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Abstract 

Control of plant pathogen resistance or susceptibility largely depends on the promotion of either 

cell survival or cell death. In this context, papain-like cysteine proteases (PLCPs) regulate plant 

defence to drive cell death and protection against biotrophic pathogens. In maize (Zea mays), 

PLCPs are crucial in the orchestration of salicylic acid (SA)-dependent defence signalling. 

Despite this central role in immunity, it remains unknown how PLCPs are activated, and which 

downstream signals they induce to trigger plant immunity. Here, we present the discovery of an 

immune signalling peptide, Zea mays immune signalling peptide 1 (Zip1). A mass spectrometry 

approach identified the Zip1 peptide being produced after salicylic acid (SA) treatment. In vitro 

studies using recombinant proteins demonstrate that PLCPs are required to release bioactive 

Zip1 from its propeptide precursor (PROZIP1). Strikingly, Zip1 treatment strongly elicits SA 

accumulation in maize leaves. Moreover, RNAseq based transcriptome analyses revealed that 

Zip1 and SA treatments induce highly overlapping transcriptional changes. Consequently, Zip1 

promotes the infection of the necrotrophic pathogen Botrytis cinerea in maize, while it reduces 

virulence of the biotrophic fungus Ustilago maydis. Together, Zip1 represents the previously 

missing signal that is released by PLCPs to activate SA defence signalling. 
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Introduction 2 

Plants face a wide range of biotic threats including viruses, bacteria, insects and fungi. 3 

Protective processes including local and systemic defences are mediated in part by plant 4 

proteases that additionally regulate stomatal development, embryogenesis, and cuticle 5 

deposition 1. Importantly, proteases from diverse catalytic classes have been associated with 6 

immunity in plants 1. The apoplastic aspartic protease CDR1 (Constitutive Disease 7 

Resistance1), for instance, induces local and systemic defence responses in Arabidopsis 8 

thaliana. Increased bacterial susceptibility to Pseudomonas syringae occurs in cdr1 mutants 9 

whereas CDR1 overexpression results in enhanced resistance 2. Another example of proteases 10 

involved in plant immunity is the tomato subtilisin-like protease P69 3. Out of six characterized 11 

isoforms, two (P69B and P69C) are transcriptionally upregulated by the defence hormone 12 

salicylic acid (SA) and by infection with P. syringae, suggesting that serine proteases are 13 

important during pathogenesis 4. In addition, the A. thaliana serine protease SITE-1 PROTEASE 14 

(S1P) cleaves RAPID ALKALIZATION FACTOR23 (RALF23) to inhibit plant immunity via the 15 

malectin-like receptor kinase FERONIA (FER) 5.  16 

Among the classes of plant proteases, the papain-like cysteine proteases (PLCPs) are central 17 

hubs in the regulation of programmed cell death and plant immunity 1,6. A crucial role of PLCPs 18 

in plant immunity is highlighted by the discovery that evolutionary unrelated plant pathogens 19 

have independently evolved effector proteins that target PLCPs to promote virulence. For 20 

instance, the tomato PLCP RCR3 (Required for Cf-2-Dependent Disease Resistance3) is 21 

targeted by the Avr2 (Arvirulence-2) effector protein of the fungal pathogen Passalora fulva 22 

(previously Cladosporium fulvum) 7. In addition, it is inhibited by the cystatin-like effectors EPIC1 23 

(Extracellular Cystatin-like Protease Inhibitor1) and EPIC2B of the oomycete pathogen 24 

Phytopthtora infestans and the allergen-like effector Gr-VAP1 (Venom Allergen-like effector 25 

Protein1) of the nematode Globodera rostochiensis 8,9.  26 
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Apoplastic PLCPs have significant roles in the activation of diverse plant defence responses. 27 

Further, the regulation of plant immunity also commonly involves the fine-tuned interplay of 28 

phytohormones such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). Among 29 

defence-related phytohormones, SA is a key player that orchestrates responses to both biotic 30 

and abiotic stresses 10,11 and extensive studies have detailed the role of SA in innate immune 31 

signalling 12. In general, research in A. thaliana and Nicotiana benthamiana has revealed that 32 

SA signalling promotes efficient defence activation against biotrophic pathogens, whereas 33 

necrotrophic pathogens are sensitive to JA/ET-dependent defence signalling. Early publications 34 

emphasized the potential for SA-mediated antagonism for the strong inhibition of wound-35 

induced JA signalling 13,14. Beyond classical phytohormones, endogenous plant peptides can act 36 

on different levels of signal amplification relevant to JA/ET dependent defence signalling 10,15. In 37 

A. thaliana and maize, small peptides can be released from larger pro-peptides to act as 38 

damage-associated molecular patterns (DAMPs) 16-18. In maize, transcripts encoding the PLANT 39 

ELICITOR PEPTIDE 1 (ZmPEP1) precursor protein (ZmPROPEP1) display induced expression 40 

following JA treatment 16. In A. thaliana, AtPEP1 activates pathogen defence responses and 41 

confers disease resistance when ectopically expressed 18. Likewise in maize, ZmPEP1 42 

promotes the production of JA, ET, and defence gene expression. Consequently, pretreatment 43 

of maize with ZmPEP1 leads to enhanced resistance to necrotrophic fungal pathogens. Thus, 44 

PEPs from A. thaliana and maize are functionally conserved DAMPs regulating JA-associated 45 

innate immune responses in diverse plant species 16,17.  46 

The maize pathogen Ustilago maydis is a biotrophic fungus, which induces formation of tumors 47 

on all aerial parts of its host plant 19. At the onset of infection, U. maydis transiently induces 48 

pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, including 49 

PR-gene expression. In the compatible interaction with maize, these responses are suppressed 50 

upon fungal penetration and accommodation of biotrophic infection structures 24 hours after 51 

infection 20. In incompatible interactions, U. maydis induces typical plant immune responses 52 
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including the rapid accumulation of reactive oxygen species (ROS), induction of PR-gene 53 

expression, SA-associated defence responses and programmed cell death 20-22. Successful U. 54 

maydis infection depends on the induction of the maize cystatin CC9, which inhibits a set of SA-55 

induced, apoplastic PLCPs 23. In turn, activity of these apoplastic enzymes can trigger the 56 

activation of SA-associated defence signalling 23. Three maize PLCPs (CP1, CP2 and XCP2) 57 

are also inhibited by the U. maydis effector Pit2, and the inhibitory activity of this protein is 58 

essential for virulence of the pathogen 24. While these findings demonstrate the important role of 59 

apoplastic PLCPs for the regulation of plant immunity, key questions remain unanswered. For 60 

example, how do apoplastic PLCPs induce downstream SA signalling? What are the targets of 61 

PLCPs? Are signals released by PLCPs? What downstream signalling pathways are involved? 62 

Based on previous findings, we hypothesized that the activation of SA-related defences by 63 

PLCPs is mediated by the release of apoplastic peptides that in turn act as signals to activate 64 

downstream responses. In the present study we describe the identification and functional 65 

characterization of a novel peptide which is released by PLCP-activity and induces SA 66 

accumulation and signalling in maize. 67 

 68 

Results 69 

Peptides present in SA-treated apoplastic fluid induce defence responses 70 

To examine if bioactive maize peptides are released by the activity of PLCPs, leaves were 71 

treated with SA to first promote apoplastic protease activity. Confirming previous results 23, 72 

apoplastic fluid of SA-infiltrated leaves showed strongly induced PLCP activity compared to 73 

mock samples 24h after treatment (Fig. S1). Apoplastic fluids of both SA- and mock-treated 74 

leaves were subjected to Amicon® filtration to separate small peptides (<10 kDa) from proteins. 75 

Peptide fractions of SA-treated and mock treated leaves were then re-introduced into naïve 76 

plants by leaf infiltration to test for activity. After infiltration, transcriptional changes of SA-related 77 

PR-genes were analysed by qRT-PCR at 24 h (Fig. 1A). Peptide fractions from SA-treated 78 
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leaves resulted in a significant induction of the previously identified maize SA marker genes 79 

ZmPR3, ZmPR4 and ZmPR5. In contrast to SA-related markers, transcript levels of JA-induced 80 

ZmCC9 23 were not affected by apoplastic peptides (Fig 1A). This result suggests that activity of 81 

SA-induced PLCPs can release peptide(s) into the apoplastic fluid, which in turn activate SA 82 

mediated processes.  83 

 84 

Identification of Zea mays immune signalling peptide 1 (Zip1) 85 

To identify bioactive peptide candidates, fractions (<10 kDa) from apoplastic fluids of SA- and 86 

mock treated plants were analysed by liquid chromatography mass spectrometry (LC-MS) (Fig. 87 

S2A). MS-identified, SA-induced peptides were synthesized and infiltrated into naïve maize 88 

leaves to test their ability to induce PR-gene expression in vivo 24 h after infiltration. In parallel, 89 

plants were treated with 2 mM SA as a positive control (Fig. S2B, S3). qRT-PCR was done for 90 

the SA markers ZmPR3, ZmPR4, ZmPR5, as well as ZmPRm6b, and ZmPR10 23,25,26. Out of 91 

four candidates, this assay identified one peptide eliciting the accumulation of PR-gene 92 

transcripts to a similar level compared to SA (Fig. 1B). This 17 amino acid peptide 93 

[+EGESELKLATQGASVRR-] was termed Zea mays immune signalling peptide 1 (Zip1). To test 94 

whether Zip1 induced PR-gene expression is sequence specific, a mutated peptide version 95 

(Zip1mut) was generated, in which the N-terminal charged amino acids Glu and Lys were 96 

substituted to neutral Ala (Fig. 1B). In the maize leaf assay for elicited PR-gene expression, the 97 

Zip1mut peptide is completely inactive (Fig. 1B), indicating that the charged N-terminus is 98 

required for the induction of Zip1-induced defence signalling. In contrast to the Zip1mut peptide.  99 

a native Zip1 version with a three amino acid N-terminal extension (QPW) triggered PR-gene 100 

induction similar to the 17aa version (Fig S3), indicating potential variability for the N-terminal 101 

boundary of Zip1. 102 

 103 

 104 
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Zip1 is released from a pro-peptide by PLCP activity 105 

A MASCOT algorithm-based maize genome search for Zip1 identified an annotated open 106 

reading frame for a precursor protein (AC210027.3_FGP003) that was named PROZIP1. . The 107 

137 aa protein is predicted for unconventional secretion (SecretomeP 2.0; 108 

http://www.cbs.dtu.dk/services/SecretomeP/) but does not contain any known domains (Expasy 109 

PROSITE, https://prosite.expasy.org/). A qRT-PCR experiment showed that transcript levels for 110 

PROZIP1 are neither induced by Zip1, nor by SA, (Fig. S2C) which indicates a post-111 

transcriptional regulation of its activity. To test if Zip1 can be released from PROZIP1 by maize 112 

PLCPs, PROZIP1 was cloned and fused to an N-terminal HA-tag for heterologous production in 113 

Escherichia coli (Fig. S4) and co-incubated with apoplastic fluid from SA treated maize plants. 114 

Co-incubation resulted in a time-dependent cleavage of PROZIP1, which can be blocked by the 115 

addition of E-64 27, a specific PLCP inhibitor (Fig 2A). This result indicates that PROZIP1 is a 116 

substrate of SA-activated maize PLCPs. To test, if individual maize proteases are capable of 117 

PROZIP1 cleavage, co-incubation assays with the previously identified 23 apoplastic maize 118 

PLCPs CP1, CP2, CatB and XCP2 were performed. PLCPs were heterologously expressed in 119 

N. benthamiana and protease activity was normalized and monitored via activity based protein 120 

profiling (ABPP) 28 using the fluorescent PLCP-specific probe MV-202 29 (Fig. 2B: chemical 121 

structure Fig. S1A). Co-incubation of equal amounts of active individual PLCPs resulted in 122 

cleavage of PROZIP1 by CP1 and CP2, but not by CatB and XCP2 (Fig. 2C). This result shows 123 

that the maize PLCPs CP1 and CP2 are required for processing of PROZIP1.  124 

PROZIP1 contains six RR/FR motifs that are predicted to be potential protease cleavage sites 125 

due to their hydrophobic and dibasic properties (Fig 2D) 30,31. Maize PLCP activity towards these 126 

sides was tested with different fluorescent substrates that identified Arg-Arg and Phe-Arg 127 

sequence motifs as most efficient cleaved sites (Fig. S5). To test if cleavage at these predicted 128 

sites actually releases Zip1, two different PROZIP1 versions with substituted RR/FR motifs were 129 

generated and purified from E. coli (Fig. 2D and S4). In PROZIP1MutCS all six di-arginine motifs 130 
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were substituted into di-alanines. A second version of the propeptide (PROZIP1MutCS2) 131 

contained only mutations of the two predicted cleavage sites surrounding the Zip1 peptide (Fig. 132 

2D), while the remaining four sites remained unaffected. Apoplastic fluid containing active 133 

PLCPs, as well as individual proteases expressed in N. benthamiana were co-incubated with 134 

PROZIP1mutCS/CS2. Unlike the native propeptide, PROZIP1mutCS was not processed upon PLCP 135 

treatment, which indicates that the mutated sites are required for PLCP-induced cleavage. For 136 

PROZIP1mutCS2, the α-HA immunoblot showed PLCP-dependent processing (Fig. 2C, Fig. 137 

S5B), reflecting that this mutant version carries four of the six predicted cleavage sites.  138 

To test if the in vitro processed PROZIP1 releases biologically active forms of Zip1, a large-139 

scale cleavage assay with subsequent extraction of peptides of a molecular weight <10kDa was 140 

performed. Naïve plants were infiltrated with these peptide fractions of PROZIP1 treated with 141 

active proteases or E-64-inhibited proteases as negative control. Subsequent qRT-PCR 142 

revealed a significant upregulation of PR-genes triggered by PROZIP1 peptide fractions that 143 

were incubated with PLCPs (Fig 3A). This induction of PR-genes was not observed when 144 

PLCPs were inhibited with E-64 prior to co-incubation with PROZIP1, demonstrating a PLCP-145 

dependent release of active Zip1 (Fig 3A). In addition, co-incubation of both PROZIP1mutCS and 146 

PROZIP1mutCS2 with active PLCPs did not result in release of peptides inducing significant PR-147 

gene expression. This confirms  that i) the RR/FR motifs in PROZIP1 are crucial for the release 148 

of the signalling peptide Zip1, ii) PROZIP1 contains no additional PR-gene activating peptides 149 

besides Zip1, and iii) the activity observed is most likely not caused by small residual amounts 150 

of SA itself (Fig 3A).  151 

 152 

Zip1 activates maize PLCPs  153 

To further characterize downstream responses triggered by Zip1, we tested the rapid production 154 

of reactive oxygen species (ROS), a typical immune response induced upon perception of 155 

PAMPs or damage-associated molecular patterns (DAMPs), such as elf18, flg22, chitin or 156 
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AtPEP1 32-35. For this, maize leaf discs were treated with 5 µM Zip1. While both 1 µM chitin and 157 

1 µM flg22 elicited typical PAMP-induced ROS bursts, Zip1 treatment did not cause detectable 158 

production of ROS (Fig. S6). Next, phosphorylation of maize MAP-kinases was tested by 159 

western blotting. However, in contrast to chitin and flg22, Zip1 did not cause any 160 

phosphorylation detectable with an α-Phospho p44/p42 antibody (Fig. S6B). Thus, in the 161 

context of rapid ROS production and MAPK phosphorylation, Zip1 lacks common overlapping 162 

PTI responses in maize. 163 

We previously demonstrated the reciprocal activation of PLCPs and SA signalling in maize 23. 164 

To explore the potential direct influence of Zip1 on PLCPs, ABPP assays were performed on 165 

apoplastic extracts from maize leaves 24h after treatment with SA, Zip1 or Zip1mut, respectively. 166 

While an ABPP of ZIP1mut-treated samples showed only weak PLCP activity compared to mock 167 

samples, Zip1 treated leaves displayed strong induction of apoplastic PLCP activity, which is 168 

similar to samples that were infiltrated with SA (Fig. 3B). A possible explanation for this result 169 

could be an exosite activation of PLCPs by direct interaction with the Zip1 peptide 36. To test if 170 

PLCPs are directly activated by the Zip1 peptide, leaf extracts of SA- and mock- treated leaves 171 

were incubated with Zip1 and subsequently labelled with DCG-04. Co-incubation with Zip1 in 172 

vitro did not result in elevated DCG-04 labelling (Fig. 3B) which suggests an indirect Zip1-173 

mediated PLCP activation via a so far unknown signalling cascade. Our results point towards a 174 

positive feedback loop in which Zip1 is released from PROZIP1 by SA-activated PLCPs and, in 175 

turn, induces the activity of these proteases. 176 

 177 

Zip1 is a functional elicitor of SA signalling 178 

Zip1 is an endogenous maize peptide that induces transcriptional activation of SA marker 179 

genes. This finding raises the question, whether Zip1 ultimately has a direct influence on SA 180 

levels in maize. To this end, SA contents were determined by LC/MS/MS measurements of 181 

maize leaves treated with Zip1. Mock-treated tissue, as well as Zip1mut served as controls. (Fig. 182 
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4A). SA levels were significantly elevated in Zip1-treated samples compared to both mock-183 

treated samples and the Zip1mut controls, demonstrating a specific accumulation of SA upon 184 

treatment with the Zip1 peptide (Fig. 4A).  185 

Our observation that Zip1 elicits SA accumulation suggests that its perception also causes a 186 

much larger transcriptional response beyond the induction of PR-genes. We therefore 187 

performed whole transcriptome analyses using Illumina-RNA-Sequencing (RNAseq), which 188 

revealed 2713 differentially regulated maize genes in response to SA, compared to mock-189 

treated leaf samples at 24 hours after treatment. Zip1 treatment resulted in 2980 differentially 190 

regulated genes compared to mock treatment (Table S1). Remarkably, only 56 genes showed 191 

significant differential expression between SA and Zip1 treatments. A comparison of Zip1/SA 192 

induced genes to the mock-treated control revealed that 21% of the differentially regulated 193 

genes are exclusively induced in either SA or Zip1 treated samples, respectively (Fig. 4B). 194 

Eighty-nine percent of the top-300 upregulated genes are shared between SA and Zip1 195 

treatment. Similarly, 86% of the top-50 downregulated genes are shared amongst both samples. 196 

This surprising and extensive overlap in transcriptional responses induced by both signals 197 

demonstrates that Zip1 strongly promotes SA-triggered defence responses in maize. The 198 

observed induction of SA accumulation in response to Zip1 (Fig. 4A) is reflected by the 199 

transcriptional induction of predicted maize SA biosynthesis key genes ZmPAL1 (Phenylalanine 200 

Ammonia-Lyase1) and ZmPAL4 (Table S2). GO enrichment analyses of biological processes 201 

(BP) further substantiate these findings. Nitrogen metabolic processes and DNA synthesis, as 202 

well as genes associated with translation are downregulated by both Zip1 and SA. BPs 203 

upregulated by Zip1 and SA treatment include mainly defence responses ranging from response 204 

to fungi, bacteria and biotic stress to cell wall organization and biogenesis (Fig. 4C).   205 

As a confirmation of the RNAseq results, PR-genes analysed by qPCR for the characterization 206 

of Zip1 responses (Fig. 1B) were also predictably up-regulated in both Zip1 and SA treatments 207 

(Table S2). Most of the SA and Zip1-upregulated transcripts encode for defence genes including 208 
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catalytic and stress protective enzymes like chitinases, -1,3-glucanases, peroxidases, heat-209 

shock proteins, glutathione S-transferases (GSTs) and other well-known SA markers. In 210 

addition, several uncharacterized maize WRKY transcription factors are induced upon SA and 211 

Zip1 treatment, whereas two of these are uniquely up-regulated in Zip1-treated samples (Table 212 

S2). In summary, RNAseq analyses reveal numerous responses downstream of Zip1, an 213 

apoplastic signal that specifically induces SA-dependent gene expression in maize (Fig. 4 and 214 

S7). Moreover, Zip1 may also influence ZmPep-mediated defence responses as the ZmPep 215 

receptor, ZmPEPR1 as well as its potential co-receptor ZmBAK1 are upregulated by Zip1 (Fig. 216 

S7) 37,38. 217 

Given that Zip1 activates SA signalling, we hypothesized that Zip1 may trigger overall maize 218 

immune responses similar to SA. We therefore pre-treated maize leaves with SA, Zip1, Zip1mut 219 

or mock before subsequent infection with the fungal necrotroph Botrytis cinerea. Necrotic 220 

lesions caused by B. cinerea were quantified 4 days after infection to determine the impact of 221 

Zip1 as well as SA. SA pre-treated leaves showed about 2.5-fold increase in necrotic lesion 222 

area compared to buffer treated control plants (Fig. 5A). Strikingly, the lesion size of Zip1 223 

treated leaves displayed a 4-fold increase compared to mock treatments, while Zip1mut 224 

challenged leaves did not show an elevated susceptibility to B. cinerea compared to mock 225 

controls (Fig. 5A). Complementary to an increased susceptibility towards a necrotroph, the 226 

proposed function of Zip1 suggests a negative impact on biotrophic interactions. This was 227 

tested via the recently established “Trojan horse” (TH) strategy, which deploys recombinant U. 228 

maydis strains to deliver bioactive plant peptides into the maize apoplast (van der Linde et al., 229 

revised). Strikingly, infection of a U. maydis mutant expressing secreted Zip1 during infection 230 

resulted in a strongly reduced virulence (Fig 5B), as well as elevated expression of PR-genes 231 

(Fig 5C). Together, these experiments demonstrate that Zip1 activity closely mirrors SA 232 

signalling and predictably promotes disease caused by necrotrophic and biotrophic fungi 10.  233 

 234 
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Discussion 235 

The activation and re-localization of plant proteases during pathogen attack has been observed 236 

in a wide variety of plant species 6. We previously demonstrated that apoplastic PLCPs can 237 

activate SA-mediated defence signalling in maize and inhibition of these proteases is a crucial 238 

step in suppressing immunity and enabling successful infection by biotrophic fungi 23,24. Within 239 

this framework, we proposed two mechanistic scenarios for PLCP action, (a) proteolytic 240 

shedding of extracellular receptor domains 39,40, and (b) activation of peptide hormone signalling 241 

by proteolysis of a precursor peptide 5,41,42. Our current work provides strong support for the 242 

second hypothesis, namely SA-induced PLCPs activate the production of peptide signals that 243 

further amplify SA production and SA-associated defence responses. Specifically, we identified 244 

Zip1 as a signalling peptide mediating SA-dependent immunity, which is released by SA 245 

activated PLCPs and, in turn, results in a positive feedback loop amplifying SA-related defence 246 

responses in maize (Fig. 5B). It was previously shown that exogenously applied SA mediates 247 

activation of five apoplastic PLCPs. Upon activation PLCPs promote SA-dependent PR-gene 248 

expression when infiltrated into naïve plants 23. Through PROZIP1 cleavage studies, we 249 

demonstrate that the mixture of apoplastic PLCPs, as well as active form of two recombinant 250 

apoplastic PLCPs, namely CP1 and CP2, cleave the propeptide PROZIP1. This event releases 251 

bioactive peptides that act as signals to induce SA-associated defence responses which include 252 

the reciprocal activation of PLCP activity similar to action of free SA. Using mass spectrometry 253 

we were able to detect the 17aa Zip1 peptide as biologically active component in apoplastic 254 

fluids of maize leaves. Biological assays however indicated that also a 20aa Zip1 version with 255 

three additional N-terminal residues has similar biological activity. This indicates variability of the 256 

Zip1 N-terminus, which might result from secondary cleavage by yet unknown proteases.  The 257 

role of Zip1 in signal amplification explains why apoplastic maize PLCPs are important effector 258 

targets. The previously characterized U. maydis effector Pit2, as well as the endogenous JA-259 

induced protein ZmCC9 are secreted to the apoplast to establish biotrophic interactions by 260 



 

13 
 

blocking apoplastic PLCPs. Thereby the immune response amplifier Zip1 cannot be released 261 

from the PROZIP1 precursor protein. In turn, reduced levels of Zip1 impair further SA production 262 

and ultimately SA-mediated immunity is dampened 24. Future work will aim to specify the exact 263 

cleavage process of PROZIP1 by generating several cleavage site mutants and test them in 264 

cleavage assays with maize PLCPs. Recently, substrate specificity for two PLCPs of Nicotiana 265 

benthamiana (NbCysP6, NbCysP7) was analysed in detail 43. For NbCysP6, which is closely 266 

related to maize CP1 a substrate preference for P2-position was identified (L,V or F). While this 267 

is in agreement with the predicted N-terminal cleavage site of Zip1, the C-terminal cleavage site 268 

(R104 of PROZIP1) is rather unexpected. One possible explanation for this would be that 269 

additional plant proteases (e.g. subtilases), which might be activated by the PLCPs, are also 270 

involved in the release of the Zip1 peptide.  271 

How precisely Zip1 promotes SA production remains unknown. In the context of pathway 272 

regulation, the majority of pathogen-induced SA is synthesized from isochorismate produced by 273 

isochorismate synthase (ICS) and partially from cinnamate produced by phenylalanine lyase 274 

(PAL) 44. In line with this is a previous finding that U. maydis secretes a chorismate mutase 275 

(Cmu1) into maize cells where it re-channels metabolism to lower the substrate availability for 276 

SA synthesis 45. Activity of Cmu1 might also be the reason for a non-complete loss-of-virulence 277 

of Zip1-expressing U. maydis strain. A possible scenario would be that Cmu1 activity 278 

counteracts the Zip1-induced SA-accumulation allowing a residual level of infection.   279 

RNAseq analyses revealed the transcriptional induction of two genes encoding for ZmPAL1 and 280 

ZmPAL4 by Zip1 (Table S1,S2). Additionally, ZmPEPR1, a component of peptide induced 281 

immune amplification and its potential co-receptor ZmBAK1 are upregulated by SA as well as 282 

Zip1 (Table S1, S2) 37. In contrast to Pep/PEPR signal amplification, Zip1 not only promotes 283 

strong SA signalling but downregulates the expression of an essential enzyme involved in maize 284 

JA biosynthesis, namely lipoxygenase 8/tassel seed 1 (Table S1) 46. In the context of candidate 285 

biochemical defences, a terpene synthase homolog, ZmTPS21, is exclusively induced by Zip1 286 
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(Table S1). Related terpene synthases in maize, such as ZmTps6/11 are -macrocarpene 287 

synthases predictably responsible for the production of antifungal phytoalexins, termed 288 

zealexins 47. Silencing of ZmTps6/11 promotes increased susceptibility towards U. maydis 289 

supporting a role in biochemical immunity 48. Additionally, two WRKY transcription factors are 290 

induced by Zip1 that might be involved in immune signalling (Table S2).  291 

Collectively, we have identified a peptide, termed Zip1, which activates salicylic acid mediated 292 

defenses. Given that SA-dependent immune signalling is a conserved mechanism in plants, it is 293 

surprising that Zip1 has little or no sequence homologs in other plant species.  294 

We speculate that a widely conserved Zip1 sequence in plants would create an accessible 295 

evolutionary target for necrotrophic pathogen effectors and manipulation. Importance of Zip1 for 296 

induction of pathogen induced immunity might also be reflected by an additional copy of the 297 

PROZIP1 gene on maize chromosome 8 (GRMZM2G140153; PROZIP2), carrying a single 298 

conservative amino acid difference in the coding region (PROZIP1 Ala100 to Val; Fig S7). 299 

Presence of an expressed backup copy on a different chromosome further supports the 300 

functional importance of Zip1 (Fig S7). Given this potential “Achilles heel” be used by 301 

necrotrophs to promote susceptibility, Zip1 function rather than sequence may be conserved as 302 

it has been shown for tomato systemin and hydroxyproline-rich glycopeptide systemins 303 

(HypSys) 49-51. Sytemin and HypSys do not share sequence similarities but are both involved in 304 

JA-dependent signalling against herbivorous and pathogen attack including systemic synthesis 305 

of protease inhibitors and defensins 50,52. Similar to the systemin-related peptides, additional 306 

research is required to determine how Zip1 is perceived by plant cells and to elucidate key 307 

signalling nodes responsible for Zip1-induced SA production. Collectively, our current study fills 308 

an important conceptual and mechanistic gap in the understanding of how plant apoplastic 309 

proteases promote SA signalling. Based on these findings, we are proposing a model on Zip1-310 

mediated defenes signalling in maize (Fig 5D). In this scenario, an initial SA burst leads to the 311 

activation of apoplastic PLCPs, whichresults in processing of the precursor PROZIP1 to release 312 
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the Zip1 peptide signal acting as an amplifier of defense responses to further promote SA 313 

production. With predictably important roles in balancing effective defences against biotrophs 314 

with susceptibility to necrotrophs, endogenous peptide signals that amplify SA-responses are 315 

likely to await discovery in numerous plants. The current discovery of Zip1 provides an 316 

important conceptual example of the previously missing intermediate signal that links the 317 

activation of apoplastic PLCPs to amplified SA signalling and ultimately inducible plant immune 318 

responses. 319 

 320 

Materials and Methods 321 

Plant treatments 322 

For all experiments maize plants (Zea mays cv Early Golden Bantam) were grown in a walk-in 323 

Phytochamber at 28°C during a light period of 12h with one hour of twilight, and 22°C during a 324 

dark period of 11 h. For each experiment the 2nd and 4th leaf of 10-14 days old plants were taken 325 

for analyses. Plants were syringe infiltrated with 2 mM salicylic acid or mock (0.1% of EtOH in 326 

H2O). Treated leaf areas were excised 24 h after treatment and apoplastic fluid was collected 327 

from leaves through centrifugation. Protein content was adjusted to 4.5 mg ml-1. For subsequent 328 

qRT-PCR analyses, SA treated leaf tissue was collected 3-4 cm distant from site of infiltration. 329 

Individual peptides were synthesized by Genscript Biotech Incorporation (Nanjing, China) and 330 

dissolved in H2O. Leaf infiltration treatments were performed using a blunt needless syringe. 331 

Briefly the 2nd and 4th leaves of 1-2 week old plants were infiltrated with either mock solution or 5 332 

µM peptide solutions at the base of the leaf and harvested 24 h later. Twelve leaves were 333 

pooled per sample and treatment for each of five independent biological replicates. 334 

 335 

Identification of Z. mays immune signaling peptides and protein precursors  336 

To identify maize peptide signal candidates by mass spectrometry, leaf apolastic fluid of SA or 337 

mock treated plants was extracted. Peptide fractions were enriched by filtration using a 10 kDa 338 
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Amicon Centrifugation Filter (EMD Millipore, Darmstadt, Germany) and the application of 5 ml 339 

samples of apoplastic fluid, corresponding to 4.5 mg total protein. The <10kDa apoplastic 340 

fraction was adjusted to a final concentration of 0.5% formic acid (FA) and 5% acetonitrile 341 

(ACN). The acidified peptide solution was passed in 150 µL steps over pre-equilibrated C18 342 

spin columns. Next, the columns were washed with 4× 0.5% FA, 5% ACN to remove excess 343 

salts. Finally the bound peptides were eluted with 2× 50 µL 0.1% FA, 70% ACN and 344 

concentrated until <5 µL liquid remained. The resulting volume was then adjusted to 20 µL by 345 

adding 0.1% FA. LC-MS/MS-experiments were performed on a Thermo LTQ Velos mass 346 

spectrometer coupled to a Proxeon EASY-nLC. Peptides were separated on a single reverse 347 

phase C18 column (inner diameter 75 mm, packed with 12-cm ReproSil- Pur C18-AQ [3 µm]) 348 

using an acetonitrile gradient (120 min 5 to 80%; 20 min 80%), at a flow rate of 300 nl min-1. 349 

Peptides were fragmented by collision-induced decay in a data-dependent fashion, fragmenting 350 

the 20 most intense multiply charged precursors in each MS scan. MS2 spectra data were 351 

searched using the MASCOT algorithm (version 2.3.02) first against a database of known 352 

contaminants (as incorporated in MASCOT) followed by searching against the maize sequences 353 

from the database ZmB73_5b_FGS_translations_20110205.fasta 354 

(www.maizesequence.org/index.html).  355 

 356 

Expression and purification of PROZIP1/PROZIP1mutCS/ PROZIP1mutCS2 357 

For heterologous protein expression followed by purification, PROZIP1 was amplified from Early 358 

Golden Bantam cDNA using oligonucleotides PROZIP1-f and PROZIP1-r (see Table S3). 359 

Putative cleavage sites were substituted to alanine in silico and resulting gene was synthesized 360 

by Genscript Biotech Incorporation (Nanjing, China). The PROZIP1/ 361 

PROZIP1mutCS/PROZIP1mutCS2 proteins were purified via glutathione resin and cleavage of 362 

GST-tag was performed as described previously 24. Further purification of 363 

PROZIP1/PROZIP1mutCS was achieved by gel filtration chromatography on an ÄKTA sytem 364 
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(GE Healthcare Life Science, Buckinghamshire Great Britain) using a Superdex 75 16/600 365 

column equilibrated with storage buffer containing 300 mM NaCl, 100 mM Tris-HCl, pH 8.5.  366 

 367 

Protease activity assays, ABPP and protease cleavage assays 368 

To analyze the activity of different cysteine protease, apoplastic fluid from SA treated plants was 369 

extracted as described previously 23 in the presence or absence of E-64 (Sigma-Aldrich, St. 370 

Louis, MO, USA) using 10 µM of the following substrates: Z-Phe-Arg-7-amido-4-methylcoumarin 371 

(AMC), Z-Arg-Arg-AMC, Boc-Gln-Ala-Arg-AMC, N-Succinyl-Leu-Leu-Val-Tyr-AMC (Sigma-372 

Aldrich, St. Louis, MO, USA). For activity based protein profiling, leaf tissue treated with either 373 

Zip1 or SA was used for total protein extraction in H2O + 1 mM DTT. Protein concentration was 374 

adjusted to 0.2 mg ml-1 with 15 mM sodium phosphate buffer, pH 6.0, 0.2 mM DTT and pre-375 

incubated with 5 µM E-64 or control buffer in a total volume of 200 µL for 30 min at room 376 

temperature prior to the addition of 0.2 µL of 2 mM DCG-04. After incubation for 3 h at room 377 

temperature, proteins were precipitated with acetone and resolved in 2x Laemmli loading buffer. 378 

15 µL of dissolved proteins were subjected to SDS-PAGE. Immunoblotting and detection of 379 

DCG-04 labeled proteins was performed as described in previously 23. Biotinylated proteins 380 

were detected by strep-HRP (1:3000) (Sigma-Aldrich, St. Louis, MO, USA). 381 

For the in vitro cleavage assays 5 µM of purified PROZIP1/PROZIP1mutCS/PROZIP1mutCS2 382 

protein was either incubated with apoplastic fluid from SA treated maize leaves containing 383 

active PLCPs, or with apoplastic fluid from N. benthamiana leaves transiently expressing 384 

individual proteases CP1, CP2, XCP2 or CatB according to 24.  385 

 386 

Data availability 387 

Mass spectrometry and RNA sequencing data availability. Raw read sequences have been 388 

deposited in the Sequence Read Archive (SRA) under the BioProject ID PRJNA379074 389 
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(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA379074). Data can be accessed under the 390 

following collaborator link : 391 

Study SRP101910: RNA-seq of Zea mays treated with SA, Zip1 or mock: 392 

ftp://ftp-393 

trace.ncbi.nlm.nih.gov/sra/review/SRP101910_20170711_152605_b1659515b9d1a59ebbc790e394 

01084a8f0 395 

 396 

The detailed experimental protocols and methods applied in this study can be found in 397 

the Supplementary information. 398 
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Figure Legends 555 

 556 

Fig. 1. Induction of SA-associated PR-gene expression by apoplastic peptide fraction as 557 

well as by Zip1 [A] qRT-PCR analyses of maize leaves treated with apoplastic peptide fractions 558 

from SA-treated leave samples show induction of SA-associated PR-gene expression (PR3, 559 

PR4 and PR5; black bars) compared to peptides of mock treated samples (grey bars). CC9 as a 560 

control for JA-marker genes is not induced. [B] Maize leaves were treated with 5 µM Zip1 (dark 561 

grey) and 5 µM Zip1mut (light grey) as well as with 2 mM SA (black). Peptide treatment and 562 

subsequent qRT-PCR analyses reveals Zip1 to be capable to induce SA-associated PR-gene 563 

expression in maize leaves 24 hours after treatment. Charged N-terminal amino acids (red) are 564 

essential to maintain biological activity of Zip1 as Zip1mut is not inducing PR-gene expression. 565 

Experiments shown in this figure were done in five independent biological replicates with two 566 

technical replicates in each measurement; error bars represent SEM; p-values were calculated 567 

by an unpaired t-test. *P<0.05; **P<0.005; ***P<0.0005 568 

 569 

Fig. 2. Active PLCPs are required for processing of PROZIP1. [A] Heterologously expressed 570 

PROZIP1 (5 µM) was co-incubated with AF of SA-treated maize leaves containing active 571 

PLCPs. 0, 5 and 15 min timepoints were analysed using α-HA western blot. Activity of PLCPs 572 

was monitored by ABPP using DCG-04, a specific probe for the detection of active PLCPs. 573 

PLCPs efficiently process PROZIP1 over time, which can be inhibited by E-64. PROZIP1mutCS 574 

with putative cleavage sites mutated is not cleaved anymore. [B] Individual PLCPs were 575 

heterologously expressed in N. benthamiana via A. tumefaciens-mediated transformation. 576 

Activity of CP1, CP2, CatB and XCP2 was normalized and examined by ABPP using MV-202 as 577 

fluorescent probe. [C] PROZIP1, PROZIP1mutCS as well as PROZIP1mutCS2 carrying an N-578 

terminal HA epitope were tested in in vitro cleavage assays with individual proteases. α-HA 579 
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immunoblotting shows that CP2 and CP1, but not CatB and XCP2 are responsible for PROZIP1 580 

cleavage. PROZIP1mutCS with all RR motifs mutated is not processed whereas PROZIP1mutCS2 581 

is cleaved although slightly less than wild type PROZIP1. [D] Alignment of PROZIP1 and 582 

PROZIP1 variants that were generated in this study. In PROZIP1mutCS/PROZIP1mutCS2 583 

different sets of putative cleavage sites (red) were substituted by Alanine (blue). Zip1 is 584 

highlighted in green.  585 

 586 

Fig. 3. In vitro released Zip1 is active in vivo. [A] PROZIP (10 µM), PROZIP1mutCS (10 µM) 587 

and PROZIP1mutCS2 (10µM) were co-incubated with AF fractions containing active PLCPs 588 

monitored by ABPP. Subsequently peptide fractions were separated from protein fractions. 589 

Maize leaves were treated with each fraction, respectively. 24 hpi qRT-PCR analyses show a 590 

significant induction of PR-gene expression with peptide fractions of PROZIP1 cleavage 591 

reactions. This effect can be abolished by blocking PLCPs activity with E-64 prior to PROZIP1 592 

incubation. PROZIP1mutCS and PROZIP1mutCS2 peptide fractions do not induce a significant SA-593 

associated defense gene expression. Protein fractions of all PROZIP cleavage reactions do not 594 

induce PR-gene expression. The experiments were done in three independent biological 595 

replicates; error bars represent SEM; P-values were calculated by an unpaired t-test. *P<0.05; 596 

**P<0.005. [B] Zip1 induces PLCP activity. Maize leaves were treated with 5 µM Zip1 and 597 

Zip1mut as well as 2 mM SA. 24 hpi PLCP activity was monitored via APBB using DCG-04 598 

probe. Zip1 induces the activation of PLCPs same as SA does (left panel). To ascertain if Zip1 599 

induces PLCP activation by direct interaction, leaf extract of treated plants was co-incubated 600 

with Zip1 before ABPP showing no activation of PLCPs by direct interaction with Zip1 (right 601 

panel).  602 

 603 

Fig. 4. Zip1 induced accumulation of SA in maize leaves and RNA-sequencing analyses 604 

of Zip1 and SA treated maize leaves. [A] Maize leaves were treated with 5 µM Zip1 and 605 
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Zip1mut. 24 hpi total free SA was measured in mock, Zip1mut and Zip1 treated samples using 606 

LC/MS-MS. Zip1 causes a 20-fold accumulation of SA compared to mock. SA induction induced 607 

by Zip1 is statistically significant compared to Zip1mut. [B] To identify additional responses 608 

mediated by Zip1 whole transcriptome analyses was performed at 24 h using RNAseq. The up- 609 

and downregulated genes in SA and Zip1 (compared to mock control) were compared against 610 

each other. For this, we took the strongest differentially regulated genes above/below a logFC 611 

threshold of ~ +/- 1.6. 266 (89%) of the 300 strongest upregulated genes in SA are also 612 

upregulated in Zip1 and 43 (86%) of the 50 strongest downregulated genes in SA are also 613 

downregulated in Zip1. Vice versa, 268 (89%) of the 300 strongest upregulated genes in Zip1 614 

are also upregulated in SA and 36 (72%) of the 50 strongest downregulated genes in Zip1 are 615 

also downregulated in SA. For all comparisons a significant threshold (adj.P) of <0.05 was 616 

applied. [C] Differential gene expression of GO-term categories between Zip1/Mock and 617 

SA/Mock was calculated with R/DESeq2. With all genes differentially regulated under an FDR-618 

adjusted significance cutoff level of 0.05, parametric analysis of gene set enrichment (PAGE) 619 

was applied with agriGO, Zea mays AGPv3.30 and the complete GO list. Gene ontologies 620 

important in immune response signalling were manually selected and the corresponding Z-score 621 

from the PAGE analysis was visualized in a heatmap. Asterisks (*) denote values with an adj. P 622 

≥ 0.05. 623 

 624 

Fig. 5. Zip1 confers increased susceptibility of maize towards the necrotrophic pathogen 625 

Botrytis cinerea but mitigates infection by the biotrophic fungus Ustilago maydis. [A] 626 

Maize leaves were pre-treated with 5 µM Zip1mut or Zip1 and 2 mM SA, respectivley. 24 hpi 627 

pre-treated leaves were detached and infected with 10 µL droplets of B. cinerea spore solution 628 

containing 1x106 spores mL-1. In line with SA measurements Zip1 pre-treatment causes higher 629 

susceptibility to B. cinerea. [B] Maize seedling were infected with biotrophic Ustilago maydis 630 

wildtype strain (SG200) and a U. maydis mutant that expresses secreted Zip1. U. maydis Zip1 631 
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expressing strain shows strongly reduced tumor formation at 12 dpi in three independent 632 

biological replicates. n=number of plants infected. P-values were calculated by an unpaired t-633 

test. *P<0.05. [C] qRT-PCR of U. maydis infected maize leaves proves that Zip1 secretion by 634 

U.maydis induces the expression of SA-associated PR-genes PR3 and PR5 at 2 dpi. The 635 

experiments were done in three independent biological replicates; error bars represent SEM; P-636 

values were calculated by an unpaired t-test. *P<0.05. [D] Model of Zip1-mediated defense 637 

signalling in maize. Upon infection biotrophic pathogens such as U. maydis trigger JA-638 

associated defense responses by so far unknown mechanisms. By that, maize endogenous 639 

CC9 as well as the U. maydis effector protein Pit2 are induced to inhibit PLCP activity. Likewise, 640 

SA signalling is directly suppressed by Cmu1, an effector protein that suppresses SA synthesis. 641 

In contrast, induced SA signalling leads to the activation of PLCPs. Thus, PROZIP1 is 642 

processed by CP1 and CP2 which releases active Zip1. Zip1 signalling induces several SA-643 

associated downstream signalling events and PLCP activation. Together with Zip1-induced 644 

accumulation of SA, the newly discovered peptide Zip1 amplifies SA-associated defense 645 

responses. 646 


