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ABSTRACT 

Staphylococcus aureus produces bacillithiol (BSH) as major low molecular weight (LMW) thiol which 

functions in thiol-protection and redox-regulation by protein S-bacillithiolation under hypochlorite 

stress. The aldehyde dehydrogenase AldA was identified as S-bacillithiolated at its active site 

Cys279 under NaOCl stress in S. aureus. Here, we have studied the expression, function, redox 

regulation and structural changes of AldA of S. aureus. Transcription of aldA was previously shown 

to be regulated by the alternative sigma factor SigmaB. Northern blot analysis revealed SigmaB-

independent induction of aldA transcription under formaldehyde, methylglyoxal, diamide and NaOCl 

stress. Deletion of aldA resulted in a NaOCl-sensitive phenotype in survival assays, suggesting an 

important role of AldA in the NaOCl stress defense. Purified AldA showed broad substrate specificity 

for oxidation of several aldehydes, including formaldehyde, methylglyoxal, acetaldehyde and glycol 

aldehyde. Thus, AldA could be involved in detoxification of aldehyde substrates that are elevated 

under NaOCl stress. Kinetic activity assays revealed that AldA is irreversibly inhibited under H2O2 

treatment in vitro due to overoxidation of Cys279 in the absence of BSH. Pre-treatment of AldA with 

BSH prior to H2O2 exposure resulted in reversible AldA inactivation due to S-bacillithiolation as 
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revealed by activity assays and BSH-specific Western blot analysis. Using molecular docking and 

molecular dynamic simulation, we further show that BSH occupies two different positions in the AldA 

active site depending on the AldA activation state. In conclusion, we show here that AldA is an 

important target for S-bacillithiolation in S. aureus that is up-regulated under NaOCl stress and 

functions in protection under hypochlorite stress. 

LIST OF ABBREVIATIONS 

ADH, aldehyde dehydrogenase; BSH, bacillithiol; BSSB, oxidized bacillithiol disulphide; CFU, 

colony-forming unit; CD, catalytic domain; Co-BD, coenzyme-binding domain; DTT , dithiothreitol; 

EDTA, ethylenediaminetetraacetic acid; FA, formaldehyde; H2O2, hydrogen peroxide; HOCl, 

hypochloric acid; IPTG, isopropyl- β-D-thiogalactopyranoside; LB, Luria Bertani; LMW thiol, low 

molecular weight thiol; MD , molecular dynamics; MG, methylglyoxal; MHQ, 2-methylhydroquinone; 

MPO, myeloperoxidase; MRSA, methicillin-resistant Staphylococcus aureus; NADH, nicotinamide 

adenine dinucleotide; NADPH, nicotinamide adenine dinucleotide phosphate; NaOCl, sodium 

hypochlorite; NEM, N-ethylmaleimide; OD500, optical density at 500 nm; RCS, reactive chlorine 

species; RES, reactive electrophilic species; ROS, reactive oxygen species; SCV, small colony 

variant; SID, subunit interaction domain; X-gal, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside  

Key words: Staphylococcus aureus/ AldA/ bacillithiol/ hypochlorite stress/MD simulations 

 

INTRODUCTION 

Staphylococcus aureus is a major human pathogen that causes local wound infections, but also life-

threatening systemic and chronic infections, such as septicemia, endocarditis, necrotizing 

pneumonia and osteomyelitis [1-3]. Moreover, there is an increasing prevalence of hospital- and 

community-acquired methicillin-resistant S. aureus (MRSA) isolates that are often resistant to 

multiple antibiotics [4]. S. aureus quickly escapes to bactericidal action of new antibiotics and is 

therefore classified as ESKAPE pathogen by the “European Center of Disease Prevention and 

Control” [5]. The successful infection of S. aureus is mediated by a high diversity of virulence 

factors, such as toxins, proteases, lipases, superantigens, as well as efficient protection 

mechanisms against the host immune defense during invasion [6, 7]. During infections, S. aureus 
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has to cope with the oxidative burst of activated macrophages and neutrophils, including reactive 

oxygen and chlorine species (ROS, RCS), such as hydrogen peroxide (H2O2) and the strong oxidant 

hypochloric acid (HOCl) [8-11].  HOCl is generated in neutrophils from H2O2 and chloride by the 

myeloperoxidase (MPO) which is the main cause of bacterial killing [12, 13].  

 Apart from ROS and RCS, S. aureus is frequently exposed to reactive electrophile species 

(RES), such as quinones and aldehydes that originate from cellular metabolism, as secondary 

oxidation products from ROS and RCS as well as from external sources, such as antibiotics and 

host-defense components [11, 14-17]. RES are ,-unsaturated dicarbonyl compounds that have 

electron-deficient centers and can react with protein thiols via oxidation or thiol-S-alkylation 

chemistries [16, 17]. Methylglyoxal is an example for a highly toxic and reactive aldehyde produced 

as by-product from triose-phosphate intermediates during glycolysis [14, 15]. Methylglyoxal 

detoxification pathways and their regulatory mechanisms have been widely studied in E. coli and B. 

subtilis. E. coli utilises a glutathione (GSH)-dependent glyoxalase pathway and a GSH-independent 

pathway for methylglyoxal detoxification. In the glyoxalase pathway, methylglyoxal reacts 

spontaneously with GSH to form hemithioacetal which is converted by glyoxalase-I to S-

lactoylglutathione. S-lactoylglutathione is the substrate for glyoxalase-II leading to lactate production 

[14, 18]. The glyoxalase gloA and the nemRA operon are induced by quinones, aldehydes and 

HOCl and regulated by the TetR-family NemR repressor in E. coli [19-22]. GloA functions as 

glyoxalase in methylglyoxal detoxification and NemA is an FMN-dependent oxidoreductase involved 

in detoxification of quinones and aldehydes. Moreover, it was shown that methylglyoxal is produced 

as consequence of hypochlorite stress and that NemR confers protection to methylglyoxal and HOCl 

via control of the gloA-nemRA operon [20].  

 Gram-positive Firmicutes, such as Bacillus subtilis and S. aureus produce bacillithiol (BSH) 

as GSH surrogate which functions as protection mechanism against redox-active compounds and 

co-factor for thiol-dependent enzymes [23, 24]. Methylglyoxal detoxification in B. subtilis involves 

BSH-dependent and BSH-independent pathways [23, 25]. In the BSH-dependent glyoxalase 

pathway, BSH reacts with methylglyoxal to form BS-hemithioacetal which is converted to S-lactoyl-

BSH by Glx-I and further by Glx-II to lactate [23, 25]. In addition, the thiol-dependent formaldehyde 
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dehydrogenase AdhA confers protection under formaldehyde and methylglyoxal stress in B. subtilis 

which is controlled by the MerR/NmlR-like regulator AdhR [35]. However, the enzymatic pathways 

involved in detoxification of reactive aldehydes are unknown in S. aureus.  

Recently, we identified the glycolytic glyceraldehyde-3-phosphate dehydrogenase GapDH as 

major S-bacillithiolated protein in S. aureus under NaOCl stress [26]. Apart from GapDH, the 

aldehyde dehydrogenase AldA was S-bacillithiolated at its active site Cys279 under NaOCl stress, 

which could function in detoxification of methylglyoxal or other aldehyde substrates. Here, we have 

studied the expression and function of AldA of S. aureus under formaldehyde, methylglyoxal and 

NaOCl stress. Transcriptional studies revealed an increased aldA transcription under aldehyde, 

NaOCl and diamide stress in S. aureus. In survival phenotype assays, the aldA mutant was more 

sensitive to NaOCl stress. Using biochemical activity assays, we provide evidence that S-

bacillithiolation functions in redox-regulation of AldA activity. All-atom molecular dynamics (MD) 

simulations suggest that the location of BSH in the AldA active site depends on the Cys activation 

state in the apo- and holoenzyme structures. In conclusion, our results indicate that AldA plays an 

important role in the NaOCl stress defense and is redox-regulated by S-bacillithiolation in S. aureus.  

 

Materials and methods 

Bacterial strains, growth and survival assays.  

Bacterial strains, plasmids and primers are listed in Tables S1 and S2. For cloning and genetic 

manipulation, E. coli was cultivated in Luria Bertani (LB) medium. S. aureus COL was cultivated 

either in LB or RPMI medium as described previously [26]. For survival phenotype assays, S. aureus 

COL was grown in RPMI medium until an OD500 of 0.5, exposed to 2 mM formaldehyde, 4 mM 

methylglyoxal and 3.5 mM NaOCl stress and 10 µl of serial dilutions were spotted onto LB agar 

plates for 24 hours to observe colonies. All complemented aldA deletion mutants with plasmid 

pRB473 were grown in the presence of 1% xylose and 10 µg/ml chloramphenicol. Sodium 

hypochlorite, diamide, dithiothreitol (DTT), hydrogen peroxide (H2O2, 35% w/v), formaldehyde, 

methylglyoxal and 2-methylhydroquinone (MHQ) were purchased from Sigma Aldrich.  
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RNA isolation and Northern blot analysis.  

For RNA isolation, S. aureus COL was cultivated in RPMI medium and treated with sub-lethal doses 

of 1 mM NaOCl, 0.75 mM formaldehyde (FA), 0.5 mM methylglyoxal (MG), 10 mM H2O2 and 50 µM 

MHQ for different times as described previously [26]. S. aureus COL cells were harvested before 

and after stress exposure and disrupted in lysis buffer [10 mM Tris-HCl, pH 8.0; 200 mM sodium 

chloride (NaCl); 3 mM ethylene diamine tetra acetic acid (EDTA)] with a Precellys24 ribolyzer. RNA 

was isolated using acid phenol extraction as described [26] and RNA quality was assessed using 

the Nanodrop. Northern blot hybridizations were performed with the digoxigenin-labeled aldA-

specific antisense RNA probe synthesized in vitro using T7 RNA polymerase and the primer pairs 

aldA-for and aldA-rev (Table S2) as described [26, 27].  

Cloning, expression and purification of His-tagged AldA and AldC279S mutant proteins in E. 

coli.  

The aldA gene was amplified from chromosomal DNA of S. aureus COL by PCR using primers aldA-

for-NheI and aldA-rev-BamHI (Table S2), digested with NheI and BamHI and inserted into plasmid 

pET11b (Novagen) that was digested using the same enzymes to generate plasmid pET11b-aldA. 

For construction of pET11b expressing AldAC279S mutant protein, Cys279 was replaced by serine 

using PCR mutagenesis. Two first-round PCR reactions were performed using primer pairs aldA-for-

NheI and aldA-C279S-Rev as well as primer pairs aldA-C279S-for and aldA-rev-BamHI (Table S2). 

The two first round PCR products were hybridized and subsequently amplified by a second round of 

PCR using primers aldA-for-NheI and aldA-rev-BamHI. The second-round PCR products were 

digested with NheI and BamHI and inserted into plasmid pET11b digested with the same enzymes 

to generate plasmid pET11b-aldAC279S. The correct aldA and aldAC279S sequences of the 

plasmids were confirmed by DNA sequencing. Plasmid pET11b-aldAC279S was also used for 

construction of the aldAC279S mutant in vivo and subcloned into the E. coli/ S. aureus shuttle vector 

pRB473 as described below.  

For expression and purification of His-tagged AldA and AldAC279S mutant protein, E. coli 

BL21(DE3) plysS was used expressing plasmids pET11b-aldA and pET11b-aldAC279S, 

respectively. Cultivation was performed in 1 l LB medium until the exponential growth phase at 
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OD600 of 0.8 followed by addition of 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) for 3.5 h at 

37°C. Recombinant His-AldA and His-AldAC279S mutant proteins were purified after sonication of 

the E. coli cells in binding buffer (20 mM NaH2PO4, 500 mM NaCl, 20 mM imidazole, pH 7.4). 

Lysates were cleared from cell debris by repeated centrifugation and purification of the His-AldA and 

His-AldAC279S mutant proteins was performed by application of an imidazole gradient (0-500 mM) 

using His Trap™ HP Ni-NTA columns (5 ml; GE Healthcare, Chalfont St Giles, UK) and the ÄKTA 

purifier liquid chromatography system (GE Healthcare) according to the instructions of the 

manufacturer. Purified proteins were extensively dialyzed against 10 mM Tris-HCl (pH 8.0), 100 mM 

NaCl, and stored on ice until usage. 

 

Construction of the S. aureus COL aldA deletion mutant and the complemented aldA and 

aldAC279S mutant strains.  

The S. aureus COL aldA deletion mutant was constructed by allelic replacement via the 

temperature-sensitive shuttle vector pMAD as described [28]. Briefly, for construction of the 

plasmids pMAD-aldA, the 500 bp up- and downstream flanking gene regions of aldA were 

amplified using the primers aldA-pMAD-up-for/rev and aldA-pMAD-do-for/rev from S. aureus COL 

genomic DNA (Table S2). The aldA up- and downstream flanking regions were fused by overlap 

extension PCR and ligated into the BglII and SalI sites of plasmid pMAD. The pMAD constructs 

were electroporated into the restriction-negative and methylation-positive intermediate S. aureus 

RN4220 strain and further transferred to S. aureus COL by phage transduction using phage 80 [29]. 

Transductants were streaked out on LB agar with 10 µg/ml erythromycin and 40 µg/ml 5-bromo-4-

chloro-3-indolyl-β-D-galactopyranoside (X-gal) at 30°C. Blue transductants with pMAD integrations 

were selected for plasmid excision by a heat shock as described [30]. Erythromycin-sensitive white 

colonies were selected on X-gal plates and screened for aldA deletions by PCR and DNA 

sequencing.   

The complemented aldA and aldAC279S mutant strains were constructed using the pRB473 

plasmid as described [31]. Briefly, aldA and aldAC279S sequences were amplified from plasmids 

pET11b-aldA and pET11b-aldAC279S using the primers aldA-pRB-for-BamHI and aldA-pRB-rev-
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KpnI. The PCR products were digested with BamHI and KpnI and inserted into the pRB473 plasmid 

that was digested using the same enzymes resulting in plasmids pRB473-aldA and pRB473-

aldAC279S. The plasmids were transferred to the aldA mutant via phage transduction as described 

[31].  

 

AldA activity assays.  

AldA activity was monitored spectrophotometrically at 340 nm and 30°C with the substrate and 

NAD+ as cofactor by the production of NADH using a CLARIOstar (BMG Labtech) 

spectrophotometer. The oxidation of different aldehyde substrates (formaldehyde, methylglyoxal, 

acetaldehyde and glycol aldehyde) was measured in an assay mixture containing 1.25 mM NAD+ 

and 2.5 µM AldA in reaction buffer (100 mM Tris-HCl, 1.25 mM EDTA, pH 7.5). After pre-incubation, 

the reaction was started by addition of the aldehyde substrates and NADH production was 

measured at 340 nm. The kinetic curves are presented as mean ± SEM from at least three 

independent experiments. 

 

Western blot analysis.  

The purified His-AldA protein was separated using 12% SDS-PAGE and subjected to BSH-specific 

Western blot analysis using the polyclonal rabbit anti-BSH antiserum as described previously [32].  

 

Molecular docking of the S-bacillithiolated AldA Cys279 active site.  

To model a covalent complex between BSH and the AldA Cys279 active site by molecular docking, 

the crystal structure of AldA from S. aureus was used as a receptor (PDB code 3TY7). The missing 

loop (residues 438-459) was modelled and fitted using MODELLER [33]. To identify the potential 

BSH binding site, FTMap solvent mapping calculations were performed [34] and two highest-

occupancy binding sites were considered in the further calculations (Figure 7EF). In the Q1 site, the 

NAD+ molecule has been fitted using crystal structures of the Pseudomonas fluorescens pfAMSDH 

co-crystallised with NAD+ (PDB code 4I1W). Then, the hydrogen atoms were added, and the 

charges for NAD+ molecule were assigned using AM1-BCC method [35]. The Cys279 thiol group 



8 

 

was considered deprotonated. The BSH molecule was built, energy minimised (5000 cycles of 

steepest-descent minimisation), and the partial atomic charges were generated using AM1-BCC 

[35].  

Molecular docking was performed using the University of California, San Francisco DOCK 

6.8 suite [36] with grid scoring in an implicit solvent. The grid spacing was 0.25 Å, and the grid 

included 12 Å beyond the NAD+ modelled, which was subsequently removed for the pose Q2. The 

energy score was the sum of electrostatic and van der Waals contributions. To check the suitability 

of the methodology, the NAD+ was removed from the binding site, its translational and rotational 

degrees of freedom were altered and the molecule has been re-docked to the protein, in order to 

check whether the docking procedure was able to reproduce the native binding mode, as observed 

in related crystal structures. After the positive verification, the BSH molecule was docked to both Q1 

(holo-enzyme with NAD+) and Q2 (apo-enzyme without NAD+) sites detected by FTMap [34].  

 During the docking calculations, the BSH molecule was subjected to 5000 cycles of 

molecular-mechanical energy minimisation at the protein-binding site. The number of maximum 

ligand orientations was 50000. The constraint was the distance between sulfur atoms from the 

Cys279 thiol and the sulfur of BSH. The 25 best-scoring poses (BSH-protein complexes) were 

further analyzed by means of secondary rescoring using SeeSAR 

https://www.biosolveit.de/SeeSAR/ package with more accurate HYDE scoring function [37]. The 

best-scoring poses in Q1 and Q2 putative binding sites were subjected to all-atom MD simulations. 

 

Molecular dynamics (MD) simulation of S-bacillithiolation.  

All simulations for the 5 studied systems: apo-enzyme, holo-enzyme (protein-NAD+), BSH-holo-

enzyme (Q1), BSH-apo-enzyme (Q1), and BSH-apo-enzyme (Q2) were carried out using 

GROMACS2016.2 code [38], with Amber99SB-ILDN [39] force field for the duplexes and the TIP3P 

water model. Parameters for NAD+ and BSH were assigned by ACPYPE [40]. Obtained partial 

atomic charges were derived using the RESP methodology [41] and validated with the Gaussian09 

programme [42] using HF/6-31G∗ basis set.  

https://www.biosolveit.de/SeeSAR/


9 

 

 The temperature was kept constant at T = 300 K by using velocity rescaling with a coupling 

time of 0.1 ps. The pressure was kept constant at 1 bar using an isotropic coupling to Parrinello-

Rahman barostat with a coupling time of 0.1 ps [43]. A cut-off of 1 nm was used for all non-bonded 

interactions. Long-range electrostatic interactions were treated with the particle-mesh Ewald [44] 

method using a grid spacing of 0.1 nm with cubic interpolation. All bonds between hydrogens and 

heavy atoms were constrained using the LINCS algorithm [45]. Each of the systems were immersed 

in a cubic TIP3P water box containing ∼115,000 atoms. Simulation units were maintained neutral by 

adding sodium and chloride counter ions (0.1 M concentration).  

 Prior to MD simulations, the systems undergone 50000 steps of molecular mechanical 

energy minimisation. This was followed by 100 ps MD simulations, during which position constraints 

were used on all backbone atoms, heavy atoms of BSH and NAD+. After the following unrestrained 

equilibration phase (10 ns) the production runs were carried out for 50 ns, with an integration time 

step of 2 fs. The cut-off for non-bonded interactions was 0.1 nm. The atomic coordinates were saved 

every 100 ps. For the visual inspection of the results we used xmgrace [46] and UCSF Chimera [47] 

packages. Free binding energy calculations have been performed using the MMPBSA.py program 

from AmberTools package [48]. Binding energies have been calculated between BSH and the 

protein at the two different binding sites, as in Q1 and Q2, for the last 25ns of the simulation.  

 

RESULTS 

The aldehyde dehydrogenase AldA is strongly oxidized at its active site Cys279 due to S-

bacillithiolation under NaOCl stress in S. aureus.  

The aldehyde dehydrogenase AldA was previously identified as S-bacillithiolated at its catalytic 

active site Cys279 in S. aureus and Staphylococcus carnosus [26, 32]. In addition, both aldehyde 

dehydrogenases, GapDH and AldA displayed the highest oxidation increase of 29% under NaOCl 

stress in S. aureus using the thiol-redox proteomics approach OxICAT [26]. The OxICAT method is 

based on thiol-labelling of the reduced AldA Cys279 peptide with light 12C-ICAT reagent, followed by 

reduction of the Cys279-SSB peptide and its labelling with heavy 13C-ICAT reagent [49]. The 

percentage oxidation of the Cys279 peptide of AldA under control and NaOCl stress is reflected by 
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the mass spectra of the ICAT-labelled peptide pair as quantified in the previous study [26] (Figure 

1A). The strong 29% oxidation increase of the active site Cys279 is shown here again which is 

caused by S-bacillithiolation [26]. To confirm that AldA can be S-bacillithiolated also in vitro, we 

expressed and purified His-tagged AldA from E. coli extracts. Purified AldA was treated with H2O2 

after pre-exposure to 10-fold excess of BSH and the reversible S-bacillithiolation of AldA was 

verified using BSH-specific Western blot analyses in the absence and presence of DTT (Figure 1B). 

The S-bacillithiolated AldA band is denoted with AldA-SSB. Next, we were interested to study the 

expression, function, redox-regulation and structural changes of AldA under NaOCl and aldehyde 

stress.  

 

Transcription of aldA is induced SigmaB-independently under thiol-specific stress conditions 

by formaldehyde, NaOCl and diamide in S. aureus COL.  

We used Northern blot analysis to study aldA transcription in S. aureus COL under different thiol-

specific stress conditions, including sub-lethal doses of 1 mM NaOCl, 2 mM diamide, 0.75 mM 

formaldehyde, 0.5 mM methylglyoxal, 50 µM methylhydroquinone (MHQ) and 10 mM H2O2 (Figure 

2A). The Northern blot results revealed that aldA transcription is strongly induced in S. aureus COL 

wild type after exposure to formaldehyde, diamide and NaOCl stress, but less strongly under 

methylglyoxal stress (Figure 2A). No significant induction of aldA was detected under MHQ and 

H2O2 treatment. These transcriptional results indicate that AldA could be involved in the hypochlorite 

stress defense or in detoxification of aldehydes. In previous microarray experiments, aldA was 

identified as member of the SigmaB general stress regulon, which responds to heat and salt stress 

(NaCl), MnCl2 and alkaline stress conditions in S. aureus [50, 51]. The sigB-dependent promoter 

sequence was mapped in the aldA regulatory upstream region (GTTTAT-N14-GGATAA) as 

promoter U1137.SigB.M2 previously (Figure 2B) [52]. In the condition-dependent transcriptome of 

S. aureus NCTC8325-4 [53], the strongest aldA transcription was monitored during the stationary 

phase in rich LB and TSB medium as well as during plasma stress as visualized by the Aureowiki 

Expression data browser (http://genome.jouy.inra.fr/cgi-

bin/aeb/viewdetail.py?id=NA_2184537_2185964_-1) [52].  

http://genome.jouy.inra.fr/cgi-bin/aeb/viewdetail.py?id=NA_2184537_2185964_-1
http://genome.jouy.inra.fr/cgi-bin/aeb/viewdetail.py?id=NA_2184537_2185964_-1
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To investigate whether the thiol-specific induction of aldA transcription by formaldehyde, 

diamide and NaOCl requires SigmaB, we performed Northern blot analysis with RNA isolated from a 

sigB deletion mutant in comparison to the wild type (Figure 2B). The Northern blot results showed 

similar aldA transcriptional induction in the sigB mutant under NaOCl, diamide and formaldehyde 

stress compared to the wild type. Even a higher aldA transcription occurred under methylglyoxal 

stress in the sigB mutant. These results indicate that aldA transcription is subject to SigmaB-

independent control mechanisms under thiol-specific stress conditions by an unknown thiol-specific 

transcription factor that remains to be elucidated. No additional SigA promoter was identified 

upstream of aldA previously [52], presumably because the conditions were different compared to our 

thiol-stress conditions. In previous studies, a refined consensus for SigA- and SigB-dependent 

promoter sequences was revealed based on 93% of S. aureus transcriptional units [52]. In the aldA 

regulatory region, a putative SigA-dependent promoter was identified upstream of the SigB 

promoter, which could drive the thiol-specific expression of aldA (Figure 2B).  

 

AldA plays important roles in the defense against NaOCl stress in S. aureus COL.  

Next, we analyzed the role of AldA in protection under NaOCl and aldehyde stress in S. aureus. It 

was previously shown that methylglyoxal is produced in E. coli cells treated with HOCl [20]. Thus, 

AldA could function in methylglyoxal detoxification under HOCl stress also in S. aureus. AldA 

harbors a conserved active site Cys279 which is essential for its catalytic activity [54-56]. The 

function of AldA and the conserved Cys279 under methylglyoxal, formaldehyde and HOCl stress 

was analyzed in growth and survival assays of an aldA deletion mutant and its aldA and aldAC279S 

complemented strains (Figure 3, 4, S1 and S2). The growth of the aldA mutant was not affected 

under sub-lethal formaldehyde and methylglyoxal stress in comparison to the wild type (Figure S1). 

In addition, no significant phenotypes of the aldA mutant and the aldA complemented strains were 

detected in survival assays after exposure to 4 mM methylglyoxal (Figure 3AB) and 2 mM 

formaldehyde stress (Figure S2). However, the aldA mutant was significantly impaired in growth 

after exposure to sub-lethal concentrations of 1.5 mM NaOCl stress (Figure 4A). In survival assays, 

the aldA mutant showed also a strongly decreased survival after treatment with 3.5 mM NaOCl 
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(Figure 4C). This survival defect of the aldA mutant could be restored back to wild type level in the 

aldA complemented strain, but not in the aldAC279S mutant (Figure 4D). This indicates that AldA is 

involved in protection of S. aureus against NaOCl stress and that Cys279 is essential for AldA 

activity in vivo.  

 

AldA shows broad substrate specificity for oxidation of various aldehyde substrates, 

including formaldehyde and methylglyoxal in vitro.  

To study the function and substrate specificity of AldA in vitro, the catalytic activity was measured 

using different aldehyde substrates, including formaldehyde, methylglyoxal, glycol aldehyde and 

acetaldehyde in concentrations ranging from 0.5-100 mM. AldA activity was measured in a 

spectrophotometric assay in the presence of NAD+ as a cofactor with the different aldehyde 

substrates by monitoring the NADH production as absorbance increase at 340 nm. The AldA activity 

assays revealed increasing NADH production with increasing concentrations of all aldehyde 

substrates indicating that AldA has broad substrate specificities (Figure 5). AldA showed the highest 

activities with 55 mM formaldehyde and 20 mM methylglyoxal, which could be possible substrates of 

AldA. Formaldehyde and methylglyoxal are oxidized to formate and lactate by AldA, resulting in 

NADH generation.  

To further confirm that Cys279 is the active site residue and essential for AldA activity, we 

used the purified AldAC279S mutant protein which was analysed for formaldehyde and 

methylglyoxal oxidation in the AldA activity assays. However, the AldAC279S mutant protein did not 

show significant activity for formaldehyde and methylglyoxal oxidation in our activity assays (Figure 

S4). This indicates that the conserved Cys279 is the active site residue and required for AldA activity 

as shown also for other homologs previously [54, 55, 57].  

 

AldA is redox-regulated and protected by protein S-bacillithiolation under H2O2 stress in vitro.  

We were interested whether S-bacillithiolation inhibits AldA activity and protects the active site 

Cys279 against overoxidation in vitro. Using the spectrophotometric assay, AldA activity was 

measured after oxidative stress with 15 mM methylglyoxal as substrate and NAD+ as coenzyme by 
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monitoring NADH generation at 340 nm. Treatment of AldA with 0.5-1 mM H2O2 resulted in a strong 

inactivation of its enzymatic activity (Figure 6A). Inactivation of AldA with H2O2 alone was 

irreversible since AldA activity could not be restored after treatment with 10 mM DTT (Figure 6B). 

These results indicate that the active site Cys279 of AldA is very sensitive to overoxidation by H2O2 

in the absence of BSH. To assess the effect of S-bacillithiolation on AldA activity, the enzyme was 

pre-exposed to 0.3-0.5 mM BSH prior to oxidation with 0.3-1 mM H2O2 and the remaining AldA 

activity was measured in the spectrophotometric assay with 15 mM methylgyoxal as substrate. AldA 

activity was inhibited with 0.3-1 mM H2O2 after pre-treatment with 0.3-0.5 mM BSH (Figure 6C). In 

this case, however, the activity of the oxidized AldA protein could be restored to 66 % by DTT 

reduction indicating that AldA is subject to reversible S-bacillithiolation in the presence of BSH and 

H2O2 (Figure 6D). S-bacillithiolation of AldA and its reversibility with DTT was further confirmed in 

BSH-specific Western blots (Figure 1B). These results suggest that S-bacillithiolation protects the 

AldA active site Cys279 against overoxidation and functions in redox-regulation of AldA activity in 

vitro.  

 

Structural comparison of AldA with other aldehyde dehydrogenases.   

We were further interested in the structure and the structural changes of AldA upon 

S-bacillithiolation. A crystal structure of S. aureus AldA (denoted as saAldA) has been determined 

by the Midwest Center for Structural Genomics (PDB 3TY7). For understanding the enzyme’s 

catalytic mechanism, we performed structural homology searches for saAldA with the DALI server 

[58] (http://ekhidna.biocenter.helsinki.fi/dali_server/) and the PDBeFold (SSM) server 

(http://www.ebi.ac.uk/msd-srv/ssm/). SaAldA shows high homology to many other aldehyde 

dehydrogenases (ADHs) from bacteria, plants and humans. The root-mean-square deviations 

(r.m.s.d.’s) and sequence similarities of AldA’s closest homologs are listed in Table S3.  

In contrast to the tetrameric bacterial ADHs (pfAMSDH, saBADH, ecADH, paBADH), saAldA is a 

dimeric enzyme and thus more similar to plant ADHs that are also active as dimer (Figure 7A). 

Regardless of the oligomerization state, the overall fold of a subunit is highly conserved among all 

ADH enzymes. Similarly as in other ADHs, a saAldA subunit is composed of a coenzyme (NAD+)-
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binding domain (Co-BD; residues 1-122, 137-244 and 439-464), a catalytic domain (CD; residues 

245-438) and a subunit interaction domain (SID; residues 123-136 and 465-475; Figure 7A). 

In all ADHs, the active site harbors conserved Cys (C279 in saAldA) and glutamate (E245 in 

saAldA) residues (Figure S5). The Cys residue can adopt two alternative conformations, a “resting” 

and “attacking” (Figure 7C), depending on the enzyme activation state. In the apo-enzyme 

structure, the Cys residue is in the resting conformation, whereas upon NAD+ binding the Cys thiol 

moiety rotates away from the nicotinamide part of NAD+ and is closer to the substrate-binding pocket 

[54-56]. The Cys residue serves as a nucleophile during catalysis, leading to a covalent thioester-

enzyme adduct with the substrate via a nucleophilic addition [54, 55, 57]. The conserved glutamate 

residue then serves as a base to activate a water molecule for hydrolysis of the thioester-enzyme 

intermediate [55, 59]. In addition to the Cys and glutamate residues, there are two other conserved 

residues, a lysine (K156 in saAldA) and a glutamate (E455 in saAldA), that are involved in a proton 

relay that allows the deprotonation of E245, and, as a consequence, proton abstraction from the 

hydrolytic water [56]. 

Another common feature of the ADHs is the presence of a cation-binding site located in the Co-

BD (Figure 7B,D). Co-BD is formed by the three main chain carbonyl groups of an isoleucine/valine 

(I25 in saAldA), a glutamate/aspartate (E91 in saAldA) and a glutamate residue (E173 in saAldA) 

[60-62]. The cation bound at this site is usually sodium or potassium, and it was reported that the 

enzyme activity is slightly higher in the presence of sodium [60]. In the saAldA structure, a 

magnesium ion is present at this site, most likely because magnesium was the only cation present in 

the crystallization solution. The role of the cation-binding site is to maintain the structural integrity of 

the protein and to stabilize a loop involved in binding of NAD+ [60-62]. 

The available saAldA structure represents the apo-enzyme. In contrast, the structures of plant 

ADHs and of paBADH contain the coenzyme NAD+. In the case of pfAMSDH, the structures of 

pfAMSDH/NAD+/intermediate complexes are also available [55]. Comparison of the apo, NAD+, 

NAD+/intermediate states shows that binding of the coenzyme or the formation of the intermediate 

does not influence the secondary structure elements within the enzyme, while rearrangements are 

observed in the side chains of residues involved in catalysis [54, 55]. In the ADHs, the NAD+ is 
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bound in the hydrophobic pocket of the Co-BD. Only the nicotinamide nucleotide moiety is turned 

towards a negatively charged pocket, in which the catalytic cysteine residue is located (Figure 7B). 

NAD+ is engaged in only few polar contacts with the enzyme [54, 62]. 

Although the overall structure, the active site and the cation-binding site are highly conserved 

among the ADHs, these enzymes show broad substrate specificities and the amino acid residues 

involved in substrate binding are different among the ADHs. Nevertheless, even a single ADH is 

able to use many different aldehydes as substrates. For example, slAMADH can oxidize many 

different aminoaldehydes [62]. Thus, differences in the substrate-binding residues determine 

differences in the still comparatively broad substrate spectra of the enzymes. 

 

S-bacillithiolation of the AldA active site depends on the Cys activation state as revealed by 

molecular dynamics simulation.  

Next, we analyzed the structural changes of AldA upon S-bacillithiolation and used molecular 

docking and molecular dynamics simulations to model BSH into the active site of the apo- and 

holoenzyme structures (Figure 7EF). The structure of saAldA apo-enzyme (PDB 3TY7) was 

superimposed with the NAD+ binding structure from Pseudomonas fluorescens pfAMSDH (PDB 

4I1W) to model the NAD+ cofactor into the AldA active site pocket (Figure 7C). We further noticed 

that in the saAldA dimeric structure, the loop composed of residues 438-459 is not present which 

was modelled into the saAldA holo-enzyme structure based on the structure of pfAMSDH (Figure 

7F). This loop in the saAldA holo-enzyme structure may interfere with the location of BSH at the 

active site. To model the S-bacillithiolated active site Cys279 in the saAldA apo- and holoenzyme 

structures, we applied an adapted molecular docking algorithm based on Steric Clashes-Alleviated 

Receptor (SCAR) approaches [63], which takes into account the possibility of bond formation 

between ligand and receptor. Molecular docking and atomistic molecular dynamics simulation of the 

covalent BSH enzyme complex resulted in two best-scoring poses for BSH in the apo-enzyme (Q2) 

or holo-enzyme complex (Q1) (Figure 7EF). However, no overlap between BSH and the loop 

(aa438-459) in the holo-enzyme structure was found and there was still room for an aldehyde 

substrate. Interestingly, these two different BSH positions in the AldA active site depend on the 
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Cys279 activation state in the presence or absence of the NAD+ cofactor (Figure 7EF). In the apo-

enzyme structure, Cys279 bound to BSH is still in "resting" position (Q2), while Cys279 is in the 

"attacking" position in the holo-enzyme (Q1). Thus, the location of BSH in the active site pocket 

depends on the Cys279 activation state in the presence or absence of NAD+. The Q2 pose of BSH 

at the apo-enzyme without NAD+ seems to be energetically more favorable since Q2 had much 

better energy score (-50.2 kJ/mol), while the Q1 position of the holo-enzyme had a lower energy 

score (-38.1 kJ/mol). This results were quantitatively supported by our all-atom MD simulation of the 

complexes and the follow-up MM-PBSA calculations: the interaction energy in the apo-enzyme 

complex with BSH in Q2 position was -24.8 +/- 15.4 kJ/mol, while the holo-enzyme complex with 

BSH in Q1 position had interaction energy of -19.7 +/- 10.0 kJ/mol.  

We have further plotted the dihedral distribution of N-CA-CB-SG dihedral (rotation around the 

CA-CB bond) of Cys279 and the dihedral angle at the function of simulation time (Figure S6). The 

results showed that Cys279 in the apo-enzyme has very different dihedral propensity than in the 

holo-enzyme in complex with NAD+. These data support that the apo-enzyme prefers the resting 

state position of Cys279 with BSH while the holo-enzyme favors the BSH complex with the thiol in 

the attacking state position.  

In agreement with our previous GapDH results [26], S-bacillithiolation of the AldA apo- and 

holoenzyme active site does not require major structural changes. After 50ns of MD simulations 

there was very little change in the backbone flexibility of the protein between different binding 

positions of BSH in the apo-enzyme (Q2) or the holo-enzyme (Q1) compared to the apo-enzyme 

without BSH (Figure S7). This further confirms that BSH can undergo disulfide formation with the 

active site Cys279 at different positions without major conformational changes.  

DISCUSSION 

S. aureus is a major human pathogen of hospital and community-acquired infections, ranging from 

local skin infections to life-threatening systemic and chronic infections. During infections, S. aureus 

is exposed to ROS, RCS and RES that are produced as first line of defense by activated 

macrophages and neutrophils or can be also encountered as consequence of antibiotics treatment 

[10, 11, 64]. Thus, the understanding of the adaptation mechanisms of S. aureus to infection 
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conditions to avoid killing by ROS, RCS and RES is important for the discovery of new drug targets 

to combat multi-resistant S. aureus infections.  

In our previous work, we have identified the aldehyde dehydrogenase AldA as one of the 

most strongly oxidized proteins in the thiol-redox proteome in S. aureus, which showed a 29% 

oxidation increase under NaOCl stress using the OxICAT analysis [26]. AldA uses a conserved 

active site Cys279 that was modified by S-bacillithiolation under NaOCl stress. Apart from AldA, the 

glyceraldehyde-3-phosphate dehydrogenase Gap was identified as S-bacillithiolated at its active site 

Cys151 under NaOCl stress. Thus, it is interesting to note that two functionally related aldehyde 

dehydrogenases are targets for oxidation at their active site Cys residues that both function in 

aldehyde oxidation. In this study, we demonstrated that AldA is specifically induced under thiol-

specific stress conditions, such as NaOCl, diamide and formaldehyde stress. Expression of aldA 

was previously shown to be regulated by the alternative sigma factor SigmaB in response to heat 

shock, salt stress caused by NaCl and Mn2Cl as well as alkaline shock [50, 51]. Here, we have 

shown that the thiol-specific expression of aldA occurs SigmaB-independently. Thus, aldA seems to 

be double-controlled by SigmaB and another thiol-stress sensing regulator to allow adaptation to 

general stress and starvation as well as thiol-stress conditions.  

SigmaB has been previously shown to play an important role under infection conditions and 

controls biofilm formation and several virulence factors, such as adhesins [65, 66]. The SigmaB 

regulon was induced after internalization of S. aureus by bronchial epithelial cells and required for 

intracellular growth as demonstrated by transcriptomics and proteomics [53, 67, 68]. Moreover, 

SigmaB has been implicated as central regulator in long-term persistence in human osteoblasts and 

controls the small colony variant (SCV) phenotype of persistent S. aureus infections [69, 70]. Thus, it 

might be possible that adaptation of S. aureus from acute to chronic and persistent infections 

requires SigmaB and AldA to cope and adapt to the stationary phase and thiol-specific stress 

conditions inside macrophages and neutrophils. This adaptation to thiol-stress conditions is 

particularly important for S. aureus to survive under conditions of long-term persistent and chronic 

infections.  



18 

 

In this work, we have shown that AldA is an important member of the SigmaB regulon that 

provides protection under NaOCl stress conditions as shown in survival assays. However, the thiol-

specific induction of aldA transcription seems to be SigA-dependently since the same induction level 

was observed in the sigB mutant under thiol-stress. A putative SigA-promoter was observed 

upstream of the SigB-promoter indicating that aldA transcription might be controlled by SigB and 

SigA containing RNA polymerase (RNAP) from adjacent promoters. The stronger aldA induction in 

the sigB mutant under methylglyoxal stress could be explained by a higher affinity of SigA for the 

RNAP core enzyme compared to SigB and the lack of sigma factor competition in the sigB mutant 

[71]. Moreover, the thiol-stress-specific induction of aldA transcription might require additional 

transcriptional regulators that remain to be elucidated. In future studies, we also aim to investigate if 

AldA plays a role for the intracellular growth as well as persistence or chronic infections in S. aureus, 

which could require detoxification of toxic aldehydes to allow long-term survival.  

To study the function of AldA and its redox-regulation under NaOCl stress in vitro, we purified 

the enzyme and determined its catalytic activities towards oxidation of various aldehydes. We could 

show that AldA has broad substrate specificities to oxidize formaldehyde, methylglyoxal, glycol 

aldehyde and acetaldehyde to their respective acids. The question arises about the physiological 

aldehyde substrate for AldA under in vivo conditions that are produced under infection conditions, 

such as under hypochlorite stress. Methylglyoxal was previously shown to be produced at higher 

levels under HOCl stress in E. coli [20]. Moreover, the gloA-nemRA operon was induced under 

methylglyoxal and HOCl stress, which functions as important HOCl and methylglyoxal defense 

mechanism [19-22]. The FMN-dependent oxidoreductase NemA functions in detoxification of 

various electrophiles, such as aldehydes, N-ethylmaleimide and quinones and its up-regulation 

under HOCl stress indicates the link between HOCl and aldehyde stress. In our work, we could also 

show that AldA responds to aldehydes, diamide and NaOCl and hence could be involved in 

methylglyoxal detoxification in S. aureus as well. However, in growth and survival assays, no 

phenotypes of the aldA mutant were detected under formaldehyde and methylglyoxal stress. Since 

AldA showed broad substrate specificity towards various aldehydes in vitro, its natural substrates 

could be different aldehydes that remain to be elucidated.  
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Of note, AldA shares strong 57% sequence similarity to betaine aldehyde dehydrogenases 

from S. aureus, Pseudomonas aeruginosa and Spinacia oleacea. These enzymes function in 

oxidation of the toxic betaine aldehyde to glycine betaine which is a well-known compatible solute 

and accumulates in bacteria under osmotic stress conditions as osmoprotectant [72, 73]. Glycine 

betaine can be either taken up upon osmostress or synthesized from exogenously provided choline 

in a two oxidation steps via choline dehydrogenase (BetA) and betaine dehydrogenase (BetB) which 

are conserved in B. subtilis [72, 73] and S. aureus [54]. The human tissues are rich sources of 

choline and betaine and thus, S. aureus encounters toxic aldehydes produced from choline during 

colonization and internalization. For some bacteria, the importance of the choline oxidation pathway 

for survival and virulence has been already demonstrated [73, 74]. Of note, AldA is also induced 

under high osmolarity conditions provoked by NaCl stress in a SigmaB-dependent manner [50]. This 

could point to a possible function in the osmostress and thiol-stress response in S. aureus which 

remains to be elucidated. However, we could not detect AldA activity for oxidation of betaine 

aldehyde as substrate in vitro, indicating a different function of AldA in S. aureus (data not shown).  

 The catalytic activity of AldA depends on a highly conserved Cys279 active site which we 

identified as S-bacillithiolated under NaOCl stress in S. aureus [26]. Interestingly, this nucleophilic 

active site Cys residue was previously found oxidized to a mixed disulfide with beta-

mercaptoethanol during protein crystallization of related betaine aldehyde dehydrogenases [54, 74]. 

These results confirm the redox-sensitivity of the active site Cys of AldA as shown in this work. Our 

results have further demonstrated that S-bacillithiolation functions in redox-regulation and 

inactivation of AldA activity under H2O2 stress. In the absence of BSH, the active site Cys279 was 

very sensitive to overoxidation as shown by its irreversible inactivation. In the presence of BSH, 

Cys279 was protected against overoxidation by the S-bacillithiolation as shown for the 

glyceraldehyde-3-phosphate dehydrogenase GapDH in S. aureus [26]. Both enzymes use a similar 

catalytic mechanism for the NAD+-dependent oxidation of the aldehyde substrate to generate the 

acid product [54, 55, 57]. In the catalytic mechanism of aldehyde dehydrogenase, the active site Cys 

was shown to adopt two conformations: the “attacking” or “resting” conformation depending on the 

presence or absence of the NAD+ cofactor. We used molecular docking and molecular dynamic 
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simulations to model the S-bacillithiolated active site in the presence and absence of NAD+. In the 

apo-enzyme structure, BSH was bound to Cys279 in the resting state (Q2) position and occupied 

the cofactor-binding pocket. In the presence of NAD+, Cys279 was modified in the attacking state 

position (Q1) and BSH was repositioned close to the substrate-binding site.  

In our previous docking approach with BSH at the Cys151 active site of GapDH, we found 

similar locations of BSH in the apo-enzyme and holo-enzyme structures related to the resting and 

attacking state. Thus, the highly flexible active site and the redox-sensitivity of the nucleophilic Cys 

residues facilitate their fast oxidation to the mixed disulfides with BSH. In both structural models, S-

bacillithiolation of GapDH and AldA did not require major structural changes, which further explains 

their preferred formation of the BSH mixed disulfides. This flexible BSH position may ensure that 

catalytic active and resting AldA and GapDH enzymes can both be protected against overoxidation 

under NaOCl stress to ensure fast regeneration and reactivation of the enzymes.  
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Figure 1. OxICAT analysis revealed a 29% increased oxidation of the AldA Cys279-peptide (A) 

and S-bacillithiolation of the AldA protein in vitro is shown by BSH-specific Western blot 

analysis (B). (A) The OxICAT mass spectrometry results from the previous study [26] are shown for 

the AldA-Cys279-peptide in S. aureus under control and 30 min after NaOCl stress. The reduced 

Cys279-peptides is labelled with light 
12

C-ICAT, followed by reduction of the S-bacillithiolated 

Cys279-peptide and labelling with heavy 
13

C-ICAT reagent. The Cys279-peptide was 10 % oxidized 

in the control and 38 % oxidized in the NaOCl stress sample indicating a 29% oxidation increase. 

(B) AldA is S-bacillithiolated in vitro by H2O2 in the presence of BSH as revealed by BSH-specific 
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Western blots. Reduced purified AldA (40 µM) is pretreated with 10-fold molar excess of BSH (400 

µM) and incubated with 10 mM H2O2 for 5 min. The S-bacillithiolated AldA was detected using non-

reducing BSH-specific Western blot analysis. The loading control of AldA and S-bacillithiolated AldA 

(AldA-SSB) is shown as SDS-PAGE stained with Coomassie below the anti-BSH blot.  

Figure 2. Transcriptional induction of aldA under formaldehyde, methylglyoxal, NaOCl and 

diamide stress in S. aureus COL wild type (A) and in the sigB mutant (B). (A) RNA was isolated 

from S. aureus COL wild type under control conditions as well as after treatment with sub-lethal 

doses of 0.75 mM formaldehyde, 0.5 mM methylglyoxal, 1 mM NaOCl, 2 mM diamide, 10 mM H2O2 

and 50 µM methylhydroquinone (MHQ) for 15 and 30 min and subjected to Northern blot analysis for 

aldA (SACOL2114) transcription. (B) For comparison of Northern blot analysis of aldA transcription 

between the wild type and the sigB mutant, RNA was isolated from S. aureus COL wild type and the 

sigB mutant after exposure to 0.75 mM formaldehyde, 0.5 mM methylglyoxal, 1 mM NaOCl and 2 

mM diamide for 15 min. Transcription of aldA is similarly up-regulated under formaldehyde, NaOCl 

and diamide stress in the wild type (A) and in the sigB mutant (B) indicating a SigmaB-independent 

thiol-stress regulatory mechanism of aldA transcription. The known SigmaB-dependent promoter 

sequence and a putative SigA-dependent promoter in the aldA upstream regulatory region are 

shown below the Northern blot in (B). The methylene blue stain is the RNA loading control showing 

the abundant 16S and 23S rRNAs. The experiments were performed in 3 biological replicates.  

Figure 3. AldA is not essential for the survival of S. aureus under methylglyoxal stress. For 

the survival phenotype assays, S. aureus COL wild-type (WT), the aldA deletion mutant (A) and 

the aldA and aldAC279S complemented aldA mutants (aldA pRB473-aldA and aldA pRB473-

aldAC279S) (B) were grown in RPMI until an OD500 of 0.5 and treated with 4 mM methylglyoxal. 

Survival assays were performed by spotting 10 µl of serial dilutions after 1-3 hours of NaOCl 

exposure onto LB agar plates. The experiments were performed in 3 biological replicates.  

Figure 4. AldA is required for growth and survival under NaOCl stress in S. aureus. (A, B)  

Growth curves of S. aureus COL wild type and the aldA deletion mutant in RPMI medium after 

exposure to sublethal concentrations of 1.5 mM and 2 mM NaOCl stress at an OD540 of 0.5. The 

growth differences of the aldA mutant are significantly different compared to the wild type at 1.5 mM 
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NaOCl. (C, D) For the survival phenotype assays, S. aureus COL wild-type (WT), the aldA deletion 

mutant (C) and the aldA and aldAC279S complemented aldA mutants (aldApRB473-aldA and 

aldA pRB473-aldAC279S) (D) were grown in RPMI until an OD500 of 0.5 and treated with 3.5 mM 

NaOCl. Survival assays were performed by spotting 10 µl of serial dilutions after 1-3 hours of NaOCl 

exposure onto LB agar plates. Colonies were observed after overnight incubation of the LB plates at 

37°C. The active site Cys279 of AldA is required for NaOCl stress survival. The results for the 

growth curves and survival assays are from 5 biological replicate experiments. For the growth 

curves in Fig. 4AB, error bars represent the SEM and the statistics was calculated using a Student’s 

unpaired two-tailed t-test by the graph prism software. Symbols are defined as follows: 
ns

p>0.05; 

*p≤0.05; **p≤0.01 and ***p≤ 0.001.  

Figure 5. Purified AldA shows broad substrate specificity towards various aldehydes in vitro. 

The catalytic activity of the aldehyde dehydrogenase AldA was analyzed with increasing 

concentrations of different aldehyde substrates, including (A) formaldehyde (FA), (B) methylglyoxal 

(MG), (C) acetaldehyde (AA) and (D) glycol aldehyde (GA). Reduced AldA (2.5 µM) was incubated 

with different concentrations of aldehyde substrates ranging from 10-100 µM in reaction buffer (100 

mM Tris HCl, 1.25 mM EDTA, pH 7.5). The oxidation of the aldehydes was measured in the 

presence of NAD+ as coenzyme and NADH generation was monitored at 340 nm using a 

spectrophotometer. The results are from 3 replicate experiments. Error bars represent the SEM. 

Figure 6. Inactivation of AldA of S. aureus in response to H2O2 in the absence and presence 

of BSH in vitro. Reduced AldA (30 µM) was oxidized with 0.3-1 mM H2O2 
for 5 min in the absence 

(A,B) or presence of BSH (C,D) in reaction buffer (100 mM Tris HCl, 1.25 mM EDTA, pH 7.5). The 

AldA activities were measured with 15 mM methylglyoxal as substrate and NAD+ as coenzyme by 

monitoring NADH production at 340 nm using a spectrophotometer. To analyze the irreversible 

inactivation of AldA by H2O2 alone, AldA was treated with 1 mM H2O2 without BSH followed by 

reduction with 10 mM DTT (C). The reversibility of AldA S-bacillithiolation with 0.3 mM H2O2 and 0.3 

mM BSH is shown after DTT-reduction resulting in 66% of regeneration of AldA activity (D). The S-

bacilllithiolation of AldA and its reduction using DTT was further confirmed in BSH-specific Western 

blot analysis as shown in Figure 1B. P-values were calculated as follows: p = 0,0012, p = 0,0001 for 
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AldA control/ 0.5 mM H2O2 at 6.63 and 8 min, respectively (Figure 6A); p = 0,0012, p = 0,0002 for 

AldA control/ 1 mM H2O2 at 6.63 and 8 min and p = 0,074, p = 0,069 for 1 mM H2O2/1 mM H2O2 + 

DTT at 6.63 and 8 min, respectively (Figure 6B); p = 0,0021, p = 0,0008 for AldA control/ 0.5 mM 

H2O2 + BSH at 6.63 and 8 min, respectively (Figure 6C); p = 0.003, p = 0.011 for 0.3 mM H2O2 

+BSH/ 0.3 mM H2O2 +BSH+DTT at 6.63 and 8 min; p = 0.150, p= 0.128 for AldA control/ 0.3 mM 

H2O2 + BSH + DTT at 6.63 and 8 min, respectively (Figure 6D). Symbols are definied as follows: 
ns

p 

> 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; and ****p ≤ 0.0001. The results are from 3 replicate 

experiments. In all graphs, mean values are shown, error bars represent the SEM and p-values are 

calculated using a Student’s unpaired two-tailed t-test by the graph prism software.  

Figure 7. Structural insights into the S-bacillithiolated saAldA active site. (A) Structural 

overviews of dimeric saAldA (PDB ID: 3TY7), dimeric zmAMADH (PDB ID: 4I8P) and tetrameric 

pfAMSDH (PDB ID: 4I26). Dimers formed by chains A (colored by domain; coenzyme-binding 

domain [Co-BD] – blue; subunit interaction domain [SID] – green; catalytic domain [CD] – magenta) 

and B (grey) are oriented in the same way. The other dimer of the pfAMSDH tetramer (chains C and 

D) is shown in different shades of grey. (B) Model for NAD+ binding by saAldA obtained by 

superimposing a subunit of NAD+-bound pfAMSDH (PDB ID: 4I1W) on apo-saAldA. The modeled 

NAD+ (colored by atom type; carbon – yellow; oxygen – red; nitrogen – blue; phosphorus – orange) 

and a bound Mg2+ ion (lime green) are shown as spheres, the active site cyteine (C279) is shown as 

sticks (carbon – magenta; sulfur – yellow). (C) Active sites and NAD+-binding cavities of ADHs. A 

subunit of saAldA (colored as in A) was structurally aligned with subunits of apo-pfAMSDH (Co-BD – 

violet; CD – light pink) and of NAD+-bound pfAMSDH (Co-BD – cyan; CD – orange). NAD+ is shown 

as sticks (colored by atom type as in B). The catalytic cysteine residue is in the resting state in the 

apo-structures and in the attacking state in NAD+-bound pfAMSDH. (D) Interactions at the cation-

binding site of saAldA. Red sphere – water oxygen. (E, F) The S-bacillithiolated active site pocket of 

the apo-saAldA (E) and holo-saAldA (F). A subunit of saAldA colored as in A, view as in C,  NAD+ 

and BSH are shown as sticks, NAD+ is colored as in B, BSH colored by atom type (carbon – 

aquamarine; oxygen – red; nitrogen – blue; sulfur – yellow). The loop composed of residues 438-

459 that is not present in saAldA structure (PDB ID: 3TY7) was modeled and is shown in white. 
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Highlights 

 AldA is S-bacillithiolated at Cys279 under NaOCl stress in Staphylococcus aureus 

 AldA is strongly induced under NaOCl and aldehyde stress and protects S. aureus 

under hypochlorite stress 

 S-bacillithiolation functions in redox-regulation of AldA activity 

 The position of BSH in the AldA active site depends on the Cys279 activation state  
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