
Discontinuous Galerkin

Methods:

Exploiting Superconvergence

for Improved Time-stepping

A thesis submitted to the School of Mathematics at the

University of East Anglia in partial fulfilment of the

requirements for the degree of Doctor of Philosophy

Daniel J. Frean

June 2017

c© This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with the author and that

use of any information derived there from must be in accordance with current

UK Copyright Law. In addition, any quotation or extract must include full

attribution.

Abstract

The discontinuous Galerkin (DG) methods are one of the most extensively

researched classes of numerical methods for solving partial differential equations

that display convective or diffusive qualities and have been popularly adopted

by the scientific and engineering communities as a method capable of achieving

arbitrary orders of accuracy in space. The choice of numerical flux function

plays a pivotal role in the successful construction of DG methods and has an

intrinsic effect on the superconvergence properties. As an inherent property of

the spatial discretisation, superconvergence can only be retained in the solution

through a sensitive pairing with a time integrator. The results of the literature

and of this work suggest that an improved pairing between the spatial and

temporal discretisations is both desirable and possible.

We perform analysis of three different but related manifestations of

superconvergence: the local, super-accurate points themselves; the subsequent

global extraction via the Smoothness-Increasing Accuracy-Conserving (SIAC)

filters; and the spectral properties that quantify, in terms of dispersion and

dissipation errors, how accurately waves are convected. In order to explore the

effect of the numerical flux function on superconvergence, we consider a

generalisation of the “natural” upwind choice for a Method of Lines solution to

the linear advection equation: the upwind-biased flux. We prove that the

method is locally superconvergent at roots of a linear combination of the left-

and right-Radau polynomials dependent on the value of a flux parameter and

2

that the use of SIAC filters is still able to draw out the superconvergence

information and create a globally smooth and superconvergent solution. In

exploring the coupling of DG with a time integrator, we introduce a new scheme

to a class of multi-stage multi-derivative methods, following recent

incorporation of local DG technologies to recover superconvergence and achieve

improved wave propagation properties.

Contents

Abstract 1

List of Figures 7

List of Tables 9

Acknowledgements 11

1 Introduction 15

1.1 Problem Statement . 17

1.2 Literature Review . 18

1.2.1 Outline of thesis . 26

1.3 Background . 26

1.3.1 Notation and definitions . 26

1.3.2 Hyperbolic conservation law 29

1.3.3 Tessellation . 32

1.3.4 Discontinuous Galerkin semi-discretisation 34

Contents 4

1.3.5 Basis functions for the approximation space 35

1.3.6 Galerkin expansions . 37

1.3.7 Numerical flux function . 39

1.3.8 Linear advection: Fully resolved semi-discrete scheme . . . 41

2 The Numerical Flux and Superconvergence 44

2.1 Pointwise Superconvergence . 45

2.1.1 Pointwise error estimate . 49

2.1.2 Numerical experiments . 56

2.2 Superconvergence of Post-processed Solution 60

2.2.1 The convolution kernel . 60

2.2.2 SIAC filtered error estimate 61

2.2.3 Numerical experiments . 66

3 Timestepping 69

3.1 Strong Stability Preserving Runge-Kutta Methods 70

3.2 Multiderivative Methods: Lax-Wendroff DG 71

3.3 DG-TDRK4 . 73

3.4 A New DG-TDRK4 Method . 76

3.4.1 Stability analysis . 77

3.5 Numerical Experiments . 80

3.5.1 Linear advection . 81

Contents 5

3.5.2 Linear advection with discontinuous coefficient 86

4 Dispersion and Dissipation of DG Schemes 90

4.1 Fourier Analysis of Amplification Matrices 93

4.1.1 Non-dimensionalised presentation of eigenvalues 96

4.2 Numerical Process . 98

4.3 Semi-discrete DG Scheme: Results 100

4.4 Fully-discrete DG Schemes: Formulation 104

4.4.1 Fully decoupled Runge-Kutta methods 105

4.4.2 Fully resolved forms: DG-TDRK4 with direct differentiation106

4.4.3 Fully resolved forms: DG-TDRK4 with differentiation by

DG . 109

4.5 Fully-discrete DG Schemes: Results 110

4.5.1 Piecewise constant basis . 111

4.5.2 Piecewise linear basis . 114

4.5.3 Piecewise quadratic basis 116

4.6 Numerical Experiments . 120

4.6.1 Linear advection: dispersion and dissipation 120

5 Conclusions 123

Appendices 125

A Mathematica Code 126

Contents 6

A.1 Semi-discrete example . 126

A.2 Fully-discrete example . 135

List of Figures

1.3.1 One-dimensional elements in a segment of the tessellation 32

1.3.2 Legendre polynomials up to order 3 36

2.1.1 Discretisation errors for DG solution to 1D linear hyperbolic

equation with p = 1 and N = 10. 57

2.1.2 Discretisation errors for DG solution to 1D linear hyperbolic

equation with p = 2 and N = 10. 57

2.1.3 Discretisation errors for DG solution to 1D linear hyperbolic

equation with p = 3 and N = 10. 58

2.1.4 Discretisation errors for DG solution to 1D linear hyperbolic

equation with p = 4 and N = 10. 59

2.2.1 The 2p + 1 B-splines of order p = 1 (left) and p = 2 (right) and

the corresponding convolution kernels 61

2.2.2 DG and filtered errors for p = 2 at time T = 1. 67

2.2.3 DG and filtered errors for p = 3 at time T = 1. 68

List of Figures 8

3.5.1 Time history of L2-errors of DG solutions to the linear advection

equation . 85

3.5.2 Linear Advection with discontinuous coefficient. L2-errors (left)

and post-processed errors (right) of Modified TDRK4, TDRK4,

RK(10,4)-DG (θ = 1, 1.5) (from top to bottom). P3 solutions at

T = 157, all with ν = 0.01. 89

4.0.1 A propagating square wave (black) approximated by first order

finite difference (red) at t = 32 with θ = 1 92

4.5.1 p = 0: Magnitude of coefficients of leading order error terms

X2K
2 + iX3K

3 . 113

4.5.2 p = 1: Magnitude of coefficients of leading order error terms

iX4K
4 +X5K5 . 115

List of Tables

2.1 Approximations to roots ξ+
i , i = 1, . . . , p + 1, of the right Radau

polynomial R+
p+1(ξ). 48

2.2 Approximations to roots ξ?i , i = 1, . . . , p+ 1, of R?p+1(ξ). 49

2.3 L2- and L∞-norms of errors before and after post-processing for

case p = 2. 67

2.4 L2- and L∞-norms of errors before and after post-processing for

case p = 3. 68

3.1 L2 and L∞ errors and order of accuracy for fourth-order DG

solutions to the linear advection equation at time T = 1 82

3.2 L2- and L∞-errors and order of accuracy for fourth-order DG

solutions to the linear advection equation at time T = 157 88

4.1 Leading dispersion and dissipation errors for p = 0 113

4.2 Leading dispersion and dissipation errors for p = 1 114

4.3 Leading dispersion and dissipation errors for p = 1 115

4.4 p = 2; Coefficient of trailing dispersion error term X7K
7 in

equation (4.5.8) . 119

List of Tables 10

4.5 p = 2; Coefficient of trailing dissipation error term X8K
8 in

equation (4.5.8) . 119

4.6 Linear advection with u0(x) = cos(4x) at T = 400π. Dissipation

errors of RKDG methods for p = 1 and p = 2 with different values

of θ. 120

4.7 Linear advection with u0(x) = cos(4x) at T = 400π. Dissipation

errors of methods for p = 3. 121

Acknowledgements

“The only thing to do with good advice is pass it on. It is never

any use to oneself.”

– Oscar Wilde

First and foremost, I would like to thank Jennifer Ryan, my primary supervisor.

Her patience, support and faith in me saw me through the slow periods and low

times and heightened the peaks. My journey along this otherwise undulating road

was smoothed as a result. I greatly appreciate the freedom afforded me. I am also

grateful to David Seal. He engaged with a problem I was working on and rapidly

helped me move forward at a time when it was important for me to do so. The Air

Force Office of Scientific Research provided funding for this project for which I am

thankful. It has brought me into contact with many great people. Several of those

characters were at UMass Dartmouth. Sigal Gottlieb is somebody one wants to

impress but somebody who imposes not a trace of judgement in being so. This is

a rare thing. Zack Grant was a stable central part of my good experience. I have

shared philosophical discussions about finite difference schemes on short-distance

roadtrips with few other people. Thanks also go to Xinghui Zhong, Jingmei Qiu

and Wei Guo for sending me in the right direction when I first started looking at

Fourier analysis of DG methods and for the immediate sympathy in their faces

when I confided in them as to how problematic it can be. The Learning Support

Office at UEA, in particular Sidney, should be recognised for their work and for

List of Tables 12

their good-spirited sufferance of their direct dealings with me. The HPC people

worked to good effect in the shadows. Thanks to my examiners, Tristan and

Richard, for reading this document and for some useful comments.

There are a great number of people to whom I owe a debt of gratitude for their

indirect, to varying degrees, help in getting me here. Mathematically speaking,

it wouldn’t have happened without Dave Crocker. Every school needs a teacher

with a continued and evident fundamental interest in maths. It is extremely

valuable and I’m grateful for the time he afforded me. Every kid needs a chance

(or two); I remain indebted to Ann Cox for her advocacy of me. For his impact

on me from day one at UEA, I thank Mark Cooker: a pedagogical luminary

whose contemplative approach and breadth of knowledge and interest is

inspirational. For conversations about mathematics, I recognise Tom Coleman

at UEA and the guys and gals from the “Wizard Lab” at UCSD – especially

Dr. Perry and Harrison – and all the fellow survivors of the Differential

Geometry class that introduced to me people who are truly both very clever

and very hard-working. I appreciate the positive attributes of my academic

family: “brother” Xiaozhou Li (who is never too far from a smile), “sister”

Thea (who I thank for sharing and always being there if needed), “twin sister”

Julia (whose love is tough) and “uncle” Xiong Meng, all of whom I hope to stay

in touch with. To finish on the same day as my boy Alberto capped the whole

experience nicely. I hope we get on a big wall together one day.

Thanks to Bastien for genuinely offering help. Chapeau to all those who’ve

provided, knowingly or not, regular escapism: my dearest footballers for their

tolerance of my unelected captaincy on the pitch; Roy and Paul at Broadland

Chess Club, and Gerald – who saw DG around the time of its inception – for

questioning the wisdom of miring myself in a Philidor swamp before being able

to swim in the gnat’s sea; Sam and Charlotte for making it so easy to

third-wheel; the “Belay Babes”; Tom and Rob at SDMC for facilitating the best

of summers; Tommy D for never giving up; Helen; and Eleni for the song of the

butterfly. Thanks also to my office mates (and to Mal) for their quiet tolerance

and everyone who put me up towards the end, most notably Vanessa and

Hannah. I also appreciate all those who’ve added some spice, one way or

another: Mac; Ana; Stephen ‘D’C; Claire; Jason; Emma; J & K, especially J;

Ben & Amanda (if I’d have come to your wedding, I wouldn’t be writing this);

Lucy; SamD; Dan; ProMc; “Leon”; Snoop Moyes; Dolores; Kez; Sabrina; Imo;

Smidge; Rich; Andy; Ed; Phil; ToM; Iz; Faye; Kerry; Ash; Phoebe; Alex;

JohnHas; and, of course, Stace. This thesis is dedicated to the Hooe Boys (to

whom I owe no debt of gratitude). My eternal love to Chelsea for “letting” me

do this and for everything I learned from you.

Finally, to those who knowingly helped in times of need: thank you so much!

Without Hannah’s friendship and hospitality, everything would have been

measurably more difficult. Appropriate words to express my gratitude to my

parents is a most pressing and serious topic for further work.

“I was not proud of what I had learned but I never doubted

that it was worth knowing.”

– ‘Dr.’ Hunter S. Thompson, The Rum Diary

1

Introduction

“Our life is frittered away by detail. Simplify, simplify.”

– Henry David Thoreau, Walden and Other Writings

In the last few decades, the discontinuous Galerkin method has seen a steady rise

in popularity in response to the pursuit of a class of stable methods qualified to

properly resolve partial differential equations that display convective or diffusive

qualities. Our interests have come to be set predominantly in determining the

ability of a method to accurately propagate a wave: the degree to which amplitude

and peaks are preserved. If the numerical wave number – perturbed by the

discretisation of a continuous problem – does not equal its exact counterpart,

the approximation will exhibit phase errors (dispersion) and unwanted changes

in amplitude (dissipation). These types of errors can lead to a numerical solution

of a qualitatively divergent nature to the true solution.

The discontinuous Galerkin (DG) method has good wave resolution properties

since alongside its trump cards as a robust and computationally efficient

method is a desirable peculiarity, an ace in the hole. The celebrated property of

superconvergence – a faster than generally expected convergence rate at certain

points – is a result of a felicitous choice of numerical flux function and, as such,

it is an intrinsic property of the DG spatial discretisation. As these “hidden”

points are evolved in time, seeking to exploit their localised fortunes may seem

elusive – a will-o’-the-wisp – yet superconvergence can be extracted to a global

measure, and subsequently unearthed from its cache in a negative-order norm,

Chapter 1: Introduction 16

with an application of a specialised filter at the final time.

The roles of the temporal discretisation and a numerical flux function in

accurately simulating a wave can become more prominent with a long time

integration. While superconvergence is created by the numerical flux function in

the spatial discretisation, it can be destroyed by an indiscriminate time

evolution if the time-stepping method, which is often completely decoupled from

the DG discretisation itself, is not of sufficiently inflated order. In this work, we

wish to view the selection and design of the time integrator as dependent on the

spatial discretisation since we are, after all, solving a PDE. The results of the

literature suggest that an improved pairing between the spatial and temporal

discretisations is both desirable and possible and depends on the specific

problem and time regime. Moreover, we aspire to exploit the inherent property

of superconvergence to better pair DG with the time-stepping. We describe the

framework within which a specialised pairing may be realised through analysis

of three different but related manifestations of superconvergence: the local,

super-accurate points themselves; the subsequent global extraction via the

Smoothness-Increasing Accuracy-Conserving (SIAC) filters; and, climactically,

the spectral properties that quantify, in terms of dispersion and dissipation

errors, the varying degrees to which different pairings accurately convect a

wave. Superconvergence of high-order methods for solving hyperbolic PDEs

that exhibit wave-like behaviour is an area of enduring interest. This thesis

seeks to illuminate the relation between the local, post-processed and spectral

analyses of superconvergence of DG methods and the role of the flux function

and time-stepping scheme in achieving a superconvergent error.

Chapter 1: Introduction 17

1.1 Problem Statement

In this work, we consider numerical solutions to the hyperbolic system

ut +
d∑
i=1

fi(u)xi = 0, (x, t) ∈ Ω× (0, T],

together with appropriate initial and boundary conditions. For such systems,

the Jacobian f ′(u) is diagonalisable with real eigenvectors. Hyperbolic equations

present particular challenges since the solution may contain discontinuities even

in spite of a completely continuous initial condition. Furthermore, the weak

formulation does not give rise to a unique solution. Throughout most of this

document, we make the following simplifications:

• uniformity of the spatial mesh and the time-step size

• single spatial dimension (d = 1)

• linear flux function f(u) = cu, often with c = 1

• periodic boundary conditions

• smooth initial condition.

Whilst the post-processed superconvergence proofs are quite robust with

respect to these simplifications, without any one of them, the Fourier analysis in

Chapter 4 becomes considerably more difficult, often prohibitively so.

Translation invariance is required since we consider only a single mode within

the infinite Fourier sum. Without periodicity, one can suffer from the Gibbs

effect. Analyticity of the solution is also a commonly assumed property in

proofs in order to allow for power series expansions. Finally, whilst non-linearity

would make any result in this work more difficult to obtain, construction of a

stable upwind-biased flux for non-linear equations is a topic of ongoing research

so a similar study in this case is not yet possible.

Chapter 1: Introduction 18

The need for high-order methods is generally on the rise in light of the growing

sophistication of the simulation sciences; required performance in these

disciplines is rising more rapidly than the performance of existing computer

architectures. Moreover, modern simulations often work with complex and large

scale geometries which require a great deal of flexibility and robustness. Long

time integration is often needed and calculations must be performed more and

more accurately.

A numerical countermeasure to this situation is offered by discontinuous Galerkin

schemes. However, a number of fundamental areas retain unresolved questions.

How should the numerical flux be chosen? Are the schemes stable? How should

the time-stepping scheme be paired with the DG spatial discretisation? This

thesis asks how superconvergence is affected by, and it can in turn inform, the

choice of flux and the coupling with a time-stepping scheme. In this sense, how

can we get more from this class of high-order methods?

1.2 Literature Review

The discontinuous Galerkin methods (DGM) have become, since their inception

in the 1970s, one of the most extensively researched classes of numerical

methods for solving partial differential equations (PDE) and have been

popularly adopted by the scientific and engineering communities as a method

capable, given an appropriate choice of time integrator, of achieving arbitrary

orders of accuracy in space. The method was introduced in 1973 by Reed and

Hill [48] in the context of neutron transport equations while the first analysis of

the DGM, where the optimal convergence rate for rectangular meshes was

proved, was undertaken by LeSaint and Raviart [40] in the following year.

Development of the theory supporting DG solutions to hyperbolic equations,

including nonlinear conservation laws, was completed by Cockburn, Shu and

others in [26, 27, 21, 45, 61, 3, 4, 5]. In these works, it was proposed that the

DGM be paired with Runge-Kutta time-stepping methods to obtain the fully

Chapter 1: Introduction 19

discrete solution.

As a hybridisation of the finite element and finite volume schema, DGM seek to

profit from assets of both of the parent frameworks. The finite element

structure retains the ability to cope with complicated geometries while the

monotone numerical fluxes (or approximate Riemann solvers) at cell boundaries,

chosen in a finite volume manner using piecewise polynomial bases, allow for

high resolution of discontinuities. The geometric flexibility afforded by allowing

discontinuities across element boundaries comes at a considerable computational

expense characterised in part by the restrictive Courant-Friedrichs-Lewy (CFL)

condition. If higher order spatial derivatives are present in the original PDE, a

particularly severe time-step restriction must be imposed. In this case, when an

ingenuous application of DGM can result in a catastrophic breakdown of the

method’s stability, one may consider using the local discontinuous Galerkin

(LDG) method, an extension of the DGM designed by Cockburn and Shu [27].

The DG solution can develop oscillations near discontinuities. In order to control

these spurious phenomena, a great deal of work has been put into developing

limiters, and these are often expensive to apply. The fewer stages involved in

a time integrator, the fewer times we need to compute with the limiter. The

treatment in the hyperbolic conservation law course of LeVeque [41] will suffice

for this work as background on limiters as we apply them only when needed

in our numerical experiments. A thorough detailing of work from the previous

millennium is offered by the lecture notes of Cockburn, Karniadakis and Shu [24].

The choice of numerical flux function plays a pivotal role in the successful

construction of DG methods. While this function is chosen to guarantee the

stability of the scheme, it has an intrinsic effect on the acclaimed

superconvergent properties. The vast majority of theory for DG schemes for

conservation laws has been developed with the (somewhat habituated) choice of

a monotone numerical flux. Design and criteria for selection of numerical flux

functions is an area with a great deal of scope for further investigation.

Chapter 1: Introduction 20

Even for a Runge-Kutta (RK) DG solution to the linear advection equation,

one can do better than the “natural” upwind flux. Recently, Meng, Shu and Wu

[44] introduced in the context of DG methods for linear hyperbolic equations a

more general flux function: the upwind-biased flux. This function parametrises

the ratio of information taken from the left compared to the right of cell

interfaces. This choice avoids the requirement of exact knowledge of the

eigenstructure of the Jacobian and may reduce numerical dissipation (yielding a

better approximation in smooth regions) but it is made at the cost of the loss of

monotonicity. In [44], L2-stability and optimal O(hp+1) convergence results,

where p is the order of the piecewise polynomial basis and h is the element

width, for the periodic and inflow boundary conditions and for

multiple-dimensions were obtained and are comparable with those for the

upwind scheme [49]. Numerical experiments include non-uniform meshes, while

a treatment of nonlinear equations is left to further work. Other technical

challenges set in [44] include defining a suitable projection of the exact solution

into the approximation space such that superconvergence results analogous to

those for the purely-upwind case may be derived. These results provide the

theoretical foundations for our investigations into the choice of flux function for

RK-DG methods.

As an inherent property of the spatial discretisation, superconvergence can only

be retained in the solution by a sensitive pairing with a time integrator. The

most popular option is to pair DG with a Runge-Kutta ODE solver to produce

a Method of Lines (MoL). Due to the strong stability preserving (SSP) nature of

the RK methods often employed, much of the analysis for the completely

decoupled RK-DG schemes has been undertaken on the semi-discrete scheme

only. The main alternative, favoured for diffusion problems, is to perform the

spatial and temporal discretisations together by coupling DG with a

Lax-Wendroff (LW) Taylor-type time discretisation. Motivated by the local

discontinuous Galerkin (LDG) method of Cockburn and Shu (SINUM, 1998),

the original LW-DG method was introduced in 2005 by Qiu et al. in [46]. This

Chapter 1: Introduction 21

scheme uses Taylor series to replace temporal derivatives by spatial ones before

applying the DG discretisation, resulting in a single-step procedure which

respects the original problem in the discretisations. However, this method is

often outperformed by the RK-DG method and comes at a higher

computational cost.

Guo, Qiu and Qiu (2015) [31] studied the superconvergence of Lax-Wendroff DG

schemes. These Taylor-type methods are qualitatively different to a MoL in that

the two discretisations are intertwined so analysis must be performed on the

fully-discrete scheme. The original scheme of Qiu et al. (2005) computes higher-

order spatial derivatives directly and is not superconvergent but, using auxiliary

variables as in the LDG methodology, superconvergence similar to that seen in

RK-DG schemes is recovered in [31].

The class of multi-stage multi-derivative methods presented in [51] can be

considered as a unification of two opposing time-stepping procedures: the

Runge-Kutta (Method of Lines) and Lax-Wendroff (Taylor) discretisations. In

Chapter 3, we extend the approach of [31] to define a new multiderivative

method with superconvergent properties. While we lose some of the portability

of the original method, the new scheme has demonstrably superior wave

propagation properties.

The DGM has been shown to be order p + 1 accurate [28], where p is the order

of the piecewise polynomial basis. However, it turns out that at certain points,

the DGM achieves a higher than expected order of accuracy: the so-called

superconvergence property. Recently, it has been observed that the

superconvergence property depends on the flux used to construct the

discontinuous Galerkin method, specifically for the LW-DG method [47].

Several different approaches have been made to explore superconvergence.

Results may be pigeon-holed into three categories: pointwise superconvergence,

superconvergence in a negative-order norm, and superconvergence towards a

special projection of the solution.

Chapter 1: Introduction 22

The pointwise superconvergence proofs include a wide class of equations

(elliptic, parabolic and hyperbolic) [3, 4, 5, 7, 8, 11]. Original speculation

regarding the superconvergence of DG approximations at Radau points was

given by Biswas et al. [12]. For the upwind flux, these points are roots of

right-Radau polynomials where the approximation exhibits O(h2p+1)

superconvergence at the outflow edge and O(hp+2) at roots in the interior of the

element [2, 6, 5]. Lowrie [43] also noted that a component of the error converges

with O(h2p+1). One approach is to inspect the behaviour of the DGM when

applied to an initial value problem or boundary value problem. Adjerid et al. [3]

showed that, for the ODE u′ − cu = 0, the DG solution on a uniform mesh has

errors on the order of hp+2 at Radau points and on the order of h2p+1 at the

downwind points. Moreover, the leading term of the spatial discretisation error

is shown to be proportional to a Radau polynomial of degree p + 1 at the

downwind points, and at these points the local and global errors are on the

orders of h2p+2 and h2p+1. Convergence to the Radau polynomial also occurs in

the polynomial degree p.

We follow the procedure outlined in [11] to obtain a posteriori error estimates,

defining a new Radau polynomial parametrised by the same measure as is used in

the upwind-biased flux. This approach requires a global initial projection, as in

[44], which is complicated by the multi-element nature of the upwind-biased flux.

We prove that the method is locally O(hp+2) superconvergent at roots of a linear

combination of the left- and right-Radau polynomials. This linear combination

depends on the value of the parameter used in the flux. In order to define a

proper global initial interpolation for odd-degree polynomials, the range of the

flux parameter must be extended beyond that given in [44]. We demonstrate

numerically that, for simple transport, as more information from the direction

counter to the wind direction is included at cell boundaries, the discretisation

errors can be improved. This choice does, however, have implications for the

CFL number.

Chapter 1: Introduction 23

The “hidden” local accuracy of the DG solution may be extracted to a global

measure by applying a post-processing at the final time. Bramble and Schatz

[13] developed a local post-processing technique that utilises information offered

by the negative-order Sobolev norm. Negative-order norm error estimates are

related to extracting the “hidden” superconvergence from special points. In the

context of DG approximations for linear hyperbolic equations, this technique

was described by Cockburn, Luskin, Shu and Süli in [25], where it was shown

that the DG solutions converge with order 2p+ 1 in the negative-order norm. It

was later extended and developed by Ryan and others [56, 36] to treat nonlinear

equations, non-periodic boundary conditions and non-uniform meshes. This

extended version was relabelled as the Smoothness-Increasing

Accuracy-Conserving (SIAC) filter.

The superconvergence result can also be achieved in the L2-norm. This involves

convolving the approximation against a specially designed kernel comprising a

linear combination of B-splines, effecting increased smoothness by damping the

non-physical eigenmodes of the DG operator and exploiting information

concealed in the unwelcome fluctuations that characterise the numerical

solution. Analysis of the SIAC filtered error, which is facilitated by a dual

analysis in a similar fashion to [37], is largely uncomplicated by the

upwind-biased flux. In support of the pointwise observations, we prove that the

use of SIAC filters is still able to draw out the superconvergence information

and create a globally smooth and superconvergent solution of O(h2p+1),

demonstrating that the price paid for the introduction of the flux parameter is

limited to a contribution to the constant attached to the post-processed error

term.

Other superconvergence results include those of Cheng and Shu [21], Yang et al.

[61, 62], Meng et al. [45] and Cao et al. [16]. These results include a description

of O(hp+2) superconvergence towards a special projection of the solution

(so-called supercloseness), a fruitful area of recent research which can also make

use of the negative-order norm. In the case of a linear scalar problem with DG

Chapter 1: Introduction 24

approximation using piecewise linear polynomials and an upwind flux, Cheng

and Shu [21] showed that the DG solution is superconvergent (in the L1,L2 and

L∞ norms) towards the Radau projection of the exact solution. Indeed, the DG

solution is closer to the Radau projection of the exact solution than the solution

itself. The DG error, which is shown not to grow over a long time period

O(1/h), is decomposed into two parts: the superconvergent part which grows

(at most) linearly in time, and another part which does not grow in time. This

result for superconvergence is desired in the general case of pth order

polynomials. The error decomposition is connected in [32] to analysis ([68]) via

the Fourier approach.

Recent interest [68, 64, 63, 52, 60, 32, 42] in analysis via a Fourier approach of

DG solutions to the linear advection equation offers an alternative means by

which to explore superconvergence. This analysis is limited to linear equations

with periodic boundary conditions and a uniform mesh. However, as is justified

by numerical examples [32], the results provide a guide for the behaviour of

solutions in a more general setting. Stability and (p + 1)th order accuracy can

be established via this approach while the analysis in [68] provides a

quantitative superconvergent error estimate on the order of hp+2 at Radau

points and on the order of h2p+1 at the downwind points.

A pth-order DG solution to the linear advection equation has one physical mode

and p spurious ones which are damped exponentially fast over time [34]. Guo

et al. [32] derive the amplification matrix of a DG spatial discretisation and

decompose the error e of the DG approximation at the final time t = T into

three parts:

‖e‖ ≤ C1Th
σ + C2h

p+1 + C3 exp

(
−CT

h

)
hp+1, (1.2.1)

where C1, C2, C3, C ∈ R+. The first term on the right-hand side of

inequality (1.2.1), which dominates for T = O
(

1
hσ−p−1

)
, is attributed to the

dispersion and dissipation errors of the physically relevant eigenvalues and

grows linearly in time. The expected order of accuracy is σ = p + 1; however, a

Chapter 1: Introduction 25

judicious choice of numerical flux function in the semi-discrete DG scheme can

yield a superconvergent order of accuracy as high as σ = 2p+ 1. The third term,

which decays exponentially fast over time with respect to h, accounts for

dissipation of the spurious modes. The second term is due to projection of the

initial condition and does not grow in time. Thus the error is on the order of

2p + 1 for long time integration but only p + 1 over short time. At certain

special points – the superconvergent points which change with the choice of

numerical flux – the accuracy of inequality (1.2.1) can be increased to O
(
hp+2

)
by carefully interpolating the initial projection.

To illuminate the contribution of the flux function to accurate wave propagation,

we include results for the upwind-biased scheme in our comparison of eigenvalues

in Chapter 4. The flux parameter is chosen to obtain favourable dispersion and

dissipation properties, in particular for long-time integration. While these results

are comparable to those in [68] for the upwind flux, we demonstrate how to choose

the parameter such that the coefficients in the expressions for the physically

relevant eigenvalues are decreased. This is the first time that consideration of the

flux has been directly included in dispersion analysis of DG schemes.

Fourier analysis for the fully discrete error under various SSPRK schemes is

provided in [68]. This is used to compute the number of points per wavelength

necessary to obtain a fixed error. Analytical dispersion and dissipation errors are

derived in [60] for the RK-DG method (not SSPRK) and it is found that the DG

spatial discretisation, with small CFL, contributes to superconvergence while the

RK time discretisation reduces it. The authors suggest that this is due to the

respective finite element and finite difference natures of the methods. A separate

issue not treated in these papers is the consideration of time discretisation errors.

A Fourier-type analysis in [60] contrasts the RK-DG and the original LW-DG

schemes: for the second-order methods, RK is more dissipative than LW and

vice versa for the third-order methods. In Chapter 4, we study the dispersion and

dissipation errors of a class of multi-stage multiderivative discontinuous Galerkin

Chapter 1: Introduction 26

methods that sit halfway between RK- and LW-DG for solving a linear advection

equation over a long time period.

1.2.1 Outline of thesis

The outline of this thesis is as follows: in Section 1.3, we discuss preliminaries and

review the construction of discontinuous Galerkin scheme, paying some particular

attention to the upwind-biased flux. In Chapter 2, we present pointwise and post-

processed superconvergence results for the upwind-biased flux. Options for time

integration are discussed are Chapter 3. These include the establishment of a new

multi-stage multi-derivative method which we call the modified TDRK4 scheme.

In Chapter 4, we perform dispersion analysis via Fourier approach of the DG

scheme with upwind-biased flux and the TDRK4-DG schemes. We support this

analysis with numerical examples throughout and conclusions in Chapter 5.

1.3 Background

In the remainder of this chapter, we discuss preliminaries to the DG formulation

and perform the semi-discretisation of the hyperbolic conservation law.

1.3.1 Notation and definitions

We first define the approximation spaces associated with the discretisation of the

spatial domain.

Function spaces

The DG method seeks a numerical solution belonging to the approximation space

V p
h = {v ∈ L2(Ω) : v|S ∈Pp(S), ∀S ∈ Ωh}, (1.3.1)

Chapter 1: Introduction 27

where Ωh is a tessellation of a domain Ω ⊂ Rd into elements S, Pp(S) is the space

of polynomials of degree at most p in each variable on an element S and where

L2(Ω) is the space of square-integrable functions on the domain Ω. The piecewise

polynomial nature of the approximation space V p
h allows discontinuities across cell

boundaries resulting in an ability to better approximate sharp gradients.

In multiple dimensions, due to the tensor product nature of the post-processing

kernel, we also require the function space of tensor-product polynomials Qp(S)

of degree at most p in each variable. This necessitates the use of the following

finite element spaces:

W p
h = {φ ∈ L2(Ω) : φ|S ∈ Qp(S), ∀S ∈ Ωh},

Σp
h = {η = (η1, . . . , ηd)

T ∈
(
L2(Ω)

)d
: ηl ∈ Qp(S), l = 1, . . . , d; ∀S ∈ Ωh}.

Nevertheless, we mention here that it has been observed ([50]) that the filter also

works for the standard polynomial space Pp(S). Note that for a one-dimensional

domain Ω = I, these function spaces Qp(S) and Pp(S) agree.

Operators on the function spaces

We list the following standard notations. The inner-product over Ω of two

functions is defined as

(w, v)Ω =
∑
S

∫
S
wv dS; (p, q)Ω =

∑
S

∫
S
p · q dS

depending on whether the functions take scalar or vector values. We denote by

Phv the usual L2-projection of a function v.

The L2-norm on the domain Ω and on the boundary ∂Ω is defined as

‖η‖Ω =

(∫
Ω
η2 dx

)1/2

; ‖η‖∂Ω =

(∫
∂Ω
η2 ds

)1/2

Chapter 1: Introduction 28

and the `-norm and semi-norm of the Sobolev spaceH`(Ω) are defined respectively

as

‖η‖`,Ω =

∑
|α|≤`

‖Dαη‖2Ω

1/2

; |η|`,Ω =
∑
|α|≤`

‖Dαη‖∞,Ω, ` > 0,

where α is a d-dimensional multi-index of order |α| and where Dα denotes

multi-dimensional partial derivatives. The definitions for the above norms for

vector-valued functions are analogous to the scalar case.

The negative-order Sobolev norm is defined as

‖η‖−`,Ω = sup
Φ∈C∞0 (Ω)

(η,Φ)Ω

‖Φ‖`,Ω
.

Note that for all ` ≥ 1, by definition and the Cauchy inequality we easily obtain

‖η‖−`,Ω ≤ ‖η‖Ω.

The negative-order norm measures the higher order modes of a function and

can be used to detect oscillations ([25]). In Section 2.2, we discuss the SIAC

filter which smooths oscillations in the error and uses the negative-order norm

as a means of obtaining L2-error estimates for the filtered solution.

Finally, the difference quotients ∂h,jv are given by

∂h,jv(x) =
1

h

[
v(x +

1

2
hej) − v(x− 1

2
hej)

]
,

where ej is the jth component unit normal vector. For any multi-index α =

(α1, . . . , αd), we define the αth-order difference quotient by

∂αh,jv(x) =
(
∂α1
h,1 · · · ∂

αd
h,d

)
v(x).

Chapter 1: Introduction 29

Projection and interpolation properties and known error estimates

Theorem 1.3.1. Cauchy-Schwarz Inequality: For w, v ∈ L2(Ω), we have

| (w, v)Ω | ≤ ‖w‖Ω‖v‖Ω. (1.3.2)

Theorem 1.3.2. Young’s Inequality with ε: Let 1 < p, q < ∞ with 1
p + 1

q = 1.

Then, for all ε > 0 and for all a, b ∈ R, there holds

ab ≤ ε

p
ap +

1

εq
bq. (1.3.3)

Theorem 1.3.3. Cauchy Inequality:

∑
i

aibi ≤

(∑
i

a2
i

)1/2(∑
i

b2i

)1/2

. (1.3.4)

1.3.2 Hyperbolic conservation law

Consider the hyperbolic system

ut +

d∑
i=1

fi(u)xi = 0, (x, t) ∈ Ω× (0, T], (1.3.5)

for the conserved quantity u(x, t), where x = (x1, . . . , xd) ∈ Ω ⊂ Rd. Since we do

not seek to consider the effect of the boundary conditions, we assume periodicity.

For the initial condition, much of the analyses require only that u0(x) ∈ Hp+1 (Ω)

but for some of the proofs, we require infinite differentiability,

u(x, 0) = u0(x) ∈ C∞ (Ω) ,

in order to write the DG solution as a Maclaurin series. Even with a completely

continuous initial condition, equation (1.3.5) can develop discontinuities.

For simplicity and ease of exposition, much of the discussion will be framed in a

Chapter 1: Introduction 30

single spatial dimension with the equation

ut + f(u)x = 0, x ∈ I = [0, 2π], t ∈ (0, T], (1.3.6)

u(x, 0) = u0(x), u(0, t) = u(2π, t),

arising from setting d = 1 in equation (1.3.5). Furthermore, many of the results

are limited to the linear advection equation

ut + cux = 0, c > 0, u(x, 0) = u0(x), (1.3.7)

for which the exact solution

u(x, T) = u0(x− cT)

is known analytically. This permits otherwise prohibitively complicated analysis

of the accuracy of numerical solutions to this problem whilst the resulting

observations can be used to provide guidance for more complicated settings.

Outline of the Method of Lines Approach

The predominant idea in treating the equation (1.3.6) is to discretise the problem

in space and in time. A Method of Lines solver keeps separate the temporal and

spatial discretisations. We discretise first in space

ut = −f(u)x,

approximating the continuous function u by a discrete numerical solution uh. For

hyperbolic conservation laws, which may develop shocks, a particularly attractive

choice of spatial discretisation is the DG method, the details of which we present

later in this chapter. In this way, we define a spatial discretisation operator

L(uh) := −f(uh)x,

Chapter 1: Introduction 31

forming a large ODE system

∂

∂t
uh = L(uh).

Once this system has been resolved into its component parts, the second stage

of the process is completed by an ODE integrator. For hyperbolic conservation

laws in particular, this is commonly taken to be an explicit RK method due to

their ease of implementation and relatively high computational efficiency. With

an abuse of notation, we now write

d

dt
uh = L (uh) (1.3.8)

when the Fundamental Theorem of Calculus gives

un+1
h = unh +

∫ tn+1

tn

L (uh) dt,

where unh = uh(x, tn) is the approximation after the nth level of time-stepping.

We may approximate the above integral by an s-stage Runge-Kutta method

∫ tn+1

tn

L (uh) dt ≈ ∆t
s∑
i=1

biL (uh (tn + ci∆t)) ,

the simplest of which is the single stage Euler’s method:

un+1
h = unh + ∆tL (unh). (1.3.9)

We describe a certain class of RK methods, named Strong Stability Preserving

RK methods, and further discuss timestepping in Chapter 3. One of the main

attractions of using SSP time discretisations is that they can be written as convex

combinations of first-order forward Euler steps, significantly simplifying proofs

for nonlinear stability. In the remainder of this chapter, we describe in detail the

DG discretisation of the spatial derivative.

Chapter 1: Introduction 32

u
xj−3/2

Ij−1 u
xj−1/2

Ij u
xj+1/2

Ij+1 u
xj+3/2

S
SSw

−
�
��/

+

-� hj

Figure 1.3.1: One-dimensional elements in a segment of the tessellation

1.3.3 Tessellation

Consider a discretisation Ih of the one-dimensional bounded domain I = [a, b]

into N cells Ij of length hj such that the cells take the form

Ij =
[
xj− 1

2
, xj+ 1

2

]
, j = 1, . . . , N,

with a = x 1
2
< x 3

2
< · · · < xN+ 1

2
= b. Denote the cell centres by

xj = xj− 1
2

+
1

2
hj .

For a function v(x) defined on both Ij and Ij+1, we define v−
j+ 1

2

= limx→x−
j+1

2

v(x)

and, similarly, v+
j+ 1

2

= limx→x+
j+1

2

v(x).

For computational convenience, we apply the linear mapping

ξ : Ij 7→ [−1, 1], ξ(x) =
2

hj
(x− xj) (1.3.10)

of each element to the canonical element ξ ∈ [−1, 1].

For simplicity, and out of necessity for many of the approaches we take to analysis

of the schemes, we consider cells of uniform length

h = ∆x =
b− a
N

.

The Jacobian of the scaling (1.3.10) is h
2 in this case.

Much of the discussion that follows will focus on a single spatial dimension but

the tessellation is easily extended to multiple dimensions. Specifically, let Ωh be

Chapter 1: Introduction 33

a tessellation of a d-dimensional bounded domain Ω into elements S of regular

quadrilateral-type shape. Denote by ∂Ωh =
⋃
S∈Ωh

∂S the union of boundary

faces ∂S of the elements S ∈ Ωh. A face e internal to the domain has associated

with it “left” and “right” elements SL and SR and exterior-pointing normal

vectors nL = (nL1 , . . . , n
L
d) and nR = (nR1 , . . . , n

R
d) respectively as described

in [37]. Given a function v defined on neighbouring elements SL and SR which

share a face e, we refer to its restriction in SL to the face e by writing

vL := (v|SL)|e and similarly for vR, the restriction of v to e in SR.

In two dimensions for example, let Ω = [−1, 1]2 and construct Nx · Ny

rectangular cells S = Ii × Jj comprising the product of intervals

Ii =
(
xi− 1

2
, xi+ 1

2

)
and Jj =

(
yj− 1

2
, yj+ 1

2

)

for 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny respectively. The cell lengths are given by

hx,i = xi+ 1
2
− xi− 1

2
, 1 ≤ i ≤ Nx, and hy,j = yj+ 1

2
− yj− 1

2
, 1 ≤ j ≤ Ny, subject to

the regularity condition hx,i, hy,j ≥ ch, c > 0, where we define

h = max

{
max

1≤i≤Nx
hx,i, max

1≤j≤Ny
hy,j

}
.

In passing, we give inverse inequalities on the cells and cell boundaries.

Theorem 1.3.4. Inverse estimates:

‖vx‖Ij ≤ µ1h
−1‖v‖Ij (1.3.11)

‖v‖∂Ij ≤ µ2h
−1/2‖v‖Ij . (1.3.12)

With the spatial mesh defined, we are now ready to discuss the DG discretisation.

Chapter 1: Introduction 34

1.3.4 Discontinuous Galerkin semi-discretisation

The most straightforward pairing of the spatial and temporal discretisations is

to treat them separately: discretise the spatial derivatives to transform the

governing PDE to an ODE then step the solution forwards in time with an

ODE solver as described in §1.3.2. An alternative is to intertwine the

discretisations before specifying the spatial operator. In both cases, we require

the DG discretisation of a spatial derivative wx of some function w. The

appropriate choice of DG discretisation amounts to selection of the numerical

flux function. What follows is a full description of the DG semi-discretisation of

the hyperbolic system (1.3.5).

Given a tessellation Ωh of the d-dimensional domain Ω, multiply

equation (1.3.5) by a test function v and integrate over an arbitrary element

S ∈ Ωh, integrating by parts to obtain the weak formulation

∫
S
utv dS −

d∑
i=1

∫
S
fi(u)vxi dS +

d∑
i=1

∫
∂S
fi(u)v ds = 0. (1.3.13)

Next, we assume that both the solution and test function belong to the finite

dimensional approximation space of piecewise polynomials of degree at most p:

V p
h :=

{
v ∈ L2(Ω) : v|S ∈ Qp(S), ∀S ∈ Ωh

}
.

Note that functions v ∈ V p
h are allowed to be discontinuous across element

boundaries. This is the distinguishing feature of DG schemes amongst finite

element methods. Since the boundary terms in equation (1.3.13) are not well

defined when u and v are in the approximation space V p
h , they require special

treatment. The test function values are taken from inside the cell and the

solution values are often chosen to mimic properties of the system whilst

ensuring stability.

By replacing in equation (1.3.13) the solution u(x, t) by a numerical

Chapter 1: Introduction 35

approximation uh(x, t) such that uh(·, t) ∈ V p
h , we obtain the discontinuous

Galerkin method: find, for any v ∈ V p
h and for all elements S, the unique

function uh(·, t) ∈ V p
h that satisfies

∫
S

(uh)tv dS −
d∑
i=1

∫
S
fi(uh)vxi dS +

d∑
i=1

∫
∂S
f̂i(uh)v ds = 0, (1.3.14)

where f̂ is a single-valued numerical flux function used to enforce weak continuity

at the cell interfaces. We discuss the numerical flux function in §1.3.7.

Summing equation (1.3.14) over the elements S, we get a compact expression for

the global scheme:

((uh)t, v)Ωh
+ B(uh; v) = 0,

where we define for future use a bilinear operator

B(uh; v) :=
∑
S

BS(uh; v), (1.3.15)

where

BS(uh; v) := −
d∑
i=1

(fi(uh), vxi)S +
d∑
i=1

(f̂i(uh)ni, v)∂S . (1.3.16)

Before discussing the numerical flux function f̂ , we define the basis functions for

the apporoximation space. For simplicity, we proceed with our discussion in a

single dimension. For multiple dimensions, the basis simply consists of tensor

products of the one-dimensional functions.

1.3.5 Basis functions for the approximation space

The numerical solution resulting from a DG discretisation of the domain can be

written locally in terms of a set of basis functions for V p
h . Different choices of

basis may favour particular approaches to the analysis of the schemes. For the

majority of this document, we employ the Legendre polynomials Pn(ξ) that are

Chapter 1: Introduction 36

0 π 2π
−1

−0.5

0

0.5

1

x

Figure 1.3.2: Legendre polynomials up to order 3

defined by the Rodrigues formula

Pn(ξ) =
1

2nn!

dn

dξn
(
(ξ2 − 1)n

)
, −1 ≤ ξ ≤ 1, n ≥ 0,

and which satisfy the orthogonality condition

∫ 1

−1
Pn(ξ)Pm(ξ) dξ =

2

2n+ 1
δnm, (1.3.17)

where δnm is the Kronecker-delta function. The first few are

P0(ξ) = 1; P1(ξ) =
√

3ξ; P2(ξ) =

√
5

2
(3ξ2 − 1); P3(ξ) =

√
7

2
(5ξ3 − 3x).

Further properties that we use include:

Pn(1) = 1; Pn(−1) = (−1)n;
d

dξ
Pn(1) =

1

2
n(n+ 1); (1.3.18)

and

d

dξ
Pn+1(ξ) = (2n+ 1)Pn(ξ) + (2n− 3)Pn−2(ξ) + (2n− 7)Pn−4(ξ) + (1.3.19)

Figure 1.3.2 shows Legendre polynomials up to degree 3 on each of 5 elements

in a tessellation of the interval [0, 2π]. The piecewise constant P0(ξ) is staggered

to aid visualisation.

Chapter 1: Introduction 37

We also define here the right- and left-Radau polynomials

R+
p+1(ξ) = Pp+1(ξ)− Pp(ξ), R−p+1(ξ) = Pp+1(ξ) + Pp(ξ)

respectively. These are the difference and sum of consecutive Legendre

polynomials. It is known that the roots

ξ+
1 < ξ+

2 < · · · < ξ+
p+1 = 1

of R+
p+1(ξ) and the roots

−1 = ξ−1 < ξ−2 < · · · < ξ−p+1

of R−p+1(ξ) are real, distinct and lie in the interval [−1, 1].

1.3.6 Galerkin expansions

Modal discontinuous Galerkin methods track coefficients U
(`)
j of basis functions

ϕ(`). To ease computation, we usually map the element Ij to [−1, 1] via the

scaling (1.3.10). In one dimension, the approximate solution when restricted to

a single cell Ij is given by the Galerkin expansion

uh(x(ξ), t)|Ij := uj(ξ, t) =

p∑
`=0

U
(`)
j (t)ϕ(`)(ξ), (1.3.20)

where p is the maximal polynomial order of the basis. Such an approximation is

(p+ 1)st-order accurate.

We mention en passent that the Galerkin expansion of some given function,

such as the flux function f(u) or the initial condition u(x, 0) = u0(x), is

computed by an L2-projection onto the basis. That is, given g(x, t), on each cell

Chapter 1: Introduction 38

Ij require

p∑
`=0

G
(`)
j (t)

∫
Ij
ϕ

(`)
j (x)ϕ

(m)
j (x) dx =

∫
Ij
g(x, t)ϕ(m)(x) dx (1.3.21)

for each m = 0, . . . , p. The integral on the left-hand side of equation (1.3.21) gives

rise to a mass matrix which must be inverted while the integral on the right-hand

side may be computed using a quadrature rule. The orthogonal Legendre basis

leads to a diagonal mass matrix.

For example, given the approximate solution uh(x, t), compute the Galerkin

expansion of f(uh) by the following process:

1. For each j = 1, . . . , N and i = 1, . . . , R, compute at a set of R quadrature

points ξ̄i ∈ [−1, 1] on each cell Ij the flux function point-values

f
(
uj(x(ξ̄i), t)

)
.

2. After choosing local basis functions ϕ(m)(ξ) = Pm(ξ) of Legendre type, the

Galerkin coefficients of f(u) on the cell Ij are given by

F
(m)
j (t) =

2m+ 1

2

R∑
i=1

f
(
uj(ξ̄i, t)

)
Pm(ξ̄i)wi, m = 0, . . . , p,

where wi are the quadrature weights corresponding to the nodes ξ̄i.

3. The Galerkin expansion can be constructed from the coefficients:

f(uh) =

p∑
`=0

F
(`)
j (t)ϕ(`)(ξ).

To denote the vector of Galerkin coefficients F
(m)
j (t) for a function f on a cell Ij ,

we use a bold font:

Fj :=
(
F

(0)
j , . . . , F

(p)
j

)T
.

The DG scheme (1.3.14) is parsed by substituting for uh the Galerkin

expansion (1.3.20) and setting the test function v to be a Legendre basis

function ϕ(m), m = 0, . . . , p.

Chapter 1: Introduction 39

1.3.7 Numerical flux function

In order to ensure stability of the scheme (1.3.14), it remains to define the

numerical flux functions f̂ featured in the cell boundary terms. In general,

f̂
(
uLh , u

R
h

)
depends on values of the numerical solution from both sides of the

cell interface. Construction of the function is often motivated by the energy

stability proof and, traditionally ([26]), it is chosen to be a so-called monotone

flux: a function that satisfies

• Lipschitz continuity

• consistency: f̂(u, u) = f(u)

• monotonicity: f̂(↑, ↓).

By monotonicity, we mean to say that the function is non-decreasing in its first

argument u− and non-increasing in its second argument u+.

The numerical flux function is the part of the DG approximation that is

responsible for superconvergence. In the linear case, one can use characteristics

to guide the design of the flux f̂ . When f(u) = cu, c ∈ R, in the hyperbolic

equation (1.3.6), a single wind direction is determined and the natural choice to

mimic advection when c > 0 is to satisfy the upwinding condition

f̂(uh) = cûh = cu−h

so that information propagates only from left to right. As a means of investigating

the effect of the flux on the superconvergent properties of the schemes, we consider

a more general function

ûh = θu−h + (1− θ)u+
h , θ >

1

2
, (1.3.22)

which incorporates a parameter θ that measures the amount of information

included from the upwind direction. More information is taken from the left

Chapter 1: Introduction 40

than from the right of cell boundaries and, when θ = 1, the function reduces to

the purely upwind flux u−h . We do not allow θ = 1
2 , which gives a central flux,

since then the scheme becomes unstable. This function was named the

upwind-biased flux by Meng et al. (2016) who introduced it in the context of

DG solutions to linear hyperbolic equations. Here, it is defined for a problem

with periodic boundary conditions but in [44, 15], Dirichlet conditions were also

considered. Construction of an upwind-biased flux for nonlinear equations is the

topic of ongoing work.

An upwind-biased flux may lead to a reduced numerical viscosity and may be

easier to construct for more complicated problems [44]. It was recently shown

in [15] that the upwind-biased DG scheme has many of the superconvergent

properties enjoyed by the purely upwind scheme despite its irregular transfer of

information in the direction counter to the wind direction. Moreover, for values

θ > 1, the flux (1.3.22) is not monotone. The main contribution of this thesis

with respect to the upwind-biased flux is to show how the parameter θ can be

varied in such a way that the spectral properties of the approximation are

improved, especially over long time integration. That wave propagation can be

improved in this way goes against one’s instincts as to how flux functions

should be designed.

For nonlinear problems and for some schemes with coupled spatial and temporal

discretisations, we consider the generalised Rusanov-type numerical flux

f̂j+ 1
2

= αθ1u
−
j+ 1

2

+ α(1− θ1)u+
j+ 1

2

+ θ2 (f − αu)−
j+ 1

2

+ (1− θ2) (f − αu)−
j+ 1

2

,

(1.3.23)

where α = max {|f ′(uj)| , |f ′(uj+1)|} and θ1, θ2 ∈ [0, 1] are fixed parameters. Per

the caution in [60], the parameters θ1,2 must be carefully chosen in order to ensure

stability of the scheme. A popular choice employed in [46, 60, 51] is to take θ1 = 1

and θ2 = 1
2 . This results in a function similar to the local Lax-Friedrichs (LLF)

Chapter 1: Introduction 41

flux

f̂j+ 1
2

:= f̂(xj+ 1
2
) =

1

2

[
f+
j+ 1

2

+ f−
j+ 1

2

− α(u+
j+ 1

2

− u−
j+ 1

2

)

]
, α = max

u
|f ′(u)|,

(1.3.24)

defined here for the one-dimensional case, although there are many other choices.

The LLF flux adjusts the (mathematically) natural but unstable centered choice

by adding sufficient numerical diffusion to stabilise the schemes.

1.3.8 Linear advection: Fully resolved semi-discrete scheme

To complete our discussion of the DG semi-discretisation, we bring together the

components introduced thus far to explicitly derive the ODE form (1.3.8) given

in §1.3.2 for the MoL approach to solving the linear advection equation in one

dimension

ut + cux = 0, c > 0. (1.3.25)

A DG discretisation of equation (1.3.25) along the lines of equation (1.3.14) with

the upwind-biased flux (1.3.22) results in

∫
Ij

(uh)tv dx = c

∫
Ij
uhvx dx− c

(
θuh(x−j+1/2) + (1− θ)uh(x+

j+1/2)
)
v(x−j+1/2)

+ c
(
θuh(x−j−1/2) + (1− θ)uh(x+

j−1/2)
)
v(x+

j−1/2) (1.3.26)

for all v ∈ V p
h . In this case, we alter the notation (1.3.16) for the DG spatial

discretisation to include the choice of flux:

Bθj (uh; v) := −c
∫
Ij
uhvx dx+ c

(
θuh(x−j+1/2) + (1− θ)uh(x+

j+1/2)
)
v(x−j+1/2)

− c
(
θuh(x−j−1/2) + (1− θ)uh(x+

j−1/2)
)
v(x+

j−1/2) (1.3.27)

so that ∫
Ij

(uh)tv dx = −Bθj (uh; v). (1.3.28)

Chapter 1: Introduction 42

We reserve B−j (uh; v) and B+
j (uh; v) for the upwind (when θ = 1 in

equation (1.3.27)) and downwind (when θ = 0) cases respectively. While θ = 0

is not a legitimate choice here when c > 0, the notation will be useful later.

To give the global operator in terms of jumps

JvKj+ 1
2

:= v+
j+ 1

2

− v−
j+ 1

2

(1.3.29)

in the boundary values, which can be useful for proofs, sum the scheme (1.3.26)

over the elements Ij and use the periodic boundary conditions:

∫
Ih

(uh)tv dx = −Bθ(uh; v), (1.3.30)

where

Bθ(uh; v) := −c
∫
Ih
uhvx dx− c

N∑
j=1

(
uh(x−

j+ 1
2

) + (1− θ)JuhKj+ 1
2

)
JvKj+ 1

2
.

(1.3.31)

With this presentation, we make apparent the additional contribution of a non-

unity flux parameter θ. By replacing uh by its Galerkin expansion (1.3.20),

scaling the element Ij to the canonical element [−1, 1] and inverting a (sparse)

mass matrix, the DG weak formulation (1.3.14) can be resolved into a matrix

ODE system for the vector Uj of solution coefficients U
(`)
j (t):

d

dt
Uj =

1

∆x
DθUj , (1.3.32)

where we define an operator Dθ that acts on the vector of Galerkin coefficients:

DθWj := M−1 [(θA1 + (1− θ)A2)Wj + θBWj−1 − (1− θ)CWj+1] . (1.3.33)

The entries of the (p+1)×(p+1) matrices A1, A2, B and C are defined as follows:

(A1)m` = Sm` − ϕ(`)(1)ϕ(m)(1); (A2)m` = Sm` + ϕ(`)(−1)ϕ(m)(−1);

Bm` = ϕ(`)(1)ϕ(m)(−1); Cm` = ϕ(`)(−1)ϕ(m)(−1),

(1.3.34)

Chapter 1: Introduction 43

where the elements of the mass and stiffness matrices are given respectively by

Mm` =
1

2

∫ 1

−1
ϕ(`)ϕ(m) dξ; Sm` =

∫ 1

−1
ϕ(`)∂ϕ

(m)

∂ξ
dξ. (1.3.35)

For the special cases of a purely upwind (θ = 1) or downwind (θ = 0) flux in

equation (1.3.33), we reserve the notations D− and D+ respectively.

In certain settings (such as in Chapter 4), it can be advantageous to consider the

mathematically equivalent form of equation (1.3.26) obtained by performing an

extra integration by parts:

∫
Ij

(uh)tv dx = −c
∫
Ij

(uh)xv dx − c(1 − θ)JuhKj+ 1
2
v−
j+ 1

2

− cθJuhKj− 1
2
v+
j− 1

2

.

(1.3.36)

For later use, we modify the DG operator notation accordingly. Define

D̄−Wj := M−1
[
Ā1Wj +BWj−1

]
(1.3.37)

D̄+Wj := M−1
[
Ā2Wj − CWj+1

]
, (1.3.38)

where, denoting by ST the transpose of the stiffness matrix S,

(Ā1)m` = −STm` + ϕ(`)(1)ϕ(m)(1); (Ā2)m` = −STm` − ϕ(`)(−1)ϕ(m)(−1)

and where B and C are as in equations (1.3.34).

In Chapter 2, we take a close-up look at how the upwind-biased flux changes

some of the well-known properties of the upwind scheme. While the view we

take is somewhat divorced from the temporal discretisation, it is important to

better understand the ordonnance of the spatial discretisation if we are,

ultimately, to ask of the time-stepping method a more caring treatment of the

prized superconvergent points.

2

The Numerical Flux and

Superconvergence

“As if you could kill time without injuring eternity.”

– Henry David Thoreau, Walden

In this chapter, we address how the superconvergence properties of the DG

discretisation depend on the numerical flux function. For linear problems, can

we do better than the purely upwind flux? The first section takes a view from

physical space and provides a description of how the superconvergent points of

the semi-discrete description change with the upwind-biased flux parameter θ.

We prove pointwise superconvergent accuracy when the upwind-biased flux is

employed. This property directly contributes to the global error constants in

the negative-order norm. These can be reduced by carefully choosing the value

of θ. This also indicates improved dispersion properties of the fully-discrete

schemes, a topic we address in Chapter 4.

This work was performed independently of and concurrently to the

developments of Waixiang Cao, Yang Yang et al. [15] who also performed

analysis for the one-dimensional linear hyperbolic equation solved by DG with

upwind-biased flux. On a quasi-uniform mesh, they considered a special

interpolation function uI along the lines of Zhimen Zhang’s previous work (for

example [16]). This function is the difference between the Radau projection

Chapter 2: The Numerical Flux and Superconvergence 45

discussed by Xiong Meng et al. [44] and a correction function w built on

Legendre polynomials and an integral projection. The correction function w is

of high order as h decreases so that it is dominated by the Radau projection. In

this chapter, we instead provide a concrete study of how the superconvergent

points change with θ and how the flux function can be chosen to improve the

approximation.

Secondly, we consider superconvergence of the approximation under the

negative order norm after a post-processing by the SIAC filters developed by

Ryan and others ([13, 25, 35]). These two areas of study are directly connected;

the superconvergent error estimate for the post-processed solution relies on the

values of the approximation at the element boundaries and is thus dependent on

the choice of flux.

Within this chapter, we consider the linear advection equation discretised by

the discontinuous Galerkin method with upwind-biased flux. By tracking the

flux parameter θ, we shall better understand the role of the flux function in

determining superconvergence in both physical space and the space governed by

the negative-order norm and be able to provide guidance as to how to choose

θ such that error constants associated to the approximation may be reduced in

magnitude.

2.1 Pointwise Superconvergence

In this section, we demonstrate that when the flux in the DG scheme is chosen to

be the upwind-biased flux, the leading order term in the error is proportional to a

sum, dependent upon θ, of left- and right-Radau polynomials. At certain special

points– roots of this sum of Radau polynomials– the solution displays higher

than expected accuracy. Knowledge of how these superconvergent points change

with the flux function can be used to inform developments in other areas of the

method. For example, it may be advantageous to base interpolating Lagrange

Chapter 2: The Numerical Flux and Superconvergence 46

polynomials on roots of the special Radau polynomial defined below. We briefly

illustrate this in Chapter 4.

The main result, Theorem 2.1.3, is an extension of the observation, for example

of Adjerid, Baccouch and others ([6, 5]), that the superconvergent points for the

purely upwind DG scheme are generated by roots of right-Radau polynomials.

To this end, we define a “special” Radau polynomial

R?p+1(ξ) := θR+
p+1(ξ) + (−1)p(1− θ)R−p+1(ξ), ξ ∈ [−1, 1],

1

2
< θ. (2.1.1)

We show that roots of R?p+1(ξ), which change with the value of θ, generate

superconvergent points on the order of hp+2 for the upwind-biased scheme.

Interestingly, our results indicate that if the choice of flux is not chosen

sensitively in relation to the parity of the polynomial degree, one of these

“superconvergent points” lies outside the element [−1, 1] when convergence to

the expected order is slow.

In the following Lemma, we describe the roots of R?p+1(ξ). For this argument, we

consider the polynomials Pn(ξ) arising from the Rodrigues formula (1.3.5) and

then extend their domain of definition beyond [−1, 1]. Of course, any root that

we find to be outside [−1, 1] will not directly manifest as a superconvergent point

of the DG solution.

Lemma 2.1.1. Let p ∈ N and consider the special Radau polynomial

R?p+1(ξ) = θR+
p+1(ξ) + (−1)p(1− θ)R−p+1(ξ), ξ ∈ R, θ >

1

2
.

All roots of R?p+1(ξ) lie in the interval [−1, 1] provided that 1
2 < θ ≤ 1 when p

is even and that θ ≥ 1 when p is odd. Otherwise, exactly one root of R?p+1(ξ) is

greater than 1 whilst all other roots lie in the interval [−1, 1].

Proof. We split the proof into two cases, writing the special Radau polynomial

Chapter 2: The Numerical Flux and Superconvergence 47

as

R?p+1 =


Pp+1 − (2θ − 1)Pp, when p is even,

(2θ − 1)Pp+1 − Pp, when p is odd.

(2.1.2)

This special Radau polynomial corresponds to the “generalised Radau

polynomial” Gα = Pp+1 − αPp analysed in [15]. Note that when p is even,

Gα=2θ−1 = R? and when p is odd, Gα=1/(2θ−1) = 1
2θ−1R

?.

Suppose that p is even and let 1
2 < θ. Note that by equation (1.3.19) we have,

for ξ > 1,

d

dξ
R?p+1(ξ) = [(2p+ 1)Pp − (2θ − 1)(2p− 1)Pp−1]

+ [(2p− 3)Pp−2 − (2θ − 1)(2p− 5)Pp−3] + · · ·+ P0 > 0.

Thus, since R?p+1(1) = 2(1−θ), there exists a root ξ > 1 of R?p+1(ξ) only if θ > 1.

Similarly, there is no root ξ < −1 since R?p+1(−1) = −2θ < 0 and d
dξR

?
p+1(ξ) > 0.

Suppose instead that the polynomial degree p is odd. Note thatR?p+1(1) = 2(θ−1)

and that limξ→∞R
?
p+1(ξ) = +∞. Thus, when θ ≥ 1, all the roots of R?p+1(ξ) must

satisy ξ ≤ 1. On the other hand, when θ < 1 the Intermediate Value Theorem

implies the existence of a root ξ > 1. Furthermore, there is only one such root

since, for all ξ > 1, property (1.3.19) gives

d

dξ
R?p+1(ξ) ≥ (2θ − 1)[(2p+ 1)(Pp − Pp−1) + (2p− 3)(Pp−2 − Pp−3)

+ · · ·+ 3(P1 − P0)] > 0.

A similar argument shows that there are no roots ξ < −1: while R?p+1(−1) =

2θ > 0, we have that d
dξR

?
p+1(ξ) < 0 for all ξ < −1.

Recall that for the upwind flux (when θ = 1), one of the superconvergent points

is the strongly superconvergent downwind end ξ+
p+1 where the approximation is

on the order of h2p+1. Table 2.1 gives approximations to the roots, which are

the superconvergent points when θ = 1, of the right-Radau polynomial of various

Chapter 2: The Numerical Flux and Superconvergence 48

Table 2.1: Approximations to roots ξ+
i , i = 1, . . . , p + 1, of the right Radau

polynomial R+
p+1(ξ).

p ξ+i

1 − 1
3

1

2 −0.69 0.29 1

3 −0.82 −0.18 0.58 1

4 −0.89 −0.45 0.17 0.72 1

degrees. Relative to these on a number line, when p is even, the roots of R?p+1(ξ)

shift to the left with decreasing values of θ. On the other hand, when p is odd, the

points shift to the right and ξ?p+1 > 1. This observation is reversed for increasing

θ > 1. For example, when p = 1, the roots of R?p+1(ξ) are given by

ξ?1,2 =
1∓ 2

√
1− 3θ + 3θ2

3(2θ − 1)
.

In other words, when the basis polynomial degree has odd parity, we require

θ ≥ 1 in order for all superconvergent points (in particular, for the strongly

superconvergent point) to be physically manifest within the elements. As a

numerical demonstration of this observation, Table 2.2 gives approximations to

the roots of R?p+1(ξ) when θ = 0.55, 1.45: that is, when we employ an

upwind-biased flux satisfying

ûj+ 1
2

= u−
j+ 1

2

∓ 0.45JuKj+ 1
2
. (2.1.3)

Note the roots that lie outside the interval [−1, 1]. We emphasise that this

suggests choosing θ ∈ (1
2 , 1] when the degree of the polynomial basis is even and

θ ≥ 1 when p is odd. In the numerical results section §2.2.3, we plot the

discretisation errors for θ = 1, 0.55, 1.45 in Figure 2.1.3.

Chapter 2: The Numerical Flux and Superconvergence 49

Table 2.2: Approximations to roots ξ?i , i = 1, . . . , p+ 1, of R?p+1(ξ).

p ξ?i when θ = 0.55 ξ?i when θ = 1.45

1 −0.05 6.72 −0.43 0.78

2 −0.76 0.03 0.79 −0.66 0.42 1.38

3 −0.78 −0.02 0.76 5.76 −0.83 −0.24 0.47 0.91

4 −0.90 −0.52 0.02 0.55 0.91 −0.87 −0.41 0.24 0.81 1.30

Following the lines of [5], we interpolate the initial condition at roots of R?p+1(ξ),

where we must restrict θ ≤ 1 when p is even and θ ≥ 1 when p is odd due to the

result in Lemma 2.1.1. When one of the roots of R?p+1(ξ) lies outside of [−1, 1],

for example when θ < 1 and p is odd, one can instead define a global projection

similar to [44] but we leave this as further work.

2.1.1 Pointwise error estimate

Lemma 2.1.2. Let p ∈ Z+ and suppose that u ∈ Cp+1 ([0, h]). Let

ξ?j ∈ [−1, 1], j = 1, . . . , p + 1, be the roots of R?p+1(ξ) as defined by

equation (2.1.1) with θ ≤ 1 if p is even and θ ≥ 1 if p is odd. Consider the

pth-degree Lagrange polynomial

π?u(x) =

p+1∑
n=1

Ln(x), Ln(x) = u(x?n)

p+1∏
j=1
j 6=n

x− x?j
x?n − x?j

, x ∈ [0, h],

interpolating u at the (distinct) roots x?j = h
2 (ξ?j + 1) of the shifted special Radau

polynomial R?p+1(x) on [0, h]. Then the interpolation error satisfies

u(x(ξ))− π?u(x(ξ)) = hp+1cp+1R
?
p+1(ξ) +

∞∑
`=p+2

Q`(ξ)h
`, (2.1.4)

where Q`(ξ) is a polynomial of degree at most `.

Proof. The standard Lagrangian interpolation theory yields, for x ∈ [0, h], an

Chapter 2: The Numerical Flux and Superconvergence 50

s = s(x) ∈ (0, h) such that

e(x) = u(x)− π?u(x) =
1

(p+ 1)!
u(p+1)(s(x))

p+1∏
j=1

(
x− x?j

)
.

By the linear mapping x = h
2 (1 + ξ), we obtain

e (x(ξ)) =
hp+1u(p+1) (s(x(ξ)))

2p+1(p+ 1)!

p+1∏
j=1

(
ξ − ξ?j

)
, ξ ∈ [−1, 1]. (2.1.5)

The Maclaurin series of u(p+1) (s(x(ξ))) with respect to h gives the leading order

term in the error so that equation (2.1.5) becomes

e (x(ξ)) = hp+1 u(p+1)(0)

2p+1(p+ 1)!

p+1∏
j=1

(
ξ − ξ?j

)
+
∞∑
m=1

Qm(ξ)hm+p+1, (2.1.6)

where Qm(ξ) comprises the product of R?p+1(ξ) and a polynomial of degree m in

ξ:

Qm(ξ) =
dm

dhm
∂p+1u(s(x(ξ)))

∂xp+1 |h=0

2p+1(p+ 1)!m!

p+1∏
j=1

(
ξ − ξ?j

)
.

The interpolatory polynomials described in Lemma 2.1.2 are used as initial

conditions in the proof of Theorem 2.1.3. Numerical results in §2.1.2 confirm

that there are only p superconvergent points in each element if the value of θ is

not chosen carefully with respect to the polynomial degree.

Remark. The strong assumption of a uniform mesh, in this case, limits

generalisation of our observations. Cao et al. [15] argued that it may be

necessary to define a local as well as a global flux parameter θ. They showed

that for certain local flux parameters θj , the following supercloseness result

holds

|(u− uI)(ξ?j,`)| ≤ h
p+2
j ‖u‖p+2,∞.

It follows that the superconvergent points of the projection and so the correction

function uI depend on the lengths hj of the cells.

Chapter 2: The Numerical Flux and Superconvergence 51

Theorem 2.1.3. Let p ∈ Z+. Consider the approximate solution uh to the one-

dimensional linear advection equation obtained by a DG scheme (1.3.14) using

pth-order basis functions, a uniform mesh and the upwind-biased flux with θ ≤ 1

if p is even and θ ≥ 1 if p is odd. Let the numerical initial condition be the

interpolating polynomial π?u(x, 0) described in Lemma 2.1.2.

Let ξ = 2
hx−1 be the scaling between the cell Ij and the canonical element [−1, 1].

Then the error e = u− uh satisfies

e(ξ, h, t) =

∞∑
`=p+1

Q`(ξ, t)h
`, Q`(·, t) ∈P`([−1, 1]), (2.1.7)

with

Qp+1(ξ, t) = cp+1(u, h, t)R?p+1(ξ),

where

R?p+1(ξ) =
(
θR+

p+1(ξ) + (−1)p(1− θ)R−p+1(ξ)
)
.

Proof. Without loss of generality, assume the tessellation Ih comprises a single

element [0, h]. To facilitate the analysis, subtract the approximating

scheme (1.3.14) from equation (1.3.13) to obtain a DG orthogonality condition

for the error e: ∫ h

0
etv dx−

∫ h

0
cevx dx+ cêv|x=h

x=0 = 0, (2.1.8)

where ê = u− ûh. The flux terms in equation (2.1.8) can be evaluated using the

periodicity of the boundary conditions as follows:

ê|x=0 = ê|x=h = θ(u− u−h)|x=h + (1− θ)(u− u+
h)|x=h (2.1.9)

= θe|x=h + (1− θ)e|x=0.

Substitution of the cell boundary evaluations (2.1.9) into equation (2.1.8) yields

Chapter 2: The Numerical Flux and Superconvergence 52

for all v ∈ V p
h , after a scaling to the canonical element [−1, 1],

h

2

∫ 1

−1
etv dξ −

∫ 1

−1
cevξ dξ + c (θe|ξ=1 + (1− θ)e|ξ=−1) (v(1)− v(−1)) = 0.

(2.1.10)

Next, we reformat equation (2.1.10) as a scheme for the leading order terms of

the error.

Step One: The DG solution within an element is clearly analytic as a function of

h. Since we assume an initial condition of class C∞, the advecting exact solution

is also smooth so the (local) DG solution is analytic in ξ. Hence we can expand

the (local) error e = u− uh, which is analytic, as a Maclaurin series with respect

to h:

e(ξ, h, t) =
∞∑
`=0

Q`(ξ, t)h
`, (2.1.11)

where Q`(·, t) =
∑`

m=0 bmPm(ξ) is a polynomial of degree at most `.

Next, substitute the expansion (2.1.11) into the scaled scheme (2.1.10) for the

error and collect terms in powers of h to obtain the following equations:

−
∫ 1

−1
Q0vξ dξ + (θQ0(1, t) + (1− θ)Q0(−1, t)) (v(1)− v(−1)) = 0; (2.1.12a)

1

2

∫ 1

−1
(Q`−1)tv dξ −

∫ 1

−1
cQ`vξ dξ (2.1.12b)

+ c (θQ`(1, t) + (1− θ)Q`(−1, t)) (v(1)− v(−1)) = 0, ` ≥ 1.

Since Q0(ξ, t) = Q0(t) = θQ0(t) + (1 − θ)Q0(t), the Fundamental Theorem of

Calculus immediately satisfies equation (2.1.12a). It is from equation (2.1.12b),

by inductively testing against functions v ∈ V p
h , that the rest of the argument is

extracted.

Step Two: Substitute ` = 1 in equation (2.1.12b) and choose v = 1 to obtain

∫ 1

−1
(Q0)t dξ = (Q0)t

∫ 1

−1
dξ = 0.

Chapter 2: The Numerical Flux and Superconvergence 53

Thus we must have (Q0)t(ξ, t) = 0. Any (p + 1)-node interpolating initial

condition πu0(x) leads to the first p + 1 coefficients in the expansion (2.1.11)

vanishing initially:

Q`(ξ, 0) = 0, ` = 0, . . . , p.

In particular, since (Q0)t(ξ, t) = 0, we have Q0(ξ, t) = 0 for all t. This last

observation forms the base step for an induction on p in equation (2.1.12b) with

the hypothesis Q`(ξ, t) = 0, ` = 1, . . . , p− 1.

Step Three: To show that Qp(ξ, t) = 0, consecutively substitute ` = p and

` = p+ 1 in equation (2.1.12b) and choose v = ξ and v = 1 respectively to obtain

in turn

−
∫ 1

−1
Qp dξ + 2 (θQp(1, t) + (1− θ)Qp(−1, t)) = 0, (2.1.13a)

∫ 1

−1
(Qp)t dξ = 0. (2.1.13b)

After differentiating equation (2.1.13a) with respect to t, equation (2.1.13b) yields

d

dt
(θQp(1, t) + (1− θ)Qp(−1, t)) = 0. (2.1.14)

Since Qp(ξ, 0) = 0, the integral in time of equation (2.1.14) leaves, for any t,

θQp(1, t) + (1− θ)Qp(−1, t) = 0. (2.1.15)

The terms in equation (2.1.15) feature in equation (2.1.12b) when ` = p so that

∫ 1

−1
Qpvξ dξ = 0, v ∈ V p

h .

Hence Qp is orthogonal to all v ∈Pp−1 and, if we write Qp(·, t) and v(ξ) as sums

of Legendre polynomials P`(ξ), the orthogonality properties (1.3.17) yield

Qp(ξ, t) =

p∑
`=0

b`(t)P`(ξ) = bp(t)Pp(ξ). (2.1.16)

Chapter 2: The Numerical Flux and Superconvergence 54

The expansion (2.1.16) must satisfy the flux condition (2.1.15). It follows that

θbpPp(1) + (1− θ)bpPp(−1) = 0

so, by Legendre properties (1.3.18), bp = 0. This completes the induction:

Q`(ξ, t) = 0, ` = 0, 1, . . . , p.

Step Four : We now consider the term Qp+1, following the same process as

before. That is, consecutively substitute ` = p + 1 and ` = p + 2 in

equation (2.1.12b) and choose v = ξ and v = 1 respectively to obtain in turn∫ 1

−1
Qp+1 dξ = 2 (θQp+1(1, t) + (1− θ)Qp+1(−1, t)) , (2.1.17a)

∫ 1

−1
(Qp+1)t dξ = 0. (2.1.17b)

Next, differentiate equation (2.1.17a), equate to zero using equation (2.1.17b)

and apply the Fundamental Theorem of Calculus to obtain

θQp+1(1, t) + (1− θ)Qp+1(−1, t) = θQp+1(1, 0) + (1− θ)Qp+1(−1, 0). (2.1.18)

To see that the right-hand side of equation (2.1.18) vanishes, recall that the

leading order term in the interpolation error u0(x)− π?u0(x) satisfies

Qp+1(ξ, 0) = cp+1R
?
p+1(ξ)

then note that, irrespective of the value of p, the following equates to zero:

θR?p+1(1) + (1− θ)R?p+1(−1) = θ(1− θ)
[
(−1)pR−p+1(1) +R+

p+1(−1)
]

= θ(1− θ)
[
2(−1)p + 2(−1)p+1

]
.

It follows from equation (2.1.18) that we also have, for all t ≥ 0,

θQp+1(1, t) + (1− θ)Qp+1(−1, t) = 0. (2.1.19)

Chapter 2: The Numerical Flux and Superconvergence 55

Thus, the flux terms in equation (2.1.12b) with ` = p+ 1 vanish, leaving

∫ 1

−1
Qp+1vξ dξ = 0, v ∈ V p

h .

Hence Qp+1 is orthogonal to all v ∈Pp−1 and we can write, at any given t > 0,

Qp+1(ξ, t) = bp+1(t)Pp+1(ξ) + bp(t)Pp(ξ). (2.1.20)

If we require of the expansion (2.1.20) the conditions (2.1.19), then we must

satisfy

θ [bp+1 + bp] + (1− θ)
[
(−1)p+1bp+1 + (−1)pbp

]
= 0,

from which it follows that

bp =


−(2θ − 1)bp+1, when p is even

− 1
2θ−1bp+1, when p is odd.

In the case of an even polynomial degree p, we have

Qp+1(ξ, t) = bp+1Pp+1(ξ) + (1− 2θ)bp+1Pp(ξ)

= bp+1

[
θR+

p+1(ξ) + (1− θ)R−p+1(ξ)
]

= bp+1R
?
p+1(ξ)

and, for an odd polynomial degree p, we have

Qp+1(ξ, t) =
1

2θ − 1
[(2θ − 1)bp+1Pp+1(ξ)− bp+1Pp(ξ)]

=
1

2θ − 1
bp+1

[
θR+

p+1(ξ)− (1− θ)R−p+1(ξ)
]

=
bp+1

2θ − 1
R?p+1(ξ),

where bp+1 depends on t.

Remark. For simplicity of exposition, Theorem 2.1.3 was restricted to the

Chapter 2: The Numerical Flux and Superconvergence 56

one-dimensional case but extension of the results to multiple dimensions, when

the approximation space consists of piecewise continuous tensor polynomials, is

reasonably straightforward. For a linear advection system, the superconvergent

points are just tensors of the roots of R?p+1(ξ) in each dimension.

2.1.2 Numerical experiments

We present a numerical discussion for the test equation

ut + ux = 0, (x, t) ∈ [0, 2π]× (0, T],

u(x, 0) = sin(x), u(0, T) = u(2π, T).

Figures 2.1.1 -2.1.4 show the DG discretisation errors on a grid ofN = 10 elements

for various values of θ and for polynomial degrees p = 1, 2, 3, 4. Marked by the

red crosses are the theoretical superconvergent points which are roots of R?p+1(ξ)

and which change with the value of θ ∈
(

1
2 , 1
]
. The error curves cross the zero

axis near these roots. Furthermore, the intersection points appear to align more

closely as p increases, an observation shared by Adjerid et al. in [4].

For even polynomial degree (p = 2 and p = 4), we observe p+ 1 superconvergent

points while for the odd cases (p = 1 and p = 3), in general, the error curves

cross the zero axis only p times. Furthermore, as the value of θ reduces, we see an

overall reduction in the magnitude of the errors for even p. On the other hand,

when p is odd the magnitude of the errors in general increases for smaller values

of θ.

Inside certain anomalous elements, for example the fifth and tenth elements in

Figure 2.1.2, the curves miss the crosses or we observe an additional intersection

and this may be due to the initial condition sin(x).

Chapter 2: The Numerical Flux and Superconvergence 57

Figure 2.1.1: Discretisation errors for DG solution to 1D linear hyperbolic
equation with p = 1 and N = 10.

0 2 4 6

−0.08

−0.04

0

0.04

0.08

x

u
−
u
h

(a) θ = 1

0 2 4 6

−0.08

−0.04

0

0.04

0.08

x

u
−
u
h

(b) θ = 0.85

0 2 4 6

−0.08

−0.04

0

0.04

0.08

x

u
−
u
h

(c) θ = 0.55

0 2 4 6

−0.08

−0.04

0

0.04

0.08

x

u
−
u
h

(d) θ = 0.7

Figure 2.1.2: Discretisation errors for DG solution to 1D linear hyperbolic
equation with p = 2 and N = 10.

0 2 4 6
−4

−2

0

2

4x 10
−3

x

u
−
u
h

(a) θ = 1

0 2 4 6
−4

−2

0

2

4x 10
−3

x

u
−
u
h

(b) θ = 0.85

0 2 4 6
−4

−2

0

2

4x 10
−3

x

u
−
u
h

(c) θ = 0.55

0 2 4 6
−4

−2

0

2

4x 10
−3

x

u
−
u
h

(d) θ = 0.7

Chapter 2: The Numerical Flux and Superconvergence 58

Figure 2.1.3: Discretisation errors for DG solution to 1D linear hyperbolic
equation with p = 3 and N = 10.

0 2 4 6
−3

−2

−1

0

1

2

3x 10
−4

x

u
−
u
h

(a) θ = 1

0 2 4 6
−3

−2

−1

0

1

2

3x 10
−4

x

u
−
u
h

(b) θ = 0.85

0 2 4 6
−3

−2

−1

0

1

2

3x 10
−4

x

u
−
u
h

(c) θ = 0.55

0 2 4 6
−3

−2

−1

0

1

2

3x 10
−4

x

u
−
u
h

(d) θ = 0.7

Chapter 2: The Numerical Flux and Superconvergence 59

Figure 2.1.4: Discretisation errors for DG solution to 1D linear hyperbolic
equation with p = 4 and N = 10.

0 2 4 6
−6

−3

0

3

6x 10
−6

x

u
−
u
h

(a) θ = 1

0 2 4 6
−6

−3

0

3

6x 10
−6

x

u
−
u
h

(b) θ = 0.85

0 2 4 6
−6

−3

0

3

6x 10
−6

x

u
−
u
h

(c) θ = 0.55

0 2 4 6
−6

−3

0

3

6x 10
−6

x

u
−
u
h

(d) θ = 0.7

Chapter 2: The Numerical Flux and Superconvergence 60

2.2 Superconvergence of Post-processed Solution

The hidden local accuracy of the DG solution may be extracted to a global

measure by applying the Smoothness-Increasing Accuracy-Conserving (SIAC)

filter introduced in [56]. In this section, we show that O(h2p+1) superconvergent

accuracy in the negative-order norm, as is observed ([36]) for the upwind flux,

still occurs when the upwind-biased DG method is used to solve linear

hyperbolic conservation laws.

2.2.1 The convolution kernel

We detail the component parts of the SIAC filter as defined in [36]. A B-spline

ψ(`) of order ` is defined recursively by

ψ(1) = χ[− 1
2
, 1
2

]; ψ(`) = ψ(`−1) ? χ[− 1
2
, 1
2

], ` ≥ 2,

where χ[− 1
2
, 1
2

] is the characteristic function on the interval
[
−1

2 ,
1
2

]
and where the

operator ? denotes convolution:

f(x) ? g(x) =

∫
R
f(x− y)g(y) dy.

For a multi-index α and given a point x = (x1, . . . , xd) ∈ Rd, we define

ψ(α)(x) = ψ(α1)(x1) · · · ψ(αd)(xd); ψ(`)(x) = ψ(`)(x1) · · · ψ(`)(xd).

In this way, we construct a convolution kernel

K(r+1,`)
h (x) =

∑
γ∈Zd

cr+1,`
γ ψ(`)(x− γ) (2.2.1)

that comprises a linear combination of r+ 1 B-splines ψ(`) ∈ C`−2 of order ` such

that K(r+1,`)
h has compact support and reproduces (by convolution) polynomials

of degree strictly less than r. Typically, r = 2p and ` = p + 1, where p is

the degree of the polynomial basis. The coefficients cγ are tensor products of

Chapter 2: The Numerical Flux and Superconvergence 61

−2 −1 0 1 2

0

0.5

1

x

P1

−2 0 2

0

0.5

1

x

P2

B-spline

Kernel

Figure 2.2.1: The 2p+ 1 B-splines of order p = 1 (left) and p = 2 (right) and the
corresponding convolution kernels

the coefficients cγ found by requiring the reproduction of polynomials property

K(r+1,`)
h ? xq = xq, q < r, in the one-dimensional case. It is important to note

that, due to properties of B-splines derivatives of a convolution with this kernel

may be written in terms of difference quotients:

Dα
(
ψ

(β)
h ? v

)
= ψ

(β−α)
h ? ∂αh v, βi ≥ αi, (2.2.2)

where ψ
(β)
h (x) = ψ

(β/h)
h /hd. Further properties of the kernel may be found in [37].

By convolving the approximation with the kernel, we obtain the SIAC filtered

solution
u?h(x̄, t) := K(r+1,`)

h (x̄) ? uh(x̄, t), (2.2.3)

which displays increased accuracy and reduced oscillations in the error. The

results in this paper treat only the symmetric kernel where the nodes γ are

uniformly spaced. Extension to the one-sided filter given in [36] and [56] is a

straight-forward task.

2.2.2 SIAC filtered error estimate

To begin, we observe that an error bound in the L2-norm follows from a negative-

order norm error estimate. Let

u?h = K(2p+1,p+1)
h ? uh

Chapter 2: The Numerical Flux and Superconvergence 62

be the DG solution to the hyperbolic system (1.3.5) post-processed with the

convolution kernel at the final time. Denote by eh = u− uh the usual DG error

and consider the L2-norm of the error e?h := u − u?h associated with the filtered

solution:

‖u− u?h‖Ω = ‖u−Kh ? u‖Ω + ‖Kh ? u− u?h‖Ω. (2.2.4)

The first term on the right-hand side of (2.2.4) is bounded by Chr+1 from the

integral form of Taylor’s theorem and from the reproduction of polynomials

property of the convolution (Lemma 5.1, [36]). Thus we need only consider the

second term for which

‖Kh ? u− u?h‖Ω = ‖Kh ? eh‖Ω ≤
∑
|α|≤`

‖Dα(Kh ? eh)‖Ω

≤
∑
|α|≤`

‖(DαKh) ? eh‖Ω

≤
∑
|α|≤`

‖(∂αKh) ? eh‖Ω

≤
∑
|α|≤`

‖K̃h ? ∂αeh‖Ω ≤
∑
|α|≤`

‖K̃h‖1‖∂αh eh‖−`

(2.2.5)

by kernel properties of the αth derivative Dα, the kernel’s relation to the divided

difference ∂α and by Young’s inequality for convolutions. The tilde on K̃h in

inequality (2.2.5) signals that the kernel uses B-splines on the order of ` − |α|,

which is a result of the property Dαψ(`) = ∂αhψ
(`−α).

Note that ‖K̃h‖1 =
∑r

i=0 |ci| is just the sum of the kernel coefficients so we only

need to show that ‖∂αh eh‖−` ≤ Ch2p+1. Furthermore, the formulation of the

DG scheme for the solution is similar to that for the divided differences and, as

speculated in [25],

‖∂αh (u− uh)‖−`,Ω ≤ C‖∂αhu0‖`,Ωh2p+m, m ∈ {0, 1/2, 1} . (2.2.6)

This allows us to only have to consider the negative-order norm of the solution

Chapter 2: The Numerical Flux and Superconvergence 63

itself; superconvergent accuracy in the negative-order norm gives superconvergent

accuracy in the L2-norm for the post-processed solution. The following result

provides the required negative-order norm error estimate.

Remark. Notice that the superconvergent points for the upwind-biased scheme,

as described in the one-dimensional case in Lemma 2.1.2, change with the value

of θ. However, the global superconvergence in the negative-order norm occurs

regardless of the value of θ. Furthermore, the proof of the following result does

not differ between odd and even polynomial degrees.

Theorem 2.2.1. Let uh be the numerical solution to the linear hyperbolic

conservation law (1.3.5) with smooth initial condition obtained via a DG

scheme (1.3.14) with upwind-biased flux with parameter θ = (θ1, . . . , θd). Then

‖∂αh (u− uh) (T)‖−k−1,Ω ≤ C(u0, θ, T)h2p+1, α < `. (2.2.7)

Proof. The case when θi = 1, i = 1, . . . , d, is covered in [25]. In the following,

we point out the differences when the more general upwind-biased flux is used.

For simplicity, we consider the case when α = 0. The case for α > 0 is similar

([25, 62]). In order to extract information about the error at the final time, we

work with the dual equation: find a continuous and analytic φ(x, t) such that

φt +

d∑
i=1

aiφxi = 0; φ(x, T) = Φ(x), (x, t) ∈ Ω× [0, T). (2.2.8)

The term appearing in the definition of the negative-order norm can be split as

(u− uh,Φ)Ω(T) = (u, φ)Ω(T)− (uh, φ)Ω(T)

= (u, φ)Ω(0)− (uh, φ)Ω(0)−
∫ T

0

d

dt
(uh, φ)Ω dt

= (u− uh, φ)Ω(0)−
∫ T

0

d

dt
(uh, φ)Ω dt. (2.2.9)

The bounding of this projection term (u−uh, φ)Ω(0) is no different to that in [36];

this term is not affected by the choice of flux in the DG approximation. The L2-

Chapter 2: The Numerical Flux and Superconvergence 64

projection Phu0 of the initial condition onto the solution space can be used as an

initial condition to write

(u(0)− uh(0), φ(0))Ω = (u0 − Phu0, φ(0))Ω

= (u0 − Phu0, φ(0)− Phφ(0))Ω.

Here, we have used the fact that the difference u0 − Phu0 is orthogonal to the

approximation space. By the Cauchy-Schwarz inequality,

|(u(0)− uh(0), φ(0))Ω| ≤ ‖u0 − Phu0‖Ω‖φ(0)− Phφ(0)‖Ω

≤ Cαh
p+1‖u0‖p+1Cβh

p+1‖φ(0)‖p+1

= C1h
2p+2‖u0‖p+1‖φ(0)‖p+1. (2.2.10)

Denote by [[v]]∂S = vR∂SnR + vL∂SnL the jump in φ. Returning to equation (2.2.9),

we use the dual equation, the DG approximation and the continuity of φ to

rewrite the integrand:

d

dt
(uh, φ)Ω

= ((uh)t, φ)Ω + ((uh, φt)Ω

= ((uh)t, φ− χ)Ω + ((uh)t, χ)Ω −
d∑
i=1

((uh, aiφxi)Ω

= ((uh)t, φ− χ)Ω −
d∑
i=1

(aiuh, (φ− χ)xi)Ω +
∑
S

d∑
i=1

∫
∂S
aiûh[[χ]]∂S ds

= ((uh)t, φ− χ)Ω −
d∑
i=1

(aiuh, (φ− χ)xi)Ω −
∑
S

d∑
i=1

∫
∂S
aiûh[[φ− χ]]∂S ds

= ((uh)t, φ− χ)Ω +
d∑
i=1

(ai(uh)xi , φ− χ)Ω +
∑
S

d∑
i=1

∫
∂S
ai[[uh(φ− χ)]]∂S ds

−
∑
S

d∑
i=1

∫
∂S
aiûh[[φ− χ]]∂S ds.

(2.2.11)

Let χ = Phφ be the projection of φ onto the approximation space. Since the

Chapter 2: The Numerical Flux and Superconvergence 65

projection error φ− Phφ is orthogonal to the approximation space, it holds that

((uh)t, φ− Phφ)Ω +
d∑
i=1

(ai(uh)xi , φ− Phφ)Ω = 0.

This leaves us only needing to bound the flux terms:

d

dt
(uh, φ)Ω =

∑
S

d∑
i=1

ai[[uh(φ− Phφ)]]∂S −
∑
S

d∑
i=1

aiûh[[φ− Phφ]]∂S . (2.2.12)

When we choose ûh to be the upwind-biased flux, the the above equation becomes

d

dt
(uh, φ)Ω =

∑
S

d∑
i=1

ai

∫
∂S

[[uh]]∂S
(
(φ− PhφR∂SnR)− (1− θi)[[φ− Phφ]]∂S

)
ds.

(2.2.13)

Let Cθ = max{|1− θ1|, . . . , |1− θd|}. Then

∣∣∣∣ ddt(uh, φ)Ω

∣∣∣∣ ≤ C (1

h

∫ T

0
‖[[uh]]‖2Ωdt

)1/2
[(∫ T

0
‖φ− PhφRnR‖2∂Ωdt

)1/2

+ Cθ

(
1

h

∫ T

0
‖[[φ− Phφ]]‖2∂Ωdt

)1/2
]

≤ C
(

1

h
h2(p+1)

)1/2 [
hp+

1
2 ‖φ‖p+1 + Cθh

p+ 1
2 ‖φ‖p+1

]
= C (1 + Cθ)h

2p+1‖φ‖p+1(T)

= C2h
2p+1‖Φ‖p+1, (2.2.14)

where the constant C2 depends on θ.

Combining the estimates (2.2.10) and (2.2.14) and using the periodicity of the

boundary conditions, we conclude with a bound on the numerator in the definition

of the negative-order norm:

(u− uh,Φ)Ω(T) ≤ C1h
2p+2‖u0‖p+1‖φ(0)‖p+1 + C2h

2p+1‖Φ‖p+1.

Remark. The penalty for using the new flux is limited to a contribution to the

Chapter 2: The Numerical Flux and Superconvergence 66

constant attached to the order term in the negative-order norm error estimate and

we can extract the same global order of accuracy, O
(
h2p+1

)
, for any polynomial

degree p. This is in contrast to the changing local behaviour seen in the pointwise

analysis in the first half of this chapter. We leave to further work the investigation

of a tighter bound that explains how to choose θ so that the error constant

associated to the post-processed approximation is minimised.

2.2.3 Numerical experiments

We present a numerical discussion for the test equation

ut + ux = 0, (x, t) ∈ [0, 2π]× (0, T], (2.2.15)

u(x, 0) = sin(x), u(0, T) = u(2π, T)

solved by the DG scheme with upwind-biased flux paired with the three-stage

third-order Strong Stability Preserving Runge-Kutta timestepping method

described in [30]. The CFL is taken so that spatial errors dominate.

Tables 2.3 and 2.4 illustrate the O(hp+1) accuracy of the DG solution in the

L2- and L∞-norms. After post-processing by the SIAC filter, we observe the

O
(
h2p+1

)
accuracy in the L2-norm described in previous section and we also see

O
(
h2p+1

)
accuracy in the L∞-norm. For odd p, convergence to the expected

orders is slower for lower values of θ but is eventually achieved. Furthermore,

if one compares the same degrees of mesh refinement for decreasing values of θ,

one observes increasing errors for odd p and reducing errors for even p. For the

post-processed solution, this is due in large part to the contribution of θ to the

constant attached to the order term in the error estimate of Theorem 2.2.1.

The highly oscillatory nature of the DG solution, indicating the existence of the

hidden superconvergent points, can be seen in Figures 2.2.2 and 2.2.3 alongside

the post-processed solutions which have increased smoothness and improved

Chapter 2: The Numerical Flux and Superconvergence 67

Table 2.3: L2- and L∞-norms of errors before and after post-processing for case
p = 2.

P2: Before filter P2: After filter

mesh L2 error order L∞error order L2 error order L∞error order

θ = 1

10 8.59E−04 - 3.02E−03 − 1.43E−04 − 2.04E−04 −

20 1.06E−04 3.00 3.66E−03 3.04 2.52E−06 5.83 3.85E−06 5.83

40 1.33E−05 2.99 4.62E−05 2.98 4.46E−08 5.81 6.34E−08 5.82

θ = 0.85

10 7.35E−04 - 2.61E−03 − 1.41E−04 − 2.01E−04 −

20 9.03E−05 3.02 3.10E−04 3.07 2.44E−06 5.86 3.47E−06 5.86

40 1.12E−05 3.00 3.85E−05 3.00 4.19E−08 5.86 5.95E−08 5.86

θ = 0.55

10 5.66E−04 - 1.46E−03 − 1.36E−03 − 1.93E−04 −

20 6.97E−05 3.01 1.86E−04 2.97 2.26E−06 5.91 3.20E−06 5.91

40 8.70E−06 3.00 2.31E−05 3.00 3.63E−08 5.95 5.15E−08 5.96

Figure 2.2.2: DG and filtered errors for p = 2 at time T = 1.

(a) Before and after post-processing for θ = 1.

(b) Before and after post-processing for θ = 0.55.

accuracy. The reduced numerical viscocity enforced by the upwind-biased flux is

evident when comparing plots for θ = 1 and θ = 0.55.

Chapter 2: The Numerical Flux and Superconvergence 68

Table 2.4: L2- and L∞-norms of errors before and after post-processing for case
p = 3.

P3: Before filter P3: After filter

mesh L2 error order L∞error order L2 error order L∞error order

θ = 1

10 2.35E−04 - 1.91E−04 − 1.61E−05 − 2.28E−05 −

20 1.30E−05 4.16 1.06E−05 4.16 6.97E−08 7.86 9.81E−08 7.86

40 8.67E−07 3.91 7.33E−07 3.86 3.34E−10 7.69 4.72E−10 7.69

θ = 0.85

10 2.74E−04 - 2.18E−04 − 1.61E−05 − 2.28E−05 −

20 1.63E−05 4.06 1.31E−05 4.06 6.94E−08 7.86 9.82E−08 7.86

40 1.07E−06 3.92 8.81E−07 3.89 3.34E−10 7.69 4.73E−10 7.69

θ = 0.55

10 4.04E−04 - 2.65E−04 − 1.61E−05 − 2.28E−05 −

20 4.99E−05 3.01 3.22E−05 3.04 6.96E−08 7.85 9.85E−08 7.85

40 4.72E−06 3.40 2.97E−06 3.43 3.39E−10 7.68 4.80E−10 7.68

Figure 2.2.3: DG and filtered errors for p = 3 at time T = 1.

(a) Before and after post-processing for θ = 1.

(b) Before and after post-processing for θ = 0.55.

3

Timestepping

“The future is but the present a little further on.”

– Jules Verne

Having focussed in Chapter 2 on the DG spatial discretisation in isolation, we

now turn our attention to methods for time integration. A considerable

downfall of the current methodologies is that the time-stepping method

ultimately destroys the superconvergent accuracy obtained by the DG spatial

discretisation. While we do not address this issue directly in this thesis, by

better understanding how the effects of the numerical flux – including

superconvergence – are carried forwards in time, we lay some of the foundations

for further work and help to articulate the current state of affairs from which we

may progress.

Consider a discretisation of the time interval [0, T] into points tn of, for the sake

of simplicity, uniform separation ∆t so that tn+1 = tn + ∆t. Denote by

un = u(x, tn) the value of a function u at time t = tn. In this chapter, we

discuss methods for evolving in time the solution to a hyperbolic conservation

law. We initially consider two opposing approaches to the temporal

discretisation. Firstly, we describe an example of a fully-decoupled Method of

Lines that was the prescribed treatment when DG schemes were originally

developed and which remains, arguably, the most popular approach. Secondly,

we describe an approach that couples the two discretisations and that has

Chapter 3: Timestepping 70

increased in popularity more recently. In §3.3 and §3.4, we consider a new

example of a scheme that lies halfway between these two approaches.

3.1 Strong Stability Preserving Runge-Kutta

Methods

Consider an ODE

d

dt
u = D(u).

The linear operator D could arise, for example, from a DG discretisation of the

partial derivative f(u)x per §1.3.2. A particular class of RK methods named

Strong Stability Preserving (SSP) RK methods assume that, with a suitable

time-step restriction ∆t ≤ ∆t0 which often depends on the spatial discretisation,

the first-order Euler time discretisation (1.3.9) is stable under some norm or

semi-norm:

‖u+ ∆tD(u)‖ ≤ ‖u‖. (3.1.1)

Under this assumption, Shu and Osher [54] showed that a Runge-Kutta method

of the form

u(0) = un

u(i) =
i−1∑
j=0

(
αiju

(j) + ∆tβijD
(
u(j)
))

, 1 ≤ i ≤ s

un+1 = u(s),

where αij , βij ≥ 0, is, often under the same time-step restriction, strongly stable:

‖un+1
h ‖ ≤ ‖unh‖.

The CFL number ν, which is related to the maximal ratio of temporal to spatial

step sizes and is often computed via a von Neumann analysis, can be a very

limiting constraint on the step size ∆t. Incidentally, it is extremely convenient

Chapter 3: Timestepping 71

that this class of RK methods can be written as convex combinations of forward

Euler stages since the SSP properties of the forward Euler method are maintained.

Perhaps the most popular of such methods is the three-stage third-order method

SSPRK(3,3):

u(1) = un + ∆tD (un) (3.1.2a)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tD

(
u(1)

)
(3.1.2b)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tD

(
u(2)

)
. (3.1.2c)

To illustrate a link between RK methods and the multiderivative methods

described later in this chapter, we rewrite the stages of SSPRK(3,3) in terms of

the solution at the previous time-step:

u(1) = un + ∆tD (un) (3.1.3a)

u(2) = un + ∆tD
(

1

2
un +

1

4
∆tDun

)
(3.1.3b)

un+1 = un + ∆tD
(
un +

1

2
∆tDun +

1

6
∆t2D2un

)
. (3.1.3c)

Note that the final stage has a similar form to a Taylor expansion.

3.2 Multiderivative Methods: Lax-Wendroff DG

An alternative to the MoL seeks to intertwine the two discretisations and make

use of higher order derivatives of the solution. In the context of hyperbolic

equations, the original LW-DG scheme was proposed by Qiu et al. in [46].

Beginning with an order-m truncated Taylor expansion in time of the solution

u:

u(x, t+ ∆t) ≈ u(x, t) +

m∑
i=1

∆ti

i!

∂i

∂ti
u(x, t), (3.2.1)

the Cauchy-Kowalewski procedure is employed to convert, using the original

equation, the temporal derivatives into spatial derivatives. We rewrite the

Chapter 3: Timestepping 72

derivatives in the following recursive manner in which we aim to factor out a

spatial derivative:

ut = −f(u)x (3.2.2a)

utt = (−f(u)x)t = −(f(u)t)x = −(f ′(u)ut)x =
(
f ′(u)f(u)x

)
x

(3.2.2b)

uttt =
(
f ′(u)f(u)x

)
xt

=
(
f ′(u)f(u)x

)
tx

=
(
f ′′(u)utf(u)x + f ′(u)(f ′(u)ut)x

)
x

= −
(
f ′′(u) (f(u)x)2 + f ′(u)(f ′(u)f(u)x)x

)
x
. (3.2.2c)

The third order (m = 3) method sets a LW-type flux equal to

f̃ = f(u)− ∆t

2
f ′(u)f(u)x +

∆t2

6

(
f ′′(u) (f(u)x)2 + f ′(u)(f ′(u)f(u)x)x

)
(3.2.3)

so that the Taylor expansion (3.2.1) becomes, upon substitution of the

derivatives (3.2.2a)-(3.2.2c),

u(x, t+ ∆t) ≈ u(x, t)−∆tf̃(u,∆t)x. (3.2.4)

The DGM can now be applied locally to discretise the derivative term:

∫
Ij

uh(x, t+ ∆t)v dx =

∫
Ij

uh(x, t)v dx−∆tBj
(
f̃(uh,∆t), v

)
. (3.2.5)

It remains to describe how to treat the derivative terms such as f(u)x and

(f ′(u)f(u)x)x appearing in the LW-type flux (3.2.3). Indeed, there is some

leeway in how to do so and the choice informs the construction of the numerical

flux
̂̃
f in the DG term B

(
f̃(uh,∆t), v

)
in equation (3.2.5). We discuss, in the

context of the scheme in the next section, two ways of computing the derivative

f(u)x: by direct differentiation and by introducing an auxiliary variable. These

treatments within the Lax-Wendroff framework result in the original and new

methods presented in [46] and [31] respectively and we refer the reader to these

papers for an explicit discussion of these methods.

Note that, although equation (3.2.5) results in, after substitution of the

Chapter 3: Timestepping 73

Galerkin expansion of uh and the inversion of a mass matrix, a similar form to

the RK method described in the previous section, these methods are not the

same since the spatial discretisations usually employ different choices of

numerical flux function. Whilst the same DG operator is applied to each stage

value of a RK method, the derivative terms comprising a LW-type flux require

application of different numerical fluxes in order to respect their differing

physical properties with regards to the wind direction.

In the remainder of this chapter, we discuss a method that, in some sense, lies

halfway between Runge-Kutta and Lax-Wendroff methods.

3.3 DG-TDRK4

We introduce the class of multi-stage multiderivative methods discussed in [51]

by means of the same case study with two stages and two derivatives. We begin

with a review of this work in which higher-order derivatives are computed

directly from the basis functions.

Let un := u(x, tn). Recalling the LW and RK forms (3.2.4) and (3.1.3), we

consider two-stage methods where we apply a DG discretisation to the

derivative on the right-hand side of the general stage equation

q = un −∆tf̃x, (3.3.1)

where

f̃ = αf(un) + α∗f(u∗) + β∆tf ′(un)f(un)x + β∗∆tf ′(u∗)f(u∗)x (3.3.2)

is called a modified flux (that is, it is a modification of the LW-type flux function

(3.2.3)). In this way, by multiplying equation (3.3.1) by a test function v and

Chapter 3: Timestepping 74

integrating by parts over a cell Ij , we obtain the weak formulation

∫
Ij

uhv dx =

∫
Ij

unhv dx+ ∆tBj
(
f̃ , v
)
, (3.3.3)

where Bj is the DG operator defined in equation (1.3.16). The quantity u∗ is the

value of the solution at the intermediate stage. Note that this process can include

both Runge-Kutta methods (when, for each stage, β = 0 = β∗) and Lax-Wendroff

methods (when there is just one stage). Further stages can be added by including

more stage quantities (e.g. u∗∗) and more derivatives can be inserted by using

further terms derived from the Cauchy-Kowalewski procedure (3.2.2a)-(3.2.2c).

The two-stage explicit method that we discuss here has in equation (3.3.2)

(α, α∗, β, β∗) =

(
1

2
, 0,−1

8
, 0

)

for the intermediate stage and

(α, α∗, β, β∗) =

(
1, 0,−1

6
,−1

3

)

for the full update. These values are unique and are determined by an analysis

of the order conditions that can be found in [18].

We now formally define the DG implementation of the two-derivative Runge

Kutta method. We refer to this as TDRK4-DG. Given the TDRK4-DG numerical

solution unh := uh(x, tn) at time t = tn, the solution at time t = tn + ∆t is

determined by the following process: find u∗h, u
n+1
h ∈ V k

h such that, for all w, v ∈

V k
h and for all j = 1, . . . , N , there holds on each element Ij

∫
Ij

u∗hw dx =

∫
Ij

unhw dx+ ∆tBj
(

1

2
f(unh) +

∆t

8
f ′(unh)f(unh)x, w

)
(3.3.4a)∫

Ij

un+1
h v dx =

∫
Ij

unhv dx

+ ∆tBj
(
f(unh) +

∆t

6
f ′(unh)f(unh)x +

∆t

3
f ′(u∗h)f(u∗h)x, v

)
.

(3.3.4b)

Chapter 3: Timestepping 75

It remains to define the approximation f(unh)x to the derivative and to choose

corresponding numerical flux functions f̂ , f̂ ′fx in the DG terms in

equations (3.3.4a) and (3.3.4b).

The most convenient treatment of the derivative f(u)x on a cell Ij is to directly

differentiate the Galerkin expansion:

∂xfj(ξ) :=
2

h

k∑
`=0

F
(`)
j (t)

∂ϕ(`)

∂ξ
(ξ).

The Galerkin expansion of gh,j = ∂xfj is then found by projection:

G
(m)
j (t) =

1

2

∫
Ij
∂xfj(ξ)ϕ

(m)(ξ) dξ, m = 0, . . . , p.

The original LW-DG scheme of Qiu et al. [46] and the TDRK4-DG scheme

described previously in [51] employed this approach. In this case, the modified

flux f̃ can be treated as a single quantity and one can prescribe in

equations (3.3.4a) and (3.3.4b) the Rusanov flux function

̂̃
f j+ 1

2
=

1

2

(
f̃+
j+ 1

2

+ f̃−
j+ 1

2

− γ(u+
j+ 1

2

− u−
j+ 1

2

)

)
, γ = max

∣∣f ′(uj), f ′(uj+1)
∣∣ ,

(3.3.5)

where f is the flux function in the hyperbolic conservation law ut + f(u)x = 0, f̃

is the first input of the DG operator Bj in equation (3.3.4a) or (3.3.4b), the

superscript + and − denote evaluation from the right and left of cell boundary

points respectively, and the hat notation denotes a single-valued numerical flux

defined at each cell boundary. This function may be seen as a central flux with

a dissipative correction term to ensure stability. Note that for this scheme, we

take the correction terms u±
j+ 1

2

in equation (3.3.5) at time t = tn in both the

intermediate stage and the full update.

It turns out, as demonstrated in §3.5, that the TDRK4-DG method described

above does not benefit from superconvergence properties similar to those seen in

the SSPRK-DG methods. In the next section, we define a new scheme that does

Chapter 3: Timestepping 76

exhibit superconvergence. Such a property benefits the method’s ability to

accurately propagate waves.

3.4 A New DG-TDRK4 Method

We follow Guo et al.’s incorporation of LDG technologies into the LW-DG

method to describe a new class of multi-stage multiderivative methods which

are superconvergent. As an alternative to the direct treatment of higher-order

derivatives in §3.3, we propose treating g = f(u)x as an auxiliary variable and

instead approximating derivatives by a DG scheme. In effect, this results in an

extra two equations compared to the formulation (3.3.4a)-(3.3.4b).

Furthermore, in order to regain superconvergence, the numerical flux within the

scheme must carefully balance the form of the higher-order derivatives. We

describe the process through a modification of the TDRK4-DG method.

Given the numerical solution unh := uh(x, tn) at time t = tn, we determine the

modified TDRK4-DG solution at time t = tn + ∆t by the following process: find

gnh , g
∗
h, u
∗
h, u

n+1
h ∈ V p

h such that, for all ϕ, φ, ζ, η ∈ V p
h and for all j = 1, . . . , N ,

there holds on each element Ij

∫
Ij

gnhϕ dx = −B−j (f(unh), ϕ) (3.4.1a)∫
Ij

u∗hφ dx =

∫
Ij

unhφ dx+ ∆tBj
(

1

2
f(unh)− ∆t

8
f ′(unh)gnh , φ

)
(3.4.1b)∫

Ij

g∗hζ dx = −B−j (f(u∗h), ζ) (3.4.1c)∫
Ij

un+1
h η dx =

∫
Ij

unhη dx+ ∆tBj
(
f(unh)− ∆t

6
f ′(unh)gnh −

∆t

3
f ′(u∗h)g∗h, η

)
.

(3.4.1d)

The notation B−j in the equations (3.4.1a) and (3.4.1c) for the derivative denotes

use of the upwind numerical flux f−. This must be counter-balanced within

equations (3.4.1b) and (3.4.1d), both for stability reasons and in order to observe

Chapter 3: Timestepping 77

superconvergence. Moreover, the modified flux functions

f̃h =
1

2
f(unh)− ∆t

8
f ′(unh)gnh

in equation (3.4.1b) and

f̃h = f(unh)− ∆t

6
f ′(unh)gnh −

∆t

3
f ′(u∗h)g∗h

in equation (3.4.1d), in contrast to the scheme with direct differentiation,

include information from the left-neighbour cell (in light of the definition of g in

equations (3.4.1a) and (3.4.1c)) and must be treated component-wise when

applying the numerical flux within the scheme in order to respect the

alternating principle. To achieve this, we propose using the same fluxes as [32]

within the stage equations (3.4.1b) and (3.4.1d): we choose f̂j+ 1
2

to be a

standard upwind monotone flux f̂ = f−, and set

f̂ ′gj+ 1
2

=
JfKj+ 1

2

JuKj+ 1
2

g+
j+ 1

2

,

where the “jump” is defined by JwKj+ 1
2

:= w+
j+ 1

2

− w−
j+ 1

2

. Note that for linear

advection when f(u) = u, this reduces to ĝj+ 1
2

= g+
j+ 1

2

. The downwinding on

g is chosen to provide a symmetrical approximation when combined with the

upwinding used in its computation. Further guidance on how to make such

choices in accordance with the alternating principle can be procured from [59].

3.4.1 Stability analysis

In this section, we review the process for proving a stability energy estimate for

Runge-Kutta and modified Lax-Wendroff discontinuous Galerkin schemes in

preparation for approaching the modified TDRK4 scheme. We outline the

approaches taken to prove stability for RK-DG schemes in [66] and LW-DG

schemes in [55]. We work towards preparation of the machinery necessary for

stability analysis of our proposed TDRK4 scheme.

Chapter 3: Timestepping 78

As well as the results included in §1.3.1, we require the following useful results.

Lemma 3.4.1. For any u, v, w ∈ R, we have

vw =
1

2
v2 +

1

2
w2 − 1

2
(v − w)2 (3.4.2)

(u− v ± w)2 = (u− v)2 ± 2(u− v ± w)w − w2. (3.4.3)

Proof: The proof follows from a trivial algebraic manipulation.

Consider the linear advection equation in one spatial dimension. The SSPRK(3,3)

time-stepping method paired with upwind DG spatial discretisation results in the

scheme

(
u

(1)
h , ϕh

)
Ω

= (unh, ϕh)Ω + ∆tB−(unh;ϕh) (3.4.4a)(
u

(2)
h , ψh

)
Ω

=
3

4
(unh, ψh)Ω +

1

4

(
u

(1)
h , ψh

)
Ω

+
1

4
∆tB−

(
u

(1)
h ;ψh

)
(3.4.4b)(

un+1
h , ηh

)
Ω

=
1

3
(unh, ηh)Ω +

2

3

(
u

(2)
h , ηh

)
Ω

+
2

3
∆tB−

(
u

(2)
h ;ψh

)
. (3.4.4c)

We outline the process as follows:

• The goal is to prove that ‖un+1‖2 − ‖un‖2 ≤ 0.

• Test each stage of the global form (3.4.4) against the solution at the previous

stage (where we take u
(0)
h = unh) to obtain inner products of different stage

values, L2-norms and, via the definition (1.3.31) of the global DG operator

B±, jump semi-norms.

• Form a linear combination of the tested stage equations. Possibly using

Lemma 3.4.1, rewrite the inner products as inner products on “difference

operators” Di that satisfy

(Di, v)Ω =
∆t

i!
B− (Di−1, v) for i = 1, 2, . . . , s with D0 = un.

(3.4.5)

Note that D1 = u
(1)
h − u

n
h can be determined by rearranging the first stage

equation (3.4.4a).

Chapter 3: Timestepping 79

• This process results in the equation

‖un+1‖2 − ‖un‖2 = −Π1 + Π2,

where Π1 comprises the jump-semi-norms that arose from the DG terms and

Π2 comprises the remaining inner products and any other positive terms

on the right-hand side. To obtain the stability result, seek to bound Π2 by

Π1.

For the modified LW-DG method, it is convenient to introduce an additional

auxiliary variable and write the update only in terms of inner products:

(
un+1, ϕ

)
Ω

= (un, ϕ)Ω −∆t (pn, ϕ)Ω +
∆t2

2
(qn, ϕ)Ω −

∆t3

6
(rn, ϕ)Ω (3.4.6a)

(pn, ψ)Ω = −B−(un, ψ) (3.4.6b)

(qn, η)Ω = −B+(pn, η) (3.4.6c)

(rn, ζ)Ω = −B+(rn, ζ). (3.4.6d)

While the approach for LW-DG is similar to that for RK-DG, there are some

important differences resulting from the presence of the derivative terms.

• The definitions (3.4.6b-3.4.6d) of the derivatives can be used as a mechanism

for transforming inner products to jumps and norms via the DG terms. One

advantage of writing the update in the form of (3.4.6a) is that it implies

that un+1 = un −∆tpn + ∆t2

2 qn − ∆t3

6 rn.

• Test the scheme against the solution un at the previous time-step. Use the

algebraic identities in Lemma 3.4.1 to rewrite the resulting norm terms to

incorporate a difference operator B1 = un+1
h − unh + ∆tpnh = ∆t2

2 qn − ∆t3

6 rn

that now includes the derivative pn. Products of jump terms can be treated

by the Schwarz inequality.

• Ultimately, to deal with a positive jump semi-norm in pnh, extra terms must

be added to balance the inequality so that the final expression takes the

Chapter 3: Timestepping 80

form (
‖un+1‖2 + ∆t2‖pn+1‖2

)
−
(
‖un‖2 + ∆t‖pn‖2

)
≤ Π ≤ 0.

To bound these extra terms, one can work with the quantity B2 = pn+1
h −

pnh + ∆tqnh , employing a similar approach to the one already developed.

Note that for the second order methods (RK2 and LW2 time-stepping), there is

less machinery available, in particular for dealing with positive jump semi-norm

terms, and one needs to use derivative properties of the piecewise linear basis;

the proofs are actually more challenging than those for the third-order schemes.

The two-stage two-derivative TDRK4 scheme for the linear advection equation

can be written as

(u∗, ϕ)Ω = (un, ϕ)Ω −
1

2
∆t (pn, ϕ)Ω +

∆t2

8
(qn, ϕ)Ω

(pn, ψ)Ω = −B−(un, ψ)

(qn, η)Ω = −B+(pn, η)(
un+1, ϕ

)
Ω

= (un, ϕ)Ω −∆t (pn, ϕ)Ω +
∆t2

6
(qn, ϕ)Ω +

∆t2

3
(q∗, ϕ)Ω

(p∗, ψ)Ω = −B− (u∗, ψ)

(q∗, η)Ω = −B+ (p∗, η)

The stability analysis for this scheme is the topic of ongoing work.

3.5 Numerical Experiments

We present results for the linear advection equation that demonstrate that, after

a post-processing by the SIAC filter, superconvergence is regained by our new

TDRK4-DG method. Numerical results for nonlinear equations is left to future

work.

Chapter 3: Timestepping 81

3.5.1 Linear advection

Consider the linear advection equation

ut + ux = 0, x ∈ [0, 2π], u0(x) = sin(x). (3.5.1)

Table 3.1 shows L2- and L∞-errors and orders of accuracy for the DG solution

and the post-processed DG solution evolved in time by our new TDRK4 method,

the original TDRK4-DG scheme investigated in [51] and the ten-stage fourth-

order SSP Runge-Kutta scheme. For the Method of Lines RK-DG scheme, we

employ three different values of the DG flux parameter θ: the purely upwind

flux when θ = 1 and one value either side of 1. According to the observations of

Chapter 2, we expect θ = 1.5 > 1 to offer favourable results for this odd (p = 3)

polynomial order compared to θ = 0.75 < 1 and even θ = 1. The CFL number

ν = ∆t
∆x is taken to be small enough for the spatial errors to dominate so that

post-processed superconvergence can be observed. A full numerical investigation

of the maximal CFL for the TDRK4 methods and for RK-DG schemes with θ 6= 1

is left to further work. As expected, when compared to the upwind scheme, the

solution obtained with θ = 1.5 > 1 sees a reduction in both the L2- and L∞-

errors while the solution obtained with θ = 0.75 < 1 is inferior and has slower

convergence the pre-processed O
(
hp+1

)
order of accuracy. The disparity between

the post-processed SSPRK-DG for different values of θ is lessened compared to

the pre-processed solutions, suggesting that the power of the flux parameter to

reduce the constants in the SIAC error estimate is minimal.

As claimed, the modified TDRK4-DG scheme that uses techniques borrowed

from LDG to compute higher-order derivatives displays superconvergent

O
(
h2p+2

)
post-processed orders of accuracy whilst the initial inflation of the

orders in the post-processed original TDRK4-DG solution dies off and the order

converges to the expected O
(
hp+1

)
. In fact, the numerical results in this case

for the new TDRK4-DG method are practically identical to those for upwind

RK-DG.

Chapter 3: Timestepping 82

P3: Pre-processed P3: Post-processed

mesh L2 error order L∞error order L2 error order L∞error order

Modified TDRK4: ν = 0.01

16 1.29E−03 - 3.56E−03 − 5.85E−03 - 1.87E−02 −

32 7.99E−05 4.02 2.20E−04 4.01 3.99E−05 7.19 1.27E−04 7.19

64 5.05E−06 3.98 1.45E−05 3.92 1.86E−07 7.74 5.74E−07 7.79

128 3.15E−07 4.00 9.27E−07 3.97 7.56E−10 8.05 2.33E−09 8.05

256 1.97E−08 3.99 5.80E−08 3.99 2.99E−12 8.03 9.33E−12 8.02

Original TDRK4: ν = 0.01

16 1.27E−03 - 3.16E−03 − 5.88E−03 - 1.88E−02 −

32 8.03E−05 3.98 2.06E−04 3.93 4.18E−05 7.13 1.31E−04 7.16

64 5.13E−06 3.96 1.39E−05 3.89 3.03E−07 7.10 8.64E−07 7.25

128 3.21E−07 3.99 8.85E−07 3.97 1.08E−08 4.87 3.32E−08 4.76

256 2.00E−08 3.99 5.53E−08 3.99 6.48E−10 4.09 2.05E−09 4.04

SSPRK(10,4)(θ = 1): ν = 0.01

16 1.28E−03 - 3.53E−03 − 5.84E−03 - 1.87E−02 −

32 7.97E−05 4.01 2.20E−04 4.00 3.99E−05 7.19 1.27E−04 7.19

64 5.05E−06 3.98 1.45E−05 3.92 1.86E−07 7.74 5.74E−07 7.79

128 3.15E−07 4.00 9.27E−07 3.97 7.56E−10 8.05 2.33E−09 8.05

256 1.97E−08 3.99 5.80E−08 3.99 2.99E−12 8.03 9.33E−12 8.02

SSPRK(10,4)(θ = 1.5): ν = 0.01

16 1.30E−03 - 3.47E−03 − 5.85E−03 - 1.87E−02 −

32 6.49E−05 4.33 1.72E−04 4.33 3.99E−05 7.19 1.27E−04 7.20

64 3.92E−06 4.04 1.04E−05 4.03 1.85E−07 7.74 5.72E−07 7.79

128 2.40E−07 4.02 6.54E−07 3.97 7.51E−10 8.06 2.32E−09 8.05

256 1.49E−08 4.00 4.07E−08 4.00 2.95E−12 8.04 9.21E−12 8.03

SSPRK(10,4)(θ = 0.75): ν = 0.01

16 1.29E−03 - 2.82E−03 − 5.84E−03 - 1.87E−02 −

32 1.05E−04 3.62 2.94E−04 3.25 3.99E−05 7.19 1.27E−04 7.19

64 7.73E−06 3.76 2.20E−05 3.74 1.87E−07 7.73 5.77E−07 7.78

128 5.07E−07 3.92 1.45E−06 3.92 7.65E−10 8.04 2.36E−09 8.04

256 3.21E−08 3.98 9.22E−08 3.97 3.07E−12 8.01 9.58E−12 8.00

Table 3.1: L2 and L∞ errors and order of accuracy for fourth-order DG solutions
to the linear advection equation at time T = 1

Chapter 3: Timestepping 83

Time history

We also investigate the behaviour of the solutions over time. Figures (3.5.1a)

and (3.5.1b) show, for p = 1 and p = 2 respectively, the evolving L2-errors of

(p + 1)th-order RK-DG schemes with three values of θ : 0.6, 1, 2. For

comparison, we include the appropriate order of original and new

(superconvergent) LW-DG schemes described in [46] and [31] respectively. Over

short time, some fluctuations are seen in the errors. These are smaller in

magnitude, but prolonged in duration, for the upwind-biased solutions

compared to the upwind or the LW schemes. The original LW-DG errors, which

does not benefit from superconvergence, can be seen to grow with time while, in

general, the other methods, which are superconvergent, do not grow with time.

This has significant and clear implications for accurate wave propagation over

long time periods. The experiment with p = 1 does not see the schemes become

approximately constant but we speculate that we would see this over longer

time. A fuller investigation of these time regimes is left to further work.

We emphasise the favourable results obtained by the RK-DG scheme when θ is

chosen senitively with respect to the parity of the polynomial degree p (θ > 1

when p is odd; θ < 1 when p is even). The solutions for RK2-DG and RK(10,4)-

DG with θ = 2 and the soltuion for RK3-DG with θ = 0.6 sit visibly below the

other schemes over all time regimes.

In Figure (3.5.1c), which shows fourth-order methods with p = 3, we include the

results for the original and our new TDRK4-DG schemes. Over all time regimes,

the upwind MoL and the LW and TDRK schemes that use LDG offer practically

identical results. The lack of long-term accurate wave propagation properties

arising from superconvergence is evident in the original TDRK4 method, which

grows with time. Note that even for a poor choice of θ (e.g. θ = 0.6 when p = 3),

over a long enough time period, the method outperforms those that do not benefit

from superconvergence.

Chapter 3: Timestepping 84

(a) Time history of errors for p = 1. Long time t ∈ [0, 100π] (left); Short time t ∈ [0, 0.6]
(right).

(b) Time history of errors for p = 2. Long time t ∈ [0, 100π] (left); Short time t ∈ [0, 0.5]
(right).

Chapter 3: Timestepping 85

(c) Time history of errors for p = 3. Long time t ∈ [0, 100π] (left); Short time t ∈ [0, 1]
(right).

Figure 3.5.1: Time history of L2-errors of DG solutions to the linear advection
equation

Chapter 3: Timestepping 86

3.5.2 Linear advection with discontinuous coefficient

Consider the linear advection equation with discontinuous coefficient

ut + cux = 0, x ∈ [0, 2π],

where the coefficient c is given by

c =


1, if x ∈ [0, 2π]/

[
π
2 ,

3π
2

]
1
2 , if x ∈

[
π
2 ,

3π
2

]
,

and where the initial condition is

u0(x) =


2 + cos(2x), if x ∈ [0, 2π]/

[
π
2 ,

3π
2

]
4− 2 cos(x), if x ∈

[
π
2 ,

3π
2

]
.

In Figure 3.5.2 and Table 3.2, we give results at final time T = 157 ≈ 50π for

(from top to bottom) our new and the original TDRK4 schemes and the RK(10,4)-

DG scheme with upwind and upwind-biased (θ = 1.5) fluxes. Note that here,

as opposed to the previous example, there is a marked difference between the

superconvergent methods; our new TDRK4-DG scheme and the RK-DG scheme

with θ = 1.5 clearly outperform the upwind RK-DG scheme. A full investigation

of the maximal CFL number (which is responsible for the eventual suboptimal

order as the mesh is refined) and the computational efficiency of each method

would be an interesting topic for further study.

The errors and orders displayed in Table 3.2 are computed away from the two

(stationary) discontinuities in order to see the superconvergent orders of accuracy.

Details of what proportion of the domain need be omitted may be procured

from the seminal monograph of David Gottlieb and Steven Orszag ([29]). It

is important to note that we apply the symmetric SIAC filter. This results in

an approximation on the order of 1 around the discontinuity since the SIAC

Chapter 3: Timestepping 87

filter assumes the solution to be analytic. It is possible to obtain a O
(
h2p+1

)
solution by employing the one-sided filter (although this does not necessarily give

a better approximation away from the discontinuities). An investigation of one-

sided filters in this context is left to further work. It is also worth noting that the

grid is aligned such that the discontinuities, which are stationary, lie on element

boundaries. Finally, we speculate that the undesirable oscillations in the SIAC

filtered errors on the finest mesh are a result of numerical round-off error.

Chapter 3: Timestepping 88

P3: Pre-processed P3: Post-processed

mesh L2 error order L∞error order L2 error order L∞error order

Modified TDRK4: ν = 0.01

16 4.05E−03 - 9.57E−03 − 1.10E−02 - 4.42E−02 −

32 1.17E−04 5.10 5.13E−04 4.22 7.57E−05 7.19 3.05E−04 7.17

64 7.13E−06 4.04 3.01E−05 4.09 3.19E−07 7.59 1.49E−06 7.67

128 4.46E−07 4.00 1.85E−06 4.01 2.05E−09 7.68 9.90E−09 7.33

256 2.78E−08 3.99 1.16E−07 3.99 1.73E−11 6.93 1.58E−10 6.01

Original TDRK4: ν = 0.01

16 7.16E−03 - 1.52E−02 − 3.64E−02 - 4.98E−02 −

32 3.00E−04 4.57 6.97E−04 4.44 3.92E−04 4.12 6.66E−04 3.92

64 1.83E−05 4.03 4.19E−05 4.05 1.12E−05 5.13 2.52E−05 4.72

128 1.15E−06 3.99 2.61E−06 4.00 6.12E−07 4.19 1.47E−06 4.09

RKDG(10,4) with θ = 1: ν = 0.01

16 4.03E−03 - 9.53E−03 − 3.17E−02 - 4.42E−02 −

32 1.17E−04 5.09 5.13E−04 4.21 1.94E−04 4.63 3.05E−04 4.52

64 7.13E−06 4.04 3.01E−05 4.09 1.00E−07 7.60 1.49E−06 7.67

128 4.45E−07 3.99 1.85E−06 4.01 5.47E−09 7.51 9.90E−09 7.23

RKDG(10,4) with θ = 1.5: ν = 0.01

16 4.12E−03 - 1.23E−02 − 1.10E−02 - 4.39E−02 −

32 9.74E−05 5.40 4.77E−04 3.85 7.06E−05 7.29 2.84E−04 7.27

64 5.61E−06 4.11 2.93E−05 3.98 3.40E−07 7.69 1.31E−06 7.76

128 3.43E−07 4.02 1.81E−06 3.99 1.63E−09 7.80 8.82E−09 7.31

256 1.79E−08 4.01 1.13E−07 4.00 1.60E−11 6.72 1.61E−10 5.81

Table 3.2: L2- and L∞-errors and order of accuracy for fourth-order DG solutions
to the linear advection equation at time T = 157

Chapter 3: Timestepping 89

Figure 3.5.2: Linear Advection with discontinuous coefficient. L2-errors (left)
and post-processed errors (right) of Modified TDRK4, TDRK4, RK(10,4)-DG
(θ = 1, 1.5) (from top to bottom). P3 solutions at T = 157, all with ν = 0.01.

4

Dispersion and Dissipation of DG

Schemes

“There was a fantastic universal sense that whatever we were

doing was right, that we were winning...We had all the

momentum; we were riding the crest of a high and beautiful

wave...So now, less than five years later, you can go up on a

steep hill in Las Vegas and look West, and with the right kind

of eyes you can almost see the high water mark — that place

where the wave finally broke, and rolled back.”

– Hunter S. Thompson, Fear and Loathing in Las Vegas

Numerical methods for solving problems that involve the propagation of waves

can give rise to solutions of a qualitatively different nature to the exact solution.

For example, the travelling plane wave described by the one-dimensional linear

advection equation

ut + cux = 0, u(x, 0) = u0(x) = eikx, x ∈ [0, 2π], c > 0, (4.0.1)

with periodic boundary conditions, where k is the wavenumber and i =
√
−1,

displays simple transport of the initial data, which is also a Fourier mode, with

constant speed from left to right. The exact solution is known analytically:

u(x, t) = u0(x− ct) = ei(kx−ωt), (4.0.2)

Chapter 4: Dispersion and Dissipation of DG Schemes 91

where ω is the (angular) wave frequency. The relationship between the

wavenumber and the frequency is described by the dispersion relation; for

equation (4.0.1), this is ω(k) = ck. Thus, we see that the wavespeed is c = ω
k ;

all waves travel at the same speed. It is desirable that the numerical solution

mimic this behaviour.

Numerical methods that involve a discretisation of the spatial domain and

sampling of the solution at discrete points in time can lead to a complex-valued

numerical angular frequency, which we denote by ω̃ = ω̃Re + iω̃Im, where

ω̃Re, ω̃Im ∈ R. For example, consider a first-order parametrised finite difference

approximation to the derivative

u′(x) ≈ 1

h
[(1− θ)uj+1 + (2θ − 1)uj − θuj−1] . (4.0.3)

Note that when θ = 1, this is the backward difference; θ = 0 corresponds to the

forward difference. Let τ = ∆t denote the time-step size. Solving equation (4.0.1)

using a uniform mesh, the finite difference operator (4.0.3) to discretise the spatial

derivative and Euler’s method to advance the solution in time, we get

un+1
j = unj − c

τ

h

[
(1− θ)unj+1 + (2θ − 1)unj − θunj−1

]
. (4.0.4)

By utilising the Taylor expansion of unj+1 and unj−1 about x = xj , we see that

un+1
j = unj − cτ

(
unj
)
x

+
c(2θ − 1)

2
τh
(
unj
)
xx
− 1

6
τh2

(
unj
)
xxx

+O(τh4) (4.0.5)

or, rather,

ut ≈
un+1
j − unj

τ
= −c

(
unj
)
x

+
c(2θ − 1)

2
h
(
unj
)
xx

+O(h2). (4.0.6)

Thus, we are in effect actually solving the so-called modified equation

ut + cux =
c(2θ − 1)

2
huxx. (4.0.7)

Chapter 4: Dispersion and Dissipation of DG Schemes 92

The second-derivative term stabilises the method but it introduces diffusion which

has a dissipative effect on the numerical solution. The strength of this effect can

be controlled by the flux parameter θ which, by the way, only contributes to the

constants attached to the derivative terms of even order. Note that the central

difference scheme arising from choosing θ = 1
2 is not stable.

To see this dissipative effect, suppose the numerical solution uh is of the same

form as the exact solution (4.0.2) and assume that its wavenumber is the exact

wavenumber k. That is, we assume that the numerical solution satisfies

uh(x, t) = µei(kx−ω̃Ret), (4.0.8)

where µ = eω̃Imt is the amplitude. It is clear to see that if ω̃Re 6= ω, the numerical

solution will suffer from phase errors (dispersion). Similarly, if ω̃Im < 0, the

resulting smearing of the amplitude is described as dissipation errors.

Figure 4.0.1 shows a travelling square wave approximated by the first-order

finite difference method (4.0.4) with N = 100 and T = 32. As the wave

propagates, the numerical solution experiences a decrease in amplitude, a phase

lag and smoothing of the peaks. For the finite difference method above, let

Figure 4.0.1: A propagating square wave (black) approximated by first order
finite difference (red) at t = 32 with θ = 1

unj = ei(kjh−ω̃nτ)

Chapter 4: Dispersion and Dissipation of DG Schemes 93

in the scheme. Then, by truncating the Taylor series for e−iω̃τ , it is easy to show

that the dispersion relation is approximated by

ω ≈ ω̃ = c
sin(kh)

h
− i(2θ − 1)

c(1− cos(kh))

h
(4.0.9)

= ck − i(2θ − 1)

2
ck2h− 1

6
ck3h2 + i

(2θ − 1)

24
ck4h3 +

1

120
ck5h4 +O

(
k6h5

)
.

Note that Im(ω̃) = −(2θ − 1)c1−cos(kh)
h < 0 increases in magnitude with (small)

kh so that the method becomes less accurate. This term represents dissipative

errors. When kh� 1 (that is, when there are a large number of mesh points (or

elements) per wavelength), we have ω̃ ≈ ck = ω. On the other hand, if the spatial

discretisation is too coarse and ω̃Re does not provide a good approximation to ω,

then the wave will suffer substantial spurious damping. Note that the magnitude

of the error can be reduced by choosing 1
2 < θ < 1. The spectral properties

of the scheme discussed above are very similar to those for a piecewise constant

DG method paired with Forward Euler time-stepping. The problem of how many

points per wavelength are required for the error for RK-DG methods to fall within

a given tolerance was addressed by Zhong and Shu ([68]).

4.1 Fourier Analysis of Amplification Matrices

In what follows, we analyse for the first time the eigenvalues of the

amplification matrix of the upwind-biased DG operator and the TDRK4

schemes, paying particular attention to the effect of the flux function on the

ability of the method to accurately propagate a wave. We exclusively consider

the linear advection equation (4.0.1) and strongly require a uniform mesh (due

to the infinite nature of the Fourier sum; we consider only a single mode),

periodic boundary conditions (to avoid a Gibbs-type effect) and a smooth initial

condition (so that the solution is analytic; we expand the solution as a power

series). The choice of initial condition and basis functions can be crucial in

obtaining optimal results. Recent work that demonstrates the importance of

Chapter 4: Dispersion and Dissipation of DG Schemes 94

these choices includes [19, 61] and [16].

Consider the local DG solution

uh(x(ξ), t)|Ij =
P∑
`=0

u
(`)
j (t)φ`j(ξ), φ`j(ξ) ∈ V

p
h ,

to the linear advection equation (4.0.1) with periodic boundary conditions, a

uniform mesh and an initial condition

u(x, 0) = u0(x) = eikx, (4.1.1)

where k is the wavenumber. Note that here, the initial condition u(x, 0) is also a

Fourier mode. The spatial derivative of the exact solution (4.0.2) gives ∂
∂xu(x, t) =

iku(x, t) so we expect one of the eigenvalues of the semi-discrete DG operator,

which approximates −cux, to satisfy λ ≈ −ick.

We analyse both the semi-discrete and fully-discrete schemes. Recall that the

DG semi-discretisation with upwind-biased flux can be written as the following

semi-discrete system of ODEs:

d

dt
Uj =

c

h
[(θA1 + (1− θ)A2)Uj + θBUj−1 + (1− θ)CUj+1] , (4.1.2)

where A1, A2, B and C are (p+1)×(p+1) matrices and Uj is the vector of Galerkin

coefficients of uh. In order to inspect the semi-discrete numerical dispersion

relation for the DG scheme, we substitute a wave-like solution

Uj(t) = eikxj ûk(t) (4.1.3)

to rewrite the ODE (4.1.2) in terms of a global coefficient vector ûk. This results

in a statement about the stage amplification:

d

dt
ûk =

c

h
G ûk, (4.1.4)

Chapter 4: Dispersion and Dissipation of DG Schemes 95

where

G = θA1 + (1− θ)A2 + θBe−ik∆x − (1− θ)Ceik∆x (4.1.5)

is known as the semi-discrete amplification matrix. If G is diagonalisable (this is

often observed numerically) then it has a full set of eigenvalues, say

λ̄1, . . . , λ̄p+1, and corresponding eigenvectors Λ1, . . . ,Λp+1. One of the

eigenvalues, say λ̄1, has physical relevance, approximating the semi-discrete

dispersion relation ω = −ick, while the others are associated to spurious modes.

Guo et al. [32] showed that, over time, the contribution of the spurious modes

to the approximation error is exponentially damped with mesh refinement

whilst the dispersion and dissipation errors of the physically relevant eigenvalue

grow linearly.

Similarly, suppose the fully-discrete numerical solution at time t = tn+1 has the

form

Un+1
j =

s∑
m=−s

AmU
n
j+m, (4.1.6)

where s is the size of the stencil and Am are (p + 1) × (p + 1) matrices with

entries that are polynomials in the CFL number ν = ∆x
τ = h

τ , and transform the

Galerkin coefficient vectors to Fourier space via the assumption

Uj(t
n) = eikxj−iω̃tûk,ω (4.1.7)

to obtain a fully-discrete amplification matrix

G =
s∑

m=−s
Ame

imkh (4.1.8)

that satisfies

e−iω̃τ ûk,ω = Gûk,ω. (4.1.9)

The fully discrete amplification matrix G contains information about how

properties of the spatial discretisation are propagated forwards in time. The

physically relevant eigenvalue, say λ1, is associated to a frequency whose real

Chapter 4: Dispersion and Dissipation of DG Schemes 96

part approximates the physical quantity k. The remaining modes, as with the

semi-discrete case, are spurious.

4.1.1 Non-dimensionalised presentation of eigenvalues

He Yang et al. [60] considered refinement of the mesh relative to the

wavenumber. Consider an eigenvalue λ of the amplification matrix G with

argument α = arctan Im(λ)
Re(λ) and modulus r = ea =

√
Re(λ)2 + Im(λ)) so that

a = 1
2(Re(λ)2 + Im(λ)2). Accordingly,

λ = eaeiα = e
1
2

(Re(λ)2+Im(λ)2e
i arctan

Im(λ)
Re(λ) .

Recalling equation (4.1.9), we also have

e−iω̃τ = eωImτeiωReτ = λ

so, comparing the two preceding equations,

ωImτ =
1

2
(Re(λ)2 + Im(λ)2

−iωReτ = i arctan
Im(λ)

Re(λ)
.

Now perform the change of variables

K = kh

Ω = ΩRe + iΩIm = ωReh+ iωImh

so that

ωImτ = νhωIm = νΩIm

ωReτ = νhωRe = νΩRe.

Chapter 4: Dispersion and Dissipation of DG Schemes 97

Finally, we define the non-dimensionalised quantities

ΩRe = ωReh = −h
τ

arctan

(
Im(λ1)

Re(λ1)

)
(4.1.10a)

ΩIm = ωImh =
1

2

h

τ
ln
(
(Re(λ1))2 + (Im(λ1))2

)
(4.1.10b)

in the asymptotic regime K = kh � 1, where λ1 is the physically relevant

eigenvalue.

Following [60], we expand equations (4.1.10a) and (4.1.10b) as Taylor series and

present the error in the numerical dispersion relation:


ΩRe = K + dispersion error = O(KN1)

ΩIm = dissipation error = O(KN2).

(4.1.11)

Note that dispersion and dissipation errors K−ΩRe and ΩIm on the order of Kr+1

equates to corresponding errors k−ωRe and ωIm on the order of hr (when k = O(1)

and h� 1). We find that presentation of the errors as in equation (4.1.11) more

readily facilitates comparison between different methods than directly presenting

the Taylor expansions of the eigenvalues λ.

Suppose we make two consecutive approximations by changing the element size

h (and thus K) while fixing the wavenumber k. Noting that |uh| = eΩIm
T
h , where

T is the final time, we get

ΩIm,K1 =
h1

T
ln |uh1 | and ΩIm,K2 =

h2

T
ln |uh2 |.

The order of the dissipation error is then given by

N2 =
ln
(

ΩIm,K1
ΩIm,K2

)
ln
(
K1
K2

) = 1 +
ln
(

ln |uh1 |
ln |uh2 |

)
ln
(
h1
h2

) . (4.1.12)

Chapter 4: Dispersion and Dissipation of DG Schemes 98

4.2 Numerical Process

Computation and the meaningful presentation of the eigenstructure of these

amplification matrices is all but impossible to perform by hand. The process

involves finding roots of higher order polynomials, matrix inversion, numerical

interpolation, numerical simplification of vastly complicated expressions in

multiple variables and series expansions of long rational forms involving

fractional exponents. In order to make these tasks more manageable, we employ

a symbolic computation computer program: our choice is Mathematica. Even

still, the process can rarely be left to run in its entirety without input from the

user. Expressions, as they arise, often require interpretation before embarking

on the next stage and, occasionally, numerical identities must be formed, or

manipulations performed, manually. Even with numerical aids, the

computations quickly become prohibitively complicated and slow. Increased

computing power is not, in itself, a solution to these problems; the manual

element also becomes increasingly difficult and there are several numerical

bottlenecks such as root-finding for higher-order polynomials. Moreover, a tidy

closed form is usually desired for the final truncated series expressions and, as

the basis polynomial degree p increases, it quickly becomes the case that certain

quantities must be evaluated numerically as opposed to symbolically. The

difficulties described above become a serious problem as early as p = 3.

We outline the process undertaken in Mathematica to obtain the results

presented in the next section.

• Construct the component matrices for the amplification matrix G. To

obtain the eigenvalues, the inbuilt Mathematica command suffices for

p ≤ 1; for larger p, it may be necessary to manually solve the

characteristic equation of G

|G− λI| = 0. (4.2.1)

Chapter 4: Dispersion and Dissipation of DG Schemes 99

For p = 3, when the characteristic equation of G is of order 4, we use

Ferrari’s method.

• This results in large expressions in h (and, for the upwind-biased flux, θ)

featuring fractional exponents. In order to obtain a more insightful form of

the eigenvalues, the next step is to expand the expressions in a Maclaurin

series in kh.

• For higher order polynomial degrees, the Maclaurin expansion can be

evaluated for several values of θ and the final result interpolated to write

the coefficients as rational functions in θ. The interpolation may involve

“guessing” the denominator. This is often a quantity that arises in other

analysis of the method, for example (2θ − 1).

• The Maclaurin expansion or the solution to the characteristic equation of

G may include large numerical expressions with fractional components that

are not easily simplified. Dealing with these terms often includes identifying

a value which is equal to zero. For example, when p = 2, the result relies

on identifying the equality

3

√
1

2
(5
√

17) +
13

2
− 4

 3

√
5
√

17

2
+

13

2

−1

− 1 = 0. (4.2.2)

• To find the eigenvectors of G, observe that

ûk =

p+1∑
i=1

Cie
λ̄itΛi. (4.2.3)

We solve the systems

GΛ = λΛ (4.2.4)

and
p+1∑
i=1

CiΛi = ûk(0), (4.2.5)

where the second equation follows from equations (4.2.3) and (4.1.7).

Chapter 4: Dispersion and Dissipation of DG Schemes 100

In the next section, we treat the DG discretisation alone. Here, the focus is on

the upwind-biased flux and how the flux parameter θ appears in the coefficients

of Taylor series expansions of the eigenvalues of the semi-discrete amplification

matrix G . We analyse the fully-discrete schemes in §4.5.

4.3 Semi-discrete DG Scheme: Results

Using Mathematica to computationally perform an asymptotic analysis on kh =

0, we obtain the following sets of eigenvalues λ̄j of the amplification matrix G :

p = 0 : λ̄1 = −ik − 1

2
(2θ − 1) k2h + O

(
h2
)

;

p = 1 :


λ̄1 = −ik − 1

72
1

2θ−1k
4h3 − i

270
1+6θ−6θ2

(1−2θ)2
k5h4 +O

(
h5
)
,

λ̄2 = −6(2θ−1)
h + 3ik + (2θ − 1)k2h+O

(
h2
)

;

p = 2 :


λ̄1 = −ik − 2θ−1

7200 k
6h5 + i

3000

[
θ2 − θ + 1

14

]
k7h6 +O

(
h7
)
,

λ̄2,3 = − 3(2θ−1)
h ± i

√
51 + 36θ − 36θ2k +O (h) ;

p = 3 : λ̄1 = −ik − 3.125× 10−4

441(2θ − 1)
k8h7

−1.25× 10−3

27783

19− 48θ + 28θ2

(1− 2θ)2
k9h8 +O(h9).

For each value of p, the physically-relevant eigenvalue λ̄1 approximates −ik with

dispersion error on the order of h2p+1 and dissipation error on the order of h2p+2.

This is consistent with the previous findings of [9, 52, 33, 60, 68] and [32].

Chapter 4: Dispersion and Dissipation of DG Schemes 101

Contributions to understanding the role of the flux function

We comment for the first time on how changing the flux parameter alters the

constants attached to the superconvergent error terms in expansions such as

those above. The coefficient of the leading order real term on the order of h2p+1

of the physically relevant eigenvalues λ̄1 is negative for all values of θ > 1
2 . For

even polynomial order p, the coefficient of the leading order term vanishes in

the limit θ → 1
2 . For odd polynomial order p, due to the factor (2θ − 1)−1, one

can reduce the magnitude of the both the dispersion and dissipation errors by

taking a larger value of θ. On the other hand, one should avoid taking θ close to

1
2 when p is odd since the coefficients grow without bound as θ → 1

2 . The

importance of the magnitude of these constants should not be undervalued:

they have a direct impact on the approximation errors and, crucially, on the

accuracy with which waves are propagated.

Note that the order of the dissipation error can (theoretically) be increased by

choosing θ carefully. For example, when p = 1 and θ = 1
6(3 +

√
15) ≈ 1.145 or

when p = 2 and θ = 1
14(7 +

√
35) ≈ 0.923, the leading order dissipation term

vanishes. In the p = 1 case, the physically relevant eigenvalue becomes

λ1 = −ik − 1

24
√

15
k4h3 − 1

360
√

15
k6h5 − 13i

75600
k7h6. (4.3.1)

However, since the leading order error term is dispersive, such choices do not

improve the overall error in comparison to more extreme choices of θ.

Remark. The traditional choice of flux for linear advection with windspeed c >

0 is the monotone purely upwind flux function û = u−. This is an intuitive

selection; initial data moves from left to right so we set the solution value uj(xj− 1
2
)

at the left boundary point to be the value uj−1(xj− 1
2
) from the neighbouring cell,

allowing information to propagate only in the desired direction. Our previous

remarks suggest that a wave is propagated by DG more accurately if we also

include information from the right of cell boundaries. With regards to the design

Chapter 4: Dispersion and Dissipation of DG Schemes 102

of flux functions, this is a counter-intuitive situation. We speculate that the

increased accuracy of the upwind-biased flux may be explained by the dependence

on the numerical flux of the constant attached to the higher order derivative terms

in the modified equation (for a finite difference method, recall equation (4.0.7)).

Moreover, when θ > 1 (a choice we advocate for odd polynomial degree p), the

upwind-biased flux no longer satisfies the monotonicity property.

The remaining eigenvalues are non-physically relevant but have negative real part

on the order of 1
h . Thus the corresponding eigenvectors in the solution are damped

over time. This occurs more slowly for lower values of θ.

For the case p = 3, the findings are consistent with the other cases but the algebra

involved in the computation becomes prohibitively substantial and the need to

evaluate components numerically makes it particularly difficult to obtain tidy

expressions for the coefficients.

Eigenvectors for the piecewise linear approximation

We perform a short study of the effect of the flux parameter θ on the

eigenvectors. Recall that one eigenvector, say Λ1, a constant multiple of which

approximates û(0) with order p + 2 at Radau points and order 2p + 1 at the

downwind ends per the original result in [32], is associated with the physically

relevant mode while the others are associated with spurious modes and are on

the order of p + 2 at Radau points. We discuss only the case p = 1 since it is

not clear how to directly compare in a closed form the outcomes of different

choices of θ.

While the eigenvalues are independent of the choice of basis functions, one must

make an appropriate choice of interpolating initial condition and basis functions

in order to extract superconvergent accuracy in the eigenvectors. If one uses a

Lagrange-Radau basis on roots of R+
p+1(ξ), the appropriate choice when θ = 1,

Chapter 4: Dispersion and Dissipation of DG Schemes 103

in the case p = 1 the physically relevant eigenvector satisfies

C1Λ1 − û(0) =

 − 1−θ
18(1−2θ)k

2h2 + 11−11θ+2θ2

324(1−2θ)2
ik3h3 + O(h4)

1−θ
6(1−2θ)k

2h2 + 1−25θ+22θ2

108(1−2θ)2
ik3h3 + O(h4)

 , (4.3.2)

while similarly the non-physically relevant eigenvector satisfies

C2Λ2 =

 1−θ
18(1−2θ)k

2h2 − 11−11θ+2θ2

324(1−2θ)2
ik3h3 + O(h4)

− 1−θ
6(1−2θ)k

2h2 − 1−25θ+22θ2

108(1−2θ)2
ik3h3 + O(h4)

 . (4.3.3)

The leading order terms vanish only when θ = 1 when the interpolation points

of the initial condition coincide with the superconvergent points of the scheme.

Guo et al.’s [32] analysis of the DG scheme with upwind flux (θ = 1) gave

C1Λ1 − û(0) =

 i
162(kh)3 − 5

3888(kh)4 +O
(
(kh)5

)
− i

54(kh)3 + 7
432(kh)4 +O

(
(kh)5

)
 = −C2Λ2 (4.3.4)

≈

0.00617i(kh)3 − 0.00129(kh)4

−0.0185i(kh)3 + 0.0162(kh)4

 .
A poor choice of θ (here θ < 1 since the polynomial degree p is odd) results

in expressions on the same order as those for the upwind flux (4.3.4) but with

larger coefficients. For example, when θ = 3
5 , choosing the basis functions to

be Lagrangian polynomials based on the corresponding superconvergent points

(roots of R? as discussed in Chapter 2)

x = xj −
5

6

(
1∓ 2

√
7

5

)
h,

Chapter 4: Dispersion and Dissipation of DG Schemes 104

we obtain

C1Λ1 − û(0) =

 61(2
√

7−5)
162 i(kh)3 − 11450

√
7−29357

3888 (kh)4 +O
(
(kh)5

)
− 183

√
7

54(42−15
√

7)
i(kh)3 + 7(2190

√
7−5231)

432(5
√

7−14)2
(kh)4 +O

(
(kh)5

)


(4.3.5)

≈

0.110i(kh)3 − 0.241(kh)4

−3.88i(kh)3 + 15.3(kh)4

 .
Note that the constants attached to the error terms are two orders of magnitude

greater than those in the θ = 1 case (4.3.4). On the other hand, the constants

can be reduced by choosing θ > 1. Moreover, based on the observations from the

analysis of the eigenvalues in §4.3, we might choose θ = 1
6(3 +

√
15) when the

superconvergent points are

ξ =

√
6∓ 1√

15
∈ (−1, 1).

In this case, we gain an extra order of accuracy in the eigenvectors as well as

reducing the magnitude of the constants:

C1Λ1 − û(0) =

 6−
√

6
3600

√
6
(kh)4 + 108

√
15−79

√
10

180000
√

6
i(kh)5 +O

(
(kh)6

)
− 12−7

√
6

720(54−19
√

6)
(kh)4 + 283

√
10−126

√
15

36000(54−19
√

6)
i(kh)5 +O

(
(kh)6

)


(4.3.6)

≈

0.000403(kh)4 + 0.000382i(kh)5

−0.000958(kh)4 − 0.00152i(kh)5

 .

4.4 Fully-discrete DG Schemes: Formulation

Whilst much of the dispersion analysis of DG methods has been performed on

the semi-discrete scheme alone, we must consider the effect of the coupling

between the spatial and temporal discretisations to get a fuller picture of the

wave propagation abilities. For the MoL, where the discretisations are

completely decoupled, much of the information about the dispersion properties

Chapter 4: Dispersion and Dissipation of DG Schemes 105

of the fully discrete-scheme is contained in the semi-discrete amplification

matrix G discussed in §4.3. For much of the rest of this chapter, we discuss

coupled schemes but first we summarise the role of the RK time discretisation.

4.4.1 Fully decoupled Runge-Kutta methods

As we suggested in Chapter 1, a RK scheme can be written in the form

Un+1
j =

(
I + τD + · · ·+ τp

p!
Dp
)
Un
j , (4.4.1)

where D is the DG spatial discretisation operator comprising matrix

multiplications and Dp refers to p repeated applications of this operator. If we

make the same assumption (4.1.7) as in the semi-discrete case, we see that the

fully discrete amplification matrix can be written as a linear combination of the

one for the semi-discrete scheme:

Ûn+1
k = GÛn

k ,

where

G =

(
I + τG + · · ·+ τp

p!
G p

)
. (4.4.2)

Hence the eigenvalues for the fully discretised solution resulting from a RK-DG

discretisation are just linear combinations of the eigenvalues for the semi-discrete

DG scheme. Before presenting results on the eigenvalues of the TDRK4 methods,

we perform some necessary calculations for our analysis. We seek to write the

schemes in a fully resolved form in terms of Galerkin coefficients of the solution

uh.

Chapter 4: Dispersion and Dissipation of DG Schemes 106

4.4.2 Fully resolved forms: DG-TDRK4 with direct

differentiation

We consider a general stage equation

∫
Ij
uhv dx =

∫
Ij
unhv dx+ τ

∫
Ij
f̃vx dx− τ ̂̃f j+ 1

2
v−
j+ 1

2

+ τ
̂̃
f j− 1

2
v+
j− 1

2

, (4.4.3)

where

f̃ = αunh + α∗u∗h + βτgnh + β∗τg∗h (4.4.4)

is the modified flux with gh = ∂
∂xuh and where the numerical flux is

̂̃
f j+ 1

2
=

1

2

(
f̃+
j+ 1

2

+ f̃−
j+ 1

2

− (uh)+
j+ 1

2

(tn) + (uh)−
j+ 1

2

(tn)

)
. (4.4.5)

The solution uh on the right-hand side of equation (4.4.3) can be either the

solution at the intermediate stage or the full update. The coefficients in

equation (4.4.4) take different values depending on the stage. After scaling, the

stage equation (4.4.3) representing the TDRK4 method can be written in terms

of the discretisation operators as

Uj(t) = Uj(tn) +
1

2

τ

h

(
D− +D+

)
F̃j +

1

2

τ

h

(
D− −D+

)
Uj(tn), (4.4.6)

where D− and D+ are defined by equation (1.3.33) and where F̃j is the vector of

Galerkin coefficients of the modified flux (4.4.4).

Some of the numerical manipulations in the analysis that follows are eased by

considering the mathematically equivalent scheme arising from an extra

integration by parts. We are motivated to do so partially by the analogous

alternative LW-DG formulation analysed in [60]. We consider instead the stage

Chapter 4: Dispersion and Dissipation of DG Schemes 107

equation

∫
Ij
uhv dx =

∫
Ij
unhv dx− τ

∫
Ij
f̃xv dx

− τ
(̂̃
f − f̃−

)
j+ 1

2

v−
j+ 1

2

+ τ
(̂̃
f − f̃+

)
j− 1

2

v+
j− 1

2

(4.4.7)

obtained by integrating by parts the stiffness integral in equation (4.4.3). Using

the notation for discretisation operators in equations (1.3.37) and (1.3.38), this

alternative formulation can be written as a scheme for Galerkin coefficients:

Uj(t) = Uj(tn) +
1

2

τ

h

(
D̄− + D̄+

)
F̃j +

1

2

τ

h

(
D− −D+

)
Uj(tn), (4.4.8)

We have a local expression for the vector of Galerkin coefficients of the derivative

gh in terms of that for the solution uh:

Gj =
1

h
STUj , (4.4.9)

where ST is the transpose of the stiffness matrix S defined in equation (1.3.35)

and represents differentiation. Using this expression (4.4.9), recast the vector of

coefficients for the modified flux f̃ in terms of those for the solution uh:

F̃j = (αI + β
τ

h
ST)Uj(tn) +

(
α∗I + β∗

τ

h
ST
)
U∗j , (4.4.10)

where I is the (p+1)-identity matrix. Next, we rework the stage equation (4.4.6)

using the expression (4.4.10):

Uj(t) =

[
I +

1

2

τ

h
((α+ 1)Ā1 + (α− 1)Ā2) +

β

2

τ2

h2
(Ā1 + Ā2)ST

]
Un
j

+

[
1

2
(α+ 1)

τ

h
B +

β

2

τ2

h2
BST

]
Un
j−1

+

[
1

2
(1− α)

τ

h
C − β

2

τ2

h2
CST

]
Un
j+1

+

[
α∗

2

τ

h
(Ā1 + Ā2) +

β∗

2

τ2

h2
(Ā1 + Ā2)ST

]
U∗j

+

[
α∗

2

τ

h
B +

β∗

2

τ2

h2
BST

]
U∗j−1 −

[
α∗

2

τ

h
C +

β∗

2

τ2

h2
CST

]
U∗j+1. (4.4.11)

Chapter 4: Dispersion and Dissipation of DG Schemes 108

The coefficients α, α∗, β, β∗ take different values depending on whether the left-

hand side is the intermediate stage Uj(t) = U∗j or the full update Uj(t) = Un+1
j .

Note that since the TDRK4 method is explicit, α∗ = 0 = β∗ for the intermediate

stage. In this case, equation (4.4.11) is of the form

U∗j =
1∑

m=−1

TmU
n
j+m, (4.4.12)

where Tm are (p+1)× (p+1) matrices with entries on the order of
(
τ
h

)2
. The full

update in turn includes information from two neighbouring cells on either side:

Un+1
j =

2∑
m=−2

WmU
n+1
i+m (4.4.13)

where Wm are (p+ 1)× (p+ 1) matrices with entries on the order of
(
τ
h

)4
.

Denote by ν = τ
h . For p = 1, the fully-discrete scheme matrices are given by

W0 =

 −ν3 − ν + 1 −
√

3
2

(
ν3 + 2ν

)
√

3
2

(
−3ν3 + 2ν

)
9ν4

4 + 3ν3 − 3ν2 − 3ν + 1

 ;

W1 =

 −ν3

2 + ν
√

3
4 ν
(
ν3 + 4ν2 − 2ν + 4

)
√

3ν
(
2ν2 − 1

)
−3

2ν
(
ν3 − ν2 − ν + 2

)


W2 =

 ν3

2 −
√

3
4 ν

2
(
ν2 + 4ν − 2

)
0 −3

2ν
2
(
ν2 + ν − 1

)


W3 =

 3
4ν

3 −
√

3
8 ν

3(ν − 6)

−3
√

3
4 ν3 3

8ν
3(ν − 6)

 ; W4 =

 ν3

4

√
3

8 ν
3(ν − 2)

√
3

4 ν
3 3

8ν
3(ν − 2)

 .

(4.4.14)

Note that some of the entries are on an order in ν lower than 4. This is caused

by the sparseness of the discretisation matrix ST . While the temporal order

of the TDRK4 schemes is higher than necessary for DG schemes with p ≤ 2,

computation of the eigenvalues (more specifically, root-finding of polynomials)

severely inhibits progress with higher order bases.

Chapter 4: Dispersion and Dissipation of DG Schemes 109

4.4.3 Fully resolved forms: DG-TDRK4 with differentiation by

DG

For the linear advection equation, we reformulate the modified TDRK4-DG

scheme in terms of Galerkin coefficients. When f(u) = u, the standard

monotone fluxes in equations (3.4.1b) and (3.4.1d) are f̂j+ 1
2

= ûj+ 1
2

= u−
j+ 1

2

and

f̂ ′gj+ 1
2

= ĝj+ 1
2

= g+
j+ 1

2

. The derivative and general stage update can be written

as

Gj =
1

h
D−Uj (4.4.15a)

Uj = Un
j +

τ

h

[
αD−Un

j + βτD+Gn
j + β∗τD+G∗j

]
=

[
I + α

τ

h
D− − β τ

2

h2
D+D−

]
Un
j − β∗

τ2

h2
D+D−U∗j , (4.4.15b)

For clarity, we note that

D+D−Uj = (A2A1 − CB)Uj +A2BUj−1 − CA1Uj+1.

Using equation (4.4.15b) with the coefficient values α, α∗, β, β∗ given in §3.3, we

successively write expressions for the Galerkin coefficient vectors U∗j and Un+1
j

to obtain a final update of the form

Un+1
j =

2∑
m=−2

WmU
n
j+m. (4.4.16)

Chapter 4: Dispersion and Dissipation of DG Schemes 110

For p = 1, the matrices are given by

W0 =

 7ν4 + 2ν3 − 4ν2 − ν + 1
√

3
2 ν
(
5ν3 + 8ν2 − 2ν − 2

)
√

3
2 ν
(
5ν3 − 4ν2 − 2ν + 2

)
30ν4 + 18ν3 − 12ν2 − 3ν + 1


W−1 =

 −19
6 ν

4 + ν3 + 2ν2 + ν
ν(−31ν3−18ν2+12ν+6)

2
√

3
ν(17ν3+18ν2−6ν−6)

2
√

3
1
2ν
(
23ν3 + 30ν2 − 6ν − 6

)


W1 =

 −1
6ν

2
(
19ν2 + 10ν − 12

) ν2(17ν2+2ν−6)
2
√

3

−ν2(31ν2+10ν−12)
2
√

3
23ν4

2 + ν3 − 3ν2


W−2 =

 −1
3ν

3(ν + 4) −ν3(ν+4)√
3

ν3(ν+4)

2
√

3
1
2ν

3(ν + 4)

 ; W2 =

 −ν4

3
ν4

2
√

3

− ν4√
3

ν4

2

 .

(4.4.17)

Note that, in contrast to the matrices (??) for the original scheme, each entry

here has a term on the order of ν4.

4.5 Fully-discrete DG Schemes: Results

In the remainder of this section, we compare the numerical dispersion and

dissipation errors for various fully-discrete schemes for basis polynomials of

maximal order p = 0, 1, 2. Even for these low orders, we provide a context for

the temporally fourth-order TDRK4-DG methods by including results for

RK4-DG with an upwind-biased flux and the original and new LW-DG method

of fourth-order. The computations for the case p = 3 become prohibitively slow

and cumbersome whilst for p ≥ 4, the characteristic equation itself becomes

more difficult to solve.

Remark. We find that the eigenvalues associated to methods that utilise the

LDG technologies to compute higher-order derivatives exhibit terms of a kind

not seen in eigenvalues for, say, RK-DG. Let ζ := kτ . For a fourth-order method,

equation (4.1.9) indicates that the physically relevant eigenvalue λ1 satisfies

λ1 = 1− iζ − 1

2
ζ2 +

1

6
iζ3 +

1

24
ζ4 +O

(
ζKσ1 + ζ2Kσ2

)
. (4.5.1)

Chapter 4: Dispersion and Dissipation of DG Schemes 111

For the fourth order RK4-DG, we have σ1 = 2p + 1 = σ2. On the other hand,

in addition to such terms, the eigenvalues for the modified TDRK4-DG scheme

(which is also superconvergent) display purely spatial error terms and terms on

the order of Kζ = h
τ = 1

ν . We refer to such terms- those with τ on the denominator-

as reciprocal terms. We speculate that these reciprocal terms, which amount to a

fundamental difference from the original schemes and from RK-DG, are a direct

consequence of the integration of LDG into the schemes; in some sense, part of

the error is not stepped forward in time.

4.5.1 Piecewise constant basis

When p = 0, the schemes comprise only of information from the boundaries.

Furthermore, the original LW-DG and TDRK4-DG methods are reduced to the

first-order Forward-Euler (FE) DG method with upwind flux (θ = 1) since, by

differentiating directly, there are no higher-order derivative terms due to the

constant basis.

Forward Euler

The eigenvalue λ of the amplification matrix G for FE-DG is given by

λ = 1 + ν
(

(θ − 1)eikh − (2θ − 1) + θe−ikh
)
, (4.5.2)

where ν = τ
h is the CFL number. Let K = kh. Then, for FE-DG,

λ = 1 − iKν − 1

2
K2ν (2θ − 1) +

i

6
K3ν +

1

24
K4ν (2θ − 1)

− i

120
K5ν − 1

720
K6ν (2θ − 1) + O

(
K7ν

)
. (4.5.3)

Chapter 4: Dispersion and Dissipation of DG Schemes 112

Note that Kν = kτ and, with reference to equation (4.1.9), that

e−ikτ = e−iKν = 1 − iKν − 1

2
(Kν)2 +

i

6
(Kν)3 +

1

24
(Kν)4

− i

120
(Kν)5 − 1

720
(Kν)6 + O

(
(Kν)7

)
. (4.5.4)

Hence, given that this first-order (in time) method will not reproduce higher

order purely temporal terms, the error

e−ikτ − λ =
1

2
K2ν (2θ − 1) − i

6
K3ν + O

(
K2ν2 +K4ν)

)
is characterised by cross-terms— that is, terms that have unbalanced powers

of K and ν. These result in products of τ and h (for example, K2ν = k2τh)

that can lead to ambiguity in which to call the leading order error term. For

this reason, we instead focus on the non-dimensionalised quantities described in

equations (4.1.10) when discussing higher order bases in §4.5.2 and §4.5.3.

The new TDRK4-DG scheme

The structure of our new TDRK4-DG scheme is more complicated than the

schemes equivalent, when p = 0, to FE-DG. The associated eigenvalue is

λ =
1

24

(
e2iKν4 − 4eiK

(
ν2 + ν − 3

)
ν2 + 6

(
ν4 + 2ν3 − 4ν2 − 4ν + 4

)
− 4e−iK

(
ν3 + 3ν2 − 3ν − 6

)
ν + e−2iK(ν + 4)ν3

)
, (4.5.5)

which, after a Taylor expansion about K = kh, can also be written as

λ = 1 − iKν − 1

2
(Kν)2 +

i

6
(Kν)3 +

1

24
(Kν)4 − 1

2
K2ν +

i

6
K3ν

+
1

24
K4ν

(
2ν2 + ν + 1

)
+ K5

(
− iν

3

24
− iν

120

)
+ O

(
K6ν

)
. (4.5.6)

Note that the terms in equation (4.5.4) up to and including fourth order in time

are reproduced. This is in contrast to the schemes that use direct differentiation

Chapter 4: Dispersion and Dissipation of DG Schemes 113

to compute the terms arising from the Cauchy Kowalewski procedure.

Non-dimensionalised presentation

We now present Taylor series expansions of the dispersion ΩRe−K and dissipation

ΩIm errors using the quantities defined in equations (4.1.10).

p = 0 : ΩRe + iΩIm = K +X2K
2 +X3K

3 +O(K4)

Dissipation error X2 Dispersion error X3

Forward Euler −2θ−1
2 + 1

2ν −1
6 + 2θ−1

2 ν − 1
3ν

2

RK4 −2θ−1
2 −1

6

Modified TDRK4/LW4 −1
2 −1

6 + 1
2ν

Table 4.1: Leading dispersion and dissipation errors for p = 0

Figure 4.5.1: p = 0: Magnitude of coefficients of leading order error terms
X2K

2 + iX3K
3

The coefficients, which are polynomials in ν, of the leading order dispersion and

dissipation terms are shown in Table 4.1 respectively. Each of the schemes we

consider has dispersion error K − ΩRe on the order of K3 and dissipation error

ΩIm on the order of K2. Note that the leading-order terms for the Forward-Euler

methods are reduced when one employs an upwind-biased flux. Furthermore, the

Chapter 4: Dispersion and Dissipation of DG Schemes 114

leading order dissipation term is zero when ν = 2θ − 1 for θ > 1
2 .

Naturally, employing higher-order Runge-Kutta schemes (we consider RK4)

reduces the contribution of the CFL number ν to the leading order terms. For

RK4-DG, while θ does contribute to the trailing dispersion error terms, in the

unstable limit θ = 1
2 , the scheme is purely dispersive; the constants attached to

the dissipation error terms can be reduced by taking a smaller value of

θ ∈ (1
2 , 1].

For the modified methods (with p = 0, the modified TDRK4-DG and LW4-DG

reduce to the same scheme), the reduced number of stages in comparison to RK4

leads to a higher dependence on the CFL number ν. Note that for ν > 1
3 , the sign

of the leading order dispersion term changes. However, it is important to note

that Figure 4.5.1 includes some data for unstable schemes. A full investigation

of maximal CFL numbers is left to further work.

4.5.2 Piecewise linear basis

As with the piecewise constant case, we give results for the lowest necessary order

of RK method (RK2), for RK4 and for both the original and modified LW-DG

methods in order to provide a context for the TDRK4-DG results.

Tables 4.3 and 4.2 give the leading order coefficients for the dispersion and

dissipation errors when p = 1. The RK4-DG method as well as the modified

p = 1 : ΩRe + iΩIm = K +X3K
3 +X4K

4 +O(K5)

Leading dispersion X3 Leading dissipation X4

RK2 1
6ν

2 −
(

1
72(2θ−1) −

1
8ν

3
)

LW2
(

1
6ν

2 + 1
12ν
) (

1
8ν

3 + 1
6ν

2 + 1
72ν −

1
72

)
TDRK4 −

(
1
6ν

2 − 1
12ν
) (

− 5
12ν

3 + 1
36ν

2 + 1
72ν −

1
72

)
Table 4.2: Leading dispersion and dissipation errors for p = 1

Chapter 4: Dispersion and Dissipation of DG Schemes 115

p = 1 : ΩRe + iΩIm = K +X4K
4 +X5K

5 +O(K6)

Leading dissipation X4 Leading dispersion X5

RK4 − 1
72(2θ−1) −

(
1

120ν
4 − 1+6θ−6θ2

270(1−2θ)2

)
Modified LW4 − 1

72 −
(

1
120ν

4 − 1
72ν + 1

180

)
Modified TDRK4 − 1

72 −
(

1
120ν

4 − 1
72ν + 1

180

)
Table 4.3: Leading dispersion and dissipation errors for p = 1

Figure 4.5.2: p = 1: Magnitude of coefficients of leading order error terms
iX4K

4 +X5K5

methods have superconvergent dispersion errors on the order of K5. In contrast,

the second-order schemes and the original TDRK4-DG have dispersion errors

on the order of K3. That is, the order of the RK dispersion error can be

increased by adding more stages but, while the original TDRK4 has excessive

temporal order for this problem, its order is the same as for RK2 and LW2. In

terms of magnitude, for small ν, the original TDRK4 has better dispersion than

LW2 but worse that RK2. The dissipation error for RK4 can be reduced by

taking a larger value of θ; Figure 4.5.2 includes a curve for θ = 5. The price for

this choice is an increase in dispersion error.

When θ = 1, the expressions for the second-order schemes agree with equation

(3.9) in [60]. In that paper, the authors point out that the CFL restriction

Chapter 4: Dispersion and Dissipation of DG Schemes 116

(here, it is ν ≤ 1
3) prevents the careful selection which would cancel the leading

order dissipation term. With the flux parameter θ, the required CFL number

ν = 1
3
√

9(2θ−1)
can be achieved for θ ≥ 2. Note that in contrast to the p = 0 case,

the coefficients grow as θ → 1
2 .

While the leading order error term for RK2 is dispersive, for RK4, it is dissipative

and the dispersion error is two orders higher. As with the RK methods, for

LWDG2, we see reduced dispersion errors but increased dissipation with a reduced

CFL number ν. For a full discussion of how LW2 compares with RK2, see [60].

As can be seen from the tables, the dispersion error K − ΩRe for the original

TDRK4 scheme, which is on the order of K3, is two orders lower than RK4

and the scheme does not exhibit superconvergence. On the other hand, the

dissipation error ΩIm, which is O(K4), is of the same order. As with the original

LWDG2 method, it is not possible to improve the dispersion error (although

here the constant attached to the leading order dispersion term is smaller in

comparison) by choosing ν = 1
2 since this contradicts the (numerically) observed

CFL restriction. However, the original LW-DG has better dissipation error then

the original TDRK4-DG. We now turn to the modified methods which use LDG

to compute derivatives.

With the carefully complimented numerical flux and derivative approximation,

the superconvergent dispersion/dissipation orders of error seen with RK4-DG are

recovered. For ν . 0.134, the constant attached to the leading order dispersion

error term is greater than for RK4.

4.5.3 Piecewise quadratic basis

As the order (here it is 3) of the DG spatial discretisation gets closer to the

temporal order of the TDRK4 method, the leading order dispersion and

dissipation error terms come to agree with those of the methods we use for

comparison: the modified LW4-DG method of Qiu et al. [31] and the RK4-DG

Chapter 4: Dispersion and Dissipation of DG Schemes 117

method.

Non-trivial identities

Key to the realisation of an estimate for our new TDRK4 method is the

identification of what the literature has referred to as a non-trivial identity. The

radical expression for the eigenvalues obtained via Mathematica includes, after

a small amount of manual simplification, the term

Ψ =

(
13+90ν−75ν2−1450ν3−750ν4 +7500ν5 +1875ν6−18750ν7 +31250ν9

+ 5
(
1 + 3ν − 10ν2 − 15ν3

)√
17 + 30ν − 275ν2 − 150ν3 + 750ν4 − 1875ν6

) 1
3

.

The fractional exponent causes this expression to halt the preprogrammed

simplification process. To deal with this term, we set

Υ = 13 + 90ν − 75ν2 − 1450ν3 − 750ν4 + 7500ν5 + 1875ν6 − 18750ν7 + 31250ν9

Φ = 5
(
1 + 3ν − 10ν2 − 15ν3

)
Γ = 17 + 30ν − 275ν2 − 150ν3 + 750ν4 − 1875ν6

so that Ψ =
(

Υ + Φ
√

Γ
) 1

3
and seek an expression of the form a+ b

√
Γ equivalent

to Ψ. We solve for a and b, using Mathematica, the simultaneous equations

a3 + 3ab2Γ = Υ

3a2b+ b3Γ = Φ,

requiring that the solutions be real. This results in the identity

Ψ =
1 + 5ν − 25ν3

22/3
+

1

22/3

√
Γ. (4.5.7)

By replacing in the expression for the eigenvalues integer multiples of the

problematic term Ψ by integer multiples of our simplified expression, we rid the

Chapter 4: Dispersion and Dissipation of DG Schemes 118

expression of most of its components with fractional exponents (we retain some

square roots of Γ of course). The Taylor series expansions of the eigenvalues are

now more amenable to manipulation and simplification and, in inspecting the

individual coefficients with the goal of presenting them in a succinct manner, it

remains only to identify, usually with the assistance of the mathematical

software, algebraic identities such as

0 = − ν − 5ν2 + 25ν4 + ν
√

17 + 30ν − 275ν2 − 150ν3 + 750ν4 − 1875ν6

− 16ν + 20ν2 − 300ν3 + 100ν4 + 1000ν5 − 2500ν7

1 + 5ν − 25ν3 +
√

17 + 30ν − 275ν2 − 150ν3 + 750ν4 − 1875ν6
.

Such further identities are usually related to the quantities discussed above.

Indeed, “guessing” that one of these quantities (for example, 1 + 5ν − 25ν3) is a

factor of some expression one desires to present in a form more amenable to

interpretation can be the crux move in the process. This, for example, can

motivate the identification of the denominator in the rational functions in θ

seen our presentation of the Taylor series expansions of the DG scheme with

upwind-biased flux.

Superconvergent methods

We categorise the methods in our study into two sets: the superconvergent DG

methods (RK4-DG, modified LW4-DG and our new TDRK4-DG) and

non-superconvergent DG methods (the original TDRK4-DG scheme studied by

Seal at al. and the original LW-DG scheme). The physically relevant eigenvalue

for each of the superconvergent methods satisfies

ΩRe + iΩIm = K − 1

120
ν4K5 −

(
ν5

144
+

2θ − 1

7200

)
K6 +O(K7), (4.5.8)

where we take θ = 1 for the new TDRK4-DG and modified LW4-DG methods.

Chapter 4: Dispersion and Dissipation of DG Schemes 119

Trailing dispersion X7

RK4 ν6

336 + 1
300

(
θ2 − θ + 1

14

)
NewTD4 ν6

336 + ν
7200 −

1
31500 + 1

45000ν + 1
168750ν2

NewLW4 ν6

336 + ν
7200 −

1
31500 −

13
2250000ν3

− 49
16875000ν4

Table 4.4: p = 2; Coefficient of trailing dispersion error term X7K
7 in

equation (4.5.8)

Trailing dissipation X8

RK4 ν7

1152 + 48θ3−72θ2+26θ−1
120000

NewTD4 ν7

1152 + ν2

10800 −
ν

36000 + 1
40000 −

1
675000ν + 1

2250000ν2

NewLW4 ν7

1152 + ν2

21600 −
ν

36000 + 1
360000 −

1
84375ν −

17
2250000ν2

Table 4.5: p = 2; Coefficient of trailing dissipation error term X8K
8 in

equation (4.5.8)

Non-superconvergent methods

The physically relevant eigenvalue for the original TDRK4-DG scheme with p = 2

satisfies

λ = 1−iKν− (Kν)2

2
+
i

6
(Kν)3+K4 ν

(
102500ν3 − 108690ν2 + 36625ν − 3792

)
15000 (15ν3 + 10ν2 − 3ν − 1)

− iK5 ν
(
8757500ν3 − 10247480ν2 + 3698215ν − 399928

)
625000 (15ν3 + 10ν2 − 3ν − 1)2 +O

(
K6
)
. (4.5.9)

Note that the fourth order temporal term 1
12(Kν)4 = 1

12k
4τ4 is not reproduced by

this method. This is due to the direct method of differentiation of the piecewise

quadratic basis functions. The above expression (4.5.9) yields

ΩRe = K +K5

(
ν4

30
−
(
102500ν3 − 108690ν2 + 36625ν − 3792

)
ν

15000 (15ν3 + 10ν2 − 3ν − 1)

+
8757500ν3 − 10247480ν2 + 3698215ν − 399928

625000 (−15ν3 − 10ν2 + 3ν + 1)2

)
ΩIm = K4

(
−ν

3

24
+

102500ν3 − 108690ν2 + 36625ν − 3792

15000 (15ν3 + 10ν2 − 3ν − 1)

)
.

Chapter 4: Dispersion and Dissipation of DG Schemes 120

4.6 Numerical Experiments

4.6.1 Linear advection: dispersion and dissipation

For the linear advection equation, we seek to numerically verify the observations

made in the Fourier analysis section and, more importantly, predict the situation

for p = 3 which we were not able to perform analysis for, with an investigation

into the values related to dissipation defined in equation (4.1.12). The analogous

values for dispersion are considerably more difficult to track. While the results

are promising, a complete investigation into these quantities is left to further

work.

RKDG2, θ = 1, ν = 1
3 RKDG2, θ = 2, ν = 1

10

mesh ln(max |uh|) N2 ln(max |uh|) N2

50 −5.76E−00 - −3.07E−00 −

100 −7.28E−01 3.98 −3.60E−01 4.09

200 −8.99E−02 4.01 −4.43E−02 4.02

400 −1.13E−02 3.98 −5.28E−03 4.06

RKDG3, θ = 1, ν = 1
5 RKDG3, θ = 0.55, ν = 1

5

mesh ln(max |uh|) N2 ln(max |uh|) N2

50 −2.34E−01 - −2.14E−01 −

100 −2.72E−02 4.10 −2.66E−02 4.00

200 −3.37E−03 4.01 −3.35E−03 3.99

400 −4.16E−02 4.00 −4.16E−04 4.00

Table 4.6: Linear advection with u0(x) = cos(4x) at T = 400π. Dissipation errors
of RKDG methods for p = 1 and p = 2 with different values of θ.

Chapter 4: Dispersion and Dissipation of DG Schemes 121

RK(10,4)-DG, ν = 0.4 TDRK4, ν = 0.08 newTDRK4, ν = 0.1

mesh ln(max |uh|) N2 ln(max |uh|) N2 ln(max |uh|) N2

50 −2.85E−04 - −3.43E−05 - −2.73E−03 −

100 −9.82E−06 5.86 −1.66E−06 5.36 −8.85E−05 5.94

200 −2.91E−05 −0.56 −2.87E−05 −3.11 −3.17E−05 2.48

400 −9.05E−07 6.00 −8.99E−07 6.00 −9.84E−07 6.01

Table 4.7: Linear advection with u0(x) = cos(4x) at T = 400π. Dissipation errors
of methods for p = 3.

Chapter 4: Dispersion and Dissipation of DG Schemes 122

5

Conclusions

“Eventually, all things merge into one, and a river runs

through it. The river was cut by the world’s great flood and

runs over rocks from the basement of time. On some of those

rocks are timeless raindrops. Under the rocks are the words,

and some of the words are theirs. I am haunted by waters.”

– Norman Maclean, A River Runs Through It

Three types of superconvergence that reside in physical space, in a space

governed by the negative-order norm, and in Fourier space are deeply connected

to each other. The special, super-accurate points of the discontinuous Galerkin

semi-discretisation are created by the numerical flux function and are

obfuscated by a sea of points around them that are of the expected order of

accuracy. Their riches, far from localised in certain non-physical spaces, can be

mined and globally disseminated via a SIAC post-processing at the final time,

leading to highly accurate long-term propagation of waves. We showed that the

upwind-biased flux offers opportunities to reduce the errors in RK-DG

approximations by choosing the value of its parameter sensitively relative to the

parity of the polynomial degree p. This is done by reducing the magnitude of

error constants that depend on the flux. No such additional complications were

encountered in obtaining superconvergent orders of accuracy in the SIAC

filtered error. This suggests interesting further work related to simplifying the

pointwise and spectral arguments with a properly defined initial interpolation.

Chapter 5: Conclusions 124

Further work also includes stability analysis for the new two-derivative

Runge-Kutta DG method we introduced in Chapter 3, nonlinear numerical

experiments and numerical verification of the expected outcome of the highly

complicated Fourier analysis of multi-stage multi-derivative schemes for

piecewise cubic polynomials. In the longer term, it would be interesting to

investigate in more depth potential benefits of varying the parameters in a

Rusanov-type flux. This could bring the benefits seen for the upwind-biased

flux to multiderivative methods and to nonlinear equations. One direction to

investigate with regards to improving the pairing between the two

discretisations is a mechanism for switching between time scheme and/or flux

depending on the time regime, or more precisely, the component of the error

dominant at a particular time. The superconvergence properties of the DG

method will be key to developing improved time-stepping schemes that offer

more to ever evolving computer architectures; yesterday’s weirdness is

tomorrow’s reason why 1.

1Hunter S. Thompson, The Curse of Lono

Chapter 5: Conclusions 125

A

Mathematica Code

A.1 Semi-discrete example

Appendix 1: Example Mathematica code:
semi-discrete scheme

Some “tricks” worth mentioning: 1. For schemes with intertwined discretisations, it can be useful to

perform an extra integration by parts

 2. Changes of variables to reduce the number of unknowns can

improve computational efficiency

 3. Keep an eye out for factors that pop up elsewhere e.g. (2θ-1) in the

P1 DG eigenvalues. These are key to finding tidy closed forms.

 4. A potentially useful trick could involve restricting the value of the

CFL number ν (e.g. ν <
1

3
). It seems that some expressions may simplify to the expected value only

for small enough \nu.

 5.

◼ Runge-Kutta discontinuous Galerkin: P1 polynomial
basis

Clear["Global`*"]

General Setup

Orthonormal Legendre polynomials

f1[x_] = LegendreP[0, x]

f2[x_] = Sqrt[3] * LegendreP[1, x]

1

3 x

M is mass matrix, DM is stiffness matrix, DMt is transpose stiffness
matrix for direct differentiation of approximation (for Lax-Wendroff type
methods), DMt2 for second derivative. The other matrices represent
boundary contributions from the flux (e.g. LLM=Left boundary from the
left). All matrices scaled to canonical element [-1,1].

F[x_] = {f1[x], f2[x]} // Simplify;

M = Table[a, {2}, {2}];

DM = Table[a, {2}, {2}];

DMt = Table[a, {2}, {2}];

D2Mt = Table[a, {2}, {2}];

RLM = Table[a, {2}, {2}];

RRM = Table[a, {2}, {2}];

LRM = Table[a, {2}, {2}];

LLM = Table[a, {2}, {2}];

GG = Module

{ k, j},

For k = 1, k ≤ 2, k++,

Forj = 1, j ≤ 2, j++,

M[[k, j]] =
1

2
* Integrate[F[x][[k]] * F[x][[j]], {x, -1, 1}];

For[k = 1, k ≤ 2, k++,

For[j = 1, j ≤ 2, j++,

DM[[k, j]] = Integrate[D[F[x][[k]], x] * F[x][[j]], {x, -1, 1}]]];

(*For[k=1,k≤2,k++,

For[j=1,j≤2,j++,

DMt[[k,j]]=Integrate[D[F[x][[j]],x]*F[x][[k]],{x,-1,1}]]];*)

(*For[k=1,k≤2,k++,

For[j=1,j≤2,j++,

D2Mt[[k,j]]=Integrate[D[D[F[x][[j]],x],x]*F[x][[k]],{x,-1,1}]]];*)

For[k = 1, k ≤ 2, k++,

For[j = 1, j ≤ 2, j++, LLM[[k, j]] = F[-1][[k]] * F[1][[j]]]];

For[k = 1, k ≤ 2, k++,

For[j = 1, j ≤ 2, j++, LRM[[k, j]] = F[-1][[k]] * F[-1][[j]]]];

For[k = 1, k ≤ 2, k++,

For[j = 1, j ≤ 2, j++, RLM[[k, j]] = F[1][[k]] * F[1][[j]]]];

For[k = 1, k ≤ 2, k++,

For[j = 1, j ≤ 2, j++, RRM[[k, j]] = F[1][[k]] * F[-1][[j]]]];



2 Mathematica_Thesis_Appendix.nb

A1 is contribution to cell I j resulting from an upwind flux u-; A2 is

contribution to cell I j resulting from an downwind flux u+; B applies to cell

I j-1and results from u- flux; C to I j+1due to u+ flux.

M

A1 = Simplify[Expand[(DM - RLM)]]

A2 = Simplify[Expand[(DM + LRM)]]

A = A1 + A2

Cp = Simplify[Expand[RRM]]

Bm = Simplify[Expand[LLM]]

Simplify[Expand[DM]]

Simplify[Expand[DMt]]

{{1, 0}, {0, 1}}

-1, - 3 ,  3 , -3

1, - 3 ,  3 , 3

0, -2 3 , 2 3 , 0

1, - 3 ,  3 , -3

1, 3 , - 3 , -3

{0, 0}, 2 3 , 0

{{a, a}, {a, a}}

Ath = θ * A1 + 1 - θ * A2 // Simplify

1 - 2 θ, - 3 ,  3 , 3 - 6 θ

Mathematica_Thesis_Appendix.nb 3

Digression: Differentiation operators

My thesis shows how the schemes can be written as linear combinations
of operators D- and D+. For RK-DG schemes, the choice of flux is always
the same. Hence, one only needs information about the semi-discrete
scheme (in turn, these operators) to be able to derive all information
desired about the fully discrete scheme.

Dp = A2 - Cp * Exp[z]

Dm = A1 + Bm * Exp[-z]

Dpp = A2.A2 - A2.Cp + Cp.A2 * Exp[z] + Cp.Cp * Exp[z] * Exp[z]

Dpm = A2.A1 - Cp.Bm + A2.Bm * Exp[-z] - Cp.A1 * Exp[z]

1 - z, - 3 + 3 z,  3 - 3 z, 3 + 3 z

-1 + -z, - 3 + 3 -z,  3 - 3 -z, -3 - 3 -z

-2 + 4 z - 2 2 z, -4 3 + 2 3 z + 2 3 2 z,

4 3 - 2 3 z - 2 3 2 z, 6 + 24 z + 6 2 z

-8 + 4 -z + 4 z, -2 3 + 4 3 -z - 2 3 z,

-2 3 - 2 3 -z + 4 3 z, -24 - 6 -z - 6 z

Eigenvalues[Dp]

lamb1[z_] = 2 + z - -2 + 10 z + 2 z // Simplify;

temp1[z_] = Simplify[Expand[Normal[Series[lamb1[z], {z, 0, 9}]]]];

lamb1Dp[z_] = temp1[z];

lamb1Dp[z] // Expand

Evalue1Dp =
1

dx
% /. z   * ω * dx // Expand

2 + z - -2 + 10 z + 2 z , 2 + z + -2 + 10 z + 2 z 

-z +
z4

72
-

z5

270
+

z6

648
-

25 z7

27 216
+

103 z8

233 280
-

79 z9

349 920

- ω +
dx3 ω4

72
-

1

270
 dx4 ω5 -

dx5 ω6

648
+
25  dx6 ω7

27 216
+
103 dx7 ω8

233 280
-
79  dx8 ω9

349 920

4 Mathematica_Thesis_Appendix.nb

Eigenvalues[Dm]

lamb1[z_] = -z -1 - 2 z + 1 + 10 z - 2 2 z // Simplify;

temp1[z_] = Simplify[Expand[Normal[Series[lamb1[z], {z, 0, 9}]]]];

lamb1Dm[z_] = temp1[z];

lamb1Dm[z] // Expand

Evalue1Dm =
1

dx
% /. z   * ω * dx // Expand

-z -1 - 2 z - 1 + 10 z - 2 2 z , -z -1 - 2 z + 1 + 10 z - 2 2 z 

-z -
z4

72
-

z5

270
-

z6

648
-

25 z7

27 216
-

103 z8

233 280
-

79 z9

349 920

- ω -
dx3 ω4

72
-

1

270
 dx4 ω5 +

dx5 ω6

648
+
25  dx6 ω7

27 216
-
103 dx7 ω8

233 280
-
79  dx8 ω9

349 920

Eigenvalues[Dpp]

lamb1[z_] = 2 1 + 7 z + 2 z + -8 + 32 z + 42 2 z + 14 3 z + 4 z // Simplify;

temp1[z_] = Simplify[Expand[Normal[Series[lamb1[z], {z, 0, 5}]]]];

lamb1Dpp[z_] = temp1[z];

lamb1Dpp[z] // Expand

% /. z   * ω * dx

2 1 + 7 z + 2 z - -8 + 32 z + 42 2 z + 14 3 z + 4 z ,

2 1 + 7 z + 2 z + -8 + 32 z + 42 2 z + 14 3 z + 4 z 

36 + 36 z + 21 z2 + 10 z3 +
23 z4

6
+
239 z5

180

36 + 36  dx ω - 21 dx2 ω2 - 10  dx3 ω3 +
23 dx4 ω4

6
+
239

180
 dx5 ω5

Construction of semi-discrete amplification matrix G
for upwind-biased scheme

G = ExpandAth + θ * Bm * Exp[-I * k * dx] - 1 - θ * Cp * Exp[I * k * dx] // Simplify

1 +  dx k (-1 + θ) - 2 θ + - dx k θ, - 3 - dx k -1 +  dx k  dx k (-1 + θ) + θ,

 3 - dx k -1 +  dx k  dx k (-1 + θ) + θ, -3 - dx k 1 +  dx k  dx k (-1 + θ) + θ

For this simple case, the inbuilt Mathematica function manages just fine

Eigenvalues[G] // Simplify

-2  dx k

2  dx k (2 - 4 θ) - 3  dx k (-1 + θ) -  dx k θ - √2  dx k 4  dx k (-1 + θ)2 + θ2 + 2  dx k

θ (1 + 4 θ) + 2 3  dx k 5 - 9 θ + 4 θ2 + 2 2  dx k -1 - 9 θ + 9 θ2,

-2  dx k 2  dx k (2 - 4 θ) - 3  dx k (-1 + θ) -  dx k θ +√2  dx k 4  dx k (-1 + θ)2 +

θ2 + 2  dx k θ (1 + 4 θ) + 2 3  dx k 5 - 9 θ + 4 θ2 + 2 2  dx k -1 - 9 θ + 9 θ2

Mathematica_Thesis_Appendix.nb 5

lamb1[dx_] = -2  dx k 2  dx k 2 - 4 θ - 3  dx k -1 + θ -

 dx k θ -2  dx k 4  dx k -1 + θ2 + θ2 + 2  dx k θ 1 + 4 θ +

2 3  dx k 5 - 9 θ + 4 θ2 + 2 2  dx k -1 - 9 θ + 9 θ2 // Simplify;

lamb2[dx_] = -2  dx k 2  dx k 2 - 4 θ - 3  dx k -1 + θ -  dx k θ +

2  dx k 4  dx k -1 + θ2 + θ2 + 2  dx k θ 1 + 4 θ +

2 3  dx k 5 - 9 θ + 4 θ2 + 2 2  dx k -1 - 9 θ + 9 θ2 // Simplify;

For the upwind scheme, these are

lamb1th1[dx_] = -2  dx k 2  dx k 2 - 4 θ - 3  dx k -1 + θ -

 dx k θ -2  dx k 4  dx k -1 + θ2 + θ2 + 2  dx k θ 1 + 4 θ +

2 3  dx k 5 - 9 θ + 4 θ2 + 2 2  dx k -1 - 9 θ + 9 θ2 /. θ  1 // Simplify

lamb2th1[dx_] = -2  dx k 2  dx k 2 - 4 θ - 3  dx k -1 + θ -  dx k θ +

2  dx k 4  dx k -1 + θ2 + θ2 + 2  dx k θ 1 + 4 θ + 2 3  dx k 5 - 9 θ + 4 θ2 +

2 2  dx k -1 - 9 θ + 9 θ2 /. θ  1 // Simplify

-2 - - dx k - -2  dx k 2  dx k + 10 3  dx k - 2 4  dx k

-2 - - dx k + -2  dx k 2  dx k + 10 3  dx k - 2 4  dx k

Taylor expansions of eigenvalues for different values of θ (so that we
can interpolate to find a closed form for the coefficients)

temp1[dx_] = Simplify[Expand[Normal[Series[lamb1th1[dx], {dx, 0, 2}]]]];

temp2[dx_] = Simplify[Expand[Normal[Series[lamb2th1[dx], {dx, 0, 7}]]]];

lamb1th1[dx_] = temp1[dx];

lamb2th1[dx_] = temp2[dx];

temp1[dx_] = SimplifyExpandNormalSerieslamb1[dx] /. θ 
9

10
, {dx, 0, 2};

temp2[dx_] = SimplifyExpandNormalSerieslamb2[dx] /. θ 
9

10
, {dx, 0, 7};

lamb1th9[dx_] = temp1[dx];

lamb2th9[dx_] = temp2[dx];

temp1[dx_] = SimplifyExpandNormalSerieslamb1[dx] /. θ 
4

5
, {dx, 0, 2};

temp2[dx_] = SimplifyExpandNormalSerieslamb2[dx] /. θ 
4

5
, {dx, 0, 7};

lamb1th8[dx_] = temp1[dx];

lamb2th8[dx_] = temp2[dx];

temp1[dx_] = SimplifyExpandNormalSerieslamb1[dx] /. θ 
7

10
, {dx, 0, 2};

temp2[dx_] = SimplifyExpandNormalSerieslamb2[dx] /. θ 
7

10
, {dx, 0, 7};

6 Mathematica_Thesis_Appendix.nb

lamb1th7[dx_] = temp1[dx];

lamb2th7[dx_] = temp2[dx];

temp1[dx_] = SimplifyExpandNormalSerieslamb1[dx] /. θ 
3

5
, {dx, 0, 2};

temp2[dx_] = SimplifyExpandNormalSerieslamb2[dx] /. θ 
3

5
, {dx, 0, 7};

lamb1th6[dx_] = temp1[dx];

lamb2th6[dx_] = temp2[dx];

Now the tricky part: find tidy closed form

Closed form for semi-discrete eigenvalues

Leading order term of non-physically relevant eigenvalue is given by
interpolation:

InterpolatingPolynomial[

{Coefficient[lamb1th1[dx], dx, 0], Coefficient[lamb1th9[dx], dx, 0],

Coefficient[lamb1th8[dx], dx, 0], Coefficient[lamb1th7[dx], dx, 0],

Coefficient[lamb1th6[dx], dx, 0]}, x] /. x  11 - 10 θ // Simplify

6 - 12 θ

For the physically relevant eigenvalue:

lamb2th1[dx]

lamb2th6[dx]

- dx k -
dx4 k4

72
-

1

270
 dx5 k5 +

dx6 k6

648
+
25  dx7 k7

27 216

- dx k -
5 dx4 k4

72
-

61

270
 dx5 k5 +

485 dx6 k6

648
+
67 393  dx7 k7

27 216

Term on the order dx4: (Educated guess factor of
1

2 θ-1
)

InterpolatingPolynomialCoefficient2 * 1 - 1 * lamb2th1[dx], dx, 4,

2 *
9

10
- 1 * Coefficient[lamb2th9[dx], dx, 4],

2 *
8

10
- 1 * Coefficient[lamb2th8[dx], dx, 4],

2 *
7

10
- 1 * Coefficient[lamb2th7[dx], dx, 4],

2 *
6

10
- 1 * Coefficient[lamb2th6[dx], dx, 4], x /. x  11 - 10 θ // Simplify

-
k4

72

Term on the order dx4: (Guess factor of
1

(2θ-1)2
)

Mathematica_Thesis_Appendix.nb 7

InterpolatingPolynomialCoefficient2 * 1 - 12 * lamb2th1[dx], dx, 5,

2 *
9

10
- 1

2

* Coefficient[lamb2th9[dx], dx, 5],

2 *
8

10
- 1

2

* Coefficient[lamb2th8[dx], dx, 5],

2 *
7

10
- 1

2

* Coefficient[lamb2th7[dx], dx, 5],

2 *
6

10
- 1

2

* Coefficient[lamb2th6[dx], dx, 5], x /. x  11 - 10 θ // Simplify

1

270
 k5 -1 - 6 θ + 6 θ2

physrel4[θ_] = -
1

72

1

2 θ - 1
;

physrel5[θ_] = -
1

270

1 + 6 θ - 6 θ2

1 - 2 θ2
;

So phys.rel. eigenvalue given by λ = -hk - k4

72
 + 1

270
 k5 (-1 - 6 θ + 6 θ2)

Aside: Fully discrete RK-DG upwind scheme
Note that information on the fully-discrete (completely decoupled) RK-DG scheme is held entirely

within the semi-discrete form in the sense that one can rewrite RK schemes in a similar form to

Taylor series, as briefly discussed in my thesis. For the SSPRK(3,3) scheme then, the physically

relevant eigenvalue is a combination of eigenvalue of semi-discrete operator D-:

NormalSeries1 + dt * Evalue1Dm +
dt2

2
* Evalue1Dm2 +

dt3

6
* Evalue1Dm3 // Expand,

{dx, 0, 4} // Expand

1 -  dt ω -
dt2 ω2

2
+
1

6
 dt3 ω3 -

1

72
dt dx3 ω4 +

1

72
 dt2 dx3 ω5 -

1

270
 dt dx4 ω5 +

1

144
dt3 dx3 ω6 -

1

270
dt2 dx4 ω6 +

1

540
 dt3 dx4 ω7

Normal[Series[Exp[- * ω * dt], {dt, 0, 3}]]

1 -  dt ω -
dt2 ω2

2
+
1

6
 dt3 ω3

Error terms:

%116 - %119

-
1

72
dt dx3 ω4 +

1

72
 dt2 dx3 ω5 -

1

270
 dt dx4 ω5 +

1

144
dt3 dx3 ω6 -

1

270
dt2 dx4 ω6 +

1

540
 dt3 dx4 ω7

8 Mathematica_Thesis_Appendix.nb

Chapter A: Mathematica Code 135

A.2 Fully-discrete example

Appendix 2: Example Mathematica code:
fully-discrete scheme

◼ Original Lax-Wendroff discontinuous Galerkin:
P2 polynomial basis

In[3]:= Clear["Global`*"]

General Setup

Orthonormal Legendre polynomials

In[121]:= f1[x_] = Sqrt
1

2
 * LegendreP[0, x]

f2[x_] = Sqrt
3

2
 * LegendreP[1, x]

f3[x_] = Sqrt
5

2
 * LegendreP[2, x]

Out[121]=

1

2

Out[122]=

3

2
x

Out[123]=

1

2

5

2
-1 + 3 x2

M is mass matrix, DM is stiffness matrix, DMt is transpose stiffness
matrix for direct differentiation of approximation (for Lax-Wendroff type
methods), DMt2 for second derivative. The other matrices represent
boundary contributions from the flux (e.g. LLM=Left boundary from the
left). All matrices scaled to canonical element [-1,1].

In[124]:= F[x_] = {f1[x], f2[x], f3[x]} // Simplify;

M = Table[a, {3}, {3}];

DM = Table[a, {3}, {3}];

DMt = Table[a, {3}, {3}];

D2Mt = Table[a, {3}, {3}];

RLM = Table[a, {3}, {3}];

RRM = Table[a, {3}, {3}];

LRM = Table[a, {3}, {3}];

LLM = Table[a, {3}, {3}];

R1LM = Table[a, {3}, {3}];

R1RM = Table[a, {3}, {3}];

L1RM = Table[a, {3}, {3}];

L1LM = Table[a, {3}, {3}];

R2LM = Table[a, {3}, {3}];

R2RM = Table[a, {3}, {3}];

L2RM = Table[a, {3}, {3}];

L2LM = Table[a, {3}, {3}];

In[131]:= GG = Module

{ k, j},

For[k = 1, k ≤ 3, k++,

For[j = 1, j ≤ 3, j++, M[[k, j]] = Integrate[F[x][[k]] * F[x][[j]], {x, -1, 1}]]];

For[k = 1, k ≤ 3, k++,

For[j = 1, j ≤ 3, j++,

DM[[k, j]] = Integrate[D[F[x][[k]], x] * F[x][[j]], {x, -1, 1}]]];

For[k = 1, k ≤ 3, k++,

For[j = 1, j ≤ 3, j++,

DMt[[k, j]] = Integrate[D[F[x][[j]], x] * F[x][[k]], {x, -1, 1}]]];

For[k = 1, k ≤ 3, k++,

For[j = 1, j ≤ 3, j++,

D2Mt[[k, j]] = Integrate[D[D[F[x][[j]], x], x] * F[x][[k]], {x, -1, 1}]]];

For[k = 1, k ≤ 3, k++,

For[j = 1, j ≤ 3, j++, LLM[[k, j]] = F[-1][[k]] * F[1][[j]]]];

For[k = 1, k ≤ 3, k++,

For[j = 1, j ≤ 3, j++, LRM[[k, j]] = F[-1][[k]] * F[-1][[j]]]];

2 Mathematica_Thesis_Appendix2.nb

For[k = 1, k ≤ 3, k++,

For[j = 1, j ≤ 3, j++, RLM[[k, j]] = F[1][[k]] * F[1][[j]]]];

For[k = 1, k ≤ 3, k++,

For[j = 1, j ≤ 3, j++, RRM[[k, j]] = F[1][[k]] * F[-1][[j]]]];

For k = 1, k ≤ 3, k++,

Forj = 1, j ≤ 3, j++, L1LM[[k, j]] = F[-1][[k]] * D[F[x][[j]], x] /. x  1;

For k = 1, k ≤ 3, k++,

Forj = 1, j ≤ 3, j++, L1RM[[k, j]] = F[-1][[k]] * D[F[x][[j]], x] /. x  -1;

For k = 1, k ≤ 3, k++,

Forj = 1, j ≤ 3, j++, R1LM[[k, j]] = F[1][[k]] * D[F[x][[j]], x] /. x  1;

For k = 1, k ≤ 3, k++,

Forj = 1, j ≤ 3, j++, R1RM[[k, j]] = F[1][[k]] * D[F[x][[j]], x] /. x  -1;

For k = 1, k ≤ 3, k++,

Forj = 1, j ≤ 3, j++,

L2LM[[k, j]] = F[-1][[k]] * D[D[F[x][[j]], x], x] /. x  1;

For k = 1, k ≤ 3, k++,

Forj = 1, j ≤ 3, j++,

L2RM[[k, j]] = F[-1][[k]] * D[D[F[x][[j]], x], x] /. x  -1;

For k = 1, k ≤ 3, k++,

Forj = 1, j ≤ 3, j++,

R2LM[[k, j]] = F[1][[k]] * D[D[F[x][[j]], x], x] /. x  1;

For k = 1, k ≤ 3, k++,

Forj = 1, j ≤ 3, j++,

R2RM[[k, j]] = F[1][[k]] * D[D[F[x][[j]], x], x] /. x  -1;



A1 is contribution to cell I j resulting from an upwind flux u-; A2 is

contribution to cell I j resulting from an downwind flux u+; B applies to cell

I j-1and results from u- flux; C to I j+1due to u+ flux.

Mathematica_Thesis_Appendix2.nb 3

In[132]:= Minv = Inverse[M];

A1 = Simplify[Expand[(DM - RLM)]];

A2 = Simplify[Expand[(DM + LRM)]];

A = A1 + A2;

Cp = Simplify[Expand[RRM]];

Bm = Simplify[Expand[LLM]];

Simplify[Expand[DM]];

Simplify[Expand[DMt]];

Construction of fully-discrete amplification matrix G.
Derive by hand
In[148]:= Dmat = Simplify[Expand[DMt - ν * D2Mt]];

Gplus = SimplifyExpandLRM -
1

2
* ν * L1RM -

2

3
ν2 * L2RM ;

Gminus = SimplifyExpand-LLM +
1

2
* ν * L1LM -

2

3
ν2 * L2LM ;

Eplus = SimplifyExpand
1

2
* ν * R1RM -

2

3
ν2 * R2RM ;

Eminus = SimplifyExpand-
1

2
* ν * R1LM -

2

3
ν2 * R2LM ;

In[145]:= A0 = Simplify[Expand[Dmat + Gplus - Eminus]]

Ap1 = -Eplus

Am1 = Gminus

Out[145]= 
1

2
,

3

2
,
1

2
5 (1 - 3 ν),

-
3

2
,
3 (1 + ν)

2
,
1

2
15 1 - 2 ν2, 

5

2
, -

15

2
,
5

2
(1 + 3 ν)

Out[146]= 0, -
3 ν

4
,
1

4
5 ν (3 + 2 ν),

0, -
3 ν

4
,
1

4
15 ν (3 + 2 ν), 0, -

15 ν

4
,
5

4
ν (3 + 2 ν)

Out[147]= -
1

2
,
1

4
3 (-2 + ν), -

1

4
5 2 - 3 ν + 2 ν2,


3

2
, -

3

4
(-2 + ν),

1

4
15 2 - 3 ν + 2 ν2,

-
5

2
,
1

4
15 (-2 + ν), -

5

4
2 - 3 ν + 2 ν2

The following is the amplification matrix

4 Mathematica_Thesis_Appendix2.nb

In[157]:= Gold = Expand[A0 + Am1 * Exp[-I * k * dx] + Ap1 * Exp[I * k * dx]] // Simplify;

eigLWo = Eigenvalues[Gold] // Simplify

eigLWoR = ToRadicals[eigLWo];

Out[158]= 
1

4
- dx k

Root480 2  dx k - 480 3  dx k + 720 2  dx k ν - 720 4  dx k ν + 240 2  dx k ν2 - 480 3  dx k ν2 +

240 4  dx k ν2 + 96  dx k + 144 2  dx k - 72  dx k ν + 624 2  dx k ν +

168 3  dx k ν - 120  dx k ν2 + 120 3  dx k ν2 #1 +

6 - 18  dx k - 12 ν - 36  dx k ν - 12 2  dx k ν + 10 ν2 - 10 2  dx k ν2 #12 + #13 &, 1,

1

4
- dx k Root480 2  dx k - 480 3  dx k + 720 2  dx k ν - 720 4  dx k ν + 240 2  dx k ν2 -

480 3  dx k ν2 + 240 4  dx k ν2 + 96  dx k + 144 2  dx k - 72  dx k ν +

624 2  dx k ν + 168 3  dx k ν - 120  dx k ν2 + 120 3  dx k ν2 #1 +

6 - 18  dx k - 12 ν - 36  dx k ν - 12 2  dx k ν + 10 ν2 - 10 2  dx k ν2 #12 + #13 &, 2,

1

4
- dx k Root480 2  dx k - 480 3  dx k + 720 2  dx k ν - 720 4  dx k ν + 240 2  dx k ν2 -

480 3  dx k ν2 + 240 4  dx k ν2 + 96  dx k + 144 2  dx k - 72  dx k ν +

624 2  dx k ν + 168 3  dx k ν - 120  dx k ν2 + 120 3  dx k ν2 #1 +

6 - 18  dx k - 12 ν - 36  dx k ν - 12 2  dx k ν + 10 ν2 - 10 2  dx k ν2 #12 + #13 &, 3

The following may take a while to run

eigLWoDS = eigLWoR[[1]] /. ν 
dt

dx
/. k 

κ

dx
/. dt  ν * dx // Simplify;

eigLWoDS2 = eigLWoR[[2]] /. β 
dt

dx
/. k 

κ

dx
/. dt  ν * dx // Simplify;

eigLWoDS3 = eigLWoR[[3]] /. β 
dt

dx
/. k 

κ

dx
/. dt  ν * dx // Simplify;

It is good to save output not too large to save recomputing it:

Mathematica_Thesis_Appendix2.nb 5

In[160]:= eigLWoDS =
1

6
- κ -3 + 6 ν - 5 ν2 + 9  κ 1 + 2 ν + 2  κ ν 6 + 5 ν +

4  κ ν2 6 + 5 ν2 + 3 - 6 ν + 5 ν22 + 18 3  κ ν -1 + 12 ν + 10 ν2 -

18  κ 7 - 3 ν - 12 ν2 + 10 ν3 - 2  κ 27 + 180 ν - 366 ν2 + 50 ν4 

-27 + 567  κ - 2025 2  κ + 81 3  κ + 162 ν - 1377  κ ν - 2592 2  κ ν - 5913 3  κ ν -

459 ν2 + 459  κ ν2 + 54 2  κ ν2 - 4671 3  κ ν2 - 3321 4  κ ν2 - 162 5  κ ν2 +

756 ν3 + 2349  κ ν3 + 7560 2  κ ν3 + 9450 3  κ ν3 + 4860 4  κ ν3 + 1809 5  κ ν3 +

216 6  κ ν3 - 765 ν4 - 3240  κ ν4 - 4950 2  κ ν4 + 5175 4  κ ν4 + 3240 5  κ ν4 +

540 6  κ ν4 + 450 ν5 + 1350  κ ν5 - 450 2  κ ν5 - 2700 3  κ ν5 - 450 4  κ ν5 +

1350 5  κ ν5 + 450 6  κ ν5 - 125 ν6 + 375 2  κ ν6 - 375 4  κ ν6 + 125 6  κ ν6 +

1

8

64 6  κ ν3 6 + 5 ν3 - 3 - 6 ν + 5 ν2
3
+ 27 5  κ ν2 -6 + 67 ν + 120 ν2 +

50 ν3 - 3 4  κ ν2 1107 - 1620 ν - 1725 ν2 + 150 ν3 + 125 ν4 +

27  κ 21 - 51 ν + 17 ν2 + 87 ν3 - 120 ν4 + 50 ν5 -

27 3  κ -3 + 219 ν + 173 ν2 - 350 ν3 + 100 ν5 +

3 2  κ -675 - 864 ν + 18 ν2 + 2520 ν3 - 1650 ν4 - 150 ν5 + 125 ν6
2
+

-4 -3 + 6 ν - 5 ν2 + 9  κ 1 + 2 ν + 2  κ ν 6 + 5 ν
2
+

72  κ 4 - 3 ν - 5 ν2 + 2  κ ν (7 + 5 ν) +  κ 6 + 26 ν
3


1/3

+

-27 + 567  κ - 2025 2  κ + 81 3  κ + 162 ν - 1377  κ ν - 2592 2  κ ν -

5913 3  κ ν - 459 ν2 + 459  κ ν2 + 54 2  κ ν2 - 4671 3  κ ν2 - 3321 4  κ ν2 -

162 5  κ ν2 + 756 ν3 + 2349  κ ν3 + 7560 2  κ ν3 + 9450 3  κ ν3 +

4860 4  κ ν3 + 1809 5  κ ν3 + 216 6  κ ν3 - 765 ν4 - 3240  κ ν4 -

4950 2  κ ν4 + 5175 4  κ ν4 + 3240 5  κ ν4 + 540 6  κ ν4 + 450 ν5 +

1350  κ ν5 - 450 2  κ ν5 - 2700 3  κ ν5 - 450 4  κ ν5 + 1350 5  κ ν5 +

450 6  κ ν5 - 125 ν6 + 375 2  κ ν6 - 375 4  κ ν6 + 125 6  κ ν6 +

1

8

64 6  κ ν3 6 + 5 ν3 - 3 - 6 ν + 5 ν2
3
+ 27 5  κ ν2 -6 + 67 ν + 120 ν2 +

50 ν3 - 3 4  κ ν2 1107 - 1620 ν - 1725 ν2 + 150 ν3 + 125 ν4 +

27  κ 21 - 51 ν + 17 ν2 + 87 ν3 - 120 ν4 + 50 ν5 -

27 3  κ -3 + 219 ν + 173 ν2 - 350 ν3 + 100 ν5 +

3 2  κ -675 - 864 ν + 18 ν2 + 2520 ν3 - 1650 ν4 - 150 ν5 + 125 ν6
2
+

-4 -3 + 6 ν - 5 ν2 + 9  κ 1 + 2 ν + 2  κ ν 6 + 5 ν2 +

72  κ 4 - 3 ν - 5 ν2 + 2  κ ν (7 + 5 ν) +  κ 6 + 26 ν
3


1/3

;

6 Mathematica_Thesis_Appendix2.nb

In[164]:= temp1[κ_] = Expand[Normal[Series[eigLWoDS, {κ, 0, 8}]]]

Out[164]=

1 +  κ

2
+ κ2

4
-  κ3

12
- κ4

48
+  κ5

240
+ ⋯ 26061⋯ +

1

36
 κ3 -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 + 540 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2

1/3

+

1

144
κ4 -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 + 540 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2

1/3

-

1

720
 κ5

-1404 - 9720 ν - 8100 ν2 + 27 000 ν3 + 540 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2
1/3

-

κ6 -1404-9720 ν-8100 ν2+27 000 ν3+540 -(1+3 ν)2 (-17-30 ν+75 ν2)
1/3

4320
+

 κ7 -1404-9720 ν-8100 ν2+27 000 ν3+540 -(1+3 ν)2 (-17-30 ν+75 ν2)
1/3

30 240
+

κ8 -1404-9720 ν-8100 ν2+27 000 ν3+540 -(1+3 ν)2 (-17-30 ν+75 ν2)
1/3

241 920

large output show less show more show all set size limit...

Non-trivial identity
This term features heavily in the Taylor expansion of the eigenvalues. It needs to be simplified

manually.

-1404 - 9720 ν - 8100 ν2 + 27 000 ν3 + 540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
1/3

// Simplify

3 × 22/3 -13 - 90 ν - 75 ν2 + 250 ν3 + 5 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 
1/3

Define magic quantity (found by wine, trial and error!)

In[162]:= iden = 3 -5 ν + 1 + 17 + 30 ν - 75 ν2 ;

Check it equals original quantity:

iden3 // Expand

-1404 - 9720 ν - 8100 ν2 + 27 000 ν3 + 540 17 + 30 ν - 75 ν2 + 1620 ν 17 + 30 ν - 75 ν2

iden

3 × 22/3

3

// Expand

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 17 + 30 ν - 75 ν2 + 15 ν 17 + 30 ν - 75 ν2

Messy simplification processes:
I had some difficulties automating this

lamb1lwo = temp1[κ] /. -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
1/3



/

Mathematica_Thesis_Appendix2.nb 7

iden /. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
1/3



1

iden
/. -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
2/3



iden2 /. 1  -1404 - 9720 ν - 8100 ν2 + 27 000

ν3 + 540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
2/3



1

iden2
/. -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
4/3

 iden4 /.

1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 + 540

-1 + 3 ν2 -17 - 30 ν + 75 ν2
4/3



1

iden4
/. -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
5/3

 iden5 /.

1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 + 540

-1 + 3 ν2 -17 - 30 ν + 75 ν2
5/3



1

iden5
/. -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
7/3



iden7 /. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
7/3



1

iden7
/. -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
8/3



iden8 /. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
8/3



1

iden8
/. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
10/3



1

iden10
/. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
11/3



/

8 Mathematica_Thesis_Appendix2.nb

1

iden11
/. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
13/3



1

iden13
/. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
14/3



1

iden14
/. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
16/3



1

iden16
/. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
17/3



1

iden17
/. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
18/3



1

iden18
/. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
19/3



1

iden19
/. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
20/3



1

iden20
/. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 + 540

-1 + 3 ν2 -17 - 30 ν + 75 ν2
22/3



1

iden22
/. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
23/3



1

iden23
/. 1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
25/3


1

iden25
/.

1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 + 540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
26/3



1

iden26
/.

1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 +

540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
28/3


1

iden28
/.

1  -1404 - 9720 ν - 8100 ν2 + 27 000 ν3 + 540 -1 + 3 ν2 -17 - 30 ν + 75 ν2
29/3



//

Mathematica_Thesis_Appendix2.nb 9

1

iden29
//

Expand;

Out[163]=

1
2
+  κ + ⋯ 26079⋯ +

6103 515625  κ7 ν15 -(1+3 ν)2 (-17-30 ν+75 ν2)

36 × 21/3 (1+3 ν) (-17-30 ν+75 ν2)3 -13-90 ν-75 ν2+250 ν3+5 -(1+3 ν)2 (-17-30 ν+75 ν2)
8/3 +

1 220703 125 κ8 ν15 -(1+3 ν)2 (-17-30 ν+75 ν2)

36 × 21/3 (1+3 ν) (-17-30 ν+75 ν2)3 -13-90 ν-75 ν2+250 ν3+5 -(1+3 ν)2 (-17-30 ν+75 ν2)
8/3

large output show less show more show all set size limit...

lamb1lwO =

lamb1lwo /.
1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
8/3



1

 iden

3 × 223

8
/.

1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
10/3



1

 iden

3 × 223

10

/.

1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
11/3



1

 iden

3 × 223

11

/.

1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
13/3



1

 iden

3 × 223

13

/.

1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
14/3



1

 iden

3 × 223

14

/.

1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
16/3



/

10 Mathematica_Thesis_Appendix2.nb

1

 iden

3 × 223

16

/.

1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
17/3



1

 iden

3 × 223

17

/.

1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
19/3



1

 iden

3 × 223

19

/.

1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
20/3



1

 iden

3 × 223

20

/.

1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
22/3



1

 iden

3 × 223

22

/.

1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
23/3



1

 iden

3 × 223

23

/.

1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
25/3



1

 iden

3 × 223

25

/.

1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
26/3



1

 iden

3 × 223

26

/.

1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
28/3



/

Mathematica_Thesis_Appendix2.nb 11

1

 iden

3 × 223

28

/.

1

-13 - 90 ν - 75 ν2 + 250 ν3 + 5 -1 + 3 ν2 -17 - 30 ν + 75 ν2
29/3



1

 iden

3 × 223

29

// Expand;

In[165]:=

lwo2 = Collect[lamb1lwO, κ];

Now inspect coefficients and find closed forms
Various methods for isolating quantities help to realise major simplifications

Coeff constants

Coefficient[lwo2, κ, 0]

Coefficient[lwo2, κ, 0] // Simplify

1

2
+
5 ν

2
+
1

2
17 + 30 ν - 75 ν2 -

8

-1 - 5 ν + 17 + 30 ν - 75 ν2
-

10 ν

-1 - 5 ν + 17 + 30 ν - 75 ν2
+

50 ν2

-1 - 5 ν + 17 + 30 ν - 75 ν2

0

12 Mathematica_Thesis_Appendix2.nb

Coeff κ

simpnu = Coefficient[lwo2, κ, 1] // Simplify

4  -5457 - 843 750 ν8 + 3417 17 + 30 ν - 75 ν2 - 2958 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

174 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

168 750 ν7 -25 + 17 + 30 ν - 75 ν2  +

1875 ν6 77 + 432 17 + 30 ν - 75 ν2 - 30 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  -

375 ν5 -8334 + 779 17 + 30 ν - 75 ν2 + 595 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

10 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  -

5 ν3 94 562 + 5048 17 + 30 ν - 75 ν2 - 23 300 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

95 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  +

3 ν -24 222 + 12 397 17 + 30 ν - 75 ν2 - 7605 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

635 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  -

25 ν4 -40 043 + 22 935 17 + 30 ν - 75 ν2 - 6120 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

685 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  +

5 ν2 -67 991 + 23 198 17 + 30 ν - 75 ν2 - 5504 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

1147 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  

3 (1 + 3 ν) -17 - 30 ν + 75 ν2 -1 - 5 ν + 17 + 30 ν - 75 ν2 
4


Simplify by numerical interpolation:

InterpolatingPolynomialRationalizeNsimpnu /. ν 
1

100
, 64,

RationalizeNsimpnu /. ν 
2

100
, 64,

RationalizeNsimpnu /. ν 
3

100
, 64,

RationalizeNsimpnu /. ν 
4

100
, 64,

RationalizeNsimpnu /. ν 
5

100
, 64, x /. x  100 ν // Simplify



2

- ν κ /. ν 
dt

dx
/. κ  k dx // Simplify

- dt k

Coeff κ2

simpnu2 = Coefficient[lwo2, κ, 2] // Simplify

Mathematica_Thesis_Appendix2.nb 13

64 -5 932 617 187 500 ν17 + 131 835 937 500 ν16 -256 + 3 17 + 30 ν - 75 ν2  +

2 197 265 625 ν15 -27 305 + 5172 17 + 30 ν - 75 ν2 -

60 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  - 1 318 359 375 ν14

-39 660 - 11 399 17 + 30 ν - 75 ν2 + 2690 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

20 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  - 29 296 875 ν13

-5 266 345 + 1 588 629 17 + 30 ν - 75 ν2 + 145 935 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

4730 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  - 5 859 375 ν12

922 392 + 4 122 254 17 + 30 ν - 75 ν2 - 2 847 740 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

45 255 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  +

1 171 875 ν11 -115 387 769 + 35 804 836 17 + 30 ν - 75 ν2 +

2 662 090 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

81 645 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  - 90 -3 650 155 +

1 080 248 17 + 30 ν - 75 ν2 - 1 080 248 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

214 715 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  +

15 625 ν9 3 323 904 805 - 891 935 859 17 + 30 ν - 75 ν2 -

222 724 935 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

6 349 165 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  +

78 125 ν10 -486 944 610 + 308 984 791 17 + 30 ν - 75 ν2 -

188 410 630 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

7 166 085 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  -

9 ν -873 874 991 + 246 797 801 17 + 30 ν - 75 ν2 -

212 697 399 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

40 757 407 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  -

6250 ν8 -4 676 099 575 + 1 953 305 692 17 + 30 ν - 75 ν2 -

891 121 120 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

56 960 210 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  +

25 ν4 23 203 302 468 - 2 807 242 378 17 + 30 ν - 75 ν2 -

2 388 686 420 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

102 608 835 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  -

625 ν7 9 128 736 047 - 327 305 316 17 + 30 ν - 75 ν2 -

3 623 388 240 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

235 152 230 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  +

14 Mathematica_Thesis_Appendix2.nb

125 ν5 -12 729 719 335 + 5 921 889 375 17 + 30 ν - 75 ν2 -

4 663 733 319 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

478 760 720 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  -

15 ν3 -23 557 348 261 + 5 619 964 604 17 + 30 ν - 75 ν2 -

2 579 435 570 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

495 611 135 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  +

125 ν6 -65 420 598 320 + 20 321 790 667 17 + 30 ν - 75 ν2 -

5 932 176 010 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

644 025 610 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  -

3 ν2 -25 311 595 154 + 6 747 221 489 17 + 30 ν - 75 ν2 -

4 717 859 930 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2 +

871 605 325 17 + 30 ν - 75 ν2 -(1 + 3 ν)2 -17 - 30 ν + 75 ν2  

9 (1 + 3 ν) 17 + 30 ν - 75 ν22 -1 - 5 ν + 17 + 30 ν - 75 ν2 
10


InterpolatingPolynomialRationalizeNsimpnu2 /. ν 
1

10
, 64,

RationalizeNsimpnu2 /. ν 
2

10
, 64,

RationalizeNsimpnu2 /. ν 
3

10
, 64,

RationalizeNsimpnu2 /. ν 
4

10
, 64,

RationalizeNsimpnu2 /. ν 
5

10
, 64,

RationalizeNsimpnu2 /. ν 
6

10
, 64, x /. x  10 ν // Simplify

ν

4

Coeff κ3

simpnu3 = Coefficient[lwo2, κ, 3] // Simplify;

Mathematica_Thesis_Appendix2.nb 15

InterpolatingPolynomialRationalizeNsimpnu3 /. ν 
1

10
, 64,

RationalizeNsimpnu3 /. ν 
2

10
, 64,

RationalizeNsimpnu3 /. ν 
3

10
, 64,

RationalizeNsimpnu3 /. ν 
4

10
, 64,

RationalizeNsimpnu3 /. ν 
5

10
, 64,

RationalizeNsimpnu3 /. ν 
6

10
, 64, x /. x  10 ν // Simplify

-
 ν2

12

-
 ν2

12
/. ν 

dt

dx
/. κ  k dx // Simplify

-
 dt2

12 dx2

Coeff κ4

Recall:

simpnu4 = Coefficient[lwo2, κ, 4];

Seek to simplify by numerical interpolation again:

Extensive numerical investigations lead to discovery of rational factors.

cof4 =

InterpolatingPolynomialRationalizeN
240 1 + 3 ν

ν
simpnu4 /. ν 

1

5
, 64,

RationalizeN
240 1 + 3 ν

ν
simpnu4 /. ν 

2

5
, 64,

RationalizeN
240 1 + 3 ν

ν
simpnu4 /. ν 

3

5
, 64,

RationalizeN
240 1 + 3 ν

ν
simpnu4 /. ν 

4

5
, 64, x /. x  5 ν // Simplify

1 + 2 ν - 5 ν2 - 20 ν3

Coeff κ5

simpnu5 = Coefficient[lwo2, κ, 5] // Simplify;

16 Mathematica_Thesis_Appendix2.nb

cof5 =

InterpolatingPolynomialRationalizeN
3600 1 + 3 ν2

ν
simpnu5 /. ν 

1

10
, 64,

RationalizeN
3600 1 + 3 ν2

ν
simpnu5 /. ν 

2

10
, 64,

RationalizeN
3600 1 + 3 ν2

ν
simpnu5 /. ν 

3

10
, 64,

RationalizeN
3600 1 + 3 ν2

ν
simpnu5 /. ν 

4

10
, 64,

RationalizeN
3600 1 + 3 ν2

ν
simpnu5 /. ν 

5

10
, 64,

RationalizeN
3600 1 + 3 ν2

ν
simpnu5 /. ν 

6

10
, 64, x /. x  10 ν //

Simplify

 9 - 7 ν - 75 ν2 - 5 ν3 + 150 ν4 + 300 ν5

Mathematica_Thesis_Appendix2.nb 17

Bibliography

[1] M. Abramowitz, I.A. Stegun, et al. Handbook of mathematical functions,

volume 1. Dover New York, 1972.

[2] S. Adjerid, M. Aiffa, and J. Flaherty. High-order finite element methods

for singularly-perturbed elliptic and parabolic problems. SIAM Journal on

Applied Mathematics, 55:520–543, 1995.

[3] S. Adjerid and M. Baccouch. The discontinuous Galerkin method for two-

dimensional hyperbolic problems. Part I: Superconvergence error analysis.

Journal of Scientific Computing, 33(1):75–113, 2007.

[4] S. Adjerid and M. Baccouch. The discontinuous Galerkin method for two-

dimensional hyperbolic problems part ii: A posteriori error estimation.

Journal of Scientific Computing, 38(1):15–49, 2009.

[5] S. Adjerid and M. Baccouch. A superconvergent local discontinuous Galerkin

method for elliptic problems. Journal of Scientific Computing, 52(1):113–

152, 2012.

[6] S. Adjerid, K.D. Devine, J.E. Flaherty, and L. Krivodonova. A posteriori

error estimation for discontinuous Galerkin solutions of hyperbolic problems.

Computer methods in applied mechanics and engineering, 191(11):1097–

1112, 2002.

[7] S. Adjerid and A. Klauser. Superconvergence of discontinuous finite element

Chapter A: Mathematica Code 154

solutions for transient convection-diffusion problems. Journal of Scientific

Computing, 22–23:5–24, 2005.

[8] S. Adjerid and T.C. Massey. Superconvergence of discontinuous Galerkin

solutions for a nonlinear scalar hyperbolic problem. Computer Methods in

Applied Mechanics and Engineering, 195:3331–3346, 2006.

[9] M. Ainsworth. Dispersive and dissipative behaviour of high order

discontinuous Galerkin finite element methods. Journal of Computational

Physics, 198(1):106–130, 2004.

[10] K. Asthana and A. Jameson. High-order flux reconstruction schemes with

minimal dispersion and dissipation. Journal of Scientific Computing, pages

1–32, 2014.

[11] M. Baccouch. A superconvergent local discontinuous Galerkin method for the

second-order wave equation on cartesian grids. Computers and Mathematics

with Applications, 68:1250–1278, 2014.

[12] R. Biswas, K.D. Devine, and J.E. Flaherty. Parallel, adaptive finite element

methods for conservation laws. Applied Numerical Mathematics, 14(1):255–

283, 1994.

[13] J.H. Bramble and A.H. Schatz. Higher order local accuracy by averaging

in the finite element method. Mathematics of Computation, 31(137):94–111,

1977.

[14] S.C. Brenner and L.R. Scott. The mathematical theory of finite element

methods. Springer-Verlag, New York, 1994.

[15] W. Cao, D. Li, Y. Yang, and Q. Zou. Superconvergence of discontinuous

Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic

equations. ESAIM: Mathematical Modelling and Numerical Analysis,

51(2):467–486, 2017.

[16] W. Cao, Z. Zhang, and Q. Zou. Superconvergence of discontinuous Galerkin

Chapter A: Mathematica Code 155

methods for linear hyperbolic equations. SIAM Journal on Numerical

Analysis, 52(5):2555–2573, 2014.

[17] N. Chalmers, L. Krivodonova, and R. Qin. Relaxing the CFL number of the

discontinuous Galerkin method. SIAM Journal on Scientific Computing,

36(4):A2047–A2075, 2014.

[18] R.P.K. Chan and A.Y.J. Tsai. On explicit two-derivative Runge–Kutta

methods. Numerical Algorithms, 53(2-3):171–194, 2010.

[19] Y. Cheng, C.-S. Chou, F. Li, and Y. Xing. L2 stable discontinuous Galerkin

methods for one-dimensional two-way wave equations. Mathematics of

Computation, 86:121–155, 2017.

[20] Y. Cheng, F. Li, J. Qiu, and L. Xu. Positivity-preserving DG and central

DG methods for ideal MHD equations. Journal of Computational Physics,

238:255–280, 2013.

[21] Y. Cheng and C.-W. Shu. Superconvergence and time evolution of

discontinuous Galerkin finite element solutions. Journal of Computational

Physics, 227(22):9612–9627, 2008.

[22] P.G. Ciarlet. The finite element method for elliptic problems. Elsevier, 1978.

[23] B. Cockburn. An introduction to the discontinuous Galerkin method for

convection-dominated problems. Springer, 1998.

[24] B. Cockburn, G.E. Karniadakis, and C.-W. Shu. The development of

discontinuous Galerkin methods. Springer, 2000.

[25] B. Cockburn, M. Luskin, C.-W. Shu, and E. Süli. Enhanced accuracy

by post-processing for finite element methods for hyperbolic equations.

Mathematics of Computation, 72(242):577–606, 2003.

[26] B. Cockburn and C.-W. Shu. TVB Runge–Kutta local projection

discontinuous Galerkin finite element method for conservation laws. II:

General framework. Mathematics of Computation, 52(186):411–435, 1989.

Chapter A: Mathematica Code 156

[27] B. Cockburn and C.-W. Shu. The local discontinuous Galerkin method for

time-dependent convection-diffusion systems. SIAM Journal on Numerical

Analysis, 35(6):2440–2463, 1998.

[28] B. Cockburn and C.-W. Shu. Runge–Kutta discontinuous Galerkin methods

for convection-dominated problems. Journal of Scientific Computing,

16(3):173–261, 2002.

[29] D. Gottlieb and Orszag S.A. Numerical Analysis of Spectral Methods: Theory

and Applications. SIAM, 1977.

[30] S. Gottlieb, D.I. Ketcheson, and C.-W. Shu. Strong stability preserving

Runge–Kutta and multistep time discretizations. World Scientific, 2011.

[31] W. Guo, J.-M. Qiu, and J. Qiu. A new Lax–Wendroff discontinuous Galerkin

method with superconvergence. Journal of Scientific Computing, 65(1):299–

326, 2015.

[32] W. Guo, X. Zhong, and J.-M. Qiu. Superconvergence of discontinuous

Galerkin and local discontinuous Galerkin methods: Eigen-structure analysis

based on Fourier approach. Journal of Computational Physics, 235:458–485,

2013.

[33] F.Q. Hu and H.L. Atkins. Eigensolution analysis of the discontinuous

Galerkin method with nonuniform grids: I. One space dimension. Journal

of Computational Physics, 182(2):516–545, 2002.

[34] M.Y. Hu F.Q, Hussaini and P. Rasetarinera. An analysis of the discontinuous

Galerkin method for wave propagation problems. Journal of Computational

Physics, 151(2):921–946, 1999.

[35] L. Ji and J. Ryan. Smoothness-Increasing Accuracy-Conserving (SIAC)

filters in Fourier space. In: Kirby, R., Berzins, M., Hesthaven,

J. (eds) Spectral and High Order Methods for Partial Differential

Equations ICOSAHOM 2014. Lecture Notes in Computational Science and

Engineering, 106(289):2239–2262, 2015.

Chapter A: Mathematica Code 157

[36] L. Ji, P. van Slingerland, J. Ryan, and K. Vuik. Superconvergent

error estimates for position-dependent Smoothness-Increasing Accuracy-

Conserving (SIAC) post-processing of discontinuous Galerkin solutions.

Mathematics of Computation, 83(289):2239–2262, 2014.

[37] L. Ji, Y. Xu, and J.K. Ryan. Accuracy-enhancement of discontinuous

Galerkin solutions for convection-diffusion equations in multiple-dimensions.

Mathematics of Computation, 81(280):1929–1950, 2012.

[38] L. Ji, Y. Xu, and J.K. Ryan. Negative-order norm estimates for nonlinear

hyperbolic conservation laws. Journal of Scientific Computing, 54(2-3):531–

548, 2013.

[39] L. Krivodonova and R. Qin. An analysis of the spectrum of the discontinuous

Galerkin method. Applied Numerical Mathematics, 64:1–18, 2013.

[40] P. Lesaint and P.-A. Raviart. On a finite element method for solving

the neutron transport equation. Mathematical aspects of finite elements in

partial differential equations, (33):89–123, 1974.

[41] R.J. LeVeque. Numerical methods for conservation laws, volume 132.

Springer, 1992.

[42] Y. Liu, C.-W. Shu, E. Tadmor, and M. Zhang. L2 stability analysis of

the central discontinuous Galerkin method and a comparison between the

central and regular discontinuous Galerkin methods. ESAIM: Mathematical

Modelling and Numerical Analysis, 42(04):593–607, 2008.

[43] R.B Lowrie. Compact higher-order numerical methods for hyperbolic

conservation laws. PhD thesis, University of Michigan, 1996.

[44] X. Meng, C.-W. Shu, and B. Wu. Optimal error estimates for discontinuous

Galerkin methods based on upwind-biased fluxes for linear hyperbolic

equations. Mathematics of Computation, 85:1225–1261.

[45] X. Meng, C.-W. Shu, Q. Zhang, and B. Wu. Superconvergence of

discontinuous Galerkin methods for scalar nonlinear conservation laws in

Chapter A: Mathematica Code 158

one space dimension. SIAM Journal on Numerical Analysis, 50(5):2336–

2356, 2012.

[46] J. Qiu, M. Dumbser, and C.-W. Shu. The discontinuous Galerkin method

with Lax–Wendroff type time discretizations. Computer methods in applied

mechanics and engineering, 194(42):4528–4543, 2005.

[47] J. Qiu, M. Dumbser, and C.-W. Shu. The discontinuous Galerkin method

with Lax–Wendroff type time discretizations. Computer Methods in Applied

Mechanics and Engineering, 194(42):4528–4543, 2005.

[48] W.H. Reed and T.R. Hill. Triangular-mesh methods for the neutron

transport equation. Los Alamos Report LA-UR-73-479, 1973.

[49] G.R. Richter. An optimal-order error estimate for the discontinuous Galerkin

method. Mathematics of Computation, 50(181):75–88, 1988.

[50] J.K. Ryan, C.-W. Shu, and H. Atkins. Extension of a post processing

technique for the discontinuous Galerkin method for hyperbolic equations

with application to an aeroacoustic problem. SIAM Journal on Scientific

Computing, 26(3):821–843, 2005.

[51] D.C. Seal, Y. Güçlü, and A.J. Christlieb. High-order multiderivative

time integrators for hyperbolic conservation laws. Journal of Scientific

Computing, 60(1):101–140, 2014.

[52] S. Sherwin. Dispersion analysis of the continuous and discontinuous Galerkin

formulations. In Discontinuous Galerkin Methods, pages 425–431. Springer,

2000.

[53] C.-W. Shu. A survey of strong stability preserving high order time

discretizations. Collected lectures on the preservation of stability under

discretization, 109:51–65, 2002.

[54] C.-W. Shu and S. Osher. Efficient implementation of essentially non-

oscillatory shock-capturing schemes. Journal of Computational Physics,

77(2):439–471, 1988.

Chapter A: Mathematica Code 159

[55] Z. Sun and C.-W. Shu. Stability analysis and error estimates of Lax–

Wendroff discontinuous Galerkin methods for linear conservation laws.

ESAIM: Mathematical Modelling and Numerical Analysis, 51(3):1063–1087,

2017.

[56] P. van Slingerland, J.K. Ryan, and C. Vuik. Position-dependent

Smoothness-Increasing Accuracy-Conserving (SIAC) filtering for improving

discontinuous Galerkin solutions. SIAM Journal on Scientific Computing,

33(2):802–825, 2011.

[57] Z.J. Wang. Spectral finite volume method for conservation laws on

unstructured grids: Basic formulation. Journal of Computational Physics,

178(1):210–251, 2002.

[58] Y. Xia, Y. Xu, and C.-W. Shu. Efficient time discretization for local

discontinuous Galerkin methods. Discrete and Continuous Dynamical

Systems Series B, 8(3):677, 2007.

[59] J. Yan and C.-W. Shu. Local discontinuous Galerkin methods for partial

differential equations with higher order derivatives. Journal of Scientific

Computing, 17(1-4):27–47, 2002.

[60] H. Yang, F. Li, and J. Qiu. Dispersion and dissipation errors of two fully

discrete discontinuous Galerkin methods. Journal of Scientific Computing,

55(3):552–574, 2013.

[61] Y. Yang and C.-W. Shu. Analysis of optimal superconvergence of

discontinuous Galerkin method for linear hyperbolic equations. SIAM

Journal on Numerical Analysis, 50(6):3110–3133, 2012.

[62] Y. Yang and C.-W. Shu. Discontinuous Galerkin method for hyperbolic

equations involving δ-singularities: negative-order norm error estimates and

applications. Numerische Mathematik, 124(4):753–781, 2013.

[63] M. Zhang and C.-W. Shu. An analysis of three different formulations of the

Chapter A: Mathematica Code 160

discontinuous Galerkin method for diffusion equations. Mathematical Models

and Methods in Applied Sciences, 13(03):395–413, 2003.

[64] M. Zhang and C.-W. Shu. An analysis of and a comparison between the

discontinuous Galerkin and the spectral finite volume methods. Computers

& fluids, 34(4):581–592, 2005.

[65] Q. Zhang and C.-W. Shu. Error estimates to smooth solutions of Runge–

Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM

Journal on Numerical Analysis, 42(2):641–666, 2004.

[66] Q. Zhang and C.-W. Shu. Stability analysis and a priori error estimates of the

third order explicit Runge–Kutta discontinuous Galerkin method for scalar

conservation laws. SIAM Journal of Numerical Analysis, 48(3):1038–1063,

2010.

[67] X. Zhang and C.-W. Shu. On positivity-preserving high order discontinuous

Galerkin schemes for compressible Euler equations on rectangular meshes.

Journal of Computational Physics, 229(23):8918–8934, 2010.

[68] X. Zhong and C.-W. Shu. Numerical resolution of discontinuous Galerkin

methods for time dependent wave equations. Computer Methods in Applied

Mechanics and Engineering, 200(41):2814–2827, 2011.

	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Problem Statement
	Literature Review
	Outline of thesis

	Background
	Notation and definitions
	Hyperbolic conservation law
	Tessellation
	Discontinuous Galerkin semi-discretisation
	Basis functions for the approximation space
	Galerkin expansions
	Numerical flux function
	Linear advection: Fully resolved semi-discrete scheme

	The Numerical Flux and Superconvergence
	Pointwise Superconvergence
	Pointwise error estimate
	Numerical experiments

	Superconvergence of Post-processed Solution
	The convolution kernel
	SIAC filtered error estimate
	Numerical experiments

	Timestepping
	Strong Stability Preserving Runge-Kutta Methods
	Multiderivative Methods: Lax-Wendroff DG
	DG-TDRK4
	A New DG-TDRK4 Method
	Stability analysis

	Numerical Experiments
	Linear advection
	Linear advection with discontinuous coefficient

	Dispersion and Dissipation of DG Schemes
	Fourier Analysis of Amplification Matrices
	Non-dimensionalised presentation of eigenvalues

	Numerical Process
	Semi-discrete DG Scheme: Results
	Fully-discrete DG Schemes: Formulation
	Fully decoupled Runge-Kutta methods
	Fully resolved forms: DG-TDRK4 with direct differentiation
	Fully resolved forms: DG-TDRK4 with differentiation by DG

	Fully-discrete DG Schemes: Results
	Piecewise constant basis
	Piecewise linear basis
	Piecewise quadratic basis

	Numerical Experiments
	Linear advection: dispersion and dissipation

	Conclusions
	Appendices
	Mathematica Code
	Semi-discrete example
	Fully-discrete example

