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Abstract

This paper investigates the time-series predictability of commodity futures excess returns

from factor models that exploit two risk factors – the equally weighted average excess return

on long positions in a universe of futures contracts and the return difference between the

high- and low-basis portfolios. Adopting a standard set of statistical evaluation metrics,

we find weak evidence that the factor models provide out-of-sample forecasts of monthly

excess returns significantly better than the benchmark of random walk with drift model.

We also show, in a dynamic asset allocation environment, that the information contained in

the commodity-based risk factors does not generate systematic economic value to risk-averse

investors pursuing a commodity stand-alone strategy or a diversification strategy.
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1. Introduction

Systematic risk factors, motivated by conventional asset pricing models, are insignificantly cor-

related with commodity futures excess returns (see, among others, Dusak (1973), Jagannathan

(1985), Bessembinder (1992), Erb and Harvey (2006), and Daskalaki, Kostakis, and Skiadopou-

los (2014)).1 On the other hand, several studies show that the difference between the current

spot price and the contemporaneous futures price, which is commonly known as the basis, con-

tains information about expected futures excess returns (see Fama and French (1987), de Roon,

Nijman, and Veld (1998), Gorton and Rouwenhorst (2006), and Gorton, Hayashi, and Rouwen-

horst (2013)). Assuming that the spot price is well approximated by a martingale, a contract

whose price is lower (higher) than the current spot price is then expected to yield a positive

(negative) excess return over the term to maturity. Such an intuition has led researchers like

Yang (2013) and Szymanowska, de Roon, Nijman, and Goorbergh (2014) to identify commodity-

based risk factors by analyzing the excess returns on a trading strategy that speculates on the

slope of the term structure of futures contracts. In particular, Yang (2013) sorts a universe of

commodity futures contracts into portfolios by basis and shows that two factors account for

most of the in-sample time-series and cross-sectional variation in excess returns on these portfo-

lios. The first factor is a commodity market factor, which corresponds to the equally weighted

average excess return on a long position in all futures contracts (henceforth EWA). The second

factor is the return difference between the high- and low-basis portfolios (henceforth HML).

The EWA and HML factors are far from being perfectly correlated and therefore capture the

different aspects of systematic variation in commodity futures excess returns. Consistent with

this risk-based interpretation, Bakshi, Gao, and Rossi (2014) also show empirically that these

commodity-based risk factors forecast changes in the investment opportunity set. Intuitively,

when the EWA and HML factors are indeed proxies for systematic risk that are priced in the

cross-section of commodity futures excess returns, combining expectations of these factors and

knowledge of their betas should translate into expectations of future excess returns. There is

extensive evidence, both empirical and anecdotal, that similar asset pricing intuition is often

exploited in practice. More precisely, financial managers almost always use the traditional

capital asset pricing model (CAPM) and the multifactor models motivated by the arbitrage

pricing theory (APT) as a primary tool to compute expectations of returns, especially in the

context of equity markets (see, for example, Gitman and Mercurio (1982), Fama and French

1 Carter, Rausser, and Schmitz (1983) provide evidence in support of systematic risk for commodity futures
when the market portfolio includes both stock and commodity futures indexes. However, Marcus (1984) argues
that the amended market portfolio constructed by Carter, Rausser, and Schmitz (1983) is inappropriate and
therefore questions the validity of the corresponding empirical results.
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(1997), Graham and Harvey (2001), Jagannathan and Meier (2002), Simin (2008), and Ferson,

Nallareddy, and Xie (2013)). It is, therefore, appealing for practitioners, especially active

portfolio managers who trade commodity futures as part of their broader diversification strategy,

to know whether the EWA and HML factors contain information that adds to the out-of-sample

predictability of futures excess returns. Said differently, whether these commodity-based risk

factors, utilized in a contemporaneous regression model setup based on asset pricing theory, can

ultimately help minimize real time uncertainty faced by market participants when forecasting

future excess returns, making investment decisions, and/or modeling future risk exposure.2

Knowing this is timely and important considering the fact that the use of commodity futures

contracts as an alternative asset class has grown rapidly in recent years.3

The goal of our paper is thus threefold. First, we examine the ability of EWA and HML

factors, identified by Yang (2013) and Szymanowska, de Roon, Nijman, and Goorbergh (2014),

to generate accurate expectations of monthly commodity futures excess returns in an out-of-

sample setting. In other words, we investigate whether the asset pricing models that utilize these

risk factors including their unconditional and conditional expectations provide accurate one-step

ahead forecasts of excess returns in the time-series domain. Our test assets include individual

commodity futures as well as basis-sorted portfolios. Furthermore, in the case of individual

commodity futures, we also exploit the information content embedded in commodity-specific

characteristics, such as the hedging pressure and the open interest, and perform the out-of-

sample forecasting exercises using the Fama and MacBeth (1973) cross-sectional procedure.

Second, we examine whether the factor model forecasts translate into systematic economic

value to risk-averse investors. In particular, we quantify the economic value due to a dynamic

mean-variance efficient asset allocation strategy that exploits predictability in commodity fu-

tures excess returns. This empirical exercise is motivated by the evidence from a growing body of

literature that statistical significance does not necessarily guarantee economic significance (see,

among others, Leitch and Tanner (1991), Della Corte, Sarno, and Tsiakas (2009), Thornton and

Valente (2012), McCracken and Valente (2014), and references therein).

Finally, we aim to investigate the economic gains accruing to an investor who diversifies her

exposure to conventional assets, such as stocks and bonds, by dynamically allocating commodity

futures contracts in her portfolio conditioning on the predictive ability of the risk factors out of

2 Fama and MacBeth (1973, p. 618) also stress that “As a normative theory the model only has content if
there is some relationship between future returns and estimates of risk that can be made on the basis of current
information.”

3 According to a Staff Report prepared by the Commodity Futures Trading Commission (CFTC), the total
value of commodity index-related instruments purchased by institutional investors increased markedly to US
dollar (USD) 200 billion in 2008 from a modest figure of USD 15 billion in 2003. Recently, Barclayhedge reports
that the commodity assets under management reached at about USD 320 billion in the last quarter of 2014.

2



sample. The potential benefits of allocating commodity futures to conventional portfolios has

long been a subject of academic research. In fact, several empirical studies show that investors

can improve the risk-return profile of their portfolios by also investing in commodities (see,

among others, Bodie and Rosansky (1980), Fortenbery and Hauser (1990), Jensen, Johnson,

and Mercer (2000), and Erb and Harvey (2006)). For ease of exposition throughout this paper,

we refer to the optimal asset allocation strategies in our latter two objectives as the commodity

stand-alone strategy and the diversification strategy, respectively.

Our paper makes several contributions to the extant literature on commodity futures. First,

we evaluate the performance of a set of commodity-based risk factors in an out-of-sample set-

ting, whereas the existing evidence is based solely on in-sample data fitting framework.4 Our

analysis therefore shows the extent to which asset pricing models with commodity-based risk

factors can be useful for practical applications including modeling future risk exposure. Sec-

ond, an out-of-sample analysis enables us to assess the performance of the asset pricing models

in terms of forecast errors and circumvents well-known issues, such as useless factor biases,

errors-in-variable problems, the use of weak instruments, and data snooping biases.5 Third, an

assessment of economic significance due to out-of-sample predictability allows us to investigate

whether investors who trade commodity futures contracts as part of their commodity stand-

alone strategy or diversification strategy can gain value by conditioning on expectations of

returns provided by the factor models. To the best of our knowledge, this is the first study that

examines the diversification benefits of commodity futures in the context of return predictability,

more so using forecasts from asset pricing models with commodity-based risk factors.

We find a host of interesting results based on a cross-section of 15 commodity futures.

First, the factor models hardly outperform a random walk with drift benchmark in the out-of-

sample forecasting horse races. The poor statistical performance of the models remain invariant

regardless of the way we form factor expectations, including forecasting methods, and whether

we focus on predicting individual commodity futures excess returns or the excess returns on

basis-sorted portfolios. We also find that the use of commodity-specific characteristics does not

improve the ability of factor models to produce more accurate forecasts of excess returns.

Second, factor models using unconditional factor expectations generally produce step ahead

forecasts more accurate than models using conditional expectations of risk factors. The impli-

4 Recently, Simin (2008) adopts a similar empirical approach but focusing only on conventional risk factors
(i.e., Fama and French (1993) factors) in the context of equity market alone. More importantly, we investigate
not only the statistical significance but also the economic significance of the forecasting power of the factor
models with commodity-based risk factors. Clearly, these dimensions of predictability assessment differentiates
our paper from that investigated in Simin (2008).

5 Asset pricing models can also be evaluated based on out-of-sample pricing errors (see, for example, Ferson,
Nallareddy, and Xie (2013).
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cations of these findings, mentioned above, are largely consistent with those of Simin (2008),

who also finds that neither the CAPM of Sharpe (1964) and Lintner (1965) nor the three-factor

model of Fama and French (1993) is capable of producing more accurate expectations of future

equity returns relative to the historical average of the market return.

Third, the out-of-sample economic value results for a commodity stand-alone investment

strategy lead to a similar conclusion obtained for the statistical evaluation of the models. Put

differently, the factor models with commodity-based risk factors fail to outperform the random

walk with drift benchmark in economic terms. Expectations of commodity futures excess returns

generated by asset pricing models do not offer systematic diversification benefits either. A risk-

averse investor who is already exposed to conventional assets gains no tangible economic value

from dynamically allocating commodity futures contracts to her portfolio by exploiting the next

period return forecasts offered by the factor models. These results are fairly robust to the use of

different performance evaluation metrics and echo those of Daskalaki and Skiadopoulos (2011).

The authors show that a utility maximizing investor is better off with a portfolio of stocks and

bonds only and there are no tangible economic gains from investing in a commodity index or

in individual commodity futures contracts.

The remainder of this paper is organized as follows. Section 2 outlines the empirical factor

models for commodity futures excess returns and the statistical criteria used to evaluate the

predictive accuracy out of sample. Section 3 describes the data and the construction of the risk

factors, and summarizes the empirical results. The dynamic asset allocation framework to build

and assess optimal portfolios is outlined in Section 4 along with the findings on the economic

value. Section 5 provides an analysis of the diversification benefits to investors. Finally, Section

6 concludes. A separate Internet Appendix contains additional robustness check results.

2. Asset Pricing Models and Statistical Evaluation of Forecasts

2.1 Model Specifications

We investigate the ability of EWA and HML factors to forecast excess returns in the out-

of-sample using a contemporaneous regression framework combining factor model parameter

estimates and factor forecasts. The rationale for adopting such a framework is that the successful

pricing ability (i.e., explanatory power) of these non-conventionally measured risk factors in the

cross-section of commodity futures excess returns has been recorded from a contemporaneous

model setting (see Yang (2013)). In light of this empirical finding, and consistent with the

literature (see, among others, Ferson and Harvey (1997, 1999), Simin (2008), and references
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therein), our starting point is a general representation that the conditional expected futures

excess return on each commodity j is determined by the following asset pricing model:

Etr∆f
j
t`1s “ αjt ` β

j1
t EtrXt`1s,

αjt “ aj0 ` a
j
1z
j
t ,

βjt “ bj0 ` b
j1
1 z

j
t , (1)

where Etr¨s is the conditional expectation, given the information set available at time t, ∆f jt`1 is

the logarithm of futures excess return (see equation (15)), Xt`1 is a 2ˆ 1 vector of commodity-

based risk factors, which comprises EWA and HML, and zt is an instrumental variable. The

parameters of the factor model: bj0 is 2ˆ 1, bj1 is 1ˆ 2, and aj0 and aj1 are scalars. The choice of

the instrument zjt is central for the good performance of the model since it has to adequately

summarize the different aspects of investors’ information set. Several recent studies find that the

futures basis is informative about the expected excess return on commodity futures (see, among

others, Fama and French (1987), Erb and Harvey (2006), Gorton, Hayashi, and Rouwenhorst

(2013), Szymanowska, de Roon, Nijman, and Goorbergh (2014), and references therein).6 For

example, Yang (2013) sorts commodity futures contracts into portfolios by basis and shows

that average portfolio excess return is increasing in basis. Building on this common finding,

we choose commodity-specific futures basis (see equation (16)) as a natural candidate for the

instrumental variable zjt capturing investor expectations of corresponding excess returns.7

The empirical analysis proceeds by setting our benchmark consistent with a random walk

with drift model specified as:8

∆f jt “ aj0 ` e
j
t . (2)

We then consider various model specifications of the general form in equation (1) to examine

the predictive ability of commodity-based risk factors over time. These factor models are as

6 Gorton, Hayashi, and Rouwenhorst (2013) also provide a simple two-period mean-variance model linking
basis to commodity futures excess returns.

7 We have also experimented with other potential instrumental variables, such as, liquidity (Amihud, Mendel-
son, and Lauterbach (1997) and Marshall, Nguyen, and Visaltanachoti (2012)), volatility (Dhume (2011)), infla-
tion (Erb and Harvey (2006) and Gorton and Rouwenhorst (2006)), and momentum (Erb and Harvey (2006),
Miffre and Rallis (2007), Asness, Moskowitz, and Pedersen (2013), and Gorton, Hayashi, and Rouwenhorst
(2013)), and find results qualitatively similar to those based on the futures basis. To conserve space, these are
omitted in this paper.

8 The random walk with drift benchmark is nested within each of the alternative factor models considered in
this paper and is consistent with the hypothesis that commodity futures prices are unpredictable (e.g., Alquist
and Kilian (2010) and Chinn and Coibion (2014)).
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follows:

∆f jt “ aj0 ` bj0,1EWAt ` ejt , (3)

∆f jt “ aj0 ` bj0,1EWAt ` b
j
0,2HMLt ` ejt , (4)

∆f jt “ aj0 ` bj0,1EWAt ` bj1,1z
j
t´1EWAt ` ejt , (5)

∆f jt “ aj0 ` bj0,1EWAt ` b
j
0,2HMLt ` b

j
1,1z

j
t´1EWAt ` b

j
1,2z

j
t´1HMLt ` e

j
t , (6)

∆f jt “ aj0 ` a
j
1z
j
t´1 ` b

j
0,1EWAt ` ejt , (7)

∆f jt “ aj0 ` a
j
1z
j
t´1 ` b

j
0,1EWAt ` b

j
0,2HMLt ` ejt , (8)

∆f jt “ aj0 ` a
j
1z
j
t´1 ` b

j
0,1EWAt ` bj1,1z

j
t´1EWAt ` ejt , (9)

∆f jt “ aj0 ` a
j
1z
j
t´1 ` b

j
0,1EWAt ` b

j
0,2HMLt ` b

j
1,1z

j
t´1EWAt ` b

j
1,2z

j
t´1HMLt ` e

j
t . (10)

It is important to note that the risk factor models in the form specified by equations (3)–(10) are

also adopted in the recent forecasting literature, especially in the context of equity and foreign

exchange markets (see, among others, Fama and French (1997), Simin (2008), Malone, Gramacy,

and ter Horst (2014), Ahmed, Liu, and Valente (2016), and Verdelhan (2016)). Moreover,

contemporaneous regressions of the kind specified above are utilized when the objective is to

evaluate the predictive ability of a model, given a path for some unmodeled set of variables (see

West (1996), Ferraro, Rogoff, and Rossi (2015), and references therein).

To generate one-month ahead time-series forecasts of excess returns on individual commodity

futures from each of the models including the benchmark, we use rolling (ordinary least squares

(OLS)) regressions with a 10-year window.9,10 More precisely, at the end of each forecast origin

month t, we compute the in-sample parameter estimates of the models using the factor(s) ending

at month t and if needed the lagged instrument zjt´1. We then substitute the expectations of

the risk factor(s) for month t ` 1 (described below), the estimated parameters, and if needed

the instrument zjt into equations (3)–(10). This procedure gives us the factor model time-series

forecasts of excess returns on commodity futures j for month t` 1 in the out-of-sample period.

9 The choice of a rolling forecasting scheme is motivated by the fact that macroeconomic environment changes
over time and therefore a very past data might be less informative for forecasting purposes (Daskalaki and
Skiadopoulos (2011) and Thornton and Valente (2012)). But for robustness checks, we also employ a recursive
forecasting scheme with an initial 10-year expanding window. The results of this exercise consistent with those
from a rolling forecasting scheme are reported in the Internet Appendix.

10 Welch and Goyal (2008, p. 1464) note, “It is not clear how to choose the periods over which a regression
model is estimated and subsequently evaluated.” In one hand, a shorter estimation window length allows a model
parameter to adapt to structural breaks relatively quickly though the parameter is estimated less efficiently. On
the other hand, a large estimation window length generates a relatively efficient parameter estimate but leads
to a lower power since fewer observations being available for out-of-sample forecast evaluation. Faced with this
trade-off, our choice of a 10-year rolling window length seems reasonable. However, to address potential data
snooping biases, we also carry out the forecasting exercises under three- and five-year rolling windows and find
the out-of-sample results qualitatively identical to those reported in this paper. The results based on a three-year
rolling window are provided in the Internet Appendix.
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We also carry out the forecasting exercises at the portfolio-level. In that case, ∆f jt and zjt´1 are

replaced by Ě∆ft
k

and z̄kt´1, respectively, where Ě∆ft
k
“ 1

Jkt´1

řJkt´1

j“1 ∆f jt , z̄kt´1 “
1

Jkt´1

řJkt´1

j“1 z
j
t´1,

and Jkt´1 denotes the number of commodity futures contracts available in portfolio k at the end

of month t´ 1.

We consider both unconditional and conditional expectations of our return-based risk fac-

tors, EWA and HML. In particular, we obtain the unconditional expectation of a risk factor at

the end of month t by computing the time-series average of the factor from the 10-year rolling

window ending at month t as the forecast for the following month.11 To compute the conditional

expectation of a risk factor, we also use the 10-year rolling window to perform the predictive

regression, where the lagged instrument zjt´1 (i.e., in our case, lagged futures basis) serves as

a predictor for the factor in consideration. For the EWA factor, the regression specification is:

EWAt “ φj0,1 ` φ
j
1,1z

j
t´1 ` ε

j
t . We then use the parameter estimates from the factor predictive

regression and the value of the instrument at time t to generate the one-step ahead conditional

forecast Et,jrEWAt`1|z
j
t s. Similar empirical procedure is followed to compute the conditional

expectation of the HML factor. For the basis-sorted commodity futures portfolios, z̄k and k

replace zj and j, respectively, in the above factor predictive regressions.

2.2 Statistical Measures of Forecast Accuracy

We adopt three metrics for the statistical evaluation of the out-of-sample forecast accuracy of

the factor models. The first one is the Campbell and Thompson (2008) measure of out-of-sample

R2 statistic denoted by R2
OOS . The statistic is defined as

R2,j
i,OOS “ 1´

řT´1
t“M`1p∆f

j
t`1 ´

Ă∆f
j

i,t`1|tq
2

řT´1
t“M`1p∆f

j
t`1 ´

Ă∆f
j

2,t`1|tq
2
, (11)

where ∆f jt`1 is the realized futures excess return at the end of month t ` 1, Ă∆f
j

2,t`1|t is the

one-month ahead forecast of excess return from the benchmark random walk with drift model

(equation (2)), Ă∆f
j

i,t`1|t is the one-month ahead forecast from an alternative factor model

specified in equation (i) (i “ 3, 4, . . . , 10) that uses unconditional or conditional expectations of

risk factor(s), T is the number of observations available in the full-sample period, and M is the

number of observations in the estimation window. At the commodity portfolio-level forecasting,

Ă∆f
j

2,t`1|t and Ă∆f
j

i,t`1|t are replaced by Ą

Ě∆fk2,t`1|t and Ą

Ě∆fki,t`1|t, respectively. If R2,j
i,OOS is positive,

the alternative factor model in equation (i) (i “ 3, 4, . . . , 10) has smaller mean squared forecast

11 Such an empirical approach is consistent with the common practice in industry for estimating the cost
of equity within the context of CAPM or APT (e.g., Gitman and Mercurio (1982), Fama and French (1997),
Graham and Harvey (2001), and Jagannathan and Meier (2002)).
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error (MSFE) than the random walk with drift benchmark. In other words, the alternative

model generates more accurate step ahead forecasts. For statistical inference of the R2
OOS

metric, we obtain one-sided (to the right) critical values using the fixed regressor bootstrap

method proposed by Clark and McCracken (2012).

The second metric is due to Clark and West (2006, 2007), which tests the null hypothesis

of equal predictive ability of two nested models. Importantly, the testing procedure takes into

account the fact that under the null hypothesis, the MSFE from a larger alternative factor model

in equation(i) (i “ 3, 4, . . . , 10) is expected to be greater than that of the random walk with

drift benchmark due to the noise introduced into the alternative model forecasts. To circumvent

this issue, Clark and West (2006, 2007) suggest an adjustment for the upward bias in the MSFE

of a larger alternative model as follows:

MSFEji,adj. “
1

P

T´1
ÿ

t“M`1

p∆f jt`1 ´
Ă∆f

j

i,t`1|tq
2 ´

1

P

T´1
ÿ

t“M`1

pĂ∆f
j

2,t`1|t ´
Ă∆f

j

i,t`1|tq
2, (12)

where P p“ T ´ 1 ´Mq is the number of one-month ahead forecasts. For computational con-

venience, we follow Clark and West (2006, 2007) to assess the null hypothesis by regressing

ĝji,t`1|tp“ p∆f
j
t`1 ´

Ă∆f
j

2,t`1|tq
2 ´ rp∆f jt`1 ´

Ă∆f
j

i,t`1|tq
2 ´ pĂ∆f

j

2,t`1|t ´
Ă∆f

j

i,t`1|tq
2sq on a constant

and obtain the MSFEji,adj.-t statistic for a zero coefficient based on the Newey and West (1987)

estimator. However, Clark and McCracken (2001, 2012) show that under the null hypothesis,

the population forecast errors of a larger model (in our case, all of the alternative models in

equations (3)–(10)) are the same as those from a parsimonious baseline model (in our case, the

random walk with drift model) nested by the larger model. This implies that the population

analogue of ĝji,t`1|t will have a degenerate distribution. Hence, we use the fixed regressor boot-

strap method, as per Clark and McCracken (2012), to simulate the right-sided critical values of

this test statistic for a pairwise model forecast comparison.

To account for the multiple-testing problem in the light of possible data mining (see, among

others, Lo and MacKinlay (1990), Chatfield (1995), and Hoover and Perez (1999)), we also

compute the max
i“3,4...,10

MSFEji,adj.-t statistic for a reality check test advocated by Clark and Mc-

Cracken (2012) including the fixed regressor bootstrap critical values. The null hypothesis for

this composite test states that the baseline random walk with drift model is not inferior to

any of the alternative factor models. Details of simulating the bootstrap critical values for the

pairwise and reality check tests are provided in the Appendix A.

The third out-of-sample statistical evaluation metric that we consider is the equal condi-

tional predictive ability test proposed by Giacomini and White (2006).12 The test allows both

12 The Clark and West (2006, 2007) statistic tests the null at the population-level, whereas the Giacomini
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nested and non-nested model comparisons and takes into account the possibility of model mis-

specification due to unmodeled dynamics, unmodeled heterogeneity, and incorrect functional

form. However, its empirical application is restricted to forecasts generated only from a rolling

scheme with a finite estimation window length M ď P ă 8. For a given loss function and a

given σ-field Gjt , the null hypothesis of equal conditional predictive ability can be stated as

H0 : Er∆Lji,M,t`1|G
j
t s “ 0, (13)

where ∆Lji,M,t`1 is the difference between the squared forecast error loss functions of the bench-

mark and alternative models. Under the null hypothesis, when Gjt “ F j
t -measurable, the one-

step ahead sequence
 

∆Lji,M,t`1,F
j
t

(

is a martingale difference sequence, so that for every

Ft-measurable function ht we can write

H
0,hji

: Erhji,t∆L
j
i,M,t`1s “ 0. (14)

The test statistic for one-step ahead forecasts is computed as pP ´ 1qR2,j
uc , where R2,j

uc is the

uncentered squared multiple correlation coefficient from the regression of ∆Lji,M,t`1 on hji,t
1
.

Under the null hypothesis, the statistic is asymptotically χ2
2-distributed. For the choice of the

test function ht, we follow Giacomini and White (2006) in their empirical application and define

hji,t “ p1, ∆L
j
i,M,tq

1. Whenever the null hypothesis is rejected in favor of the alternative (to the

right-side), an alternative factor model in equation (i) (i “ 3, 4, . . . , 10) is chosen over the

random walk with drift benchmark if the fitted values from the regression of ∆Lji,M,t`1 on hji,t
1

are positive more than 50% of the time. Otherwise, the benchmark model is chosen in case of

a rejection of the null hypothesis.

3. Empirical Results

3.1 Data and Construction of Risk Factors

The data, used in this paper, consist of daily settlement prices of 15 most liquid commodity

futures contracts obtained from the Commodity Research Bureau. The sample period spans

from January 1986 to October 2013. Table 1 lists all commodities including their delivery

months within a calendar year that we use to construct the corresponding excess return series.

It is important to emphasize that each of the 15 commodities considered in the empirical

analysis is also included in either the Standard & Poor’s Goldman Sachs Commodity Index

and White (2006) test is associated with finite sample. The former might be useful when evaluating models in
population is of interest, and the latter when evaluating forecasts is of interest (Clark and McCracken (2013)).
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(S&P GSCI) or the Dow Jones UBS Commodity Index.13 Therefore, our sample provides a

diversified representation of commodity futures markets as an asset class.

From the daily settlement prices, we use the end-of-month value to compute the futures

excess return on a fully collateralized long position in commodity j as

∆f jt`1 “ log
”F j,Tτt`1

F j,Tτt

ı

, (15)

where F j,Tτt is the futures price at the end of month t for the contract with delivery month

t` Tτ . We consider returns on the next-to-nearest futures (i.e., τ “ 2) and exclude returns on

contracts with less than one month to maturity since in this case the futures trader has to arrange

a physical delivery of the underlying commodity. Therefore, the sequence
!

∆f jt

)T

t“1
, used in

our empirical analysis, can be viewed as the realized excess return to an investor maintaining a

long position in the futures contract on commodity j and maturity t ` T2, rolling over on the

last trading day of the month prior to maturity.

Consistent with the standard practice in the literature (see, among others, Gorton, Hayashi,

and Rouwenhorst (2013), Yang (2013), and references therein), we compute the futures basis of

commodity j as the difference in log prices between the two nearest-to-maturity futures:

zjt “ Basisjt “
logpF j,T1t q ´ logpF j,T2t q

T2 ´ T1
, (16)

where F j,T1t and F j,T2t are the futures prices of the nearby and next-to-nearby contracts, respec-

tively.14 We then construct five commodity futures portfolios sorted by the basis. In particular,

at the end of month t ´ 1, futures contracts of all commodities are assigned to five portfolios

based on their corresponding basis observed at the end of month t ´ 1. The first portfolio

comprises the 20% of sample commodity futures contracts with the lowest basis, while the last

portfolio comprises the 20% of commodity futures contracts with the highest basis. We repeat

this strategy at the end of every month so that the portfolios are rebalanced. The monthly

excess return on a commodity futures portfolio constructed at the end of month t ´ 1, but

realized at the end of month t is computed as the equally weighted average of excess returns

for the constituent contracts. We construct the EWA factor as the equally weighted average

13 For robustness checks of the main results, we also carry out empirical analysis using samples of 21 and 30
commodity futures contracts as in Szymanowska, de Roon, Nijman, and Goorbergh (2014) and Hong and Yogo
(2012), respectively, for the period between January 1986 and October 2013. However, there is little evidence of
out-of-sample predictability in excess returns from factor models using commodity-based risk factors. Hence, we
abstain from reporting these results in the paper.

14 In theory, the basis of a commodity is defined as the difference between its current spot price and contem-
poraneous futures price with relevant maturity. However, in reality, commodity spot markets are quite illiquid
and nearest-to-maturity futures price serves as a close approximation of the spot price.
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excess return on a long position in all available futures contracts. On the other hand, the HML

factor is created as the return difference between the last and first portfolios. The correlation

between EWA and HML factors is 7.9% (p-value = 0.15) for the full-sample period.

3.2 Full-Sample Estimates

We first focus on the full-sample period (1986:01–2013:10) estimates of the factor models

specified in equations (3)–(10). For brevity, we report the OLS estimates with Newey and West

(1987) standard errors for the models only at the portfolio-level in Table 2.15 The fairly flat

coefficient estimates (i.e., very close to 1) of the EWA factor across all model and basis-sorted

portfolio combinations turn out to be statistically significant at any conventional level. On the

other hand, the coefficient estimates of the HML factor are statistically significant at the 1%

level for the first and last portfolios. The observed pattern in the betas of the HML factor is very

similar to the way the factor has been constructed. The adjusted R2 values of the regressions

range widely between 41.24% and 81.67%. These results in the time-series domain are largely

consistent with those reported by Yang (2013).

3.3 Out-of-Sample Predictions

3.3.1 Commodity-Level Excess Return Forecasts: A Time-Series Approach

Our out-of-sample empirical analysis begins by generating one-month ahead time-series fore-

casts of individual commodity futures excess returns based on unconditional expectations of risk

factors. Table 3 summarizes the results for forecasting accuracy of the factor models relative

to the random walk with drift benchmark. It is noticeable that the Campbell and Thompson

(2008) R2
OOS statistic is positive and statistically significant only for a handful alternative factor

model and commodity futures combinations: one out of six models for coffee, heating oil, and

lean hogs futures; three out of six models for crude oil futures; and four out of six models for

gasoline and gold futures. The Clark and West (2006, 2007) test for pairwise model forecast

comparison occasionally (i.e., only one out of six models for coffee, heating oil, and wheat fu-

tures; two out of six models for crude oil futures; four out of six models for gold futures; and

five out of six models for gasoline futures) rejects the null hypothesis of equal predictive ability

at the 10% significance level. In general, we observe similar level of predictive performance of

the risk factors while focusing on the Giacomini and White (2006) test, which mostly fails to

reject the null hypothesis of equal conditional predictive ability at the 10% significance level

15 The full-sample period OLS estimates of the factor models for individual commodity futures are reported
in the Internet Appendix.
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and to choose an alternative factor model over the benchmark random walk with drift model.

Importantly, the reality check version of the Clark and West (2006, 2007) test, following Clark

and McCracken (2012), suggests that with the exception of gasoline futures, none of the alter-

native models for commodity futures excess returns statistically outperforms the benchmark by

producing more accurate forecasts in the out-of-sample period.

The empirical results obtained using time-series forecasts based on conditional expectations

of commodity-based risk factors are reported in Table 4. We find the Campbell and Thompson

(2008) R2
OOS statistic is significantly positive only for coffee (one out of eight models), copper,

cotton (two out of eight models), gasoline (four out of eight models), heating oil (two out of eight

models), and soybeans futures (three out of eight models). While the Clark and West (2006,

2007) pairwise test offers some evidence of predictability for copper and gasoline futures excess

returns (i.e., factor models given by equations (3)–(6), and by equations (7)–(9), respectively),

the results do not hold under the reality check version of the test. With few exceptions (i.e., only

one out of eight models for coffee, crude oil, and soybeans futures; two out of eight models for

cotton futures; and six out of eight models for copper futures), the equal conditional predictive

ability test of Giacomini and White (2006) also fails to reject the null hypothesis at the 10%

significance level and to choose an alternative model over the benchmark. The evidence of weak

predictive power of commodity-based risk factors in the short-horizon is consistent with that

based on the Clark and West (2006, 2007) test applied on a pairwise basis.

3.3.2 Commodity-Level Excess Return Forecasts: A Cross-Sectional Approach

In this section, we aim at determining whether including commodity-specific characteristic(s)

in a cross-sectional framework helps improve the forecasting performance of the factor models.16

For this purpose, we adopt the Fama and MacBeth (1973) cross-sectional method following the

bias adjustment of Brennan, Chordia, and Subrahmanyam (1998) to generate one-month ahead

forecasts of commodity futures excess returns in the out-of-sample period. At the end of each

month t, the coefficients, α and β, of a given factor model in equation (i) (i “ 3, 4, . . . , 10) for all

commodity futures excess returns are estimated using time-series regressions based on a 10-year

rolling window ending at month t ´ 1. Then the fitted values of the model for month t are

obtained using the coefficient estimates (excluding the intercept a0), the risk factor(s), and if

needed the instrument, which in our case is the futures basis, to run the following cross-sectional

regression:

∆f jt ´
x∆f

j

i,t “ λi,tC
j
t´1 ` u

j
i,t, for a given t and i,@j (17)

16 A cross-sectional approach employs information in the full cross-section of commodity futures.
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where x∆f
j

i,t is the fitted value of the factor model in consideration and Cjt denotes commodity-

specific characteristic(s) other than the futures basis. Following Simin (2008), we compute

one-month ahead forecast of excess return on commodity futures j at the end of month t as17

Ă∆f
j

i,t`1|t “
x∆f

j

i,t`1|t ` λ̂i,tC
j
t . (18)

The entire procedure, described above, is repeated for each of the factor models at a monthly

frequency to generate the corresponding time-series of out-of-sample forecast errors for the

commodity futures excess returns. As in the time-series approach, we continue to exploit both

the unconditional and conditional expectations of the risk factors constructed in Section 2.1.

To perform the cross-sectional exercises, we consider two variables as commodity-specific

characteristics, namely, the hedging pressure and the open interest. There is an extensive

literature that relates the futures risk premia to net positions of hedgers (see, among others,

Carter, Rausser, and Schmitz (1983), Bessembinder (1992), de Roon, Nijman, and Veld (2000),

Acharya, Lochstoer, and Ramadorai (2013), Basu and Miffre (2013), and references therein).18

Consistent with de Roon, Nijman, and Veld (2000), we compute the hedging pressure of a

commodity futures contract as the difference between the numbers of short and long hedge

positions relative to the total number of hedge positions by commercial traders (i.e., hedgers).19

The choice of the open interest is motivated by the recent findings of Hong and Yogo (2012)

that the amount of contracts outstanding in the commodity futures market predicts movements

in commodity prices.

In Table 5, we summarize the out-of-sample forecasting results based on the hedging pressure

characteristic and unconditional expectations of the commodity-based risk factors. With the

exception of copper and crude oil futures (i.e., factor models given by equation (8), and by

equations (5) and (9), respectively), the Giacomini and White (2006) test suggests that none

of the alternative factor models for commodity futures excess returns statistically outperforms

the benchmark random walk with drift model. The out-of-sample predictive performance of the

factor models does not improve when the conditional expectations of the risk factors are utilized

to generate the one-month step ahead forecasts. These results are summarized in Table 6. The

use of the open interest as a characteristic variable Cjt offers qualitatively similar results to

17 To avoid clustering of notations, we once again use Ą∆f
j

i,t`1|t to denote one-month ahead forecast from a
factor model specified in equation (i) (i “ 3, 4, . . . , 10).

18 The hypothesis of hedging pressure is underpinned by the theory of Keynes (1923, 1930) and Hicks (1939),
who argue that hedgers are ready to sell the futures at a discount from the expected future spot price (i.e., to pay
a premium) in order to induce speculators to buy the contract. A formal equilibrium model of this hypothesis is
provided by Hirshleifer (1988, 1989).

19 The data on long and short hedge positions are obtained from the CFTC.
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those in Tables 5 and 6. To conserve space, we report these results in the Internet Appendix.

3.3.3 Portfolio-Level Excess Return Forecasts

Table 7 presents the out-of-sample results for the the basis-sorted commodity futures port-

folios, where we use the unconditional expectations of the risk factors. We observe that none of

the Campbell and Thompson (2008) R2
OOS statistic is significantly positive. The pairwise and

reality check versions of the Clark and West (2006, 2007) test suggest that the factor model

given by equation (5) for the futures portfolio 3 is statistically superior to that of the random

walk with drift benchmark. Only for the commodity futures portfolios 4 and 5, the Giacomini

and White (2006) test of equal conditional predictive ability rejects the null hypothesis at the

10% significance level and chooses one out of six alternative models over the benchmark. Mov-

ing to the out-of-sample forecasts based on the conditional expectations of the risk factors, we

see that the forecasting performance of the alternative factor models deteriorates relative to the

benchmark. For instance, none of the reality check test statistics in Table 8 turns out to be

statistically significant at conventional levels.

Overall, the empirical results in Tables 3–8 offer feeble evidence that asset pricing models

specified by equations (3)–(10) generate step ahead forecasts of futures excess returns signifi-

cantly better than the random walk with drift benchmark.20 Said differently, commodity-based

risk factors lack short-horizon predictive power in the out of sample. Related to this observation,

factor model forecasts using unconditional expectations of risk factors are generally more accu-

rate than those using conditional factor expectations. These empirical findings are consistent

with those of Simin (2008), who shows that asset pricing models produce poor out-of-sample

expectations of equity returns relative to the historical average of the market return.

The failure of the factor models to provide accurate step ahead forecasts of commodity

futures excess returns is possibly due to one or more of the following reasons: i) futures basis

as an instrumental variable is doing a poor job of capturing the relevant predictive information

content; ii) the linear specification of the factor predictive regressions is incorrect; iii) the linear

specification of the time-variation in beta is incorrect; and iv) presence of structural breaks or

sudden extreme events that introduce errors in the parameter estimation.

20 In a separate empirical exercise, we also investigate predictability of excess returns on momentum and value
portfolios for commodity futures contracts and find out-of-sample forecasting results qualitatively similar to those
based on futures basis-sorted portfolios. The details on the construction of these portfolios and the one-month
ahead forecasting results are provided in the Internet Appendix.
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4. Economic Evaluation

4.1 Asset Allocation Framework

The poor out-of-sample statistical performance of the asset pricing models using commodity-

based risk factors does not necessarily indicate that they would not be valuable to utility

maximizing investors. In this section, we examine the economic gains due to the factor model

forecasts of excess returns. Standard in the recent literature (e.g., Della Corte, Sarno, and

Tsiakas (2009, 2011) and Thornton and Valente (2012)), we employ a mean-variance efficient

framework to empirically assess the economic values of different portfolios that condition on the

forecasts generated from each of the asset pricing models including the benchmark random walk

with drift model. More precisely, we consider an investment strategy of 100% in a risk-free asset

and a self-financing dynamically rebalanced portfolio comprising J commodity futures contracts

with similar maturity. In our analysis, we refer to this investment strategy as the commodity

stand-alone strategy. The investor’s objective is to minimize the conditional portfolio variance

subject to achieving a given target of expected excess return.

Let µt`1|t “ Etrrxt`1s be the conditional expectation of the Jˆ1 vector of commodity futures

excess returns, rxt`1 “ p∆f1t`1,∆f
2
t`1, . . . ,∆f

J
t`1q

1, and Σt`1|t “ Etrprxt`1 ´ µt`1|tqprxt`1 ´

µt`1|tq
1

s be the J ˆ J conditional variance-covariance matrix of rxt`1.
21 At the end of each

month t, the risk-averse investor solves the following problem:

min
wt

!

w
1

tΣt`1|twt

)

s.t. w
1

tµt`1|t “ µ˚p and w
1

tι “ 0, (19)

where µ˚p is the target of conditional expected excess return on the portfolio, wt is the Jˆ1 vector

of time-varying portfolio weights on the commodity futures contracts, and ι is a conformable

vector of ones. The solution to the constrained optimization problem yields the following weights

on the commodity futures:

wt “ Σ´1t`1|tςt

´

ς
1

tΣ
´1
t`1|tςt

¯´1
ς˚, (20)

where ς˚ ”
`

µ˚p , 0
˘1

and ςt is a J ˆ 2 matrix whose first column is the vector µt`1|t, whereas the

second column consists entirely of ones. Note that we assume that Σt`1|t “ Σ̄, where Σ̄ is the

unconditional variance-covariance matrix estimated using a 10-year rolling window.

21 To simplify notations, we omit indexing of the models by i.
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4.2 Economic Performance Measures

We assess the economic value of predicting commodity futures excess returns by comparing

the out-of-sample performance of optimal portfolios built using forecasts from factor models in

equations (3)–(10) to an optimal portfolio built using forecasts from a random walk with drift

model (equation (2)), which we refer to as the benchmark portfolio.22 In line with the existing

literature on portfolio performance evaluation, we adopt the most commonly used measure of

economic gain – the Sharpe ratio, which is computed as the ratio of the realized average excess

portfolio return to the standard deviation of excess portfolio returns. Several recent papers,

however, point out that the Sharpe ratio can be misleading since it tends to underestimate the

performance of dynamically rebalanced portfolios (see, among others, Marquering and Verbeek

(2004), Han (2006), and references therein).

To provide further robustness checks of our empirical results on economic value, we consider

two additional performance evaluation criteria. The first one quantifies the maximum perfor-

mance fee that a risk-averse investor is willing to pay to switch from the benchmark portfolio

to an alternative portfolio that exploits the corresponding factor model forecasts. Following

Fleming, Kirby, and Ostdiek (2001), we compute the out-of-sample performance fee by equat-

ing the average realized utilities of selected pairs of portfolios. To illustrate, let Rp,t`1 be the

gross return on the investor’s optimal portfolio investment strategy such that

Rp,t`1 “ 1` rf ` w
1

trxt`1, (21)

where rf is the return on the risk-free asset. Under the assumption that the investor’s preference

is described by a quadratic utility function, the performance fee Φ is computed as:

T´1
ÿ

t“M`1

"

`

R˚p,t`1 ´ Φ
˘

´
γ

2p1` γq

`

R˚p,t`1 ´ Φ
˘2
*

“

T´1
ÿ

t“M`1

"

Rben.p,t`1 ´
γ

2p1` γq

´

Rben.p,t`1

¯2
*

, (22)

where γ is the coefficient of relative risk aversion for the investor, Rben.p,t`1 is the gross return on

the benchmark portfolio, and R˚p,t`1 is the gross return on the portfolio that conditions on the

forecasts generated from the alternative factor model. If there is a systematic economic gain

accruing to a mean-variance investor from the factor model using commodity-based risk factors,

then Φ ą 0. On the other hand, if there is no predictive power embedded in the factors, then

22 In the rest of this paper, each of the portfolios are a larger portfolio that always includes 100% investment
in a risk-free asset together with the relevant dynamically rebalanced portfolio of risky assets.
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Φ ď 0. In this case, the investor is better off with the benchmark portfolio.

The next economic criterion that we consider is the manipulation-proof performance measure

introduced by Goetzmann, Ingersoll, Spiegel, and Welch (2007). This is defined as

Θ “
1

1´ γ
log

$

&

%

1

P

T´1
ÿ

t“M`1

˜

R˚p,t`1

Rben.p,t`1

¸1´γ
,

.

-

. (23)

In comparison to the performance fee Φ, the risk-adjusted measure Θ does not depend on the

specific form of the underlying utility function to rank portfolios. Moreover, the manipulation-

proof performance measure Θ is robust to the use of derivatives as alternative assets in the

investor’s portfolio as well as to the distribution of portfolio returns.

4.3 Economic Performance Results

To implement the dynamic asset allocation framework and to compute the potential eco-

nomic gains following the commodity stand-alone strategy, we require specifying the investor’s

degree of relative risk aversion, γ, and the target of the conditional expected excess return for

the optimal portfolio, µ˚p . Following Thornton and Valente (2012), we set γ “ 5. As for a

reasonable target of µ˚p , we match the (annualized) excess return realized for the S&P GSCI

over the full-sample period, which is 3%. The risk-free interest rate data are obtained from the

Internet Data Library maintained by Kenneth French as a proxy for rf .23

Panel A in Table 9 summarizes the out-of-sample economic performance of eight alternative

portfolios, based on the factor model forecasts, relative to a portfolio based on the benchmark

random walk with drift model forecasts. In the left and right panels of the table, we differenti-

ate, respectively, between the unconditional and conditional factor expectations based results.

Our empirical analysis focuses on the Sharpe ratio, the Fleming, Kirby, and Ostdiek (2001) per-

formance fee Φ, and the Goetzmann, Ingersoll, Spiegel, and Welch (2007) manipulation-proof

measure of performance Θ. In general, we observe empathetically feeble performance of the al-

ternative portfolios relative to the benchmark. The annualized Sharpe ratios for the alternative

portfolios are either economically small or negative (ranging between ´0.262 and ´0.019). The

performance fees Φ and Θ expressed in decimals (i.e., 0.01=1 annual percentage point) turn out

to be negative. These empirical observations hold regardless of factor expectation methods.

Taken together, there is no evidence of tangible economic gains to an investor exploiting the

information content embedded in the commodity-based risk factors. The economic value results

for the commodity stand-alone strategy confirm and reinforce our preceding finding from the

23 For details, see http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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statistical tests that asset pricing models for commodity futures excess returns perform poorly

in terms of out-of-sample expectations.

5. Diversification Benefits

In this section, we extend our empirical investigation on the potential economic gains that

factor models may offer to a risk-averse investor. We use the same mean-variance framework for

efficient asset allocation as in Section 4.1, but rather than concentrating purely on commodity

futures contracts we also consider conventional assets such as stocks and bonds. We continue

to assume that a risk-averse investor aims at achieving a given target of expected excess return

by minimizing the conditional portfolio variance. To assess the potential diversification benefits

of investing in commodity futures by conditioning on expectations from the risk factor models,

we design two types of portfolio strategies. The first type involves building a dynamically

rebalanced portfolio consisting of conventional assets only. For a set of N investable assets, the

optimal weights, denoted by wct , of the portfolio are given by

wct “
µ˚p
Vt

Σ´1c,t`1|tµ
c
t`1|t, (24)

where µct`1|t and Σc,t`1|t are, respectively, the conditional expectation and the conditional

variance-covariance matrix of the N ˆ 1 vector of excess returns on the conventional assets

and Vt ”
´

µct`1|t

¯1

Σ´1c,t`1|t

´

µct`1|t

¯

.24

The second type of strategy involves building dynamically rebalanced portfolios consisting

of both conventional assets and commodity futures contracts. To illustrate, let µdt`1|t be the

pN ` Jq vector, whose first N elements are the conditional expectations of excess returns on

the conventional assets and the remaining J elements are the conditional expected commodity

futures excess returns from the factor model in consideration. In this case, the investor’s problem

is again to minimize the conditional portfolio variance but subject to w
d1
t µ

d
t`1|t “ µ˚p and

w
d1
t D “ 0, where D is a pN ` Jq vector, whose first N elements are zeros and the remaining J

elements are all ones. The solution to the constrained optimization problem with this type of

portfolio investment strategy delivers the following weights:

wdt “ Γ´1t`1|tϑt

´

ϑ
1

tΓ
´1
t`1|tϑt

¯´1
ς˚, (25)

where ϑt ”
´

µdt`1|t, D
¯1

and Γt`1|t is the conditional variance-covariance matrix, whose first N

24 The conditional expectation and the conditional variance-covariance matrix are estimated, respectively, as
the sample mean and the sample variance-covariance matrix using a 10-year rolling window.
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elements on the main diagonal are the variances of excess returns on the conventional assets

and the remaining J elements are the variances of commodity futures excess returns.

To prevent extreme investments, we follow Welch and Goyal (2008), Ferreira and Santa-

Clara (2011), and Thornton and Valente (2012) in our empirical analysis and winsorize the

portfolio weights on the conventional assets to ´1 ď wn,t ď 2, n “ 1, . . . , N , for both types

of portfolio strategies described above. Once we obtain the optimal weights as per equations

(24) and (25), we compute the returns and compare the economic performance of the portfolios

built using the two types of strategies. For the clarity of discussion, we call the latter strategy

comprising both conventional assets and commodity futures as the diversification strategy. As

a dynamically rebalanced benchmark portfolio, we use a portfolio due to the first type strategy,

which consists of stocks and bonds only. Moreover, we assume that the risk-averse investor

gains exposure to conventional assets by investing in the S&P 500 and Barclays US Aggregate

Bond indexes. We retrieve data on both of these indexes from Datastream.

The results for the diversification benefits (i.e., diversification strategy) of the commodity

futures trading are presented in Panel B of Table 9. Once again, we use a 3% annual target

of the conditional expected excess return for the optimal portfolio and employ performance

measures similar to those in Section 4.2. We observe that only a few alternative portfolios (i.e.,

portfolios due to factor models in equations (5)–(6) using unconditional factor expectations and

due to factor models in equations (3) and (10) using conditional factor expectations) generate

annualized Sharpe ratios higher than the benchmark portfolio, which is 0.579. However, the

negative values of the performance fee Φ and the manipulation-proof performance measure Θ

corresponding to these portfolios suggest underperformance relative to the benchmark. More

importantly, both Φ and Θ turn out to be negative for all alternative portfolios. They range

between ´1.2% and ´0.3% per annum. These results clearly indicate that a risk-averse investor

gains no diversification benefits from allocating commodity futures contracts to her portfolio by

exploiting expectations of excess returns due to commodity-based risk factors that we consider

in this paper.

Interestingly, our results are consistent with the recent findings of Daskalaki and Skiadopou-

los (2011). The authors investigate the utility gains accruing to a risk-averse investor who trade

an index of commodities as part of her broader diversification strategy. They conclude that

apart from the early 2000s, when many commodities witnessed a synchronized boom in prices,

investors are better off by holding an optimal portfolio that consists of conventional assets

only. Therefore, apart from the weak predictive power of the risk factors, the empirical results

emerged in this section could possibly be due to the fact that commodities, in general, offer
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little diversification benefits.

As for robustness checks of our preceding results on out-of-sample economic evaluation of

factor models, we carry out similar dynamic asset allocation exercises for commodity stand-alone

and diversification strategies using excess return forecasts obtained from the cross-sectional

approach in Section 3.3.2. The results of these exercises summarized in Table 10 are qualitatively

similar to those in Table 9. To sum up, there is no systematic economic value associated with

the empirical factor models for commodity futures excess returns.

6. Conclusion

Recent literature has identified some systematic risk factors that successfully price the cross-

section of commodity futures excess returns. This paper extends the literature on commodity

futures by examining the time-series predictability of commodity futures excess returns from as-

set pricing models. To investigate the predictive power of commodity-based risk factors, various

factor model specifications are considered and their performance is compared against a random

walk with drift benchmark. A battery of statistical tests performed under the null hypothesis

of equal predictive ability suggest that the factor models hardly outperform the benchmark in

the out-of-sample forecasting horse races. This finding is robust to the choice of underlying

test assets (i.e., excess returns on individual commodity futures as well as basis-sorted futures

portfolios), the computation of factor expectations, the forecasting methods including a cross-

sectional approach, and the statistical evaluation metrics. Furthermore, there is no evidence

that information contained in commodity-based risk factors generate systematic economic gains

to risk-averse investors pursuing a commodity stand-alone strategy or a diversification strategy.

These results provide valuable implications for practitioners including fund managers in the

commodity futures markets who require accurate forecasts of returns to design active trading

strategies. However, given the recent evidence offered by Daskalaki and Skiadopoulos (2011)

on the poor diversification benefits of commodities, we remain agnostic as to whether the lack

of systematic economic value to investors following a diversification strategy is due to the poor

predictive performance of the asset pricing models. Finally, it is important to emphasize that

the empirical exercises in this paper are meant for practical relevance of the asset pricing models

with commodity-based risk factors to financial market participants facing real time uncertainty

when forecasting returns rather than a formal test of the models.
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Appendix A

This appendix summarizes the fixed regressor bootstrap procedure to generate (one-sided to

the right) critical values for the pairwise and reality check test statistics following Clark and

McCracken (2012).25 The algorithm consists of the following steps:

1. Use OLS to estimate the parameters associated with the alternative factor model in equa-

tion (i) (i “ 3, 4, . . . , 10). Store the residuals êt, t “ 1, 2, . . . , T ´ 1. Only for the reality

check test, estimate the parameters associated with the alternative model that includes

all regressors considered across all models (i.e., the factor model given by equation (10)).

Store the corresponding residuals and follow the steps below.

2. Use OLS to estimate the parameter of the benchmark random walk with drift model in

equation (2). Store the fitted values ∆ffit.t , t “ 1, 2, . . . , T ´ 1.

3. Let ηt, t “ 1, 2, . . . , T ´ 1, denote an independently and identically distributed N(0,1)

sequence of simulated random variables. Generate time-series innovations ê˚t “ ηtêt,

t “ 1, 2, . . . , T ´ 1.

4. Construct artificial samples of ∆f˚t using the fixed regressor structure, ∆f˚t “ ∆ffit.t ` ê˚t .

5. Use the artificial data to construct the out-of-sample forecasts and an estimate of the

test statistics (e.g., R2
i,OOS , MSFEi,adj.-t, and max

i“3,4...,10
MSFEi,adj.-t) as if these were the

original data.

6. Independently repeat steps 3–5 a large number of times, in our case, 10,000 replications.

7. Reject the null hypothesis at the α% level if the test statistic is greater than the p100´αq

percentile of the empirical distribution of the simulated test statistics.

Appendix B. Supplementary Data

Supplementary results related to this article can be found in the Internet Appendix.

25 For simplicity, we omit indexing of the commodity futures and portfolios by j and k, respectively.
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Basu, Devraj, and Joëlle Miffre, 2013, Capturing the risk premium of commodity futures: The

role of hedging pressure, Journal of Banking & Finance 37, 2652–2664.

Bessembinder, Hendrik, 1992, Systematic risk, hedging pressure, and risk premiums in futures

markets, Review of Financial Studies 5, 637–667.

Bodie, Zvi, and Victor I. Rosansky, 1980, Risk and return in commodity futures, Financial

Analysts Journal 36, 27–39.

Brennan, Michael J., Tarun Chordia, and Avanidhar Subrahmanyam, 1998, Alternative factor

specifications, security characteristics, and the cross-section of expected stock returns, Journal

of Financial Economics 49, 345–373.

Campbell, John Y., and Samuel B. Thompson, 2008, Predicting excess stock returns out of

sample: Can anything beat the historical average?, Review of Financial Studies 21, 1509–

1528.

Carter, Colin A., Gordon C. Rausser, and Andrew Schmitz, 1983, Efficient asset portfolios and

the theory of normal backwardation, Journal of Political Economy 91, 319–331.

22



Chatfield, Chris, 1995, Model uncertainty, data mining and statistical inference, Journal of the

Royal Statistical Society 158, 419–466.

Chinn, Menzie D., and Olivier Coibion, 2014, The predictive content of commodity futures,

Journal of Futures Markets 34, 607–636.

Clark, Todd E., and Michael W. McCracken, 2001, Tests of equal forecast accuracy and encom-

passing for nested models, Journal of Econometrics 105, 85–110.

, 2012, Reality checks and comparisons of nested predictive models, Journal of Business

& Economic Statistics 30, 53–66.

, 2013, Advances in forecast evaluation, in Graham Elliott, and Allan Timmermann, ed.:

Handbook of Economic Forecasting . pp. 1107–1201 (North Holland: New York).

Clark, Todd E., and Kenneth D. West, 2006, Using out-of-sample mean squared prediction

errors to test the martingale difference hypothesis, Journal of Econometrics 135, 155–186.

, 2007, Approximately normal tests for equal predictive accuracy in nested models,

Journal of Econometrics 138, 291–311.

Daskalaki, Charoula, Alexandros Kostakis, and George Skiadopoulos, 2014, Are there common

factors in individual commodity futures returns?, Journal of Banking & Finance 40, 346–363.

Daskalaki, Charoula, and George Skiadopoulos, 2011, Should investors include commodities in

their portfolios after all?, Journal of Banking & Finance 35, 2606–2626.

de Roon, Frans A., Theo E. Nijman, and Chris H. Veld, 1998, Pricing term structure risk in

futures markets, Journal of Financial and Quantitative Analysis 33, 139–157.

, 2000, Hedging pressure effects in futures markets, Journal of Finance 55, 1437–1456.

Della Corte, Pasquale, Lucio Sarno, and IIias Tsiakas, 2009, An economic evaluation of empirical

exchange rate models, Review of Financial Studies 22, 3491–3530.

, 2011, Spot and forward volatility in foreign exchange, Journal of Financial Economics

100, 496–513.

Dhume, Deepa, 2011, Using durable consumption risk to explain commodities returns, Working

Paper, Department of Economics, Harvard University.

Dusak, Katherine, 1973, Futures trading and investor returns: An investigation of commodity

market risk premiums, Journal of Political Economy 81, 1387–1406.

23



Erb, Claude B., and Campbell R. Harvey, 2006, The strategic and tactical value of commodity

futures, Financial Analysts Journal 62, 69–97.

Fama, Eugene F., and Kenneth R. French, 1987, Commodity futures prices: Some evidence on

forecast power, premiums, and the theory of storage, Journal of Business 60, 55–73.

, 1993, Common risk factors in the returns on stocks and bonds, Journal of Financial

Economics 33, 3–56.

, 1997, Industry costs of equity, Journal of Financial Economics 43, 153–193.

Fama, Eugene F., and James D. MacBeth, 1973, Risk, return, and equilibrium: Empirical tests,

Journal of Political Economy 81, 607–636.

Ferraro, Domenico, Kenneth Rogoff, and Barbara Rossi, 2015, Can oil prices forecast exchange

rates? an empirical analysis of the relationship between commodity prices and exchange rates,

Journal of International Money and Finance 54, 116–141.

Ferreira, Miguel A., and Pedro Santa-Clara, 2011, Forecasting stock market returns: The sum

of the parts is more than the whole, Journal of Financial Economics 100, 514–537.

Ferson, Wayne E., and Campbell R. Harvey, 1997, Fundamental determinants of national equity

market returns: A perspective on conditional asset pricing, Journal of Banking & Finance

21, 1625–1665.

, 1999, Conditioning variables and the cross-section of stock returns, Journal of Finance

54, 1325–1360.

Ferson, Wayne E., Suresh Nallareddy, and Biqin Xie, 2013, The out-of-sample performance of

long run risk models, Journal of Financial Economics 107, 537–556.

Fleming, Jeff, Chris Kirby, and Barbara Ostdiek, 2001, The economic value of volatility timing,

Journal of Finance 56, 329–352.

Fortenbery, Randall T., and Robert J. Hauser, 1990, Investment potential of agricultural futures

contracts, American Journal of Agricultural Economics 72, 721–726.

Giacomini, Raffaella, and Halbert White, 2006, Tests of conditional predictive ability, Econo-

metrica 74, 1545–1578.

Gitman, Lawrence J., and Vincent A. Mercurio, 1982, Cost of capital techniques used by major

U.S. firms: Survey and analysis of Fortune’s 1000, Financial Management 14, 21–29.

24



Goetzmann, William, Jonathan Ingersoll, Matthew Spiegel, and Ivo Welch, 2007, Portfolio per-

formance manipulation and manipulation-proof performance measures, Review of Financial

Studies 20, 1503–1546.

Gorton, Gary B., Fumio Hayashi, and K. Geert Rouwenhorst, 2013, The fundamentals of com-

modity futures returns, Review of Finance 17, 35–105.

Gorton, Gary B., and K. Geert Rouwenhorst, 2006, Facts and fantasies about commodity

futures, Financial Analysts Journal 62, 47–68.

Graham, John R., and Campbell R. Harvey, 2001, The theory and practice of corporate finance:

Evidence from the field, Journal of Financial Economics 60, 187–243.

Han, Yufeng, 2006, Asset allocation with a high dimensional latent factor stochastic volatility

model, Review of Financial Studies 19, 237–271.

Hicks, John R., 1939, Value and Capital (Oxford University Press).

Hirshleifer, David, 1988, Residual risk, trading costs, and commodity futures risk premia, Review

of Financial Studies 1, 173–193.

, 1989, Determinants of hedging and risk premia in commodity futures markets, Journal

of Financial and Quantitative Analysis 24, 313–331.

Hong, Harrison, and Motohiro Yogo, 2012, What does futures market interest tell us about the

macroeconomy and asset prices?, Journal of Financial Economics 105, 473–490.

Hoover, Kevin D., and Stephen J. Perez, 1999, Data mining reconsidered: Encompassing and

the general-to-specific approach to specification search, Econometrics Journal 2, 167–191.

Jagannathan, Ravi, 1985, An investigation of commodity futures prices using the consumption-

based intertemporal capital asset pricing model, Journal of Finance 40, 175–191.

, and Iwan Meier, 2002, Do we need CAPM for capital budgeting?, Financial Manage-

ment Winter, 5–27.

Jensen, Gerald R., Robert R. Johnson, and Jeffrey M. Mercer, 2000, Efficient use of commodity

futures in diversified portfolios, Journal of Futures Markets 20, 489–506.

Keynes, John M., 1923, Some aspects of commodity markets, Manchester Guardian Commercial

13, 784–786.

, 1930, A Treatise on Money . vol. 2 (McMillan, London).

25



Leitch, Gordon J., and Ernest Tanner, 1991, Economic forecast evaluation: Profits versus the

conventional error measures, American Economic Review 81, 580–590.

Lintner, John, 1965, The valuation of risky assets and the selection of risky investments in stock

portfolios and capital budgets, Review of Economics and Statistics 47, 13–37.

Lo, Andrew W., and Andrew C. MacKinlay, 1990, Data-snooping biases in tests of financial

asset pricing models, Review of Financial Studies 3, 431–467.

Malone, Samuel W., Robert B. Gramacy, and Enrique ter Horst, 2014, Timing foreign exchange

markets, SSRN Working Paper.

Marcus, Alan J., 1984, Efficient asset portfolios and the theory of normal backwardation: A

comment, Journal of Political Economy 92, 162–164.

Marquering, Wessel, and Marno Verbeek, 2004, The economic value of predicting stock index

returns and volatility, Journal of Financial and Quantitative Analysis 39, 407–429.

Marshall, Ben R., Nhut H. Nguyen, and Nuttawat Visaltanachoti, 2012, Commodity liquidity

measurement and transaction costs, Review of Financial Studies 25, 599–638.

McCracken, Michael W., and Giorgio Valente, 2014, Asymptotic inference for performance fees

and the predictability of asset returns, Working Paper 2012-049B, Federal Reserve Bank of

St. Louis.
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Table 1
Description of Data

The table describes the data used in the empirical analysis. Symbol is the mnemonic used by the Commodity
Research Bureau for the corresponding futures contract. Delivery Month is the month used to construct excess
returns for individual commodity futures. The sample period is from January 1986 to October 2013.

Commodity Symbol Delivery Month
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Cocoa CC X X X X X
Coffee KC X X X X X
Copper HG X X X X X X
Corn C- X X X X X
Cotton CT X X X X X
Crude Oil CL X X X X X X X X X X X X
Gasoline HU X X X X X X X X X X X X
Gold GC X X X X X X
Heating Oil HO X X X X X X X X X X X X
Lean Hogs LH X X X X X X X
Live Cattle LC X X X X X X
Silver SI X X X X X
Soybeans S- X X X X X X
Sugar SB X X X X
Wheat W- X X X X X
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Table 2
Full-Sample OLS Estimates: Portfolio-Level

The table reports the ordinary least squares (OLS) estimates of the factor models in equations (3)–(10) for
basis-sorted commodity futures portfolios. All variables are in percentage points. Numbers in parentheses are
the Newey and West (1987) standard errors. R2

adj. denotes the adjusted R2
p%q. *, **, and *** denote statistical

significance at the 10%, 5%, and 1% levels, respectively. The sample period is from January 1986 to October 2013.

Model â0 â1 b̂0,1 b̂0,2 b̂1,1 b̂1,2 R2
adj.

Portfolio 1

(3) ´0.755˚˚˚ 1.025˚˚˚ 42.13
(0.256) (0.076)

(4) ´0.074 1.099˚˚˚ ´0.474˚˚˚ 77.12
(0.161) (0.052) (0.041)

(5) ´0.805˚˚˚ 0.766˚˚˚ ´0.098˚˚˚ 43.57
(0.268) (0.084) (0.025)

(6) ´0.086 1.080˚˚˚ ´0.373˚˚˚ 0.002 0.035 77.56
(0.168) (0.077) (0.051) (0.025) (0.022)

(7) ´0.660˚ 0.037 1.026˚˚˚ 41.97
(0.395) (0.117) (0.076)

(8) 0.058 0.051 1.101˚˚˚ ´0.474˚˚˚ 77.08
(0.248) (0.075) (0.052) (0.041)

(9) ´0.192 0.243 0.710˚˚˚ ´0.122˚˚˚ 43.90
(0.435) (0.183) (0.107) (0.046)

(10) 0.163 0.100 1.056˚˚˚ ´0.371˚˚˚ ´0.009 0.035 77.58
(0.289) (0.110) (0.079) (0.052) (0.028) (0.022)

Portfolio 2

(3) ´0.389˚ 0.893˚˚˚ 42.60
(0.214) (0.061)

(4) ´0.348˚ 0.897˚˚˚ ´0.028 42.60
(0.206) (0.064) (0.036)

(5) ´0.389˚ 0.927˚˚˚ 0.035 42.44
(0.215) (0.136) (0.137)

(6) ´0.348˚ 0.928˚˚˚ ´0.023 0.032 0.005 42.26
(0.207) (0.136) (0.061) (0.137) (0.059)

(7) ´0.247 0.146 0.893˚˚˚ 42.44
(0.466) (0.476) (0.061)

(8) ´0.240 0.112 0.897˚˚˚ ´0.028 42.43
(0.466) (0.471) (0.063) (0.036)

(9) ´0.252 0.141 0.926˚˚˚ 0.034 42.28
(0.466) (0.475) (0.134) (0.136)

(10) ´0.247 0.104 0.927˚˚˚ ´0.026 0.030 0.001 42.09
(0.461) (0.465) (0.135) (0.061) (0.135) (0.058)

Portfolio 3

(3) 0.118 0.887˚˚˚ 41.40
(0.214) (0.081)

(4) 0.163 0.891˚˚˚ ´0.031 41.41
(0.206) (0.081) (0.039)

(5) 0.114 0.949˚˚˚ 0.132 41.33
(0.211) (0.103) (0.192)

(6) 0.166 0.949˚˚˚ 0.005 0.119 0.077 41.37
(0.203) (0.104) (0.058) (0.198) (0.080)

(7) 0.328 0.494 0.886˚˚˚ 41.36
(0.280) (0.522) (0.082)

(8) 0.356 0.461 0.890˚˚˚ ´0.029 41.36
(0.276) (0.521) (0.082) (0.039)

(9) 0.326 0.501 0.949˚˚˚ 0.135 41.30
(0.274) (0.515) (0.105) (0.198)

(10) 0.295 0.310 0.949˚˚˚ 0.001 0.122 0.064 41.24
(0.282) (0.546) (0.105) (0.059) (0.202) (0.085)

(Continued)
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Table 2 – Continued

Model â0 â1 b̂0,1 b̂0,2 b̂1,1 b̂1,2 R2
adj.

Portfolio 4

(3) 0.345 1.014˚˚˚ 43.52
(0.223) (0.067)

(4) 0.333 1.013˚˚˚ 0.008 43.36
(0.235) (0.069) (0.041)

(5) 0.341 1.007˚˚˚ 0.082 43.45
(0.225) (0.067) (0.146)

(6) 0.313 1.008˚˚˚ 0.015 0.100 ´0.046 43.28
(0.234) (0.068) (0.040) (0.157) (0.066)

(7) 0.355 ´0.040 1.014˚˚˚ 43.35
(0.217) (0.472) (0.068)

(8) 0.342 ´0.032 1.013˚˚˚ 0.007 43.19
(0.229) (0.471) (0.070) (0.040)

(9) 0.349 ´0.032 1.007˚˚˚ 0.082 43.27
(0.219) (0.469) (0.067) (0.146)

(10) 0.312 0.003 1.008˚˚˚ 0.015 0.100 ´0.046 43.10
(0.232) (0.495) (0.068) (0.041) (0.157) (0.068)

Portfolio 5

(3) 0.682˚˚ 1.181˚˚˚ 45.92
(0.267) (0.090)

(4) ´0.074 1.099˚˚˚ 0.526˚˚˚ 81.22
(0.161) (0.052) (0.041)

(5) 0.694˚˚˚ 0.949˚˚˚ 0.103˚˚˚ 46.93
(0.266) (0.113) (0.033)

(6) ´0.058 1.001˚˚˚ 0.466˚˚˚ 0.041 0.020 81.67
(0.160) (0.078) (0.063) (0.026) (0.014)

(7) 0.750 ´0.025 1.181˚˚˚ 45.77
(0.470) (0.146) (0.090)

(8) ´0.097 0.008 1.099˚˚˚ 0.526˚˚˚ 81.16
(0.241) (0.078) (0.052) (0.042)

(9) 0.722 ´0.010 0.949˚˚˚ 0.103˚˚˚ 46.77
(0.461) (0.141) (0.113) (0.033)

(10) ´0.037 ´0.008 1.001˚˚˚ 0.465˚˚˚ 0.041 0.021 81.61
(0.225) (0.064) (0.078) (0.063) (0.026) (0.014)
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Table 3
Forecasts Based on Unconditional Expectations of Factors

The table reports out-of-sample tests of forecast accuracy of factor models relative to a random walk with drift
(RWD) benchmark. The one-month ahead forecasts of commodity futures excess returns are obtained from
rolling regressions with a 10-year window using unconditional expectations of risk factors. For each alternative
factor model specified in equation (i) (i “ 5, 6, . . . , 10) and commodity j, R2

OOS is the Campbell and Thompson
(2008) out-of-sample R2,j

i p%q statistic. CW is the Clark and West (2006, 2007) MSFEji,adj.-t statistic based on
the Newey and West (1987) estimator, which tests whether the adjusted mean squared forecast error (MSFE)
difference between the RWD and the alternative model is zero. RC is the max

i“5,6,...,10
MSFEji,adj.-t statistic for a

reality check following Clark and McCracken (2012), which tests the composite null hypothesis that the RWD
is not inferior to any of the alternative models. One-sided critical values for the R2

OOS , CW, and RC statistics
are obtained using 10,000 fixed regressor bootstrap replications, as per Clark and McCracken (2012). *, **,
and *** denote statistical significance of the R2

OOS , CW, and RC statistics at the 10%, 5%, and 1% levels,
respectively. GW is the Giacomini and White (2006) pji -value of the equal conditional predictive ability test.
Numbers in parentheses are the proportion of times the alternative model outperforms the RWD in the out of
sample. Superscript a (b) indicates that the GW test rejects the null hypothesis of equal conditional predictive
ability at the 10% significance level and the alternative model outperforms (is outperformed by) the RWD more
than 50% of the time. The out-of-sample data run from January 1996 through October 2013.

Model RC
(5) (6) (7) (8) (9) (10)

Cocoa R2
OOS ´0.14 0.03 ´0.68 ´0.80 ´0.99 ´1.25

CW ´1.59 0.25 ´0.16 ´0.17 ´0.32 ´0.54 0.25

GW 0.02b 0.65 0.70 0.66 0.56 0.47
(0.11) (0.69) (0.07) (0.07) (0.05) (0.02)

Coffee R2
OOS ´0.41 0.36 ´1.62 ´2.16 ´1.71 0.64˚˚

CW ´1.22 0.62 0.06 ´0.13 0.11 1.12˚ 1.12

GW 0.00b 0.00a 0.00b 0.00b 0.00b 0.00a

(0.26) (0.71) (0.18) (0.16) (0.19) (0.62)

Copper R2
OOS 0.01 0.13 ´0.55 ´0.56 ´1.07 ´1.09

CW 0.10 0.45 ´0.03 ´0.06 ´0.20 ´0.32 0.45
GW 0.51 0.55 0.45 0.41 0.18 0.14

(0.68) (0.78) (0.16) (0.16) (0.16) (0.15)

Corn R2
OOS 0.04 ´1.13 ´4.04 ´3.99 ´3.91 ´1.87

CW 0.25 ´0.76 ´1.07 ´1.07 ´1.12 ´0.75 0.25

GW 0.99 0.11 0.11 0.07b 0.04b 0.00b

(0.98) (0.06) (0.04) (0.04) (0.04) (0.15)

Cotton R2
OOS 0.05 0.24 ´3.06 ´3.06 ´2.92 ´2.99

CW 0.42 0.35 ´1.45 ´1.43 ´1.21 ´0.82 0.42

GW 0.65 0.06a 0.03b 0.04b 0.28 0.48
(0.89) (0.76) (0.04) (0.02) (0.00) (0.00)

Crude Oil R2
OOS ´0.06 1.60˚˚˚ 0.31˚ 0.24 0.09 1.64˚˚˚

CW ´0.75 1.38˚ 0.97 0.92 0.78 1.39˚˚ 1.39
GW 0.40 0.00a 0.44 0.51 0.54 0.00a

(0.18) (0.78) (0.76) (0.72) (0.60) (0.83)

Gasoline R2
OOS 0.15 ´1.62 1.52˚˚ 1.69˚˚ 1.57˚˚ 1.41˚˚˚

CW 1.47˚ ´1.38 2.07˚˚˚ 2.14˚˚˚ 2.12˚˚˚ 2.08˚˚ 2.14˚˚

GW 0.40 0.17 0.35 0.31 0.39 0.27
(1.00) (0.04) (0.94) (0.93) (0.96) (0.99)

Gold R2
OOS ´0.08 ´0.04 0.12˚ 0.13˚ 0.12˚ 0.26˚

CW ´1.47 ´0.11 0.92˚ 0.92˚ 0.92˚ 1.08˚ 1.08
GW 0.32 0.74 0.06a 0.09a 0.03a 0.11

(0.00) (0.27) (0.59) (0.62) (0.58) (0.66)

Heating Oil R2
OOS ´0.08 0.72˚˚ ´1.06 ´1.04 ´0.74 ´0.37

CW ´0.44 1.36˚ ´0.23 ´0.30 0.06 ´0.12 1.36
GW 0.82 0.00a 0.79 0.72 0.94 0.64

(0.04) (0.73) (0.01) (0.02) (0.00) (0.07)

(Continued)
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Table 3 – Continued

Model RC
(5) (6) (7) (8) (9) (10)

Lean Hogs R2
OOS 0.09 0.77˚ ´1.27 ´1.14 ´1.37 ´0.95

CW 0.84 1.12 ´0.32 ´0.22 ´0.37 ´0.03 1.12
GW 0.00a 0.78 0.75 0.85 0.76 0.33

(0.79) (0.98) (0.02) (0.00) (0.00) (0.17)

Live Cattle R2
OOS ´0.14 ´0.95 ´3.49 ´3.22 ´3.66 ´3.36

CW ´1.57 ´1.52 ´0.42 ´0.32 ´0.47 ´0.68 ´0.32

GW 0.07b 0.06b 0.13 0.19 0.13 0.09b

(0.05) (0.09) (0.06) (0.06) (0.05) (0.04)

Silver R2
OOS ´0.10 0.09 ´1.35 ´1.31 ´1.51 ´1.29

CW ´1.93 0.55 ´2.50 ´2.56 ´2.34 ´2.12 0.55

GW 0.02b 0.44 0.00b 0.00b 0.00b 0.00b

(0.12) (0.78) (0.09) (0.08) (0.13) (0.15)

Soybeans R2
OOS ´0.28 ´0.99 ´3.97 ´4.02 ´3.71 ´5.06

CW ´1.79 0.09 ´1.81 ´1.64 ´1.49 ´0.43 0.09

GW 0.00b 0.00b 0.02b 0.08b 0.01b 0.03b

(0.20) (0.16) (0.01) (0.00) (0.03) (0.04)

Sugar R2
OOS ´0.11 ´2.32 ´24.13 ´23.61 ´25.40 ´15.67

CW ´0.59 0.04 ´1.26 ´1.25 ´1.58 ´0.64 0.04

GW 0.02b 0.00b 0.51 0.47 0.43 0.00b

(0.25) (0.09) (0.00) (0.00) (0.00) (0.05)

Wheat R2
OOS 0.18 0.27 ´1.40 ´1.40 ´1.20 ´1.19

CW 1.60˚ 1.29 ´1.37 ´1.40 ´1.20 ´1.20 1.60
GW 0.02a 0.14 0.25 0.24 0.34 0.28

(0.76) (0.83) (0.01) (0.01) (0.01) (0.02)
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Table 4
Forecasts Based on Conditional Expectations of Factors

The setup is the same as in Table 3 except that conditional expectations of risk factors are used to generate
one-month ahead forecasts of commodity futures excess returns from factor models in equations (3)–(10). See
also notes to Table 3.

Model RC
(3) (4) (5) (6) (7) (8) (9) (10)

Cocoa R2
OOS ´0.23 ´0.17 ´0.47 ´0.34 ´0.91 ´0.91 ´1.34 ´1.62

CW ´1.42 ´1.01 ´1.99 ´0.51 ´0.31 ´0.31 ´0.50 ´0.79 ´0.31

GW 0.05b 0.13 0.04b 0.24 0.65 0.65 0.49 0.36
(0.11) (0.12) (0.07) (0.11) (0.04) (0.04) (0.04) (0.02)

Coffee R2
OOS 0.17 0.69˚˚ ´1.19 ´1.97 ´1.70 ´1.70 ´2.78 ´2.00

CW 0.40 0.75 ´0.32 ´0.50 0.15 0.15 0.11 0.02 0.75

GW 0.00a 0.47 0.00b 0.10 0.00b 0.00b 0.00b 0.00b

(0.72) (0.94) (0.10) (0.05) (0.17) (0.17) (0.17) (0.17)

Copper R2
OOS 1.43˚˚˚ 1.46˚˚˚ 1.77˚ 1.81˚˚ 0.76˚ 0.76˚ 1.09˚ 1.13˚

CW 1.55˚ 1.57˚ 1.60˚˚ 1.59˚˚ 0.94 0.94 1.10 1.11 1.60
GW 0.00a 0.00a 0.00a 0.00a 0.10 0.10 0.09a 0.08a

(0.86) (0.86) (0.86) (0.83) (0.81) (0.81) (0.81) (0.82)

Corn R2
OOS ´1.59 ´1.71 ´4.66 ´4.61 ´5.51 ´5.51 ´6.32 ´6.64

CW ´0.69 ´0.70 ´0.23 ´0.46 ´1.05 ´1.05 ´0.64 ´0.37 ´0.23

GW 0.00b 0.00b 0.00b 0.01b 0.16 0.16 0.01b 0.06b

(0.04) (0.04) (0.01) (0.01) (0.02) (0.02) (0.05) (0.04)

Cotton R2
OOS 0.31˚˚ 0.31˚ ´0.58 ´0.09 ´2.77 ´2.77 ´4.27 ´3.43

CW 0.46 0.46 0.38 0.51 ´0.77 ´0.77 ´0.35 ´0.31 0.51

GW 0.00a 0.00a 0.00b 0.00b 0.17 0.17 0.20 0.13
(0.73) (0.72) (0.20) (0.49) (0.02) (0.02) (0.01) (0.02)

Crude Oil R2
OOS ´0.90 ´0.85 ´0.81 ´0.50 ´0.17 ´0.17 ´0.13 ´0.03

CW ´0.08 ´0.01 0.00 0.93 0.58 0.58 0.61 1.01 1.01
GW 0.72 0.74 0.81 0.38 0.20 0.20 0.32 0.06a

(0.05) (0.06) (0.01) (0.33) (0.39) (0.39) (0.39) (0.52)

Gasoline R2
OOS ´0.79 ´1.13 ´0.46 ´2.61 0.48˚ 0.48˚ 0.76˚˚ 0.40˚˚

CW ´1.01 ´1.28 ´0.41 ´0.77 1.32˚ 1.32˚ 1.56˚˚ 0.79 1.56
GW 0.34 0.22 0.65 0.42 0.75 0.75 0.80 0.82

(0.03) (0.03) (0.04) (0.00) (0.81) (0.81) (0.93) (0.87)

Gold R2
OOS ´0.19 ´0.19 ´0.24 ´0.17 ´0.32 ´0.32 ´0.36 ´0.22

CW ´0.31 ´0.37 ´0.56 ´0.35 0.65 0.65 0.65 0.82 0.82

GW 0.04b 0.01b 0.33 0.00b 0.05b 0.05b 0.04b 0.08b

(0.28) (0.30) (0.18) (0.31) (0.40) (0.40) (0.40) (0.42)

Heating Oil R2
OOS 0.44˚ 0.48˚ 0.59 0.32 ´0.74 ´0.74 ´0.09 0.03

CW 0.78 0.78 1.00 0.62 0.32 0.32 0.69 0.43 1.00
GW 0.88 0.81 0.69 0.97 0.58 0.58 0.65 0.89

(0.97) (0.93) (0.94) (0.93) (0.12) (0.12) (0.39) (0.41)

Lean Hogs R2
OOS ´0.64 ´0.79 ´0.87 0.14 ´1.71 ´1.71 ´2.02 ´1.16

CW ´0.63 ´0.62 ´0.71 0.43 ´0.66 ´0.66 ´0.78 ´0.20 0.43

GW 0.00b 0.00b 0.00b 0.99 0.63 0.63 0.54 0.82
(0.17) (0.15) (0.20) (0.99) (0.00) (0.00) (0.00) (0.02)

Live Cattle R2
OOS ´0.10 ´0.42 ´0.03 ´1.15 ´3.50 ´3.50 ´3.45 ´3.27

CW ´0.86 ´1.29 ´0.22 ´1.10 ´0.47 ´0.47 ´0.44 ´0.73 ´0.22

GW 0.01b 0.00b 0.28 0.18 0.11 0.11 0.15 0.01b

(0.23) (0.15) (0.26) (0.04) (0.06) (0.06) (0.05) (0.08)

(Continued)
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Table 4 – Continued

Model RC
(3) (4) (5) (6) (7) (8) (9) (10)

Silver R2
OOS ´0.01 ´0.03 ´0.02 0.09 ´1.35 ´1.35 ´1.38 ´1.31

CW 0.08 0.02 0.07 0.34 ´1.86 ´1.86 ´1.74 ´1.41 0.34

GW 0.80 0.87 0.65 0.89 0.03b 0.03b 0.02b 0.06b

(0.41) (0.28) (0.37) (0.83) (0.06) (0.06) (0.08) (0.08)

Soybeans R2
OOS 0.36˚˚ 0.38 ´0.07 1.65˚ ´3.52 ´3.52 ´3.32 1.29˚˚

CW 0.89 0.59 0.14 1.01 ´1.95 ´1.95 ´1.76 1.07 1.07

GW 0.19 0.09a 0.99 0.58 0.03b 0.03b 0.05b 0.82
(0.95) (0.93) (0.02) (0.98) (0.00) (0.00) (0.00) (0.98)

Sugar R2
OOS ´1.04 ´0.82 ´52.31 ´6.34 ´18.21 ´18.21 ´33.28 ´26.20

CW ´0.68 ´0.62 0.95 ´0.67 ´1.19 ´1.19 0.57 ´0.76 0.95

GW 0.02b 0.11 0.60 0.00b 0.16 0.16 0.59 0.00b

(0.03) (0.02) (0.00) (0.06) (0.00) (0.00) (0.00) (0.04)

Wheat R2
OOS ´0.31 ´0.31 ´0.24 ´0.12 ´1.62 ´1.62 ´1.51 ´1.46

CW ´0.67 ´0.64 ´0.31 0.09 ´1.37 ´1.37 ´1.28 ´1.34 0.09

GW 0.08b 0.06b 0.06b 0.04b 0.23 0.23 0.25 0.23
(0.16) (0.17) (0.27) (0.36) (0.02) (0.02) (0.02) (0.02)
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Table 5
Forecasts Based on Unconditional Expectations of Factors:

A Cross-Sectional Approach with Hedging Pressure

The table reports the Giacomini and White (2006) pji -values of the equal conditional predictive ability tests
for commodity j. The one-month ahead forecasts of commodity futures excess returns are obtained by the
Fama and MacBeth (1973) cross-sectional procedure following Brennan, Chordia, and Subrahmanyam (1998).
The forecasting scheme based on rolling regressions with a 10-year window utilizes unconditional expectations
of risk factors and commodity-specific hedging pressure. Numbers in parentheses are the proportion of times
the alternative factor model in equation (i) (i “ 5, 6, . . . , 10) outperforms the random walk with drift (RWD)
benchmark in the out of sample. Superscript a (b) indicates that the test rejects the null hypothesis of equal
conditional predictive ability at the 10% significance level and the alternative model outperforms (is outperformed
by) the RWD more than 50% of the time. The out-of-sample data run from February 1996 through October 2013.

Model
(5) (6) (7) (8) (9) (10)

Cocoa 0.00b 0.00b 0.90 0.84 0.00b 0.00b

(0.05) (0.02) (0.78) (0.64) (0.07) (0.02)

Coffee 0.00b 0.00b 0.11 0.16 0.00b 0.00b

(0.03) (0.04) (0.11) (0.10) (0.04) (0.04)

Copper 0.00b 0.00b 0.21 0.04a 0.00b 0.00b

(0.05) (0.06) (0.60) (0.61) (0.08) (0.07)

Corn 0.00b 0.00b 0.48 0.42 0.00b 0.00b

(0.02) (0.02) (0.00) (0.00) (0.02) (0.02)

Cotton 0.00b 0.00b 0.28 0.24 0.00b 0.00b

(0.13) (0.07) (0.00) (0.00) (0.13) (0.09)

Crude Oil 0.00a 0.00b 0.06b 0.08b 0.00a 0.00b

(0.61) (0.02) (0.37) (0.34) (0.57) (0.02)

Gasoline 0.01b 0.01b 0.67 0.41 0.07b 0.10
(0.00) (0.00) (0.02) (0.08) (0.00) (0.00)

Gold 0.00b 0.00b 0.00b 0.00b 0.00b 0.00b

(0.02) (0.01) (0.00) (0.00) (0.03) (0.01)

Heating Oil 0.00b 0.00b 0.01b 0.02b 0.00b 0.00b

(0.00) (0.05) (0.16) (0.13) (0.01) (0.05)

Lean Hogs 0.00b 0.00b 0.03b 0.04b 0.01b 0.00b

(0.13) (0.04) (0.01) (0.00) (0.06) (0.00)

Live Cattle 0.00b 0.03b 0.13 0.08b 0.00b 0.01b

(0.00) (0.09) (0.12) (0.13) (0.00) (0.05)

Silver 0.00b 0.00b 0.00b 0.00b 0.00b 0.00b

(0.02) (0.00) (0.03) (0.03) (0.01) (0.00)

Soybeans 0.00b 0.01b 0.15 0.14 0.00b 0.00b

(0.01) (0.00) (0.01) (0.00) (0.00) (0.00)

Sugar 1.00 0.00b 0.17 0.06b 0.00b 0.00b

(0.35) (0.08) (0.06) (0.07) (0.04) (0.06)

Wheat 0.00b 0.00b 0.06b 0.06b 0.00b 0.00b

(0.04) (0.03) (0.20) (0.22) (0.05) (0.03)
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Table 6
Forecasts Based on Conditional Expectations of Factors:

A Cross-Sectional Approach with Hedging Pressure

The setup is the same as in Table 5 except that conditional expectations of risk factors are used to generate
one-month ahead forecasts of commodity futures excess returns from factor models in equations (3)–(10). See
also notes to Table 5.

Model
(3) (4) (5) (6) (7) (8) (9) (10)

Cocoa 0.48 0.50 0.65 0.65 0.88 0.76 0.96 0.60
(0.89) (0.82) (0.73) (0.24) (0.67) (0.46) (0.00) (0.15)

Coffee 0.42 0.60 0.03b 0.23 0.05b 0.08b 0.02b 0.07b

(0.09) (0.05) (0.10) (0.08) (0.13) (0.11) (0.11) (0.10)

Copper 0.04a 0.01a 0.06a 0.34 0.18 0.04a 0.11 0.88
(0.77) (0.76) (0.78) (0.84) (0.77) (0.74) (0.80) (0.81)

Corn 0.30 0.27 0.00b 0.00b 0.07b 0.07b 0.01b 0.00b

(0.10) (0.09) (0.09) (0.10) (0.13) (0.13) (0.12) (0.12)

Cotton 0.71 0.70 0.16 0.11 0.35 0.33 0.20 0.13
(0.06) (0.05) (0.11) (0.08) (0.00) (0.00) (0.05) (0.04)

Crude Oil 0.00b 0.05b 0.00b 0.02b 0.00b 0.07b 0.01b 0.02b

(0.33) (0.26) (0.31) (0.29) (0.37) (0.28) (0.33) (0.30)

Gasoline 0.14 0.05b 0.17 0.06b 0.51 0.24 0.36 0.51
(0.00) (0.00) (0.00) (0.00) (0.00) (0.03) (0.03) (0.01)

Gold 0.00b 0.00b 0.00b 0.00b 0.00b 0.00b 0.00b 0.00b

(0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

Heating Oil 0.12 0.37 0.15 0.25 0.45 0.45 0.52 0.30
(0.27) (0.12) (0.29) (0.17) (0.05) (0.00) (0.12) (0.10)

Lean Hogs 0.01b 0.01b 0.01b 0.00b 0.03b 0.02b 0.03b 0.02b

(0.04) (0.03) (0.06) (0.07) (0.00) (0.00) (0.02) (0.03)

Live Cattle 0.00b 0.02b 0.00b 0.03b 0.13 0.20 0.13 0.08b

(0.20) (0.20) (0.21) (0.15) (0.11) (0.09) (0.12) (0.12)

Silver 0.00b 0.00b 0.00b 0.00b 0.00b 0.00b 0.00b 0.00b

(0.01) (0.01) (0.00) (0.03) (0.03) (0.03) (0.00) (0.05)

Soybeans 0.43 0.48 0.59 0.11 0.20 0.21 0.29 0.33
(0.00) (0.00) (0.00) (0.24) (0.01) (0.02) (0.02) (0.06)

Sugar 0.53 0.26 0.28 0.00b 0.00b 0.00b 0.22 0.00b

(0.00) (0.00) (0.00) (0.07) (0.12) (0.10) (0.00) (0.08)

Wheat 0.32 0.35 0.29 0.61 0.10 0.08b 0.05b 0.10
(0.17) (0.24) (0.13) (0.10) (0.13) (0.20) (0.15) (0.15)
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Table 7
Forecasts Based on Unconditional Expectations of Factors: Portfolio-Level

The table reports out-of-sample tests of forecast accuracy of factor models relative to a random walk with
drift (RWD) benchmark. The one-month ahead forecasts of excess returns for basis-sorted commodity futures
portfolios are obtained from rolling regressions with a 10-year window using unconditional expectations of risk
factors. For each alternative factor model in equation (i) (i “ 5, 6, . . . , 10) and portfolio k, R2

OOS is the Campbell
and Thompson (2008) out-of-sample R2,k

i p%q statistic. CW is the Clark and West (2006, 2007) MSFEki,adj.-t
statistic based on the Newey and West (1987) estimator, which tests whether the adjusted mean squared forecast
error (MSFE) difference between the RWD and the alternative model is zero. RC is the max

i“5,6,...,10
MSFEki,adj.-t

statistic for a reality check following Clark and McCracken (2012), which tests the composite null hypothesis
that the RWD is not inferior to any of the alternative models. One-sided critical values for the R2

OOS , CW,
and RC statistics are obtained using 10,000 fixed regressor bootstrap replications, as per Clark and McCracken
(2012). *, **, and *** denote statistical significance of the R2

OOS , CW, and RC statistics at the 10%, 5%, and
1% levels, respectively. GW is the Giacomini and White (2006) pki -value of the equal conditional predictive
ability test. Numbers in parentheses are the proportion of times the alternative model outperforms the RWD in
the out of sample. Superscript a (b) indicates that the GW test rejects the null hypothesis of equal conditional
predictive ability at the 10% significance level and the alternative model outperforms (is outperformed by) the
RWD more than 50% of the time. The out-of-sample data run from January 1996 through October 2013.

Model RC
(5) (6) (7) (8) (9) (10)

Portfolio 1 R2
OOS ´0.13 ´0.53 ´0.84 ´0.35 ´1.12 ´1.75

CW ´0.65 ´0.81 ´0.34 ´0.07 ´0.34 ´0.39 ´0.07

GW 0.35 0.04b 0.72 0.28 0.72 0.07b

(0.16) (0.09) (0.01) (0.05) (0.00) (0.07)

Portfolio 2 R2
OOS ´0.24 ´0.36 ´0.76 ´0.79 ´0.81 ´0.88

CW ´1.00 ´1.01 ´1.79 ´1.97 ´1.72 ´1.82 ´1.00

GW 0.14 0.06b 0.09b 0.06b 0.08b 0.06b

(0.13) (0.14) (0.06) (0.06) (0.08) (0.08)

Portfolio 3 R2
OOS 0.16 ´0.07 ´0.43 ´0.35 ´0.29 ´0.19

CW 1.73˚˚ ´0.04 0.28 0.36 0.52 0.54 1.73˚

GW 0.12 0.51 0.17 0.16 0.24 0.18
(0.96) (0.25) (0.27) (0.30) (0.36) (0.39)

Portfolio 4 R2
OOS 0.04 ´0.05 ´1.47 ´1.44 ´1.12 ´1.11

CW 0.39 0.18 ´2.06 ´2.07 ´1.60 ´1.64 0.39

GW 0.02a 0.02b 0.07b 0.06b 0.25 0.13
(0.69) (0.40) (0.00) (0.01) (0.00) (0.08)

Portfolio 5 R2
OOS 0.09 ´0.37 ´2.14 ´0.66 ´2.12 ´0.41

CW 0.39 ´1.02 ´2.15 ´1.66 ´2.37 ´1.39 0.39

GW 0.00a 0.22 0.04b 0.20 0.03b 0.07b

(0.60) (0.13) (0.00) (0.00) (0.01) (0.14)
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Table 8
Forecasts Based on Conditional Expectations of Factors: Portfolio-Level

The setup is the same as in Table 7 except that conditional expectations of risk factors are used to generate
one-month ahead forecasts of basis-sorted portfolio excess returns from factor models in equations (3)–(10). See
also notes to Table 7.

Model RC
(3) (4) (5) (6) (7) (8) (9) (10)

Portfolio 1 R2
OOS ´1.97 ´2.41 ´6.29 ´2.96 ´3.09 ´3.09 ´7.98 ´4.27

CW ´1.75 ´1.51 ´1.59 ´1.57 ´1.18 ´1.18 ´1.33 ´1.36 ´1.18

GW 0.02b 0.19 0.24 0.15 0.25 0.25 0.41 0.12
(0.06) (0.02) (0.01) (0.02) (0.02) (0.02) (0.00) (0.02)

Portfolio 2 R2
OOS 0.53˚˚˚ 0.51˚˚ 0.55˚˚ 0.35 ´0.27 ´0.27 ´0.16 ´0.32

CW 1.34 1.32 1.43˚ 1.25 0.55 0.55 0.80 0.71 1.43
GW 0.45 0.50 0.58 0.74 0.71 0.71 0.90 0.90

(0.82) (0.82) (0.85) (0.84) (0.24) (0.24) (0.24) (0.15)

Portfolio 3 R2
OOS ´0.17 ´0.25 ´0.16 ´0.40 ´1.05 ´1.05 ´1.10 ´0.92

CW 0.13 0.00 0.16 0.01 0.25 0.25 0.30 0.35 0.35
GW 0.29 0.31 0.32 0.38 0.15 0.15 0.20 0.16

(0.19) (0.17) (0.20) (0.20) (0.23) (0.23) (0.22) (0.23)

Portfolio 4 R2
OOS ´0.43 ´0.48 ´0.82 ´1.13 ´2.14 ´2.14 ´2.17 ´2.34

CW ´0.57 ´0.64 ´1.04 ´1.43 ´1.52 ´1.52 ´1.57 ´1.89 ´0.57

GW 0.24 0.33 0.09b 0.17 0.07b 0.07b 0.05b 0.05b

(0.17) (0.15) (0.12) (0.02) (0.03) (0.03) (0.03) (0.01)

Portfolio 5 R2
OOS 0.58˚˚˚ ´0.78 0.88˚˚ ´0.87 ´1.53 ´1.53 ´1.35 ´1.03

CW 1.09 ´0.30 1.21 ´0.34 ´0.74 ´0.74 ´0.45 ´0.37 1.21
GW 0.75 0.68 0.60 0.64 0.38 0.38 0.45 0.60

(1.00) (0.02) (0.98) (0.03) (0.02) (0.02) (0.03) (0.02)
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Table 9
Economic Value of Commodity Futures Excess Return Predictability

The table reports out-of-sample economic value of factor models. The one-month ahead forecasts of commodity
futures excess returns are obtained from rolling regressions with a 10-year window. The left (right) panel
contains results using forecasts based on unconditional (conditional) expectations of risk factors. Panel A reports
results for a commodity stand-alone strategy, in which forecasts from each model including a random walk with
drift (RWD) benchmark are utilized to build a corresponding minimum conditional portfolio variance strategy
subject to a target annualized portfolio excess return of µ˚p “ 3% for an investor who dynamically rebalances
her portfolio comprising commodity futures on a monthly basis. Panel B reports results for a diversification
strategy, which extends the minimum conditional portfolio variance strategy for an investor who diversifies her
exposure to stocks and bonds by allocating commodity futures to her portfolio based on forecasts of excess
returns from each factor model. The performance of a portfolio comprising commodity futures and conventional
assets (i.e., stocks and bonds) in Panel B is compared against a benchmark portfolio comprising stocks and
bonds (denoted by S+B) only. The Sharpe ratio is the ratio of the (annualized) mean excess portfolio return to
the (annualized) standard deviation of excess portfolio returns. Φ is the Fleming, Kirby, and Ostdiek (2001)
performance fee a risk-averse investor with quadratic utility function is willing to pay for switching from a
benchmark strategy to an alternative factor model strategy. Θ is the Goetzmann, Ingersoll, Spiegel, and Welch
(2007) manipulation-proof measure of performance after adjusting for risk. Φ and Θ are computed with a
relative risk aversion coefficient γ “ 5 and are reported in decimals per annum (i.e., 0.01 “ 1 annual percentage
point). The out-of-sample data run from January 1996 through October 2013.

Unconditional Expectations of Factors Conditional Expectations of Factors
Model Sharpe Ratio Φ Θ Sharpe Ratio Φ Θ

Panel A: Commodity Stand-alone Strategy

RWD 0.261 0.261
(3) 0.121 ´0.004 ´0.004
(4) 0.101 ´0.005 ´0.005
(5) 0.263 0.000 0.000 0.192 ´0.002 ´0.002
(6) 0.235 ´0.001 ´0.001 0.118 ´0.004 ´0.004
(7) ´0.262 ´0.012 ´0.012 ´0.221 ´0.011 ´0.011
(8) ´0.233 ´0.012 ´0.012 ´0.221 ´0.011 ´0.011
(9) ´0.185 ´0.010 ´0.010 ´0.137 ´0.009 ´0.009
(10) ´0.019 ´0.007 ´0.007 0.119 ´0.004 ´0.004

Panel B: Diversification Strategy

S+B 0.579 0.579
(3) 0.586 ´0.005 ´0.005
(4) 0.569 ´0.005 ´0.005
(5) 0.638 ´0.003 ´0.003 0.559 ´0.005 ´0.005
(6) 0.755 ´0.002 ´0.002 0.523 ´0.007 ´0.007
(7) 0.255 ´0.012 ´0.012 0.325 ´0.011 ´0.011
(8) 0.265 ´0.012 ´0.012 0.325 ´0.011 ´0.011
(9) 0.291 ´0.012 ´0.012 0.360 ´0.011 ´0.011
(10) 0.431 ´0.009 ´0.009 0.599 ´0.007 ´0.007
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Table 10
Economic Value of Commodity Futures Excess Return Predictability:

A Cross-Sectional Approach with Hedging Pressure

The table reports out-of-sample economic value of factor models. The one-month ahead forecasts of commodity
futures excess returns are obtained by the Fama and MacBeth (1973) cross-sectional procedure following
Brennan, Chordia, and Subrahmanyam (1998). The forecasting scheme based on rolling regressions with a
10-year window utilizes commodity-specific hedging pressure. The out-of-sample data run from February 1996
through October 2013. See also notes to Table 9.

Unconditional Expectations of Factors Conditional Expectations of Factors
Model Sharpe Ratio Φ Θ Sharpe Ratio Φ Θ

Panel A: Commodity Stand-alone Strategy

RWD 0.246 0.246
(3) ´0.138 ´0.016 ´0.016
(4) ´0.081 ´0.011 ´0.011
(5) ´0.026 ´0.005 ´0.005 ´0.074 ´0.010 ´0.010
(6) ´0.238 ´0.007 ´0.007 ´0.164 ´0.010 ´0.010
(7) ´0.296 ´0.010 ´0.010 ´0.192 ´0.009 ´0.009
(8) ´0.232 ´0.010 ´0.009 ´0.112 ´0.008 ´0.008
(9) ´0.280 ´0.007 ´0.007 ´0.233 ´0.009 ´0.009
(10) ´0.333 ´0.007 ´0.007 ´0.080 ´0.007 ´0.007

Panel B: Diversification Strategy

S+B 0.554 0.554
(3) 0.110 ´0.013 ´0.013
(4) 0.164 ´0.012 ´0.012
(5) ´0.157 ´0.016 ´0.016 0.003 ´0.016 ´0.016
(6) ´0.170 ´0.016 ´0.016 0.093 ´0.014 ´0.014
(7) ´0.117 ´0.017 ´0.017 ´0.013 ´0.015 ´0.015
(8) ´0.117 ´0.017 ´0.017 0.006 ´0.015 ´0.015
(9) ´0.273 ´0.016 ´0.016 ´0.070 ´0.016 ´0.016
(10) ´0.323 ´0.016 ´0.016 0.097 ´0.014 ´0.014
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