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Abstract

There is a need to model and predict the transfer of phosphorus (P) from land to water, but
this is challenging because of the large number of complex physical and biogeochemical
processes involved. This study presents, for the first time, a ‘limits of acceptability’ approach
of the Generalized Likelihood Uncertainty Estimation (GLUE) framework to the Soil and
Water Assessment Tool (SWAT), in an application to a water quality problem in the Newby
Beck Catchment (12.5km?), Cumbria, United Kingdom (UK). Using high frequency outlet
data (discharge and P), individual evaluation criteria (limits of acceptability) were assigned to
observed discharge and P loads for all evaluation time steps, identifying where the model was
performing well/poorly and to infer which processes required improvement in the model
structure. Initial limits of acceptability were required to be relaxed by a substantial amount
(by factors of between 5.3 and 6.72 on a narmalized scale depending on the evaluation
criteria used) in order to gain a set of behavioral simulations (1001 and 1016, respectively out
of 5,000,000). Of the 39 model parameters tested, the representation of subsurface processes
and associated parameters, were consistently shown as critical to the model not meeting the
evaluation criteria, irrespective of the chosen evaluation metric. It is therefore concluded that
SWAT is not an appropriate model to guide P management in this catchment. This approach
highlights the importance of high frequency monitoring data for setting robust model
evaluation criteria. It also raises the question as to whether it is possible to have sufficient
input data available to drive such models so that we can have confidence in their predictions
and their ability to inform catchment management strategies to tackle the problem of diffuse

pollution from agriculture.
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data.



1 Introduction

In response to water quality targets set under the Water Framework Directive (WFD) (EC
2000/60/EC European Union 2000), it is imperative that we understand the sources,
mobilization and delivery of diffuse pollution from agricultural land in headwater catchments
to the river network (Haygarth et al., 2005; Perks et al., 2015). In order to devise management
strategies that reduce the transfer of macronutrients (e.g. phosphorus (P) and nitrogen (N)) to
river networks (McGonigle et al., 2014), models are essential tools in predicting how
catchments may respond to key pressures in the present and into an-uncertain future. Under
climate change, winters are expected to become wetter and warmer, whilst summers are
predicted to be hotter and drier in the United Kingdom (UK Jones et al., 2010). Coupled with
extended periods of drought, and an increase in extreme precipitation events for much of the
UK (Kendon et al., 2014), these changes are likely to result in increased P transfers to
waterways (Haygarth et al., 2005; Macleod et al., 2012; Ockenden et al., 2017).
Process based models are often used to assess the response of river systems to changes in
land use and future climate drivers (Bosch et al., 2014; Crossman et al., 2013; Crossman et
al., 2014; EI-Khoury et al., 2015; Jin et al., 2015; Whitehead et al., 2013). These models are
typically considered over-parameterized, with large numbers of interacting parameters
governing the key physical and biogeochemical processes represented in the model structure
(Beven, 2006; Dean et al., 2009; Krueger et al., 2007). While the parameters of such models
may have some physical significance, ‘effective’ values of those parameters are required to
account for variability in the catchment, key processes and the model limitations (Beven,
1996; Beven, 2002; Beven, 2006), with these frequently estimated through a combination of
manual and automated calibration procedures.

Beven (2006) also highlighted that there is often limited information in the model

calibration data to effectively identify calibrated values for model parameters. For example,



infrequent water quality data collection, which does not fully pick up catchment dynamics
can lead to uncertainty in P load calculations (Johnes, 2007) which then impacts on the ability
of the models to simulate catchment water quality accurately (Radcliffe et al., 2009). This
uncertainty, coupled with other sources of uncertainty, results in equifinality, where multiple
and very different parameter sets produce an equally acceptable fit to observations (Beven,
2006). A so-called ‘optimum’ parameter set will not then be robust to a change in the period
of calibration data. In some cases, parts of a data set may not be informative in calibrating
and evaluating a model (Beven and Smith, 2015). Furthermore, the concept of equifinality
has been exhibited in the observed biogeochemistry of a catchment whereby signals in the
observations can be explained by a large number of interacting processes (Haygarth et al.,
2012).

Understanding how well these process-based models represent the key processes in the
source, mobilization and delivery continuum, will improve their ability as learning tools in
helping to unravel the complex interactions occurring in a catchment. This is particularly the
case where the processes are often difficult or impossible to measure at the catchment scale
(e.g. phosphorus concentrations in different nutrient pools in the soil). As a result, in recent
years the impact of such uncertainties has received increased attention in water quality
modelling (Dean et al., 2009; Harmel et al., 2014; Karamouz et al., 2015; Page et al., 2007;
Vrugt and Sadegh, 2013; Woznicki and Nejadhashemi, 2014; Yen et al., 2015).

The Generalized Likelihood Uncertainty Estimation (GLUE) methodology (Beven and
Binley, 1992) is an uncertainty estimation technique widely applied in the field of
environmental modelling, including water quality models (Dean et al., 2009; Krueger et al.,
2010; Krueger et al., 2009; Krueger et al., 2012; Page et al., 2003; Page et al., 2007; Page et
al., 2004; Rankinen et al., 2006). GLUE evaluates model realizations for acceptability in the

face of uncertainty in the model structure, parameters and input data. It accepts the



equifinality concept in using a set of acceptable or behavioral models to estimate the
uncertainty in model predictions. It also provides a framework to evaluate a model as fit for
purpose in representing the dynamics of a catchment using a set of evaluation criteria.

In this study, GLUE is used with a ‘limits of acceptability’ approach to evaluate a model
parameter set, which should take into account the inherent error in the calibration data, such
as errors in discharge data arising from rating curve uncertainties (Blazkova and Beven,
2009; Krueger et al., 2010; McMillan et al., 2012; McMillan and Westerberg, 2015;
Pappenberger et al., 2006; Westerberg et al., 2011) and errors in water quality data (Krueger
et al., 2012; Page et al., 2003; Page et al., 2004; Rankinen et al., 2006). The advantage of this
approach is that it allows varying limits to be set for individual observations as well as
combining evaluations based on different types of observations in a consistent way (Beven,
2006). Furthermore, it has been demonstrated that high frequency coupled hydrochemical
data, allows short term changes in catchment dynamics to be better captured (Benettin et al.,
2015; Halliday et al., 2015) and a greater understanding of the complex and non-linear
interactions in the catchment system to be obtained. This is particularly the case in flashy
catchments where storm events can lead to rapid changes in stream concentrations of P, and
thus allows more robust and empirically defined model evaluation criteria to be set. However,
the reality of not having such high quality data available can often make it difficult to define
appropriate limits (Dean et al., 2009).

The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998; Gassman et al., 2007)
is one such process-based model that has been the focus of uncertainty and calibration
procedures in recent years (Arnold et al., 2012; Karamouz et al., 2015; Schuol and
Abbaspour, 2006; Shen et al., 2012a). Designed to simulate the impacts of management and
mitigation on biogeochemistry and water quality in ungauged river basins, development of

SWAT began in the early 1990s (Gassman et al., 2007). The model has been continually



improved over the years and has incorporated key components based on those in other
established models. These include the hydrology component from the Chemicals, Runoff, and
Erosion from Agricultural Management Systems (CREAMS) model (Knisel, 1980), the
pesticide component from the Groundwater Loadings Effects on Agricultural Management
Systems (GLEAMS) model (Leonard et al., 1987) and the crop growth component from the
Environmental Impact Policy Climate model (Izaurralde et al., 2006), whichwas previously
known as the Erosion Productivity Impact Calculator (EPIC) model (Williams, 1990).
Finally, river routing and instream Kinetic routines were incorporated based around the
Routing Options to Outlet (ROTO; Arnold et al., 1995) and QUALZ2E (Brown and Barnwell
Jr., 1987) models respectively.

The GLUE framework has been applied to SWAT before (Karamouz et al., 2015; Shen et
al., 2012a) with the Nash-Sutcliffe efficiency (NSE) typically used as the likelihood measure.
A prescribed threshold is used to define behavioral simulations, with focus tending to be on
how the model performs in the medium to long term (typically monthly to yearly). These
studies demonstrated that high uncertainty exists in the model predictions with a number of
key parameters for-flow and nutrient processes being unidentifiable due to limitations in the
model input and calibration data (Shen et al., 2012a). However, due to limited computational
power, these studies sampled only a small area of the parameter space (10,000 iterations for a
20 parameter space) and hence could miss sampling potentially behavioral parameter sets.
Further to this, previous uncertainty applications to SWAT focus largely on using summary
statistics such as NSE to evaluate model performance (Shen et al., 2012a; Shen et al., 2012b;
Shen et al., 2013) and do not focus on those time-steps critical to model failure. Finally,
whilst there have been previous studies with SWAT that are concerned with the effects of
input data uncertainty on model performance (Shen et al., 2012b; Shen et al., 2013), no

previous study accounts for uncertainty in the data used to calibrate the model.



This work provides for the first time, a ‘limits of acceptability’ approach of the GLUE
framework to the SWAT model in an application to the Newby Beck sub-catchment of the
River Eden Basin in Cumbria, UK. This study takes advantage of the high temporal
resolution water quality monitoring data set from the Demonstration Test Catchments (DTC)
project (McGonigle et al., 2014) to gain a better understanding of the uncertainty in the
predictions of models such as SWAT by using the ‘limits of acceptability’ to identify exact
time-steps critical to model failure. This will provide an insight as to whether it is suitable to
use SWAT as a catchment management tool in the Newby Beck sub-catchment. We do this
by evaluating whether it can adequately represent the key dynamics of P transport to the
stream, whilst also explicitly accounting for errors in calibration data. This study has the
following objectives.

1) What are the critical time-steps causing the model to be classed as not acceptable?

2) What can be learned from the uncertainty in the model predictions to better
understand the complex interactions occurring at the catchment scale?

3) Can we identify which processes require further investigation in the model structure

and do we have sufficient input data to drive such complex models?

2 Materials and Methods

2.1 Catchment description and observations

Newby Beck (Figure 1) is a small headwater sub-catchment located in the River Eden
basin in the North West of England, in the United Kingdom. The catchment is approximately
12.5 km? in size with an average elevation of 234 m above sea level (Owen et al., 2012; Perks
et al., 2015). The underlying geology is dominated by Carboniferous limestone, which is

overlain by low-permeability glacial deposits. There are well drained, fine and loamy soils



over limestone (Waltham soil association (541q)) in the upper reaches, seasonally wet deep
loamy soils in drift from Paleozoic sandstone and shale in the mid-reaches (Brickfield 3 soil
association (713g) and seasonally waterlogged reddish fine and coarse loamy soils in glacial
till (Clifton soil association (711n) in the lower reaches of the catchment (National Soil
Resources Institute (NSRI) Cranfield University 2014). The dominant soil unit in the
catchment is the 713g Brickfield association, which covers approximately 66% of the basin
area. The primary land use in the catchment is improved grassland (approximately 76% by
area) which is used for a mix of dairy and beef production. Other land uses are rough
grassland (14%), arable (6%), woodland (2.5%) and built-over land (0.5%; Morton et al.,
2011). The climate of the region is cool temperate maritime with an annual average rainfall of
around 1200 mm. Due to the underlying geology, the 23% of the catchment area is greater
than 5°, which results in rapid catchment response time leading to a time-to-peak of about 3
hours (Perks et al., 2015). Based on the Hydrology of Soil Types (HOST) classifications, the
catchment has a standard percent runoff of 35% (Perks et al., 2015), resulting in very flashy
responses of the hydrograph to rainfall events and high occurrences of saturated overland
flow (Ockenden et<al., 2016).

Figure 1: Summary of spatial data in the Newby Beck catchment. Panel a) shows the
catchment topography, panel b) shows the locations of the monitoring station (discharge
and total phosphorus (TP)), weather station and rain gauges, panel c) shows the main

soil classes in the catchment and panel d) shows the broad land use classifications.

The catchment outlet was a rated section of channel used to provide high frequency
discharge data at 15-minute intervals. The discharge measurements were calculated from a

time series of stage measurements (obtained with a SWS mini-Diver) using site-specific



rating curves. In addition, a high frequency bankside monitoring station was situated at the
outlet, which recorded nitrate (NO3), total P (TP) and total reactive P (TRP) at 30 minute
intervals (Outram et al., 2014). The TP and TRP measurements were conducted using a Hach
Lange combined Sigmatax sampling module and Phosphax Sigma analyzer (Perks et al.,
2015). Rainfall was recorded at 15-minute intervals by three tipping bucket rain gauges.
Other meteorological data was provided by an Automatic Weather Station (AWS), which was
located towards the centre of the catchment (Figure 1). Daily rainfall data was also gained
from a rain gauge located in the center of Newby Beck catchment from the Met Office
Integrated Data Archive System (MIDAS) network (Met Office 2012). The location of the
monitoring stations, rain gauges, and outlet monitoring station are shown in Figure 1.
Information on fertilizer and manure applications were based around a typical dairy and beef
grassland catchment system with guidance from the Defra fertilizer handbook (Rb209; Defra,

2013) and available farm diary data for the catchment for the years 2011-2014.

2.2 Implementation of the SWAT model to Newby Beck

The SWAT model (version 2012, revision 637) is a semi-distributed, process-based model
(Arnold et al., 1998; Gassman et al., 2007) which simulates surface and sub-surface
hydrology, along with various nutrient (including P) and sediment fluxes, at a basin scale.
The model also incorporates various land management practices along with a crop growth
model in order to simulate the impact of agriculture at the catchment scale. SWAT also
includes urban area management practices and can incorporate pollution from point sources
such as sewage treatment works. The model requires spatial information including land use,
soil type and elevation, which are often input as GIS layers. Additional inputs required
include any land management practices (e.g. fertilizer application rates and animal stocking

densities) and weather data including rainfall, temperature, wind speed, humidity and solar



radiation. In order to reduce the computational complexity of SWAT, a semi-distributed
approach is taken such that the model lumps unique land, soil and slope combinations into
hydrological response units (HRUs) within each sub-basin of the main catchment. The
hydrological and biogeochemical model processes are calculated for each HRU and then
lumped to produce a response for each sub-basin.

To implement SWAT for the Newby Beck catchment, the NextMap 5m digital elevation
model (DEM) dataset (Intermap Technologies 2009) was used to delineate the catchment
boundary highlighted in Figure 1. Land use (25 m resolution) was from the Centre of Ecology
and Hydrology (CEH) land cover map (LCM) 2007 (Morton et al., 2011), which indicates the
most likely Broad Habitat land classification for each 25m grid square. Soil properties (1 km
resolution) were determined from the NSRI database (Cranfield University2014). In order to
keep the simulation as computationally efficient as possible, the catchment was divided
spatially into 3 sub-basins, each with a different mean elevation. Within each sub-basin,
HRUs were defined based upon the unique combinations of the LCM land cover class (the
dominant proportion of coverage in each grid square) and the dominant soil association
(Brickfield (713qg), resulting in 5 HRUs per sub-basin and 15 in total (Figure 1). Fertilizer
application rates for each land class were lumped up to HRU level to provide an average
nutrient application rate for each response unit. Finally, the required precipitation and
weather data were provided by the rain gauges and the AWS (Figure 1).

SWAT was set up to produce daily predictions of discharge and TP loads. A sub-daily
variant of the model was available (Gassman et al., 2007), however, at present it does not
produce sub-daily output for nutrients. Therefore in this study we have used the daily time-
step variant of the model which has been used in numerous previous studies (Shen et al.,
2012a; Shen et al., 2013; Taylor et al., 2016; Wang and Sun, 2016; Zhang et al., 2014).

Model simulations are evaluated using daily observations of discharge and TP loads, which

10



are calculated from the high frequency data at the catchment outlet. The modified SCS curve
number method was used for computing surface runoff volume. While often used as a
representation of infiltration excess runoff, Steenhuis et al. (1995) have shown that it can also
be interpreted in terms of saturation excess contributing areas which is more appropriate for
the study catchment. The Penman Monteith (Monteith, 1965) method was used to calculate
evapotranspiration and the Muskingham routing method (Brakensiek, 1967; Overton, 1966)
to route water in the river network. P is cycled through the soil through a combination of
leaching, mineralization, decomposition and immobilization processes and surface runoff is
largely assumed to be the primary transport route into the river network (Neitsch et al., 2011).
The algorithms for each respective process are solved and P is moved between respective soil
stores and into the river network to ensure that mass balance is conserved.

The model was run with a two year warm up period and was calibrated over the 2011-
2012 and 2012-2013 hydrological years and validated over the 2013-2014 hydrological year.
2.3 The limits of acceptability GLUE uncertainty framework

The performance of the SWAT simulations was assessed using the GLUE methodology
(Beven and Binley; 1992; Beven and Binley, 2014). GLUE was extended to use the limits of
acceptability approach described by Beven (2006; 2009) and applied in previous applications
to hydrological (Blazkova and Beven, 2009; Krueger et al., 2010; Liu et al., 2009) and water
quality models (Krueger et al., 2012; Page et al., 2003; Page et al., 2004; Rankinen et al.,
2006).

GLUE recognizes that for any given observational data set and performance criteria there
may be multiple model parameter sets and structures that produce acceptable simulations.
Each application is dependent on a number of decisions:

1. Choose which model parameters to vary
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2. Choose which model structures to consider (e.g. whether in stream processing of
nutrients is switched on or off)

3. Define prior distributions within which to sample each parameter

4. Determine the limits of acceptability used to assess the performance of a model run

5. Decide on a likelihood measure for creating the uncertainty prediction bounds given a

set of behavioral models

In the absence of any knowledge regarding the prior probability distributions of effective
parameter values, random uniform sampling was utilized between defined prior ranges.
However, if this information is known it can be incorporated into the sampling strategy.

To assess if a given parameter set is behavioral, limits of acceptability are specified for each
observation at each time-step during the calibration period, to take into account the inherent
uncertainty in the calibration data. Model performance (Score(t)) is determined at each time-
step, t, by how well the simulated value satisfies these limits and are normalized as follows to

compare limits over different measures,

(?t - Yt)/()’t - Ymin,t) Y, <

Score(t) = { I -
(Yt - Yt)/(Ymax.t ) Yi =y

1)

where Y; is the simulated value; v, is the best estimate of the observed value; ymin: is the lower
limit of acceptability; and ymax: is the upper limit of acceptability for a given time-step. This
results in scores that are zero at the best estimate of an observed value, -1 at the lower limit
and +1 at the upper limit. For a model to be considered behavioral, all scores must fall within

the limits at every time step (between -1 and +1).
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The first step in defining the limits of acceptability is to consider the range of output
observational uncertainty. For discharges, this will depend on both water level measurement
uncertainty and rating curve uncertainties (e.g. McMillan and Westerberg (2015)). For water
quality load variables, it will depend on uncertainties in discharge, sampling and
measurement of determinand concentrations in addition to their aggregation to the temporal
and spatial scales of interest (McMillan et al., 2012). Where such uncertainties are estimated
using fuzzy or interval arithmetic, then limits of acceptability can be defined directly
(Krueger et al., 2010; Krueger et al., 2009; Krueger et al., 2012; Pappenberger et al., 2006;
Westerberg et al., 2011). However, where such uncertainties are estimated statistically, there
are normally no sharp limits on the potential ranges (the assumed distributions will have
infinite tails). In this case, it is necessary to truncate the uncertainty (normally at the 95% or
99% level).

Where such limits of acceptability are based only on the output observational uncertainties,
they provide a minimal range of acceptable behavior because no explicit account has been
taken of the effect of input uncertainty. This is more difficult to do since the nonlinear
dynamics of most models make it difficult to assess the impact of input error independently
of the model. There is, however, the option of exploring input error propagation within the
GLUE framework (Krueger et al., 2010; Krueger et al., 2009; Krueger et al., 2012; Page et
al., 2003; Page et al., 2004). In this paper, an indirect approach was taken by relaxing the
limits until a given number of behavioral simulations have been accepted. We discuss a
number of ways of doing so. It can be done by imposing the condition that only a certain
percentage of the scores must fall within the -1 to +1 scores (e.g. 95%/99%) or by finding the
minimum extension required of the limits for simulations to be considered behavioral. This
degree of relaxation can then be used to determine, at least subjectively, whether the model

can be considered as fit-for-purpose.
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Once a set of behavioural simulations have been identified a final likelihood weight needs to
be calculated for each behavioural model. First, a weight W is calculated at each evaluation

time-step t using Equation 2.

[(Score(t) — Lyy,,)/abs(Ly,, )Y Ly < Score(t) <0
W(t) [(Lupr - Score(t))/abs(Lupr)]N 0 < Scores(t) < Lypr
0 Score(t) & (Lusr) Lupr)

(2)

where Score(t) is the normalized score at time-step t, and L and Ly, are the lower and
upper criteria to consider the set of models behavioural for the required number of time steps.
N is a shaping factor, which is set at 1 in this case, following the approach of Liu et al.
(2009). This is a similar approach to applying a triangular fuzzy weight at each evaluation
time-step (Freer et al., 2004; Liu et al., 2009).

The weights at each time-step are then combined to produce an overall likelihood

weighting for each behavioural model:

T
L(M(,IV)) ocZW(t) o
t=1 3

where T is the total number of time steps and W(t) is a triangular fuzzy weighting at time-step
t. As previously in GLUE, prediction quantiles can then be formulated at any given time-step
(t) by calculating the likelihood weighted cumulative density function of a predicted variable

over the set of behavioural models.

j=N
P(Z,<z)= ) LIM(0,)|Z,; <z
(7<) = ), HM(@)I2e; <] “
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where P is the prediction quantile for Z; (the simulated value of variable Z at time step t using
model M(©;)) being less than z; L is the likelihood weighting associated with model M(©)); ©;
is the jth parameter set; and N is the number of models accepted as behavioral.

In this study, the model was evaluated using daily discharge and TP loads with the
constraint imposed that for both discharge and TP loads the simulated value must fall within
the limits of acceptability at all time-steps throughout the calibration period (2011-2012 and
2012-2013 hydrological years). This period totaled 731 time-steps and accounting for both
upper and lower limits gave 1462 limits to satisfy for discharge. For TP loads, there were
1210 limits to satisfy, due to missing data, giving a total of 2672 limits to be met for a model
run to be considered behavioural. This allows likelihood measures to be calculated for
discharge (L) and TP (Lvp), respectively. For each behavioral model run, an overall

likelihood (Lovr) can be constructed as follows

_ LQ 'LTP

ovr C

(5)

where C is a scaling factor such that the sum of likelihoods scales to unity in each case.
Equation 4 can then be applied to determine the uncertainty bounds on the model predictions.
Here, thirty two parameters in the SWAT model considered important for hydrology and
water quality processes (Arnold et al., 1998; Gassman et al., 2007; van Griensven et al.,
2006) were sampled uniformly between the ranges detailed in the model user manual (Table
1). As some parameters varied with land use, a total of 39 were included in the Monte-Carlo
simulations. In order to preserve the spatial heterogeneity of the soil and curve number
parameters across HRUs, multipliers were applied during the Monte Carlo simulations (Table

1). The ranges and parameters chosen in Table 1 were based around an initial sensitivity
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analysis. For such a large parameter space, many model runs were required and SWAT was

implemented on the Lancaster University HEC (High End Computing) facility. The results

presented are based on 5,000,000 iterations of the SWAT model executable (version 2012,

revision 637), run within an R wrapper (R Core Team, 2016) which sampled the parameters

uniformly between the ranges specified in Table 1.

Table 1: SWAT model parameters and ranges used within the Generalized Likelihood

Uncertainty Estimation (GLUE) framework. The values of each parameter were

sampled on a random uniform basis between the ranges.

Parameter Description Min | Max
Value | Value
CN2* SCS runoff curve number -0.2 0.2
USLE_P FRSD | USLE? equation support practice factor (forest) 0.0 0.5
USLE_P_AGRL | USLE? equation support practice factor (arable) 0.0 1.0
USLE_P PAST | USLE? equation support practice factor (pasture) 0.0 0.5
USLE_P RGRS | USLE? equation support practice factor (rough grazing) 0.0 1.0
USLE_P_URML | USLE? equation support practice factor (urban) 0.0 1.0
ALPHA BF Baseflow alpha factor (1/days) 0.0 1.0
GW_DELAY Groundwater delay (days) 26.0 |500.0
GWQMN Threshold in shallow aquifer for return flow (mm) 970.0 | 3300.0
RCHRG_DP Deep aquifer percolation fraction 0.4 1.0
LAT ORGP Organic P in baseflow (mgl™) 00 |01
GWSOLP Concentration of soluble P in groundwater flow(mgl™) 0.0 0.1
GW_REVAP Groundwater “revap” coefficient 0.02 |0.2
REVAPMN Threshold depth in shallow aquifer for “revap” to occur (mm) | 150.0 | 500.0
SLSOIL Slope length for lateral subsurface flow (m) 10.0 |45.0
CANMX_FRSD | Maximum canopy storage for forest (mmH,0) 0.0 100.0
CANMX_AGRL | Maximum canopy storage for arable (mmH-0) 0.0 100.0
CANMX_PAST | Maximum canopy storage for pasture (mmH,0O) 0.0 100.0
CANMX_RGRS | Maximum canopy storage for rough grazing (mmH;0) 0.0 100.0
LAT TTIME Lateral flow travel time (days) 0.0 1.8
ERORGP Phosphorus enrichment ratio for loading with sediment 0.0 5.0
CH_NZ2 Manning’s “n” value for the main channel 0.0 0.3
CH_CovVv1 Channel erodibility factor 0.0 1.0
CH_COVv2 Channel cover factor 0.0 1.0
SOL_K* Saturated hydraulic conductivity (mm/hr) 0.0 2.0
USLE_K* USLE?® equation soil erodibility factor (ton m* hr/m*toncm) | -0.1 | 0.1
SOL_ORGP Initial organic P concentration in soil layer (mgl™) 0.1 100.0
SOL_LABP Initial labile P concentration in soil layer (mgl™) 0.1 100.0
CH_N1 Manning’s “n” value for tributary channels 0.06 |0.15
SURLAG Surface runoff lag coefficient 2.0 24.0
ESCO Soil evaporation compensation factor 0.4 0.9
EPCO Plant uptake compensation factor 0.1 0.9
SPEXP Parameter for amount of sediment reentrained in routing 1.0 1.5
SPCON Parameter for amount of sediment reentrained in routing 0.001 | 0.01
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PSP P sorption coefficient 0.01 |0.7

CMN Rate factor for mineralization of organic N 0.001 | 0.003
RSDCO Residue decomposition coefficient 0.02 |01
PPERCO P percolation coefficient (global) 10.0 |175
P_UPDIS P uptake distribution parameter 10.0 |.100.0

*These parameters were varied relatively using a random multiplier between the ranges in
order to preserve the spatial heterogeneity of the parameters.
#USLE= Universal Soil Loss Equation.

2.4 Sources of uncertainty in the calibration data

In order to set initial limits of acceptability for discharge and TP-loads, the uncertainty in
the rating curve and in-situ TP concentration measurements were first examined. The
methodology of deriving these limits is described briefly below with more detail available in
Hollaway et al (In Prep). To produce a rating curve the Velocity Area Rating Extension
(VARE) model was used (Ewen et al., 2010), which uses the water balance and an assumed
maximum river velocity to constrain the extrapolation of the curve beyond the gauged range.
An extended version of the voting point likelihood methodology (McMillan and Westerberg,
2015) was used in a Monte Carlo Framework to calibrate the rating curve. In brief, the voting
point method works by evaluating candidate rating curves (from the Monte Carlo sampling)
against the observations (and in the VARE method constrained by the water balance). A
candidate curve is considered behavioural if it falls within the uncertainty bounds of at least
one of the observations and is weighted based upon A) the number of measurements it
intersects and B) how close it lies to the true value (in this case we use a triangular
weighting). Finally, 95% confidence limits are derived from all behavioural curves and their
associated weightings to give the uncertainty limits on the discharge time series.
The resultant uncertainty (based on 95% prediction quantiles) on discharge was on average
96% with a range of 24-163%. This range is much larger compared to those determined
during a recent study on 500 UK catchments (Coxon et al., 2015), which showed that the

majority of catchments had 20-40% relative uncertainty intervals, though the maximum
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uncertainty of 163% determined for Newby Beck here is much lower than the maximum
value of 397% quoted by Coxon et al. (2015).

As daily TP loads are determined from both discharge and in stream TP concentrations.
To evaluate the uncertainty on the in-situ concentrations, measurements from the bankside
analyser were paired with land analysed grab samples and ISCO data. An empirical power
law was then fitted, once again using a voting point likelihood in a Monte-Carlo framework.
In this case, the lab-analysed sample was assumed representative of the true concentration.
Finally, the unique combination of behavioural parameter sets from both the discharge and
TP time series were used to estimate the uncertainty on the resultant TP load.

For the in-situ TP concentrations from the bankside analyser, uncertainty intervals ranged
from 231% for the lower concentrations (the bottom 5%) to around 81% for the highest
concentrations. When combined with the discharge uncertainty this resulted in an average
271% for the lowest loads (bottom 5%) and 76% for the highest loads.

3 Results

3.1 Model performance and rejection

For the initial limits of acceptability (see 2.4), none of the 5,000,000 parameter sets
sampled produced a model that satisfied the limits at every time-step for both discharge and
TP loads. In order to investigate why the sampled parameter sets were not producing
behavioural models a subset of the best parameter sets was chosen on which to perform
further analysis. In order to identify this subset of models we took two different approaches.
These two different methods were adopted to evaluate the sensitivity of accepted model
parameter sets to the choice of evaluation measure. The first approach was to find the
minimum relaxation of the normalized limits across all time-steps that was required to accept
a set of 1000 models. The second approach was to only require the model to fall within the

limits in the high and low flow time-steps. In this case, the thresholds for high and low flows
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(for both discharge and TP) were set as the top and bottom 5% of discharges as defined from
the flow duration curve. For this second evaluation measure if no parameter sets satisfied the
initial limits of acceptability for all the selected time steps, they were again relaxed until a set
of 1000 models was accepted on which to perform further diagnostics.
3.1.1 Evaluation across all model time-steps

When the normalized scores of acceptance were allowed to relax (based on normalized
scores falling within the limits at all time-steps) to + 6.72, 1016 simulations can be
considered acceptable. In order to gain a better understanding of why such large relaxation of
the limits was required, a more detailed examination of the scores was made for the accepted
simulations to look for systematic deviations between the simulations and observations.
Figure 2 shows a summary of the performance of the 1016 simulations against observations
over all time-steps, for the rising/falling limbs of the hydrograph and for the high and low
flow periods (as defined above). Figure 2 also shows a comparison of the normalized scores

against the observations.

Figure 2: Generalised likelihood uncertainty estimation (GLUE) likelihood
distributions, based upon the evaluation of models using criteria set for all time steps
(normalized scores of + 6.72), of Qsim (simulated discharge), normalised score for Q
(discharge), TP loadsim (simulated total phosphorus) and normalised scores for TP,
respectively, against observations (panels A-D). The plots are repeated for the low flow
periods (panels E-H), rising time-steps (panels I-L), falling (recession) time-steps (panels
M-P) and high flow periods (panels Q-T). The areas between the distribution percentiles
max/min, 57/95" and 25"/75" are shown in grey shades of increasing intensity. The
medians of the distribution are shown by black dots. 1:1 lines and normalised scores of
0 lines have been added for orientation.

For both discharge (Figure 2E) and TP loads (Figure 2G) the models tend to show a bias
towards over-prediction during the low flow periods. In contrast there is systematic under-
prediction shown for both discharge (Figure 2Q) and TP (Figure 2S) during the high flow

periods although the normalized scores show a tendency to be smaller for these periods which
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reflects the larger absolute uncertainty intervals on the higher flow observations for both
measures (Figure 2). Overall, the majority of scores which tend to be outside the original
limits occur during the falling limb of the time-series, particularly for the lower magnitude
flows and loads during these periods, which could be a constraint on model performance.
This under-prediction of peaks during the high flow periods is reflected in Figure 3, which
shows the time series of the performance of the 1016 accepted models during the summer,
autumn and early winter of the 2012-2013 hydrological year. Overall, the model captures the
timings of the peaks and low flow periods fairly well, however the under-prediction of the
peaks in December and January is emphasized for both discharge (Figure 3a) and TP loads
(Figure 3b). Despite relatively high normalized scores shown in Figure 2 during the low flow
periods, the over-prediction of observations is less emphasized in Figure 3 due to the smaller
absolute widths of the uncertainty intervals at these time-steps. However, over-prediction is
evident during the low flow period in late January 2013, particularly in the discharge time-
series.
3.1.2. Evaluation across high and low flow periods only
When the model evaluation is constrained to the high and low time-steps (top and bottom 5%
of time-steps across the flow duration curve), none of the 5,000,000 model runs fall within
the original limits of acceptability. Hence, in order to gain a subset of model runs for the
calculation of model diagnostics, we relaxed the limits to 5.30 to gain a set of 1001
behavioural simulations. Figure 4 shows a comparison of the model performance versus the
observations over all time-steps, rising/falling time-steps and high/low flow time-steps.
Overall, the picture is consistent when the models were constrained over all time-steps
(section 3.2.1) with over-prediction of both discharge and TP during the low flow periods
(Figure 4F and 4H) and under-prediction during the high flow periods (Figure 4R and 4T).

However, much higher over-predictions are shown for lower discharge and TP loads,
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particularly those classified as falling time-steps (Figure 4N and 4P respectively) where
normalized scores approach 15 for discharge and 30 for TP. These higher scores (compared
to Figure 2) reflect the fact that we are only constraining the model on a smaller number of
time-steps, albeit these are the high and low flow periods that are often considered important
to simulate accurately to best capture catchment dynamics. This once again shows that poor
performance during the recession periods is a constraint on finding behavioural parameter

sets for SWAT in application to this catchment.

Figure 3: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction
bounds (green shading) for discharge (a) and total phosphorus loads (b) for Newby
Beck outlet (part of the calibration period) based on normalized scores on both
discharge and total phosphorus (TP) load evaluation measures when criteria
(normalized scores of + 6.72) set over all model time-steps (1016 simulations). The black
line in each plot shows the observed discharge (a) and TP loads (b), respectively. The
dashed lines show the uncertainty limits on the calibration data.

Figure 4: Generalised Likelihood Uncertainty Estimation (GLUE) likelihood
distributions of, based upon the evaluation of models using criteria set for high and low
flow periods only (normalized scores of + 5.30), Qsim (simulated discharge), normalised
score for Q (discharge), TP loadsim (simulated total phosphorus) and normalised scores
for TP, respectively,against observations (panels A-D). The plots are repeated for the
low flow periods (panels E-H), rising time-steps (panels I-L), falling (recession) time-
steps (panels M-P) and high flow periods (panels Q-T). The areas between the
distribution percentiles max/min, 5"/95" and 25"/75" are shown in grey shades of
increasing intensity. The medians of the distribution are shown by black dots. 1:1 lines
and normalised scores of 0 lines have been added for orientation.

Figure 5 shows the time-series of model performance of the 1001 accepted models during
the summer, autumn and early winter of the 2012-2013 hydrological year. In this case as the
high and low flow periods that are being used to constrain the model the dynamics of the
catchment are captured much better by the accepted simulations with the model capturing

both the timing and magnitude of the peaks for both discharge (Figure 5a) and TP loads

(Figure 5b). However, there is still under-prediction of peaks during December and early

21



January and over-prediction of low flow periods during late January with this once again
most evident in the discharge time-series (Figure 5a).

Figure 5: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction
bounds (green shading) for discharge (a) and total phosphorus loads (b) for Newby
Beck outlet (part of the calibration period) based on normalized scores on both
discharge and total phosphorus (TP) load evaluation measures when criteria
(normalized scores of + 5.30) set over high and low flow time-steps only (1001

simulations). The black line in each plot shows the observed discharge (a) and TP loads
(b), respectively. The dashed lines show the uncertainty limits on the calibration data.

3.2 Evaluation of model parameter uncertainty

Figure 6 shows projections of the sampled points on the likelihood surface (as calculated
by Equation 5) onto single parameter axes for the parameters in Table 1 for each of the
behavioral simulations. These have previously been called dotty plots and can be used to
infer sensitivities of the individual parameters using the Hornberger-Spear-Young method
(see Beven, 2009). The points shown are the 1016 simulations which satisfy the relaxed
limits of acceptability for both discharge and P when evaluated across all time-steps. The
same plot is shown in Figure 7 when the models are evaluated across the high and low flow
period only. Both Figures 7 and 8 show consistency in the sensitivity of the parameters
varied. Of the 39 parameters varied, only four parameters exhibited any clear identifiability.
These are GW_DELAY (ground water delay), RCHRG_DP (deep aquifer percolation
fraction), LAT_TTIME (lateral flow travel time) and LAT_ORGP (organic P in the
baseflow). Further to this, behavioural models are identified at both high and low values of
the GW_DELAY parameter, which is consistent across both evaluation metrics. Some levels
of identifiability were shown for the CN2 (SCS runoff curve number) and SLSOIL (slope
length for lateral subsurface flow), however the responses of these parameters differed
between the method chosen to evaluate the models. For SLSOIL, when the model was

evaluated on all time-steps, higher likelihood values were shown towards the higher end of
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the sample range. The opposite was shown for evaluation over the high and low time-steps
only with higher likelihood values shown towards the lower end of the sampled parameter
range. Overall the majority of parameters showed no sign of sensitivity and indicated high

equifinality across the sampled ranges.

Figure 6: Dotty plots for 39 of the parameters varied in the Monte-Carlo runs.
Parameter names and definitions are shown in Table 1. These are based on the 1016
behavioral simulations evaluated across all time-steps (normalized scores of + 6.72).

Figure 7: Dotty plots for 39 of the parameters varied in the Monte-Carlo runs.
Parameter names and definitions are shown in Table 1. These are based on the 1001
behavioral simulations evaluated across the highand low flow time-steps only
(normalized scores of + 5.30).

The parameters that exhibit sensitivity are all linked to runoff and sub-surface processes
and all interact to affect the time taken for water to reach the river network, and thus affect
the transport of P. However, the high equifinality in the other parameters (particularly those
in relation to the levels of P in the soils SOL_ORGP and SOL_LABP) indicates that given
the present assumptions and data available for the catchment, there is not enough information
to calibrate these parameters effectively.

3.3 Critical time-steps for model failure

Figure 8 shows a breakdown of the classification (high/low or rising/falling) of the time-
steps of the sub-sample of models chosen on which to perform model diagnostics that result
in model failure (lie outside the original limits of acceptability). For both evaluation measures
used in this study, the falling limb time-steps contribute the largest proportion of failing time-
steps for both simulated discharge (37% for all time-steps evaluation and 34% for evaluation

on high/low time-steps) and TP loads (30% and 50% respectively). All other time step

classifications contribute roughly the same to model failure with the rising limb and high
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flow time-steps accounting for approximately 10-15% of failures for both discharge and TP.
For discharge, the low flow time-steps account for around 10% of failures. However, for TP
loads they provide a much smaller contribution at around 3-4% indicating that model
performance at these time-steps may be less of a constraint on model performance for TP.
Overall it is shown that despite using two different model evaluation measures to accept
behavioural models, the falling limb time-steps are consistently shown to bea constraint on
model performance in this SWAT application to Newby Beck.

3.4 Model validation.

The 1016/1001 behavioral simulations (all time steps evaluation/high and low flows
evaluation) were then used to predict the discharge and P loads for a period not used in
calibration (winter of the 2013-2014 hydrological year due to data availability) in order to
validate the model performance (Figures 9 and 10). For discharge (Figures 9a and 10a), the
picture was somewhat similar during the validation period where the model tended to pick
out the timings of the peaks and recession periods well. Overall, under-prediction of the
observed discharge peaks was seen throughout the validation period being most evident
during mid-December 2013 and early January 2014. As when calibrating the model, the
under prediction of peaks was more pronounced when the models were evaluated across all
time-steps (Figure 9a). Both the timing and magnitude of the peaks was picked up much
better when constraining the models on the high and low flow periods (Figure 10a). As in
calibrating the model, the low flow periods were typically over-predicted by the model (on
both evaluation measures) with this being most evident towards the end of January 2014.
Figure 8: Breakdown of classification of time-steps resulting in model failure for the
1016 simulations constrained on all time-steps (upper panel) and the 1001 simulations
constrained on the high and low flow periods only (lower panel). The bars show the
median % contribution to failing time-steps and the error bars show the 2.5/97.5"

percentiles from the Generalised likelihood uncertainty estimation (GLUE) weighted
distributions.
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For TP loads, the picture is the same as during calibration with the model under-predicting all
peaks, particularly when they were constrained using all time-steps where the model failed to
capture the magnitude of any peak (Figures 9b and 10b). When constrained on the high and
low flows time-steps only, the model reproduced the magnitudes and timings of the majority
of the peak loads, however there are still cases where the model under predicts a peak by up
to 75% (15" December 2013). Further to this the uncertainty bounds on the model predictions
are much wider during the recession limbs of the TP time series, and shows over-prediction

of the observations during this period.

Figure 9: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction
bounds (green shading) for discharge (a) and total phosphorus (TP) loads (b) for Newby
Beck outlet during the validation period (winter of the 2013-2014 Hydrological year)
using the 1016 behavioral simulations accepted on both discharge and total phosphorus
load criteria when evaluating constrained across all time-steps. The black line in each
plot shows the observed discharge (a) and TP loads (b), respectively. The dashed lines
show the uncertainty limits on the calibration data.

4 Discussion

This work, presents for the first time, a ‘limits of acceptability’ GLUE uncertainty analysis of
the widely used SWAT model, using continuous high frequency water quality measurements.
It was shown that when initial limits of acceptability (based upon the uncertainty in the outlet
data for the calibration period), are accounted for and given the assumptions detailed, none of

the 5,000,000 simulations provided suitable predictability of the dynamics of the catchment

(i.e. none of them were classed as behavioral).

Figure 10: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction
bounds (green shading) for discharge (a) and total phosphorus (TP) loads (b) for Newby
Beck outlet during the validation period (winter of the 2013-2014 Hydrological year)
using the 1001 behavioral simulations accepted on both discharge and total phosphorus
load criteria when evaluating constrained across high and low flow time-steps only. The
black line in each plot shows the observed discharge (a) and TP loads (b), respectively.
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Therefore, in order to obtain behavioral simulations to investigate the uncertainty in the
SWAT model predictions, a subset of samples was obtained on which to perform further
diagnostics, with this subset chosen using two different criteria. The first was to find the
minimum level of relaxation across all model time-steps in the calibration period required to
consider the models acceptable. In this case relaxation of the limits to £6.72 gave a subset of
1016 acceptable models. In the second case, we only required the models to fall within the
relaxed limits during periods of high and low flow (here defined as the top and bottom 5% of
discharges based on the flow duration curve). For these criteria, the limits had to be relaxed
(over the high and low flow periods only) £5.30 to give a subset of 1001 accepted models.
This was across both discharge and TP loads.

Using these two different evaluation measures produced two distinctly different time
series when the models were compared with observations (Figures 5 and 7) and during the
validation period (Figures 9 and 10)."When the models were constrained to fit within the
limits across all time-steps the parameter sets that are considered acceptable consistently
under predict the peaks in both discharge and TP loads, particularly during the validation
period. In contrast, when we only constrain the model on the low and high flow periods, the
simulations from the accepted parameter sets produce a much better representation of the
catchment dynamics, particularly in the magnitudes of the TP load peaks. However,
constraining the model in this way accepts simulations that have poor performance during the
rising limb and recession periods where the normalized scores approach 15 in the case of
discharge and 30 in the case of TP loads. This contrast between the chosen metric to evaluate
the model is the result of several different factors and depends on the characteristics and
dynamics of the Newby Beck catchment. Due to its flashy nature and low baseflow index
(Ockenden et al., 2016; Outram et al., 2014), Newby Beck is dominated by sub-daily

processes which may lead to timing errors in the simulated hydrograph from SWAT due to
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the use of the daily time-step of the model. Therefore, when all time-steps are included in the
evaluation metric, there is a high chance of the model simulations producing high normalized
scores. However, as reported recently by (Coxon et al., 2014), constraining the model using
time-step measures such as these can be a very critical test of the model, particularly due to
the strong influence of observational uncertainty on such metrics (see Section 3.1). This is
shown in Figure 3 where all of the accepted 1016 simulations (when using the all-time-step
metric) under-predicted the peaks by a large amount for both discharge and TP loads, despite
being considered acceptable within the relaxed limits of 6.72. This could be because the
normalized scores are based upon the relative uncertainty intervals around the observations,
which allows a larger absolute deviation from the observed value on the peaks. This is a case
of accepting a model that is not a good representation of the processes but which fits within
the errors in the calibration data (Beven, 2012; Beven and Smith, 2015). It should also be
noted that the normalized scores arealso based on estimates of the 95% limits around each
observation (see 2.4) and therefore the potential range of uncertainty could be larger. In order
to test the effect of this on model evaluation, we performed the same analysis of relaxing the
scores until 1057 simulations were accepted. However, in this instance we only required the
model to fit the limits at 95% of the time-steps. Figure 11 shows the time series of discharge
and TP compared to the observations and shows that when accounting for the model only
fitting the time-steps 95% of the time, the model still produces simulations where the peaks
are underestimated, such as in early January 2013. Hence, there is the still the risk of poor
models being accepted due to uncertainty in the calibration data.

Figure 11: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction
bounds (green shading) for discharge (a) and total phosphorus loads (b) for Newby
Beck outlet (part of the calibration period) based on normalized scores on both
discharge and total phosphorus (TP) load evaluation measures when criteria set over

959% of time steps (1057 simulations). The black line in each plot shows the observed
discharge (a) and TP loads (b), respectively.
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When the lesser constraint of just high and low flows (often the periods of most nutrient
transport in flashy catchments (Haygarth et al., 2005; Ockenden et al., 2016; Perks et al.,
2015)) was applied simulations that match the peaks and low flow periods with a greater
degree of accuracy were produced. This also required less relaxation of the limits of
acceptability (£ 5.30). This is in agreement with the recent work of (Coxon et al., 2014)
showing that the performance of behavioural models accepted using different diagnostics can
be strongly linked to the dominant processes occurring in the catchment. In this case, we have
shown that constraining the models on high and low flow periods only in a flashy catchment
produces a model ensemble that captures the peak discharges and TP loads better. However,
the utilization of this diagnostic further highlights the time-steps resulting in poor model
performance, where time-steps not used in the evaluation (e.g. the rising and falling time-
steps) return much higher normalized scores (in excess of 30 as shown in Figure 5) than when
the metric across all time-steps is used.

However, we have shown here that, despite the choice of evaluation metric, a consistent
picture emerges about which class of time-step is contributing most to model failures (Figure
8). Overall, the falling limb/recession time-steps were consistently a constraint on model
performance contributing between 30-50% of failing time-steps for discharge and TP time-
steps across both evaluation measures. This therefore indicates potential errors in the model
structure of SWAT of the representation of sub-surface processes, an area of the model that
has been shown to perform poorly in the past (Guse et al., 2014).

For a large number of the parameters, it is difficult to identify any sensitivity in fitting the
observations, and a large amount of equifinality is evident (Figures 7 and 8). This is
particularly the case for the SOL_ORGP (soil organic P) and SOL_LABP (soil labile P)
parameters, which show no clear sensitivity at all using the likelihood measure based on the

limits of acceptability. Both of these parameters have been shown to play an important role in
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the amount of P in the water course and are often very difficult to measure in any detail at the
catchment scale (Schoumans et al., 2009). It is accepted that given a 39 dimension parameter
space, 5,000,000 SWAT runs provides only a small sample of the model parameter space,
albeit many more than any previously published SWAT calibration exercise, and that such a
small sample can contribute to the uncertainty. Thus, there is the possibility of missing
potentially behavioral models during the sampling process. They are clearly, however,
sparsely distributed even with the relaxed limits of acceptability. Further adding to model
parameter uncertainty is the GW_DELAY parameter, which exhibits strong identifiability,
but showing the identification behavioural models at both extremes of the parameter range.
Therefore in this application of SWAT both high and low groundwater delay times produce
equivalent model performance in terms of the relaxed limits of acceptability. This infers that
there could be compensation processes occurring in the sub-surface module of the model or
could highlight additional issues in the model structural representation of groundwater
attenuation in the catchment.

The limits of acceptability approach provides advantages over more traditional evaluation
metrics such as NSE and root mean square error (RMSE). These are global measures, which
tend to focus on the average error from the data over the calibration period, rather than focus
on the individual time-steps that are causing the model to fail. The limits approach utilizes the
high frequency data to provide a more detailed evaluation of the model and allows the
identification of critical time-steps that are causing poor model performance. Further to this,
the limits approach goes someway to accounting for uncertainty in the data/observations used
to calibrate the model.

However, it is impossible to make this method completely objective due to the difficulty
in accounting for error in the model inputs. In past applications of the GLUE limits of

acceptability approach (Liu et al., 2009) the relaxation of the limits was justified to account
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for uncertainty in the model input data. However, in this case the model user must examine
the degree of relaxation in the scores and utilize the available knowledge of the inputs to see
if the level of relaxation is acceptable. Given the epistemic nature of the input uncertainties,
it is difficult to truly assess the effect of input error and its representation needs to be
independent of the model structure (e.g. Beven, 2006). One method is to employ the use of an
statistical error model to account for input error in the model (e.g. Krueger et al. (2010), go
some way to accounting for this) but it is difficult to create a realistic error model, even for
rainfall inputs. It would also be even more computationally expensive and thus was not
implemented in the present work.

The effects of both input error and model structural errors should be seen in the deviations
outside the normalised limits. The results show that the limits have to be relaxed by a very
large amount (up to a factor of 6.72) to gain a set of behavioral simulations that allows the
sensitivity of the parameter sets to be explored. An examination of the potential input errors
to the catchment system has been taken in this study to determine whether a relaxation by
factors of up to seven are acceptable. In the Newby Beck catchment, there are four rain
gauges sited in a relatively small area (12.5 km? — Figure 1). It is still possible that some
rainfall in the catchment could be missed in the model input, particularly during summer
convective storms, leading to commensurability issues with the rainfall input (Beven and
Smith, 2015; Beven et al., 2011). Different rainfall input realizations and associated errors
have previously been shown to impact model performance (Blazkova and Beven, 2009).
However, due to the relatively good coverage by the rain gauges in the Newby Beck
catchment, errors in the rainfall input are likely to be small. It can therefore be concluded
that it is model structural error, rather than input error, that is leading to the high relaxation of

the limits required to define model realisations of the hydrograph as acceptable.
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With respect to P, there is a much larger uncertainty in the overall inputs into the catchment,
particularly to the exact amounts of fertilizer spread on the land and the amount of dung
deposited from grazing. Lacking more detailed information, the inputs used in this
application of SWAT are based upon Defra recommendations (Defra, 2013) and local
knowledge of the catchment. Furthermore, the lumped nature of the SWAT modelrequires
average P inputs for each HRU, which can add further uncertainty in the amount of nutrients
added to the system. This can therefore lead to the locations of the inputs being smoothed out
leading to commensurability issues. However, the average amount of P added to the
catchment per year during the run (2.3 kg ha™) is much smaller than the levels of P in the soil
stores during the course of the run (approximately 15000 kg ha™). Thus, errors in P inputs
and timing are unlikely to have an effect on the levels of P being transported to the stream
compared to uncertainty and errors in the parameters and model structures, which govern the
mobilisation and transport of P in the soil. Previous work on similar small-sized catchments
also suggests that hydrological and biochemical processes have a much larger control on the
temporal variations in stream P in the catchment, rather than the timings and magnitudes of
the agricultural inputs (Dupas et al., 2015; Haygarth et al., 2012). In this work, we explicitly
account for the uncertainty in soil P by varying the SOL_ORGP and SOL_LABP (organic
and labile P soil stores) as part of the GLUE analysis with both of these parameters showing
high equifinality. It has also been shown in previous analysis on Newby Beck (Ockenden et
al., 2016), that the observed TP loads during storm events in the catchment are highly
correlated with peaks in rainfall. These storm events account for approximately 83% of the
annual TP load indicating that rainfall plays a strong role in controlling the transport of TP
into the stream network. As discussed above, the errors in rainfall are likely to be relatively
low in this catchment, and given its importance as a driver of TP transport along with the

small contribution of P inputs to overall soil P, we can conclude that relaxing the limits by a
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factor of 6.72 is not acceptable in this application of SWAT to Newby Beck. We can
therefore conclude that, as with discharge, model structural error is the likely cause of this
requirement to relax the constraints by such a substantial amount.

The ability of the model to adequately simulate the observed TP loads is also further
compounded by the poor performance of SWAT in terms of discharge evaluation, given that
discharge is part of the TP load calculation. Hence, as model structural error-has been shown
to be such a large constraint in the accurate prediction of discharge and thus TP loads, it is
unlikely that improvements in input data will greatly improve model predictions. In addition
to this, even in a small experimental catchment, gaining sufficient improvement in model
input data would require significant expense. In the case of TP, this would require detailed
farmer logs in timings and location of fertilizer applications, detailed monitoring of surface
and subsurface storage and availability of TP in the catchment, along with detailed field scale
budgets of the nutrients in the soils.

This prompts an additional question, if we are required to relax the limits, which are
primarily due to structural error in the model, by a factor of 6.72, should we go to the expense
of collecting the additional input data required by such a complex model structure? It has
been shown in previous work (Dean et al., 2009; Shen et al., 2012a) that insufficient input
data are a constraint on even the best of models, therefore clearly improvement is required on
both sides. The advantage of using the limits of acceptability approach is that we can use the
results of the model evaluation to target which areas of the model structure require
improvement and infer which areas are best to target our efforts for additional data collection,

particularly in situations where funds for such efforts are limited.

5 Conclusions
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This study has presented the first ‘limits of acceptability’ assessment of the SWAT model
using continuous high frequency discharge and water quality monitoring data. We highlight
that having the availability of high frequency data coupled with the GLUE ‘limits of
acceptability” approach; the model performance can be assessed taking into account the
uncertainty on the calibration data at each time-step. This provides greater insights into why
the model is failing beyond the more traditional global measures of model evaluation such as
NSE and RMSE.

In the application of SWAT to the Newby Beck headwater catchment in the UK, it is
shown that the limits of acceptability based on output observational uncertainties have to be
relaxed by a substantial amount (by factors of between 5.3 and 6.72 on a normalized scale
depending on the evaluation criteria used) in order to produce a set of behavioral simulations
(1001 and 1016 respectively out of 5,000,000 realizations) on which to perform model
diagnostics. In this case, despite the evaluation metric used, the model is shown to
consistently perform poorly during periods of recession in both the discharge and TP time
series, with uncertainty in the representation of subsurface flow pathways identified as a
potential cause for this' poor performance. During the validation period the model was shown
to capture the timings of peaks in the river TP load, however, it was shown to often predict
the magnitude of these peaks poorly. This work raises an interesting point- how much
relaxation is allowable in the limits of acceptability before we consider the model as not
providing useful predictions of the processes occurring in the catchment? On the one hand,
we have learnt from the model to identify areas where we need to focus future model
development and data collection efforts in river catchments. On the other, we have shown
that in this particular case, SWAT is not fit for purpose to be used as a management tool due
to the large uncertainty bounds on predictions, particularly during the validation period. This

conclusion agrees with previous applications of SWAT to other catchments of similar
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catchment areas and similar geoclimatic circumstances (Hoang et al., 2017; Moges et al.,
2017; Schneiderman et al., 2007). Therefore, despite being used in numerous catchments
worldwide (often with less rigorous evaluation), SWAT may not be fit for purpose as a
general management tool, particularly in flashy catchments being dominated by overland
flow where the model structure may be inadequate to accurately capture the major-catchment
processes dominating P transfer.

However, there is still a need to advise policy makers on how changes in the environment
are likely to affect hydrology and water quality in the future and what mitigation measures to
take, if any. A number of potential options are available, such as precautionary methods
suggested by Beven (2011), or the use of fuzzy modelling methods (Page et al., 2012; Zhang
et al., 2013) or finding another process based model to use — though it is highly likely that
another model will suffer the same uncertainty issues as shown here with SWAT. A final
option is to shift towards more simple P transfer model (E.g. Dupas et al. (2016)) which have
been shown to capture P losses well with minimum input data. However as highlighted by
Dupas et al. (2016), such'models still have uncertainties associated with them and in some
cases still require substantial relaxation of the ‘limits of acceptability’.

We acknowledge that process-based models may be potentially useful catchment
management tools. They are often used to quantify the effects of changes in catchment
conditions (e.g. climate change) on the behavior of nutrients in catchments (Crossman et al.,
2014; Wang and Sun, 2016). They are primarily used because they provide a humerical
representation of conceptual processes that in theory represent how these processes adapt to
changing environmental conditions under different scenarios. However, the results presented
here stress the importance of having the best available input data along with high frequency
data from continuous monitoring systems for rigorous model evaluation, as highlighted in

previous studies (Benettin et al., 2015; Dupas et al., 2016; Halliday et al., 2015; Ockenden et
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al., 2017). High frequency data allows us to set more robust ‘limits of acceptability’,
particularly in catchments with a flashy response where infrequent grab samples may fail to
capture key processes/events and may not provide a stringent enough test of the model
structure/processes. The results also imply that more needs to be done to improve the ability
of the model to simulate the dynamics of key catchment processes with parameters that are
more identifiable in practical applications, or more easily estimated in predicting future
conditions. Finally, our results also indicate the possibility that even with the best
representation of the key processes in the model structure; we still may have a long way to go
to have sufficient input data to adequately drive such complex model structures.

The study has not resolved the issue of how far the limits of acceptability should be relaxed
to provide a set of models considered useful for predicting outcomes. That is a question for
individual users to consider for particular types of applications, i.e. can we be objective about
the effects of input error on model performance, particularly for predicting nutrient
responses? This study suggests that SWAT may not be fit-for-purpose in this particular
application, however, confirmation of its general applicability, or not, requires critical testing
of the method on multiple models and multiple catchment datasets in ways that allow for

uncertainty and potential equifinality of model representations.
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Figure Captions

Figure 1: Summary of spatial data in the Newby Beck catchment. Panel a) shows the
catchment topography, panel b) shows the locations of the monitoring station (discharge
and total phosphorus (TP)), weather station and rain gauges, panel c) shows the main
soil classes in the catchment and panel d) shows the broad land use classifications.

Figure 2: Generalised likelihood uncertainty estimation (GLUE) likelihood
distributions, based upon the evaluation of models using criteria set for all time steps
(normalized scores of + 6.72), of Qsim (simulated discharge), normalised score for Q
(discharge), TP loadsim (simulated total phosphorus) and normalised scores for TP,
respectively, against observations (panels A-D). The plots are repeated for the low flow
periods (panels E-H), rising time-steps (panels I-L), falling (recession) time-steps (panels
M-P) and high flow periods (panels Q-T). The areas between the distribution percentiles
max/min, 5"/95™ and 25™/75™ are shown in grey shades of increasing intensity. The
medians of the distribution are shown by black dots. 1:1 lines and normalised scores of
0 lines have been added for orientation

Figure 3: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction
bounds (green shading) for discharge (a) and total phosphorus loads (b) for Newby
Beck outlet (part of the calibration period) based on normalized scores on both
discharge and total phosphorus (TP) load evaluation measures when criteria
(normalized scores of + 6.72) set over all model time-steps (1016 simulations). The black
line in each plot shows the observed discharge (a) and TP loads (b), respectively. The
dashed lines show the uncertainty limits on the calibration data.

Figure 4: Generalised Likelihood Uncertainty Estimation (GLUE) likelihood
distributions of, based upon the evaluation of models using criteria set for high and low
flow periods only (normalized scores of + 5.30), Qsim (simulated discharge), normalised
score for Q (discharge), TP loadsim (simulated total phosphorus) and normalised scores
for TP, respectively, against observations (panels A-D). The plots are repeated for the
low flow periods (panels E-H), rising time-steps (panels I-L), falling (recession) time-
steps (panels M-P) and high flow periods (panels Q-T). The areas between the
distribution percentiles max/min, 5"/95" and 25"/75" are shown in grey shades of
increasing intensity. The medians of the distribution are shown by black dots. 1:1 lines
and normalised scores of 0 lines have been added for orientation.

Figure 5: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction
bounds (green shading) for discharge (a) and total phosphorus loads (b) for Newby
Beck outlet (part of the calibration period) based on normalized scores on both
discharge and total phosphorus (TP) load evaluation measures when criteria
(normalized scores of + 5.30) set over high and low flow time-steps only (1001
simulations). The black line in each plot shows the observed discharge (a) and TP loads
(b), respectively. The dashed lines show the uncertainty limits on the calibration data.
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Figure 6: Dotty plots for 39 of the parameters varied in the Monte-Carlo runs.
Parameter names and definitions are shown in Table 1. These are based on the 1016
behavioural simulations evaluated across all time-steps (normalized scores of £ 6.72).

Figure 7: Dotty plots for 39 of the parameters varied in the Monte-Carlo runs.
Parameter names and definitions are shown in Table 1. These are based on the 1001
behavioural simulations evaluated across the high and low flow time-steps only
(normalized scores of + 5.30).

Figure 8: Breakdown of classification of time-steps resulting in model fatlure for the
1016 simulations constrained on all time-steps (upper panel) and the 1001 simulations
constrained on the high and low flow periods only (lower panel). The bars show the
median % contribution to failing time-steps and the error bars show the 2.5/97.5"
percentiles from the Generalised Likelihood Uncertainty Estimation (GLUE) weighted
distributions.

Figure 9: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction
bounds (green shading) for discharge (a) and total phosphorus (TP) loads (b) for Newby
Beck outlet during the validation period (winter of the 2013-2014 Hydrological year)
using the 1016 behavioural simulations accepted on both discharge and total
phosphorus load criteria when evaluating constrained across all time-steps. The black
line in each plot shows the observed discharge (a) and TP loads (b), respectively. The
dashed lines show the uncertainty limits on the calibration data.

Figure 10: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction
bounds (green shading) for discharge (a) and total phosphorus (TP) loads (b) for Newby
Beck outlet during the validation period (winter of the 2013-2014 Hydrological year)
using the 1001 behavioural simulations accepted on both discharge and total
phosphorus load criteria when evaluating constrained across high and low flow time-
steps only. The black line in each plot shows the observed discharge (a) and TP loads
(b), respectively.

Figure 11: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction
bounds (green shading) for discharge (a) and total phosphorus loads (b) for Newby
Beck outlet (part of the calibration period) based on normalized scores on both
discharge and total phosphorus (TP) load evaluation measures when criteria set over
95% of time steps (1057 simulations). The black line in each plot shows the observed
discharge (a) and TP loads (b), respectively.
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Highlights

This limits of acceptability approach is applied for the first time to the SWAT model

Identifies exact time steps of poor performance during calibration

Accounts for evaluation data uncertainty in calibration

It may be difficult to obtain sufficient data to drive complex models with confidence
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