̂
the set of all games with no positive value-externalities.

Proposition 6. (i) A solution φ satisfies, on the sub-class Γ̂, efficiency,
equal-gains in 2-player games and undominated merge-threats, if and only if
for any (N, v) ∈ Γ̂, φ (N, v) = φSh (N, v).

(ii) A solution φ satisfies, on the sub-class Γ̃, efficiency, equal-gains in
2-player games and undominated-or-equivocal merge-threats, if and only if
for any (N, v) ∈ Γ̃, φ (N, v) = φSh (N, v).

(We prove Proposition 6 in the Appendix.)
So, the Shapley value, postulated as the expected outcome of rational bar-

gaining, may be seen as progressively more compelling when applied to games
that are value-additive and to games with no positive value-externalities.
This conclusion corresponds exactly with findings in analyses of noncoop-
erative bargaining models - specifically those of Gul (1989) and McQuillin
and Sugden (2016) - that allow for bilateral mergers. In Gul’s bargaining
model, value-additivity is a necessary and sufficient condition for the ex-
istence of a stationary subgame perfect equilibrium within which players’
expectations converge (as a discount factor tends to 1) to the Shapley value,
and (McQuillin and Sugden show) no positive value-externalities ensures that
there are no other stationary subgame perfect equilibria. In McQuillin and
Sugden’s model, no positive value-externalities ensures that every subgame
perfect equilibrium supports the Shapley value. It would be useful to under-
stand better which types of games have these properties: Haller (1994) and
Derks and Tijs (2000) make some progress in this direction.

5. Monotonic simple games

A further advantage shared by both the balanced contributions charac-
terization of the Shapley value and the merge-externalities characterization
of our Proposition 2 comes from the fact that the characterizations also hold
on useful restrictions (‘sub-classes’) of Γ. For example the balanced contri-
butions characterization is unusual (among the well-known characterizations
of the Shapley value) in that it holds on the class of ‘assignment games’ (de-
fined by Shapley and Shubik, 1971).12 If (N, v) is an assignment game then

12Brink and Pintér (2015) provide an alternative to the Shapley value solution that
satisifes all of the axioms in many of the best-known characterizations of the Shapley
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so will be any leave subgame of (N, v) (but a merge subgame may not be).
On the other hand, our ‘merge-externalities’ characterization is unusual

in that it holds on the class of ‘monotonic simple games’. (We say that
(N, v) ∈ Γ is a ‘simple game’ if it has properties (i) v(N) = 1, and (ii)
for any S ⊂ N , v(S) ∈ {0, 1}. And a simple game (N, v) is ‘monotonic’
if for any S ⊂ N and for any I ⊂ S, v(I) = 1 → v(S) = 1.) Shapley
and Shubik (1954) proposed using monotonic simple games to model voting
rights, and using the Shapley value in this context as a measure of a priori
voting power. This measure is now known as the Shapley-Shubik power index.
It is well known that the original Shapley axioms do not characterize a unique
solution on the sub-class of such games13, but it is very straightforward to
see that if (N, v) is a simple game then any merge subgame of (N, v) will be
a simple game (but a leave subgame may not be), and also that if (N, v) is
monotonic then any merge subgame of (N, v) will be monotonic. So therefore
the Shapley-Shubik power index can also be characterized by efficiency, equal-
gains in 2-player games and undominated merge-externalities. In addition, if
a simple game (N, v) is strong (∀S ⊆ N, v(S) = 0 → v(N \S) = 1) or proper
(∀S ⊆ N, v(S) = 1 → v(N \ S) = 0) then any merge subgame will also be
a strong or a proper simple game respectively; so the characterization holds
similarly on these further sub-classes.

6. Balanced externalities and the extended Shapley value

The Shapley value represents an important proposition about the out-
come of unstructured bargaining among rational agents, applicable to bar-
gaining problems that are adequately represented as games in characteristic
function form. But how the value should be extended to games in partition
function form (as first described in Thrall and Lucas, 1963) remains an open
question. (A number of alternative proposals have been advanced, but there
is no present consensus on their relative applicability to specific problems.)
This issue has important implications because many real-world bargaining
problems are naturally represented as games in partition function form – that
is, as cooperative games in which the payoff to one coalition of players can
depend on how the other players are grouped into coalitions. For example,

value, once these axioms are restricted to hold on assignment games only. They also show
that conditions used by Myerson (1977) - ‘component efficiency’ and ‘fairness’ - can be
used to characterize the Shapley value on the class of assignment games.

13Dubey (1975) provided the first characterization of the Shapley value for monotonic
simple games (and therefore of the Shapley-Shubik power index), with an adaptation of
the additivity axiom (now known as the ‘transfer’ axiom) to operate within this sub-class.
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consider a set of firms which have opportunities to merge or to coalesce into
price-fixing cartels. The payoff to a given coalition of merged or colluding
firms typically depends on the pattern of coalescence among the other firms.
Alternatively, consider the circumstance of nations negotiating environmen-
tal agreements: the eventual well-being of any nation is affected both by
agreements it joins and by agreements, between other nations, it does not
join.

A difficulty arises when one tries to extend the balanced contributions
approach to games in partition function form. If the original game is in
characteristic function form then the subgames that arise as players leave
are unambiguous, whereas if the original game is in partition function form
then the new games that arise are unclear. In particular, if several players
leave, we cannot tell whether the players that remain should suppose that
the absent players are organized as singletons, coalesced together, or in some
other configuration. One can produce a characterization that employs one or
other supposition (if we suppose that the absent players remain as singletons
then this leads to the value proposed by Pham Do and Norde, 2007, and
by de Clippel and Serrano, 2008) but the supposition seems arbitrary. (The
ideas of applying the ‘balanced contributions’ approach to games in partition
function form, and of this associated difficulty appear in de Clippel and
Serrano, 2008.)

Our merge-externalities approach extends without this difficulty, because
even after multiple mergers the relevant partition of the original player set
seems clear. (If i merges with j, and then if the new merged entity proceeds
to merge with k, it then seems clear that any remaining players should now
view i, j and k as a coalition.) It turns out that the merge-externalities
approach supports the value proposed by McQuillin (2009), the distinctive
feature of which is that players’ expectations are independent of payoffs in
the underlying game associated with partitions of cardinality greater than
two. It should be emphasized that this feature emerges as a result (not
as an assumption) both within the axiomatic approach of McQuillin (2009)
and, for a defined sub-class of games (games that have ‘no positive value-
externalities’), within the noncooperative bargaining model of McQuillin and
Sugden (2016).

An intuition for the claim that some payoffs in an underlying game may be
nugatory to the bargaining outcome can be gained by considering a modified
version of the 3-player glove game discussed in the introduction. Suppose
that the payoff for one player, i ∈ {1, 2, 3}, as a singleton in this game,
is now modified to x > 0 in the circumstance that the other two players
remain as singletons. (We suppose that i’s payoff reverts to zero if the two
other players coalesce.) Is i’s bargaining position - in an environment such

15



that players are able to merge and then continue to negotiate - strengthened
in the modified bargaining game, relative to the original? It is hard to see
how. In the modified game, just as in the original, the other two players can
strengthen their collective position by merging. To avert this, i must herself
seek out some merger. The singleton structure, in which player i receives
x, does not appear as the natural counterfactual to any of these possible
transactions, and is therefore not considered in negotiations. Our remaining
formal results generalize this reasoning.

Given any set of players N , let M(N) denote the set of embedded coali-
tions, M(N) ≡ {(S, π) : π ∈ Π(N), S ∈ π}. Let Γ+ denote the set of
transferable utility games in partition function form, generically (N,w) with
w : M(N) → R having the property for any π ∈ N , w(∅, π) = 0. We shall
now suppose that a solution, generically ϕ, associates with each (N,w) ∈ Γ+

and each i ∈ N a real number ϕi(N,w), representing i’s utility expectation
in the game (N,w).

One extended Shapley value, due to Pham Do and Norde (2007) and de
Clippel and Serrano (2008), ϕESV 1, is defined using (for any (N,w) ∈ Γ+,
and for any i ∈ N):

ϕESV 1
i (N,w) = φSh

i (N, v) :

∀S ⊆ N, v(S) = w(S, {S} ∪ {{j}j∈(N\S)}).

Another extended Shapley value, due to McQuillin (2009), ϕESV 2, is de-
fined using (for any (N,w) ∈ Γ+, and for any i ∈ N):

ϕESV 2
i (N,w) = φSh

i (N, v) :

∀S ⊆ N, v(S) = w(S, {S,N \ S}).

We additionally define, for any (N,w) ∈ Γ+, and for any i, j ∈ N , subgames
L((N,w), i) ∈ Γ+ and M((N,w), (i, j)) ∈ Γ+, using:

L((N,w), i) ≡ (N \ {i}, w′) :

∀(S, π) ∈ M(N \ {i}), w′(S, π) = w(S, π ∪ {{i}}).

M((N,w), (i, j)) ≡ (N \ {i}, w′) : ∀(S, π) ∈ M(N \ {i}),
w′(S, π) =

{
w(S, {I}I∈π:j /∈I ∪ {I ∪ {i}}I∈π:j∈I) where j /∈ S

w(S ∪ {i}, {I}I∈π\{S} ∪ {S ∪ {i}}) where j ∈ S
.

The interpretations of L((N,w), i) and M((N,w), (i, j)) remain, as before,
subgames formed respectively by i ‘leaving’ or i ‘merging with j’.
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As we have already noted, in describing subgames that arise from multi-
ple players successively leaving we are forced to make an assumption about
how the departed players are partitioned. For example, consider a game
({i, j, k, l}, w) ∈ Γ+, from which players k and l consecutively leave, gener-
ating a subgame ({i, j}, w′). Here, we have supposed that the players who
leave the game remain as singletons, so w′ is defined w′({i}, {{i}, {j}}) =
w({i}, {{i}, {j}, {k}, {l}}), w′({j}, {{i}, {j}}) = w({j}, {{i}, {j}, {k}, {l}}),
w′({i, j}, {{i, j}}) = w({i, j}, {{i, j}, {k}, {l}}). But, alternatively, we could
have supposed that players who leave all coalesce together - giving w′({i},
{{i}, {j}}) = w({i}, {{i}, {j}, {k, l}}), and so forth - or indeed that the ab-
sent players in some sense randomize over possible structures.

In describing subgames that arise from players merging there is no sim-
ilar difficulty. Each amalgamation leads to a well-defined partition of the
original player set. For example, if the subgame ({i, j}, w′) is formed from
({i, j, k, l}, w) by players k and l consecutively merging with j, then our
conception of merger itself directly entails w′({j}, {{i}, {j}}) = w({j, k, l},
{{i}, {j, k, l}}) and w′({i, j}, {{i, j}}) = w({i, j, k, l}, {{i, j, k, l}}). If {j} is
now acting as the coalition {j, k, l}, then the payoff to {i} should be as previ-
ously specified when {j, k, l} has formed, so we must also have w′({i}, {{i}, {j}}) =
w({i}, {{i}, {j, k, l}}).14

We now re-define the conditions we previously proposed, this time for a
solution ϕ on games in Γ+.

Efficiency+. ∀(N,w) ∈ Γ+,
∑

i∈N ϕi(N,w) = w(N, {N}).
Equal-gains in 2-player games+. ∀(N,w) ∈ Γ+, |N | = 2 → ∀i, j ∈

N,ϕi(N,w)− w({i}, {{i}, {j}}) = ϕj(N,w)− w({j}, {{i}, {j}}).
Balanced contributions+. ∀(N,w) ∈ Γ+, ∀i, j ∈ N,ϕi (L((N,w), j)) −

ϕi(N,w) = ϕj (L((N,w), i))− ϕj(N,w).

Balanced merge-externalities+. ∀(N,w) ∈ Γ+, ∀i, j, k ∈ N,
ϕi (M((N,w), (j, k)))− ϕi(N,w) = ϕj (M((N,w), (i, k)))− ϕj(N,w).

Undominated merge-externalities+. ∀(N,w) ∈ Γ+, |N | > 2 → ∀i, j ∈
N, ∃k ∈ N \ {i, j},
ϕi (M((N,w), (j, k)))− ϕi(N,w) � ϕj (M((N,w), (i, k)))− ϕj(N,w).

14The idea that each amalgamation leads to a well-defined partition of the original player
set is even clearer within the ‘consolidation’ conception of merger used above in the final
characterizations of Section 3; however, for the present section, we retain the notationally
simpler conception used elsewhere in the paper.
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De Clippel and Serrano (2008) have already noted that efficiency+ and
balanced contributions+ together entail ϕ = ϕESV 1. It turns out that efficiency+,
equal-gains in 2-player games+, and undominated merge-externalities+ to-
gether entail ϕ = ϕESV 2.

Proposition 7. A solution ϕ satisfies efficiency+, equal-gains in 2-player
games+ and undominated merge-externalities+ if and only if ϕ = ϕESV 2.
Balanced merge-externalities+ is also satisfied by ϕ = ϕESV 2.

(We prove Proposition 6 in the Appendix.)
The analogous results to those presented in Section 4 also hold. For

any (N,w) ∈ Γ+, we define Γ+
(N,w) to be the set of all subgames, includ-

ing (N,w), reachable by sequences of mergers from (N,w). We say that
(N,w) is value-additive if and only if for any (N ′, w′) ∈ Γ+

(N,w), and for any

i, j ∈ N ′, ϕESV 2
j (M((N ′, w′), (i, j))) � ϕESV 2

i (N ′, w′) + ϕESV 2
j (N ′, w′). We

say that there are no positive value-externalities in (N,w) if and only if for
any (N ′, w′) ∈ Γ+

(N,w), and for any i, j, k ∈ N ′, ϕESV 2
i (M((N ′, w′), (j, k))) −

ϕESV 2
i (N ′, w′) � 0. We let Γ̂+ ⊂ Γ+ denote the set of all partition function

games that are value-additive, and Γ̃+ ⊂ Γ̂+ the set of all such games with
no positive value-externalities.

Undominated merge-threats+. ∀(N,w) ∈ Γ+, |N | > 2 → ∀i, j ∈ N,
Either: ∃k ∈ (N \ {i, j}) ,
ϕi (M((N,w), (j, k)))−ϕi(N,w) � ϕj (M((N,w), (i, k)))−ϕj(N,w)).
Or: ∀k ∈ (N \ {i, j}) , ϕi (M((N,w), (j, k)))− ϕi(N,w) � 0.

Undominated-or-equivocal merge-threats+. ∀(N,w) ∈ Γ+, |N | > 2 →
∀i, j ∈ N,
Either: ∃k ∈ (N \ {i, j}) ,
ϕi (M((N,w), (j, k)))− ϕi(N, v) � ϕj (M((N,w), (i, k}))− ϕj(N,w)).
Or: ∃k ∈ (N \ {i, j}) , ϕi (M((N,w), (j, k)))− ϕi(N,w) � 0.

Proposition 8. (i) A solution ϕ satisfies, on the sub-class Γ̂+, efficiency+,
equal-gains in 2-player games+ and undominated merge-threats+, if and only
if for any (N,w) ∈ Γ̂+, ϕ (N,w) = ϕESV 2 (N,w).

(ii) A solution ϕ satisfies, on the sub-class Γ̃+, efficiency+, equal-gains in
2-player games+ and undominated-or-equivocal merge-threats+, if and only if
for any (N,w) ∈ Γ̃+, ϕ (N,w) = ϕESV 2 (N,w).

By Proposition 7, within our merge-externalities approach, the solution
ϕESV 2 emerges as the analogue, for games in partition function form, to the
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solution φSh for games in characteristic function form. By Proposition 8, and
consistent with the result in McQuillin and Sugden (2016), this solution is
most defensible as the expected outcome from rational bargaining for games
(such as the glove game) in which there are ‘no positive value-externalities’.
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Appendix

Proofs of Propositions 1-8

Proof of Proposition 1. For any semivalue φ, for any (N, v) ∈ Γ,
for any i, j, k ∈ N , there are probability measures {pns : n ∈ Z+, s ∈
{0, ..., n−1}} satisfying

∑n−1
t=0

(
n−1
t

)
pnt = 1 and, due to ts+1 (1− t)n−(s+1)−1+

ts (1− t)n−s−1 = ts (1− t)(n−1)−s−1, pns+1+ pns = pn−1
s such that we can write:

φi (M((N, v), (j, k)))− φi(N, v)

=
∑

S⊆N\{i}:
{j,k}∩S=∅

p
|N |−1
|S| (v(S ∪ {i})− v (S))

+
∑

S⊆N\{i}:
{j,k}⊆S

p
|N |−1
|S|−1 (v(S ∪ {i})− v (S))

−
∑

S⊆N\{i}
p
|N |
|S| (v(S ∪ {i})− v (S)) . (.1)
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Rearranging the right hand side of (.1) gives:

φi (M((N, v), (j, k)))− φi(N, v)

=
∑

S⊆(N\{i,j,k})

((
p
|N |−1
|S| v(S ∪ {i})− p

|N |−1
|S| v (S)

)

+
(
p
|N |−1
|S|+1 v(S ∪ {i, j, k})− p

|N |−1
|S|+1 v (S ∪ {j, k})

)
−
(
p
|N |
|S| v(S ∪ {i})− p

|N |
|S| v (S)

)
−
(
p
|N |
|S|+1v(S ∪ {i, j})− p

|N |
|S|+1v (S ∪ {j})

)
−
(
p
|N |
|S|+1v(S ∪ {i, k})− p

|N |
|S|+1v (S ∪ {k})

)
−

(
p
|N |
|S|+2v(S ∪ {i, j, k})− p

|N |
|S|+2v (S ∪ {j, k})

))

=
∑

S⊆(N\{i,j,k})

((
p
|N |
|S| − p

|N |−1
|S|

)
v(S) +

(
p
|N |−1
|S| − p

|N |
|S|

)
v(S ∪ {i})

+ p
|N |
|S|+1v (S ∪ {j}) + p

|N |
|S|+1v (S ∪ {k})− p

|N |
|S|+1v(S ∪ {i, j})

− p
|N |
|S|+1v(S ∪ {i, k}) +

(
p
|N |
|S|+2 − p

|N |−1
|S|+1

)
v(S ∪ {j, k})

− p
|N |
|S|+2v(S ∪ {i, j, k})

)
=

∑
S⊆(N\{i,j,k})

(
−p

|N |
|S|+1v(S) + p

|N |
|S|+1v(S ∪ {i}) + p

|N |
|S|+1v (S ∪ {j})

+ p
|N |
|S|+1v (S ∪ {k})− p

|N |
|S|+1v(S ∪ {i, j})− p

|N |
|S|+1v(S ∪ {i, k})

−p
|N |
|S|+1v(S ∪ {j, k})− p

|N |
|S|+2v(S ∪ {i, j, k})

)
. (.2)

So, by symmetries in the coefficients on the right hand side of (.2),
φi (M((N, v) , (j, k)))− φi(N, v) = φj (M((N, v), (i, k)))− φj(N, v).

Proof of Proposition 2. It is immediately obvious that φ = φSh satisfies
efficiency and equal-gains in 2-player games. Also, φSh is a semivalue, so by
Proposition 1 φ = φSh satisfies balanced (and therefore undominated) merge-
externalities. It remains to show that if a solution φ 
= φSh satisfies efficiency
and equal-gains in 2-player games then φ contravenes undominated merge-
externalities. Note that if φ satisfies efficiency and equal-gains in 2-player
games then ∀(N, v) ∈ Γ, |N | � 2 → φ(N, v) = φSh(N, v). Suppose φ 
= φSh

satisfies efficiency and equal-gains in 2-player games and select the highest
positive integer n such that ∀(N, v) ∈ Γ, |N | < n → φ(N, v) = φSh(N, v).
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Consider any (N, v) ∈ Γ such that |N | = n and φ(N, v) 
= φSh(N, v). Then
select i ∈ N, j ∈ N such that φi(N, v) > φSh

i (N, v), φj(N, v) < φSh
j (N, v).

(We know, through our selection of (N, v) and because φ and φSh both
satisfy efficiency, that some such i and j exist.) For any k ∈ N \ {i, j},
φSh
i (M((N, v), (j, k)))−φSh

i (N, v) = φSh
j (M((N, v), (i, k)))−φSh

j (N, v), also

φi (M((N, v), (j, k))) = φSh
i (M((N, v), (j, k))) and φj (M((N, v), (i, k))) =

φSh
j (M((N,w), (i, k))), therefore φi (M((N, v) , (j, k)))−φi(N, v) < φj (M((N, v) ,
(i, k)))− φj(N, v).

Proof of Proposition 3. It is immediately obvious that φ = φBz satisfies
equal-gains in 2-player games and Bz-sum. Also, φBz is a semivalue, so by
Proposition 1 φ = φBz satisfies balanced (and therefore undominated) merge-
externalities. The remainder of the proof (showing that if a solution φ 
=
φBz satisfies equal-gains in 2-player games and Bz-sum then φ contravenes
undominated merge-externalities) simply replicates the inductive argument
in the proof above of Proposition 2.
Proof of Proposition 4. It is immediately obvious that φ = φED satisfies
efficiency and equal-division in 2-player games. Also, we have φED

i (M((N, v) ,

(j, k)))−φED
i (N, v) = v(N)

|N |−1
− v(N)

|N | = φED
j (M((N, v), (i, k)))−φED

j (N, v), so

φ = φED satisfies balanced merge-externalities. The remainder of the proof
(showing that if a solution φ 
= φED satisfies efficiency and equal-division in
2-player games then φ contravenes undominated merge-externalities) repli-
cates the inductive arguments in the proofs above.
Proof of Proposition 5(i).

Note that the sub-class Q(N, v) contains all of its merge-subgames. It is
immediately obvious that if ∀(N, v)π ∈ Q(N, v), φ ((N, v)π) = φSh ((N, v)π)
then φ satisfies efficiency and equal-gains in 2-player games on the sub-
class Q(N, v). Also (using the definition of φSh, and using the balanced
merge-externalities property of φSh established in Proposition 1), ∀(π, vπ) ∈
Q(N, v), ∀I, J,K ∈ π:

φSh
I

(M((π, vπ), {J,K}))− φSh
I (π, vπ)

= φSh
I (M((π, vπ), (J,K)))− φSh

I (π, vπ)

= φSh
J (M((π, vπ), (I,K)))− φSh

J (π, vπ)

= φSh
J

(M((π, vπ), {I,K}))− φSh
J (π, vπ).

So if ∀(N, v)π ∈ Q(N, v), φ ((N, v)π) = φSh ((N, v)π) then φ satisfies bal-
anced consolidation-externalities on the sub-class Q(N, v). The remainder
of the proof (showing that if a solution φ such that ∃(N, v)π ∈ Q(N, v),
φ ((N, v)π) 
= φSh ((N, v)π) satisfies efficiency and equal-gains in 2-player
games on the sub-class Q(N, v) then φ contravenes undominated merge-
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externalities on the sub-class Q(N, v)) replicates the inductive arguments
in the proofs above.
Proof of Proposition 5(ii). First notice that hv(N) = v(N), so if
∀(N, v)π ∈ Q(N, v), φ ((N, v)π) = φSh ((N, hv)

π) then φ (by the efficiency
property of φSh) satisfies efficiency on the sub-class Q(N, v); also (by the
same argument used in proof of Proposition 5, substituting hv for v), φ
satisfies balanced consolidation-externalities on the sub-class Q(N, v). Using
the definitions of φSh and of hv:

∀(N, v)π ∈ Q(N, v), |π| = 2 → ∀I, J ∈ π,

φSh
I ((N, hv)

π) = 1
2

(
|I|(v(N)−v(J))+|J |v(I)

|N |

)
+1

2

(
v(N)−

(
|J |(v(N)−v(I))+|I|v(J)

|N |

))
= v(I) + |I|

|N | (v(N)− v(I)− v(J))

φSh
J ((N, hv)

π) = v(J) + |J |
|N | (v(N)− v(I)− v(J)) .

So if ∀(N, v)π ∈ Q(N, v), φ ((N, v)π) = φSh ((N, hv)
π) then φ also satis-

fies equal per-capita gains in 2-player games. The remainder of the proof
(showing that if a solution φ such that ∃(N, v)π ∈ Q(N, v), φ ((N, v)π) 
=
φSh ((N, hv)

π) satisfies efficiency and equal per-capita gains in 2-player games
on the sub-class Q(N, v) then φ contravenes undominated merge-externalities
on the sub-class Q(N, v)) replicates the inductive arguments in the proofs
above.
Proof of Proposition 6(i). Note that the sub-class Γ̂ contains all of

its merge-subgames. By Proposition 2, if ∀(N, v) ∈ Γ̂, φ (N, v) = φSh (N, v)

then φ satisfies, on the sub-class Γ̂, efficiency, equal-gains in 2-player games
and undominated merge-externalities (therefore also undominated merge-

threats). Now assume φ such that ∃(N, v) ∈ Γ̂, φ (N, v) 
= φSh (N, v) satisfies

efficiency and equal-gains in 2-player games on the sub-class Γ̂. Note that
∀(N, v) ∈ Γ̂, |N | � 2 → φ(N, v) = φSh(N, v). Select the highest positive in-

teger n such that ∀(N, v) ∈ Γ̂, |N | < n → φ(N, v) = φSh(N, v). Consider any

(N, v) ∈ Γ̂ such that |N | = n and φ(N, v) 
= φSh(N, v). Then select i ∈ N, j ∈
N such that φi(N, v) > φSh

i (N, v), φj(N, v) < φSh
j (N, v). (We know, through

our selection of (N, v) and because φ and φSh both satisfy efficiency on Γ̂,
that some such i and j exist.) For any k ∈ N \{i, j}, by the balanced merge-
externalities property of φSh established in Proposition 1, φSh

i (M((N, v) ,
(j, k)))−φSh

i (N, v) = φSh
j (M((N, v) , (i, k)))−φSh

j (N, v), also φi (M((N, v) ,

(j, k))) = φSh
i (M((N, v) , (j, k))) and φj (M((N, v) , (i, k))) = φSh

j (M((N, v) ,
(i, k))), therefore φi (M((N, v) , (j, k)))−φi(N, v) < φj (M((N, v) , (i, k)))−
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φj(N, v). Now select k ∈ N \ {i, j} such that φSh
i (M((N, v) , (j, k))) −

φSh
i (N, v) � 0. (To see that some such k exists, note that by value-additivity

of (N, v), φSh
j (M((N, v) , (i, j))) � φSh

i (N, v) + φSh
j (N, v). Therefore, ∃k ∈

N\{i, j}, φSh
k (M((N, v), (i, j)))−φSh

k (N, v) � 0. Clearly, φSh
i (M((N, v), (j, k))) =

φSh
i (M((N, v), (k, j))) and moreover - again by Proposition 1 - we have:

φSh
i (M((N, v) , (k, j))) − φSh

i (N, v) = φSh
k (M((N, v) , (i, j))) − φSh

k (N, v).
Therefore, ∃k ∈ N \ {i, j}, φSh

i (M((N, v) , (j, k))) − φSh
i (N, v) � 0.) Then

φi (M((N, v) , (j, k)))− φi(N, v) < φSh
i (M((N, v) , (j, k)))− φSh

i (N, v) � 0.

So φ contravenes undominated merge-threats on the sub-class Γ̂.
Proof of Proposition 6(ii). We repeat the arguments above, replacing

Γ̂ with Γ̃. At the last step, note that (because (N, v) ∈ Γ̃ has no positive
value-externalities) ∀k ∈ N \ {i, j}, φSh

i (M((N, v), (j, k))) − φSh
i (N, v) �

0. Therefore, ∀k ∈ N \ {i, j}, φi (M((N, v), (j, k))) − φi(N, v) < 0. So φ

contravenes undominated-or-equivocal merge-threats on the sub-class Γ̃.
Proof of Proposition 7. It is immediately obvious that ϕ = ϕESV 2 sat-
isfies efficiency+ and equal-gains in 2-player games+. For any (N,w) ∈ Γ+

we define (N, vw) ∈ Γ using: ∀S ⊆ N, vw(S) = w(S, {S,N \ S}). Clearly,
vM((N,w),(j,k)) = M((N, vw), (j, k)), and therefore ϕESV 2

i (M((N,w), (j, k)))−
ϕESV 2
i (N,w) = φSh

i (M((N, vw), (j, k))) − φSh
i (N, vw). So, since φ = φSh

satisfies balanced merge-externalities, ϕ = ϕESV 2 satisfies balanced merge-
externalities+. It then remains to show that if a solution ϕ 
= ϕESV 2 sat-
isfies efficiency+ and equal-gains in 2-player games+ then ϕ contravenes
undominated merge-externalities+. Note that if ϕ satisfies efficiency+ and
equal-gains in 2-player games+ then ∀(N,w) ∈ Γ+, |N | � 2 → ϕ(N,w) =
ϕESV 2(N,w). Suppose ϕ 
= ϕESV 2 satisfies efficiency+ and equal-gains in 2-
player games+ and select the highest positive integer n such that ∀(N,w) ∈
Γ+, |N | < n → ϕ(N,w) = ϕESV 2(N,w). Consider any (N,w) ∈ Γ+ such that
|N | = n and ϕ(N,w) 
= ϕESV 2(N,w). Then select i ∈ N, j ∈ N such that
ϕi(N,w) > ϕESV 2

i (N,w), ϕj(N,w) < ϕESV 2
j (N,w). (We know, through our

selection of (N,w) and because ϕ and ϕESV 2 both satisfy efficiency+, that
some such i and j exist.) For any k ∈ N \ {i, j}, ϕESV 2

i (M((N,w), (j, k)))−
ϕESV 2
i (N,w) = ϕESV 2

j (M((N,w), (i, k)))−ϕESV 2
j (N,w), also ϕi (M((N,w) ,

(j, k))) = ϕESV 2
i (M((N,w), (j, k))) and ϕj (M((N,w), (i, k))) = ϕESV 2

j (M((N,w) ,
(i, k))), therefore ϕi (M((N,w), (j, k)))−ϕi(N,w) < ϕj (M((N,w), (i, k)))−
ϕj(N,w).
Proofs of Propositions 8(i) and (ii). Proofs of Propositions 8(i) and (ii)
are a matter only of substituting the relevant notation and condition names
respectively in the proofs of Propositions 6(i) and (ii).
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