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Abstract 

 

Diatoms are single celled microalgae with intricately patterned silica cell walls. This cosmopolitan 

group is a dominant primary producer with many species playing key roles in marine, estuarine and 

freshwater habitats. Furthermore, due to their silica frustule, lipid production and a range of other 

chemical and physiological adaptations, diatoms have high potential for biotechnology. Despite 

their diversity and ecological relevance, molecular tools for diatoms are often underrepresented and 

limited to a small number of species. This PhD expands the molecular toolbox for two key species: 

Thalassiosira pseudonana, a model, centric, temperate diatom with a heavily silicified frustule and 

Fragilariopsis cylindrus, a key, pennate diatom in marine psychrophilic waters and sea-ice.  

A transformation system has been developed in F. cylindrus leading to the expression of egfp and 

shble transgenes under the control of an endogenous FCP promoter. This method has been applied 

to understanding the role of the SITMyb gene, a potential transcription factor with links to silica 

metabolism, by overexpression. In-silico and in-vitro modelling of the SITMyb gene has been 

performed and preliminary development of an inverse yeast-1-hybrid system, to elucidate potential 

transcription factor binding sites, has been carried out. F. cylindrus is the first genetically tractable 

polar microalgae and appears to be the first psychrophilic eukaryote to be transformed. 

CRISPR-Cas is a targeted genome editing tool, fast becoming an essential method in any molecular 

toolbox. This thesis demonstrates development in T. pseudonana by successfully editing the urease 

gene through a programmed deletion using two sgRNAs. As a model diatom, several molecular 

tools are already available for T. pseudonana, however this is the first time a targeted knock-out 

has been achieved in this species. In addition Golden-Gate cloning has been used to produce the 

construct, giving this method a large degree of flexibility and future potential for multiplexing. 
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Preface  
 

This statement confirms that the work contained in this thesis was conceived, planned, conducted, 

interpreted and written by Amanda Hopes. Prof. Thomas Mock, my primary supervisor, was 

involved throughout all stages of this PhD, including reviewing the five chapters contained within 

this thesis. Involvement of other members of the Mock lab and collaborators is outlined below. 

Chapter 1 introduces the topic of model diatoms and diatoms in a polar systems. It explains the 

need for molecular tools within the diatom community. Three publications, explained below, are 

included which give a broad overview of diatom biology, adaptations, molecular tools in diatoms 

and diatoms within a psychrophilic environment. In all three I have first authorship. 

Diatoms: glass dwelling dynamos was published in 2014 in Microbiology Today. I wrote the article 

and created the second figure. Thomas Mock edited the article and provided the remaining figures. 

Evolution of Microalgae and Their Adaptations in Different Marine Ecosystems was published in 

2015 in ELS. I wrote the article which was later edited by Thomas Mock. I produced figure three. 

Figure four was jointly produced by Thomas Mock and myself. A few corrections have been made 

since publication for this thesis. 

Polar Microalgae: Functional Genomics, Physiology and the Environment is a book chapter 

published in Psychrophiles: From Biodiversity to Biotechnology in 2017. The section ‘adaptation 

of microalgae at high latitudes’ has been included in the introduction of this thesis. The book 

chapter was originally written by Thomas Mock and David. N. Thomas in 2008. I updated the 

included section for the 2017 edition. A few corrections have been made since publication for this 

thesis. 

Chapter 2 describes the development of a transformation system in Fragilariopsis cylindrus. RNA-

sequencing data used to establish genes with high expression levels in F. cylindrus was provided by 

Jan Strauss during his post-doc in Thomas Mock’s lab. Jan also conducted preliminary tests to 

establish the concentration of zeocin needed to inhibit growth of F. cylindrus in liquid media. 

Chapter 3 details the development of a gene editing system using CRISPR Cas in Thalassiosira 

pseudonana. Vladimir Nekrasov gave advice on Golden-Gate cloning and the band shift-assay 

method. He also provided the domesticated L0 Cas9:YFP module. Golden-gate vector backbones 

were provided by Vladimir Nekrasov and Oleg Raitskin from the repository at the Sainsbury 

Laboratory.  

Lewis Dunham, a Masters student in Thomas Mock’s lab, performed the bench work for TSO 

RACE to elucidate the end of the U6 promoter in T. pseudonana under my supervision. Gene 

specific primers were designed by me, as was the experiment, using the method by Pinto and 

Lindblad  (2010). I also carried out the analysis. 
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Chapter 4 examines the function of the SITMyb gene in F. cylindrus. Nigel Belshaw carried out the 

gel electrophoresis, membrane transfer and antibody labelling steps for western blots performed on 

HA-tagged SITMyb proteins. For the SITMyb CRISPR-Cas construct, Irina Grouneva made the 

construct using my FCP:shble module and my FCP promoter/terminator sequences, developed 

during my transformation chapter (chapter 2). I also designed the sgRNAs for this construct. I 

elucidated the U6 promoter in F. cylindrus in-silico and Nigel Belshaw confirmed this empirically 

using the TSO RACE method, used in chapter 3. Both Nigel and Irina work in the Mock lab. 
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Chapter 1: Introduction 
 

Introduction to Thalassiosira pseudonana and Fragilariopsis cylindrus 
 

The published reviews within this introduction give a broad overview of diatom biology, 

adaptations and molecular advances in diatoms. This thesis focuses on two key, ecologically 

important diatoms: Thalassiosira pseudonana and Fragilariopsis cylindrus. The first is a 

cosmopolitan, centric diatom found in temperate, freshwater, brackish and marine coastal 

environments (Guiry & Guiry 2017), whilst F. cylindrus is psychrophilic, raphid, pennate diatom 

and a dominant photoautotroph in marine polar waters and sea ice (Cefarelli et al. 2010). 

As higher plants are rarely found in the polar environment, the associated ecosystems are reliant on 

primary production from algae and cyanobacteria (Lizotte 2001). Diatoms are often dominant in 

these systems, especially species from the Fragilariopsis genus, including F. cylindrus (Leventer 

1998; Lizotte 2001; Cefarelli et al. 2010; Kang & Fryxell 1992). As a result they are responsible 

for large amounts of carbon fixation and play a pivotal role in the Arctic and Antarctic food webs 

(Mock & Thomas 2008). 

Both diatoms are model organisms, and have been subject to prior molecular analysis. T. 

pseudonana in particular, was the first diatom with a sequenced genome (Armbrust et al. 2004) and 

a transformation for this species has been available since 2006 (Poulsen et al. 2006). Molecular 

analysis such as genome sequencing and expression analysis including microarrays, expressed 

sequence tags (ESTs) and RNA sequencing (Hook & Osborn 2012; Ashworth et al. 2016; Smith et 

al. 2016; Mock et al. 2017; Bowler et al. 2008), provide a wealth of a data for environmental, 

evolutionary and physiological understanding. Molecular tools such as overexpression (Yao et al. 

2014; Matthijs et al. 2017; Cook & Hildebrand 2015), RNA-silencing (De Riso et al. 2009; 

Kirkham et al. 2017) and gene knock-out (Weyman et al. 2015; Daboussi et al. 2014; Nymark et al. 

2016) can then be used to answer specific biological questions through reverse genetics. 

Due to its intricate and heavily silicified silica frustule, as well as availability of molecular tools, T. 

pseudonana has been one of the main species used to study formation and molecular basis of 

silicification in diatoms (Poulsen et al. 2013; Kröger et al. 1999; Scheffel et al. 2011; Tesson & 

Hildebrand 2010; Shrestha & Hildebrand 2015). It has also been the focus of several biotechnology 

applications (Delalat et al. 2015; Sheppard et al. 2012; Cook & Hildebrand 2015). Although RNA 

silencing is available for this species (Kirkham et al. 2017), gene knockout is an important tool for 

reverse genetics and can entirely eliminate protein production of a gene for downstream 

phenotyping, functional analysis and physiological modification. To this end, CRISPR-Cas has 

been developed for this species (chapter 3), to provide a cheap, quick, adaptable method for 

genome editing and knock-out. 
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In comparison to T. pseudonana and especially the model pennate diatom Pheodactylum 

tricornutum, molecular tools and analysis in F. cylindrus are underrepresented, despite its large 

ecological significance. Recently the genome has been published for F. cylindrus along with RNA 

sequencing data under various different conditions linked to the polar environment (Mock et al. 

2017). In additional several expressed sequence tag (EST) libraries under cold and salt shock 

(Mock et al. 2005; Krell 2006) have been produced to give insight into physiological adaptations in 

this environment. Details of molecular analyses in polar diatoms and other psychrophilic 

microalgae can be found in the ‘adaptation of microalgae at high latitudes’ section of the book 

chapter ‘Polar Microalgae: Functional Genomics, Physiology and the Environment’, found within 

this introduction. 

A transformation system is a key tool for reverse genetics and has been previously developed in 

several diatom species, detailed in the transformation chapter (chapter 2), to employ methods such 

as overexpression (Cook & Hildebrand 2015; Matthijs et al. 2017), protein tagging (Apt et al. 2002; 

Joshi-Deo et al. 2010), gene silencing (De Riso et al. 2009; Kirkham et al. 2017) and protein 

localisation (Siaut et al. 2007). The first data chapter of this thesis details the development of a 

transformation system for F. cylindrus, which is later used to overexpress a transcript for a 

potential endogenous transcription factor with possible links to silica metabolism (chapter 4: 

SITMyb). This chapter also details in-silico and in-vitro analysis to characterise the SITMyb gene 

as well as preliminary development of yeast-1-hybrid for F. cylindrus to elucidate transcription 

factor binding sites. 

Development of methods such as CRISPR-Cas, transformation and yeast-1-hybrid provide a strong 

contribution to the growing but, still underrepresented diatom molecular toolbox. This will 

hopefully help to further illuminate our molecular, physiological, environmental and evolutionary 

understanding of diatoms. These techniques also have a place in biotechnology, with the potential 

for genome editing to be used to enhance production of oils (Daboussi et al. 2014), for medical 

purposes (Delalat et al. 2015; Hempel et al. 2011) and to modify the silica frustule for 

nanotechnology applications (Dolatabadi & de la Guardia 2011; Wang et al. 2013; Jeffryes et al. 

2011). Furthermore, the development of a transformation system in F. cylindrus appears to be the 

first example of genetic transformation in a polar eukaryotic species. Although several 

psychrophilic bacteria can be transformed, eukaryotic proteins are not always correctly processed 

in a prokaryotic host (Demain & Vaishnav 2009), therefore transformation in F. cylindrus has the 

additional potential for producing recombinant proteins, particularly given that growth at lower 

temperatures can lead to higher yields, correct folding and higher solubility in some proteins 

(Vasina & Baneyx 1996; San-Miguel et al. 2013). 
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Polar Microalgae: Functional Genomics, Physiology and the Environment 
 

The following book section is part of the chapter titled, ‘Polar Microalgae: Functional 

Genomics, Physiology and the Environment’, and was published in ‘Psychrophiles: From 

Biodiversity to Biotechnology’ in 2017. 

 

14.3 Adaptation of microalgae at high latitudes 

14.3.1 Diatoms (Bacillariophyceae) 

Psychrophilic diatoms are one of the most abundant groups of phytoplankton in polar oceans. This 

is mainly due to the presence of higher silicate concentrations in these waters and to their successful 

adaptation to strong vertical mixing in polar waters, strong seasonality in solar irradiance, freezing 

temperatures, and extremes of salinity (Cota 1985; Fiala and Oriol 1990; Boyd 2002; Mock and 

Valentin 2004; Ryan et al. 2004; Ralph et al. 2005). Due to their importance as primary producers, 

many physiological studies with polar diatoms were related either to growth and its dependency on 

nutrients and temperature or to regulation of photosynthesis under typical polar condition. This 

section aims to provide a comprehensive overview of new data regarding physiological and in 

particular molecular adaptation for this important group of polar algae.  

Maximum growth rates for many polar diatoms are in the range of 0.25 to 0.75 divisions per 

day, that is 2- to 3-fold slower than growth at temperatures above 10 °C (Sommer 1989). Many of 

these diatoms are psychrophilic and not able to live at warmer temperatures (above ca. 15 °C) which 

is indicative of the presence of specific molecular adaptations that enable these diatoms to grow 

under freezing temperatures. 

 

14.3.1.1 Functional genomics 

Approaches to uncover the gene repertoire of a polar diatom have been dominated by the genus 

Fragilariopsis, in particular Fragilariopsis cylindrus, a marine indicator species for cold water, found 

at both poles (Quillfeldt 2004) and in seasonally cold waters (Hendey 1974; Hällfors 2004).  

The first approaches involved constructing and sequencing two expressed sequence tag (EST) 

libraries, one generated under freezing temperatures (Mock et al. 2005) and the another under 

increased salinity (Krell 2008). 966 EST were generated from the cold stress library and 1691 from 

the salt stress library. There are now over 21000 EST from F. cylindrus on the EST- databank at 

NCBI and about 200 gene-specific oligonucleotides (70mers) from the original EST libraries for 

functional gene-array experiments (Mock and Valentin 2004). An important addition to algal 

research, particularly in terms of understanding polar adaptation, is the recent publication of the F. 

cylindrus genome and RNA-sequencing data generated under a range of polar conditions (Mock et 
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al. 2017). This is the sixth diatom genome to be published (Armbrust et al. 2004; Bowler et al. 2008; 

Galachyants et al. 2015; Lommer et al. 2012; Tanaka et al. 2015), and the first polar diatom. There 

is only one other polar microalga with a published genome, the psychrotolerant freshwater green alga 

Coccomyxa subellipsoidea (Blanc et al. 2012). 

All EST-sequences were compared against the genomes of Thalassiosira pseudonana and 

Phaeodactylum tricornutum. In addition, 11 algae and plant databanks were consulted to annotate 

sequences that were not found in the temperate diatom genomes. Nevertheless, over 50 % of 

sequences showed no similarity to known sequences in these databanks and to both diatom genomes 

even when using a comparatively high e-value of 10−4 (Mock et al. 2005).  

In the cold-stress EST library, the most abundant functional categories were related to 

translation, post-translational modification of proteins and transport of amino acids and peptides by 

ABC-transporters. Some of these ABC-transporters displayed homology to bacterial permeases and 

others appeared to be involved in translational control or post-translational. However, most of them 

could not be assigned a function.  

The presence of six different DNA/RNA helicases in the cold-stress library indicated that DNA 

and RNA coiling and uncoiling are important under freezing temperatures. Minimizing the likely 

formation of secondary structures and duplexes of mRNAs under low temperature stress is necessary 

to initiate translation. However, protein domains of DNA/RNA helicases are also the eighth most 

abundant protein domain in the genome of T. pseudonana (Armbrust et al. 2004) and therefore more 

evidence is necessary to conclude that these enzymes are essential to cope with freezing 

temperatures. The most abundant sequences in this library in terms of their redundancy were either 

sequences that were related to energy generation (e.g. fucoxanthin-chlorophyll a, c binding proteins) 

or completely unknown sequences (Mock et al. 2005). 

In the salt-stress library, the most abundant functional categories of sequences were related to 

post-translational modification of proteins (e.g. heat-shock proteins; hsps) and ion-transport (Krell 

2008). Most of them were hsps and different ionic transporter genes reflecting the requirement to re-

establish homeostasis under salt stress. Several sequences of different kinds of V-type H+-ATPases 

and antiporters for various ions such as sodium, potassium and calcium were found in this library. 

V-type H+-ATPases are of great importance in establishing an electrochemical proton gradient 

across the tonoplast to drive sodium sequestration into the vacuole (Shi et al. 2003).  

One important organic osmolyte under salt stress in diatoms is the amino acid proline. Many 

genes involved in proline synthesis were found in the salt-stress-EST library indicating that this 

pathway was active under experimental conditions (Krell 2008). The gene coding for pyrroline-5-

carboxylate reductase (P5CR, catalyzing the final step in proline synthesis) could be identified 

among the most abundant sequences in the salt-stress library (Krell 2008). Furthermore, seven 

proteins involved in the proline synthesis pathway increased in abundance in response to high salinity 

(Lyon et al. 2011). This indicates that proline may be important for salt stress acclimation.  
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One of the interesting aspects of the F. cylindrus genome is the high number of divergent alleles. 

Approximately 25 % of the diploid genome consists of alleles that are highly divergent, particularly 

in comparison to the temperate diatom genomes of T. pseudonana and P. tricornutum (Mock et al. 

2017).  

Differential expression can be seen between divergent alleles under different conditions, many 

of which are commonplace in the polar environment, including prolonged darkness, freezing and 

elevated temperatures, iron starvation, and increased CO2 concentration (Fig. 14.11b). In addition 

dN/dS analyses suggests that there may be a positive correlation between allelic differentiation and 

diversifying selection (Mock et al. 2017).  

 

Fig. 14.11 Bi-allelic transcriptome and metatranscriptome profiling. (a) REViGO semantic similarity 

scatterplot of biological process gene ontology terms for Fragiariopsis cylindrus-like sequences (E-value 

≤1×10−10) in Southern Ocean metatranscriptome samples. Gene ontology terms that are 

overrepresented in the set of diverged alleles compared to non-diverged alleles are shown in bold. (b) 

Hierarchical clustering of 4,030 differentially expressed allelic gene pairs in F. cylindrus (likelihood ratio 

test, P <0.001; log2 fold change ≤−2 or ≥+2) under low iron, freezing temperature (−2 °C), elevated 

temperature (+11 °C), elevated carbon dioxide (1,000 ppm CO2) and prolonged darkness, relative to 

optimal growth conditions. Each experimental treatment corresponds to two separate columns for both 

allelic variants and each single-haplotype gene to a single row. Image is taken from Mock et al. (2017)  

 

Copper rather than iron binding proteins are enriched in the F. cylindrus genome as are 

plastocyanin/azurin-like domains. This may facilitate electron transport during photosynthesis whilst 

reducing iron dependence. In terms of photosynthesis a large number of light harvesting complex 

(LHC) proteins are also present including Lhcx, which is involved in stress response. There are also 

a larger number of methionine sulfoxide reductase (MSR) genes in the F. cylindrus genome 
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compared to T. pseudonana or P. tricornutum that are linked to oxidative stress under cold 

temperatures (Lyon et al. 2014). 

A large number of zinc-binding proteins can be found in this genome compared to the sequenced 

temperate diatoms. These contain myeloid-Nervy-DEAF-1 domains (MYND) which are associated 

with protein-protein interactions and regulation. 

Enrichment of specific genes groups can be found in within the diverged alleles, these include; 

catalytic activity, transport, membrane proteins and metabolic processes (Fig.14.11a). Furthermore, 

divergent alleles were found to be differentially expressed under different conditions, suggesting that 

they may be involved in adaptation to polar conditions. Given the low sequence identity between 

promoters of divergent alleles and their differential regulation, it seems likely that individual copies 

are under different regulatory controls. RNA-seq data focused on changes in expression under 

prolonged (7 days) darkness as this condition gave rise to the highest number of up and down-

regulated genes (Fig.14.11b). Down-regulated genes include those involved in photosynthesis, light 

harvesting, photoprotection and translation. Genes involved in regulation of gene expression, DNA 

replication, signal transduction and starch, sucrose or lipid metabolism were up-regulated (Mock et 

al. 2017). RNA-seq data suggests that during darkness, photosynthetic activity and supporting 

processes are reduced whilst processes such as chrysolaminarin and fatty acid storage are used 

instead. 

Interestingly, as well as displaying the largest differential expression, growth under prolonged 

darkness also led to double the number of RNA-seq reads (30 %) that did not map to predicted genes 

compared to any other condition. Alleles with the largest dN/dS ratios tended to show strong 

differences in expression between conditions, in addition the majority of these alleles have no known 

function. As mentioned this suggests a positive correlation between diversifying selection and allelic 

differentiation. It also highlights the necessity for reverse genetics in polar species to determine the 

function of these sequences and in turn understand how they are adapted to polar environments. 

One of the most interesting discoveries in the F. cylindrus EST salt-stress library was a gene involved 

in antifreeze processes (Krell 2008). The presence of ice-binding protein (IBP) genes in this species 

was verified following sequencing of the genome (Mock et al. 2017). Shortly after, IBPs were 

identified and characterised in the polar diatom Navicula glaciei (Janech et al. 2006). Since then 

several papers have been produced which explore the function of IBPs in polar diatoms, this is 

discussed in more detail in the next section. In diatoms ice-binding proteins have been identified in 

F. cylindrus, Fragilariopsis curta, N. glaciei, C. neogracile, Attheya sp., Amphora sp. and Nitzshia 

stellate (Janech et al. 2006; Krell 2008; Bayer-Giraldi et al. 2010; Gwak et al. 2010; Raymond and 

Kim 2012).  

The N-terminal sequences of the identified IBPs of N. glaciei, F. cylindrus and each of the T. 

ishikariensis antifreeze isoforms are most likely signal peptides and have low probabilities of being 

mitochondrial- or chloroplast-targeting peptides (Janech et al. 2006; Fig. 14.12). N-terminal 
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sequences were found in Attheya sp. but not Amphora sp. or Nitzshia stellate and therefore may not 

be secreted (Raymond and Kim 2012).  

Many diatom genes show homology to bacterial or fungal genes suggesting origins from 

horizontal gene transfer (HGT). N. glaciei and F. cylindrus IBPs show sequence similarity to several 

antifreeze isoforms of the Basidomycete fungus Typhula ishikaiensis (Fig.s 14.12 and Fig. 14.3), 

which is known to inhabit sea ice (Janech et al. 2006). Sorhannus (2011), also found homology 

between IBPs of F. cylindrus and F. curta to IBPs from basidomycetes, however in contrast to 

findings from Janech et al. (2006), IBPs from N. glaciei are placed in a separate clade and are 

suggested to originate from ancestral genes along with IBPs from C. neogracile.  

 

Fig. 14.12 ClustalW alignment of ice-binding proteins from Navicula glaciei (Acc. no. DQ062566), 

Fragilariopsis cylindrus (CN212299) and Typhula ishikariensis (AB109745), and hypothetical proteins 

from Cytophaga hutchinsonii (ZP_00309837) and Ferroplasma acidarmanus (ZP_500309837). Predicted 

signal peptides are underlined. Gaps have been inserted to improve alignment. Conserved residues are 

shaded. The N-terminal sequence of Cytophaga protein and the N-and C-terminal sequences of 

Ferroplasma protein are truncated. Residue numbers are shown at right. Alignment is taken from 

Janech et al. (2006) 
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Similarities between F. cylindrus and N. glaciei IBPs to hypothetical proteins from Gram-

negative bacteria such as Cytophaga hutchonsonii and Shewanella denitrificans (between 43 and 58 

% amino acid sequence identity), have been observed. These bacteria have frequently been isolated 

from Arctic and Antarctic sea ice (Junge et al. 2002) and Cytophaga–Flavobacterium–bacteroides, 

which include C. hutchonsonii are important in well-established sea-ice algal assemblages (Bowman 

et al. 1997) and the coldest (wintertime) sea ice (Junge et al. 2004). Raymond et al. (2012) found 

IBPs from Attheya sp., Amphora sp. and Nitzshia stellate to show greatest homology to bacterial 

IBPs. These diatoms IBPs contain no introns and furthermore, Flavobacterium frigoris, which 

produces an IBP with 47 % amino acid identity to an IBP in Nitzschia stellate was isolated from 

Antarctic sea ice in the same layer as diatoms.  

Expression of IBPs have also been demonstrated in the Antarctic bacterium Marinomonas 

primoryensis, where they aid adherence to ice, allowing M. primoryensis to remain near the top of 

the water column (Jung 2017) and in an Antarctic Colwellia sp. where they inhibit ice 

recrystallization (Raymond et al. 2007). In other organisms, antifreezes appear to have arisen from a 

variety of proteins with other functions, although some retain the original functions (Cheng 1998). 

Other genes with homology to bacteria found in the F. cylindrus genome include ABC transporters 

with similarities to bacterial permeases and proton-pumping proteorhodopsins, for trace-metal 

independent ATP synthesis (Strauss et al. 2013). 

 

14.3.1.2 Molecular physiology 

The presence of genes in a genome only indicates the potential for physiological adaptation, but 

knowledge of the expression and regulation of genes and the irrespective proteins leads to an actual 

understanding of how these diatoms cope with the extreme polar conditions. Expression analysis can 

be done by focusing on single genes (e.g. northern blots or quantitative PCR) or multiple genes 

through gene arrays or RNA sequencing. Arrays can be composed of known genes (gene-specific 

arrays) or the whole genome sequence (tiling arrays). 

One of the most dramatic environmental changes in polar marine sea ice habitats is the freezing 

of seawater and the melting of the ice. The inclusion of organisms into newly-formed sea ice 

represents a strong selective pressure. Only those organisms that are capable of acclimation to the 

relatively fast-changing conditions of temperature, irradiance and salinity can survive.  

Several experiments have been conducted to investigate gene expression under polar conditions 

including freezing temperatures, high salinity, high irradiance and prolonged darkness. Some study 

multiple genes using macroarrays (Mock and Valentin 2004) or RNA-seq (Mock et al. 2017) whilst 

others focus on specific genes such as ice binding proteins (Bayer-Giraldi et al. 2010; Bayer-Giraldi 

et al. 2011).  
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Fig. 14.13 Neighbor-joining tree constructed from amino acid sequences of selected ice-binding proteins 

(IBP) and IBP-like proteins. The Chlamydomonas raudensis IBPs (olive) are closest to IBP-like proteins 

in several bacteria and relatively distant from other algal IBPs. The tree was rooted with the 

Flavobacterium 3519-10 IBP. Numbers at nodes indicate bootstrap values for 500 replications. Values 

less than 50 are not shown. Colors: black, fungi; light green, diatoms; dark green prasinophyte and 

prymnesiophyte; blue, archaea; red, bacteria; olive, C. raudensis. (Janech et al. 2006) 

 

Data from EST libraries has been used to produce arrays for two polar diatom species, F. 

cylindrus (Mock and Valentin 2004) and C. neogracile (Hwang et al. 2008; Park et al. 2010). About 

200 70mer oligonucleotides were compiled into a nylon-membrane-based macro-array to study 

short-, mid- and long term acclimation to freezing temperatures under high and low irradiance in F. 
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cylindrus. One thousand four hundred C. neogracile transcripts were analysed using microarrays to 

observe expression at 4 and 10 °C (Hwang et al. 2008) as well as under high, moderate, low and 

changing light intensities (Park et al. 2010). 

The short-term response to freezing temperatures, which simulates the incorporation into newly 

formed sea ice during fall, was characterized by down-regulation of genes encoding proteins for 

photosystem II (psbA and psbC) and carbon fixation (RUBISCO large subunit, rbcL) regardless of 

light intensity used (3 and 35 µmol photons m−2 s−1). However, under higher irradiance (35 µmol 

photons m−2 s−1) up-regulation of genes encoding chaperons (hsp 70) and genes for plastid protein 

synthesis and turnover (elongation factor EfTs, ribosomal rpS4 and plastidial ftsH protease) were 

observed (Mock and Valentin 2004).  

In Chaetoceros neogracile, increased irradiance led to both up and down regulation of particular 

LHCx proteins and FCPs (Park et al. 2010). Several genes for cell division, transcription and 

signalling were up-regulated whilst many genes for photosynthesis (including LHC, FCPs and PSII 

associated proteins) were down regulated along with some transporter genes including members from 

the ABC transporter family. 

In Fragilariopsis cylindrus freezing accompanied with a reduction in irradiance (from 35 to 3 

µmol photons m−2 s−1) showed a typical response to low-light acclimation by up-regulation of genes 

encoding specific fucoxanthin-chlorophyll a,c binding proteins (fcps) without signs of a cold stress 

response. Fcps are a diverse gene family composed of genes involved in light harvesting as well as 

dissipation of light (see Sect. 15.2; Mock and Valentin 2004). Low irradiance in this species also 

leads to an increase in chloroplast PUFAs which can maintain electron flow by increasing fluidity of 

the thylakoid membrane (Mock and Kroon, 2002). 

Up-regulation of stress response genes and genes for protein turnover only under higher light 

intensities and decreasing temperatures, indicates that a decrease in temperature at such light 

intensities mimics a further increase in light that could be more stressful than the actual decrease in 

temperature was by itself (Mock and Valentin 2004). This phenomenon is probably part of a cold-

shock response that is also known from temperate plants when they get exposed to lower 

temperatures (Allen and Ort 2001).  

Entomoneis kufferathii, a sea-ice diatom, showed high catalase activity, which is linked to 

protection against oxidative damage, in response to high irradiance and low temperatures (Schriek 

2000). Genes for glutathione metabolism, an important antioxidant, were up-regulated soon after 

exposure to high light in C. neogracile, although glutathione S-transferase and superoxide dismutase 

(SOD), two enzymes involved in scavenging ROS, were down-regulated (Park et al. 2010). A gradual 

increase in heat-shock proteins was observed under the same conditions over 6 h. Shifts in irradiance 

from either low to high or high to low light resulted in an increase in SOD in Chaetoceros brevis 

(Janknegt et al. 2008). An increase in temperature in C. neogracile from 4 to 10°C resulted in the up-

regulation of several antioxidant genes including monoascorbate reductase, glutaredoxin, glutathione 
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peroxidase, glutathione S-transferase, and alternative oxidase (Hwang et al. 2008). Polar diatoms 

appear to have tailored and multiple resources for dealing with stress caused by the extreme polar 

environment. 

Psychrophilic plants and diatoms are able to acclimate to higher irradiances under low 

temperatures (Streb et al. 1998; Mock and Hoch 2005; Ralph et al. 2005; Morgan-Kiss et al. 2006; 

Park et al. 2010). Long-term acclimation experiments to higher irradiances at freezing temperatures, 

when compared to the same light intensity but higher temperatures (+5 °C), revealed that cells kept 

at lower temperatures showed a typical response known from high-light acclimation: higher non-

photochemical quenching, up-regulation of the gene psbA and up-regulation of high-light fcps that 

are involved in energy dissipation (Mock and Valentin 2004; Mock and Hoch 2005). A rapid increase 

in diatoxanthin (Dtx) in C. neogracile under high light also demonstrates energy dissipation through 

NPQ, along with an increase in expression of specific FCPs (Park et al. 2010). 

In F. cylindrus, a reduction in expression of other photosynthesis-related genes (such as rbcL) 

was not observed after several months under freezing conditions indicating that long-term 

acclimation had been achieved.  

Temperature effects that are less dependent on adjustments of the energy flow under freezing 

temperatures could also be identified by gene expression analysis (Mock and Valentin 2004). In the 

Mock and Valentin (2004) study, genes were selected that were either abundant in the EST libraries 

(e.g. ABC transporters), or were important for general acclimation to freezing temperatures (e.g. IBP, 

fatty-acid desaturase). Three unknown but abundant genes (in EST libraries) were also selected to 

see whether at least one of them is upregulated under freezing temperatures. Expression of these 

genes was investigated at+5 °C and 9 days after reducing the temperatures to −1.8 °C. 

Up-regulation of a gene encoding a delta5-desaturase under freezing temperatures indicated the 

necessity for production of polyunsaturated fatty acids (PUFAs) to maintain membrane fluidity at 

lower temperatures. Delta-5 desaturases produce omega3-fattyacids such as EPA (20:5 n-3), one of 

the most abundant fatty acid in diatoms and the main fatty acid in the galactolipids MGDG and 

DGDG. Thus, it can be assumed that more EPA is necessary under freezing temperatures to keep the 

thylakoid membrane fluid for electron transport or other membrane-bound processes. 

Teoh et al. (2013) also found that PUFAs concentration increased in N. glaciei with a decrease 

in temperature. In contrast, a delta-12 desaturase gene also known for producing PUFAs was not up-

regulated in temperate cyanobacteria (Nishida and Murata 1996). This indicates a different 

mechanism of gene regulation for this enzyme in psychrophilic diatoms. 

An ABC transporter gene was strongly up-regulated at −1.8 °C in F. cylindrus, however, the 

family of ABC-transporters is composed of genes with very diverse functions so it unclear of its 

specific function in response to freezing temperatures (Mock and Valentin 2004).  
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Extracellular polymeric substances (EPS) are linked to adaptation of diatoms in polar 

environments as both cryoprotectants and through maintenance of the cells microclimate 

(Underwood et al. 2010). An example of this can be seen in the sea-ice diatom Melosira arctica, in 

which EPS from the sea-ice diatom Melosira arctica altered the microstructure of ice-pore 

morphologies leading to salt retention (Krembs et al. 2011). EPS can include, but are not limited to 

substances such as polysaccharides (Aslam et al. 2012), uronic acid, peptides, proteins and 

glycoproteins (Krembs et al. 2011; Underwood et al. 2013). 

Cryoprotectants can also help to maintain both the internal and external environment in polar 

cells and include solutes such as proline, DMSP and betaine (Lyon et al. 2014). Proline synthesis 

genes were enriched in the F. cylindrus cold stress EST library (Mock et al. 2005).  

DMSP pathway-linked protein concentrations were also increased in response to high salinity 

as were two proteins isoforms with homology to bacterial/archaeal glycine betaine methyltransferase 

(Lyon et al. 2011). DMSP, which has been found in high concentrations in ice-diatom communities 

has been shown to protect enzymes against denaturation in freezing conditions (DiTullio et al. 1998).  

Studies on ice-binding proteins in diatoms show that they have antifreeze properties and are able 

to inhibit ice recrystallization (Gwak et al. 2010; Bayer-Giraldi et al. 2011; Raymond 2011). As 

several IBP have similarities to bacterial or fungal sequences it is hypothesised that they have been 

acquired through HGT (see Sect. 15.3.1.1) and may have allowed diatoms to colonise sea-ice. 

An IBP protein in F. cylindrus was strongly up-regulated (ca. 50-fold) under freezing 

temperatures (Mock and Valentin 2004) whilst Bayer-Giraldi et al. (2011) found several isoforms in 

F. cylindrus and F. curta to be differentially regulated depending on temperature and salt stress. F. 

cylindrus IBPs in both of these studies have been identified in the recently published genome (Mock 

et al. 2017). Proteomics studies on C. neogracile also showed an increase in concentration of IBPs 

in response to freezing conditions (Gwak et al. 2010). Furthermore, isolation of IBP transcripts from 

Arctic and Antarctic sea ice suggests that they are found at similar levels as genes with essential 

metabolic processes such as photosynthesis (Uhlig et al. 2015). Within the same study it was found 

that most IBP transcripts originated from diatoms, haptophytes and crustaceans, however many of 

the IBPs have not been previously characterised (Uhlig et al. 2015). These results support the 

hypothesis that these proteins are of great importance not only under salt stress but also under 

freezing temperatures to protect the cells from injury by growing ice crystals. 

An important adaptation for polar photosynthetic organisms is the need to survive for periods of 

prolonged darkness. As discussed in Sect. 14.3.1.1, seven day darkness leads to a decrease in 

photosynthesis and associated processes. Genes which are involved in starch, sugar and fatty acid 

metabolism are up-regulated (Mock et al. 2017) suggesting that F. cylindrus is able to use existing 

cellular resources in place of photosynthesis. Diatoms are able to store glucan for use in periods of 

extended darkness (van Oijen et al. 2003), and are able to uptake molecules such as sugar and starch 

(Palmisano and Garrison 1993). The urea cycle in diatoms has been suggested as a means to process 
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inorganic carbon and nitrogen, particularly during low nitrogen availability (Allen et al. 2011) – all 

genes for the urea cycle can be found in the F. cylindrus genome. Proton-pumping proteorhodopsins, 

for trace-metal independent ATP synthesis (Strauss et al. 2013) were up-regulated under darkness, 

suggesting a role in energy production. There are also ATP- independent enzymes available to F. 

cylindrus which may save chemical energy such as pyrophosphate-dependent phospho-fructo-kinase 

which was elevated during salinity acclimation (Lyon et al. 2011). 

Information is steadily becoming available for polar diatoms. New insights are being gained into 

their adaptations and the importance of their roles in polar communities. Although much has been 

learned, there are vast numbers of genes with unknown or partially characterised functions in many 

of these studies. For example, many identified transcripts have no homology to existing sequences 

(Mock et al. 2005; Krell 2008; Mock et al. 2017) and different FCPs and LHC proteins are both up- 

and down-regulated under the same conditions (Park et al. 2010). Reverse genetics is needed in order 

establish the function and roles of these genes and their pathways. A transformation system for F. 

cylindrus has been successfully established – as far as we are aware, this is the first transformation 

system for any polar species (Hopes and Mock, unpublished). Furthermore CRISPR-Cas for gene 

knock-out and gene silencing in the temperate diatoms Thalassiosira pseudonana (Hopes et al. 2016; 

Kirkham, unpublished) and Pheodactylum tricornutum (Nymark et al. 2016; De Riso et al. 2009) 

have been established. Work on CRISPR-Cas in F. cylindrus is also currently ongoing. 

With the establishment of additional, elegant molecular tools for diatoms, there is a much greater 

scope for potential research and therefore our understanding of these psychrophilic and 

psychrotolerant organisms and their environment.  

 

14.3.2 Green algae (Chlorophyceae) 

Most polar green algae live in freshwater ecosystems such as snow, permanently ice-covered lakes 

or more ephemeral habitats like creeks or melt ponds on top of snow or sea ice. Most species belong 

either to the genera Chlamydomonas, Chloromonas or Chlorella, and many of them are very motile 

due to the presence of flagella.  

Ecologically important species that are physiologically and molecularly well characterized are 

Chlamydomonas raudensis, Chlamydomonas nivalis and Chlamydomomas sp. ICE-L. C. raudensis 

is an abundant species in permanently ice-covered lakes and the cloneUWO241 have been studied 

for decades (see review by Morgan-Kiss et al. 2006). C. nivalis is a dominant representative of the 

snow-algae community and also intensively studied (Williams et al. 2003). Therefore, this discussion 

will mainly focus on Chlamydomonas sp. There is less research in this area in terms of functional 

genomics, however the genome sequencing of Coccomyxa subellipsoidea provides some insight into 

polar adaptations within the Chlorophyceae as does the cold shock EST library for Pyramimonas 

gelidicola. 
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14.3.2.1 Functional genomics 

Coccomyxa subellipsoidea is a psychrotolerant green alga that has been isolated from dried algal peat 

in Antarctica, and although it can grow at low temperatures it shows optimal growth at around 20 °C 

(Blanc et al. 2012). Despite not being a true psychrophile its genome has some pronounced 

differences to mesophilic chylorphytes and offers several insights into polar adaptation. Although 

the genomes of several green algae have been sequenced this is the first genome to be published from 

a polar microalga. An EST library has also been generated under cold shock conditions for the 

psychrophilic Pyramimonas gelidicola, a dominant primary producer from Antarctic sea ice (Jung et 

al. 2012). 

In comparison to other sequenced chlorophytes C. subellipsoidea has a large number of 

mitochondrial and chloroplast sequences integrated into its nuclear genome. GC content of these 

organelle genomes is also comparatively high. It is important to maintain homeostasis and efficient 

cellular functions under the extreme conditions found in polar regions. This includes lipid 

metabolism and membrane fluidity. Four lipid protein families were over-represented in C. 

subellipsoidea; type-I- fatty acid synthases, FA elongases, FA ligases and type 3 lipases. There were 

also three fatty acid desaturases present that were not found in temperate counter-parts (Blanc et al. 

2012). An increase in double bonds in membrane based lipids helps to increase fluidity at cold 

temperatures (Los and Murata 2004). Within the same species, there were a high number of genes 

involved in polysaccharide and cell wall metabolism (Blanc et al. 2012). As previously mentioned 

both glycoproteins and polysaccharides can act as cryopreservants in microalgae. Two genes 

involved in cryoprotection with homology to late embryogenesis abundant (LEA) proteins have also 

been found in C. subellipsoidea (Liu et al 2011). 

Structural parts such as the cytoskeleton of the cell also have to be adapted to low temperatures 

in order to conduct mitosis, meiosis, secretion and cell motility.  

The tublin alpha chain protein domain was the fifth most abundant in the EST library from P. 

gelidicola (Jung et al. 2012). Willem et al. (1999) showed that alpha-tubulin from two Chloromonas 

spp. had five amino acid substitutions compared to the mesophilic Chlamydomonas reinhardtii. Two 

of these substitutions occurred in the region of inter dimer contacts that could therefore positively 

influence microtubule assembly under low temperatures.  

Translation elongation factor-1a was prominent in EST from P. gelidicola (Jung et al. 2012). 

Furthermore, a translation elongation factor-1a was found in the C. subellipsoidea genome that is 

able to functionally replace elongation-factor like EFL found in previously sequenced chlorophytes. 

Up-regulation of an elongation factor involved in protein synthesis has also been observed in cold 

shock diatoms (Mock and Valentin 2004). 
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Given that polar species may be exposed to freezing temperatures and high light, many adaptive 

strategies include proteins involved in stress response and protection against ROS. DOPA-

dioxygenase which provides protection against solubilised oxygen was identified in the C. 

subellipsoidea genome, as were two genes with homologs to phospholipase D and chalcone synthase. 

The former is involved in stress response, whilst homologs of the latter are involved in metabolites 

for UV photoprotection and antimicrobial defence in plants (Blanc et al. 2012). 

Both heat shock protein 70 (hsp70) and stress related chlorophyll a/b binding protein were 

enriched in P. gelidicola ESTs. Heat shock protein 70 appears to be a key component involved 

adaptation of several polar microalgae species (Mock and Valentin 2004; Krell 2008; Liu et al. 2010). 

When comparing C. subellipsoidea to temperate chlorophytes, Blanc et al. (2012), found that as 

well as enrichment of certain gene families and gene additions there were also several key genes 

missing. This includes PsaN, which is involved in docking plastocyanin to the PSI complex. This 

leads to a drop in electron transfer from plastocyanin to PSI which may be beneficial in a polar 

environment as low temperatures create an excess of electrons through this system which in turn 

leads to an increase in ROS. As PsaN is not crucial for photosynthesis, loss of this gene may protect 

the cell from oxidative damage (Blanc et al. 2012). C. subellipsoidea also has genes for dioxygenase 

and FA desaturases that utilize dioxygen and therefore may provide further protection against ROS 

(Blanc et al. 2012). 

One gene loss which could reduce, cellular efficiency in C. subellipsoidea, however, is a 

pyruvate phosphate dikinase (PPDK), which produces ATP through glycolysis. Function of this gene 

appears to be replaced by three pyruvate kinases, which potentially produce less chemical energy 

(Blanc et al. 2012). 

In terms of nutrient acquisition C. subellipsoidea has a large number of genes for amino acid 

permeases and transporters which may enhance uptake of organic nutrients. It also has cobalamin 

independent methionine synthase but lacks the cobalamin dependent version of this gene MetH 

(Blanc et al. 2012), suggesting that this species is not dependent on this often bacteria-associated co-

factor (Croft et al. 2005) for synthesis of this important amino acid. 

There is still much to discover in establishing the function and origins of many genes specific to polar 

species. There were a higher number of ESTs with unknown functions under freezing conditions in 

P. gelidicola compared to 4 °C (Jung et al. 2012). Furthermore, there are over 2300 genes in the C. 

subellipsoidea genome with no known homologs in sequenced mesophilic chlorophytes. The 

majority of these genes show homology to Streptophytes and other Eukaryotes, suggesting origins 

from a common ancestor to chlorophytes. Interestingly rather than displaying homology to green 

algae, most of the genes involved in defence, detoxification and carbohydrate metabolism show 

higher sequence similarity to bacteria, suggesting possible acquisition by HGT.  
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As discussed in Sect. 14.3.1.1, ice-binding proteins in diatoms appear to have bacterial or fungal 

origins. Several IBPs have also been identified in psychrophilic or psychrotolerant green algae 

including Pyramimonas gelidicola (Jung et al. 2014), Chlamydomonas raudensis (Raymond and 

Morgan-Kiss 2013), Chlamydomonas sp. strain CCMP681 (Raymond et al. 2009) and Chloromonas 

brevispina (Raymond 2014). Raymond and Morgan-Kiss (2013) separate ice-binding proteins into 

two different groups; IBP I, a group of similar proteins appearing to have fungal or bacterial origins 

(Raymond and Morgan-Kiss 2013; Sorhannus 2011; Raymond and Kim 2012, Jung et al. 2014; 

Raymond 2011) and IBP II. So far all studied algal species have type I IBPs with the exception of 

Chlamydomonas sp. strain CCMP681 which has four type II isoforms isolated from ESTs (Raymond 

et al. 2009; Raymond and Morgan-Kiss 2013). A polyphyletic origin for IBPs has been suggested 

given their sequential and structural differences, as well as a lack of IBPs in temperate species (Fig. 

14.13, Raymond and Morgan-Kiss 2013). 

As more genomes and transcriptomes become available for polar chlorophytes, more light can 

be shed on their intricacies and adaptations to extreme environments. The genome of an important 

Antarctic sea ice chlorophyte, Chlamydomonas ICE-L, has been recently sequenced (personal 

communication with Naihao Ye, Yellow Sea Fisheries Research Institute, Chinese Academy of 

Fishery Sciences, Qingdao 266071, China) and Raymond and Morgan-Kiss (2013) plan to compare 

the transcriptome of C. raudensis to a temperate counterpart. 

 

14.3.2.2 Molecular physiology 

Maximum growth rates of polar green algae are comparable to those from polar diatoms. They range 

from 0.2 to 0.4 day−1 (Tang et al. 1997). Temperatures above 18 °C are mostly lethal to these algae. 

C. raudensis has its maximum photosynthetic rates at 8 °C, which declines steadily with increasing 

temperatures (Morgan-Kiss et al. 2006). This indicates maximal efficiency in converting light into 

photosynthetic energy at low temperatures. The quality of light also plays an important role and C. 

raudensis is not able to grow under red light (Morgan-Kiss et al. 2005). This is probably a 

consequence of almost never being exposed to a longer wavelength spectrum in the natural habitat 

of permanently ice covered lakes where the ice absorbs all longer wavelengths of solar irradiance 

(Fritsen and Priscu 1999; Morgan-Kiss et al. 2006). However, the majority of this light is reflected 

on the white surface of ice and scattered while passing through ice. Thus, the environment below the 

ice is characterized by low intensities enriched in blue-green wavelengths (Lizotte and Priscu 1992). 

Many physiological and molecular investigations have been conducted with C. raudensis to find 

the reasons for successful photo adaptation under these extreme conditions. A comparison with the 

temperate C. reinhardtii partly uncovered the mechanisms of photo adaptation in C. raudensis 

(Morgan-Kiss et al. 2005; Morgan-Kiss et al. 2006): In contrast to the temperate C. reinhardtii, the 

psychrophile has lost its ability to live under high light but increased its efficiency of light harvesting 

under low light in the blue-green spectrum. This adaptation can be seen in structural changes of the 
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photosynthetic apparatus (Fig. 14.14). For instance, C. raudensis has an unusually high ratio of 

photosystem II to I, and significantly higher levels of light harvesting II complexes than its temperate 

counterpart C. reinhardtii. These changes are probably an adaptive advantage under constant 

exposure to blue light of low photon flux densities because the light harvesting apparatus of 

photosystem II (PSII) utilizes chlorophyll b and short-wavelength-absorbing chlorophyll a to absorb 

light predominantly in the blue region. Interestingly, most marine algae (e.g. red algae, diatoms), 

which are also living in a blue-green light environment because of optical properties of the seawater, 

also show a high ratio of PSII to PSI due to chromatic regulation (Fujita 2001). However, most of 

them, and even psychrophilic diatoms, have the physiological ability to grow under high irradiance 

levels.  

 

 

Fig. 14.14 Model for organization of thylakoid pigment-protein complexes of the electron transport chain 

in the psychrophilic Chlamydomonas raudensis UWO 241. In the natural, extremely stable light 

environment of extreme shade and predominantly blue-green wavelengths (blue lines), the majority of 

available light would be preferentially absorbed by PSII. Adaptation in C. raudensis to this light 

environment has led to an unusually high PSII/PSI stoichiometry and highly efficient energy transfer 

from LHCII to PSII. Conversely, PSI and associated light-harvesting complexes are both structurally 

and functionally downregulated. Given the severe reduction in light-harvesting capacity of PSI, it is 

proposed that PSI centers are largely excited via a spillover energy transfer mechanism from PSII 

(dotted line). Photosynthetic membranes may be arranged as loose stacks rather than distinct granal 

and stromal regions to promote energy spillover between the photosystems. Picture from Morgan-Kiss 

et al. (2006) 

 

Whilst the ability to dissipate excess energy through NPQ has been reduced in C. raudensis 

(Morgan-Kiss et al. 2006), other polar species in this genera have retained this ability which allows 

them to photosynthesise under high light conditions. Chlamydomonas sp. ICE-L, shows an up-
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regulation of light harvesting complex (LHC) genes LhcSR1 and LhcSR2, accompanied by increase 

in NPQ following high light, UV-B radiation and high salinity. This suggests that these LHC genes 

play a role in stress response and energy dissipation (Mou et al. 2012). In order to mitigate 

photoinhibition, a psychrotolerant Chlorella sp. isolated from Arctic glacier melt water, decreases 

the size of its light-harvesting complex (Cao et al. 2016). 

Another interesting similarity between diatoms (psychrophilic and temperate) and C. raudensis 

is the biochemistry and architecture of the thylakoid membrane. Diatoms, as well as C. raudensis, 

have high concentrations of poly-unsaturated fatty acids in their thylakoid lipids classes and their 

thylakoid membranes are not organized in grana and stroma (Mock and Kroon 2002a; Mock and 

Kroon 2002b; Morgan-Kiss et al. 2006). This possibly means that looser membrane stacks in C. 

raudensis and homogeneously folded membranes in diatom plastids promote energy spill over 

between photosystems and therefore light energy transfer between photosystems (Morgan-Kiss et al. 

2006).  

An increase in transcripts for omega-3 fatty acid desaturase (CiFAD3) was measured in a 

Chlamydomonas sp. ICE-L under both high (12 °C) and low temperatures (0 °C) compared a control 

at 6 °C, as well as at high salinity (Zhang et al. 2011; An et al. 2013). This suggests that PUFAs may 

also play a role in heat stress and high salinity acclimation. Consumption of PUFAs was also 

observed in the same species during darkness (Xu et al. 2014), indicating that PUFAs are an 

important aspect of adaptation to several extreme conditions found in the polar regions. As with 

diatoms, antioxidants also play an important role in cold-shock adaptation, as seen in an Antarctic 

Chlamydomonas sp. in which an increase in glutathione S-transferase was observed (Kan et al. 2006). 

The snow alga C. nivalis is exposed to the full spectrum of solar irradiance (UVC to infrared) 

and must therefore have a completely different photosynthesis performance compared to the low 

light adapted C. raudensis (Remias et al. 2005). The most striking difference between photosynthesis 

of both psychrophilic green algae is that C. nivalis does not seem to be inhibited by high solar 

irradiances. Even an exposure of cells to photon flux densities of 1,800 µmol photons m−2 s−1 for 40 

min at 1.5 °C did not inhibit net photosynthesis (Remias et al. 2005). This extreme photosynthetic 

performance is only possible by a change in the life cycle. A combination of factors may trigger the 

formation of immotile red hypnoblast stages that are most resistant to environmental changes (Muller 

et al. 1998; Remias et al. 2005).  

The transformation into hypnoblasts is characterized by a substantial incorporation of sugars and 

lipids, and by the formation of esterified extraplastidal secondary carotenoids (Hoham and Duval 

2001). The most important carotenoid is astaxanthin which is located in cytoplasmatic lipid globuli 

(Muller et al. 1998; Remias et al. 2005), and is assumed to be responsible for the high photostability 

and therefore the absence of photoinhibition under strong solar irradiance on top of snow (Remias et 

al. 2005). Mature hypnoblasts can contain about 20 times more of this pigment than chlorophyll a, 

where the astaxanthin is possibly acting as a filter to reduce the irradiance that would otherwise be 
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damaging to the photosynthetic activity inside the plastids. Exposure to UV-B in Chlamydomonas 

sp. ICE-L led to an increase in expression of heat shock protein 70 (Liu et al. 2010) which suggests 

a role in protection against high irradiance. 

High solar irradiance is not the only harsh condition on top of snow. Drought due to freezing of 

water is another main stress on the hypnoblast stages of Chlamydomonas nivalis. Like cacti in the 

desert, these stages have very rigid cell walls as the outer boundary to an extreme environment 

(Muller et al. 1998; Remias et al. 2005). Sometimes cells secrete carbohydrates to produce a visible 

mucilage sheet around them (Muller et al. 1998). These carbohydrates are not only attractive to 

bacteria that use them as a substrate but they also trap particles transported into the snow by wind. 

These particle-covered cells increase the absorption of solar irradiance and therefore the production 

of heat. This heat might cause melting of surrounding snow crystals and therefore provide liquid 

water to the cells (Takeuchi 2002). Such small spots of melt events around warm bodies (e.g. rock 

debris, cells) are called cryoconite holes (Takeuchi 2002). However, these adhering particles may 

also shade and thus protect C. nivalis against high irradiance. This is not universal and hypnoblasts 

from C. nivalis, for example, never show such attached structures. 

Chemical reactions are influenced by temperature according to the relationship described by 

Arrhenius. In general, a 10 °C reduction in growth temperature causes biochemical reaction rates to 

decline two to three times. However, doubling times of psychrophilic algae can be comparable to 

mesophilic algae (Sommer 1989) which means that rates of enzyme catalyzed reactions must be 

optimized to low temperatures in these organisms (Feller and Gerday 2003). Studies with the enzyme 

nitrate reductase (NR), for instance, showed that these enzymes from psychrophilic algae possess 

structural modifications that make them more cold adapted, being more catalytically efficient at 

lower temperatures but at the same time less thermally stable, than NRs from mesophilic species (Di 

Martino Rigano et al. 2006). It also appears that light and salinity may influence nitrogen metabolism 

in Chlamydomonas sp. ICE-L (Wang et al. 2015).  

In contrast to NR, the temperature maximum for carboxylase activity of ribulose-1–5-

bisphosphatecarboxylase/oxygenase (RUBISCO), one of the most critical enzymes for inorganic 

carbon fixation in photoautotrophes, was not altered in some psychrophilic green algae and the 

specific activity at low temperatures was actually lower in the psychrophilic if compared to the 

mesophilic Rubisco (Devos et al. 1998). Decreased catalytic efficiency of these RUBISCOs under 

low temperature seems to be at least partly compensated by an increased cellular concentration of 

the protein. This is supported by the presence of RUBISCO as the fifth most abundant EST in P. 

gelidicola (Jung et al. 2012). An increase in ribosomal proteins seen at colder temperatures may 

counteract reduced efficiencies in translation (Toseland et al. 2013), alternatively it may help to cope 

with up-regulation of proteins due to reduced activity. Cao et al. (2016) found that a strain of arctic 

Chlorella increased both proteins and lipids at lower temperatures. 
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Expression and secretion of ice-binding proteins in polar Chlorophytes helps to maintain a fluid 

environment and reduce damage from ice crystals. Studies which look at IBPs through recombinant 

proteins and culture supernatant have demonstrated functions including changes in ice morphology, 

ice pitting, recrystallization inhibition and the creation of smaller brine pockets which helps to 

maintain salinity (Raymond et al. 2009; Raymond and Kim 2012; Raymond and Morgan-Kiss 2013; 

Jung et al. 2014). 

As with diatoms, molecular tools are constantly improving for Chlorophytes, including 

techniques for gene editing and expression such as TALEs (Gao et al. 2014) and CRISPR-Cas (Shin 

et al. 2016; Wang et al. 2016). So far only temperate green algae have been selected for targeted gene 

knock-out, but as molecular tools such as these become available in their polar counter-parts, the 

potential to discover the function and role of important genes and pathways in polar adaptation 

drastically increases. 

 

 

14.4 Conclusions 

The application of omics approaches in combination with biochemical and physiological 

measurements has revealed unique adpatations in polar microalgae. Unsurprisingly, there is evidence 

that the extreme and highly variable conditions in polar ecosystems were driving those adaptations. 

While some of these adaptations (e.g. allelic divergence, gene duplications) were the consequence of 

mutations and subsequent diversification, others were based on biotic interactions that enabled 

transfer of genes (e.g. ice-binding) between different species and therefore the entire community to 

thrive under the extreme conditions of polar ecosystems. These mechanisms of adaptive evolution 

are not unique to polar microalgae but how they are used to produce unique phenotypes required to 

survive temperatures below freezing, long periods of darkness, strong seasonality and fluctuations in 

nutrients and salinity is still unknown. Once we have obtained genetically tractable model species 

such as Fragilariopsis cylindrus and Chlamydomonas sp. ICE, we’ll be able to better understand 

how genotypes impact phenotypes that matter to thrive under polar conditions. With these model 

species, we will be able to test, through experimental evolution approaches, how their populations 

respond to global wamring, which is still largely unknown. Results from these model species can be 

used to inform studies on natural populations (e.g. barcoding, metatranscriptomes and metagenomes) 

in terms of identifying their standing pool of genetic variation and evolutionary potential to respond 

to global warming. Identification of genetic diversity in these organisms not only provides new 

insights into their evolution and adaptation, but also contributes to extend the pool of marine genetic 

resources, which so far is dominated by genes and their products from non-polar organisms.  
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Chapter 2: Transformation of Fragilariopsis cylindrus 

 

Introduction 

 

As discussed in the general introduction Fragilariopsis cylindrus is an important species in polar 

ecosystems. Sequencing of the genome (Mock et al., 2017), analysis of transcripts (Mock et al., 

2017) and analysis of expressed sequence tags (ESTs; (Krell, 2006; Mock et al., 2005) have already 

given us insight into some of the adaptations which allow this species to thrive in colder water and 

sea ice. A transformation system allows a deeper level of analysis through direct manipulation of 

genes and pathways, as well as the opportunity to utilise cells as hosts for production of 

recombinant proteins. As such, it is an important tool for understanding both the biology of a 

species and for biotechnology. 

This chapter focuses on the development of a transformation system for F. cylindrus. 

There are currently 13 transformable diatom species; 12 with stable nuclear transformation and one 

with transient expression. One species, P. tricornutum, also has methods for transforming plastids. 

An overview of species and methods can be found in table 2.1.  

Figure 2.1 shows the geographical distribution of transformable diatom species in terms of 

recorded location according to Algaebase (Guiry and Guiry, 2017) and strain collection point. The 

majority of species are marine with only two from freshwater/brackish environments. Up until now 

all species have been temperate, with the majority of strains used for transformation collected 

around North-East America, Western Europe and East Asia. In contrast F. cylindrus is found in the 

Arctic, Antarctic and seasonally cold waters, with the strain used in this study isolated in the 

Southern Ocean near Antarctica. As far as I am aware this is the first transformation system for not 

only a psychrophilic diatom, but also a psychrophilic eukaryote, although systems do exist for 

psychrophilic bacteria (Duilio et al. 2004; Vigentini et al. 2006; Miyake et al. 2007). 

Species are also clustered in terms of evolutionary background, with all belonging to two out of the 

four diatom classes (Figure 2.2). Even within classes, several species are clustered in order, 

particularly for Bacillariophyceae, with 8/9 species belonging to either the Bacillariales or 

Naviculales, including F. cylindrus. This demonstrates that mainly marine, temperate diatoms 

clustered within a few orders are represented. Considering that diatoms are exceptionally variable 

in terms of habitat, silicification, size, stress tolerance and evolution (See introduction chapter: 

Hopes & Mock 2014; Hopes & Mock 2015), developing transformation systems and molecular 

tools for a greater range of diatoms could help give a better understanding of this broad group of 

organisms. 

  

Several different methods have been applied to transform diatoms. The most popular is 

microparticle bombardment which shoots micron sized gold or tungsten particles coated in DNA 
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into cells under high pressure in a vacuum. This method is often used to penetrate hard cell walls in 

plants and algae (Kindle et al., 1989; Qin et al., 2005; Taylor and Fauquet, 2002). This also 

facilitates delivery of DNA into diatoms through the silica frustule. This method was used to 

transform the first diatoms; Cyclotella cryptica and Navicula saprophila.  

Electroporation is one of the most successful methods in terms of transformation efficiency in 

diatoms. It works by applying an electrical pulse or several pulses (multi-pulse electroporation) to 

permeabilise the cell membrane and allow entry of large molecules including DNA, RNA and 

proteins. However, the cell wall can interfere with delivery via this method (Azencott et al., 2007), 

which may explain why only lightly silicified diatoms have been transformed in this manner (Ifuku 

et al., 2015; Miyahara et al., 2013; Zhang and Hu, 2014).  

 

Figure 2.1. Map showing recorded location and collection points for different diatom genera with 

transformation systems. Circles indicate recorded locations (Guiry and Guiry, 2017). Coloured pins 

represent collection points for each strain transformed (see table 2.1 for references). Mesophilic species 

are shown in black, psychrophilic F. cylindrus is highlighted in blue and freshwater/brackish species 

are in bold text. Initial map created with Scribble maps. 

 

Bacterial conjugation has only recently been applied to diatoms (Karas et al., 2015). It involves 

delivery of the plasmid through a bacterial intermediate. The cargo plasmid carrying an origin of 

transfer (oriT) and a conjugation plasmid are transformed in to E. coli which then delivers the 

cargo plasmid to the diatom. This method has been applied to two model diatom species: the lightly 
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silicified P. tricornutum and the heavily silicified T. pseudonana.  Transformation efficiencies from 

this method compare well with electroporation. Transformation with Polyethylene glycol was also 

tested (Karas et al., 2015) but gave the lowest transformant yield out of all the methods currently 

available for diatom transformation. 

All bar one species, with the exception of Chaetoceros gracilis (Ifuku et al., 2015) and all genera of 

transformable diatoms have been successfully modified following microparticle bombardment. As 

a result of the well-characterised protocols and parameters developed across a range of diatom 

species, this method was chosen to transform F. cylindrus. 

A toolbox with a variety of promoters, selective markers and reporter genes is available for 

expression of transgenes in diatoms (table 2.1). 

Typically constitutive endogenous promoters from genes such as fucoxanthin chlorophyll a/c 

binding protein (FCP), acetyl coenzyme A (acetyl-CoA), and histone 4 (H4) have been used to 

express transgenes, although exogenous promoters from other diatom species (Buhmann et al., 

2014; Dunahay et al., 1995; Miyagawa et al., 2009; Miyahara et al., 2013; Sabatino et al., 2015) 

and viral promoters (Muto et al., 2013; Sakaue et al., 2008) are also common. One inducible 

promoter from the nitrate reductase gene has been identified for a range of species (Ifuku et al., 

2015; Niu et al., 2012; Poulsen and Kröger, 2005; Poulsen et al., 2006) allowing expression to be 

activated through the addition of nitrate. Expression can also be altered in response to light levels 

through the use of the FCP promoter (Leblanc et al., 1999; Siaut et al., 2007). To remove this 

variation the promoter from elongation factor 2 (EF2) was used in P. tricornutum for more 

consistent expression under variable light conditions (Seo et al., 2015). 

There is evidence to suggest that endogenous promoters may lead to higher numbers of 

transformants (Muto et al., 2013) or exogenous promoters to low numbers of colonies (Miyagawa-

Yamaguchi et al., 2011). However, higher expression levels have been observed with viral 

promoters compared to endogenous promoters (Sakaue et al., 2008). In this study an endogenous 

FCP promoter linked to high expression was chosen based on RNA-seq data and previous success 

of FCP promoters in the majority of transformable diatoms. 

There are several antibiotics that are effective in diatoms, which along with their respective 

resistance genes can be used to select positive transformants. Species react differently to different 

antibiotics and their concentrations (Apt et al., 1996; Sabatino et al., 2015) and not all selectable 

markers are functional or expressed in high enough quantities to counteract antibiotic potency 

(Poulsen et al., 2006). Furthermore, conditions such as salinity may alter antibiotic activity 

(Falciatore et al., 1999; Muto et al., 2013) and not all species grow well on plates (Sabatino et al., 

2015). This means that antibiotics and markers need to be empirically tested for each species in 

both liquid media and on plates. Previous work has shown that zeocin, an antibiotic that prevents 

growth by intercalating to and breaking DNA, is effective against F. cylindrus in liquid media at 

100µg/ml (Strauss, unpublished).  
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Figure 2.2. Transformable diatoms by phylogeny. Number of transformable diatom species is indicated 

adjacent to the order. Clades are coloured to represent each class: Fragilariophyceae/ araphid pennate 

diatoms (Purple), Coscinodiscophyceae/ radial centric diatoms (Green), Mediophyceae/ polar centric 

diatoms (Red) and Bacillariophyceae/ raphid pennate diatoms (Blue). Diatoms orders were sourced 

from algaebase (Guiry) and plotted using phyloT and iTOL (http://phylot.biobyte.de/) which links to 

data from NCBI, orders Chaetocerotales and Thalassiosirales were moved to the class Mediophyceae, 

according to Medlin and Kaczmarska (2004). 
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Table 2.1b. Codes for transformation table. CaMV35S, CMV and RSV are promoters with viral 

origins. All other promoters unless stated are endogenous. Exogenous promoters are prefixed with the 

initial of the species they originate from. (-) following the glucose oxidase reporter indicates a negative 

selective marker. 

Several reporter genes for fluorescent or colorimetric analysis have been tested in diatoms 

including enhanced green fluorescent protein (egfp), enhanced yellow fluorescent protein (eyfp), 

luciferase (luc) and β-glucuronidase (GUS). Enhanced green fluorescent protein (egfp) is the most 

prevalent and has been successfully expressed in the majority of transformed diatom species. For 

some diatoms such as P. tricornutum, successful expression may be due to similarities in codon 

usage between the host species and the egfp gene, which has a human codon bias, and therefore 

coincidently a P. tricornutum codon bias. Trials with other variants of gfp designed for expression 

in other species were not successful (Zaslavskaia et al., 2000). It does appear however, that other 

factors may contribute to the function of reporter genes, as no expression from egfp can be seen in 

Chaetoceros sp. despite possessing a similar codon bias to P. tricornutum (Ifuku et al., 2015; 

Miyagawa-Yamaguchi et al., 2011). Egfp was chosen for this study due to its functionality in the 

majority of modified diatoms, following analysis of codon usage in F. cylindrus (Figure 2.9). 

The ability to stably introduce DNA and express transgenes has been used for a wide range of 

different applications in diatoms including determining gene function and cellular mechanisms, as 

well as for biotechnology. Fluorescent marker genes have been fused to genes of interest to 

investigate potential adhesion proteins in raphid pennate diatoms (Buhmann et al., 2014), localise 

carbonic anhydrase (Samukawa et al., 2014) and visualise localisation of proteins to different 

organelles (Apt et al., 2002; Siaut et al., 2007), including determination of localisation signals (Apt 

et al., 2002). GUS has been fused to several truncated versions of the β-carbonic anhydrase 

promoter in P. tricornutum to determine essential elements for carbon dioxide responsive 

Code Promoter Code Reporter

acetyl-CoA acetyl coenzyme A ecfp enhanced cyan fluorescent protein

AtpBE ATPase Beta egfp enhanced green fluorescent protein

CaMV35S Cauliflower mosaic virus 35S gfp green fluorescent protein

CMV cytomegalovirus GO (-) glucose oxidase

EF2 Elongation factor 2 GUS β-Glucuronidase

fcp fucoxanthin chlorophyll a/c binding protein luc luciferase

fruα3 fruα3 sgfp superfolder green fluorescent protein

H4 Histone 4 yfp yellow fluorescent protein

LTR long terminal repeat Code Transformation method

NR nitrate reductase BC Bacterial conjugation

PrbcL Rubisco large sub-unit E Electroporation

RSV Rous sarcoma virus MPB Microparticle bombardment

Code Selective marker/ antibiotic MPB ( t) Microparticle bombardment (transient expression)

cat Chloramphenicol acetyltransferase/ chloramphenicol MPB (p) Microparticle bombardment (plastid transformation)

nat N-acetyltransferase/ nourseothricin MPE Multi-pulse electroporation

nptII neomycin phosphotransferase/ neomycin & G418 PEG Polyethylene glycol

sat-1 streptothricin acetyl transferase/ nourseothricin Code Species origin of promoter/ terminator

shble Streptoalloteichus hindustanus bleomycin/ zeocin & phleomycin CC C. cryptica

Code Terminator CF C. fusiformis

AtpET ATPase Epsilon/Delta FS F. solaris

fcp fucoxanthin chlorophyll a/c binding protein PM P. multistriata

fruα2 fruα2 PT P. tricornutum

hepA HEP200 TP T. psuedonana

TrbcS Rubisco small sub-unit
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transcription (Harada et al., 2005).  Overexpression (Yao et al., 2014) and gene knock-out 

(Daboussi et al., 2014) have been used to increase glycerol and lipid production, whilst gene 

silencing has been used to study photoreceptors (De Riso et al., 2009), photosynthesis and non-

photochemical quenching (Bailleul et al., 2010; Lavaud et al., 2012). As well as RNAi, genes 

linked to autotrophic growth have also been knocked out using CRISPR-Cas (Nymark et al., 2016). 

On the opposite end of the spectrum, glucose transporters have been expressed in P. tricornutum to 

allow heterotrophic growth without photosynthesis (Zaslavskaia et al., 2001). Several proteins and 

active enzymes have been tagged to the cell membrane and stably incorporated into the silica 

frustule (Fischer et al., 1999; Poulsen et al., 2007; Sheppard et al., 2012). This has powerful 

applications for biotechnology as demonstrated by the incorporation of antibodies into the frustule 

for targeted drug delivery (Delalat et al., 2015). 

This chapter describes a proof of principle transformation system in F. cylindrus. This is the first 

psychrophilic diatom to be transformed and possibly the first psychrophilic eukaryote. This has 

implications for not only understanding this ecologically important species and diatoms in general, 

but also for biotechnology given that solubility, folding, yield and stability of recombinant proteins 

can be improved at lower temperatures (San-Miguel et al., 2013; Vasina and Baneyx, 1996). These 

properties can be enhanced in psychrophilic bacterial hosts which are adapted to growth in cold 

conditions (Giuliani et al., 2014; Miyake et al., 2007; Vigentini et al., 2006). Eukaryotic hosts can 

be required for expression of large proteins or proteins with specific post-translational 

modifications (Demain and Vaishnav, 2009), therefore it may advantageous to have a system in 

which recombinant proteins can be expressed in a psychrophilic, eukaryotic host.  

Materials and methods 

Strains and growth conditions 

Fragilariopsis cylindrus (CCMP 1102) was grown in Aquil synthetic seawater (Price et al., 1989) 

at 4°C under 24 hour light (100-140µE) conditions. Starter cultures were inoculated with no less 

than 50,000 cells/ml. 

Construct for egfp and shble expression 

Choosing promoter and terminator regions 

RNA sequencing data produced by Jan Strauss (Mock et al., 2017; Strauss, 2012) from 

Fragilariopsis cylindrus under control, iron limiting, low temperature (2°C), high temperature 

(8°C), high CO2 and dark conditions, was examined for genes with the highest expression levels. 

Sequences of approximately 1000bp, flanking the coding region up and down-stream of the 

fucoxanthin chlorophyll a/c binding protein (JGI ID 267576) were chosen for the promoter and 

terminator regions respectively. Primer design determined the final size of the promoter and 

terminator products. The promoter region spans -986 to -1 bp upstream of the coding region whilst 

terminator sequences of two different lengths, 1118 and 1099bp starting immediately after the FCP 

stop codon, have been used in the final construct. 
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Determining codon bias compared to egfp  

F. cylindrus transcripts were downloaded from the Joint Genome Institute (JGI). The 20 highest 

expressed F. cylindrus genes under control conditions were determined from previously generated 

expression data (Mock et al., 2017; Strauss, 2012). Emboss cusp was used to calculate codon usage 

for all F. cylindrus transcripts, the 20 highest expressed transcripts and egfp. Usage was expressed 

as a fraction (frequency of one codon/frequency of all codons for a specific amino acid).  Human 

codon bias was downloaded from Genscript (http://www.genscript.com/tools/codon-frequency-

table) and P. tricornutum codon usage was taken from Scala et al. (2002).  

Extraction of F. cylindrus genomic DNA. F. cylindrus was grown to exponential phase (1x106 

cells/ml) and gDNA extracted using the Easy-DNA genomic purification kit (ThermoFisher) 

according to the manufacturer’s protocol.  

 

PCR of fragments for Gibson assembly. Two attempts at making the construct via Gibson assembly 

were made. The first used pBluescript II (SK-) as a backbone. Assembly of all fragments in one 

reaction as well as assembly in two parts was attempted but was ultimately unsuccessful. The 

second used puc19 as a backbone and was conducted in two parts. Part one produced FCFCP:shble 

(figure 2.3) and part 2 produced the final plasmid pucFCFCPshble:FCPegfp (figure 2.4). Phusion 

DNA polymerase (NEB) was used to amplify fragments for Gibson assembly.  Primers include 

sequences complementary to the adjacent fragment to give either 20bp overhangs (pBluescript 

assembly, table 2.2) or 40bp overhangs (puc19 assembly, table 2.3). FCP promoter and terminator 

regions were amplified from genomic DNA whilst egfp was amplified from TPfcpGFP and shble 

from pPha-T1 (Zaslavskaia et al., 2000). PCR was carried out with final concentrations of 1x HF 

buffer, 0.2mM dNTPs and 0.3uM of each primer in 20-100µl volumes. Either 1ng of plasmid 

DNA, 1ng of PCR product or 200-500ng of gDNA was used as a template. Initial denaturation was 

performed for 2 minutes at 98°C, followed by 35 cycles of denaturation at 98°C for 10 seconds, 

annealing for 30 seconds (see table 2.2 and table 2.3 for annealing temperatures) and extension at 

72°C for 30 seconds per kb. Following 35 cycles, a final extension for 5 minutes at 72°C was 

performed. Products were run on 0.8% agarose gels in 1x TAE buffer and bands were excised and 

purified using a GFX PCR DNA and Gel Band Purification Kit (GE).  

 

Preparing pBluescript II by restriction digest. One µg of pBluescript II (SK-) was digested with 5 

units of KpnI and NotI in a 20µl reaction with 1x Multicore buffer (Promega) at 37°C for 4 hours. 

The vector was dephosphorylated by adding 1µl of Antarctic phosphatase (NEB), 2.4µl of 10x 

Antarctic phosphatase buffer + 0.6µl of water and incubated at 37°C for 15 minutes before heat 

inactivation at 70°C for 5 minutes. The reaction was run on a 1% agarose gel in 1 x TAE buffer. 

The band corresponding to the linearized vector was excised and purified using a GFX PCR DNA 

and Gel Band Purification Kit.    
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Figure 2.3. Vector map of pucFC_FCPshble. Plasmid constructed during part one of Gibson 

assembly – FCP:shble cassette in a puc19 backbone.  
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Figure 2.4. Vector map of pucFCFCPshble:FCFCPegfp. Plasmid constructed during part two 

of Gibson assembly – FCP:shble cassette and FCP:egfp cassette in a puc19 backbone. 

 

 

Table 2.2. Primers for amplification of fragments for Gibson assembly using pBluescript II (SK-) as a 

backbone. 

 

 

Table 2.3. Primers for amplification of fragments for Gibson assembly using puc19 as a backbone. 

 

Product Primer Sequence
Annealling 

temp (°C)
Product size

pBlue_amp_F GCGGCCGCCACCGCGGTG

pBlue_amp_R GTACCCAATTCGCCCTATAGTGAGTCGTATTACGCGCG

Gib_FC_P1_F ctatagggcgaattgggtaccatatg CCCAAAGTAAGGCATAG

Gib_FC_P1_R ccatctcgag TTTGATATATAAGTTTGTTTTTGG

Gib_FC_shble_F tatatatcaaactcgag ATGGCCAAGTTGACCAGTGC

Gib_FC_shble_R gcttaattaa TCAGTCCTGCTCCTCGGC

Gib_FC_T1_F gcaggactgattaattaa GCATTTTATTAATCCTTATTTGATCG

Gib_FC_T1_R ttgcggccgc AGTCGTTGTTGTTGTGCTG

Gib_FC_T1_F gcaggactgattaattaa GCATTTTATTAATCCTTATTTGATCG

Gib_FC_T1_R_add tggagctccaccgcggtggcggccgc AGTCGTTGTTGTTGTGCTG

Gib_FC_P2_F aacaacgactgcggccgc AAAGTAAGGCATAGAAATAATCTG

Gib_FC_P2_R ccatgaattc TTTGATATATAAGTTTGTTTTTGGTAGT

Gib_FC_egfp_F tatatatcaaagaattc ATGGTGAGCAAGGGC

Gib_FC_egfp_R atgcgcatgc TTACTTGTACAGCTCGTCC

Gib_FC_T2_F gtacaagtaagcatgc GCATTTTATTAATCCTTATTTGATCG

Gib_FC_T2_R tggagctccaccgcggtggcAGTCGTTGTTGTTGTGCTG

58 1013

55 747

60 1154Term2

Egfp

Prom2

Prom1

pBluescript II

Term 1 (2 step)

Term1 (1 step) 1146

1162

60

60

sh_ble

288272

102453

40267

Product Primer Sequence
Annealling 

temp (°C)
Product size

pucGA vector F cagcacaacaacaacgactAGGCATGCAAGCTTGGC

pucGA vector R atttctatgccttactttgGGGTACCGAGCTCGAATTCAC

pucGA prom1 F attcgagctcggtacccCAAAGTAAGGCATAGAAATAATC

pucGA prom1 R tggtcaacttggccatTTTGATATATAAGTTTGTTTTTGGTAG

pucGA shble F aaacaaacttatatatcaaaATGGCCAAGTTGACCAGTGC

pucGA shble R aataaggattaataaaatgcTCAGTCCTGCTCCTCGGC

pucGA term1 F cgaggagcaggactgaGCATTTTATTAATCCTTATTTGATCG

pucGA term1 R gccaagcttgcatgcctAGTCGTTGTTGTTGTGCTG

pucGA vector2 F actactgttgtcgtctactaAGGCATGCAAGCTTGGC

pucGA vector2 R tatttctatgccttactttgAGTCGTTGTTGTTGTGCTGTAG

pucGA prom2 F agcacaacaacaacgactCAAAGTAAGGCATAGAAATAATCTG

pucGA prom2 R tcgcccttgctcaccatTTTGATATATAAGTTTGTTTTTGGTAG

pucGA egfp F aaacaaacttatatatcaaaATGGTGAGCAAGGGCGAG

pucGA egfp R aataaggattaataaaatgcTTACTTGTACAGCTCGTCCATG

pucGA term2 F acgagctgtacaagtaaGCATTTTATTAATCCTTATTTGATC

pucGA term2 R tacgccaagcttgcatgcctTAGTAGACGACAACAGTAGT

pucGA Insert F GCTGCAAGGCGATTAAGTTG

pucGA Insert R GCTCGTATGTTGTGTGGAATTG

65 2700

58 1021

67 415

64
Step1: 2653 

Step 2: 5458

60 1151

62 5181

61 1021

Term 1

Shble

62 760

61 1136

Insert

Term2

Egfp

Prom2

Puc19:fcp:shble

Prom 1

puc19
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Gibson assembly. Gibson assembly was carried out with either Gibson Assembly Master Mix 

(NEB) or with a Master Mix compiled from a recipe on OpenWetWare (Ford, 2013). For the latter, 

an ‘Isothermal Start Mix’ stock was made with 1.5g PEG8000,  3ml of 1M Tris-HCl (pH 8.0) and 

150µl of 2M MgCl2. The recipe can easily be scaled for smaller volumes. 2x Master Mix: 405µl 

Isothermal Start Mix, 25µl 1M DTT, 20µl 25mM dNTPs, 50µl NAD+, 31.25µl Phusion 

polymerase, 250µl Taq Ligase and 467.75µl of nuclease free water. NAD+ and enzymes were all 

purchased from NEB. 

Vector was added at 50ng for the first part of the assembly or the full 6 fragment assembly and 

100ng for the second part of the assembly (figure 2.5). All inserts were added at a 3x molar excess 

compared to the vector. Vector, inserts, and master mix (final 1x concentration) were added 

together in a 10µl volume. The reaction was incubated at 50°C for 1 hour and stored at -20°C until 

transformation into E. coli.  

Bacterial Transformation  

One µl of the reaction was used for transformation into high efficiency NEB 5-alpha competent E. 

coli as described in the NEB protocol. One hundred µl of transfomant cells in SOC media were 

spread onto selective LB agar plates. Plates were made with 100µg/ml ampicillin and spread with 

40µl of 20mg/ml x-gal and 40µl of 100mM IPTG an hour prior to plating cells. Plates were 

incubated at 37°C overnight.  

Direct PCR from Gibson assembly 

Initial attempts using a 20bp overhang and pBluescript II as a vector failed to produce colonies 

with the correct inserts. In order to troubleshoot this, PCRs directly from the Gibson assembly 

reaction were carried out to determine if any of the fragments were being correctly assembled. This 

involved using primers (table 2.2) spanning across 2-6 fragments, with the lowest annealing 

temperature of the primer pair being used. Phusion DNA polymerase and 0.5µl of the Gibson 

assembly reaction in a 50µl volume was used to amplify fragments as described. Products were run 

on a 1% agarose gel.  

Screening constructs 

Typically 4 colonies from each assembly were picked and grown in 5ml of LB media with 

100µg/ml ampicillin overnight, before harvesting plasmids with a PureYield Plasmid Miniprep kit 

(Promega). For pBlusecript II assemblies plasmids were digested in single and double digests in 

buffer D and 1x BSA with XhoI, NotI, EcoRI, NdeI, SphI, KpnI, depending on the fragment being 

examined. For puc19 assemblies KpnI and HindIII, which flank the insert region, were used in a 

double digest in 1x Multicore buffer and 1 x BSA. BamHI in Multicore buffer was also used to 

check the full size of the puc19 assemblies by linearization. Five units of enzyme was used in a 

20µl reaction to digest between 250-500ng of plasmid at 37°C for 2 hours. Reactions were run on 

1% agarose gels. 
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Primers to amplify the full insert from puc19 assemblies were designed (Table 2.3). PCR was 

carried out with Phusion DNA polymerase and 1ng of plasmid as described. Constructs, which 

screened positive for correct inserts by digest and PCR, were sodium acetate-ethanol precipitated 

and sent for sequencing. Plasmids with the correct sequence were transformed into NEB 5-alpha 

competent E. coli. Three colonies were picked and grown in 5ml of LB media with 100µg/ml 

ampicillin overnight. Five hundred µl of each miniprep were then transferred to 100ml of selective 

LB media and grown overnight before harvesting plasmids with a PureYield Plasmid Maxiprep kit 

(Promega) and eluting in TE buffer. Plasmid Maxipreps were checked by restriction digest using 

BamHI. Plamids were sodium-acetate ethanol precipitated and re-suspended in nuclease free water 

to remove salts and concentrate DNA prior to diatom transformation. 

 

 

Figure 2.5. Overview of Gibson assembly. Depicts vector preparation, amplification of insert and 

construction in both 1 and 2 steps. 

 

Transforming Fragilariopsis cylindrus. 

Testing zeocin concentrations on plates.  

Preliminary work by Jan Strauss showed 100µg/ml zeocin in liquid Aquil media prevents growth 

of F. cylindrus. F. cylindrus growth was tested on plates with different zeocin concentrations. 

Aquil-0.8% Agar plates were made with 0 (control), 50, 100 and 200µg/ml zeocin. As salinity has 

been shown to affect antibiotic function (Falciatore et al., 1999; Muto et al., 2013) two sets of 

plates were made, one with full salinity and the other with half salinity. In the latter, all synthetic 

ocean water (SOW) salts were reduced by half but nutrient concentration stayed the same. In order 



56 
 
to prevent precipitation during autoclaving, plates were made by autoclaving a 2x SOW (or 1x, in 

the case of half salinity plates) and 2 x agar separately. Once cooled to 50°C the two solutions were 

added together and nutrients (phosphate, nitrate, silicate, trace metals and vitamins) and zeocin 

added. Once poured unused plates were kept for up to a month at 4°C. F. cylindrus cells were 

grown to exponential phase (~1x106 cells/ml), and harvested by spinning at 3000xg for 10 minutes 

at 4°C in a pre-chilled centrifuge. Supernatant was removed and cells resuspended in fresh media at 

5x107 cells/ml. Two hundred µl of culture (1x107 cells) was spread on the prepared plates using a 

sterilized Drigalski spatula in triplicate for each condition. Throughout the process cells and plates 

were kept on ice. Plates were incubated upside down at 4°C in 24 hour light. To avoid 

condensation plates were not wrapped in parafilm.  

Microparticle bombardment. 

Non-selective 1.5% agar Aquil plates for shooting and 0.8% agar Aquil plates with 100µg/ml 

zeocin for selection were made as described. Non-selective 0.8% agar Aquil plates were also made 

for the positive growth control.  

Particles were prepared and coated with plasmid according to Kroth (2007). Briefly, 50µl (3mg) of 

prepared 0.7µm (M10) tungsten particles were coated in 5µg of plasmid in the presence of CaCl2 

and spermidine. This is enough for 5 shots with 600ng of tungsten particles and 1µg of plasmid. A 

negative control in which water replaced the plasmid was also carried out. 

Using vacuum filtration 5 x 107 F. cylindrus cells in exponential phase (1x106 cells/ml) were 

collected onto a 47mm 1.2µm Isopore membrane filter (Millipore) at 4°C. Each filter was placed 

on a 1.5% Agar plate for shooting. Plates were kept at 4°C until required.  

The Bio-Rad PDS-1000/He biolistic microparticle delivery system was used to introduce plasmids 

into the cells, according to manufacturer’s instructions, as described by Kroth (2007). Initially 

rupture discs at 1100 and 1350 psi were used. A second transformation utilised 1350 and 1550 psi 

rupture discs. Cells were placed on the 2nd shelf at a 6cm flight distance and shot in a vacuum of 25 

Hg. All shots were carried out in triplicate. Following shooting plates were placed on ice and the 

filter turned upside down so that the cells came into contact with the nutrient-rich agar. Cells were 

left to incubate at 4°C for 24 hours in the light before being scrapped/ pipetted off into 500µl of 

fresh non-selective Aquil media. For the first transformation 3 x 100µl aliquots from each 

bombardment were spread onto 3 selective plates (1x107 cells/ plate). The remaining 200µl was 

used to inoculate 20ml of liquid Aquil media containing 100µg/ml zeocin. As well as selective 

plates 100µl from the negative control was spread onto non-selective plates as a positive growth 

control. Plates were incubated under standard growth conditions until colonies appeared. Liquid 

selective cultures were split into two tubes after 1 week. One tube remained at 100µg/ml zeocin 

and the other increased to 200µg/ml due to lack of bleaching. Liquid cultures were incubated under 

standard conditions until colour was noticeable. Colonies from plates were picked and resuspended 

in 500µl of pre-chilled Aquil with 100µg/ml zeocin in 12 well plates and left to grow under 

standard conditions before transferring to a larger 20ml volume of selective Aquil. 
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Screening 

Once cell density from liquid selection and colony cultures reached 1-2x106 cells/ml, gDNA was 

extracted from 1ml using the Easy DNA gDNA purification kit (ThermoFisher) according to 

protocol #3 of the product manual. Extracted gDNA was resuspended in 20µl of TE buffer and the 

concentration measured using a NanoDrop 1000 spectrophotometer.  

Phusion PCRs were carried out with the same primers and parameters used to amplify the FCP 

promoter (positive control), shble and egfp fragments for Gibson assembly. Template consisted of 

15-100ng of transformant or wild-type genomic DNA, or plasmid DNA for the positive control. 

Flow cytometry 

Egfp fluorescence of exponentially growing cells was measured using a Becton Dickinson FACS 

calibur flow cytometer. Autofluorescence was measured by excitation at 550nm (FL1) and egfp at 

435nm (FL3). FL1 (x) and FL3 (y) were plotted to determine if green fluorescence was relatively 

higher in samples with egfp. 

Widefield microscopy 

Fluorescence was examined at a cellular level using a widefield Zeiss Axioplan 2ie microscope. 

Using 63x and 100x objectives, an Alexa 586 filter (Ex=578, Em = 603) and GFP filter (Ex = 488, 

Em = 509) were used to observe autofluorescence and egfp respectively. Cells were also observed 

under brightfield. 

 

Testing transformant stability 

Transformants were grown in non-selective media under standard conditions for 2 months before 

transferring back to selective media to test stability of zeocin resistance. Cultures were maintained 

by passaging to media with 100µg/ml zeocin every two months. PCR of the egfp and shble genes 

(positive control) was carried out on cultures two years after transformation to determine if non-

selective egfp was still present in transformant cultures. Egfp and shble were amplified by GoTaq 

polymerase (Promega) from lysate of cells at stationary phase (~ 2 x 106 cells/ml) using the same 

primers designed for Gibson assembly (table 2.3). Final concentrations of each reagent can be 

found in the GoTaq flexi protocol - MgCl2 was added at a final concentration of 1.25mM. Ten µl of 

three transformant cultures, which originally screened positive for egfp and one that screened 

negative for egfp were spun down for a minute and the supernatant removed. Cells were 

resuspended in 20µl of lysis buffer (10% Triton X-100, 20 mM Tris–HCl pH 8, 10 mM EDTA), 

kept on ice for 15 minutes then incubated at 95 °C for 10 minutes. One µl of lysate was used in a 

20µl reaction with the following parameters: Initial denaturation for 5 minutes at 95°C, followed by 

35 cycles of denaturation at 95°C for 30 seconds, annealing for 1 minute at 51°C (shble) and 56°C 

(egfp), and extension at 72°C for 1 minute. Following 35 cycles, a final extension for 10 minutes at 

72°C was performed. Products were run on 1% agarose gels. 
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Results and Discussion 

Choosing promoter and terminator sequences 

Examination of F. cylindrus RNA-seq data across several conditions, showed that two fucoxanthin 

chlorophyll a/c binding proteins (FCP; JGI ID 267576 and 143190) gave the two highest 

expression levels in the control condition, and were highly ranked (top 30) under iron limiting, low 

temperature (2°C), high temperature (8°C) and high CO2. Expression levels of both proteins were 

also high under prolonged darkness (in the top 26% of expression levels), especially since FCP in 

other diatoms species can be heavily down-regulated in the absence of light (Leblanc et al., 1999; 

Siaut et al., 2007). Endogenous (Falciatore et al., 1999; Ifuku et al., 2015; Poulsen et al., 2006) and 

exogenous (Buhmann et al., 2014; Miyahara et al., 2013; Muto et al., 2013) diatom FCP promoter 

have been widely used in diatom transformation systems due to their high expression levels and 

previous success. FCP terminators are also widely used in conjugation with the FCP promoter as 

well as other diatom promoters (Falciatore et al., 1999; Ifuku et al., 2015; Poulsen et al., 2006; Seo 

et al., 2015). 

The FCP promoter was chosen for high expression levels, to help ensure resistance against zeocin 

and clear expression of egfp. 

 

Plasmid construction 

Gibson assembly was used to assemble the FCP:Shble and FCP:egfp cassettes in a single 

pucFCFCPshble:FCFCPegfp construct. This method was chosen as it allows assembly of multiple 

fragments in a single reaction. Fragments for use in Gibson assembly are amplified to include 

overlapping sequences to the adjacent fragment (figure 2.5). All fragments and a linearized 

backbone vector are included in the same reaction, in which a 5’ exonuclease chews back the 5’ 

end, allowing overhangs of adjacent fragments to anneal. A polymerase then fills in any gaps and a 

ligase seals the nicks. This should produce a circular plasmid with all inserts in the correct 

formation. Initial attempts were unsuccessful, however, optimisation and changes to the method led 

to successful assembly. 

Initially pBluescriptII (SK-) was used as backbone vector. This vector contains the LacZ gene for 

blue/ white colony screening. Assembly was carried out with either a digested and 

dephosphorylated vector, or an amplified vector, with 20bp overhangs corresponding to the 

promoter and terminator regions. In both cases this led to white colonies but no insert, as 

determined by restriction digest and PCR screening. Furthermore vector-only controls also led to 

white colonies suggesting that the vector can self-seal through Gibson assembly. Colonies from 

template carryover should be minimised as both digested and amplified vectors are run on a gel and 

purified prior to assembly. In addition colonies from un-modified, un-cut template should be blue. 

As a result the pBluescript II (SK-) vector was substituted for puc19. Puc19 for assembly was 

amplified rather than linearized as this reduces that chance of template being carried over, given 

that only a small amount is required for PCR. 
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A 6-fragment GA with all fragments and the pBluescript II vector was attempted.  Assembly in two 

parts using 3 fragments was carried out for with both pBluescript II and puc19. For the two-part 

assembly, the backbone was first combined with the FCP promoter, shble gene and FCP terminator 

(figure 2.3). This construct was then used in a second GA as the backbone, with the FCP promoter, 

egfp gene and FCP terminator (figure 2.4). In this case the second FCP terminator has a different 3’ 

end so that the overhang on the 5’ end of the vector matches the second terminator rather than the 

first, thus avoiding resealing of the first construct. Initially 20bp overhangs were built into 

fragments for assembly into pBluescript II. Although no plasmids with inserts were observed, 

PCRs carried out on the Gibson assembly reaction showed that smaller numbers of fragments were 

being assembled. Each adjacent fragment was confirmed to assemble as were the FCP:Shble and 

FCP:egfp cassettes. No full 6 fragment assembly was observed – this may be due to either 

difficulties carrying out PCR of a large sequence (~6000bp) or a reduced Gibson assembly 

efficiency due to the larger number of fragments (NEB). As a result, it was decided to carry out the 

puc19 Gibson assembly in two parts as described. Overhangs for the optimised assembly were also 

increased to ~40bp as NEB suggests increasing overhangs to increase assembly efficiency. Primers 

for amplification of the fragments for assembly into pBluescript also included restriction sites so 

that genes and promoters could be changed in future constructs. These were removed from the final 

optimised assembly due to high levels of primer dimers potentially caused by the palindromic 

sequences.  

In the final construct, successful assembly was carried out by amplifying vectors, promoters, 

coding regions and terminators with 40bp overhangs. The FCP:shble cassette was initially 

assembled into puc19 via Gibson assembly (figure 2.3). The resulting construct was then used in a 

second assembly with fragments for the FCP:egfp cassette, creating a single construct with both 

cassettes (figure 2.4). The FCP:shble construct has also been used in later CRISPR-Cas 

applications (see CRISPR chapter). 

No difference in number of colonies or assembly was observed when using either the NEB Gibson 

assembly master mix or the homemade version according to openwetware (Ford, 2013). The 

homemade master mix was preferentially used due to lower costs. 

Testing zeocin concentrations on plates.  

After two weeks cells bleached on plates with all zeocin concentrations. No growth was observed 

after several months. This compares to positive growth control plates without zeocin which showed 

a lawn of cells after two weeks. There was no clear difference between growth (control), or lack of 

growth (zeocin) between the two salinities. Plates with zeocin at 100µg/ml and 100% salinity were 

chosen to select transformants. The zeocin concentration required is consistent with several other 

diatom species which use shble as a selective marker, such as P. tricornutum and Pseudo-nitzchia 

species (Apt et al., 1996; Falciatore et al., 1999; Sabatino et al., 2015). Salinity and cell density can 

impact zeocin performance. Falciatore et al. (1999) found that plates with cell densities at 106 

compared to 105, required 100µg/ml zeocin and a reduction in salinity to 50% in order to inhibit 
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growth. Selection of this species is routinely carried out with 107 cells/ml with 75-100µg/ml zeocin 

(Apt et al., 2002, 1996; Kroth, 2007). In A. coffeaeformis 600µg/ml is required (Buhmann et al., 

2014) whilst on the opposite end of the spectrum, T. pseudonana shows a very high sensitivity to 

zeocin, leading to difficulties producing transformant colonies (Poulsen et al., 2006). In contrast 50 

µg/ml zeocin on 100% salinity plates was able to inhibit growth of 107 F. cylindrus cells, but allow 

the growth of shble transformants, suggesting this is a suitable antibiotic for selection in this 

species. 

 

Microparticle bombardment 

After 3-5 weeks transformant colonies appeared on plates. Colonies grew in size over the next 

couple of weeks and were picked at weeks 5 and 7.  Transformation efficiencies for each 

transformation at different biolistic pressures are shown in table 2.4. The highest average efficiency 

was seen at 1550 psi with 30  14 colonies/108 cells. Transformation efficiency was variable, with 

large differences between replicates and transformation events using the same rupture discs. There 

are reports of variable transformation efficiencies seen when using microparticle bombardment in 

other systems (Sabatino et al., 2015), and between studies (table 2.1), although it can be difficult to 

discern variability within particular studies as averages or highest efficiencies are often given 

within the same parameters. The highest efficiencies are seen with bacterial conjugation for P. 

tricornutum and T. pseudonana, and with either electroporation or multi-pulse electroporation in P. 

tricornutum (table 2.1). The most common method of transformation in diatoms is microparticle 

bombardment. This was the first method used to transform a diatom species, providing a means to 

introduce transgenic DNA into the cell through the silica frustule (Dunahay et al., 1995). 

Transformation efficiencies with this method vary widely between species and parameter, with the 

highest seen in A. coffeaeformis at 800 colonies/108 cells and lowest in N. saprophila at 2.8 

colonies/108 cells. Efficiencies can be calculated either by colonies per number of cells transformed 

or µg plasmid used, which can drastically alter results. In either case F. cylindrus ranks 10th out of 

15 (table 2.1) for number of colonies from microparticle bombardment, with similar efficiencies to 

studies with P. tricornutum, C. cryptica and F. solaris (Dunahay et al., 1995; Harada et al., 2005; 

Muto et al., 2013; Zaslavskaia et al., 2000). The majority of transformations with this method 

favour flight distances between 6-7 cm, tungsten particles between 0.7-1.1µm and higher pressure 

rupture discs (1350 – 2000 psi). Pressure at 1550 psi is used for most species, from those with 

highly silicified shells such as T. pseudonana to those with lightly silicified frustules such as P. 

tricornutum. An exception to this rule is F. solaris, a lightly silicified pennate diatom (Matsumoto 

et al., 2014) which sees the highest number of colonies with rupture discs at 450 and 650 psi (Muto 

et al., 2013). The highest number of transformants in F. cylindrus was seen with the highest 

pressure at 1550 psi, but due to variability it’s difficult to say whether or not this is significant. 

Optimisation of the system such as exploring pressure and particle size in F. cylindrus may yield 

larger numbers of colonies.  
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Whilst the F. cylindrus transformation system bears many similarities to microparticle 

bombardment in other diatoms, some key aspects of the method have required alterations to adapt 

the system to a psychrophilic species. First and foremost it was essential to keep cells at 4°C or on 

ice throughout all procedures. This also meant that cells could not be dried onto plates for 

transformation. Instead, cells were gently filtered onto 1.2µm isopore membranes and the filter 

placed on an agar plate for shooting. Further tests would be required to see if this positively or 

negatively affects the delivery of transgenes into cells. It is possible that the filter on agar provides 

a different level of shock absorption during shooting compared to agar alone. Filtration does 

however provide an even layer of cells in an exact diameter compared to drying which is more 

irregular and can often lead to clumping. The 24 hour non-selective incubation was carried out by 

flipping the filter upside down so that cells came into contact with the nutrient rich agar. It may be 

worth optimising this step to see if recovery in liquid media is preferred. It took 3 to 5 weeks for 

colonies to appear. In comparison, temperate species, with well-established systems such as P. 

tricornutum and T. pseudonana, typically take 1 ½  – 3 weeks (Apt et al., 1996; Falciatore et al., 

1999; Zaslavskaia et al., 2000) and 8-10 days (Poulsen et al., 2006) to form colonies, respectively. 

The growth rate for P. tricornutum is around 0.92 with a doubling time of ~18 hours (Mann and 

Jack, 1968) whilst growth rate for T. pseudonana is about 1.2, doubling approximately every 14 

hours (CRISPR-Cas chapter). In contrast the growth rate for F. cylindrus is about 0.35 with cells 

doubling every two days. By taking the growth rate into account, growth on plates is comparable to 

the two temperate species, with the first colonies appearing slightly quicker for F. cylindrus. Some 

diatoms such as P. arenysensis and P. multistriata have been selected in liquid media due to 

difficulties growing cells on plates (Sabatino et al., 2015). Selection in liquid media was also 

carried out for F. cylindrus. Cultures took three weeks to bleach with both 100 and 200µg/ml 

zeocin. It took 7-10 weeks for cultures to reach a high cell density (2 x 106 cells/ ml) and only two 

out of three replicates for each rupture disc (1100 psi and 1350 psi) showed growth in zeocin. In 

this case growth on plates is a much faster method to select transformants for screening.  F. 

cylindrus is known to live in sea-ice and brine pockets (Mock and Thomas, 2008) and is therefore 

adapted to life in harsh conditions and on solid substrates. This may give it an advantage when 

growing on plates. 

 

Table 2.4. Numbers of colonies and transformation efficiency following transformation of F. cylindrus. 

Replicate 1100 psi 1350 psi 1350 psi 1550 psi 

1 2 4 16 22

2 1 1 11 9

3 0 0 4 14

Average/ event 1.0 1.7 10.3 15.0

Cells plated 3 x 107 3 x 107 5 x 107 5 x 107

Efficiency/ 108 cells 3.3 5.6 20.7 30.0

Colonies/ Transformation
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Screening 

PCRs on gDNA extracts from the first transformation were carried out to check the presence of 

transgenes in both colonies and liquid selection cultures. Three colonies were tested from cells 

transformed with 1100 psi rupture discs and two from 1350psi. All picked colonies (figure 2.6) and 

cultures from liquid selection screened positive for the shble gene. Faint egfp bands were seen for 1 

replicate from each pressure in the liquid selection cultures. Strong egfp bands were observed for 

three of the five colonies tested: 1100 FC2, 1100 FC3-2 and 1350 FC2 (named by pressure-

replicate-colony) meaning that 60% of colonies with shble also screened positive for egfp. Similar 

results are seen in other diatoms systems. Studies in which two transgenes have been introduced 

simultaneously via co-transformation show that 37.5 – 70% of transformants which contain the 

selective marker also contain the reporter gene (Falciatore et al., 1999; Harada et al., 2005; Ifuku et 

al., 2015). In transformations where two transgenes are introduced on the same construct, as is this 

case in this study, 50-60% of resistant colonies also contained the second marker (Harada et al., 

2005; Zhang and Hu, 2014). In this study presence of transgenes was screened simply by 

presence/absence through PCR. Whilst this method is also used in other papers (Miyahara et al., 

2013), many studies also look at the number of copies integrated via Southern blotting. Typically 

between 1-6 copies are integrated (Harada et al., 2005; Miyagawa-Yamaguchi et al., 2011; Muto et 

al., 2013; Poulsen et al., 2006; Seo et al., 2015) although, as many as 10 copies have been found 

(Falciatore et al., 1999). As this method was conducted as a proof of principle, and given that 

integration of transgenes appears to be random in both position and number (so is likely to change 

between transformations), it was decided not to carry out Southern blots, although it may be worth 

considering in future work, in which the number of copies may affect expression and phenotype. 

 

 

 

Figure 2.6. PCR of transgenes from gDNA. a. PCR of the shble gene. 1-4) 1100 FC3-1, 1100 FC3-2, 

1350 FC2, 1350 FC3, b. PCR of the shble gene. 1) WT, 2) negative control  c. PCR of the egfp gene. 1) 

1100 FC3-1, 2) 1100 FC3-2, 3) 1350 FC2, 4) 1350 FC3 d. PCR of the egfp gene. 1) WT, 2) negative 

control. 
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Flow cytometry and fluorescence microscopy 

Egfp expression was measured on a flow cytometer by comparing green fluorescence to red 

autofluorescence (figure 2.7). Relatively higher fluorescence in the green channel was seen in 1100 

FC2, 1100 FC3-2 and 1350 FC2. This is supported by amplification of the egfp gene from these 3 

cultures. WT, 1100 FC3-1 and 1350 FC3 showed no evidence of egfp fluorescence which is also 

supported by a lack of banding during PCR (figure 2.6). Further evidence for egfp expression in 

these cultures can be seen by widefield fluorescence microscopy (figure 2.8). Strong signal in the 

egfp channel shows fluorescence in the cytosol, separate to the faint bleed-through from the 

plastids. In the WT control the only green fluorescence seen is linked directly to the plastids and is 

substantially fainter. The majority of cells in egfp transformant cultures viewed under the 

microscope showed clear expression of egfp. 

 

 

 

Figure 2.7. Flow cytometry of egfp (green) and autofluorescence (red) in transgenic and WT cell lines 

with PCR of the shble (S) and egfp (E) genes.  a: 1100 FC2, b: 1100 FC3_1, c: 1100 FC3_2, d: 1350 

FC2, e:, 1350 FC3 f: WT.  † PCR from gDNA: see figure 2.6. * PCR from lysate 2 years after 

transformation: see figure 2.10. 
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Figure 2.8. Images from widefield fluorescence microsopy. Rows 1-3 show cells from cultures 1100 

FC2, 1100 FC3-2 and 1350 FC2 respectively, all of which screened positive for egfp. Row 4 shows the 

wildtype (WT). Columns 1-4 show brightfield, autofluorescece (red channel), egfp (green channel) and 

an overlay of the red and green channels respectively.  

 

Egfp has been adapted from the original green fluorescent protein found in the jellyfish Aequorea 

victoria to be 35 times brighter, and provide an optimal codon usage for mammalian cells (Zhang 

et al., 1996). It has been successfully expressed in several different diatom species, individually 

(Apt et al., 1996; Miyagawa-Yamaguchi et al., 2011; Poulsen and Kröger, 2005; Poulsen et al., 

2006; Sabatino et al., 2015; Zaslavskaia et al., 2000) and as a fusion gene (Poulsen et al., 2007; 

Samukawa et al., 2014). When trying several different gfp variants in P. tricornutum , Zaslavskaia 

et al. (2000) found that only egfp was functional. This may be due to differences in codon usage, as 

egfp is designed with a human codon bias which happens to be similar to that of P. tricornutum 

(Zaslavskaia et al., 2000). It is worth mentioning however, that C. gracilis also has a similar codon 

bias but is unable to express either egfp or sgfp (Ifuku et al., 2015), suggesting that other factors 

may be affecting expression.   
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Codon usage in F. cylindrus was examined in comparison to P. tricornutum, humans and the egfp 

gene. Codon usage was calculated for all transcripts in F. cylindrus, as well as for the top 20 

expressing genes under control conditions (figure 2.9). Codon usage can alter gene expression 

within a genome, with the potential for highly expressed genes to possess a different codon bias to 

those with low levels of expression (Gingold and Pilpel, 2011). F. cylindrus shows a slightly 

different codon bias to P. tricornutum, favouring AT rich triplets, as described in Mock et al. 

(2017). However, most of the codons used by egfp are reasonably well represented by the F. 

cylindrus transcriptome, both overall and for the highly expressed genes. It would however be 

interesting to alter egfp codon usage to favour F. cylindrus and monitor expression levels.   

Currently expression levels with the FCP promoter are high enough to confer resistance to zeocin 

and give a strong egfp signal.  

Stability of transgenes 

Shble resistant cultures were grown for two months in media without selection before transferring 

back to Aquil with 100µg/ml zeocin. Cells continued to grow suggesting that zeocin resistance is 

stable. Cultures have been maintained in zeocin however, as there are reports of diatoms losing 

antibiotic resistance following long-term growth in non-selective media (Falciatore et al., 1999). To 

check the stability of a transgene that is not directly under selective pressure, egfp was amplified 

from cell lysate two years after transformation (figure 2.10). All three cultures which originally 

contained egfp (1100 FC2, 1100 FC3-2 and 1350 FC2), screened positive for the same gene 2 years 

later. This suggests that at least a population of cells still contain the egfp gene. No further work 

has been carried out on this, however re-plating cells and testing a selection of colonies may give a 

better indication of egfp stability within the culture. It is possible that egfp may be protected by 

proximity if integrated at the same loci as shble. Ideally a long term experiment to study growth 

without zeocin would be required for more substantive evidence if planning to maintain transgenic 

cultures for long periods of time. 

 

 

Figure 2.10. PCR from lysate of transgenic lines and WT, 2 years after transformation. a. shble. b. 

egfp. 1) 1100 FC2, 2) 1350 FC2, 3) 1100 FC3-1, 4) 1100 FC3-2, 5) WT 
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Future considerations for F. cylindrus transformation 

This proof of principle study demonstrates that F. cylindrus can be transformed with adaptations to 

existing established diatom transformation methods. The FCP promoter, shble selective marker and 

egfp reporter gene are all functional, providing zeocin resistance and clear egfp fluorescence. 

Transformation efficiency is high enough to produce several colonies for screening, however it 

would be beneficial to increase efficiency for future work, particularly if working with multiple or 

large cassettes. Microparticle bombardment can lead to chemical and mechanical fragmentation of 

the plasmids upon delivery (Jacobs et al., 2015; Krysiak et al., 1999) leading to partial integration 

of the plasmid (Apt et al., 1996) and colonies with a selective marker but no reporter gene (Harada 

et al., 2005; Zhang and Hu, 2014). Integration of transgenes also appears to be random (Dunahay et 

al., 1995; Zhang and Hu, 2014). As discussed, approximately 50% of transformants will contain 

both genes. If plasmids are fragmented and multiple genes randomly integrated, then the chance of 

larger genes or several genes being integrated may be reduced. Later chapters of this thesis show 

that introduction of a Cas9 cassette for CRISPR-Cas in T. pseudonana occurs in about 11% of 

transformants (CRISPR-Cas chapter) and a SITMyb overexpression cassette in F. cylindrus is 

present for about 25% of colonies (SITMYb chapter). Both of these cassettes are large at over 

5000bp. In these cases screening larger number of colonies is required to find transformants with 

both cassettes. As multiple copies of genes can be delivered and as they are randomly integrated, it 

makes sense to have access to several cell-lines when phenotyping.  

Optimisation of the microparticle bombardment method or exploration of other transformation 

methods may increase the number of F. cylindrus transformants, or the way in which they are 

expressed. Development of the transformation toolbox to provide alternative promoters and 

markers would also improve the utility of this method.  

Developing inducible expression with promoters such as nitrate reductase (Miyagawa et al., 2009; 

Niu et al., 2012; Poulsen and Kröger, 2005; Poulsen et al., 2006) or constitutive promoters besides 

FCP, which are not affected by light such as EF2 (Seo et al., 2015), could give greater control over 

gene expression. A further valuable addition to the toolbox would be to determine localisation 

signals to direct products to specific parts of the cell, or to identify functional tags to label cells in 

vivo or pull out products. Sequences to localise proteins to the cell wall (Fischer et al., 1999), 

nucleus (Nymark et al., 2016; Sabatino et al., 2015; Siaut et al., 2007), mitochondria (Siaut et al., 

2007), endoplasmic reticulum and plastid (Apt et al., 2002; Siaut et al., 2007) have been utilised in 

other diatom species, as have tags to pull out and label proteins (Fischer et al., 1999; Xie et al., 

2014). 

Testing additional antibiotics and selective markers may allow transformant cell lines with 

resistance to one antibiotic to be further modified. Optimising microparticle bombardment 

parameters such as flight distance, particle size and pressure have been shown to increase 

transformation efficiency (Apt et al., 1996; Buhmann et al., 2014; Muto et al., 2013). It may also be 

worth considering how cells are recovered after transformation.  
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Although microparticle bombardment is a popular choice for transformation, the highest 

efficiencies come from either electroporation (Miyahara et al., 2013; Zhang and Hu, 2014) or 

bacterial conjugation (Karas et al., 2015). Two species have been transformed through either 

electroporation or multi-pulse electroporation; P. tricornutum (Miyahara et al., 2013; Niu et al., 

2012; Zhang and Hu, 2014) and C. gracilis (Ifuku et al., 2015). Electroporation works by 

increasing the permeability of the cell membrane through the application of an electrical field. 

There is evidence that cell walls may limit DNA delivery through electroporation in algae 

(Azencott et al., 2007) and so far only lightly silicified diatoms have been transformed in this 

manner. Whether or not this method would be viable for species with more robust frustules remains 

to be seen. However, F. cylindrus is lightly silicified so electroporation could be a consideration. 

Bacterial conjugation, which has been carried out in P. tricornutum and T. pseudonana (Karas et 

al., 2015), involves gene transfer of the plasmid to diatoms through a bacterial intermediate. The 

cargo plasmid carrying the transgenes needs to contain an origin of transfer (oriT) and is 

transformed into E. coli alongside a conjugative plasmid. E. coli is then incubated with the diatom 

at 30°C for 1 ½ hours to transfer the cargo plasmid to the diatom. Inclusion of a sequence for 

autonomous replication of the plasmid (CEN-ARS-HIS) allows expression without integration and 

leads to higher numbers of transgenes (Karas et al., 2015). It may be possible to deliver episomes 

via electroporation as this method also allows delivery of circular plasmids, though at a lower 

efficiency compared to linearized plasmids (Miyahara et al., 2013). In its current format, bacterial 

conjugation would not be possible with F. cylindrus due to the high temperature required during 

conjugation. However, psychrophilic bacteria can also be transformed via conjugation with E.coli, 

but at 18°C (Duilio et al., 2004; Miyake et al., 2007). Therefore, it may also be possible to 

transform diatoms through bacterial conjugation at lower temperatures. Alternatively there may be 

a psychrophilic bacteria which is capable of delivering the cargo plasmid. Interestingly one of the 

transformable species of psychrophilic bacteria belong to the Shewanella genus (Miyake et al., 

2007) which includes Shewanella denitrificans, a species associated with possible horizontal gene 

transfer of ice-binding proteins to diatoms, including Navicula glaciei and F. cylindrus (Janech et 

al., 2006). 

This is the first transformation system for a psychrophilic diatom and alga. Literature searches 

suggest it may also be the first for any psychrophilic eukaryote. This tools provides the opportunity 

for more complex and targeted studies into molecular mechanisms in polar diatoms and polar 

eukaryotes in general. It also offers a system to express recombinant proteins in a cold-adapted 

eukaryote which opens up possibilities for biotechnology applications. 
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Chapter 3: Developing CRISPR-Cas in Thalassiosira pseudonana 

 

Introduction 

CRISPR-Cas is arguably one of the most important methods in molecular biology since PCR. The 

ability to guide a double strand break (DSB) inducing nuclease to a specific site in the genome, 

through base complementarity, is a powerful tool with a large range of growing applications. It is 

an increasingly popular method, with tens of thousands of publications produced since the first 

papers describing its use as a precise and adaptable gene editing tool (Jinek et al. 2012) and its 

application to eukaryotic organisms (Cong et al. 2013; Mali et al. 2013). The majority of this 

project is described in the accompanying paper (Hopes et al. 2016). In these sections, the CRISPR-

Cas system described in the paper is placed into a greater context in terms of the history behind the 

method and the decisions made in order to develop it for the diatom T. pseudonana. 

An additional CRISPR construct is also described which includes a CEN-ARS-HIS sequence, 

previously shown to induce plasmid replication in diatoms (Karas et al. 2015), to investigate Cas9 

expression from an episome. The discussion includes comparison to other algal genome editing 

methods and consideration of additional CRISPR-Cas applications that can now be applied to 

diatoms. 

History and adaptation to eukaryotic organisms 

CRISPR-Cas as a gene editing tool is adapted from a CRISPR-Cas type II viral defence mechanism 

found in several species of bacteria and archaea (Lander 2016). In these organisms, arrays of short 

fragments of viral DNA are found between repeat sequences known as clustered regularly 

interspersed palindromic repeats (CRISPR). The CRISPR complex responsible for inducing DSBs 

consists of the Cas9 nuclease, CRISPR RNA (crRNA), containing a viral spacer and repeat, and 

transactivating CRISPR RNA (tracrRNA). CrRNA is transcribed as a longer precursor and 

processed into smaller fragments with RNAase III. TracrRNA hybridises to the crRNA through a 

complementary sequence within the repeat region and forms part of the scaffold which forms a 

complex with the Cas9 nuclease. The viral spacer ‘target’ sequence then guides the nuclease to the 

invading viral DNA through base pairing. Cas9 is then able to latch onto a protospacer adjacent 

motif (PAM) in the viral DNA and cleave both strands using two active domains, RuvC  and HNH, 

each of which is responsible for cutting a specific strand (Lander 2016). This mechanism allows 

organisms with CRISPR machinery to keep libraries of viral DNA and protect against future 

infections. 

The type II CRISPR-Cas system has since been modified and stream-lined to allow precise gene 

editing in a wide range of eukaryotic organisms, including higher plants and algae (Nekrasov et al. 

2013; Brooks, C. et al. 2014; Nymark et al. 2016; Shin et al. 2016; Wang et al. 2016).  
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In-vitro work demonstrated that the crRNA and tracrRNA could be combined into a chimeric 

single guide RNA (sgRNA; Jinek et al. 2012) negating the need for RNase III. However 

independent transcription of the crRNA, trRNA and Cas9 in human cells, still led to efficient 

genome editing, even in the absence of a bacterial RNase III, suggesting that the target cells were 

able to process the RNA duplex (Cong et al. 2013). In order for CRISPR-Cas to function efficiently 

in eukaryotes a full length tracrRNA is required containing an essential hairpin loop (Cong et al. 

2013; Mali et al. 2013). Cas9 from Streptococcus pyogenes was codon optimised with a human 

codon bias for expression in human and mouse cell lines and a nuclear localisation signal (NLS) 

added to direct the enzyme to the nucleus (Cong et al. 2013). Furthermore, only a 20nt ‘target’ 

sequence in the crRNA is required for specific binding of the CRISPR complex to the target 

(Gasiunas et al. 2012).  Expression of the crRNA/tracrRNA or the chimeric sgRNA is often 

controlled by a promoter which recruits polymerase III for transcription of small non-coding 

RNAs. The U6 promoter is a popular choice (Cong et al. 2013; Brooks, C. et al. 2014; Nymark et 

al. 2016; Wang et al. 2016; Nekrasov et al. 2013) and can be easily identified for use in 

endogenous systems as the U6 gene contains regions of high conservation. The bacterial RHO 

independent terminator includes a polyT sequence which also terminates eukaryotic pol III 

promoters. 

Application to gene editing in Thalassiosira pseudonana and Fragilariopsis cylindrus 

At the beginning of this project only one publication existed that demonstrated CRISPR-Cas in 

algae. Jiang et al. (2014) gave evidence for transient expression of Cas9 and gene editing in 

Chlamydomonas reinhardtii, however mutants with a functional Cas9 were not viable, leading to 

speculation that Cas9 is toxic in C. reinhardtii when expressed in-vivo. Since then CRISPR-Cas 

has been used to efficiently edit genes in C. reinhardtii via the introduction of ribonucleoproteins 

consisting of recombinant Cas9 and either synthetic (Shin et al. 2016) or in-vitro transcribed 

sgRNAs (Baek et al. 2016). Knock-out by CRISPR-cas has also been achieved in Pheodactylum 

tricornutum (Nymark et al. 2016) and Nannochloropsis oceanica (Wang et al. 2016) using 

expression based systems. 

The SV40 nuclear localization signal contains the conserved sequence K-K/R-X-K/R found in 

classical monopartite NLS. It has been shown to direct proteins to the nucleus in both algae and 

higher plants (Lauersen et al. 2015; Rasala et al. 2014; Nekrasov et al. 2013), and more recently 

has been used to direct Cas9 in the Heterokonts N. oceanica (Wang et al. 2016) and P. tricornutum 

(Nymark et al. 2016).  Although the Cas9 nucleases used for genome editing in P. tricornutum and 

N. oceanica  are codon optimised for their specific species, genes with a human codon bias have 

been previously shown to work in several diatom species (Zaslavskaia et al. 2000; Miyagawa-

Yamaguchi et al. 2011) including T. pseudonana (Poulsen et al. 2013; Delalat et al. 2015) and F. 

cylindrus (see chapter 2: F. cylindrus transformation). Additionally, it was noted that the optimised 

enhanced green fluorescent protein (egfp) for expression in human cells has a similar codon bias to 

P. tricornutum (Zaslavskaia et al. 2000). 
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The CRISPR-cas method presented here focuses on gene editing in T. pseudonana, although 

ground work has also been carried out for future editing in F. cylindrus. In this case CRISPR-Cas 

utilizes a human codon bias, S. pyogenes, Cas9 with a SV40 NLS driven by an endogenous 

fucoxanthin chlorophyll a/c binding protein promoter for high expression. Expression of chimeric 

sgRNAs with a 20nt target sequence are driven by an empirically determined endogenous U6 

promoter and terminated by a polyT sequence.  

Plasmid replication in diatoms 

In addition to the construct described in Hopes et al. (2016), a construct was developed which also 

includes a CEN-ARS-HIS (C-A-H) sequence for maintenance and replication. 

Karas et al. (2015) discovered that a C-A-H sequence, for autonomous replication in yeast also led 

to maintenance and low copy replication of plasmids in diatoms P. tricornutum and T. pseudonana. 

In yeast the autonomous replication sequence (ARS) is responsible for replication whilst the 

centromeric sequence (CEN) limits the number of copies and stabilises the plasmid (Stearns et al. 

1990), however plasmids can be lost if there is no selective pressure (Dani & Zakian 1983). The 

HIS is added for selection by histidine auxotrophy in HIS deficient yeast strains. As the HIS 

sequence is not directly being used in diatoms, it may be possible to remove it and retain 

replicational functionality. 

Using bacterial conjugation to transform P. tricornutum, Karas et al. (2015) obtained around 400-

650 colonies when a C-A-H sequence was included in the plasmid compared to less than 15 

colonies without. As the C-A-H sequence allows gene expression without integration, it appears 

that random integration into the genome is a limiting factor in transformation efficiency. 

As with yeast, removing selective pressure on the episomal plasmid, in this case zeocin selection, 

leads to plasmid loss. About 65% of cells lost the plasmid after approximately 30 generations 

(Karas et al. 2015). This could be advantageous for a system such as CRISPR-Cas where the 

interest often lies in editing the genome, rather than the transgenes themselves. Inclusion of the C-

A-H sequence has the potential to increase transformation efficiency and provide a route to remove 

transgenes following mutation in diatoms. Removal of Cas9 may also limit off-target mutations 

from long term expression. 

The flexible, modular Golden-Gate cloning system, described in the accompanying paper has been 

used to combine the necessary elements for knock-out of the urease gene in a single construct, both 

with and without the C-A-H sequence described by Karas et al. (2015). 
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Additional methods 

Construction of the urease knock-out plasmid including a CEN-ARS-HIS module 

In addition to the construct described in Hopes et al. (2016) a further construct was developed 

which also contains a C-A-H module.  pTpPuc3 (Karas et al. 2015) containing a yeast CEN6-

ARSH4-HIS3, was sourced from Addgene. 

Domesticating CEN6-ARSH4-HIS3 

To allow Golden Gate cloning, BpiI sites were removed from ARSH4 and HIS3. The BpiI site was 

removed from ARSH4 using a Q5 site-directed mutagenesis (SDM) kit and accompanying 

protocols (NEB). Forward and reverse primers TCTGTGTAGAtGACCACACAC and 

CAAGATGAAACAATTCGGC were used, where the lower case letter denotes the base change. 

Following transformation, positive colonies were selected on LB plates with 100ug/ml ampicillin. 

Colonies were picked, grown in 5ml of LB media overnight at 37°C and the plasmid extracted 

using a Promega PureYield plasmid Miniprep kit. The resultant plasmid, pTPpuc3_ARSmut, was 

screened using restriction digest with BpiI (Thermo Fisher). The BpiI site was then removed from 

HIS3 in pTPpuc3_ARSmut to make ‘domesticated pTPpuc3’. Initial attempts using the Q5 SDM 

kit and primers ACACCACTGAgGACTGCGGGA and GATGGTCGTCTATGTGTAAGTCAC, 

led to a truncated plasmid. Re-designed primers PO4-ATCACACCACTGAgGACTGC and PO4-

GGTCGTCTATGTGTAAGTCAC were ordered with a 5’ phosphate group to allow SDM to be 

carried out without a kit as follows. Phusion (NEB) PCR was carried out in a 20µl volume with the 

above primers and pTPpuc3_ARSmut as the template. Denaturation for 2 minutes was followed by 

35 cycles with denaturation at 98°C for 10 seconds, annealing at 63°C for 30 seconds and extension 

at 72°C for 60 seconds, this was followed by a final extension at 72°C for 5 mins. After the final 

extension, the reaction was cooled to 37°C and 10 units of DpnI (NEB) was added. The reaction 

was incubated at 37°C for 3 hours.  A 10µl ligation reaction was carried out with T4 DNA ligase 

(NEB) and 1µl of the DpnI treated PCR reaction at room temperature for 2 hours. 5µl of PCR 

reaction was run on a 0.8% agarose gel to check the product size before transformation. 2.5µl of 

the ligation reaction was transformed into 25µl of One Shot TOP10 competent E. coli (Thermo 

Fisher) according to the manual. Transformed cells were selected on 100µg/ml ampicillin LB agar 

plates. Colonies were screened by PCR prior to mini-prep plasmid extraction to ensure clones 

contained the full-length C-A-H.  Go Taq Colony PCR was performed with primers 

aggtctcaggagCGCGAGCATCACGTGCTATAA and 

aggtctcaagcgGTCAAGTCCAGACTCCTGTGTAAA, designed to amplify the C-A-H region for 

L1 Golden-gate assembly. Two colonies which screened positive for the full-length C-A-H were 

picked and plasmids extracted in a mini-prep as described above. Plasmids were sent to Eurofins 

for sequencing with reverse primer GCCAATATATCCTGTCAAACAC, which anneals 

downstream of the insert. 
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Golden-gate cloning 

C-A-H was PCR amplified from domesticated pTPpuc3 using Phusion DNA polymerase (NEB) 

and inserted into a L1 pICH47772 destination vector as described in Hopes et al. (2016). L1 

plasmids were screened for the correct insert by digestion with BpiI. L1 modules 

pICH47732:FCP:NAT, pICH47742:FCP:Cas9YFP, pICH47751:U6:sgRNA_Urease 1, 

pICH47761:U6:sgRNA_Urease 2, pICH47772:CAH and the L5E linker pICH41800 were 

assembled into the L2 destination vector 

pAGM4723 as described (Figure 3.1.). Constructs were screened by digestion with EcoRV. In 

addition to the sequencing primers described in Hopes et al. (2016), primer 

agcgGTCAAGTCCAGACTCCTGTGTAAA, was used to sequence 

pAGM4723:TpCC_Urease_CAH. 

 

 

 

 

Figure 3.1. Plasmid map of pAGM4723:TpCC_Urease_CAH 
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Transformation, screening and phenotyping 

Transformation, screening and phenotyping was carried out according to Hopes et al. (2016; See 

chapter 3).  

Testing for the presence of self-replicating plasmids 

M1, M2 and M3 primary clones were generated with the C-A-H containing construct. 20ml 

cultures from M1-M4 primary clones were grown to exponential phase as described (Hopes et al. 

2016).  

Based on the episome extraction from Karas et al. (2015), a modified alkaline lysis method using 

the GeneJET plasmid Miniprep kit (Thermo Fisher) was used to isolate potential plasmid DNA. 

Cultures were harvested by centrifugation at 4,000g for 5 mins. Cells were resuspended in 250µl of 

Resuspension Solution which contained 5µl of lysozyme (125µg), vortexed until homogenous and 

incubated at 37°C for 30 minutes. Two hundred and fifty µl of Lysis Solution containing RNase A 

was added and mixed by inverting the tube 6 times before incubating at room temperature for 5 

minutes. Supernatant was transferred to a GeneJET spin column and centrifuged at 12,000xg for 1 

minute. Columns were washed by adding 500µl of Wash Solution and centrifuging at 12,000xg for 

1 minute. The wash step was repeated once more before spinning the column for 2 minutes at 

12,000xg to remove residual ethanol in the Wash Solution. DNA was eluted by adding 50µl of TE 

to the centre of the column, incubating at room temperature for 2 minutes and spinning for 2 

minutes at 12,000xg. 5µl of supernatant from each sample was transformed into NEB 5-α 

competent E. coli according to the NEB protocol. Two hundred µl of cells were plated onto LB 

plates with 50µg/ml kanamycin. 

Screening T. pseudonana and F. cylindrus for the classical monopartite NLS signal 

Several proteins (14-15) associated with the nucleus including DNA binding proteins, enzymes 

associated with DNA repair, transcription factors and helicases were inspected for the consensus 

sequence K-K/R-X-K/R, found in classical monopartite NLS, in both T. pseudonana and F. 

cylindrus.  

Design of construct for silacidin knock-out in T. pseudonana 

Although it has yet to be used, two constructs for silacidin knock-out in T. pseudonana were 

designed. Although I designed the constructs, sgRNAs and primers, assembly of the constructs was 

carried out by Marianne Jaubert at the Centre de Recherche des Cordeliers in Paris. The same 

constructs and Golden-Gate cloning method as described in Hopes et al. (2016) have been used 

with only the sgRNAs altered for targeting the silacidin gene. 

The 708bp silacidin gene (chr_2: 1522471 - 1521764) contains multiple repeat sequences starting 

at +170bp and continuing to the end of the gene. Two sets of sgRNAs were designed; set 1 is 

intended to target two sites within the silacidin (but not within a repeat region to avoid multiple cut 

sites) at +20 and +544, to induce a 518bp deletion and frameshift, potentially disrupting remaining 
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repeat regions. SgRNA set 2 targets regions up and downstream of the coding region at -57 and 

+729 to cut out a 780bp region encompassing the entire silacidin gene. 

The following plasmids developed during this chapter were sent to Paris for assembly; 

pICH47732:FCP:NAT, pICH47742:FCP:Cas9YFP and L0 U6 promoter, as was the plasmid for 

amplification of the sgRNA backbone; pICH86966_AtU6p_sgRNA_NbPDS (Nekrasov et al. 

2013),  L1 destination vectors pICH47751 and pICH47761 for U6:sgRNA assemblies and L2 

destination vector pAGM4723 and linker  pICH41780.   

Forward primers for amplification of sgRNAs for L1 assembly are as follows:  sgRNA 1; 

aggtctcattgtGCGAGGACTGCAATGAAGGCGGTTTTAGAGCTAGAAATAGCAA, sgRNA 2;   

aggtctcattgtGCCGTCGTCTCTCGTCCTCCGGTTTTAGAGCTAGAAATAGCAAG. Forward primers for 

set 2 are: sgRNA 1; aggtctcattgtGAGGGGGAACGAGTTGCTGTGGTTTTAGAGCTAGAAATAGCAAG 

and sgRNA 2; aggtctcattgtGTGATGTTTGATGCATGGGCGGTTTTAGAGCTAGAAATAGCAAG. 

All oligos include BsaI, the 4nt overhang, the target and the forward complementary sgRNA 

backbone sequence. Additionally a 5’ G has been added directly before each of the target 

sequences as pol III requires a G to start transcription. The reverse primer for amplification of all 

sgRNA products is tggtctcaagcgtaatgccaactttgtacaag (Urease sgRNA R). 

Preliminary work for CRISPR-Cas in F. cylindrus 

Several CRISPR-Cas constructs for F. cylindrus have been created by Irina Grouneva and Nigel 

Belshaw using the Golden-Gate T. pseudonana CRISPR-Cas model described in the accompanying 

paper and other plasmids/sequences developed during this PhD. This includes the Golden-Gate 

pICH47732_FCP_Shble cassette for zeocin resistance, created for SITMyb overexpression (see 

chapter 4: SITMyb) and FCP sequences, that were identified and tested during proof of principle F. 

cylindrus transformation (See transformation chapter), to drive Cas9. As discussed, several F. 

cylindrus nucleus associated proteins were screened for the consensus sequence associated with 

SV40 NLS. As with T. pseudonana, a blastn search was also carried out on the F. cylindrus 

genome to determine the U6 promoter. Nigel Belshaw later empirically determined the exact end of 

the promoter using the same 5’ RACE method used for T. pseudonana. 

Two sgRNAs were designed to delete a region incorporating both the potential silicon transporter 

(SIT) and Myb domains of the SITMyb gene. Forward primers incorporating the target sequences 

for sgRNA 1: aggtctcatattGCTCCCTGCATATGACTCAAGTTTTAGAGCTAGAAATAGCAAG and 

sgRNA 2: aggtctcttattGAGACTACTGTGACGAGAGCGGTTTTAGAGCTAGAAATAGCAAG were 

designed including BsaI sites, the 4nt overhang, target sequence, and sgRNA backbone 

complement. Irina Grouneva built the F. cylindrus L1 FCP:Cas9:YFP module, constructed the L1 

U6:sgRNA modules using the primers designed above and the reverse primer ‘Urease sgRNA R’, 

and put together the final L2 construct. Irina has transformed the construct into F. cylindrus using 

the method described in the F. cylindrus Transformation chapter. Results are currently pending. 
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Additional Results and Discussion 

Screening for NLS signals 

Potential canonical monopartite nuclear localisation signals were found in each nucleus associated 

protein screened for both T. pseudonana and F. cylindrus, including the sequence KKRK 

associated with the SV40 NLS. Although empirical testing is needed to validate potential NLS 

signals in DNA binding associated proteins, presence of these signals indicated that there was a 

chance the SV40 NLS is functional in these species. As demonstrated in the Hopes et al. (2016) 

paper, CRISPR-Cas is able to efficiently edit the genome of T. pseudonana, suggesting that Cas9 is 

being directed to the nucleus. CRISPR-Cas in P. tricornutum also utilises an SV40 NLS signal to 

localise the Cas9 nuclease (Nymark et al. 2016). Given that T. pseudonana and P. tricornutum are 

able to use the SV40 NLS, it is logical to also use the SV40 NLS in the F. cylindrus CRISPR 

system, especially given that P. tricornutum and F. cylindrus are closer in evolutionary terms, with 

both raphid pennate diatoms belonging to the same class (Bacillariophyceae). 

Construction of plasmids for knock-out of silacidin, and SITMyb.  

Constructs were successfully assembled for gene-editing of silacidin in T. pseudonana and SITMyb 

in F. cylindrus by three independent parties. This demonstrates that the Golden-Gate system is 

well-suited to assembly of CRISPR-Cas constructs, as the original T. pseudonana model has been 

easily applied to another gene in T. pseudonana and adapted for F. cylindrus. 

CRISPR construct with CEN-ARS-HIS 

Two replicates from the transformation with the C-A-H construct crashed, leaving only one 

replicate for plating following the 24 hours incubation. One replicate from the construct described 

in the accompanying paper also crashed. As a result, there were not enough samples to determine if 

an increased transformation efficiency occurred when the C-A-H sequence was included. However, 

the transformation efficiency of the successful C-A-H construct was 113 colonies/108 cells, whilst 

the average efficiency of the two –C-A-H replicates was 100 colonies/108 cells. Although this is a 

very small sample size there was no obvious increase in transformation efficiency compared to the 

~30x increase seen for P. tricornutum using bacterial conjugation. 

Plasmid extraction on the primary clone cultures yielded less than 2ng/µl DNA, which is below the 

detection limit of the nanodrop spectrophotometer, for all C-A-H construct derived cultures as well 

as the culture derived from the –C-A-H construct. Transformation of plasmid extractions into E. 

coli did not yield colonies. This suggests that either autonomous replicating plasmids were not 

present, or they were not adequately extracted. 

The protocol for NEB 5-alpha E. coli transformation recommends at least 1pg of plasmid per 50µl 

of competent cells. If a single copy of each C-A-H plasmid was present in 20ml of cells at 1 x 106 

cells per ml, and if plasmid extraction was 100% efficient, you would expect a total of 34pg to be 

used in each E.coli transformation. According to data from NEB approximately 34pg gives a 
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transformation efficiency of 1 x 109 cfu/µg of pUC19, equating to 3000 colonies per 

transformation. As the CRISPR-Cas plasmids are larger than puc19, you would therefore expect a 

lower transformation efficiency - according to NEB, a plasmid of 15.9kb has a 10x lower 

transformation efficiency than puc19. Therefore, approximately 300 colonies may be expected 

from the CRISPR construct, or 60 colonies if plating out 200µl of the transformation culture. In 

addition, a reduction in extraction efficiency is possible given that plasmid extraction kits are 

typically designed for bacteria and low gDNA extraction yields are seen for T. pseudonana 

compared to less silicified diatoms such as F. cylindrus.  

Another possible explanation is that constructs are chemically and mechanically fragmented when 

introduced into the cell through microparticle bombardment (Krysiak et al. 1999; Jacobs et al. 

2015). In order for plasmids to replicate, they need to remain circular. This is further supported by 

only 11% of clones tested screening positive for Cas9, but all clones screening positive for NAT, 

suggesting that fragments of the plasmid are present.  

If there were cells with circular self-replicating C-A-H plasmids, un-fragmented by microparticle 

bombardment, it would be difficult to determine presence of these plasmids, given the low DNA 

yield following plasmid extraction. Methods such as qPCR, to screen for small quantities of DNA, 

have a chance of producing false positives, given that fragments of gDNA may be present in the 

final eluate, and could lead to positive results if C-A-H were integrated into the genome. Although, 

a general PCR of the C-A-H sequence in mutant colonies may give an insight into presence and 

absence of the replicating sequence, whether as a plasmid or integrated into the genome. 

It’s also worth considering that presence of the C-A-H sequence may alter fitness of the diatom, 

particularly if there are also cells with fragmented, integrated transgenes present that may have a 

different fitness. In yeast presence of autonomously replicating plasmids have been shown to lower 

viability and growth rate (Stearns et al. 1990; Falcón & Aris 2003). 

Currently there is no evidence of self-replicating plasmids in these cultures, either through 

transformation efficiency or extraction and transformation into E. coli. Further work is required to 

investigate. Extraction methods such as the French press, which can disrupt the cell wall but leave 

the nucleus intact, may give better yields. A repeat transformation, with larger numbers of 

replicates, would be needed to see if there is an increase in efficiency with the C-A-H plasmid. 

Changing the transformation method to bacterial conjugation (Karas et al. 2015), to prevent 

fragmentation of the plasmid, may also be required in order investigate the possible advantages and 

disadvantages of expressing the CRISPR-Cas transgenes on an episome. 

CRISPR-Cas has been established in three other algal species: C. reinhardtii (Jiang et al. 2014; 

Shin et al. 2016; Baek et al. 2016), P. tricornutum (Nymark et al. 2016) and N. oceanica (Wang et 

al. 2016). In each of these cases one sgRNA has been used to induce a mutation through error-

prone non-homologous end joining (NHEJ). As mutations are often small insertions or deletions, 

screening methods such as restriction site loss (Wang et al. 2016), high resolution melt curves 
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(Nymark et al. 2016) and sequencing (Baek et al. 2016) are required to identify gene editing at a 

molecular level. Based on previous work in higher plants (Belhaj et al. 2013), two sgRNAs have 

been used to create a deletion in the urease gene. This allows for simple screening from cell lysate 

by band shift assay. This involves PCR of the target sequence and visualisation on a gel to 

determine if a deletion has occurred. Restriction site loss was also carried out, as was sequencing to 

verify the mutation. A disadvantage of restriction site loss is that the cut site of the sgRNA must sit 

within a restriction site. At best, this limits the location of the sgRNA, particularly as use of 

common 4nt cutters is limited if using digestion to enrich mutant sequences, given that any PCR 

product produced must contain only one copy of the restriction site. If digesting after PCR and 

running out bands on a gel, common cutters may lead to multiple small fragments which may be 

difficult to resolve. This was the case for the BccI digestion of the urease fragment. Differences in 

banding were observed but fragments were small leading to poor resolution. In cases where the 

target site needs to be very specific, it may not be possible to find a suitable sgRNA which 

coincides with a restriction site. This was the case when designing the construct for silacidin 

knock-out. Baek et al. (2016) used an effective and straightforward approach to screening by 

targeting genes CpFTSY and ZEP that result in colonies with visible phenotype, including a change 

in colour and chlorophyll a fluorescence respectively.  

As with P. tricornutum and N. oceanica, CRISPR-Cas in T. pseudonana is achieved by in-vivo 

expression of transgenic Cas9 and sgRNAs. In C. reinhardtii the CRISPR-Cas complex is inserted 

as a ribonucleoprotein (RNP), formed from recombinant and either synthetic (Shin et al. 2016) or 

in-vitro transcribed (Baek et al. 2016) sgRNAs, due to potential toxicity of Cas9 expression (Jiang 

et al. 2014).  Low numbers of mutants in C. reinhardtii following expression of a zinc finger 

nuclease (ZFN) and knock-out of the COP3 gene may also be due to toxicity caused by prolonged 

exposure of the ZFN (Sizova et al. 2013). Transcription activator-like effectors (TALE) have been 

used to over-express genes in C. reinhardtii (Gao et al. 2014) but TALE nucleases have yet to be 

applied to gene knock-out. It would be interesting to see if the TALEN gene editing method also 

leads to reduced fitness. 

Mutation efficiencies from CRISPR-Cas in T. pseudonana fall within those seen in other algal 

systems. CRISPR-Cas using RNPs in C. reinhardtii gave very high mutation efficiencies at 0.46 – 

0.56%, especially given that antibiotic selection was not used to select for mutants (Baek et al. 

2016). Mutation efficiency with expression based CRISPR-Cas in P. tricornutum was 25-63%, 

whilst N. oceanica has a success rate of 0.1-1% (Wang et al. 2016). Considering that knock-out by 

HR, without initiation by DSBs, in the same species was 11-95% (Kilian et al. 2011), this is rather 

low. Gene-editing by meganucleases (MN) and TALENS in P. tricornutum was 42% and 7-56% 

respectively. In comparison, T. pseudonana mutation efficiency is around 11% in primary clones 

and 100% in clones containing Cas9. 
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For species with diploid genomes, the homozygous nature of the mutation also needs to be 

considered. Both C. reinhardtii and N. oceanica (Kilian et al. 2011) are haploid, as a result, as long 

as only one copy of the target gene exists in the genome, only one gene-editing event is required 

for a knock-out. If cells are diploid both alleles need to be edited, with mono-allelic mutations 

potentially failing to show a knock-out phenotype as seen by Weyman et al. (2015) when editing 

the urease gene. Following transformation it is possible for primary colonies of diploid species to 

be mosaic, in which nuclease induced mutations occur following cell division, leading to a mixture 

of cells with mutant and wild-type copies (Nymark et al. 2016; Daboussi et al. 2014). In T. 

pseudonana occurrence of bi-allelic deletions in sub-clones was 25-65%. This compares to the 

majority of cells showing bi-allelic mutants in P. tricornutum using CRISPR-Cas.  In P. 

tricornutum colonies, up to 15% of cells following MN editing (Daboussi et al. 2014) and up-to 

80% following TALEN  editing (Daboussi et al. 2014; Nymark et al. 2016) showed mutations, 

although it is not specified if they are bi-allelic. Bi-allelic mutation efficiences in T. pseudonana 

are based on deletions, so do not consider potential mutants at individual sgRNA sites. When 

editing Solanum lycopersicum with two sgRNAs for a deletion, Brooks et al. (2014) found that 

although a high mutation efficiency was observed, occurrence of mutants with bi-allelic deletions 

was only 3%. Working with single cell autotrophs, such as diatoms, gives an advantage when 

dealing with mosaicism in comparison to higher plants, as bi-allelic sub-clones can be easily 

isolated by re-spreading on plates and picking new colonies.  

The transformation method used to deliver transgenes may affect mutation efficiency. As 

mentioned, microparticle bombardment is known to cause chemical and mechanical fragmentation 

(Jacobs et al. 2015; Krysiak et al. 1999) of the plasmid. This may account for 11% of the primary 

colonies containing Cas9, thus decreasing the potential mutation efficiency. Micro-particle 

bombardment was also used to transform P. tricornutum, whilst C. reinhardtii and N. oceanica 

used electroporation. In future work, it may be worth creating a Cas9 cell line and later introducing 

sgRNAs to increase mutation efficiency. A similar approach has been taken in Nicotiana 

benthamiana in which a Cas9 clone was generated before introducing the sgRNA through a viral 

vector (Ali et al. 2015). On the opposite end of the spectrum, generation of mutants through 

transient Cas9 and sgRNA expression could be beneficial if transgene free cell-lines are required, 

either for industrial purposes where genetically modified (GMO) algae may not be desirable, or to 

remove potential long-term effects of Cas9 expression. As discussed, inclusion of a CEN-ARS-HIS 

sequence in plasmids may be a route to transient expression in diatoms. There are however, 

alternative methods currently being used in other species such as delivery of Cas9 mRNA (Chiu et 

al. 2013), delivery of RNPs (Baek et al. 2016; Shin et al. 2016), agroinfiltration in plants (Jiang et 

al. 2013) and use of viruses (Yin et al. 2015) and viral vectors (Ali et al. 2015; Maggio et al. 2014; 

Gong et al. 2017). 

As well as carrying genes for nuclease activity, geminiviral vectors have been used to introduce 

donor sequences for homology directed repair. This system is particularly interesting as viral 
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sequences, located on plasmids, are able to circularise and replicate in the host cell, provided that a 

viral replication-initiation protein (REP) is also expressed. This can increase not only the 

occurrence of DSBs but also HR due to the presence of multiple donor sequences. REP, the HR 

donor sequence and the CRISPR-Cas genes can be expressed on separate viral vectors (Baltes et al. 

2014) or as a single vector (Čermák et al. 2015). In plants, geminivirusus have been used to deliver 

and express the relevant genes (Yin et al. 2015). As proteins for replication are provided, this 

method doesn’t rely on machinery from the host cell, much like CRISPR-Cas. As a result, it may 

be transferable from higher plants to diatoms. 

Several diatom viruses have been identified which may be worth exploring along with the 

geminiviral vectors for transgene delivery and transient expression. To date viruses have been 

identified for centric diatoms belonging to the genera Rhizosolenia (Nagasaki et al. 2004), 

Chaetoceros (Tomaru et al. 2009; Shirai et al. 2008; Bettarel et al. 2005; Tomaru et al. 2011; 

Tomaru et al. 2013; Kimura & Tomaru 2015) and Skeletonema (Kim et al. 2015). In pennate 

diatoms, viruses which infect species from the genera Thalassionema and Asterionellopsis (Tomaru 

et al. 2012) have been identified. These include both ssRNA and circular dsDNA viruses. Viruses 

which infect T. pseudonana would first need to be identified if viral delivery were to be 

established. The only diatom species with both a transformation system (Ifuku et al. 2015) and 

known viruses is Chetoceros gracilis.  

Since its application to eukaryotic gene editing in 2013 (Cong et al.), CRISPR-Cas has largely been 

used to induce mutations through error-prone NHEJ (Nymark et al. 2016), deletions (Brooks, C. et 

al. 2014; Zheng et al. 2014; Ordon et al. 2016) and homologous recombination (Cong et al. 2013; 

Baltes et al. 2014). However, CRISPR-Cas is advancing both as a gene-editing tool and for 

additional applications. It has been shown that large deletions can be achieved up to 245kb, easily 

encompassing whole genes, loci and even large fragments of chromosomes (Zhou et al. 2014; 

Ordon et al. 2016). Multiple genes can be targeted, with the potential to disrupt whole pathways, 

either through multiple sgRNA cassettes (Zheng et al. 2014) or through tracrRNA and CRISPR 

arrays (Cong et al. 2013). Efforts to improve HR efficiency following DSBs include exposure to 

multiple donor sequences (Baltes et al. 2014; Čermák et al. 2015) and disruption of NHEJ by 

inhibition of DNA ligase IV (Maruyama et al. 2015). The Cas9 itself has also been adapted. A 

nickase with an inactive RuvC domain has been developed to cut one DNA strand (Cong et al. 

2013). By using this nickase in combination with two single guide RNAs which target alternative 

strands, a DSB can be induced. This is useful if off-target cutting is an issue, as nicks tend to repair 

cleanly and DSBs will only be created if the two sgRNAs are in close proximity. A further Cas9 

has been adapted, termed dCas9 (deactivated Cas9), with both domains deactivated. This means 

that the Cas9 complex can be used for its targeting and binding properties without the nuclease 

activity. DCas9 can be fused to transcriptional activators or repressors to control transcription (Qi 

et al. 2013; Piatek et al. 2015) or to fluorescent markers to profile specific genomic loci without 

denaturation (CasFISH; Deng et al. 2015). It can also be used for DNA modification by attaching a 
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cytidine deaminase for a C to U base change (Komor et al. 2016) or by adding a DNA 

methyltransferase for methylation (Vojta et al. 2016). 

 

Summary 

Efficient CRISPR-Cas gene-editing in T. pseudonana has been established. Efficiencies compare 

well with other algal CRISPR systems. The band-shift screening method, following a deletion with 

two sgRNAs works well and gives a clear visual method for screening mutants. In addition, using 

two sgRNAs to induce deletions gives a higher degree of control over mutations compared to the 

random indels produced when using individual sgRNAs. The Golden-Gate cloning method is well 

suited to CRISPR-Cas applications, providing a flexible platform for construct modification and 

use of multiple sgRNAs. This system has since been used to create constructs for two other genes 

in T. pseudonana as well as constructs for the polar diatom F. cylindrus. Further work is needed in 

terms of developing a transient expression system for CRISPR-Cas in diatoms. Now that an 

efficient and flexible method is in place for gene editing in T. pseudonana the system can be used 

for targeting other genes and applications beyond the scope of basic gene editing. This will 

hopefully be a valuable addition to the diatom molecular toolbox. 
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Chapter 4: SITMyb 

Introduction 

Transcription factors are essential for regulating gene expression. They bind to specific cis-acting 

DNA elements in promoters, activating or repressing transcription of target genes. Transcription 

factors with Myb domains are well characterised in eukaryotic organisms and form one of the 

predominant groups of transcription factors in Stramenopiles including diatoms (Buitrago-Florez et 

al., 2014; Rayko et al., 2010).  

Biosilicification can be found in a range of eukaryotic organisms including higher plants, sponges, 

choanoflagellates, radiolarians and algae such as diatoms and haptophytes (Marron et al., 2016). 

Several proteins have been linked to uptake of silicon in this diverse range of organisms (Marron et 

al., 2016), however silicon transporters (SITs), first discovered in diatoms (Hildebrand et al., 1997), 

have only been found in a few other groups including chrysophytes (Likhoshway et al., 2006), 

choanoflagellates (Marron et al., 2013) and haptophytes (Durak et al., 2016). 

Several genes and compounds are known to contribute towards the formation of the silica frustule 

in diatoms, however there is much about the process that is unknown. This extends to regulation of 

the components involved in silica metabolism. Although it has been shown that certain genes are 

up or downregulated under silicon limitation (Mock et al., 2008) or during recovery (Shrestha et 

al., 2012), how silicon metabolism is directly regulated in response to this is unclear.  

Sequencing of the F. cylindrus genome (Mock et al., 2017) led to the discovery of a large gene 

with homology to both SIT and Myb domains. This is the first time a gene with both of these 

domains has been found, and it may help in understanding the processes involved in regulating the 

silica frustule.  

Gene regulation is an essential part of cellular function and helps cells respond to changes in the 

intracellular and external environment. A range of different regulatory mechanisms exist in 

eukaryotes. TFs bind directly to specific sequences in gene promoters and either promote or 

supress transcription by recruiting or blocking RNA polymerase respectively. Transcription factors 

may also have transactivating domains to bind additional regulatory proteins such as coactivators/ 

corepressors, or signal sensing domains, both of which affect activity of the TF. Regulation may 

also be controlled through histones by post-translational modifications which can make DNA more 

or less assessable to other regulatory proteins and polymerase. Methylation of genes may also 

affect their ability to be transcribed and many eukaryotes also regulate genes post-transcriptionally 

by the use of small non-coding RNAs such as microRNAs and small interfering RNAs. While 

canonical microRNAs have yet to be detected in diatoms, small non-coding RNAs are highly 

expressed (Lopez-Gomollon et al., 2014; Rogato et al., 2014). Furthermore, a group of sRNAs in P. 

tricornutum are associated with genes involved in DNA methylation (Rogato et al., 2014) 
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Myb transcription factors normally contain 1-3 DNA-binding Myb domains, each of which forms a 

helix-turn-helix structure (Rayko et al., 2010). The Myb domain typically binds the consensus 

sequence YAACKG (Ogata et al., 2004; Rosinski and Atchley, 1998), although alternative or 

extended sequences such as YGRCGTTR and YAACKGHH have been observed (Deng et al., 

1996). It has been shown that the YAAC sequence is key for DNA binding, whilst the second half 

of the motif may be linked to binding stability (Ording et al., 1994).  

Myb TFs can have varied functions and in plants are associated with regulation of biosynthetic 

pathways, signalling and morphogenesis (Rosinski and Atchley, 1998). They have also been shown 

to control cell cycle, transcription factors and negative growth regulators in mammalian systems 

(Deng et al., 1996) and can act as both repressors and activators (Deng et al., 1996; Feller et al., 

2011; Liu et al., 2015).  

Regulatory networks in diatoms are still poorly understood, with only a few studies in P. 

tricornutum dedicated to characterising TFs (Huysman et al., 2013; Matthijs et al., 2017, 2016; 

Ohno et al., 2012). However genome sequencing (Rayko et al., 2010) and expression data has also 

been employed (Ashworth et al., 2013) to predict potential TFs and their networks.   

In Pheodactylum tricornutum and Thalassiosira psuedonana heat shock factors account for the 

highest number of transcription factors, followed by Myb TFs (Rayko et al., 2010). Ashworth et al. 

(2013), predicted gene regulatory networks in T. pseudonana by analysing co-expression data and 

searching for known plant transcription factor binding sites (TFBS) from families including heat-

shock factors (HSF), Myb, basic leucine zippers (bZIP), activating protein 2 (AP2) and E2 factors 

(E2F). This led to identification of potential transcription factors for various physiological and 

metabolic pathways, including over 1000 genes potentially regulated by Myb transcription factors. 

It was found that Myb TFBS are enriched in several groups of potentially co-expressed gene 

clusters in T. pseudonana and P. tricornutum including genes for tRNA sysnthesis, protein 

synthesis, amino acid metabolism and processing of proteins (Ashworth et al., 2016).  

Four transcription factors have been characterised in P. tricornutum including three bZIP TFs  

(Huysman et al., 2013; Matthijs et al., 2017; Ohno et al., 2012) and a RGQ1 TF (Matthijs et al., 

2016). The bZIP10 TF acts with blue light sensor auroechrome 1a to activate the diatom specific 

cyclin dsCYC2. The dsCYC2 protein binds to cyclin-dependent kinase, CDKA1, which is linked to 

control of the cell cycle at the G1-to-S phase (Huysman et al., 2013). A further bZIP TF, PtbZIP1, 

is associated with regulation of CO2 acquisition. Three CO2-cAMP responsive elements were found 

in the promoter of pyrenoidal β-carbonic anhydrase (PtCA1). PtbZIP11, a transcription factor with 

a basic zipper region, binds to these elements found 42-86 base pairs upstream of the transcription 

start site (Ohno et al., 2012). The third bZIP TF, bZIP14, is also linked to carbon metabolism and 

has been classified as a regulator of the tricarboxylic acid (TCA) cycle (Matthijs et al., 2017). The 

DNA binding domain for RING-Domain TF, RGQ1, is overrepresented in promoters of genes 
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upregulated during nitrogen starvation. Using yeast-1-hybrid, Matthijs et al. (2016) were able to 

demonstrate binding of RGQ1 to promoters upstream of nitrogen stress response genes.  

As of yet, no TFs with a Myb domain have been characterised in diatoms, although function has 

been speculated based on activity in plants. Rayko et al (2010) found that Myb expression levels 

across growth conditions in diatoms P. tricornutum and T. pseudonana were low, although one 

SHAQKYF6 Myb TF with a single domain appeared to be constitutively expressed across 

conditions. This type of TF has been previously associated with the circadian clock in plants 

(Huysman et al., 2014).  

Expression data in response to nutrient availability may also give insight into the TFs and co-

regulators involved in nutrient aquisistion in microalgae. In P. tricornutum PtMyb5R, was up-

regulated in response to ammonium (Rayko et al., 2010) and in Chlorella spp. the Myb 

transcription factor, ROC40, was highly upregulated under nitrogen starvation and may be linked 

to lipid accumulation (Goncalves et al., 2016). Differential regulation of dsCYCs are seen in 

response to changes in nitrate, phosphate, iron and silicon concentration (Huysman et al., 2010; 

Maheswari et al., 2009; Sapriel et al., 2009) and Huysman et al. (2010) suggest that dsCYCs may 

act as signal integrators for nutrients, particularly phosphate, during regulation of the cell cycle.  

Ashworth et al. (2016) looked for groups of co-expressed genes under various environmental 

conditions by applying a Pearson correlation distance metric to log2 expression ratios of transcript 

pairs. Cis-regulatory sequence motifs were also included to gain insight into possible regulatory 

networks. Several genes involved in nitrogen metabolism were clustered, with many sharing a 

common DNA binding motif linked to the binding of HSFs in their promoters. It was also 

demonstrated that transcriptional regulation of several key processes may be conserved between 

diatom species. Pre-existing microarray data was used, including data generated during silica 

limitation in which clusters of genes involved in silica transport, membrane regulation and vesicle 

transport were observed. Furthermore a portal to access these clusters and investigate specific 

genes is publicly available (Ashworth et al. 2016).  

Several studies have explored expression of genes, including transcription factors themselves under 

silicon limiting conditions to determine genes involved in silica metabolism (Du et al., 2014; Mock 

et al., 2008; Sapriel et al., 2009; Shrestha et al., 2012). TFs from several different families in T. 

pseudonana showed differential expression in response to silica, whilst several heat-shock factors 

in P. tricornutum were up-regulated in response to silica starvation (Rayko et al., 2010).  

Certain key genes associated with silica metabolism are expressed depending on external silicon,  

including silicon transporters (Mock et al., 2008; Sapriel et al., 2009; Shrestha and Hildebrand, 

2015) which appear to be regulated at a transcriptional and posttranscriptional level (Thamatrakoln 

and Hildebrand, 2007).  
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Formation of the silica frustule is closely linked to the diatom cell cycle (Brzezinski et al., 1990; 

Hildebrand et al., 2007) and an important aspect of silica metabolism is the acquisition of soluble 

silicic acid from the external environment.  At high external concentrations, silicic acid can diffuse 

across the membrane (Thamatrakoln and Hildebrand, 2008), but diatoms also possess a group of 

proteins called silicon transporters (SITs) that can actively transport silicic acid into the cell. 

Silicon transporters  were first discovered in Cylindrotheca fusiformis (Hildebrand et al., 1997). 

They have 10 transmembrane domains, each with an α-helical structure (Curnow et al., 2012; 

Thamatrakoln et al., 2006) and contain GXQ and MXD motifs which may act as silicic acid 

binding sites (Curnow et al., 2012; Sherbakova et al., 2005; Thamatrakoln et al., 2006). A coiled-

coil domain can be found at the C-terminus, which is hypothesised to be positioned within the cell 

given the nature of the coiled-coil domain (Thamatrakoln et al., 2006). Transport across SITs is 

sodium dependent (Bhattacharyya and Volcani, 1980; Curnow et al., 2012; Hildebrand et al., 1997; 

Vrieling et al., 2007) and sodium binding sites can be found in the majority of these proteins 

(Curnow et al., 2012). Whilst some SITs appear to be constitutively expressed, several show 

differential expression depending on the concentration of environmental silicon present (Mock et 

al., 2008; Sapriel et al., 2009; Shrestha and Hildebrand, 2015) and it appears that they play 

different roles in the acquisition and regulation of silicon influx. There is evidence to suggest that 

certain SITs are up-regulated to provide adequate silica for frustule formation and cell division 

(Shrestha and Hildebrand, 2015). Some show high affinity/low capacity transport whilst others 

display low affinity/high capacity to cope with environmental changes and cellular function (Flynn 

and Martin-Jézéquel, 2000; Hildebrand, 2003; Thamatrakoln and Hildebrand, 2007). Not all SITs 

appear to be involved in external silicon transport (Sapriel et al., 2009) and alternative functions 

such as  intracellular transport or regulation have been suggested (Shrestha and Hildebrand, 2015). 

Furthermore there is evidence that some SITs may be acting as silicon sensors (Shrestha and 

Hildebrand, 2015; Thamatrakoln and Hildebrand, 2007). 

The silica frustule is formed within the silica deposition vesicle (SDV), an organelle with an acidic 

environment known to promote silica precipitation (Vrieling et al., 1999). The SDV is encapsulated 

by a membrane known as the silicalemma (Hildebrand and Lerch, 2015; Koester et al., 2016) and 

contains a variety of molecules and proteins which are responsible for precipitation and control of 

silica. These include silaffins (Kröger et al., 2001, 1999), silacidins (Richthammer et al., 2011; 

Wenzl et al., 2008), cingulins (Scheffel et al., 2011) and long chain polyamines (LCPA; Kröger et 

al., 2000).  

Silaffins contain several post-translational modifications including several negatively charged 

lysine groups with polyamines, long chain polyamines and methyl groups, as well as cationic 

phosphoserines (Kröger et al., 2001). Pentalysine clusters formed of lysine rich peptides and 

phosphorylated serines are important for targeting to the biosilica (Poulsen et al., 2013). As 

zwitterions, silaffins form large aggregates, which can be even larger when LCPAs are included, 

which may be responsible for silica precipitation in vivo (Kroger et al., 2002; Poulsen et al., 2013).  
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In vitro, addition of silaffins in combination with LCPAs induces rapid precipitation, with length, 

concentration and source of LCPAs affecting nanoscale morphology (Kroger et al., 2002; Kröger et 

al., 2000). Different silaffins also show differences in activity, and can either activate or inhibit 

silca precipitation, depending on concentration (Poulsen and Kröger, 2004).  

Cingulins are silaffin-like proteins that are associated with formation of the girdle band. They form 

part of an organic matrix known as microrings, which induce silica precipitation and act as a 

template, forming nanoscale patterning (Scheffel et al., 2011). 

Silacidins are also highly phosphorylated and precipitate silica in the presence of LCPAs. They are 

highly acidic as they contain several acidic amino acids (Wenzl et al., 2008). Only phosphorylated 

silacidins rapidly and efficiency precipitate silica (Richthammer et al., 2011), highlighting the 

importance of negative phosphate groups which are also associated with nanoparticle size (Sumper 

et al., 2003). Furthermore due to their high activity and relative increase in concentration in the 

frustule under silicon starvation, it has been suggested that silacidins may be important for 

precipitation during low silicon availability (Richthammer et al., 2011). 

Chitin fibres are associated with the silica frustule forming part of the organic matrix (Brunner et 

al., 2009; Durkin et al., 2009) which has been hypothesised to provide a template for silica 

deposition (Brunner et al., 2009) or act as a supporting structure (Hildebrand and Lerch, 2015). 

Another component of the organic matrix, P150, which is particularly associated with the girdle 

band contains 3 potential chitin binding sites (Davis et al., 2005), suggesting potential interaction 

with the chitin fibres. Carbohydrates are also associated with this matrix including mannose which 

is particularly prominent (Tesson and Hildebrand, 2013) and well as glycoproteins known as 

frustulins (Kroger et al., 1996; Kröger et al., 1994). 

The cytoskeleton appears to play an important role in micro and meso-scale patterning of the 

frustule (Tesson and Hildebrand, 2010a, 2010b). Actin is associated with the SDV and is thought to 

control its positioning and shape (Pickett-Heaps et al., 1990), whilst microtubules may act to 

strengthen the SDV (Tesson and Hildebrand, 2010a). Both actin and tubulin are associated with 

formation of valves and girdle bands (Tesson and Hildebrand, 2010b).  Recent work suggests that 

silacidins may also affect the frustule at a micro-scale, with an increase in cell size observed upon 

knockdown of silacidins in T. pseudonana (Kirkham et al., 2017). 

Signalling and transport mechanisms are still largely unknown, although expression analysis 

highlights possible genes involved in these processes under silicon limitation or during frustule 

formation (Mock et al., 2008; Shrestha et al., 2012). In general, transcriptome and proteome 

analyses under these conditions, suggest that several genes associated with silica metabolism are 

regulated in response to silicon concentration or requirement (Du et al., 2014; Mock et al., 2008; 

Sapriel et al., 2009; Shrestha et al., 2012). These include but are not limited to genes involved in 

silicon transport, chitin synthesis, carbohydrate metabolism, silica precipitation and the 
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cytoskeleton. In addition genes involved in regulation such as transcription factors and helicases, as 

well genes for signal transduction and post-translational modification such as kinases can be found. 

This chapter focuses on the SITMyb gene and explores its potential as a regulatory protein and its 

possible link to silica metabolism. Modelling of the gene aims to investigate potential domains and 

motifs that support a link to silica metabolism or regulation. Previously generated RNA-seq data 

has also been explored along with in-vitro gene modelling. The gene model is then used to design 

an overexpression construct in F. cylindrus and to explore potential SITMyb binding domains 

through yeast-1-hybrid, using both the modelled gene and the modelled Myb domain.  

 

Methods 

Modelling the SITMyb gene.  

Two alleles of the SITMyb gene are present in the Fragilariopsis cylindrus genome: ID 233781 on 

scaffold_1:5636864-5642151 (-) and ID 250586 on scaffold_31:566466-571660 (+). Blastn and 

Blastp searches were performed against the NCBI database. The nucleotide sequences from both 

alleles were aligned using EMBL MAFFT. The protein sequence was also run through ScanProsite 

(de Castro et al., 2006) at high sensitivity to check for conserved domains and motifs. Structure of 

the Myb and SIT protein domains were modelled as well as the entire protein using Phyre2 (Kelly 

et al., 2015) with intensive modelling mode and SWISS-MODEL (Arnold et al., 2006). Nuclear 

localisation signals were predicted with cNLS mapper (Kosugi et al., 2009), NucPred (Brameier et 

al., 2007) and Scanprosite. Coiled-coils were predicted using Expasy COILS (Lupas et al., 1991). 

The protein sequence was searched for potential silicic acid binding motifs GXQ and MXD 

(Curnow et al., 2012; Sherbakova et al., 2005; Thamatrakoln et al., 2006).  

F. cylindrus RNA-seq expression data generated by Jan Straus (Mock et al., 2017; Strauss, 2012) 

under the following conditions; control, high and low temperature, iron limitation, high carbon 

dioxide, prolonged darkness, red and blue light and silicon limitation, was visualised with the 

Broad Institute Integrative Genomics Viewer (IGV; Thorvaldsdóttir et al., 2013) to see expression 

values across the gene for both alleles compared to the genome. 

The SIT domain of the SITMyb gene was aligned to several other SIT sequences found in diatoms 

(39), plants (7), chronoflagellates (7) and coccolithophores (1) from NCBI and UniProt using 

ClustalX with a gonnet matrix (Larkin et al., 2007) as demonstrated by Thamatrakoln et al. (2006) 

for comparison of diatom SITs. As the SIT domain from the SITMyb gene appears to align to C-

terminal sequences from diatoms, a further alignment was carried out for this region. Radial 

phylograms were drawn using the neighbour joining method with a bootstrap of 100. 

Promoter sequences were checked for the consensus Myb binding domain defined as YAACKG 

(Biedenkapp et al., 1988; Ogata et al., 2004) or the extended Myb consensus sequences 

YGRCGTTR and YAACKGHH (Deng et al., 1996). 
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RACE and RT-PCR of the SITMyb gene. 

F. cylindrus total RNA was extracted from exponentially growing cultures using a Qiagen RNeasy 

kit. Rapid amplification of cDNA ends (RACE) was carried out to determine the 3’ and 5’ ends of 

the SITMyb transcript for both alleles. Initially this was performed using the Ambion RNA ligase 

mediated (RLM)-RACE kit. Later 5’ template switching oligo RACE (TSO; Pinto and Lindblad, 

2010) was used. Both 3’ and 5’ RACE was carried out with the RLM method following 

manufacturer’s instructions. Mg2+ concentration (1mM, 2mM and 3mM) and temperature (57-69°C 

in 3°C increments) was optimised for the PCR steps of the RACE method.  

5’ RLM RACE: briefly, ten 10µg of F. cylindrus total RNA was treated with Calf Intestine Alkaline 

Phosphatase (CIP) for 1 hour at 37°C. The CIP reaction was terminated with ammonium acetate 

before purifying the RNA with phenol:chloroform and isopropanol and resuspending in nuclease 

free water. RNA was then treated with Tobacco Acid Pyrophosphatase (TAP) in a one hour 

reaction at 37°C before ligating the 5’ RACE adapter with T4 RNA Ligase at 37°C for 1 hour. A –

TAP control was also carried out by performing the ligation reaction on the CIP treated RNA. 

Reverse transcription was performed at 42°C for 1 hour on the ligated RNA using M-MLV Reverse 

transcriptase and random decamers. cDNA produced in this step was then used as a template for 

the outer PCR reactions.  KAPA Long range DNA polymerase was used for both outer and inner 

PCR reactions with an annealing temperature of 60°C and 2mM MgCl2, according to the 

manufacture’s protocol. Along with the provided 5’ RACE outer primer, reverse gene specific (GS) 

primers at locations 5’4 and 5’2 (see Table 4.1 and Figure 4.1) were used. As well as the –TAP 

control, a no target control with water instead of template was performed for each primer set. 

Nested inner PCRs were performed with 1µl of the outer PCR reaction. Along with the provided 

forward 5’ RACE Inner primer, GS reverse primers at locations 5’1 and 5’3 were used. Both GS 

reverse primers were used in combination with both outer PCR reactions (using primers at 5’4 and 

5’2). Products were run on a 2% agarose gel. 

 

 

Figure 4.1. Positions of RACE primers and primers for amplification of the full coding 

region. Red boxes are gene specific (GS) primers for 5’ RACE, green boxes are GS primers 

for 3’ RACE and light blue boxes are primers from the RLM RACE kit, which in the case of 

the 5’ RACE are complementary to the 5’ adaptor, and for the 3’ RACE correspond to the 3’ 

adaptor. Major increments of the scale bar are at 1kb, smaller increments are at 200bp. 
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Table 4.1. Primers used in RLM RACE and amplification of the full coding sequence. 

 

3’ RLM RACE: One µg of F. cylindrus RNA was used for reverse transcription (RT) with the 3’ 

RACE adapter and M-MLV Reverse transcriptase at 42°C for one hour. Initially the outer PCR was 

performed with the provided 3’ RACE Outer Primer and the GS primer at location 3’4 (Table 4.1 

and Figure 4.1). This was followed by an Inner PCR with the 3’ RACE Inner Primer and the GS 

primer at 3’4. Later PCRs involved only the outer PCR and used GS primers at location 3’4, 3’2 

and 3’1. As with 5’ RACE, primers were annealed at 60°C and KAPA Long range DNA 

polymerase was used. Products were run on a 2% agarose gel. 

Transcript amplification: PCRs to amplify the full coding region, with and without UTRs were 

carried out. cDNA from the 3’ and 5’ RACE RT reactions was used as a template, as well as gDNA 

as a positive control.  Primers at location F02 and R02 were used in amplification of the coding 

region. Primers F01 and R01 were used for amplification of the coding region + UTR. Two 

variants of R01 were designed due to SNPs present between SITMyb alleles. Amplification of the 

whole transcript was unsuccessful. As a result the transcript was amplified as overlapping 

fragments with the primer sets for both alleles shown in Table 4.2. 

Primer name Application
Forward/

Reverse
Position Sequence Tm  (°C) % GC

5'MybRace add_1 5’ RACE R 5’1 TTGCTGTCCGTCATCGTGGTAGT 60.3 52.2

5'MybRACE add_2      5’ RACE R 5’2 TCGCGGAACAACATGCCATTGA 59.9 50

myb 5 RACE Inner 5’ RACE R 5’3 CCTGTTGGGCTACGGTGTGTTCTT 61 54.2

myb 5 RACE Outer 5’ RACE R 5’4 GCCATTGCCTTCGCAACTTCTTC 58 45.8

myb 5 RACE GS 5’ RACE F 5’5 ACACACCGTAGCCCAACAGGATATT 60 48

Myb 3’ Race A1 3’ RACE F 3’0 CCAAAGCTAAAGAGCGCGAGC 59.1 57.1

Myb 3’ Race A2 3’ RACE F 3’0 CCAAAGCGAAAGAGCGCGAAC 59.6 57.1

3'MybRACE add_2 3’ RACE F 3’1 AAGAAAGCCAGGGCGTCAAAGT 59.5 50

3'MybRACE add_1 3’ RACE F 3’2 ACGGTGGCACCATTAGAGGATTGA 60.2 50

myb 3 RACE Inner 3’ RACE F 3’3 CGTCCAATCCCACGACCAACAATG 60 54.2

myb 3 RACE Outer 3’ RACE F 3’4 AGTCATATGCAGGGAGCTTATTC 54 43.5

Myb Coding+UTR_F Full cDNA F F 01 TCTGCTGACAAAGGAAGTACCTGA 57.7 45.8

Myb Coding_F Full cDNA F F 02 ATGGAAGCAACAACCACAGGA 57.1 47.6

Coding+UTR_R A1 Full cDNA R R 01 CATTGCATTTATTCATGCTATTACTCATG 53.5 31

Coding+UTR_R A2 Full cDNA R R 01 CATTGCATTTATTCATATTATTACTCATG 50.1 24.1

Myb Coding_R Full cDNA R R 02 TCTTACACCATTACAATTTCTTCTTCCTC 55.1 34.5
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Table 4.2. Primers used to amplify overlapping fragments from cDNA of both SITMyb 

alleles. Bases in red indicate the presence of SNP between alleles. A1 is allele 1 (ID 233781) 

and A2 is allele 2 (ID 250586) 

 

5’ TSO RACE.  Template switching oligo RACE was performed according to Pinto and Lindblad 

(2010) using the template switching oligo (TSO: 

GTCGCACGGTCCATCGCAGCAGTCACAGGGGG) and U_SENSE primer 

(GTCGCACGGTCCATCGCAGCAGTC) described in the paper. Briefly 700ng of F. cylindrus 

total RNA was denatured with dNTPs and either the GS primer at location 5’3 or R02 (Table 4.1). 

A no template control was included at this stage. cDNA synthesis was carried out on denatured 

DNA with RevertAid H- reverse transcriptase. A no RT control was also added to check for DNA 

contamination. The template switching oligo was then added along with MnCl2. The reverse 

transcriptase adds C residues to the end of the sequence in the presence of MnCl2, providing a 

complementary sequence for the TSO, which acts as an adaptor for PCR, to anneal to. Hotstart 

Phire II DNA polymerase (Thermo fisher) was used to amplify fragments with the forward USense 

primer and either the SIT1 (ATGCACCACGGAGTATTG) or the SIT2 

Allele/ 

Region
Forward Primer Reverse Primer

Expected 

size
Tm

5’ RACE inner 5'MybRace add_1 (5’1)

CCTGTTGGGCTACGGTGTGTTCTT TTGCTGTCCGTCATCGTGGTAGT

Myb Coding+UTR_F (F01) A1 1st

TCTGCTGACAAAGGAAGTACCTGA CAACATGCCATTGATTAGCACTGTTG

A1 2nd F A1 A2 2nd R

GGTCGCTTCTTAAAAGTCAACAGTG GAATAAGCTCCCTGCATATGACTC

myb 3 RACE Outer (3’4) A1 3rd

AGTCATATGCAGGGAGCTTATTC TCGTCGTAGTTGTTCTCATCATT

A1 4th Myb Coding_R (R 02)

ACCATCTGAACGTTTAGAAGATAATGAT TCTTACACCATTACAATTTCTTCTTCCTC

A1 3' RACE 3’ RACE outer

CCAAAGCTAAAGAGCGCGAG

5’ RACE inner A2 5' RACE

CCTGTTGGGCTACGGTGTGTTCTT CAGCTTGAGATTCAACTACTCTGCGAC

Myb Coding_F(F02) A2 1st

ATGGAAGCAACAACCACAGGA AAGGGTGCACTTTCGCTTG 

A2 2nd F A1 A2 2nd R

CAAGCGAAAGTGCACCCTT GAATAAGCTCCCTGCATATGACTC 

myb 3 RACE Outer (3’4) A2 3rd

AGTCATATGCAGGGAGCTTATTC CGTCGTAGTTGTTCTCGTCATC 

A2 4th Myb Coding_R (R 02)

CATCTGAACGTTTAGAAGATGATGAC TCTTACACCATTACAATTTCTTCTTCCTC

A2 3' RACE 3’ RACE outer

CCAAAGCGAAAGAGCGCGAA

A1 – 5’ >465 60.3-61.1

A1 – 1st 1289 57.2-57.7

A1 – 2nd 1436 55.2-56.3

A1 – 3rd 1471 53.9-54.0

A1 – 4th 882 54.4-55.1

A1 – 3’ >272 55.1-56.5

A2 – 5’ >949 59.1-61.1

A2 – 1st 920 56.2-57.1

A2 – 2nd ~1252 45.8-52.6

A2 – 3rd 1348 54.5-55.3

A2 – 4th 880 53.8-55.1

A2 – 3’ >272 55.1-58.9
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(TGATGTTGTCGTCGTAGTTG) GS reverse primer. An annealing temperature of 60°C with an 

extension time of 1 minute was used. 

Creating a construct for overexpression of the SITMyb gene in F. cylindrus. 

The SITMyb gene (233781) from +2398 to +5536 was cloned into a puc19 backbone with the F. 

cylindrus FCP promoter and terminator described in the transformation chapter. The sequence for a 

6x His-tag was included before the stop codon at the end of the SITMyb sequence for potential 

isolation and labelling of the protein. Initially the pucFCPshble plasmid made in the transformation 

chapter was used as a backbone. However, this did not result in clones with the correct insert and 

the FCP:SITMyb cassette was assembled into puc19 instead. Following assembly into puc19, the 

FCP:SITMyb cassette was combined into a single construct with FCP:shble using Golden Gate 

cloning. Gibson assembly (GA), was used to assemble fragments in one reaction. Primers for 

amplification (Table 4.3) include sequences complementary to the adjacent fragment in assembly, 

at the 5’ end, giving a 40bp overhang between adjacent fragments during GA. Phusion DNA 

polymerase (NEB) was used to amplify all  fragments, as described in the manufacturer’s 

instructions, including puc19 (1-2), the FCP promoter (3-4), SITMyb in three parts (5-10) and the 

FCP terminator (11-12). The puc19 plasmid was used as a template for vector amplification and F. 

cylindrus gDNA was used for all other fragments. The Tm of all primers can be found in Table 4.3. 

Following PCR, products were run on a TAE agarose gel, excised and purified using a GFX PCR 

DNA and Gel Band Purification Kit (GE). Products were eluted into nuclease free water. Gibson 

assembly was carried out as described in the transformation chapter, using the Ford (2013) GA 

mastermix, 50ng of vector and a 3 times molar concentration of each fragment. The 

pucFCP:SITMyb construct was screened by restriction digestion using SphI and BamHI, as well as 

PCR of the insert using primers 13 and 14 (Table 4.3). The construct was sequenced using primers 

3, 5, 7, 9, 11, 15, 16, 17 and 18.   

Golden-gate cloning. Details on Golden-gate cloning methods can be found in the CRISPR-Cas 

chapter. Site directed mutagenesis (SDM) was carried out on the pucFCP:SITMyb plasmid to 

remove BsaI and BpiI sites, using a Q5 site-directed mutagenesis (SDM) kit and accompanying 

protocols (NEB). BsaI from the FCP terminator was removed using primers 1 and 2 (Table 4.4). 

Primers 3-4 were used to remove a BpiI site from the coding region, with a synonymous 

substitution. A BpiI site within the intron was removed either by a base change (primers 5-6) or by 

removing the entire intron (7-8). The domesticated FCP:SITMyb cassette was amplified using 

primers 9 and 10, and assembled into a L1 pICH47742  backbone. The FCP:shble cassette was 

amplified from pucFC_FCPshble (transformation chapter), with the same primer set (9 and 10) and 

cloned into L1 backbone pICH47732. Domesticated CEN-ARS-HIS (CRISPR-Cas chapter) was 

cloned into L1 backbone pICH47752, as previously described. All three cassettes were assembled 

in L2 backbone pAGM4723 along with linker pICH41766, giving either pAGM_SITMybOE (with 

domesticated intron, Figure 4.2) or pAGM_SITMybOE_IR (with intron removed). Constructs were 

screened by restriction digest with XbaI and EcoRV and checked by sequencing. 
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Table 4.3. Primers for cloning the FCP:SITMyb cassette into a puc19 backbone using Gibson 

Assembly. 1-12) Primers for amplification prior to GA. 13-14) Primers for amplification of 

the insert. 15-18) Primers for sequencing junctions of the final construct. Upper case bases 

denote the part of the primer which anneals to the original template. Bases in lower case are 

from the adjacent sequence in assembly and lead to fragments with ~40bp overlaps. Tm 

refers to the template specific sequence of the primers. 

 

 

Table 4.4. Primers used to construct the FCP:SITMyb overexpression construct with Golden 

Gate cloning. Primers 1-8 were used for SDM to remove BsaI and BpiI. The lower case letter 

in the SDM primers denotes the base change. Primers 9-10 were used to amplify the 

FCP:SITMyb cassette for assembly into the pICH47742 level 1 backbone. 

Number Primer Primer sequence
Tm 

(°C)

1 Vector F cagcacaacaacaacgactAGGCATGCAAGCTTGGC 63

2 Vector R atttctatgccttactttgGGGTACCGAGCTCGAATTCAC 64

3 Prom  F attcgagctcggtacccCAAAGTAAGGCATAGAAATAATC 56

4 Prom R TTGTCATTCGCCGTTTTCATtttgatatataagtttgtttttggtag 58

5 SIT1 F aaacaaacttatatatcaaaATGAAAACGGCGAATGAC 58

6 SIT1 R ATGCACCACGGAGTATTG 59

7 SIT2 F TGCACAACAACAGATGTATC 58

8 SIT2 R TGATGTTGTCGTCGTAGTTG 60

9 SIT3 F GAAGATAATGATGAGAACAAC 54

10 SIT3 R aataaggattaataaaatgcTTAGTGATGATGATGATGATGCACCATTACAATTTCTTCTTC 55

11 Term F ATCATCATCATCATCACTAAgcattttattaatccttatttgatcg 58

12 Term R gccaagcttgcatgcctAGTCGTTGTTGTTGTGCTG 59

13 Puc19 Insert F GCTGCAAGGCGATTAAGTTG 62

14 Puc19 Insert R GCTCGTATGTTGTGTGGAATTG 62

15 Prom_SIT1_seq tttaccgctttcgatcttctc 60

16 SIT1_SIT2_seq TTTGGTTGTGGTGGTAGTG 60

17 SIT2_SIT3_seq CCGTCACATCATACACACATAG 61

18 SIT3_Term_seq ACAAGATGCTCGTGACTATATG 60

Number Primer name Primer sequence Tm (°C)
Annealing 

temp (°C)

1 FC_FcpT_Mut_F ATATAGTGAGtCCCTTCCGTTGAC 64

2 FC_FcpT_Mut_R TCGAATCAATGAATCGATCAAATAAGG 61

3 SITMyb_mut code_F ATGGTTGTCTaCTTCCGAAAG 56

4 SITMyb_mut code_R CTTTGGTTCGACGTAGTTC 58

5 SITMyb_mut_intron_F GAGCAAGGTAAGTCTcCCAAAAC 57.6

6 SITMyb_mut_intron_R CATCAGGGCGCCTATATG 58.8

7 SITMyb_mut_intronR_F ACCCTTTGGATTATCTTGGCAC 62.4

8 SITMyb_mut_intronR_R CTTGCTCCATCAGGGCG 61.8

9 GG_FC_vFcpP_F aggtctcaggagGCTGCAAGGCGATTAAGTTG 61.5

10 GG_FC_vFcpP_R aggtctcaagcgGCTCGTATGTTGTGTGGAATTG 61.5

64

64

59

63

65
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Figure 4.2. Vector map of pAGM_SITMybOE construct. Map created with SnapGene. 

 

Transformation of SITMyb overexpression constructs into F. cylindrus.   

Constructs pAGM_SITMybOE and pAGM_SITMybOE_IR were introduced into exponentially 

growing F. cylindrus cells through microparticle bombardment as described in the Transformation 

chapter. Positive and negative controls were included with pucFCFCPshble:FCPegfp and water 

respectively. All shots were carried out in triplicate with a 1550psi rupture disc. Selection was 

carried out on zeocin plates as previously described. 

Screening F. cylindrus clones. PCR of gDNA, RT-PCR and western blots.  

Colonies were picked and grown to exponential phase as described in the transformation chapter.  

One pAGM_SITMybOE colony (SITMyb_OE 1) and 3 pAGM_SITMybOE_IR 

(SITMybIR_OE_2, 4 and 6) colonies were screened for the overexpression construct. Genomic 

DNA was extracted from 1ml of each culture using an Easy DNA gDNA purification kit 

(ThermoFisher) according to protocol #3 of the product manual. PCR was carried out with 500ng 

of gDNA in a 20ul reaction using Phusion DNA polymerase (NEB) according to the NEB protocol. 

Forward primers 15 and 16 (Table 4.3) were used with reverse primer SITMyb OE_R 

(gcTTAGTGATGATGATGATGATGCAC), to amplify from within the promoter or early in the 

coding region to the His-tag to check for presence of the overexpression cassette.   
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RNA was extracted from exponentially growing cells using a Qiagen RNeasy kit. DNA was 

removed by incubating 1µg of extracted RNA with DNase I (NEB) at 37°C for 10 minutes, before 

stopping the reaction by addition of EDTA to a final concentration of 5mM and heat inactivation at 

75°C for 10 minutes. The reaction was purified using a Qiagen RNeasy MinElute Cleanup kit and 

eluted into 10 µl of RNase free water. One µl of the eluate was used in a 10µl reverse transcription 

reaction with Superscript III (SSIII, Thermo Fisher) and oligo dT according to the SSIII protocol. 

Two controls were included at this stage– one with no RNA (RT control) and one with RNA but no 

SSIII (DNA control). The reaction was incubated at 50°C for 1 hour, before inactivating the SSIII 

by heating to 70°C for 15 minutes. RNA was removed by incubating with RNAse H for 20 minutes 

at 37°C. PCR using GoTaq DNA polymerase (Promega) with a final concentration of MgCl2 at 

1.25mM was carried out with 1µl of the RT reaction and primers SIT1_SIT2 seq (Table 4.3) and 

SITMyb OE_R  SITMyb OE_R targets the overexpression transcript by annealing to the His-tag 

sequence at the 5’ end. Products were visualised on an agarose gel. 

Protein was extracted from SITMyb_OE 1, SITMybIR_OE 2 and WT cultures using lysis buffer, 

denaturing lysis buffer and XTractor buffer (Clonetech).                  

Extraction with lysis buffer: Cultures was pelleted and cells resuspended in lysis buffer (50mM 

Tris-HCl pH6.8, 2% SDS). One hundred µl of buffer was used for every 100ml of culture. Four µl 

of protease inhibitor, EDTA free (Thermo Fisher) was added (for a final 1x concentration) for 

every 100µl of lysis buffer. Cells were vortexed briefly to homogenize and incubated at room 

temperature for 30 minutes. The lysate was spun down at 13000 rpm for 30 minutes at 4°C, and the 

supernatant transferred to a clean Eppendorf tube. The crude protein extract was kept on ice until 

needed or stored at -80°C.  

Extraction with denaturing lysis buffer: Cultures were treated as above, but with denaturing lysis 

buffer (100mM NaH2PO4, 10mM Tris-Cl, 8M urea, NaOH to pH 8.0).  

Extraction with XTractor buffer : Protein was extracted according to the manufacturer’s protocol. 

Briefly cells were pelleted at 3000 x g for 5 minutes at 4°C and washed with 2x PBS. Cells were 

resuspended in XTractor buffer, using 100µl of buffer for every 100ml of culture, by vigorously 

vortexing. Protease inhibitor was added before incubating for 10 minutes at room temperature. 

Lysate was clarified by spinning at 12000 x g for 20 minutes at 4°C, and transferred to a new 

Eppendorf tube. Supernatant was kept on ice until needed or stored at -80°C. 

His-tag purification:  Crude protein extracts were run through His-tag purification columns to 

enrich proteins with a His-tag. A Capturem His-tagged Purification Miniprep Kit (Clonetech) was 

used. Briefly, 400µl of buffer (buffer used to produce protein lysate) was used to equilibrate the 

spin column before loading 400µl of cleared protein lysate and spinning at 11000 x g for 1 minute 

at room temperature. Columns were washed with wash buffer under the same conditions and 

protein eluted into 100µl of Elution buffer. 



116 
 
Prior to His-tag purification protein concentration was measured by 260nm absorbance on a 

nanodrop. Following His-tag purification concentration was measured using the Bradford protein 

assay. Quick Start reagent (BIO-RAD) was used in a 1:1 ratio with the eluted protein according to 

the ‘Microassay protocol’ in the BIO-RAD instruction manual. Concentration was calculated 

against BSA standards (0-100µg/ml). 

Western blots: Both crude protein extracts and His-tag purified extracts were run on NuPAGE 4-

12% BIS-Tris gels using the X-cell Surelock Mini-gel electrophoresis system (Invitrogen). Protein 

extracts were run for 35 minutes at 200V alongside 5µl of Broad Range Color Prestained Protein 

Standard ladder (NEB), 1-5µl of BenchMark His-tagged Protein Standard Ladder (Invitrogen) and 

a positive control (His-tagged NAD dependent ligase, 80kDa) at 5, 1 and 0.25µg/ml. For crude 

extracts 13µl at 10mg/ml were loaded into wells. For His purified proteins 13ul at 100µg/ml were 

loaded. Proteins were transferred onto a nitrocellulose membrane according to the X-cell Surelock 

manual for 1 hour at 30V. Membranes were blocked for 1 hour in 5% BSA PBST (1 x PBS with 

0.05% Tween 20) before incubating with a Cell signalling HIS antibody (rabbit) overnight at 4°C. 

A 1:1000 dilution was used in PBST with 5% BSA. Membranes were washed 3 x in PBST for 10 

minutes each on a rocker. An anti Rabbit IgG HRP tagged secondary antibody (Promega) at a 

dilution of 1:2500 in PBST was added to membranes for 1 hour at room temperature, and washed 3 

x in PBST for 10 minutes each.  Blots were visualised by adding ECL Western blotting substrate 

(Pierce) for 2 minutes and chemiluminscence imaged in 30 second intervals for up to 5 minutes. 

Yeast 1 hybrid 

Yeast one hybrid was carried out based on the method by Yan and Burgess (2012). Plasmids 

pYOH1 and pYOH366 were kindly provided by Shawn Burgess. F. cylindrus gDNA was 

fragmented and cloned into pYOH366 upstream of the URA3 gene, to create pYOH366-g. The 

SITmyb gene and the Myb domain were each cloned into pYOH1 for expression in yeast. The 

gDNA library and transcription factor (TF) constructs (Figures 4.4 and 4.5 respectively) were 

transformed into two mating types of the same yeast strain and combined by mating. If the 

transcription factor is expressed and binds to a site in the F. cylindrus library, URA3 is expressed 

allowing growth in –uracil media. The pYOH366-g plasmid in the positive clone can then be 

amplified and sequenced to identify potential binding sites. Methods specific to YIH in F. cylindrus 

and alterations to the method are detailed below. An overview of the process as shown in the Yan 

and Burgess (2012) paper can be seen in Figure 4.3.  

Generating pYOH366-g 

Optimising gDNA digest. Genomic DNA was extracted from 800ml of exponentially growing F. 

cylindrus using an Easy DNA genomic extraction kit (Thermo Fisher). Digestion reactions were 

carried out at 37°C in Cutsmart buffer with 4nt cutter MluCI (NEB), which cuts site AATT and 

allows cloning of the fragments into the EcoRI site in pYOH366.  Ten µg of gDNA was standardly 

used per 10µl reaction volume. Several different parameters were used to optimise fragment size. 
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MluCI at 2U and 0.01U per 10µl was trialled with incubation times at 0, 2, 5, 7.5 and 10-60 

minutes in 10 minute intervals. Scaled up reactions in 50µl were incubated between 0 and 10 

minutes with 10U of enzyme. Reactions were either stopped by placing on ice, or by adding 10 µl 

of 50 mM EDTA (pH 8.0). Different methods of purification were also tested. Reactions were 

either run on a gel and bands between 200-1000bp excised and purified using a Qiagen QIAquick 

gel extraction kit, cleaned-up with the same kit but without running on a gel, or purified using 

Isopropanol precipitation. Isopropanol precipitation was carried out by adding 1/5th volume of 3M 

sodium acetate followed by 1 volume of 100% isopropanol. This was incubated at room 

temperature for 1 hour before centrifuging at 14,000 RPM for 20 minutes then washing with 70% 

ethanol. Following a further centrifugation step, the ethanol was removed and the pellet air dried 

before resuspending in nuclease free water.  

 

 

 

Figure 4.3. Overview of the steps for yeast-1-hybrid (Yan and Burgess, 2012). 
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Optimising ligation of gDNA fragments into pYOH366. Fifty µg of pYOH366 was digested in a 

300µl reaction with EcoRI-HF (NEB) at 37°C overnight. EcoRI was denatured at 65°C for 20 

minutes then treated with Alkaline Phosphatase, Calf Intestinal (CIP). Six µl of CIP was added to 

the reaction and incubated for 30 minutes at 37°C before a further 6µl was added and the reaction 

incubated for an additional 30 minutes. The digested vector was run on an agarose gel, excised and 

purified using columns from the Qiagen QIAquick gel extraction kit, using one column for every 

10µg. Ligation reactions were carried out with the digested gDNA and vector using molar ratios of 

vector:insert at 1:1, 1:3 and 1:20 in 10µl reactions with 50ng of vector. All ligation reactions were 

incubated overnight at 16°C. Five µl of each ligation reaction was transformed into NEB 5-alpha 

E.coli as described. Three different ligases were tested: Promega T4 DNA ligase (1U/ 10µL), NEB 

T4 DNA ligase (400U/ 10µL) and Thermofisher T4 DNA ligase (0.5 and 2.5U/ 10µL). Different 

units of ligase activity are used between suppliers, so unit concentrations were based on the 

manufacturer’s protocols. Reactions were trialled with 100ng of vector, and scaled up to volumes 

of 200µl. Ligation reactions were cleaned up with Qiagen columns and eluted DNA at 50, 100 and 

200ng was transformed into E.coli. Positive controls with undigested pYOH366 and negative 

controls with digested and phosphorylated vector were included. 

Final gDNA digestion and ligation protocol for pYOH366-g. Fifty µg of genomic DNA was 

digested with 10U of MluCI (NEB) in a reaction volume of 50µl for 5 minutes. The reaction was 

stopped with 10µl of 50mM EDTA (pH 8.0). Digested DNA was purified straight from the reaction 

using 5 Qiagen columns. One µg of each reaction was run on a gel to check sizing - the size range 

of fragments was between 70 to approximately 2000bp, with the strongest signal around 250 to 

300bp. Fifty µg of pYOH366 was digested with EcoRI-HF, treated with CIP and purified as 

described in the above paragraph. Ligation of the gDNA fragments into pYOH366 was carried out 

in molar ratio of 1:3 vector:insert. Five µg of vector was used in a 500µl reaction overnight at 

16°C. Two reactions were performed – one with the gDNA fragments at an average of 250bp and 

one with fragments at 300bp. Each reaction was cleaned with a Qiagen column and eluted into 30µl 

of nuclease free water. Eighteen transformations into NEB 5-alpha E.coli were carried at with 

200ng of product per transformation. Following recovery in 1ml of SOC, transformations for each 

reaction were pooled. For each, 3 x 25µl was spread onto 3 LB-agar plates with 100µg/ml 

ampicillin. The remaining transformation culture was spread onto plates at 200µl per plate. Plates 

were left to incubate overnight at 37°C. Colonies were counted from the 25µl plates and used to 

calculate the total number of colonies for each reaction. Based on the average size of the fragments, 

number of colonies was used to calculate the genome coverage based on a genome size of 80.5 

Mbp using the equation: 

 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑝) 𝑥 2 𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑛𝑒𝑠

𝑔𝑒𝑛𝑜𝑚𝑒 𝑠𝑖𝑧𝑒 (𝑏𝑝)
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Colonies from all plates were scrapped off, pooled and a plasmid maxiprep carried out according to 

Yan and Burgess (2012). In addition size of inserted fragments was checked by Phusion PCR using 

forward primer CAGGAGCTGGTCAAGTTCAG (Tm = 61.8) and reverse primer 

TTTGTCGGCGGCTATTTCTC (Tm= 62.2) as well as digest of pYOH366-g with EcoRI.  

Generating pYOH1-TF 

The SITMyb gene including a 3’ His-tag, previously described for overexpression in F. cylindrus 

(from +2107 to +4872 of the JGI transcript) and the Myb domain (+3517 to +3732) were cloned 

into pYOH1, downstream of, and in-frame with the HA-tag (Figure 4.4). Inserts were amplified 

from pAGM_SITMybOE_IR using Phusion DNA polymerase (NEB) as previously described. 

Primers for SITMyb incorporated XmaI and XhoI sites at the 3’ and 5’ ends respectively, whilst 

primers for the Myb domain incorporated EcoRI and XhoI sites (Table 4.5). One µg of each PCR 

product was double digested with their respective restriction enzymes for 4 hours at 37°C in 1x 

cutsmart buffer in a 50µl volume (NEB). At the same time 10µg of pYOH1 vector was double 

digested with either XmaI/XhoI or EcoRI/XhoI in 50µl. Following digestion of the vector, 6µl of 

Antarctic phosphatase reaction buffer and 2.5µl of Antarctic phosphatase were added to the 

reaction and further incubated for 30 minutes at 37°C. The phosphatase was inactivated by heating 

at 80°C for 2 minutes. All vector and PCR reactions were run on a gel, excised and purified. The 

purified PCR products and vectors were ligated in 20µl reactions with T4 DNA ligase (NEB) using 

a 1:3 vector:insert molar ratio and 100ng of vector. The reaction was incubated overnight at 16°C 

before transforming into NEB 5-alpha competent E.coli (NEB) according to manufacturer’s 

instructions. Clones were screened by colony PCR as previously described using either the Myb or 

SITMyb primer sets from Table 4.5. Plasmids from clones were also screened by restriction digest 

with XmaI and XhoI for pYOH1-SITMyb and EcoRI and XhoI for pYOH1-Myb. pYOH1-SITMyb 

was sequenced using primers 5, 6 (Table 4.5) and 16 (Table 4.3). pYOH1-Myb was sequenced with 

primer 5 (Table 4.5). 

 

 

Table 4.5. Primers for generating and screening the pYOH1-TF constructs. Primers 1-2 

amplify the SITMyb sequence for pYOH1-SITMyb, primers 3-4 amplify the Myb domain for 

pYOH1-Myb and primers 5-6 were used to screen the constructs. 

 

Number Primer Sequence Tm (°C)

1 R_YIH_SITMyb F atcccggg ATGAAAACGGCGAATGACAA 60.6

2 R_YIH_SITMYb R atatctcgag TTAGTGATGATGATGATGATGCAC 60.8

3 R_YIH_Myb F atattgaattc gaGGAAAATGGACGCCCGAAGA 64.2

4 R_YIH_MYb R atatctcgag TTAGTAGTCTTGTTTATACTTTTTACATGTC 59.2

5 pYOH1-TF seq F AACTATCTATTCGATGATGAAGATACC 60.3

6 pYOH1-TF seq R TGCACGATGCACAGTTGAAG 62.9
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Figure 4.4. Vector map of pYOH1-SITMyb. Created with SnapGene. 

 

 

Figure 4.5. Vector map of pYOH366. Created with Snapgene. 
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Yeast strains and growth conditions 

Yeast strains W303 (MATa and MATα) were purchased from GE Dharmacon and cultured 

according to the Yan and Burgess (2012) protocol. 

Materials for YPDA media were sourced from Sigma-Aldrich as were indiviudal amino acids. 

Yeast nitrogen base, Synthetic dropout media (SD -Ade-Trp-Ura and SD - Ade-His-Trp-Ura) and 

5-Fluoro Orotic Acid were sourced from Formedium. 

Transforming the gDNA library and the pYOH1-TF constructs into yeast. 

Transformation of pYOH366-g into the MATa strain was carried out according to Agatep et al. 

(1998), protocol 1. Briefly, cells were made competent by treatment with LiAc and transformed 

using heat shock and 1µg of pYOH366-g per transformation. 19 transformations were carried out. 

Transformations were then processed according to Yan and Burgess (2012). Transformations were 

pooled and 5 100µl aliquots at a dilution of 1-100 were spread onto SD -Trp plates. These were 

used to calculate transformation efficiency. The remaining cells were divided between 10 large SD 

-Trp plates with 5 FOA, grown and harvested according to the protocol. 

pYOH1-SITMyb and pYOH1-Myb were transformed into W303 MATα according to the protocol 

with the exception of pTpPuc3 being used to deliver the HIS3 cassette instead of pRS313-HIS3. 

This produced MAT α-pYOH1 SITMyb and MAT α-pYOH1 Myb. Briefly yeast cells in log phase 

were made competent by treatment with LiAc, and 0.1µg of each pYOH1-TF construct and 

pTpPuc3 were co-transformed into cells by heat-shock. Positive clones were selected on SD-His-

Ade plates.   

Mating of the MATa and MATα yeast strains and screening of the transcription factor binding sites 

was carried out according to the protocol. Due to a poor mating efficiency for Myb strains, only 

SITMyb was carried forward for screening. Colony PCR was performed on clones which were 

white on -Ura plates, sectioning on -Trp plates and pink or showing no growth on 5-FOA plates. 

Several other colonies which showed the correct colour on two plates but not the third were also 

screened. Colony PCR was carried out by touching a toothpick to a colony and resuspending in 

20µl of 0.02M NaOH and heating at 99°C for 10 minutes. One µl of the treated sample was used in 

PCR reaction with Go-Taq polymerase according to the manufacturer’s protocol with the addition 

of betaine to a final concentration of 1M. Forward primer pYOH366_F 

(CAGGAGCTGGCTAAGTTCAG) and reverse primer pYOH366_R 

(TTTGTCGGCGGCTATTTCTC) were used to amplify the insert with an annealing temperature of 

53°C and an extension time of 3 minutes. Forty-eight colonies in total were screened. Following 

PCR, products were sequenced using P3 described in the protocol. 

Checking for expression of the transcription factor/ transcription factor domain in yeast. 

Proteins were extracted using a mixture of methods from the Clonetech xTractor Buffer manual 

and the Clonetech Yeast protocols handbook. Six MAT α-pYOH1 SITMyb and 2 MAT α-pYOH1 

Myb cultures were grown to log phase overnight and 12ml harvested by centrifugation at 700 x g 

http://www.formedium.com/5-fluoro-orotic-acid-monohydrate.html
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for 5 min at 4°C. Cells were washed with water and re-pelleted. Cells were transferred to a 1.5-ml 

screw-cap microcentrifuge tube and 400µl of xTractor buffer was added. 320µl of glass beads were 

then added and the sample vortexed in a Mini-Beadbeater (BioSpec) for 1 minute. Debris and 

beads were pelleted by centrifugation at 14000 RPM for 5 minutes at 4°C and the supernatant 

transferred to a new tube. Proteins were stored at -80°C. 

His-tag purification:  Crude protein extracts were run through His-tag purification columns to 

enrich proteins with a His-tag. A Capturem His-tagged Purification Miniprep Kit (Clonetech) was 

used. Briefly, 400µl of Xtractor buffer was used to equilibrate the spin column before loading 

400µl of cleared protein lysate and spinning at 11000 x g for 1 minute at room temperature. 

Columns were washed with wash buffer under the same conditions and protein eluted into 100µl of 

Elution buffer. 

Western blots: Both crude protein extracts and His-tag purified extracts were run on NuPAGE 4-

12% BIS-Tris gels using the X-cell Surelock Mini-gel electrophoresis system (Invitrogen). Protein 

extracts were run for 35 minutes at 200V alongside 5µl of Broad Range, Color Prestained Protein 

Standard ladder (NEB). For westerns using a His-tag antibody, 1-5µl of BenchMark His-tagged 

Protein Standard Ladder was also included. For crude extracts 13µl at 2mg/ml were loaded into 

wells. For His purified proteins 13ul at 40-60µg/ml were loaded. Proteins were transferred onto a 

nitrocellulose membrane according to the X-cell Surelock manual for 1 hour at 30V. Membranes 

were blocked for 1 hour in 5% BSA PBST (1 x PBS with 0.05% Tween 20). Crude lysate from 

both pYOH1-SITMyb and pYOH1-Myb cultures were incubated with HA-Tag (C29F4) Rabbit 

mAb (Cell Signalling), overnight at 4°C. A 1:1000 dilution was used in PBST with 5% BSA. 

Crude lysate and His-tag purified proteins from pYOH1-SITMyb cultures were incubated with a 

HIS-antibody as described earlier for SITMYb overexpression in F. cylindrus. Membranes were 

washed 3 x in PBST for 10 minutes each on a rocker. An anti Rabbit IgG HRP tagged secondary 

antibody (Promega) at a dilution of 1:2500 in PBST was added to membranes for 1 hour at room 

temperature, and washed 3 x in PBST for 10 minutes each.  Blots were visualised by adding ECL 

Western blotting substrate (Pierce) for 2 minutes and chemiluminscence imaged in 30 second 

intervals for up to 5 minutes. 

Results and Discussion 
Sequencing of the F. cylindrus genome revealed a large gene with both a SIT and a Myb domain, 

previously unseen in other sequenced diatoms. Myb transcription factors are some of the most 

prevalent in the Stramenopiles (Rayko et al., 2010) whilst silicon transporters play an important 

role in silicon acquisition (Hildebrand et al., 1997; Thamatrakoln and Hildebrand, 2008). 

Furthermore SITs are the first proteins in diatoms shown to bind silica (Hildebrand et al., 1997) and 

may have a role in sensing silicic acid and regulation of cell cycle progression (Shrestha and 

Hildebrand, 2015). If SITMyb is a transcription factor that is able to either bind silicic acid or 

regulatory protein involved in silicon sensing, presence or absence of the substrate may alter its 
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activity. Given the domains present in the SITMyb gene, it is possible that it regulates genes 

involved in silica metabolism.  

In order to investigate this hypothesis, several different methods have been performed. Initially the 

gene model was investigated, through both in-silico and in-vitro methods. This was followed by 

cloning the gene into F. cylindrus under the control of a highly expressing FCP promoter to 

observe differences in phenotype upon overexpression. Finally, inverse yeast-1-hybrid was carried 

out to determine potential binding sites. The above methods need further work for more conclusive 

results, however, preliminary data and development of methods should be useful for further 

investigation of this gene, and potentially other F. cylindrus transcription factors.  

Modelling the SITMyb gene 

Two alleles of the SITMyb gene are present (ID 233781 and 250586) in the F. cylindrus genome. 

The later has an incomplete sequence with a section missing in the middle of the gene, just after the 

start of the first intron. As a result, this chapter largely concentrates on allele 233781 (Figure 4.6). 

Alignment of alleles (Appendix Figure 1) showed high conservation after the 1st intron (99% 

identity from 2832-5288bp, based on 233781), with an increase in divergence at the beginning of 

the gene (87% identity from 1 to 1881 bp). SIT and Myb domains are found in the highly 

conserved region and show 100% identity between alleles. 

Blastn searches gave hits with low coverage of the gene at 5%. Along with the Myb domain, which 

showed homology to Myb domains in higher plants, several hits from 3 short regions were found. 

Region 720-821 bp showed homology (78% identity) to a hypothetical protein from Salpingoeca 

rosetta, a silicifying choanoflagellate, as well as homology to a hypothetical protein from 

Plasmodium sp. The sequence from 2279-2329 had a 90% identity to a putative Na+/H+ exchanger 

in Eimeria acervulina, a parasitic apicomplexan. This may have implications for the function of the 

SIT domain, as silicon transport in diatoms is sodium dependent (Curnow et al., 2012; Hildebrand 

et al., 1997). Apicomplexans such as Eimeria or Plasmodium are part of the alveolates. Algae have 

complex evolutionary origins involving multiple endosymbiotic events. One theory for diatom 

evolution is that several groups of algae including diatoms, cryptophytes, coccolithophores and 

dinoflagellates are part of larger group called the chromalveolates, with an ancestral alveolate host 

involved in a secondary endosymbiotic event which later diverged into these main groups 

(Cavalier-Smith, 1999). It is therefore possible that part of the SITMyb gene may have origins from 

the heterotrophic host.  

Finally, the region from 2484-2567 shows homology (84-86%) to several different genes from 

Eimeria sp, including a putative ATP synthase, a ZIP zinc transporter and a DEAD/DEAH box 

helicase. This sequence also shows an alignment (79%) to a putative CCAAT transcription factor 

in Plasmodium falciparum. The presence of a zinc transporter domain is interesting as it has been 

suggested that silicic acid may be bound via a zinc atom (Grachev et al., 2005; Sherbakova et al., 

2005), whilst homology to DNA binding proteins such as helicases and transcription factors may 
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be linked to transcriptional activity of the SITMyb gene. MXD motifs, where X = L or I, found in 

several silicon transporters, have been proposed to bind zinc which in turn may bind silicic acid 

(Grachev et al., 2005, 2008; Sherbakova et al., 2005), however no MXD motifs are present in the 

233781 gene model (Figure 4.6) or in the sequenced part of the 250586 allele. GXQ motifs (X= 

Q,G,R or M) have also been associated with binding of silicic acid in silicon transporters 

(Thamatrakoln et al., 2006) but based on ClutalX alignment, are not typically found in the domain 

associated with the SITMyb gene. However, a GXQ motif can be seen downstream of the Myb 

domain (Figure 4.6) and a GKQ motif found within the Myb domain may also be worth further 

investigation (Paul Curnow – personal communication). Another interesting motif in the SITMyb 

gene is the stretch of proline residues found at the beginning of the gene (Figure 4.6). Stretches of 

amino acid repeats can be associated with transcription factors (Rado-Trilla et al., 2015) and 

Gerber et al. (1994) found that fusing runs of proline or glutamine to the binding domain of a 

GAL4 factor led to activation of transcription. For proline, in cell transfection assays, 10 residues 

gave the highest activity. A slightly shorter repeat of seven residues can be seen in the SITMyb 

gene. 

MPRVAKNFDKYLLTKEVPDSPNGTGITKKNIEHIRVQWDYELEDTTRVIYHRFRNQTEYEKYHNNKVSQGVRKRNGLYETGQKLRK

KKKKEDDDENMTTDGTTTTTTTKIGSTVAAVAVAVAEKPSSTSSLLSLKKKASALASAAVGTTTMTDSNDNAGVSTYEDGIDAGLP

STTSYHCQPIVGTRLVITPSNIPPPPSPPLQaKEHDTMEATTTGSPPPPPPPLGKTIIQTTHKDGNDDEVVVVEEPAKTASPSALSTST

TTAATTAATTATATSLIIDLTIDDDPDNDVVGGSLVPARAVESKGKPKMKRAKRQMLPLNRRKMQDEEADNNNDVVGGSRASSK

LLRMEMIMKLPTAEELKAESIVINDVNDHDILMGSRKCNKHPGNKVYRDIVRKYQPLLEKETIGDRAIVVSMVIDHIHDQIGGRFLK

VNSANQWHVVPRLDVITKITKALVELGNPAIFRLALPKSVPTSTMLESIGESIGQSIVGQDNKRPKRKCTLPKVIEEQVDDEPMEKKF

TKTTTMRERSSRIEDEKITKIDDDDAESNKNDDNNDDHHHLRMVATVVEEEEENGFSSIPTTAAAAVMTNANSTADADSIIPTSW

KDWVSRVNNLVESSPSCMDYSPASERYKILLDYIPMEDIVSQIRYKHMMYQIFISDRPGDRECIHAFPNQISFNSIEKKYNKQISNGK

SVKKKRSQLQMKTANDKYRSKKKRKTDASDAFRTTVGSIQEEQAARATTITTGIALEEKNNEYLELFTAAAAAADTTTATATATATK

EVACEEIKRALSNAGIAAVAKQNDTNASVITQTQKEYTRLPPHRTSAARNNNNNDNNNNNNDNNSTKHQQQEQQKSMTASTR

GQDEETNATPVSNQYPIAIAATVDTTSQLKPQTKPLSHMQGAYSSRREKVMANIKELRSQISQATFDEEKIAFEQAFKLEIESLGRLN

KDEMKSKLLFEGDKIDVIEEAELVNGSNASNPTTNNVNLLYPPYNQFGMEMMANDFGCGGSANIGVIGGISHGFGASGNLGAPY

SASFYAQQQMYQYSVVHPHQIVHQHPYFQHHHHKHQAIAVTNTDRPDDPFIMMDPAIPDGSSDKNKREQNENENRGGCTAVT

ADIATHSLPLSEEHTVAQQDIAQDDSIISDAVDGKNTTGSDGNADANFNANTKPTATTKGKWTPEEHEEVAKAMAKYGPRVSGK

QISIEFVKGRTPLQLNSYINRKKSELLATCKKYKQDYCDESEDDDDGGTIRGLKFHQTRSCDRDGDDKKTTNTDVEKNVQYRNAERE

LRRTKDGCLLPKGGKEKYLKDDGTYRRPDGARPFGLSWHKIRGLWVPSERLEDNDENNYDDNINKSGYTNYSSGDTIAKATSSNCE

QSYDRSALPRGLKTHIRDPVGGCYWTPLGSRRKLTAKEASRKSKKRKPGRQSAGAKTKEKETRALAYVTPLEILQGKKPTPSNLFLSL

HSVIPEAAMNENFKDDDDDDDDDEGYESWTSGSWCLLQAQRDASASAVAESEAKKSAPDEEEQQVRKCKSIAAEAKAKERERIG

ATCTGNQKDESANCGDDSSQDSSKRRRLSICEQSRIINPVQKINVQRKKKKSFLKAKQDARDYMLAKYGQGNEEEEIVMV 

 

Figure 4.6. SITMyb gene model of 233781.  The silicon transporter domain (SIT) is highlighted in 

green and the Myb domain in blue. A domain with homology to Myb DNA-bind 6 is underlined. 

Potential nuclear locailsation signals are shown highlighted in yellow and GXQ motifs are shown in 

red. Predicted coiled-coil motifs are double underlined.The proline repeat is shown in purple. 
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To access and act on the genome, transcription factors need to be transported to the nucleus. 

Several mono and bi-partite nuclear localisation signals (NLS) were found in the SITMyb gene 

suggesting that it may be localised to this organelle.  

Blastp searches revealed hits to SIT and Myb/SANT domains (Figure 4.6). Hits for Myb placed the 

domain at 45-66 amino acid residues. Myb transcription factors can contain, 3, 2 or 1 Myb domains 

of around 50 amino acids. Plants often have transcription factors with a single Myb domain and 

diatoms P. tricornutum and T. pseudonana  show genes with 1-3 Myb domains (Rayko et al., 

2010). Many of the hits against the Myb domain were from hypothetical proteins and transcription 

factors (TFs). The latter included Myb TFs from cryptophytes, chlorophytes and several higher 

plants. 

The SIT domain showed homology to diatom silicon transporters from F. cylindrus, Cylindrotheca 

fusiformis and Nitschia alba. The protein sequence of the SIT domain was aligned to several 

diatom silicon transporters. This showed alignment towards the C-terminus of the diatoms SITs 

after the 10th transmembrane domain (Figure 4.7).  

 

 

Figure 4.7. ClustalX alignment of the F. cylindrus SITMyb SIT domain and C-terminal 

regions of closely aligned diatom SITs. Default ClustalX colours used 

(http://www.jalview.org/help/html/colourSchemes/clustal.html). * indicates a single conserved 

residue, : indicates a fully conserved ‘strong group (gonnet PAM250 matrix score>0.5)’ and . 

a fully conserved weak group (score<0.5). 

 

The phylogenetic tree produced for this region (Figure 4.8), shows that the SITMyb domain 

clusters with SIT5 from F. cylindrus and SIT6 from Pseudonitzchia multiseries. In addition, this 

region contains a coiled-coil domain, also found in Thalasiosira pseudonana and Phaodactylum 

tricornutum SITs (Shrestha et al., 2012).  
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Figure 4.8. Neighbour joining tree of C-terminal SIT regions. Cf; Cylindrotheca fusiformis, 

Fc; Fragilariopsis cylindrus, Na; Nitzchia alba, Pt; Pheodactylum tricornutum, Sc; Skeletonema 

costatum, Tp; Thalasiosira pseudonana. 

A total of 6 coiled-coil motifs can be found in the SITMyb gene (Figure 4.6). Coiled-coil domains 

which are typically intracellular (Thamatrakoln et al., 2006) are associated with transcription 

factors (Mason and Arndt, 2004) and protein-protein interactions (Mier et al., 2017), both of which 

can be linked to transcriptional regulation. In Arabidopsis thalinania and Chlamydomonas 

reinhardtii there is a Myb TF with both a single Myb domain and a coiled-coil. This TF is involved 

in phosphate regulation and is hypothesised to be part of a larger regulatory network, with signal-

transduction occurring upstream, and activity determined either by post-translational modification 

or presence of a co-regulator which responds to phosphate starvation (Rubio et al., 2001). Currently 

only silicon transporters have been shown to interact with silicic acid (Hildebrand et al., 1997; 

Shrestha and Hildebrand, 2015) and Shrestha and Hildebrand (2015) point out that some 

transporters are known to act as sensors. Given the presence of a silicic acid binding motif and the 

SIT domain there is possibility that SITMyb may be directly interacting with silicic acid. 

Alternatively, the coiled-coiled domain in the SIT region may form protein-protein interactions 

with intermediates, possibly involved in sensing silicon.  

The SITMyb protein was modelled with both Phyre 2 and Swiss Model. Both gave strong models 

for the helix-turn-helix of the Myb domain. The majority of hits (top 19/20) modelled with Phyre 2, 

aligned to Myb domains of transcription factors and DNA/RNA binding domains. For the Myb 
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domain highlighted in blue (Figure 4.6) 89% of residues were modelled with 96% confidence. For 

the underlined Myb domain 75% of residues were modelled with a confidence of 90% (Figure 4.9). 

As with Phyre2, Swiss model showed hits which corresponded to Myb proteins, C-Myb and DNA 

binding with a high coverage (>90%). Similar models to Phyre 2 were created. The majority of the 

remaining protein was unmodelled due to low identity. Modelling of the SIT domain independently 

with Phyre 2 led to 31% of residues modelled with a 39.5% confidence. Only three hits over 26% 

confidence were returned. These were linked to hydrolase inhibition or protein binding. The 

highest identity hit for Swiss model was for a DNA binding protein at 30.77%. 

These results suggest that there’s a high chance the SITMyb gene contains a Myb domain, and is 

therefore likely linked to transcription. The majority of the protein could not be modelled to a high 

confidence, which is unsurprising given that genome, transcriptome and proteome analysis of 

diatoms often show a high number of unknown genes (Armbrust et al., 2004; Frigeri et al., 2006; 

Mock et al., 2017, 2008; Shrestha et al., 2012), and models rely on structures of previously 

determined proteins. 

 

  

Figure 4.9. Phyre 2 protein model of the Myb 

domain: GKWTPEEHEEVAKAMAKYGP-

RVSGKQISIEFVKGRTPLQLNSYIN. Blue 

represents the N terminus and red the C 

terminus. Modelling shows the domain follows a 

helix-turn-helix structure with homology to Myb. 

89% of residues are modelled with a 96% 

confidence. 

 

 

Regulation of SITMyb alleles 

Only two conditions in each allele showed strong up or down regulation against the control, 

although these conditions are different for each allele; cold and high CO2 for 233781, and Iron 

limited and prolonged darkness for 250586, suggesting that SITMyb alleles are differentially 

regulated (Figure 4.6). Both alleles show low expression under control conditions (233781 – rank 

12366 and 250586 – rank 19147). Low expression of Myb genes can also be seen under a variety 

of different conditions for P. tricornutum (Rayko et al., 2010).  
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Table 4.6. LogFC values from F. cylindrus RNA seq data produced by Strauss (2012) under 

different growth conditions for SITMyb alleles 233781 and 250586. LogFC values above 1 or 

below -1 are shown in red. All LogFC values above 0.77 or below -0.77 have p values below 

0.01. 

 

RACE and amplification of the transcript 

Rapid amplification of cDNA ends (RACE) was performed for both the 3’ and 5’ end of each 

SITMyb allele. RNA-ligase mediated (RLM) RACE was used to assess the 3’ end and both RLM-

RACE and template switching oligo (TSO) RACE were used for the 5’ end.  

Transcript ends appear to be variable depending on the RACE experiment. Start and end position 

vary depending on the experiment replicate, primer set and method. Products from each RACE 

PCR have multiple bands and often show smears (Figure 4.10, lanes 5 and 6; Figure 4.11). 

Additionally, non-specific products can be seen, as evidenced by products produced by PCR with a 

reverse primer that sits downstream of the RT primer (Figure 4.11, lane 3). The JGI gene model 

puts the size of the transcript for allele 233781 at 4875bp and allele 250586 at 5004bp. There is a 

gap in genome coverage towards the 5’ end for 250586, however, so the latter may not be accurate. 

5’ RACE products put the start of transcription between -219 to +2910, whilst 3’ RACE products 

put the end of the transcript between +3279 to +5054. If RNA or cDNA is damaged or truncated 

before the adaptors have been added this can lead to shorter products which tend to be favoured 

during PCR. Amplification of the full transcript as a single PCR product either from cDNA or 

gDNA was unsuccessful, despite successfully testing all primers by amplifying shorter fragments. 

This may be due to the length of the SITMyb gene or secondary structure. Taking into account the 

length of the RT product and outer PCR the longest products covered 3569bp from the 5’ end and 

3359 from the 3’ end of the JGI model. Internal, overlapping, fragments of the SITMyb gene 

amplified from cDNA produced during 5’ and 3’ RLM RACE show clear bands at the correct size. 

Some multiple banding can be seen, however, the strongest band corresponds to the expected size. 

Internal fragments cover positions +1296 to +4023 for allele 233781 and +1479 to 4168 for allele 

250586. The full transcript appears to be covered, with the banding of some RACE products 

extending into the 5’ and 3’ UTRs. However several products finish within the gene model and 

results are inconsistent. This may be due to non-specificity, truncated products, splice variants or 

differences in the final transcript and JGI gene model.  

 

Allele Fe vs Ctrl Dark vs Ctrl Cold vs Ctrl CO2 vs Ctrl Blue vs Ctrl Si vs Ctrl Red vs Ctrl Heat vs Ctrl -0.7<PCC>0.7

233781 0.41 0.24 -1.53 -2.18 -0.26 -0.78 0.78 -0.60 875

250586 1.02 2.87 0.43 -0.13 -0.10 -0.60 0.97 -0.70 7418
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Figure 4.10. PCR products from RLM-RACE and internal fragments of the SITMyb gene 

amplified from cDNA. Products from allele 1 (233781) are shown in the upper panel and 

products from allele 2 (250586) in the lower panel. Lanes adjacent to numbered lanes are the 

equivalent negative no target control. Lanes 1-4) Internal fragments 1-4, 5) 3’ RACE, 6) 5’ 

RACE.  See Table 4.2 for more details on fragments. 

 

  

Figure 4.11. PCR products from TSO RACE. 

1) RT with 5’3 and PCR with SIT1, 2) RT 

with R02 and PCR with SIT1, 3) RT with 5’3 

and PCR with SIT2, 4) RT with R02 and PCR 

with SIT2. 

 

 

To further examine the transcript in comparison to the JGI gene model, RNA-seq coverage was 

visualised using IGV (Figure 4.12). The 3’ end is highly covered in both alleles across all 

conditions. As the sequence progresses to the 5’ end coverage is reduced. This may be due to 

unequal expression across the gene, possibly from a splice variant towards the 3’ end. Alternatively 

this may be an artefact from sequencing. Coverage bias towards the 3’ end is often seen when 

cDNA is generated from the polyA tail (Nagalakshmi et al., 2008), however, in this case first strand 

synthesis was performed on total RNA using random hexamers (Mock et al., 2017). It has been 
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Figure 4.12. F. cylindrus RNA-seq data produced by Jan Strauss under multiple conditions 

visualised in IGV. The upper panel is allele 233781 and the lower panel is allele 250586. Due 

to its position on the negative strand 233781 is reversed. JGI gene model track: exons are 

shown by the blue bar and introns by the blue line. Arrows indicate direction of the gene. The 

gap in the genome sequence for allele 250586 is indicated. Red light, blue light and silicate 

limited data were produced separately to the other conditions.  

 

found that higher GC content may increase coverage when using random hexamers (Dohm et al., 

2008; Zheng et al., 2011), which may help to explain the differences in coverage across the gene, 

given that GC content in the sequence after the Myb domain is 5% higher than before it. 

RNA-seq data (Strauss, 2012) and sequencing of internal fragments confirm the sequence 

compared to the JGI transcript, including splicing of the introns. However due to variability and 

quality of the 5’ RACE results, as well as low RNA-seq coverage towards the 5’ end, the start of 

the gene is poorly characterised.   
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Building a SITMyb overexpression construct and transformation into F.cylindrus. 

Because RACE data is fairly inconclusive, the 5’ end is poorly characterised and there were 

difficulties amplifying the full 5kb gene either from DNA or cDNA, it was decided to clone a 

shorter sequence than the predicted JGI model. The gene was amplified from an in-frame ATG of 

allele 233781 after the first intron, from a point which displayed clear expression in the RNA seq 

data (from +2398 to the end of the predicted gene +5536). This sequence includes the highly 

conserved region between alleles and both the SIT and Myb domains. SITMyb was amplified from 

gDNA rather than cDNA due to uncertainty with the transcripts following RACE. Also as an 

endogenous gene it is expected to be correctly spliced.  

Even with a truncated gene, PCR was fairly inefficient when amplified in one segment. As a result 

the sequence was amplified in three parts and assembled with the FCP promoter and terminator 

into puc19 using Gibson assembly. The pucFCP:SITMyb construct was then used as the template 

for site directed mutagenesis to remove BsaI and BpiI sites, before cloning the cassette into a level 

1 Golden-gate vector. A BpiI site within the intron was removed both by inducing a point mutation 

and by removing the entire intron. Domesticated SITmyb cassettes were then combined with 

FCP:shble into level 2 backbones to create the overexpression constructs. A CEN-ARS-HIS 

module was also included, however no follow through work, as yet, has been carried out in relation 

to this sequence. Both the variants with and without the intron were cloned, with the final 

overexpression (OE) constructs designated pAGM_SITMybOE and pAGM_SITMybOE_IR, 

respectively. Constructs were transformed into F. cylindrus as described in the transformation 

chapter. 

Screening F. cylindrus clones with SITMyb OE construct 

Of the 9 colonies that were picked, 5 of them were successfully transferred from plates and grown 

in liquid selective media. Four of these were screened; 1 from SITMybOE and 3 from 

SITMybOE_IR. The fifth appeared on plates after initial screening. Screening was carried out by 

PCR to check presence in the genomic DNA, by reverse transcription PCR to check presence of the 

transcript and by western blotting to check for the protein. PCRs on genomic DNA and cDNA were 

carried out with a reverse primer targeted to the chimeric His-tag in order to enrich for the 

overexpressed gene rather than the WT SITMyb.  

Figure 4.13 shows results from PCR of the genomic DNA using a forward primer at the end of the 

promoter to amplify the full OE SITMyb (a) and a shorter fragment from within the coding region 

(b). Both colony 1 from SITMybOE and colony 2 from SITMybOE_IR show the correct band in 

both PCR reactions. Additional bands can also be seen across samples, however some of the lower 

bands also occur in the WT, suggesting that the primers may also bind non-specifically to a 

sequence in the WT genomic DNA. One other colony, SITMybOE_IR 6, also shows the correct 

band for the shorter PCR, however a smaller product than expected is seen for the full length 

SITMyb, suggesting that part of the earlier sequence may be missing.  
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Figure 4.13. Screening for the overexpression cassette in F. cylindrus clones via PCR of 

gDNA. a) Used forward primer prom_SIT1 F, starting amplification within the promoter. b) 

Used forward primer SIT1_SIT2 F, amplifying the product from within the coding region. 

Both PCR reactions used reverse primer SITMyb OE  R which anneals to the His-tag, 

specific to the OE cassette, at the 5’ end of the coding region. Lanes: 1) SITMyb_OE 1, 2) 

SITMybIR_OE_2, 3) SITMybIR_OE 4, 4) SITMybIR_OE 6, 5) Wildtype, 6) Positive control 

(pAGM_SITMybOE_IR), 7) Negative control. 

 

Reverse-transcription (RT) PCR of a 2000bp fragment was then carried out to check presence of 

the transcript in SITMybOE 1 and SITMybOE_IR2 (Figure 4.14). Both colonies show a band at the 

correct size as well as two smaller fainter bands. The two lower bands can also be seen in the WT 

(not shown) suggesting that the primers may bind non-specifically to the WT gDNA. RT, DNA and 

no target controls were clean (not shown), suggesting that the product was amplified from RNA. 

Sequencing of the higher bands was concurrent with the expected transcript. 

 

Figure 4.14. RT-PCR of overexpressed SITMyb. a) PCR of cDNA from overexpression cell 

lines. The forward primer lies within the SITMyb coding region and the reverse primer 

anneals to the His-tag sequence at the 5’ end for amplification of transcript produced from 

the overexpression construct. 1) Negative RT control. 2) SITMyb_OE 1. 3) SITMybIR_OE_2. 

4) Negative no target control.  
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Along with the genomic DNA PCR, this suggests that the overexpression cassette has been 

successfully introduced and expressed in the overexpression strains. However, no protein at the 

correct size, could be seen in the westerns blots either from crude lysate or from His-tagged 

purified protein (Figure 4.15). Both the ladder and the positive controls were clear suggesting that 

labelling was successful. In addition a very faint band just above 50kDa could be seen for all His-

tag purified samples processed with Xtractor buffer, including the WT, which suggests that a 

protein is present in the WT which interacts with the His-tag antibody. Protein concentration 

following His-tag purification was similar between OE cell lines and the WT suggesting that either 

low concentrations of His-tagged proteins were present in the OE cell lines or carryover of non-

tagged proteins occurred.  

At this point, given that there was no evidence of overexpression of the SITmyb protein, efforts 

were concentrated on the yeast-1-Hybrid method. It is worth mentioning however, that as seen later 

in this chapter, expression of the same SITMyb was achieved in yeast. The SITMyb expressed in 

yeast, had a HA-tag at the N-terminus of the gene in addition to the His-tag at the C-terminus. No 

protein could be seen when probing blots with the His antibody, however a clear correctly sized 

protein was revealed when probing with a HA antibody (Figure 4.18).  

It appears that the His-tag in the SITMyb gene may not be functional or accessible for probing. If 

denaturing conditions are required to expose the His-tag, this is unlikely to be seen when using the 

denaturing buffer as His-tag purification columns did not appear to be compatible with the buffer 

given the low yield returned compared to Xtractor buffer. Denaturing conditions are applied during 

westerns, however if the His-tag is not accessible under standard conditions, then purification may 

be removing the target protein along with other non-tagged proteins. No His-tagged proteins from 

samples could be seen in the blot with crude lysate which indicates that either no protein is present, 

the His-tag is not functional or protein is present in low concentrations and needs to be enriched. 

Given the lack of signal when blotting with a His antibody, it’s not possible at this point to say 

whether or not the SITMyb protein is overexpressed in the F. cylindrus OE cell-lines. Initially the 

His-tag approach was chosen as SITMyb is a large gene and there were concerns about maintaining 

functionality and handling a large gene with a fused protein. In addition His-tagged proteins have 

previously been expressed and purified from transformed diatoms (Apt et al., 2002; Joshi-Deo et 

al., 2010) 

In-vivo His targeted labelling approaches such as Ni2+-nitrilotriacetate (Ni-NTA) probes (Lai et al., 

2015) were also considered for visualising the overexpressed SITMyb, however given the current 

results it may be worth creating a SITMyb:egfp fusion. If there are issues with size and 

functionality, it may be possible to include a cleavage domain at the fusion junction (Wang et al., 

2015), to separate the protein post-translation. It may also be worth using a HA-tag at the N-

terminus, as seen in the yeast lines, to determine presence or absence of protein before further 

phenotyping. 
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Figure 4.15. Western blots of His-tag purified proteins from SITMyb overexpression and WT 

cell lines. Lane 1) Colour protein standard, 2) Benchmark His-tagged standard, 3-4) WT, 5-6)  

SITMybOE 1, 7-8) SITMybOE_IR 2, 9) 5ug positive control, 10) 0.25ug positive control. Odd 

lanes between 3-8 were extracted with Xtractor buffer and even lanes with denaturing buffer. 

 

Yeast-1-hybrid 

According to JGI, two hundred and fifty eight genes with a Myb domain or Myb-like domain can 

be found in the F. cylindrus genome. This compares to 114 in T. pseudonana and 60 in P. 

tricornutum. The problem with predicting genes controlled by Myb transcription factors by 

searching transcription factor binding sites (TFBS), is that the binding site is expected to occur 

frequently due to the degenerate bases. It is pointed out by Berge et al. (2001), that in yeast a 

potential Myb binding sequence could occur at random, on average every 1024 bp. F. cylindrus has 

a similar GC content to Saccharomyces cerevisiae so it would be reasonable to expect a similar 

random occurrence of this motif. As a result a more empirical method is required to elucidate 

potential binding sites. 

Yeast-1-hybrid was chosen to determine potential TFBS of SITMyb and the Myb domain.  The 

protocol used was closely based on the one described by Yan and Burgess (2012). The method 

involves creating yeast clones containing a gDNA library with fragments cloned upstream of a 

URA3 gene and mating them with clones containing the target transcription factor fused to a GAL4 

activation domain. If the transcription factor:GAL4 fusion binds to a cloned fragment in the gDNA 

library, then the URA3 gene can be expressed, allowing growth on media deficient in uracil. The 

library vector in positive clones can then be sequenced to determine the binding site and target 

gene. Library clones also contain the Trp gene for selection with tryptophan deficient media and 
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the TF clones contain the ADE2 gene for selection on adenine deficient media and pink/white 

colony selection.  

Optimising digest of F. cylindrus gDNA 

F. cylindrus gDNA was digested with MluCI, a restriction enzyme with a 4nt recognition site 

which can cut frequently. Fragment size was optimised by changing enzyme concentrations, 

reaction volume and reaction time. Different methods for stopping and purifying digested DNA 

were also trialled. The optimised protocol can be found within the methods. Figure 4.16 shows F. 

cylindrus gDNA fragmented with 1U of enzyme/10µg with different reaction times. Figure 4.17 

also shows different reaction times but in combination with different purification methods. 

Fragment size was measured by running products on a gel and determining the size at which signal 

was strongest. 

Two gDNA digests were used for the final library preparations. One with a modal fragment size, in 

terms of signal at 250bp and one at 300bp. Fragment sizes ranged from 70bp to 2000bp following 

purification. The protocol calls for fragments to be 200-800bp in length, however extracting 

fragments from agarose gels to reduce the size range, resulted in large decreases in yield and low 

concentrations following elution.  

 

 

 

Figure 4.16. Optimising digest of F. cylindrus gDNA for the Y1H gDNA library. Digest with 

1U MluCI/10µg of DNA for O (1), 2 (2), 5 (3) and 10 (4) minutes, followed by storage on ice. 

Lane 5 shows untreated gDNA. 
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Figure 4.17. Optimising digest of F. cylindrus gDNA for the Y1H gDNA library. Lanes 1, 3 

and 5 were purified with a Qiagen QIAquick, lanes 2, 4 and 6 were purified by isopropanol 

precipitation following digestion. Lanes 1-2 were digested with 1U MluCI/10µg of DNA for 3 

minutes, lanes 3-4 for 5 minutes and lanes lanes 5-6 for 7 minutes. 

 

Furthermore, transcription factor binding sites in yeast tend to bind at around 50-400 bp upstream 

of the transcription start site (Lin et al., 2010) and one study involving characterisation of a leucine 

zipper in P. tricornutum showed binding sites 42-86bp upstream of the transcription start site 

(Ohno et al., 2012). Studies on transcription factors and binding sites in diatoms are 

underrepresented (Matthijs et al., 2016), making it difficult to gauge the fragment length needed. 

For this reason, it was decided to digest gDNA and purify straight from the reaction without gel 

mediated size exclusion. As the majority of fragments appear to be under 1000bp and larger 

fragments tend to clone less efficiently, the chance of larger fragments being incorporated was 

considered to be less of an issue compared to loss of yield from gel extraction. Digests with the 

majority of fragments sizes around 300bp were chosen so that the binding site would not be too far 

from the start of transcription, but also so that the fragment was large enough to give a reasonable 

library coverage. Qiagen columns purify fragments from 70bp. As a result very small fragments 

were removed which may have otherwise been preferentially cloned due to their size. Optimised 

cloning of the gDNA fragments into pYOH366 gave an E. coli library size of 9 x 105 clones. 

Transformation into yeast resulted in 5.8 x 106 colonies. Following sequencing of YIH clones after 

mating and screening, the average insert size was found to be 275bp, which corresponds well with 

the original gDNA digests which gave an average size of 250 and 300bp. An average fragment size 

of 275 equates to a 6.15 times genome coverage in the bacterial library, which is well within the 5-

10 times range suggested by Yan and Burgess (2012). 

Generating pYOH1-TF 

The same SITMyb sequence as used in the SITMyb_IR overexpression contruct for F. cylindrus, 

was cloned into pYOH1 in frame with the GAL activation domain and HA-tag. The His-tag at the 

C- terminus was also included. The individual Myb domain was also cloned into pYOH1. The 

domain was based on data from blastn, blastp and protein modelling seen earlier in the chapter. 
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Transformation into yeast resulted in plenty of white colonies, indicating the presence of ADE2 

and therefore the TF.  

Although several white colonies appeared after transformation of pYOH1-TF into MATα yeast 

strains, transferring these colonies to SD-His-Ade media to grow overnight consistently led to 

slightly pink cultures. A HIS3 cassette is co-transformed at the same time to also allow selection on 

SD-His-Ura plates following mating. This should lead to loss of the pYOH1-TF plasmid (which 

contains ADE2) if the TF is not required for growth on -Ura plates, thereby highlighting false 

positives in which the URA3 gene is functional without the TF by a white to pink colour change.  

The change in colour of white pre-mated pYOH1-TF colonies to pink after picking from initial SD-

Ade-His plates suggests that cells are losing the ADE2 gene and therefore the transcription factor, 

despite the absence of adenine in the media. 

Western blots were carried out on crude and His-tag purified protein lysates from these cultures 

and probed with HA-tag and His-tag antibodies to check presence of the TF. Blots which targeted 

the HA-tag (Figure 4.18) showed a clear band around the expected size of the GAL4AD:SITMyb 

protein in each of the SITMyb samples (lanes 5-10), indicating that the TF is being expressed. 

Additional banding can be seen, however this is also present in the WT, suggesting that several of 

the endogenous yeast proteins are probed by the HA-tag antibody. Samples for overexpression of 

the Myb domain (lanes 3-4) also show a clear band at the correct size, however a faint band at this 

size is also present in the WT. In addition a slightly larger protein with a strong band around 32 

kDa, exclusive to the Myb samples can be seen. Bands which correspond to the WT in these 

samples are present in similar quantities to the WT, whereas the expected band at 24.7kDa is 

stronger in the Myb samples, indicating that the Myb protein may be expressed. Proteins don’t 

always run to the correct size on gels, and post-translational modification can also affect size and 

migration, meaning that the higher, exclusive band around 32 kDa may also be the Myb protein. 

No result was seen when probing the His-tag suggesting that it may be non-functional or 

inaccessible.  

It was decided to carry on with the YIH method using the palest cultures, as Western blots 

suggested the transcription factor or Myb domain were present in at least a population of the 

cultures and changing the pYOH1 vector at this stage was not feasible due to time. In some cases, 

expression of the TF can be toxic to yeast (Zhu et al., 2016), however since white pYOH1-TF 

colonies grew well on SD –Ade-His plates, and subsequent cultures showed expression of the 

protein, this doesn’t seem likely in this case.  
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Figure 4.18. HA-tag western blots with crude protein lysate from SITMyb and Myb yeast 

overexpression cell-lines for yeast-1-hybrid. 1) Broad Range, Color Prestained Protein 

Standard ladder (NEB), a- brightfield, b- chemiluminescence, 2) WT 3-4) W303 pYOH1-Myb 

cell lines, 5-10) W303 pYOH1-SITMyb cell lines. The expected size for SITMyb and Myb, 

with the GAL4 Activation domain and HA-tag is 120.5 and 24.7 kDa respectively.  

 

Mating of yeast cell lines and screening 

Following mating, cells were initially selected on SD-His-Ura plates. Mating efficiency which was 

calculated from dilutions on SD-His-Trp plates, was around 10% for SITMyb cell lines, however it 

was very low for Myb, with only a few colonies present, suggesting that mating may not have been 

successful for the latter. White colonies from Myb SD-His-Ura plates also failed to grow when 

later re-plated out onto SD-Ura media. Mating with strains containing pYOH1-Myb needs to be 

repeated. Just under 200 white SITMyb colonies from the SD-His-Ura plates were transferred to 

YPDA and replica plated on screening plates (Figure 4.19). After transferring to YPDA, around 

75% of clones reverted to a pink colour, suggesting that the ADE2 gene and therefore the SITMyb 

gene was lost after transfer to YPDA. As discussed a lack of selective pressure can lead to loss of 

plasmids, especially when they don’t contain a CEN sequence, as is the case with pYOH1-TF 

(Dani and Zakian, 1983), which may explain the large shift from white to pink colonies at this 

stage. Despite this, the majority of colonies grew on -Ura following replica plating from the YPDA 

plate. True positives, in which URA3 is expressed following binding of the TF to a fragment in the 

gDNA library, should be white on –Ura, Pink on +5-FOA and should section on –Trp plates. 

Presence of +5-FOA is toxic in yeast with a functional URA3 gene and as there is no selective 

pressure for the pYOH1-TF either on +5-FOA or -Trp plates,  ADE2 should be gradually lost, 

leading to only pink cells on +5-FOA and colonies with a mixture of white and pink cells on - Trp. 
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A mixture of different phenotypes occurred across the plates. Table 4.7 describes the different 

variations, frequency and possible explanation for each, along with methods to either verify true 

positives or solutions for false positives. Whilst, white, pink and no-growth phenotypes were seen 

on YPDA, SD -Ura and +5-FOA, colonies on SD -Trp plates showed either no growth or appeared 

as pink or yellow, rather than sectioning.  

As mentioned, absence of adenine when growing colonies with pYOH1-TF plasmids doesn’t 

appear to prevent loss of the plasmid. It has been shown that plasmids in yeast are rapidly lost 

without selective pressure (Dani and Zakian, 1983). This can be reduced but not prevented by the 

presence of a centromeric (CEN) sequence (Dani and Zakian, 1983; Stearns et al., 1990). Dani and 

Zakian (1983) found that plasmids without a CEN sequence were lost at a rate of 21% per 

generation without selection, compared to a rate of 3% when a CEN sequence was included. If lack 

of adenine is not providing adequate selective pressure in the pYOH1-TF cell lines then high rates 

of loss and multiple incubations seen by the samples at this point may have led to loss of the TF in 

a large portion of the colonies. If this is the case then pink colonies may have no ADE2 gene and 

yellow colonies may be due to reversal of the ADE2 mutation. Furthermore pink colonies, which 

are expected to have lost the ADE2 gene and therefore the transcription factor, should not be able 

to grow on –Ura plates. This suggests possible binding of endogenous yeast TFs to gDNA 

fragments, leaky expression of URA3 from the pYOH366-g plasmid, or URA3 expression 

independent of pYOH366-g, possibly by integration into the genome or reversal of the URA3 

mutation found in the original W303 cell lines.  

The presence of white colonies or no growth on 5-FOA certainly suggests that for some colonies 

expression of the URA3 gene is not linked to presence of the transcription factor. In these cases 

white colonies may be due to the presence of the ADE2 gene, possibly through reversion of the 

mutant or integration, rather than from the pYOH1-TF. Colonies with no-growth on 5-FOA suggest 

a URA3 revertant rather than URA3 expression from the pYOH366-g plasmid (either from binding 

of yeast TFs or SITMyb), which should give pink or sectioning colonies under this condition given 

that 5-FOA selects against either pYOH1-TF or pYOH366-g. 

Only 6.5% of colonies were white under –Ura, pink under +5-FOA and either pink or yellow on –

Trp. These are colonies most likely to be true positives. Thirty six genomic DNA inserts from 

clones with the white -Ura phenotype were amplified (Figure 4.20) and sequenced. Of these, 11 

showed inserts comprised of multiple fragments, 25 clones contained a single fragment; 8 showed 

2 concatenated fragments and 3 clones contained 3 fragments. The average insert size was 275bp, 

whilst the average fragment size was 203bp. Twenty of the fragments fell within a coding region 

and 7 within an intergenic region. Six of the latter were upstream of a gene and may be potential 

candidates for binding. Two fragments showed homology to the chloroplast genome, two occurred 
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Figure 4.19. Ura+ yeast one hybrid colonies.  W303a pYOH1-SITmyb and W303α pYOH366-

g were mated and colonies with the Ura+ phenotype selected on –His-Ura plates. Colonies 

were picked, re-plated onto the YPDA plate and allowed to grow before replica plating onto 

SD –uracil (-Ura), +5-FOA and SD –tryptophan (-Trp) plates. Colonies 1-48 (top to bottom, 

left to right) selected for PCR have been highlighted.  

 

in an intronic region and one fragment from a highly repetitive element was present. Several could 

not be identified or showed poor sequence quality. Twelve of the inserts included a consensus Myb 

binding site, designated as YAACKG (Biedenkapp et al., 1988; Ogata et al., 2004). Of the inserts 

with a potential Myb binding site, 4 were located in a potential promoter region upstream of a gene. 

Three of these were unique and sat upstream of genes 23174, 234174 (duplicated) and 182302. The 

first two genes are predicted proteins with homology to hypothetical proteins in P. tricornutum and 

the third is a serine peptidase: peptidase S9 propyl oligopeptidase. This may be interesting as both 

silaffins and silacidins are rich in serine residues (Kroger et al., 2002; Wenzl et al., 2008). 
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However, the colony for this gene, as well as the other non-duplicated colony gave a phenotype of 

white/white/yellow on SD –Ura/+5FOA/ -Trp plates, suggesting that they may be false positives. 

The duplicate colony gave a white/pink/yellow phenotype, so may be a true positive but this needs 

further validation. 

 

 

Figure 4.20. Colony PCR of F. cylindrus gDNA inserts in pYOH366-g, following screening of potential 

SITMyb binding sites in yeast. 

 

Considering the large number of fragments found within a coding region and the low occurrence of 

white/pink colonies on -Ura/+5FOA plates it seems likely that the majority of colonies are false 

positives. It may be that, due to the occurrence or revertants, random integration of selective 

markers, leaky URA3 expression or binding of endogenous yeast TFs, false positives are expected 

to occur. Lack of potential true positives, however makes the false positives more apparent. At this 

stage, it’s difficult to say if SITMyb is able to bind as there are clearly some problems with 

execution of the current method. The most obvious issues to address in the method at this stage, are 

the loss of the TF prior to mating which will reduce the chances of seeing true positives and the 

high number of pink colonies on –Ura plates, which suggests that the URA3 gene is expressed 

independently of the TF. In addition, screening of colonies for the pYOH1-TF and pYOH366-g 

using a method such as colony PCR, may help to determine false positives.  

False positives due to binding of endogenous yeast TFs should be removed during selection on 5-

FOA prior to mating. If clones with a compatible binding site for endogenous TFs are passing this 

screening then it may be necessary to increase concentration of 5-FOA or repeat the screening 

more than once. This method uses 1mg/ml 5-FOA, though other methods can be found which use 

higher concentrations (Saghbini et al., 2001). In this method, the gDNA fragment is inserted into a 
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SPO13 promoter upstream of the URA3 gene. As genes under the control of this promoter are 

repressed, it should prevent expression of URA3 unless a gDNA fragment is inserted which can 

bind a transcription factor. This method to reduce leaky URA3 has proved successful in other 

systems (Vidal et al., 1996; Yanai, 2013), so is less likely to be the cause of false positives, 

compared to binding of endogenous yeast TFs, which is one of the main constraints in YIH systems 

(Zhu et al., 2016). 

As there is a problem with maintaining the pYOH1-TF vectors in W303 MATα under adenine 

selection, it may be worth trying an additional or different selection marker. It’s common for other 

yeast-1-hybrid and yeast-2-hybrid methods to use markers such as LEU2, HIS3 or URA3 to select 

for the binding protein (Hosoda et al., 2015; James, 2001; Liu et al., 1993; Taniguchi-Yanai et al., 

2010; Vidal et al., 1996; Yanai, 2013). Vectors compatible with this method such as pGADT7-GW 

(Lu et al., 2010), are already available for cloning of the transcription factor. Inclusion of a 

centromeric region may help to stabilize the pYOH1-TF plasmid (Dani and Zakian, 1983; Stearns 

et al., 1990), however this would also change the copy number from high to 1-2 copies which may 

have an effect on expression of the protein.  

 

Condition % Possible cause of phenotype. Verification and Solutions 

PPP 50.7% Pink colonies indicate that pYOH1 

containing ADE2 and the TF is not present. 

Growth on -Ura and +5-FOA suggests that 

URA3 is expressed but URA3 expression 

can be lost. This points to expression from  

pYOH366-g, suggesting either binding of 

an endogenous TF or leaky URA3 

expression. 

The presence of pYOH366-g can be 

tested by PCR as can absence of the TF.  

5-FOA concentration can be increased to 

help reduce binding of yeast TFs to the 

pYOH366-g gDNA inserts.  

Loss of pYOH1-TF under ADE2 

selection needs to be addressed. 

ZPNP 15.7% Pink colonies indicate that pYOH1 

containing ADE2 and the TF is not present. 

Growth on –Ura but not on +5-FOA 

suggests URA3 expression from the 

genome rather than a plasmid. This points 

towards reversion of the URA3 mutant in 

the W303 yeast strain or integration.  

The presence of pYOH366-g can be 

tested by PCR as can absence of the TF. 

PCR and sequencing of the URA3 gene 

can be carried out to verify the variant. 

Inclusion of a CEN sequence reduces 

copy number to 1-2 copies, this may help 

to reduce the chances of integration if the 

URA3 from pYOH366-g is being 

integrated. 

WWY 10.7% White colonies indicate that a functional 

ADE2 gene or a white mutant (Ugolini and 

Bruschi, 1996) is present. Functional 

ADE2 may be present either from pYOH1-

TF, reversion of ADE2-1 or integration. 

The presence of pYOH366-g can be 

tested by PCR as can absence of the TF. 

PCR and sequencing of the ADE2 gene 

can be carried out to verify the variant. 
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Growth on –Ura but presence of white 

colonies on 5-FOA suggests that URA3 

expression is not linked to binding of 

SITMyb and is likely expressed from 

pYOH366-g. This is supported by the 

majority of white clones containing 

pYOH366-g. 

As colonies do not sector on -Ura, the 

white phenotype is unlikely to be from 

pYOH1-TF. 

Inclusion of a CEN sequence may help to 

reduce the chances of integration. 

 

 

NPP 7.6% No growth on -Ura- suggests absence of 

the URA3 gene. Pink colonies indicate that 

pYOH1 containing ADE2 and the TF is not 

present.  

Growth was seen on original SD –His-Ura 

selection, suggesting an initial false 

positive or loss of pYOH1-TF before 

transfer to screening plates 

Reduce cell numbers plated on SD –His-

Ura plates to prevent growth on dead 

cells. 

Include a CEN sequence to help stabilise 

pYOH1-TF during non-selective YPDA 

incubations to reduce loss of plasmid. 

 

WPY 5% White colonies indicate that a functional 

ADE2 gene or a white mutant is present. 

Pink colonies on 5-FOA suggest the white 

phenotype is linked to the pYOH-TF.  

Colonies with phenotype may be true 

positives, however only 2 colonies from 

this group showed an insert from a possible 

promoter region, suggesting that the TF is 

present but may not be specifically 

responsible for URA3 expression. 

The presence of pYOH366-g and 

pYOH1-TF can be tested by PCR. 

 

WNY 2.5% White colonies indicate that a functional 

ADE2 gene or a white mutant is present. 

Growth on -Ura but not on +5-FOA 

suggests URA3 expression from the 

genome rather than a plasmid. This points 

towards reversion of the URA3 mutant in 

the W303 yeast strain or integration. As 

colonies do not sector on -Ura, the white 

phenotype is unlikely to be from pYOH1-

TF. 

Sequencing suggested pYOH366-g was 

absent from most clones which indicates 

growth on SD -Trp may be from a 

revertant. 

The presence of pYOH366-g and 

pYOH1-TF can be tested by PCR. 

PCR and sequencing of the ADE2, 

URA3 and TRP2 genes can be carried 

out to verify the variants. 

Inclusion of a CEN sequence may help to 

reduce the chances of integration. 
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WPP 1.5% White colonies indicate that a functional 

ADE2 gene or a white mutant is present. 

Pink colonies on 5-FOA suggest the white 

phenotype is linked to the pYOH-TF. 

Colonies with this phenotype may be true 

positives, however in this case, sequenced 

colonies showed inserts from coding 

regions rather than promoters.  

The presence of pYOH366-g and 

pYOH1-TF can be tested by PCR. 

 

WNP 1% White colonies indicate that a functional 

ADE2 gene or a white mutant is present. 

Growth on -Ura but not on +5-FOA 

suggests URA3 expression from the 

genome rather than a plasmid. This points 

towards reversion of the URA3 mutant in 

the W303 yeast strain or integration. 

As colonies do not sector on -Ura, the 

white phenotype is unlikely to be from 

pYOH1-TF, however pink colonies on -Trp 

contrast this suggesting ADE2 gene can be 

lost, likely originating from pYOH1-TF. 

The presence of pYOH366-g and 

pYOH1-TF can be tested by PCR. 

PCR and sequencing of the ADE2 and 

URA3 genes can be carried out to verify 

the variants. 

PNN 2% Pink colonies indicate that pYOH1 

containing ADE2 and the TF is not present. 

No growth on 5-FOA suggests that 

functional URA3 expression is originates 

from the genome – this is supported by 

lack of growth on -Trp which suggests 

absence of pYOH366-g. 

URA3 is likely to be a revertant. 

Presence of URA3 can be checked with 

PCR and sequencing. 

PCR can be used to determine the 

presence of pYOH366. 

PPN 1% Pink colonies indicate that pYOH1 

containing ADE2 and the TF is not present. 

Growth on 5-FOA suggests that URA3 is 

expressed from pYOH366-g, however lack 

of growth in -Trp suggests the same 

plasmid is absent. 

The presence of pYOH366-g and 

pYOH1-TF can be tested by PCR. 

 

 

Table 4.7. Phenotypes of mated YIH SITMyb clones on screening plates. Possible reasons for 

the phenotype are shown along with possible solutions to troubleshoot false positives. Codes 

in the left-hand column refer to phenotypes on plates as follows: W; White colonies, P; Pink 

colonies, N; No growth.  
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In summary of the yeast-1-Hybrid section, the purpose of this method was to try and elucidate 

potential binding sites of the SITMyb gene, if it binds to DNA. Generation of the pYOH366-g 

library by insertion of F. cylindrus gDNA fragments into the SPO13 promoter upstream of a URA3 

in pYOH366-g appears to have been successful. Average insert size was 275bp, equating to a 6.15 

x genome coverage. 

The overall method, however, leads to phenotypes or gDNA inserts which suggest an abundance of 

false positives. Only 1% (2 replica clones) of colonies give a phenotype and insert which could 

potentially be a true positive, with further validation needed.  

Two main issues stand out with the method. First, the TF carrying plasmid, pYOH1-TF, appears to 

be gradually rejected from yeast cultures following transformation, despite the presence of ADE2 

which should put a positive selection pressure on this plasmid. Western blots show proteins at the 

correct size in cultures transformed with both the SITMyb gene and the individual Myb domain. 

However, cultures transformed with both are pale pink indicating loss of pYOH1. This is also seen 

later following mating, when transferring clones to YPDA. This may explain the low yield of 

potential true positives. 

Second, there are a lot of false positives, which are made more evident by the lack of true positives. 

The most likely explanation, given the phenotypes observed and known issues with the yeast-1-

hybrid method (Zhu et al., 2016), is that negative selection on 5-FOA is not removing all clones 

with gDNA inserts capable of binding endogenous yeast transcription factors. 

Other factors may also lead to false positives such as occurrence of revertants or integration of 

selective markers into the genome. Hishida et al. (2002) found that reversion frequencies of TRP1-

1 and ADE2-1 on YPDA were 2 and 3.6 in 107 cells respectively and user manuals for ADE2-1 

containing mutant yeast strains stress the need to grow cells with additional adenine to prevent 

frequent reversion. 

Outlook for yeast-1-hybrid 

The question at this point is, how can the method be improved and what further work is needed? 

Further investigation can be carried out to try and determine the cause of the false positives, 

including colony PCRs to directly test for presence of the pYOH1-TF, pYOH366-g and different 

variants of the selective markers.  

Higher concentrations of 5-FOA need to be trialled when negatively selecting W303 MATa 

pYOH366-g, possibly with multiple screenings to reduce carryover of clones with sites capable of 

binding endogenous yeast transcription factors. 

One of the most important issues to address is loss of the plasmid pYOH1-TF, containing SITMyb 

or Myb. Changing the selective marker or adding additional selective markers to increase selective 

pressure may help. It may also be beneficial to include a CEN sequence to stabilize the plasmid and 
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reduce the rate of loss as well as double checking the selective media to ensure it doesn’t contain 

adenine. 

Only the SITMyb strain was successfully mated and further work would need to be carried out with 

both SITMyb and Myb. It would also be interesting to use the full SITMyb gene and both alleles 

described earlier in the chapter. If mating remains inefficient for particular strains, then other 

methods such as the one shown by Yanai (2013), which first transforms the library into yeast and 

then transforms the TF plasmid into the library strain, may be used. 

It should be pointed out that the SITMyb protein may not bind DNA under the current system, or it 

may not bind DNA at all. Not all proteins are folded or correctly modified in yeast which can affect 

activity (Gasser et al., 2008; Tang et al., 2016), and there’s still a level of uncertainty regarding the 

general gene model of SITMyb which may require further work before an active protein can be 

produced. In addition, if SITMyb does bind to a consensus Myb DNA binding site, then it may be 

possible for certain endogenous Myb yeast TFs to bind at the same site, removing clones from the 

experimental pool through negative 5-FOA selection and reducing occurrence of positive clones. 

It’s difficult to say how likely this is, given that a variety of Myb TFs exist with different binding 

sites (Feller et al., 2011; Williams  and Grotewold, E., 1997) and that structural differences in Myb 

TFs between organisms can affect binding specificity (Williams  and Grotewold, E., 1997). 

Furthermore, binding activity of endogenous TFs may be influenced by additional regulatory 

mechanisms (Pireyre and Burow, 2015). 

The SANT domain has a close homology to Myb domains and is found in transcriptional co-

regulators (Aasland et al., 1996) and proteins that bind to chromatin (Iyer et al., 2008). SANT 

proteins control regulation through protein-protein interactions by binding histone tails or other 

transcriptional regulators (Aasland et al., 1996; Iyer et al., 2008). A lack of results from YIH may 

be due to SITMyb forming protein-protein interactions rather than DNA-protein interactions. If this 

is the case then Yeast-2-Hybrid may be a more appropriate method to determine its target. It may 

also be worth pursuing this method to determine if the SIT domain is involved in protein-protein 

interactions. 

Concluding remarks and future work 

The function of the SITMyb gene is yet to be determined, but several of the domains and motifs 

present, support its potential as a regulatory protein that may be linked to silicon metabolism. This 

includes a single Myb domain with a modelled helix-turn-helix structure that is associated with 

DNA binding and belongs to a family of prevalent transcription factors in stramenopiles (Rayko et 

al., 2010). Myb-like SANT domains are also linked to regulation through protein interactions. 

Furthermore, the presence of the SIT domain suggests a role linked to silicon transporters. The SIT 

domain present in SITMyb corresponds to the C-terminus of several diatom SITs, rather than any 

of the transmembrane domains which are predicted to be involved in silicic acid binding via a GXQ 

motif (Thamatrakoln et al., 2006). However, a GXQ motif is present downstream of the SIT 
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domain in SITMyb. The SIT domain also contains a coiled-coil motif which is associated with 

protein binding (Mier et al., 2017). As not all SITs appear to have a transport role (Sapriel et al., 

2009) and some are proposed to function as a sensor (Shrestha and Hildebrand, 2015), there is a 

possibility that the SIT domain may be binding a sensory or regulatory protein. Additional motifs 

are also present that are positively linked to a role in regulation such as the presence of putative 

NLS sequences for localisation to the nucleus, a stretch of proline residues found in other 

transcription factors (Gerber et al., 1994) and several coiled-coil motifs.  

In terms of the transcript, modelling of this gene needs further work as RACE experiments and 

previously generated RNA-seq data do not give a clear indication of the transcription start site. 

Overexpression of the SITMyb gene just after the predicted 1st intron, led to transcripts in 

overexpression cell lines but no evidence of protein. This appears to be due to a problem with 

labelling via the His-tag considering that later expression in yeast appeared to be successful when 

probing with the HA-tag, but not the His. This means that the SITMyb protein may be present but 

this cannot be confirmed in the current overexpression cell-lines without development of a SITMyb 

antibody. Additional overexpression constructs are needed with the full predicted JGI protein as 

well as the current model. Functional tags need to be built in, such as HA-tags or egfp to confirm 

expression of the protein before phenotyping. HA-tags would allow the protein to be purified and 

egfp could help to confirm whether or not this is a nuclear protein, as expected from a transcription 

factor. If evidence of the overexpressed protein can be found, then RNA-sequencing may help to 

determine if an overabundance of this protein affects regulation of other genes. This could also be 

applied to knock-out cell-lines which are currently being developed in the Mock lab using 

CRISPR-Cas and sgRNAs designed in this chapter. If this is achieved, then phenotyping including 

determining the levels of precipitated silica with PDMPO or examining frustule morphology at 

different scales will need to be carried out for both overexpression and knock-out cell-lines. 

Yeast-1-hybrid was carried out to try and determine possible binding sites of the SITMyb gene and 

Myb domain. The gDNA library represents the ‘prey’ and the transcription factor the ‘bait’. This 

method is often carried out in reverse to determine the transcription factor for a specific binding 

domain. A gDNA library linked to a URA3 selective marker, was produced with a 6x coverage and 

proteins at the correct size were observed for the TF SITMyb/Myb:GAL4 AD overexpression lines. 

However, plasmid loss was observed for the TF lines and ultimately very few colonies were 

observed that could be true positives. This is likely to be due to binding of endogenous yeast 

transcription factors to fragments in the library. In addition, loss of the TF plasmid will reduce the 

chance of seeing true positives. This can potentially be addressed by increasing screening of the 

gDNA library and adding additional selective markers and a CEN-ARS sequence to the TF plasmid 

to encourage maintenance and retention. It may be that SITMyb does not bind to DNA. If this is the 

case, then it may be worth carrying out Yeast-2-hybrid to determine if SITMyb binds to other 

proteins. This would also be a useful tool to examine the SIT domain. 
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With the expression of SITMyb and Myb in yeast, further work to elucidate the function of this 

gene and the Myb domain can be carried out. However, it would also be interesting to see if 

overexpressed protein can be purified from the F. cylindrus overexpression lines once the construct 

has been altered, as folding and post-translational modification is more likely to be correct if 

produced in an endogenous host. This is especially relevant for F. cylindrus as a polar organism 

given that temperature can affect solubility and protein folding (San-Miguel et al., 2013; Vasina 

and Baneyx, 1996). Mobility shift assays can be carried out, with targets identified from Y1H or 

genes linked to the silica frustule to explore DNA binding. Silicic acid binding can also be 

examined using methods such as protein crystallography.  

Although no conclusions can be drawn at this stage, this work provides preliminary data and 

method development required to try and elucidate the function of this gene. It provides leads for 

changes needed to develop functional methods such as overexpression in F. cylindrus and yeast-1-

hybrid and provides tools such as a gDNA library for elucidation of transcription factor binding 

sites. In addition, modelling of this gene gives an intriguing glimpse into its potential as a silicon-

linked regulatory protein, which may help to shed light on the regulatory networks involved in 

silica metabolism. 
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Chapter 5: Summary 
 

Transformation chapter 

Key findings 

 Stable nuclear transformations of only 12 species have been published. All of these species 

are temperate, the majority are marine, and all can be grouped into 6 orders across 2 

classes. In short, the current range of transformable diatom species gives a poor 

representation of their geographical and biological diversity.  

 F. cylindrus is an ecologically important, psychrophilic, pennate diatom found at both 

poles and in seasonally cold marine waters. 

 In this chapter a transformation system for this model species was developed. This is the 

first transformation system for a polar microalga and may be the first for any psychrophilic 

eukaryote. 

 The fucoxanthin chlorophyll a/c binding protein (FCP; ID 267576) was found to be the 

highest expressed gene in F. cylindrus across a range of growth conditions, based on 

previously produced RNA-seq data (Mock et al., 2017). 

 A construct was developed using Gibson assembly to express 2 separate cassettes: the 

shble gene for zeocin resistance and egfp with a human codon bias, both under the control 

of the endogenous FCP promoter and terminated by the FCP terminator. 

 Microparticle bombardment was used to introduce the construct into cells.  

 The microparticle transformation system was adapted from Pheodactylum tricornutum 

(Kroth, 2007) for use with a polar species. Key changes involved filtering cells and 

shooting on a filter (on top of agar) rather than drying at room temperature and ensuring 

that all steps of the protocol involving cells, were carried out on ice or at 4°C. 

 The pressure under which the 0.7µm tungsten particles, coated in construct, was introduced 

into the cells was optimised. A pressure of 1550psi gave the highest transformation 

efficiency at 30 colonies/108 cells. 

 Sensitivity of F. cylindrus to zeocin was tested. It was found that zeocin prevents growth 

from at least 50µg/ml. Full salinity or half salinity media does not appear to affect zeocin 

sensitivity in this species. Transformation with FCP:shble successfully provides resistance 

against 100µg/ml zeocin, both on plates and in liquid cultures. 

 Colonies took longer to appear on plates compared to temperate species with 3-5 weeks 

required for transformants to become apparent. 

 Presence of both shble and egfp was observed from gDNA of transformed cultures. 60% of 

colonies with shble also contained egfp which supports previous findings from other 

diatom transformation systems. 



159 
 

 Fluorescence from egfp could be seen in all cultures with the egfp gene. Flow cytometry 

results showed a clear increase in fluorescence in the green channel and epifluorescence 

microscopy showed a highly visible signal localised to the cytosol. 

 The shble and egfp genes appear to be stably transformed, and are still present in mutant 

cell lines 2 years after transformation. 

Concluding remarks 

Development of a stable transformation system for the first psychrophilic microalga has been 

achieved. A functional promoter, terminator, selective marker and reporter gene have been 

successfully identified and tested, along with delivery of transgenes via microparticle 

bombardment. As a key ecological species in polar regions and a model organism for eukaryotic 

psychrophiles, this is an important tool for reverse genetics to understand key biological functions 

such as adaptations to an extreme polar environment. It may also be a useful tool for biotechnology 

given that preferential solubility, folding, yield and stability of recombinant proteins can be 

observed under cold conditions (San-Miguel et al., 2013; Vasina and Baneyx, 1996), especially 

when producing proteins of a eukaryotic origin, as not all post-translational modifications can be 

achieved when using a prokaryotic system (Demain and Vaishnav, 2009). 

Future work 

 Although transformation efficiency sits within the range expected for diatom 

transformation using microparticle bombardment, some studies see a much higher number 

of transformant colonies using this method (Buhmann et al., 2014; Poulsen et al., 2006). In 

terms of parameters, only pressure has been optimised and it may be worth trying 

alternative settings, particle sizes and recovery conditions to boost efficiency. 

 Alternative methods could also increase efficiency such as electroporation or bacterial 

conjugation (Karas et al., 2015; Miyahara et al., 2013). For the latter a suitable bacterial 

host would be required to transform and transfer the conjugative plasmid. In diatoms E. 

coli is used – this is also the case when transforming psychrophilic bacteria (Miyake et al., 

2007) but incubation is carried out at lower temperatures for a longer period of time. 

However, the temperature used (18°C ) is still 10°C higher than the maximum used for 

culturing F. cylindrus. Either trials at lower temperatures would be needed or alternative 

psychrophilic bacteria would need to be found. 

 In the above methods whole, circular plasmids can be transformed which would allow 

exploration with self-replicating episomes, potentially bypassing the need for integration, 

increasing the number of transformants with both cassettes and increasing efficiency 

(Karas et al., 2015).  

 A larger toolbox in terms of promoters, selective markers and reporter genes would be 

useful. Inducible promoters as well as promoters with different expression levels would 

allow a greater control over transgenes.  
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 Identification of targeting signals would be valuable for localisation to the various 

organelles, cell membrane and cell wall. 

 

CRISPR-Cas chapter 

Key findings 

 CRISPR-Cas is a recent and powerful tool which allows programmable genome editing by 

inducing double strand breaks, leading to subsequent mutations following repair by non-

homologous end-joining. 

 Two constructs were made using the flexible, modular Golden-gate cloning approach to 

target two sites in the urease gene in Thalassiosira pseudonana, to induce a deletion. 

 Modules for each component including promoters, genes, terminators, sgRNAs and CEN-

ARS-HIS, were created and assembled into cassettes. The cassettes were then combined 

together in a single construct. Both of the final constructs contained a NAT cassette, Cas9 

cassette and two sgRNA cassettes. One construct also contained a CEN-ARS-HIS 

sequence for replication in diatoms. 

 The U6 promoter was used to express each sgRNA. The T. pseudonana genome was 

blasted to find the U6 promoter and 5’ template switching oligo RACE was performed to 

elucidate its exact end.  

 Twenty nt targets for sgRNAs were designed to cut 37nt apart and over a restriction site, 

for screening by the band shift assay and restriction site loss assay, respectively. All targets 

began with a G residue for expression by RNA polymerase III, recruited by the U6 

promoter. 

 Following transformation, presence of Cas9 was seen in 4/33 colonies. Each of these 4 

colonies displayed mutations. Band shift assays gave clear confirmation of deletions for 3 

of the colonies. Sequencing highlighted a 4nt deletion at one of the sgRNAs in the 4th 

colony. 

 Colonies with deletions were mosaic, with cells displaying a mixture of the WT and edited 

urease gene. Sub-cloning was required to isolate colonies with the edited urease in both 

alleles (bi-allelic). A high percentage of bi-allelic colonies up to 61.5% was observed. 

Urease in two thirds of sub-clones with bi-allelic deletions was repaired by ‘clean’ non-

homologous end-joining, resulting in only the 37nt deletion and no additional indels. One 

third of sub-clones showed additional 1nt deletions and substitutions at the cut site.  

 Urease is required for growth in urea as the sole nitrogen source. Growth experiments on 

mutant and WT cell lines were carried out to observe growth in urea and nitrate. All 

cultures grew well in nitrate, with no clear difference observed between ‘knock-out’ and 

WT cell-lines. Bi-allelic mutant cell-lines did grow in urea, but at a significantly slower 

rate. Cells were also much smaller, which is an indicator of nitrogen limitation. The 

deletion occurs early on in the urease gene and is expected to create a frame-shift, 
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knocking-out the protein. Based on growth results, the urease protein may be expressed 

from an alternative translation start site. From the position of the deletion and potential in-

frame ATGs, this is likely to include the alpha sub-unit, which contains the active site, 

along with the beta sub-unit, but is expected to truncate the gamma sub-unit, potentially 

reducing the activity of the urease gene and accounting for sub-optimal growth.  

 The CEN-ARS-HIS sequence, does not appear to result in autonomous replication of the 

CRISPR-Cas plasmid. This is likely due to fragmentation of the plasmid during 

microparticle bombardment. 

 A construct to knock out the silacidin gene in T. pseudonana was also designed along with 

sgRNAs for editing of the SITMyb gene in F. cylindrus. 

Concluding remarks 

CRISPR-Cas has been used in T. pseudonana to successfully edit the urease gene. The Golden-gate 

system works well, with modules now publicly available and being used within our group and by 

other groups for gene editing of alternative genes and diatom species. One of the main limitations 

with the current system is the need to integrate a large Cas9 cassette, resulting in only 12% of 

clones containing this gene. However, once the Cas9 is present, CRISPR-cas with the current 

sgRNAs appears to be very efficient, leading to 100% of primary clones with a mutation. Sub-

cloning is important to isolate colonies with bi-allelic deletions, however these occur very 

frequently and screening for deletions via the band-shift assay is quick and effective. As editing of 

the urease gene led to a nitrogen-limited phenotype, rather than a nitrogen starved phenotype, 

future target sites needs to be carefully considered. It may be more effective to target/remove the 

active site, or even the whole gene given that large deletions have been achieved in other systems 

(Ordon et al., 2016; Zheng et al., 2014).   

Future work 

 If expression of Cas9 is not dependent on integration into the genome, then it may be 

possible to increase occurrence of mutations in primary clones. One method to do this 

would be to introduce the necessary CRISPR-Cas components on a self-replicating 

episome. This has the additional benefit of being able to expel the episome (Karas et al., 

2015) after mutations have been induced, by removing selection, which would be 

beneficial if off-target activity from long term Cas9 exposure occurs. This would require a 

method such as electroporation or bacterial conjugation to introduce whole, circular 

plasmids. 

 Alternatively a Cas9 transgenic cell-line could be produced so that only the small sgRNA 

cassette would need to be introduced.  This would require either an effective secondary 

antibiotic for selection or a means to introduce the Cas9 without a secondary selective 

marker. This could potentially be achieved by introducing one set of CRISPR sequences, 

i.e. Cas9 cassette, U6:sgRNA and selective marker on an episome and inducing a double 
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strand break. A plasmid could be co-transformed with a separate donor Cas9 cassette for 

homologous recombination (HR) at the cut site, introducing the cassette into the genome. 

Selection could then be removed, leading to expulsion of the episome and leaving just the 

Cas9 integrated by HR. 

 HR using CRISPR-Cas is currently being carried out in the Mock lab with promising 

results so far. It may be possible to use geminiviral vectors (Yin et al., 2015) to introduce 

donor sequences for repair by HR. Vectors are introduced in a linear state which then 

circularise and replicate, increasing the chance of a donor sequence being used for repair. 

 With only two examples of CRISPR-Cas working in diatoms, including this one, there is 

currently no information on off-target mutations. It would be interesting to look at 

predicted off-target sites at various intervals following transformation to see if, and how 

quickly CRISPR-Cas induces mutations. This may also be dependent on the specific 

sgRNA sequence used. 

 To remove the need to sub-clone, it could be worth optimising the incubation time 

following transformation, prior to plating on selective media. The incubation time would 

need to be long enough to allow the mutation to ‘settle’ but short enough to prevent too 

many replica clones. 

 Very large deletions have been achieved using CRISPR-Cas in other systems (Feng et al., 

2013; Ordon et al., 2016). It would be interesting to see how large a section can efficiency 

be removed from diatoms. This would be useful information, particularly if a gene model 

or active site is uncertain, in which case the entire gene could potentially be removed. 

 As a modular system, Golden-gate cloning lends itself to targeting multiple genes at once  

(Sakuma et al., 2014). This could potentially allow partial or whole pathways to be 

targeted. Whilst multiple U6:sgRNA cassettes can be assembled into a single construct, it 

may be more efficient to try a CRISPR array based approach (Cong et al., 2013), in which 

the tracrRNA is separately expressed to the pre-crRNA array which contains the guide 

target sequences interspersed by direct CRISPR repeats. Both are expressed by a U6 

promoter and are processed by and annealed using common eukaryotic enzymes.  

 This could be combined with a slightly different Golden-gate approach to the current 

system. Golden-gate vectors exist that allow assembly into the level two backbone, with a 

module for future insertions. The modules developed in this chapter are currently being 

used to assemble the FCP:NAT, FCP:Cas9 cassettes into a level two vector along with one 

of these modules. The U6:sgRNAs are then added later (Bermejo Martinez, unpublished). 

It could be a good idea to take this further and assemble the selective marker, Cas9 

cassette, U6:tracrRNA and another U6 promoter directly upstream of a ‘insert module’ into 

a level 2 vector. Pre-crRNA arrays could then be introduced at a later date under the 

control of the single U6 promoter. This would allow cloning of a single, much shorter 

fragment which may increase cloning efficiency, compared to assembling multiple 
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U6:sgRNA cassettes. It would also allow anyone wanting to knock-out a gene or a set of 

genes in this species, to simply clone a synthesised pre-crRNA array directly into a single 

vector. It would of course be necessary to check the array based method is functional first. 

 Now that a system has been established, several adapted versions of CRISPR-Cas can be 

pursued. These include using Cas9 nickases to reduce off-target (Cong 2013), using dCas9 

as a binding protein to activate or repress transcription (Qi 2013, Piatek et al 2015), 

inducing DNA modifications such as methylation (Vojta et al. 2016) or fluorescently 

tagging specific sequences (Deng 2015). 

 

SITMyb chapter 

Key findings – In silico modelling 

 Sequencing of the F. cylindrus genome (Mock et al., 2017) led to the discovery of a novel 

gene predicted to have both a Myb domain and a domain with homology to silicon 

transporters. 

 Two alleles of this gene are present, with the second half of the gene, including the SIT and 

Myb domains, showing a high degree of conservation. 

 The majority of the gene shows no homology to existing proteins, however besides the SIT 

and Myb domains, 3 short regions show homology to other proteins. This includes a 

hypothetical protein from a silicifying choanoflagellate and two regions with similarities to 

alveolate proteins potentially linked to either transcription or silicon transport. 

 Blast searches and modelling of the Myb domain strongly support its helix-turn-helix 

structure and homology to DNA binding proteins. Myb domains are also closely related to 

SANT domains which regulate expression through protein-protein interactions with 

histones or regulatory proteins (Aasland et al., 1996; Iyer et al., 2008). The SITMyb 

protein also contains coiled-coil motifs which are often involved in protein-protein 

interactions or transcription (Mason and Arndt, 2004; Mier et al., 2017). Modelling 

therefore supports the potential of the SITMyb gene as a regulatory protein. 

 The SIT domain aligns with the C-terminal sequence of several diatom SITs after the 10th 

transmembrane domain and contains a coiled-coil motif, which is expected to be located 

intracellularly. The closest alignment is to a SIT from F. cylindrus. 

 GXQ motifs, linked to silicic acid binding in SITs (Thamatrakoln et al., 2006) are present, 

in regions of no known homology, at the C-terminal end of the SITMyb gene. 

 A homopolymer of proline residues is found towards the start of the gene, which has been 

previously linked to transcription activation (Gerber et al., 1994) 

 Several nuclear localisation signals which are required by TFs for transport to the nucleus, 

are present.  
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Concluding remarks– In silico modelling 

There are several very interesting sequences present in this gene with key domains/motifs such as 

SIT, Myb, coiled-coils and NLS signals conserved between both alleles. Structure of this gene 

points towards binding activity linked to regulation whilst the presence of the SIT domain suggests 

that it may be performing an additional function. Literature surrounding gene regulation in diatoms 

is far from comprehensive, however expression analyses show that several genes respond to 

changes in nutrient concentration. This includes response to silica starvation, with many genes 

linked to silica metabolism and frustule formation being differentially expressed (Mock et al., 

2008; Shrestha et al., 2012). This indicates that a regulatory mechanism is involved. Transcription 

factors are almost certainly involved given that they are a core component of gene regulation in 

eukaryotes and signalling pathways are also likely to be involved. SITs are currently the only 

proteins in diatoms known to bind silicic acid (Curnow et al., 2012; Hildebrand et al., 1997) and 

there is evidence that some SITs may be acting as sensors for frustule formation/cell cycle 

progression (Shrestha and Hildebrand, 2015). The occurrence of a protein with a Myb domain 

linked to regulation of transcription through DNA/protein binding and a SIT domain which could 

be involved in silicon/protein binding is very exciting and adds weight for further exploration of 

this gene as a silicon-linked regulator. It is possible that further examination of this gene could lead 

to identification of a larger regulatory network. 

Key findings – In vitro modelling 

 5’ and 3’ RACE experiments did not give a conclusive transcript start or end, with varied 

products ranging from the predicted 5’ UTR through to the 3’ UTR.  

 RACE results and amplification of overlapping fragments from cDNA support presence of 

the full transcript, however amplification of the full gene, either from gDNA or cDNA was 

not possible. 

 RT-PCR, sequencing and previously generated RNA-seq data supported the intron-exon 

model from JGI. The 3’ end is well modelled due to excellent RNA-seq coverage, however 

the 5’ end is poorly covered and along with poor and inconsistent 5’ RACE results, an 

exact transcription start site remains elusive. 

Concluding remarks– In vitro modelling 

Due to uncertainty in the start site, poor coverage at the 5’ end and difficulties with amplifying the 

full gene, a slightly shorter sequence compared to the original JGI model was chosen for 

overexpression in F. cylindrus and yeast. An in-frame ATG after the first intron was chosen to start 

the sequence, which resulted in the highly conserved region between alleles being selected 

including the SIT and Myb domains. 
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Key findings – Overexpression of SITMyb in F. cylindrus 

 A construct was produced for overexpression of SITMyb, based on in-vitro modelling, 

under the control of a promoter from the highly expressed gene fucoxanthin chlorophyll a/c 

binding protein. A 6x His-tag was included at the C-terminus for purification and labelling.  

 Two clones were isolated with the SITMyb cassette. 

 RT-PCR demonstrated that the gene was transcribed. 

 However, no protein was observed for SITMyb during western blots using the His-tag. 

 This may be due to problems with the His-tag, as later expression in yeast gave a protein at 

the correct size when using a HA-tag. Using the His-tag in the yeast system also gave no 

results. 

Concluding remarks – Overexpression of SITMyb in F. cylindrus 

The SITMyb cassette was successfully introduced and expressed as a transcript in F. cylindrus. 

However no protein was observed. This may be due to a non-functional or in accessible His-tag 

rather than a lack of protein.  

Key findings – Yeast-1-Hybrid 

 A Yeast-1-hybrid (Y1H) F.cylindrus gDNA library with a 6x coverage has been 

constructed for elucidating the binding sites of TFs in this species.  

 Two Y1H constructs to overexpress SITMyb and the Myb domain in yeast have been 

produced. Both constructs produce a protein of the expected size when transformed into 

yeast suggesting that SITMyb and Myb are expressed. 

 Loss of plasmids, containing the TF, in overexpression lines is observed, possibly due to 

problems with selection. This has implications on the efficiency of the final method and 

numbers of true positives.  

 Only clones with the SITMyb TF were successfully mated with the gDNA library. Mating 

efficiency of Myb domain-containing clones was poor and produced no colonies following 

transfer to –uracil plates. 

 The majority of colonies appear to be false positives with just 1 colony out of 200 with the 

right circumstances to be true positive. The most likely candidate for false positives is 

binding of endogenous yeast transcription factors to domains in the gDNA library, 

although other factors may also produce false negative results. 

Concluding remarks – Yeast-1-Hybrid 

Progress has been made in this method, but it is not yet fully functional for F. cylindrus. Production 

of the gDNA library with a good coverage is a useful tool, not just for elucidating potential binding 

sites of SITMyb, but also for other F. cylindrus transcription factors.  Although the SITMyb gene 

appears to be expressed, there are issues with loss of the overexpression construct which will 

reduce efficiency and may be responsible for the low number of potential true positives observed. 

Further work is needed to optimise this method and tackle the high number of false positives 
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compared to potential true positives. This includes re-examination of the Myb domain using the 

optimised method. It is also possible that a longer version of the SITMyb gene is required for 

binding. It may be that SITMyb binds protein rather than DNA, given that Myb and SANT 

domains have similar homology. If this is the case then Yeast-2-hybrid (Y2H) would be a more 

appropriate method. Y2H could also be used to determine if the SIT domain binds proteins, which 

would require a further overexpression construct with this domain. 

Future work 

 Further empirical testing is needed to determine the function of the SITMyb gene and its 

domains.  

 DNA binding needs to be assessed for the current gene model, the Myb domain and the full 

JGI predicted gene model. In order to do this, the Yeast-1-hybrid system needs to be 

optimised. The most pertinent features of this method to be addressed, are increasing 

selective pressure on transformants to maintain the overexpression construct and reducing 

false positives, likely caused by binding of endogenous yeast TF, by more vigorous 

screening. It may also be worth directly looking at binding of allele 250586. This would 

need the gap in the JGI sequence to be amplified and sequenced. 

 If Yeast-1-hybrid cannot be successfully applied, then alternatives such as ChIP seq are 

available. 

 Now that proteins for SITMyb and Myb appear to be expressed in yeast, it should be 

possible to purify the recombinant proteins via the HA-tag and test for DNA and silicon 

binding. Although, purification from an F. cylindrus overexpression line, grown at lower 

temperatures, may yield a more accurately folded protein, given the psychrophilic nature of 

F. cylindrus. 

 Mobility shift assays could help to determine DNA binding of proteins. Genes known to be 

involved in silica metabolism could be tested as could genes identified by yeast-1-hybrid. 

This could also help to validate results from the later. Shift assays could also be performed 

in the presence of silicic acid to see if this affects binding activity. 

 Silicon binding could be determined using protein Crystallography. 

 The overexpression construct for F. cylindrus needs to be reconsidered. Although the 

transcript appeared to be expressed, no protein was observed. As with Y1H constructs, 

plasmids with both the current gene model and longer JGI predicted model need to be 

created. An alternative to the C-terminal His-tag is needed to purify and probe any 

overexpressed protein. A C-terminal HA-tag is an option, given that it works well for yeast 

overexpression lines. It may also be worth adding egfp as a fusion, for a more direct 

indication of overexpression. Worries about solubility/activity of a larger fusion protein 

could be addressed by adding a cleavage domain at the fusion junction (Wang et al., 2015). 

An egfp-tagged SITMyb (without a cleavage domain) could also be used to determine 

localisation of the SITMyb, as a TF would be expected in the nucleus. 

https://www.jic.ac.uk/staff/david-lawson/xtallog/summary.htm
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 If evidence of the overexpressed SITMyb gene can be found, then cell-lines can be 

phenotyped to examine potential changes in the frustule. This could include examining 

morphology at different scales, as well as observing levels of precipitated silica. 

 It would also be possible to carryout RNA-seq to examine any changes in expression 

levels, associated with a higher concentration of SITMyb. 

 Yeast-2-hybrid could help to determine any potential protein-protein interactions. This 

could be carried out for the full SITMyb gene as well as both the Myb and SIT domains 

which have features potentially associated with protein binding. 

 Finally CRISPR-Cas of SITMyb is ongoing in the lab and if mutations can be produced, 

cell-lines will need to be phenotyped and RNA-seq carried out. 
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List of Abbreviations 
 

Below is a list of abbreviations used throughout this thesis with their meanings. 

 

Abbreviation Meaning 

Ade Adenine 

ARS Autonomous replicating sequence 

BC Bacterial conjugation 

bZIP Basic leucine zippers 

C-A-H CEN-ARS-HIS 

cDNA Complementary DNA 

CEN Centromeric sequence 

CIP Calf intestine alkaline phosphatase 

CRISPR Clustered regularly interspersed short palindromic repeats 

crRNA CRISPR RNA 

dCas9 Deactivated Cas9 

DSB Double strand break 

dsCYC Diatom specific cyclin 

EF2 Elongation factor 2 

Egfp Enhanced green fluorescent protein 

EST Expressed sequence tag 

Eyfp Enhanced yellow fluorescent protein 

FCP Fucoxanthin chlorophyll a/c binding protein 

GA Gibson assembly 

gDNA Genomic DNA 

GS Gene specific 

GUS β-glucuronidase 

H4 Histone 4 

His Histidine 

HSF Heat shock factors 

IGV Integrated Genomics Viewer 

JGI Joint genome institute 

LCPA Long chain polyamines 

Luc Luciferase 

MPB Microparticle bombardment 

MPE Multi-pulse electroporation 

NAT Nourseothricin N-acetyl transferase 

NEB New England Biolabs 

NLS Nuclear localisation signal 

OE Overexpression 

oriT Origin of transfer 

PCR Polymerase chain reaction 

pol III RNA polymerase III 

qPCR Quantitative PCR 

RACE Rapid amplification of cDNA ends 

RLM RNA-ligase mediated 

RT Reverse transcription 
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SDM Site directed mutagenesis 

SDV Silica deposition vesicle 

sgRNA Single guide RNA 

SIT Silicon transporter 

snRNA Small non-coding RNA 

sRNA Small RNA 

SSIII Superscript III 

TF Transcription factor 

TFBS Transcription factor binding site 

tracrRNA Trans-activating crRNA 

Trp Tryptophan 

TSO Template switching oligo 

TSS Transcription start site 

Ura Uracil 

WT Wildtype 

Y1H Yeast-1-hybrid 
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Appendix 
Appendix figure 1. Alignment of SITMyb alleles 233781 and 250586. Text highlighted in green 

indicates the SIT domain, blue indicates the Myb domain and the ATG highlighted in red shows 

the start site of SITMyb sequence for overexpression. 

 

233781          ATGCCTAGAGTTGCTAAGAACTTTGATAAGTATCTGCTGACAAAGGAAGTACCTGATTCA 

250586          ATGCCGAAAGTTGCGAAGAACTTTGATCAGTATATGCTGACAAAGGAAGTACCTGATTCA 

                ***** *.****** ************ ***** ************************** 

 

233781          CCAAACGGTACAGGAATTACCAAGAAGAATATAGAACATATCCGAGTACAATGGGATTAT 

250586          CCAAACGGTACAGGAATTACCAAGAAGAATATCGAACATATCCGAGTACAATGGGATTAT 

                ******************************** *************************** 

 

233781          GAATTAGAAGATACAACAAGAGTAATCTATCATCGATTTAGAAATCAAACAGAGTATGAA 

250586          GCATTAGAGGATACAACAAAAGTAATCTATCATAGATTTAGAAATCAAACAGAGTATGAA 

                * ******.**********.************* ************************** 

 

233781          AAATATCATAATAATAAGGTCAGTCAAGGTGTTCGAAAAAGAAATGGATTATATGAGACT 

250586          AAATATCATAATAATAAGGTCAGTCAAGGTGTTCGAAGAAGAAATGGATTATATGAGATT 

                *************************************.********************.* 

 

233781          GGACAAAAATTAAGAAAAAAGAAGAAAAAAGAGGATGATGACGAAAACATGACGACGGAT 

250586          GGACAAAAATTAAGAAAA---AAGAAAAAAGAGGATGATAATGAAAACAGGACTACGGAT 

                ******************   ******************.*.******* *** ****** 

 

233781          GGTACTACTACTACTACTACGACTAAAATCGGATCGACGGTGGCGGCGGT------GGCT 

250586          GG---TACTACTACTACTACGACTAAAAACGGATCGGTGGTGGCAGTGGCTGTGGAGGCG 

                **   *********************** *******..******.*.**.      ***  

 

233781          GTGGCTGTGGCGGAAAAGCCTTCATCAACATCTTCATTATTGTCATTGAAGAAAAAGGCA 

250586          GAGGCGGAGGCGGAGAAGCCTTCATCAACATCTTC---ATCGTCATCGAAGAAAATGGCA 

                * *** * ******.********************   **.*****.******** **** 

 

233781          TCGGCATTGGCATCAGCGGCGGTTGGTAC------TACCACGATGAC---GGACAGCAAT 

250586          TCGGCATCGGCATCAGCGGCGGTTGGTACTACTAGTACCACGATGACTAGTGACAACAAT 

                *******.*********************      ************    ****.**** 

 

233781          GATAA------TGCGGGTGTATCAA---CATACGAGGATGGTATTGATGCTGGTCTGCCG 

250586          GATAATGATACTGTGGGTGTATCAACATCATACGATGATGGTATTGATGCTGGTTCGCTG 

                *****      **.***********   ******* ******************..**.* 

 

233781          TCCACTACCTCCTACCATTGTCAACCAATTGTTGGGACAAGACTTGTTATTACTCCCTCT 

250586          TCCACTACCACTTCCCATTGTCGACCAATTGTTGGGACAAGAGTTGGTATTACTGCCTCT 

                ********* *.* ********.******************* *** ******* ***** 

 

233781          AATATTCCTCCTCCTCCTTCTCCTCCTCTTCAGAAAGAACATGATACCATGGAAGCAACA 

250586          AATCTTCCTCCTCCTTC------------TCAAAAAGAACATGATAACATGGAAGCAACA 

                *** ***********.*            ***.************* ************* 

 

233781          ACCACAGGATCTCCTCCTCCTCCTCCTCCTCCTCTAGGGAAGACTATCATTCAGACCACA 

250586          ACCACAGGAT---CTCCTCCTCCTCTTCCTCCTCTAAGGAAGACTATCATTCAGACCACA 

                **********   ************.**********.*********************** 

 

233781          CATAAGGATGGTAATGATGATGAAGTAGTTGTAGTAGAAGAACCGGCAAAAACAGCATCC 

250586          CATAAGGATGGTAATGATGATGAAGTAGTTGTAGTAGAAGAACTGGCAAAAACAGCATTC 

                *******************************************.**************.* 

 

233781          CCATCAGCTTTATCAACATCAACAACAACAGCAGCAA------------CAACAGCAGCA 

250586          CCATCAGCTTTATCAGCATCAACAACATCAACAGCAATATCAACAACAGCAGCAACAACA 

                ***************.*********** **.******            **.**.**.** 

 

233781          ACAACAGCAACAGCAACGTCTCTAATAATCGATCTAACAATTGATGATGATCCCGATAAC 

250586          TCAACATCAACATCAACGTCTCTAATAATCGATCTAACAATTGATGATGATCCCGATAAC 

                 ***** ***** *********************************************** 

 

233781          GATGTGGTCGGAGGAAGTCTTGTCCCTGCGCGGGCAGTTGAATC---------------- 

250586          GATGTGGTCGGAGGAAGTCTTGGTCGCA---GAGTAGTTGAATCTCAAGCTGAAGCTGCA 

                ********************** .* ..   *.*.*********                 
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233781          -----------------------------------AAAAGGTAAACCAAAAATGAAAAGA 

250586          TCTGGCGCGGTGGATGTGAATGTGGCGTCTAGAAATGGAGGTAAACCAAAAATGAAAAGA 

                                                    ..********************** 

 

233781          GCGAAGAGACAAATGTTACCATTGAATCGTCGAAAGATGCAAGATGAAGAGGCGGATAAT 

250586          GCTAAGAGACAAATGTTACCATTGAATCGTCGAAAGATGCTCGGAGGA------------ 

                ** *************************************  *. *.*             

 

233781          AATAACGATGTGGTCG-----GAGGAAGTCGTGCCTCATCAAAATTATTAAGAATGGAGA 

250586          ---AATCTTGTGGTTGCGACCAACAAACCCAATCCTTCGCCTTCTTCTCAATCATCAAAA 

                   **.  ******.*     .* .** .*.  ***.  *    ** *.**  ** .*.* 

 

233781          TGATAATGAAATTACCAACCGCCGAGGAATTAAAAGCAGAAAGCATTGTGATTAATGATG 

250586          T--TAATAACAATGCCAACCGCCGAGGAATTAAAAGCAGAAAGCATTGTGATTGATGATG 

                *  ****.* * *.***************************************.****** 

 

233781          TGAATGATCATGATATTCTAATGGGATCACGGAAATGTAACAAACATCCTGGGAATAAAG 

250586          TGAATGATCATGATATTCTAATGGGATCAAAGAAATGTAACAAACATCCTGGGAATAAAG 

                ***************************** .***************************** 

 

233781          TGTATAGGGATATTGTGCGAAAATATCAACCACTATTGGAGAAGGAGACTATAGGTGATA 

250586          TGTATAGGGATATTGTACGAAAATATCAACCACAATT------GGAGACTATAGGTGATA 

                ****************.**************** ***      ***************** 

 

233781          GAGCGATAGTTGTTAGTATGGTTATTGATCATATACATGATCAAATTGGTGGTCGCTTCT 

250586          GAGCAATAGTTGCTAGTATGGTTATTGATCATATTCATAATCAAATTGGTGGTCGATTCT 

                ****.*******.********************* ***.**************** **** 

 

233781          TAAAAGTCAACAGTGCTAATCAATGGCATGTTGTTCCGCGATTGGATGTCATAACCAAGA 

250586          TAAAAGTTGATAGTACTAATCAATGGCATGTTGTTCCGCGATTGGATGTCATAACCAAGA 

                *******..*.***.********************************************* 

 

233781          TTACAAAAGCATTAGTTGAATTGGGAAATCCAGCTATTTTTCGTCTCGCCCTCCCAAAAT 

250586          TTACAAAAGCATTAGTTGAATTGGGAAATCCATCTATTCTTCGTCTCGCCCTCCCAAAAT 

                ******************************** *****.********************* 

 

233781          CTGTTCCTACTAGTACCATGTTGGAGTCGATTGGGGAGTCGATTGGACAATCAATTGTTG 

250586          CTGTTCCTACTAGTACCATGTTGGAGTCGATTGGGGAGTCGATTGGACAATCAATTGTTA 

                ***********************************************************. 

 

233781          GGCAAGATAACAAAAGACCTAAGCGAAAATGTACCCTCCCAAAAGTGATAGAGGAACAAG 

250586          TCAAAGATAACAAAAGACCCAAGCGAAAGTGCACCCTTCCAAAAGTGATAGAGGAACAAG 

                   ****************.********.**.*****.********************** 

 

233781          TCGATGATGAACCAATGGAAAAGAAATTTACTAAAACGACGACGATGCGGGAAAGAAGTA 

250586          TCGATGATGAACCAATGGAAATGAAATTTACTAAAACGACGACGATGCGGGGAAGAAGTA 

                ********************* *****************************.******** 

 

233781          GTAGAATCGAGGATGAGAAGATTACAAAAATAGATGATGACGACGCTGAATCCAATAAGA 

250586          GCAGAATCGAGGATGAGAAGATTACAAAAATAGATGATGACGACGCTGAATCCAATAAGA 

                *.********************************************************** 

 

233781          ACGACGACAACAATGACGACCATCATCATTTAAGGATGGTGGCAACTGTGGTGGAGGAGG 

250586          ACGACGACATCAATGACGACCATCATCATTTAAGGATGGTGGCAACTGTGGTGGTGGAGG 

                ********* ******************************************** ***** 

 

233781          AGGAGGAGAATGGGTTTTCTTCTATTCCCACCACTGCCGCCGCCGCCGTGATGACGAATG 

250586          AGGAGGAGAATGGGTTTTCTTCTATTCCCATCACTGCCGCCGCCGCCGTGATGACGAATG 

                ******************************.***************************** 

 

233781          CAAATTCTACGGCGGACGCTGATTCCATAATGTAAGTAAAAATCAAAACGAATTCAAAAT 

250586          CAAATGCTACGGCGGACGCTGATTCCATAATGTAAGTAAAAATCAAAACGAATTCAAAAT 

                ***** ****************************************************** 

 

233781          CGAATTCAAAATCGAATTCAAAATCGAATTCAAATTCAAATTTAAATTCAAATTCAGATT 

250586          CGAATTCAAAATCGAATTCAAAATCGAATTCAAAATCGAATCAAA--TCAAAT-CAAAT- 

                ********************************** **.***. **  ****** **.**                
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233781          CAAATATCCCGCTGTACTGCATTGGGGGTATTCGTATTCGTATTAAAAATCGTTCCTATT 

250586          ------------------------------------------------------------ 

                                                                             

 

233781          TTTTTAAAAATTGATGCATATTCATATCTTTTTCCTTTCTTTTAATAATTTTTATCCTTA 

250586          ------------------------------------------------------------ 

                                                                             

 

233781          TTTTTTTGTGCATTCATTAATACTTCGGCCGGCTAAATATATAAATTTATATGATGATAA 

250586          ------------------------------------------------------------ 

                                                                             

 

233781          TATTAATAATGACGGAATATAGTCCTACATCATGGAAGGATTGGGTATCAAGAGTAAATA 

250586          ------------------------------------------------------------ 

                                                                             

 

233781          ACTTAGTTGAATCATCACCATCATGTATGGATTACTCCCCTGCTTCTGAAAGATATAAGA 

250586          ------------------------------------------------------------ 

                                                                             

 

233781          TTCTCTTAGATTACATTCCGATGGAAGATATTGTATCACAAATACGTTACAAACATATGA 

250586          ------------------------------------------------------------ 

                                                                             

 

233781          TGTATCAGATTTTTATATCAGATCGTCCTGGTGATAGAGAATGTATTCATGCATTTCCGA 

250586          ------------------------------------------------------------ 

                                                                         

 

233781          ATCAAATAAGTTTTAATTCAATAGAAAAAAAATACAACAAACAGATAAGTAATGGTAAAT 

250586          ------------------------------------------------------------ 

                                                                      

 

233781          CTGTTAAGAAAAAAAGAAGTCAATTGCAAATGAAAACGGCGAATGACAAGTATCGTTCGA 

250586          ------------------------------------------------------------ 

                                                                             

 

233781          AAAAAAAAAGGAAAACAGATGCATCTGATGCATTCAGGACGACGGTCGGTAGTATTCAAG 

250586          ------------------------------------------------------------ 

                                                                             

 

233781          AAGAACAAGCTGCAAGGGCCACCACCATCACAACTGGTATTGCTCTAGAGGAAAAGAATA 

250586          ------------------------------------------------------------ 

                                                                             

 

233781          ACGAATATTTGGAATTATTTACTGCTGCTGCTGCTGCAGCTGATACAACAACAGCAACAG 

250586          ------------------------------------------------------------ 

                                                                             

 

233781          CAACAGCAACAGCAACAAAGGAAGTGGCGTGTGAAGAAATTAAAAGGGCTCTTTCGAATG 

250586          ------------------------------------------------------------ 

                                                                             

 

233781          CAGGTATCGCTGCTGTTGCGAAGCAGAATGATACAAATGCTTCTGTGATTACACAAACCC 

250586          ------------------------------------------------------------ 

                                                                             

 

233781          AGAAAGAATACACGCGTCTACCTCCTCACCGTACTTCCGCTGCTCGTAATAATAATAATA 

250586          ------------------------------------------------------------ 

                                                                             

 

233781          ACGATAATAACAACAATAATAATGATAACAACAGTACCAAGCATCAGCAGCAGGAACAGC 

250586          -----------------------------------------CATCAGCAGCAGGAACAGC 

                                                         ******************* 

 

233781          AAAAATCAATGACAGCATCGACAAGGGGGCAGGACGAAGAAACGAATGCAACCCCGGTGT 

250586          AAAAATCAATGACAGCATCGACAAGGGGGCAGGACGAAGAAACGAATGCAACCCCGGTGT 

                ************************************************************ 

 

233781          CAAATCAATATCCGATAGCAATCGCCGCCACCGTCGATACTACTAGTCAATTGAAACCCC 

250586          CAAATCAATATCCGATAGCAATCGCCGCCACCGTCGATACTACTAGTCAATTGAAACCCC 

                ************************************************************ 
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233781          AAACCAAACCATTGAGTCATATGCAGGGAGCTTATTCCAGTCGTCGTGAAAAGGTCATGG 

250586          AAACCAAACCATTGAGTCATATGCAGGGAGCTTATTCCAGTCGTCGTGAAAAGGTCATGG 

                ************************************************************ 

 

233781          CAAACATTAAAGAACTTCGTTCACAAATTAGTCAAGCAACATTCGATGAAGAAAAGATAG 

250586          CAAACATTAAAGAACTTCGTTCACAAATTAGTCAAGCAACATTCGATGAAGAAAAGATAG 

                ************************************************************ 

 

233781          CTTTTGAACAAGCTTTTAAATTAGAAATTGAATCATTAGGACGTTTAAATAAAGATGAAA 

250586          CTTTTGAACAAGCTTTTAAATTAGAAATTGAATCATTAGGACGTTTAAATAAAGATGAAA 

                ************************************************************ 

 

233781          TGAAATCGAAACTTCTCTTCGAAGGCGATAAGATAGATGTTATTGAAGAAGCTGAATTAG 

250586          TGAAATCGAAACTTCTCTTCGAAGGCGATAAGATAGATGTTATTGAAGAAGCTGAATTAG 

                ************************************************************ 

 

233781          TGAACGGATCCAATGCGTCCAATCCCACGACCAACAATGTAAATTTATTGTACCCCCCAT 

250586          TGAACGGATCCAATGCGTCCAATCCCACGACCAACAATGTAAATTTATTGTACCCCCCAT 

                ************************************************************ 

 

233781          ATAATCAATTTGGTATGGAGATGATGGCGAACGATTTTGGTTGTGGTGGTAGTGCAAATA 

250586          ATAATCAATTTGGTATGGAGATGATGGCGAACGATTTTGGTTGTGGTGGTAGTGCAAATA 

                ************************************************************ 

 

233781          TTGGCGTAATTGGCGGGATTTCCCATGGATTTGGAGCTAGTGGGAACTTAGGCGCCCCTT 

250586          TTGGCGTAATTGGCGGGATTTCCCATGGATTTGGAGCTAGTGGGAACTTAGGCGCCCCTT 

                ************************************************************ 

 

233781          ATTCGGCATCGTTTTATGCACAACAACAGATGTATCAATACTCCGTGGTGCATCCACATC 

250586          ATTCGGCATCGTTTTATGCACAACAACAGATGTATCAATACCCCGTGGTGCATCCACATC 

                *****************************************.****************** 

 

233781          AAATTGTACATCAGCATCCGTATTTTCAACACCATCATCATAAGCATCAGGCGATTGCAG 

250586          AAATTGTACATCAGCATCCGTATTTTCAACACCATCATCATAAGCATCAGGCGATTGCAG 

                ************************************************************ 

 

233781          TGACGAACACTGATCGACCCGACGATCCATTTATAATGATGGACCCAGCTATACCCGACG 

250586          TGACGAACACTGATCAACCCGACGATCCATTTATAATGATGGACCCAGCTATACCCGACG 

                ***************.******************************************** 

 

233781          GTAGTAGCGACAAGAACAAAAGAGAACAGAATGAAAATGAAAATCGAGGAGGATGTACTG 

250586          GTAGTAGCGACAAGAACAAAAGAGAACAGAATGAAAATGAAAATCGAGGAGGATGTACTG 

                ************************************************************ 

 

233781          CTGTTACTGCTGATATCGCTACCCATTCTCTTCCCCTCAGTGAAGAACACACCGTAGCCC 

250586          CTGTTACTGCTGATATCGCTACCCATTCTCTTCCCCTCAGTGAAGAACACACCGTAGCCC 

                ************************************************************ 

 

233781          AACAGGATATTGCTCAAGATGACAGCATCATTAGCGATGCCGTCGACGGCAAAAATACCA 

250586          AACAGGATATTGCTCAAGATGACAGCATCATTAGCGATGCCGTCGACGGCAAAAATACCA 

                ************************************************************ 

 

233781          CCGGGTCTGATGGTAATGCCGATGCCAATTTCAATGCCAATACTAAACCTACTGCAACAA 

250586          CCGGGTCTGATGGTAATGCCGATGCCAATTTCAATGCCAATACTAAACCTACTGCAACAA 

                ************************************************************ 

 

233781          CAAAAGGAAAATGGACGCCCGAAGAGCATGAAGAAGTTGCGAAGGCAATGGCCAAATACG 

250586          CAAAAGGAAAATGGACGCCCGAAGAGCATGAAGAAGTTGCGAAGGCAATGGCCAAATACG 

                ************************************************************ 

 

233781          GACCTAGAGTAAGTGGGAAACAAATTTCAATTGAATTTGTTAAGGGTCGGACCCCCCTAC 

250586          GACCTAGAGTAAGTGGGAAACAAATTTCAATTGAATTTGTTAAGGGTCGGACCCCCCTAC 

                ************************************************************ 

 

233781          AACTCAATAGCTATATAAATCGCAAAAAAAGTGAGTTATTAGCGACATGTAAAAAGTATA 

250586          AACTCAATAGCTATATAAATCGCAAAAAAAGTGAGTTATTAGCGACATGTAAAAAGTATA 

                ************************************************************ 

 

233781          AACAAGACTACTGTGACGAGAGCGAGGATGACGACGACGGTGGCACCATTAGAGGATTGA 

250586          AACAAGACTACTGTGACGAGAGCGAGGATGACGACGACGGTGGCACCATTAGAGGATTGA 

                ************************************************************ 
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233781          AGTTTCACCAAACAAGATCTTGTGATCGTGATGGGGATGACAAAAAAACAACTAATACCG 

250586          AGATTCACCAAACAAGATCTTGTGATCGTGATGGGGATGACAAAAAAACAACTAATACCG 

                ** ********************************************************* 

 

233781          ACGTCGAGAAGAATGTGCAGTACCGAAATGCGGAACGAGAACTACGTCGAACCAAAGATG 

250586          ACGTCGAGAAGAATGTGCAGTACCGAAATGCGGAACGAGAACTACGTCGAACCAAAGATG 

                ************************************************************ 

 

233781          GTTGTCTTCTTCCGAAAGGCGGAAAAGAAAAGTATTTGAAGGATGATGGAACATATAGGC 

250586          GTTATCTTCTTCCGAAAGGCGGAAAAGAAAAGTATTTGAAGGATGATGGAACATATAGGC 

                ***.******************************************************** 

 

233781          GCCCTGATGGAGCAAGGTAAGTCTTCCAAAACTACTATATACATGACTTCCATATTTTCT 

250586          GCCCTAATGGAGCAACGTAAGTCTTCCAAAACTACTATATACATGACTTCCATATTTTCT 

                *****.********* ******************************************** 

 

233781          TTATCTGAAATTACTCATCCTTTCTAACTTTCTAAATTTTGAATTAAATCAAACCACCGT 

250586          TTATCTAAAATTACTCATCCTTTCTAACTTTCTAAATTTTGAATTAAATCAAACCACCGT 

                ******.***************************************************** 

 

233781          CACATCATACACACATAGACCCTTTGGATTATCTTGGCACAAAATTCGAGGTTTATGGGT 

250586          CACATCATACACACATAGACCCTTTGGATTATCTTGGCACAAAATTCGAGGTTTATGGGT 

                ************************************************************ 

 

233781          ACCATCTGAACGTTTAGAAGATAATGATGAGAACAACTACGACGACAACATCAACAAATC 

250586          ACCATCTGAACGTTTAGAAGATGATGACGAGAACAACTACGACGACAACATCAACAAATC 

                **********************.****.******************************** 

 

233781          GGGCTACACGAACTATAGTAGCGGCGATACCATCGCAAAAGCGACATCTTCCAATTGCGA 

250586          GGGCTACACGAACTATAGTAGCGGCGATACCATCGCAAAAGCGACATCTTTCAATTGCGA 

                **************************************************.********* 

 

233781          GCAATCATATGATAGAAGTGCTTTACCAAGAGGCCTGAAAACGCATATCCGTGACCCTGT 

250586          GCAATCATATGATAGAAGTGCTTTACCAAGAGGCCTGAAAACGCATATCCGTGACCCTGT 

                ************************************************************ 

 

233781          CGGAGGTTGCTACTGGACCCCTTTAGGTTCAAGAAGGAAACTAACTGCAAAAGAGGCTTC 

250586          CGGAGGTTGCTACTGGACCCCTTTAGGTTCAAGAAGGAAACTAACTGCAAAAGAGGCTCC 

                **********************************************************.* 

 

233781          ACGCAAGTCCAAGAAAAGAAAGCCAGGGCGTCAAAGTGCAGGAGCCAAAACGAAGGAGAA 

250586          ACGCAAGTCCAAGAAAAGAAAGCCAGGGCGTCAAAGTGCAGTAGCCAAAACGAAGGAGAA 

                ***************************************** ****************** 

 

233781          GGAGACGAGAGCGTTGGCGTACGTAACACCTCTCGAAATACTTCAGGGGAAAAAACCAAC 

250586          GGAGACGAGAGCGTTGGCGTACGTAACACCTCTCGAAATACTTCAGGGGAAAAAACCAAC 

                ************************************************************ 

 

233781          TCCGTCTAATCTTTTCCTTTCTTTGCACAGTGTCATTCCTGAAGCGGCGATGAATGAAAA 

250586          TCCGTCTAATCTTTTCCTTTCTTTGCACAGTGTCATTGCTGAAGCGGCGATGAATGAAAA 

                ************************************* ********************** 

 

233781          CTTTAAGGACGACGATGATGATGATGACGATGACGAAGGATACGAATCTTGGACGAGTGG 

250586          CTTCAAGGACGACGATGATGATGATGACGATGACGAAGGATACGAATCTTGGACGAGTGG 

                ***.******************************************************** 

 

233781          CTCGTGGTGTTTACTTCAAGCTCAAAGGGATGCTTCGGCATCGGCAGTAGCAGAATCAGA 

250586          CTCGTGGTGTTTACTTCAAGCTCAAAGGGATGCTTCGGCATCGGCAGTAGCAGAATCAGA 

                ************************************************************ 

 

233781          AGCGAAAAAGTCTGCCCCCGACGAGGAAGAACAACAAGTACGCAAATGCAAATCTATTGC 

250586          AGCGAAAAAGTCTGCCCCCGACGAGGAAGAACAACAAGTACGCAAATGCAAATCTATTGC 

                ************************************************************ 

 

233781          AGCCGAGGCCAAAGCTAAAGAGCGCGAGCGTATTGGAGCTACCTGTACCGGAAATCAGAA 

250586          AGCCGAGGCCAAAGCGAAAGAGCGCGAACGTATTGGAGCTACCTGTACCGGAAATCAGAA 

                *************** ***********.******************************** 

 

233781          AGACGAGTCCGCGAATTGTGGGGATGATAGTAGCCAAGATAGTAGCAAACGCCGACGGCT 

250586          AGACGAGTCCGCGAATTGTGGAGATGATAGTAGCCAAGATAGTAGCAAACGCCGACGGCT 

                *********************.************************************** 
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233781          GAGCATATGTGAGCAATCTCGTATCATTAATCCTGTTCAGAAAATTAATGTTCAGAGAAA 

250586          GAGCATATGTGAGCAATCTCGTATCATTAATCCTGTTCAGAAAATTAATGTTCAGAGAAA 

                ************************************************************ 

 

233781          AAAGAAGAAAAGTTTCTTGAAAGCAAAACAAGATGCTCGTGACTATATGTTGGCCAAGTA 

250586          AAAGAAGAAAAGTTTCTTGAAAGCAAAACAAGATGCTCGTGACTATATGTTGGCCAAGTA 

                ************************************************************ 

 

233781          CGGTCAAGGGAATGAGGAAGAAGAAATTGTAATGGTGTAA 

250586          CGGTCAAGGGAATGAGGAAGAAGAAATTGTAATGGTGTAA 

                ****************************************    


