Drawing Down N₂O
To Protect Climate and the Ozone Layer
A UNEP Synthesis Report
Drawing Down N₂O
To Protect Climate and the Ozone Layer
A UNEP Synthesis Report

November 2013
The United Nations Environment Programme (UNEP) would like to thank the Steering Committee, the Lead and Contributing Authors, and the Secretariat for their contribution to the development of this report. The following individuals have provided input to the report. Authors and reviewers contributed to this report in their individual capacity and their organizations are only mentioned for identification purposes.

Steering Committee — Joseph Alcamo, Chair (UNEP); Mateete Bekunda (International Institute of Tropical Agriculture, ITA, Tanzania); Mercedes Bustamante (Universidade de Brasilia, Brazil); Marco Gonzalez (UNEP Ozone Secretariat, Kenya); Raymond Knighton (National Institute of Food and Agriculture, US Department of Agriculture); Shamilia Nair-Bedouelle (UNEP OzoneAction, France); A. R. Ravishankara (National Oceanic and Atmospheric Administration, USA); Rajendra Shende (TERRE Policy Centre, India); Mark A. Sutton (NERC Centre for Ecology and Hydrology, UK); Clifford Snyder (International Plant Nutrition Institute, USA); Jan van Bergen (Ministry of Infrastructure and the Environment, The Netherlands).

Lead Authors — Lex Bouwman (PBL Netherlands Environmental Agency / Utrecht University, Netherlands); John S. Daniel (National Oceanic and Atmospheric Administration, USA); Eric A. Davidson (Woods Hole Research Center, USA); Cecile de Klein (AgResearch Invermay, New Zealand); Elisabeth Holland (University of the South Pacific, Fiji); Xiaotang Ju (China Agricultural University, P.R. of China); David Kanter (Princeton University, USA); Oene Oenema (Wageningen University, The Netherlands); A. R. Ravishankara, **Part 1 Coordinator** (National Oceanic and Atmospheric Administration, USA); Ute M. Skiba (NERC Centre for Ecology and Hydrology, UK); Sietse van der Sluijs (PBL Netherlands Environmental Agency, Netherlands); Mark A. Sutton, **Part 2 Coordinator** (NERC Centre for Ecology and Hydrology, UK); Guido R. van der Werf (VU University Amsterdam, The Netherlands); Timothy J. Wallington (Ford Motor Company, USA); Peter Wiesen (University of Wuppertal, Germany); Wilfried Winiwarter (International Institute of Applied Systems Analysis / University of Graz, Austria).

Contributing Authors — Marta Alfaro (Institute for Agricultural Research, Chile); Paulo Artaxo (University of São Paulo, Brazil); Kristie Boering (University of California, USA); Agustin del Prado (BC3 Basque Centre for Climate Change, Spain); Bing Gao (China Agricultural University, P.R. of China); Carolien Kroeze (Wageningen University, The Netherlands); Jan Peter Lesschen (Wageningen University, The Netherlands); Lin Ma (Wageningen University, The Netherlands); Rob Maas (RIVM, National Institute for Public Health and the Environment, The Netherlands); Priya Sharma (Agricultural Research Institute, India); Priya Sharma (University of the South Pacific, Fiji); Emma Suddick (Woods Hole Research Center, USA); Parvadha Suntharalingam (University of East Anglia, UK); Sirirontreath Towprayoon (King Mongkut’s University of Technology, Thailand); Hans J. M. van Grinsven (PBL Netherlands Environmental Assessment Agency, The Netherlands); Gerard Velthof (Wageningen University, The Netherlands); Gyi-Ling Zhang (Ocean University of China, P.R. of China); Xunhua Zheng (LAPC, Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), P.R. of China).

Reviewers — Zuccong Cai (Nanjing Normal University, P.R. of China); Martyn Chipperfield (University of Leeds, UK); Lei Duan (Tsinghua University, P.R. of China); Jan Willem Erismans (Louis Bolk Institute and VU University Amsterdam, The Netherlands); Jonathan E. Hickman (The Earth Institute at Columbia University, USA); Melanie Miller (Touchdown Consulting, Belgium); Arvin R. Mosier (USDA/ARS Retired, USA); Cynthia Nevison (University of Colorado/INSTAAR, USA); Stephen Ogle (Colorado State University, USA); Braulio Pikman (Environmental Resources Management, Brazil); Dave S. Reay (University of Edinburgh, UK); Claire E. Reeves (University of East Anglia, UK); Johan Six (ETH-Zurich, Switzerland); Keith A Smith (University of Edinburgh, UK); Guus J.M. Velders (RIVM, National Institute for Public Health and the Environment, The Netherlands); Rodney T. Venterea (USDA-Agricultural Research Service, USA); Xin Zhang (Woodrow Wilson School, Princeton University, USA).

Editorial Team — Joseph Alcamo (UNEP); Sunday A. Leonard (UNEP); A. R. Ravishankara (National Oceanic and Atmospheric Administration, USA); Mark A. Sutton (NERC Centre for Ecology and Hydrology, UK).

Project Management — Sunday A. Leonard (UNEP)

UNEP Secretariat and Media — Harsha Dave; Linda Duquesnoy; Melissa Gorelick; Michael Logan; Kelvin Memia; Nick Nuttal; Neeyati Patel; Ron Witt; Shereen Zorba.

Design, Layout and Production — Pouran Ghaffarpour; Eugene Papa (United Nations Office at Nairobi).

Printing — UNON, Publishing Services Section, ISO 14001:2004 - certified.
Glossary

Aerosols – are collections of airborne solid or liquid particles with a typical size between 0.01 and 10 micrometre. They may influence the climate directly by scattering and absorbing radiation, and indirectly by acting as cloud condensation nuclei or modifying the optical properties and lifetime of clouds.

Annex I Countries – the industrialised countries (and those in transition to a market economy) which took on obligations to reduce their greenhouse gas emissions under the United Nations Framework Convention on Climate Change.

Atmospheric Deposition – removal of suspended material from the atmosphere, classed as either ‘wet’ or ‘dry’. Wet deposition occurs when material is removed from the atmosphere by precipitation. In dry deposition, gases and particles are removed from the atmosphere by contact with a surface.

Atmospheric Lifetime – the time it takes for 63% of the abundance of a chemical to be removed from the atmosphere in the absence of emissions.

Atmospheric Nitrogen – a molecule also called dinitrogen (N\(_2\)), which contains two nitrogen atoms. It is an inert and harmless gas not usable by most life forms. It makes up 78% of the volume of the atmosphere.

Biofuels – non-fossil fuels (e.g. biogas, biodiesel, bioethanol). They are energy carriers that store the energy derived from organic materials (biomass) including plant materials and animal waste.

Biological Nitrogen Fixation (BNF) – the process of converting atmospheric nitrogen (N\(_2\)) by bacteria, fungi, and blue-green algae into reactive forms, usable by plants and animals, including humans.

Black Carbon – a form of air pollution consisting of carbon particles produced by incomplete combustion of fuels. It is produced especially by diesel-powered vehicles, open biomass burning, cooking stoves and other sources.

Business-As-Usual (BAU) – a scenario used for projections of future emissions assuming no action, or no new action, is taken to mitigate emissions.

Carbon Credits – tradeable permits that aim to reduce greenhouse gas emissions by giving them a monetary value.

Carbon Dioxide Equivalent (CO\(_2\)e) – a simple way to place emissions of various climate change agents on a common footing to account for their effect on climate. It describes, for a given mixture and amount of greenhouse gases, the equivalent weight of carbon dioxide that would have the same global warming ability, when measured over a specified timescale.

Carbon Leakage – according to the Intergovernmental Panel on Climate Change, carbon leakage occurs when there is an increase in carbon dioxide emissions in one country as a result of an emissions reduction by a second country. For example, an increase in local fossil fuel prices resulting from mitigation policies may lead to the re-allocation of production to regions with less stringent mitigation rules (or with no rules at all), thus causing higher emissions in those regions.

Certified Emission Reductions (CERs) – emission reductions from CDM project activities in accordance with the CDM rules and requirements, which are expressed in units equal to one metric tonne of carbon dioxide equivalent, calculated using global warming potentials defined by Decision 2/CP.3 of the United Nations Framework Convention on Climate Change or as subsequently revised in accordance with Article 5 of the Kyoto Protocol.

Clean Development Mechanism (CDM) – one of the three market-based mechanisms under the Kyoto Protocol to the United Nations Framework Convention on Climate Change, whereby developed countries may finance greenhouse gas emission-avoiding projects in developing countries, and receive credits for doing so, which they may apply towards meeting mandatory limits on their own emissions.

Denitrification – the microbial regeneration of dinitrogen (N\(_2\)) or nitrous oxide (N\(_2\)O) from nitrate (NO\(_3\)\(^-\)). N\(_2\)O represents an intermediary on the overall pathway of denitrification to form N\(_2\).

Dobson Unit (DU) – a common unit used to measure overhead column ozone amounts. One DU is the number of molecules of ozone that would be required to create a layer of pure ozone 0.01 millimeters thick at a temperature of 0°C and a pressure of 1 atmosphere (the air pressure at the surface of the Earth).

Emission Factor (EF) – a representative value that relates the quantity of a pollutant released to the atmosphere with the activity associated with its release. The EF is used in estimating emissions from various sources of air pollution using the formula: Emissions = EF x Activity.
Eutrophication – the over-fertilization of an aquatic ecosystem by inorganic nutrients (e.g., nitrate, phosphate). This may occur naturally or through human activity (e.g., from fertilizer runoff and sewage discharge). It typically promotes excessive growth of algae, which could result in the depletion of available dissolved oxygen.

Feed Conversion Ratio – measure of the efficiency of how animals (livestock or fish) convert feed mass to body mass. It provides an indication of how much feed is required to achieve a specified body mass.

Global Warming Potential (GWP) – a relative index that enables comparison of the climate effect of the emissions of various greenhouse gases (and other climate changing agents). Carbon dioxide, the greenhouse gas that causes the greatest anthropogenic radiative forcing because of its overwhelming abundance, is chosen as the reference gas. GWP is also defined as an index based on the radiative forcing of a pulsed injection of a unit mass of a given well-mixed greenhouse gas in the present-day atmosphere, integrated over a chosen time horizon, relative to the radiative forcing by a unit mass of carbon dioxide over the same time horizon. The GWPs represent the combined effect of the differing atmospheric lifetimes (i.e., how long these gases remain in the atmosphere) and their relative effectiveness in altering the energy balance at the tropopause. The Kyoto Protocol uses GWPs from pulse emissions over a 100-year time horizon.

Haber-Bosch Process – a high pressure chemical process which synthesizes reactive nitrogen as ammonia (NH₃) from the reaction of N₂ and H₂.

Joint Implementation (JI) – projects that allow a country with an emission reduction or limitation commitment under the Kyoto Protocol (Annex B Party) to earn emission reduction units (ERUs) from an emission reduction or emission removal project in another Annex B Party. Each ERU is equivalent to one tonne of CO₂, which can be counted towards meeting its Kyoto target.

Kyoto Protocol – the international Treaty intended to reduce greenhouse gas emissions. It adds additional provisions to the United Nations Framework Convention on Climate Change.

Leaching – the washing out of soluble ions and compounds by water draining through soil.

Leguminous Plants – plants that are able to fix nitrogen from the atmosphere due to root nodules, which contain rhizobia bacteria, which act with the plant in a symbiotic relationship. Legumes can be used by farmers to replenish the reactive nitrogen levels in the soil in a crop rotation sequence.

Mixing Ratio – a metric commonly used in the atmospheric sciences to indicate the concentration of a trace gas in air. It is defined as the fractional number of moles of a trace gas such as N₂O, contained in one mole of air. In the atmosphere, this is also equivalent to the volume of a trace gas per volume of air. It is typically expressed in units of parts per billion (ppb) or parts per million (ppm).

Montreal Protocol – the multilateral environmental agreement dealing with the depletion of the Earth’s stratospheric ozone layer.

Nitrification – a two-step process, carried out mostly by microorganisms in soils and water bodies, involving the oxidation of NH₄⁺ to NO₂⁻ which is then further oxidized to NO₃⁻.

Nitrogen Fixation – a process through which inert dinitrogen (N₂) is converted to reactive nitrogen forms such as ammonia (NH₃) and nitrites (NO₂⁻). Nitrogen is fixed in nature by microorganisms or lightning. It is referred to as biological nitrogen fixation when it is performed by microorganisms (see Biological Nitrogen Fixation).

Nitrogen Use Efficiency (NUE) – a measure of performance in converting inputs of nitrogen compounds into useful products. There are several ways of expressing NUE, with the simplest being the amount of nitrogen in a product divided by the amount of nitrogen used, often expressed as a percentage.

Non-Annex I Countries – a group of developing countries that have signed and ratified the United Nations Framework Convention on Climate Change. They do not have binding emission reduction targets.

Ozone Depleting Substances – refers to substances that can deplete the stratospheric ozone layer and that are listed in the Montreal Protocol.

Ozone Depletion Potential (ODP) – a measure of the extent of stratospheric ozone layer depletion by a given ozone depleting substance, relative to that depleted by an equivalent mass of CFC-11. (CFC-11 has an ODP of 1.0).

Radiative Forcing – a measure of how a climate forcing agent influences the Earth’s energy balance, with a positive value indicating a net heat gain to the lower atmosphere (warming), and a negative value a decrease (cooling).

Reactive Nitrogen – collectively any chemical form of nitrogen other than dinitrogen (N₂). Reactive nitrogen (N) compounds include NH₃, NO₂⁻, NO₃⁻, NO, N₂O, and many other chemical forms, and are involved in a wide range of chemical, biological and physical processes.

Root-Exudates – Substances released from a plant root system in drops or small quantities containing carbohydrates, organic acids, vitamins and many other substances essential for life of soil microorganisms.

Scenario – a description of how the future may unfold based on ‘if-then’ propositions. Climate change scenarios typically include an initial socio-economic situation and a description of the key driving forces and future changes in emissions, temperature, or other climate change-related variables.

Sewage Sludge – residual, semi-solid material left from sewage treatment processes.

Stratospheric Ozone – ozone (O₃) present in the stratosphere, which is located between roughly 15 and 50 km above the Earth’s surface.

Stratospheric Ozone Depletion – depletion of ozone in the stratosphere (the second layer of the atmosphere, located...
above the ‘troposphere’). This depletion allows increased levels of UVB (a harmful form of ultraviolet radiation) to reach the earth’s surface. When the depletion is strong in a specific area, it is commonly referred to as an ‘ozone hole’.

Synthetic Fertilizer – fertilizer produced industrially typically using the ‘Haber–Bosch’ process.

Teragrams N₂O-N/yr (Tg N₂O-N/yr) – the units used in this report to describe emissions of nitrous oxide (Tg N₂O-N/yr). This means teragrams (10¹² grams) of nitrous oxide in equivalent nitrogen units per year.

Troposphere – the lowest portion of the earth’s atmosphere, the depth of which varies geographically, being thickest at the tropics and shallowest at the poles.

Tropospheric Ozone – refers to ozone in the troposphere.

Urea – a reactive nitrogen form, urea (or carbamide) is an organic compound with the chemical formula (NH₂)₂CO. Urea is widely used in fertilizers as a convenient source of nitrogen. It is also an important raw material for the chemical industry.

Volatile Organic Compounds (VOCs) – organic compounds present in the atmosphere in gaseous form although they are commonly liquids or solids, e.g., benzene. They easily vaporise at room temperature.

Well-mixed Gases – a term used for gases that have lifetimes long enough to be relatively homogeneously mixed in lower part of the atmosphere. Hence, their impact on climate and ozone depletion does not depend on where in the atmosphere they are emitted. Measurements of such a gas in one remote surface location will be almost identical to measurements in any other remote location. It should be noted that well-mixed gases may still demonstrate concentration variations in non-remote locations, particularly near large source or sink regions.

Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR4</td>
<td>IPCC Fourth Assessment Report</td>
</tr>
<tr>
<td>BAU</td>
<td>Business-As-Usual</td>
</tr>
<tr>
<td>BNF</td>
<td>Biological Nitrogen Fixation</td>
</tr>
<tr>
<td>CBD</td>
<td>United Nations Convention on Biological Diversity</td>
</tr>
<tr>
<td>CCAC</td>
<td>Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants</td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanism</td>
</tr>
<tr>
<td>CERs</td>
<td>Certified Emissions Reductions</td>
</tr>
<tr>
<td>CFCs</td>
<td>Chlorofluorocarbons</td>
</tr>
<tr>
<td>(CH₂)₆(COOH)₂</td>
<td>Adipic acid</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>CLRTAP</td>
<td>Convention on Long-range Transboundary Air Pollution, under the United Nations Economic Commission for Europe</td>
</tr>
<tr>
<td>EU-ETS</td>
<td>the EU-Emissions Trading System</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environment Facility</td>
</tr>
<tr>
<td>GFED</td>
<td>Global Fire Emissions Database</td>
</tr>
<tr>
<td>HCN</td>
<td>Hydrogen Cyanide</td>
</tr>
<tr>
<td>HFCs</td>
<td>Hydrofluorocarbons</td>
</tr>
<tr>
<td>HNO₂</td>
<td>Nitric Acid</td>
</tr>
<tr>
<td>INPE</td>
<td>Brazilian National Institute for Space Research</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>JI</td>
<td>Joint Implementation</td>
</tr>
<tr>
<td>LULUCF</td>
<td>Land Use, Land Use Change, and Forestry</td>
</tr>
<tr>
<td>N₂</td>
<td>Inert Nitrogen Gas</td>
</tr>
<tr>
<td>N₂O</td>
<td>Nitrous Oxide</td>
</tr>
<tr>
<td>NCO</td>
<td>Isocyanate Group</td>
</tr>
<tr>
<td>NH</td>
<td>Imidogen Group</td>
</tr>
<tr>
<td>NH₃</td>
<td>Ammonia</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrogen Oxides</td>
</tr>
<tr>
<td>N</td>
<td>Reactive Nitrogen</td>
</tr>
<tr>
<td>NSCR</td>
<td>Non-Selective Catalytic Reduction</td>
</tr>
<tr>
<td>NUE</td>
<td>Nitrogen Use Efficiency</td>
</tr>
<tr>
<td>O₃</td>
<td>Ozone</td>
</tr>
<tr>
<td>ODP</td>
<td>Ozone Depletion Potential</td>
</tr>
<tr>
<td>ODS</td>
<td>Ozone Depleting Substance</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>RCP</td>
<td>Representative Concentration Pathway</td>
</tr>
<tr>
<td>SLCPs</td>
<td>Short-Lived Climate Pollutants</td>
</tr>
<tr>
<td>SRES</td>
<td>The Special Report on Emissions Scenarios</td>
</tr>
<tr>
<td>Tg</td>
<td>Teragram</td>
</tr>
<tr>
<td>UNECE</td>
<td>United Nations Economic Commission for Europe</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>VOCs</td>
<td>Volatile Organic Compounds</td>
</tr>
<tr>
<td>WALFA</td>
<td>Western Arnhem Land Fire Abatement</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
</tr>
</tbody>
</table>
Foreword

Perhaps you have never heard of nitrous oxide, a gas that is both a potent pollutant in respect to damaging the ozone layer and one that is contributing to climate change?

If the environmental, economic and health challenges linked with these two global threats are to be addressed, then nitrous oxide needs to be better known, and more importantly, addressed.

Both issues require a comprehensive understanding of the drivers of environmental degradation and the multiple, cost effective pathways to an answer.

While nitrous oxide is naturally present in the Earth’s atmosphere in trace amounts, human activities have been increasing its concentrations since the industrial revolution.

This synthesis report, coordinated by UNEP, working with more than 45 scientists and experts from more than 35 organizations, concludes that emissions of nitrous oxide are now the most relevant with respect to stratospheric ozone depletion and the third most important gas in terms of climate change. The report shows that if current trends in nitrous oxide emissions are allowed to continue, then it is very possible that ozone layer depletion will continue even with other efforts being implemented.

But the report also comes with some good news – with the right determination and commitment to act, it is possible to bring down nitrous oxide emissions. Several readily available technologies and measures exist today for reducing nitrous oxide emissions from the different economic sectors concerned.

Reducing nitrous oxide emissions also comes with other added benefits – nitrous oxide emissions are connected to many different economic sectors including agriculture, chemical manufacturing, electricity production, waste management, transportation and fish production. Hence, gains will include increased crop and livestock productivity, poverty alleviation, improved human health and reduced environmental degradation – all of which are in keeping with the transition towards an inclusive green economy.

Despite increasing penetration of renewable energies, improvements in energy efficiency, investments in forests and other ecosystems and legions of voluntary actions such as those to reduce black carbon, greenhouse gas emissions continue to climb putting the world and its people at increasing risk of dangerous climate change.

In order to avert this, greater ambition is needed by nations across a suite of challenges. Recognizing the impact of nitrous oxide on both the climate and the ozone layer and taking steps to address this pollutant offers another promising pathway to keep humanity’s footprint on our planet within sustainable limits.

Achim Steiner
UN Under-Secretary-General, UNEP Executive Director
Executive Summary

This report addresses the benefits of drawing down nitrous oxide (N\textsubscript{2}O) emissions. N\textsubscript{2}O is now the most significant ozone-depleting substance emission and the third most important greenhouse gas released into the atmosphere.

Global anthropogenic N\textsubscript{2}O emissions are rapidly increasing and are expected to almost double by 2050 unless mitigation action is accelerated. The continued build-up of N\textsubscript{2}O in the atmosphere will continue to deplete the stratospheric ozone layer and in so doing will to a degree undermine the achievements of the Montreal Protocol. The build-up of N\textsubscript{2}O will also make it more difficult to achieve climate targets.

Two-thirds of current anthropogenic N\textsubscript{2}O emissions originate from agriculture and these can be reduced by boosting nitrogen use efficiency, especially by making the use of fertilizer, manure and feed more efficient. Improving nitrogen use efficiency can be accomplished through a wide variety of feasible options. This would bring added benefits of higher crop and livestock productivity, lower required agriculture inputs, as well as reduced air and water pollution due to decreased nitrogen losses to the environment. Small, but quick gains may also be possible by controlling emissions from just two chemical industries (adipic acid and nitric acid) that account for about 5% of global gross1 anthropogenic emissions.

1. Why are we concerned about nitrous oxide in the atmosphere?

Human activities are resulting in a steady increase of N\textsubscript{2}O in the atmosphere. If abatement action is not taken, N\textsubscript{2}O emissions could almost double by 2050.

Since the pre-industrial era, anthropogenic emissions have led to a 20% increase in the level of N\textsubscript{2}O in the atmosphere. The best estimate of current total emissions from human activities is 5.3 Tg N\textsubscript{2}O-N/yr.2 Under business-as-usual conditions without additional future mitigation efforts, N\textsubscript{2}O emissions are projected to increase by 83% between 2005 and 2050.3

Nitrous oxide is now the most significant ozone-depleting emission to the atmosphere. The presence of high levels of anthropogenic N\textsubscript{2}O in the atmosphere will continue to cause ozone layer depletion and, to some extent, undermine the gains of the Montreal Protocol.

Most of the depletion of the stratospheric ozone layer up to now has been due to chlorofluorocarbons (CFCs) and other halogenated (chlorine- and bromine-containing) chemicals. However, N\textsubscript{2}O also contributes to this depletion by being the dominant source of nitrogen oxides in the stratosphere and depleting the ozone layer in a way similar to CFCs and other ozone-depleting halocarbons. But unlike these chemicals, N\textsubscript{2}O is not controlled by the Montreal Protocol. Nevertheless, when weighted according to its ozone-depleting ability, N\textsubscript{2}O is now the most important ozone-depleting emission to the atmosphere. This is mostly because CFCs and other substances have been drastically reduced under the Montreal Protocol, but also because of the steady increase in anthropogenic N\textsubscript{2}O emissions.

It is important to note that the reduction in emissions that has already been achieved for most ozone-depleting substances will help stratospheric ozone concentrations to recover to levels found before the 1980s, but that the increasing levels of N\textsubscript{2}O in the atmosphere will continue to cause ozone layer depletion. In this respect, the growing concentration of N\textsubscript{2}O is to an extent undermining the gains in ozone layer recovery being achieved by the declining atmospheric levels of CFC and other ozone depleting substances.

In terms of global emissions, N\textsubscript{2}O is now the third most important greenhouse gas.

1 Total gross anthropogenic emissions refers to the sum of all emissions that have increased due to human activity. Because land-use change has reduced N\textsubscript{2}O emissions from tropical forest soils, the total net anthropogenic emissions are lower than total gross anthropogenic emissions.

2 The units used in this report to describe emissions of nitrous oxide are “Tg N\textsubscript{2}O-N/yr”. This means teragrams (1012 grams) of nitrous oxide in equivalent nitrogen units per year.

3 This is the mean of business-as-usual estimates from four sets of scenarios reviewed in this report.
Although not as abundant in the atmosphere as CO₂ in terms of mass, N₂O still has an impact on global warming because of its radiative properties and long lifetime in the atmosphere (roughly 120 years). The emission of one kilogramme of N₂O has the global warming potential of the emission of 300 kg of CO₂ when summed over a 100 year period. In terms of its current impact on climate, N₂O is now the third most important greenhouse gas (behind CO₂ and CH₄) emitted into the atmosphere. Because of its increasing anthropogenic emissions, it poses a growing threat to the climate system.

Has enough action been taken against N₂O emissions?

Because N₂O is an important greenhouse gas and ozone depleting substance, it could be argued that not enough action is being taken to combat its build-up in the atmosphere. For example, N₂O is mentioned in the Vienna Convention for the Protection of the Ozone Layer, but not controlled under its Montreal Protocol. In addition, few projects under the Global Environmental Facility address N₂O emissions. Meanwhile, under the Clean Development Mechanism of the United Nations Framework Convention on Climate Change (UNFCCC), action has been taken against N₂O emissions from nitric and adipic acid production, but not from other sectors accounting for the vast majority of emissions. Mitigation options, including opportunities for ramping up international action against N₂O emissions, are discussed in this report.

2. Where does N₂O in the atmosphere come from?

Nitrous oxide has a variety of natural and anthropogenic sources. Increase in anthropogenic emissions is leading to an increase of N₂O in the atmosphere.

Natural emissions including those from terrestrial, marine and atmospheric sources are estimated at roughly 11 Tg N₂O-N/yr (uncertainty range: 10.2 to 12.1). However, these emissions do not lead to a build-up of N₂O in the atmosphere because the atmosphere and biosphere have adjusted to them over a long period of time. A best estimate of current total gross anthropogenic emission is 6.2 Tg N₂O-N/yr, while a best estimate of current total net anthropogenic emissions is 5.3 Tg N₂O-N/yr (taking into account reduced emissions due to land-use change). Previous assessments have ranged between this value and estimates as high as 8.4 Tg N₂O-N/yr. This report finds that the lower end of the range of previous assessments is the most likely. In any case, the steady increase of these emissions since the industrial revolution has led to a parallel increase of N₂O in the atmosphere unprecedented since the last ice age maximum.

Agriculture is by far the largest source of anthropogenic N₂O emissions (Figure ES.1). Emissions from nitrogen in fertilizers and manures, crop residues, and other agricultural sources currently amount to 4.1 Tg N₂O-N/yr (range: 3.8-6.8), equivalent to about 66%⁴ or two-thirds of total gross anthropogenic emissions.\footnote{Note that the sum of the percentage emissions from the sectors listed here do not add up to 100% because other emission sources such as anthropogenic fluxes of N₂O from the oceans are not included in the summation. Other important sources of anthropogenic N₂O emissions are industry and fossil fuel combustion, biomass burning, and wastewater.

\textbf{Industrial and fossil fuel combustion} – This category includes emissions from stationary combustion (mainly coal power plants) and mobile combustion sources (road and air transport), as well as emissions from nitric and adipic acid production. Current emissions amount to 0.9 Tg N₂O-N/yr (range: 0.7-1.6) equivalent to about 15% of total gross anthropogenic emissions.

\textbf{Biomass burning} – This category covers two main sources – landscape fires (including forest fires and crop residue burning) and biomass burned in the household for cooking and heating. Current emissions are 0.7 Tg N₂O-N/yr (range: 0.5-1.7), equivalent to about 11% of total gross anthropogenic emissions.

\textbf{Wastewater and aquaculture} – N₂O emissions in this sector arise from wastewater treatment processes, as well as from the discharge of nitrogen wastes to surface waters from sewage and from aquaculture. Current emissions amount to 0.16 Tg N₂O-N/yr (range: 0.02-0.73) for wastewater and 0.05 Tg N₂O-N/yr (range: 0.02-0.24) for aquaculture, together equivalent to about 4% of total anthropogenic emissions.

3. What measures can reduce N₂O emissions?

\textbf{Agricultural emissions} can be reduced by boosting the overall nitrogen use efficiency of agriculture as well as by lowering meat consumption and food waste and food losses.

Under business-as-usual conditions, N₂O emissions from agriculture could grow from 4.1 Tg in 2010 to 6.0 Tg N₂O-N/yr by 2020 and to 7.5 Tg N₂O-N/yr by 2050. The increase is from projected growth in nitrogen fertilizer usage and production of animal manure nitrogen associated with meat and dairy products. This projected increase in production is a consequence of both increasing global population and increasing rates of consumption per person. However, if concerted emission reduction actions are taken, it is possible to reduce N₂O emissions from agriculture by 1.3 Tg N₂O-N/yr in 2020 and by 4.5 Tg N₂O-N/yr in 2050, relative to business-as-usual in those years.

An important and effective strategy to reduce N₂O emissions with many co-benefits is to improve the nitrogen use efficiency of agriculture. This means improving the ability of crops and livestock to utilize nitrogen, and minimizing the loss of nitrogen to the environment that occurs during crop cultivation and animal production. The efficiency of nitrogen use can be improved by a wide range of available and feasible methods.

For example, in crop production:

- Nutrient management strategies that ensure the efficient use of animal manure and fertilizer;
- Use of enhanced efficiency fertilizers that increase the uptake of nitrogen by plants and minimize nitrogen losses from the soil;
- Crop husbandry practices that increase crop yield at similar or lower nitrogen use.

In livestock production:

- Animal husbandry practices that lower feed...
requirements per unit animal produced, through animal breeding, improved herd management and improved feed quality and feed management;
• Improved recycling of animal manure to crop land.
The improvement of nitrogen use efficiency comes with important co-benefits discussed later under point 5.
Other options for reducing agricultural emissions of N₂O are:
Reducing excessive meat consumption – Taken as a whole, producing animal protein leads to higher N₂O emissions than plant protein. Therefore, reducing meat consumption, especially in affluent countries where protein consumption is already above dietary needs, would reduce N₂O emissions.
Reducing food waste and losses – A considerable percentage of produced food is either lost or wasted at various stages between production and consumption. Avoiding this loss or wastage could increase farmers’ profits, reduce the amount of food that needs to be produced, and thereby reduce emissions associated with food production.

Industrial emissions can be abated by installing N₂O abatement equipment in facilities producing nitric and adipic acid. Emissions from fossil fuel combustion (stationary combustion and transportation) can be reduced by reducing fossil fuel use or applying abatement equipment.
Under business-as-usual conditions, emissions from industry and fossil fuel combustion could grow from 0.9 Tg in 2010 to 1.0 Tg N₂O-N/yr by 2020 and 1.4 Tg N₂O-N/yr by 2050. These increases occur because of projected growth in energy consumption from stationary combustion sectors and growing global demand for fertilizer, nylon, plastics as well as other industrial products.

However, if actions are taken, it is possible to reduce N₂O emissions from industry and stationary combustion by 0.3 Tg N₂O-N/yr in 2020 and 0.9 Tg N₂O-N/yr in 2050 relative to business-as-usual in those years.
Options for achieving these reductions include:
• The installation of N₂O abatement technologies including catalytic and thermal destruction techniques in nitric and adipic acid production.
• The application of catalytic techniques and reducing fossil fuel consumption in stationary combustion sources.
N₂O emissions from mobile fossil fuel combustion (road and air transport) are projected to decline in the business-as-usual scenario as a result of the incorporation of NOₓ and VOC emission control technologies for road vehicles.

Industrial emissions are not the largest source of N₂O, yet add up to a significant amount, and may present viable opportunities for reduction over the next few years.
Two industries – adipic acid production and nitric acid production, alone account for about 5% of global gross anthropogenic N₂O emissions. Given the limited number of production plants involved, emission reductions might be easier to achieve here than in sectors having many diffuse emission sources such as in the biomass burning and agriculture sectors.
Significant progress has already been achieved in reducing emissions from adipic acid plants with approximately 80% of capacity in existing plants (as of 2010) already having N₂O abatement technologies. Not as much progress has been made in controlling N₂O from nitric acid plants. A public-
private partnership could be an option for accelerating the adoption of N₂O controls at all adipic and nitric acid plants.

Emissions from biomass burning can be abated by a variety of means depending on the source of emissions.

Because of difficulty in projecting the occurrence of future landscape fires, no estimates are made here for business-as-usual trends for this sector. The best estimate of current emissions (0.7 Tg/yr) is used as a baseline up to 2050. The emission reduction potential relative to this baseline is estimated to be 0.04 Tg N₂O-N/yr in 2020 and 0.26 Tg N₂O-N/yr in 2050.

Emissions from landscape fires can be abated by reducing the use of fires for forest clearing, implementing prescribed burning to lessen the amount of burnable vegetation in natural fires, and decreasing the frequency of unintentional fires.

Emissions from biomass-burning household stoves can be abated, for example, by improving the fuel and combustion efficiency of stoves.

Emissions from wastewater can be abated through various interventions in the collection and treatment of wastewater; *emissions from aquaculture* can be controlled by intervening in various aquaculture processes.

Under business-as-usual conditions, emissions from wastewater and aquaculture could grow from 0.21 Tg in 2010 to 0.25 Tg N₂O-N/yr by 2020 and 0.37 Tg N₂O-N/yr by 2050. These increases occur because of continued population and economic growth resulting in increased generation of wastewater and growing demand for fish products.

However, if actions are taken, it is possible to reduce N₂O emissions from wastewater and aquaculture by 0.09 Tg N₂O-N/yr in 2020 and 0.15 Tg N₂O-N/yr in 2050.

Emissions from wastewater can be reduced by lowering the nitrogen content of discharge wastewater, reducing wastewater leakage from sewage piping, and recycling nutrients in wastewater as fertilizer.

Emissions from aquaculture can be abated by boosting the overall nitrogen use efficiency of aquaculture, and by implementing fish farming systems that reduce the amount of waste generated during fish production, or by treating effluents from fish ponds.

The individual actions in these different emission sectors can be seen as part of a wider package to improve full-chain nitrogen use efficiency throughout the nitrogen cycle. By combining improvements in process efficiency with improved recycling patterns and societal choices, the overall goal is to increase food, energy and industrial production per unit of new nitrogen fixation, thereby decreasing the amount of N₂O emission per unit of production.

4. **What are possible trends in global emissions up to 2050 under different mitigation assumptions?**

As noted earlier, under *business-as-usual* assumptions of little or no mitigation, emissions of N₂O could almost double between 2005 and 2050. Meanwhile, scenarios with *moderate mitigation* slow the increase over this period and *concerted mitigation* scenarios reverse the upward trend of global N₂O emissions and show a decrease in global emissions between 2005 and 2050.

The potential to reduce N₂O emissions is high over the coming years and decades. The actions taken as part of the *concerted mitigation* scenarios reduce global N₂O emissions by 26% in 2020 and 57% in 2050 relative to business-as-usual levels in those years.

To examine future trends and the reduction potential of N₂O emissions, four different sets of scenarios were analysed. Besides making different assumptions about the level of mitigation, each of these scenarios made different assumptions about the driving forces of emissions such as population growth and future fertilizer use. The scenarios were clustered into three groups (Figure ES.2):

- **Business-as-usual** scenarios, with little or no mitigation;
- **Moderate mitigation** scenarios, with increasing emissions up to 2050 but at a slower rate than business-as-usual;
- **Concerted mitigation** scenarios, with decreasing emissions up to 2050.

Under business-as-usual scenario, global N₂O emissions increase by 83% between 2005 and 2050. Meanwhile, the actions under the *moderate mitigation* scenarios slow the increase over this period to 26%. The *concerted mitigation* scenarios are 22% lower in 2050 than in 2005. Hence, actions under these scenarios are able to “bend the curve” and reverse the trend of increasing emissions.

The emission reduction potential of N₂O is considerable over the coming years and decades. In 2020, *concerted mitigation* scenarios are 1.8 Tg N₂O-N/yr or around 26% lower than business-as-usual scenarios. In 2050, concerted mitigation scenarios are 5.5 Tg N₂O-N/yr or 57% lower than business-as-usual.

5. **What are the benefits of reducing N₂O emissions?**

Reducing N₂O emissions will help protect the ozone layer.

One way of gauging the effectiveness of N₂O emission reductions is to estimate the magnitude of avoided emissions over the coming decades in terms of their ability to deplete the ozone layer. If the emissions avoided by the concerted mitigation scenarios are summed up between 2013 and 2050, they amount to an equivalent of 3270 kilotons of ozone depletion potential (ODP Kt) of CFC-11 emissions. This is of comparable magnitude to the ODP Kt estimated to be locked up in the stocks of old refrigerators, air conditioners, insulation foams, and other units (1550-2350 ODP Kt), otherwise referred to as banks5. These stocks are considered the most significant remaining source of ozone depleting substances for which action should be taken to accelerate ozone layer recovery.

The rising levels of N₂O are partly undermining the gains in ozone layer recovery being achieved by drawing down

5 Banks are stocks of ozone depleting substances that have already been manufactured and used, but not yet released to the atmosphere.
CFCs and other ozone depleting substances. If N₂O emissions continue as a result of anthropogenic sources, ozone layer depletion will also continue. It follows that reducing N₂O emissions will help avoid the continued depletion of the ozone layer and secure the gains of the Montreal Protocol.

Reducing N₂O emissions brings climate benefits.

According to the UNEP Emissions Gap Report 2013, there will be an "emissions gap" of around 8 to 12 Gt CO₂eq in 2020.6 This gap has to be closed in order to have a "likely" chance of meeting the internationally agreed-upon target of limiting global warming to two degrees over the long run. Above, it was noted that the potential to reduce N₂O emissions in 2020 is around 1.8 Tg N₂O-N/yr. In units of equivalent CO₂ emissions, this is about 0.8 Gt CO₂eq/yr, which is around 8% of the gap. Hence, drawing down N₂O emissions can make a significant contribution to narrowing the emissions gap.

6 The 'emissions gap' in 2020 is the difference between global emission levels in 2020 consistent with meeting the 2°C target, and levels expected in that year if voluntary country emission reduction pledges are met. The 2°C target (keeping the increase in global average temperature to less than 2°C relative to pre-industrial levels) was agreed upon at the Conference of Parties of the Climate Convention in Cancun in 2010. See UNEP (2013) for details about the emissions gap.

Apart from protecting the ozone layer and climate, efforts to reduce N₂O emissions will have many other co-benefits, and can help increase wellbeing through the "green economy".

N₂O emissions are connected to many different aspects of the economy including agriculture, chemical manufacturing, electricity production, transportation, wastewater treatment and fish production. Given these many economic linkages, efforts to reduce N₂O emissions can be seen as part of an effort to build a post-Rio+20 "green economy". The key idea here is improving "nitrogen use efficiency" across the entire chain of nitrogen flows in the economy, and thereby reducing costs, providing livelihoods, and enhancing the environmental sustainability of agriculture and other sectors. This point of view can help decision makers decide where best to invest their efforts to improve efficiency and lessen nitrogen losses.

Figure ES.2: Projections of anthropogenic N₂O emissions according to the business-as-usual, moderate mitigation, and concerted mitigation scenarios, based on calculations in this report and previous calculations. The mean for each grouping of scenarios are shown by square, circle, and triangle markers, respectively.

<table>
<thead>
<tr>
<th>Year</th>
<th>2005</th>
<th>2010</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
<th>2045</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂O emissions normalized to 2005</td>
<td></td>
</tr>
<tr>
<td>Mean values for scenario groupings</td>
<td></td>
</tr>
<tr>
<td>Business-as-usual</td>
<td></td>
</tr>
<tr>
<td>Moderate mitigation</td>
<td></td>
</tr>
<tr>
<td>Concerted mitigation</td>
<td></td>
</tr>
</tbody>
</table>

Emissions Reduction Potential

<table>
<thead>
<tr>
<th>Year</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teragrams (Tg N₂O-N/yr)</td>
<td>1.8</td>
<td>3.1</td>
<td>4.2</td>
<td>5.5</td>
</tr>
<tr>
<td>CO₂ equivalent (Gt CO₂ eq/yr)</td>
<td>0.8</td>
<td>1.5</td>
<td>2.0</td>
<td>2.6</td>
</tr>
<tr>
<td>ODP equivalent (Kt/yr)</td>
<td>47</td>
<td>83</td>
<td>113</td>
<td>147</td>
</tr>
</tbody>
</table>
Many co-benefits arise from these efforts, depending on how and where nitrogen efficiency is improved. In agriculture, improving this efficiency could bring increased crop and livestock productivity, reduced requirements for inputs such as nitrogen fertilizer per unit of crop or livestock produced, and lower costs per unit of increasing yield. By raising profits in small-holder farming, it can support ongoing livelihoods and help alleviate rural poverty.

Improving nitrogen use efficiency lessens not only the release of N\textsubscript{2}O to the atmosphere, but virtually all losses of nitrogen to the environment. This means lower emissions of the air pollutants ammonia and NO\textsubscript{x}; less nitrate contamination of groundwater; and less eutrophication of surface waters.

As an illustration of the potential cost savings, an across-the-board improvement of 20% in nitrogen use efficiency was estimated to cost around $US 12 billion per annum, but would save around $US 23 billion in annual fertilizer costs. Furthermore it would bring additional environmental, climate and human benefits worth around $US 160 billion per annum.

6. How can we overcome barriers to N\textsubscript{2}O policies and move forward?

There are various barriers to N\textsubscript{2}O mitigation.

Typical barriers include the costs associated with implementing abatement technologies; the need for proper guidance, training and technology transfer on abatement techniques; and the lack of knowledge on how to adapt emission reduction strategies to particular sites and situations. In many cases, the substantial co-benefits of simultaneously reducing N\textsubscript{2}O emissions and improving nitrogen use efficiency can provide significant cost savings. However, this will not always be the case.

There are many actions that can help overcome barriers to N\textsubscript{2}O mitigation.

Some actions for consideration are:

- Removing subsidies that encourage the overuse or misuse of nitrogen fertilizer and other products, while providing incentives for adopting best management practices that would improve nitrogen use efficiency;
- Putting a price tag on nitrogen pollution through appropriate levies, incentives and tradable permits;
- Encouraging research and development geared towards the development of innovative techniques to enhance nitrogen use efficiency as well as increased crop and animal productivity in agriculture and other sectors;
- Increasing support for good nutrient management practices in crop and livestock operations through education, extension and outreach, especially to farmers in developing countries;
- Setting clear targets for N\textsubscript{2}O emission reductions and for improving nitrogen use efficiency, and putting in place strategies for tracking progress.

The preceding interventions may include a combination of regulatory, financial and voluntary approaches.

There are also many opportunities for embedding N\textsubscript{2}O mitigation policies into existing international treaties and institutions.

Since N\textsubscript{2}O has global implications for climate change and ozone depletion, there are arguments for acting at the international level against N\textsubscript{2}O emissions. Here are some examples of where this could be done:

- **United Nations Framework Convention on Climate Change** – N\textsubscript{2}O emissions from nitric and adipic acid production are already being addressed under the Clean Development Mechanism of the Convention, but attention could be given to agriculture and other sectors responsible for the vast majority of N\textsubscript{2}O emissions;
- **United Nations Vienna Convention for the Protection of the Ozone Layer** – The Montreal Protocol of the Convention could be expanded to include the control of processes leading to N\textsubscript{2}O emissions;
- **United Nations Convention on Biological Diversity** – Targets for reducing N\textsubscript{2}O emissions could be linked to the Convention’s Aichi Biodiversity Target 8 on nutrient pollution;
- **UNECE Convention on Long Range Transport of Air Pollution** – This UNECE Convention could be expanded to cover controls of N\textsubscript{2}O and to include new countries who are a major source of N\textsubscript{2}O emissions;
- **Global Program of Action on the Protection of the Marine Environment from Land-based Activities (GPA)** – This intergovernmental process could play a key advisory role in implementing N\textsubscript{2}O emission reduction measures building on its existing remit for nutrient management.
Chapter 1

Introduction

A. R. Ravishankara (National Oceanic and Atmospheric Administration, USA), Mark A. Sutton (NERC Centre for Ecology and Hydrology, UK), Eric A. Davidson (Woods Hole Research Center, USA), David Kanter (Princeton University, USA), John S. Daniel (National Oceanic and Atmospheric Administration, USA)

1.1. Background

Nitrous oxide (N\textsubscript{2}O) is commonly known as ‘laughing gas’ through its use as an anaesthetic in surgery and dentistry, but it is also naturally present in trace amounts in the Earth’s atmosphere. Interestingly, the Earth is the only planet in the solar system known to contain N\textsubscript{2}O in its atmosphere. This is attributed to the presence of life on earth and the cycling of biological nitrogen compounds, which lead to production of N\textsubscript{2}O as a by-product.

Almost all N\textsubscript{2}O emissions into the Earth’s atmosphere occur unintentionally. Figure 1.1 summarizes the main sources of these emissions. With the exception of specific uses of manufactured N\textsubscript{2}O (such as in anaesthesia) and emissions from industrial activity (such as transportation, nylon production, or energy production), all other sources of N\textsubscript{2}O emissions are a consequence of the biological nitrogen cycle. In the nitrogen cycle, inert molecular nitrogen (N\textsubscript{2}) is transformed into different forms of reactive nitrogen7 (N\textsubscript{r}) through several natural and anthropogenic processes8. The reactive nitrogen is then used as a nutrient for plant and animal growth before eventually returning to an inert form. N\textsubscript{2}O is a minor by-product of several of the fundamental processes of the nitrogen cycle where a small fraction of the reactive nitrogen does not return to the atmosphere as N\textsubscript{2}.

Human activities have altered the nitrogen cycle and consequently N\textsubscript{2}O emissions9. For example, humans have enhanced N\textsubscript{2}O emissions from agriculture by increasing the input of reactive nitrogen to these activities through the use of synthetic fertilizers and by cultivating leguminous crops that fix nitrogen. In the industrial sector, N\textsubscript{2}O emissions have increased as an unintended by-product of some manufacturing processes and high temperature burning of fossil fuels.

The anthropogenic and natural emissions of N\textsubscript{2}O can be somewhat difficult to separate since human activities also alter natural processes and can either increase or decrease natural emissions. For example, land-use change has decreased the area of natural forests and subsequently decreased N\textsubscript{2}O emissions from forest soils, while increased fertilizer use for food production has increased N\textsubscript{2}O emissions (see Chapter 3). Overall, human activities have clearly increased N\textsubscript{2}O emissions.

It must be noted that natural variations in the Earth System, such as natural climate variability, have altered N\textsubscript{2}O emissions over the centuries. However, the scaling up of human activities has been responsible for the substantial observed increase in N\textsubscript{2}O emissions since the 19th century (see Chapters 2 and 3). The atmospheric abundance of N\textsubscript{2}O in the mid-19th century was around 275 parts per billion (ppb). While this concentration probably reflects some anthropogenic effect from agriculture and fire, these contributions remained small enough to be indistinguishable from the effects of climatic variation on natural N\textsubscript{2}O emissions. By comparison, emissions have increased dramatically since the mid-19th century and this increase above the “natural” value can be attributed to human activities, with the dominant source being agriculture. This report uses 275 ppb as the “natural” level of atmospheric N\textsubscript{2}O.

A unique characteristic of the nitrogen cycle is the way in which anthropogenic reactive nitrogen compounds switch between chemical forms of nitrogen and contribute to multiple environmental concerns, often called the “nitrogen cascade” (Galloway et al., 2004). Therefore, the growth in anthropogenically-fixed nitrogen has led to an increase in several forms of nitrogen pollution including air, freshwater, marine and land pollution. Of particular importance is the impact of N\textsubscript{2}O as a greenhouse gas because it is a strong absorber of infrared radiation given off by the earth’s surface that could otherwise escape to space; and as an ozone depleting substance (ODS) because it degrades to nitrogen

7 Reactive nitrogen refers to any chemical form of nitrogen other than dinitrogen (N\textsubscript{2}). Reactive nitrogen (N\textsubscript{r}) compounds include NH\textsubscript{3}, NO\textsubscript{x}, N\textsubscript{2}O, NO\textsubscript{2}, and many other chemical forms, and are involved in a wide range of chemical, biological and physical processes.

8 The key processes include nitrogen fixation, the process by which inert nitrogen in the atmosphere is converted into ammonia (NH\textsubscript{3}). This can occur naturally or synthetically; nitrification, the biological transformation of ammonium into nitrate; denitrification, the biological conversion of nitrate into molecular nitrogen; mineralization, the biological conversion of nitrogen in plant or animal remains or waste to ammonium by microorganisms; anammox, the biological conversion of ammonium and nitrite into molecular nitrogen; and chemo-denitrification, denitrification through abiotic (chemical rather than biological) reactions.

9 Humans began to influence the natural nitrogen cycle in the pre-industrial era as they expanded agricultural land, used fire as a land clearing and management tool, and cultivated leguminous crops that carry out biological nitrogen fixation.
The long persistence of N₂O in the atmosphere means that it is a greenhouse gas similar to CO₂ (as a greenhouse gas) and some of the CFCs (as an ozone layer depleting gas) but different from methane. For example, although the “Vienna Convention for the Protection of the Ozone Layer” mentions N₂O as an ozone-depleting substance, it is not regulated under the “Montreal Protocol on Substances that Deplete the Ozone Layer”. Furthermore, a review of approved projects of the Global Environment Facility (GEF) suggests that very few of the 1,091 projects (as of 2013) that fall under the category of climate change and ozone depleting substances specifically target N₂O. Furthermore, the Clean Development Mechanism (CDM) of the UNFCCC up to now has only focused on the industrial sector of N₂O emissions, which together with fossil fuel combustion sources, only accounts for around 15% of total gross anthropogenic emissions. Within the industry sector, progress has been made in reducing emissions from adipic acid plants but policymakers have barely begun to address the other important industrial source of N₂O emissions — nitric acid plants. So, while some action has been taken on N₂O, much more could be done to reduce its emissions and increase the protection of climate and the ozone layer.

The persistence in the atmosphere, technically referred to as the “lifetime” is a metric used to gauge how long an emitted chemical stays in the atmosphere. It is defined as the time it takes for approximately 63% (time constant for an exponential removal of a chemical) of the emission to be removed from the atmosphere. For N₂O this time constant is around 120 years and is not expected to be substantially changed with climate change. In this report, the lifetime of N₂O is taken to be 120 years for all calculations.

1.2. Objective of Report

With the above concerns in mind, this report aims to inform policymakers and stakeholders about the impacts of N₂O emissions on the climate and ozone layer and opportunities for reducing its emissions. The report is divided into two parts:

- **Part I** lays out the environmental issues associated with N₂O emissions, especially its influence on climate and ozone layer depletion (Chapter 2). It also highlights the various natural and anthropogenic sources of N₂O and presents future projections of N₂O concentration in the atmosphere (Chapter 3).
- **Part II** describes the main mechanisms leading to N₂O emissions and presents options for reducing emissions. It also provides estimates of the emission reduction potential from various sectors. This information is provided for agriculture (Chapter 4), industry and fossil fuel combustion (Chapter 5), biomass burning (Chapter 6), and wastewater and aquaculture (Chapter 7). Chapter 8 presents emission projections based on the mitigation potentials presented in earlier chapters. It also articulates how reducing emissions is closely linked to the concept of “green economy” and ends with a description of international policy settings applicable to N₂O emissions reduction.

An underlying premise of the report is that actions to reduce N₂O emissions and protect climate and the ozone layer can also help solve other environmental problems associated with excess flows of nitrogen. Abating the sources of N₂O emissions is likely to reduce nitrate contamination of groundwater, abate emissions of ammonia and other nitrogen air pollutants and therefore lower deposition of nitrogen, and reduce the loading of nitrogen to lakes, rivers, and coastal zones and therefore decrease the occurrence of eutrophication of surface waters (Galloway et al., 2008; Gruber and Galloway, 2008; Oenema et al., 2011; Sutton et al., 2013). Solving these problems would mean better environmental quality and reduced threats from nitrogen pollution to both human health and biodiversity.
Part 1

The Nitrous Oxide Challenge
Chapter 1 of this report provides a brief discussion of N\textsubscript{2}O emissions, their relationship with the nitrogen cycle, and how the alteration of nitrogen cycle processes by humans has led to increased N\textsubscript{2}O emissions. This chapter describes in more detail the accumulation of N\textsubscript{2}O in the atmosphere and its impact on climate change and depletion of the ozone layer.

2.1. Increasing concentration of N\textsubscript{2}O in the atmosphere

Nitrous oxide (N\textsubscript{2}O) has been in the atmosphere for as long as there has been life on Earth (Wayne, 2000). Up until the last one or two centuries, its concentration did not change appreciably over thousands of years (Figure 2.1, left panel). This is because the rate of “natural” emissions to the atmosphere was roughly equal to their removal rate from the atmosphere by natural processes (Joos and Spahni, 2008).

As seen from ice core and firn records, N\textsubscript{2}O began to increase slightly after 1700 AD (Figure 2.1, middle panel). Its atmospheric abundance increased more rapidly from around 1850 and very rapidly from 1950 (Figure 2.1, right panel). This followed the rapid increase in application of fertilizer, made possible by the invention in the early 20th century of the Haber-Bosch process11 used in the synthesis of nitrogen fertilizer. Atmospheric measurements show that N\textsubscript{2}O concentration has increased by more than 0.2% per year over the past few decades; this is consistent with approximately 1% increase per year in anthropogenic emissions.

11 The Haber-Bosch process has allowed humans to transform inert dinitrogen gas into ammonia (NH\textsubscript{3}) and subsequently synthetic fertilizer.

![Figure 2.1: Past and present concentration of nitrous oxide in the atmosphere. Left hand panel. Plots of N\textsubscript{2}O and CO\textsubscript{2} from ice cores going back 10,000 years supplemented with in-situ atmospheric data for the past few decades. Adapted from Joos and Spahni, (2008). Middle panel. Atmospheric abundances of CO\textsubscript{2} and N\textsubscript{2}O from ice core and firn air (air trapped in compacted snow) from 1750. The 1750 to 2010 data are again a composite with in-situ data for the last few decades. Adapted from MacFarling Meure et al (2006). Right panel. Measurements carried out over the globe (courtesy of NOAA/ESRL/GMD) since 1998. The atmospheric abundance of N\textsubscript{2}O over the northern hemisphere (broken blue line) is slightly (but clearly) larger than that of the southern hemisphere (broken red line). This hemispheric difference is consistent with larger human-influenced emissions in the northern hemisphere. The global average is shown as a solid line.](image-url)
Both CO₂ and N₂O in the atmosphere have natural and human-influenced sources ¹² (see Chapter 3), with human activities responsible for increasing concentrations shown in the middle and right-hand panels of Figure 2.1. The increase in atmospheric concentrations of both gases parallels the increase in global population and industrialization experienced since around the middle of the 19th century. Today, the “natural” emissions of N₂O are still larger than human-influenced emissions. However, as noted earlier, natural emissions are not thought to have changed significantly and do not lead to an increase of N₂O in the atmosphere. Anthropogenic emissions, on the other hand, are becoming more and more significant ¹³ and are increasing the levels of N₂O in the atmosphere. Anthropogenic emissions are currently more than 40% of natural emissions and human activities have enhanced atmospheric concentration levels by almost 20% relative to “natural” levels.

As stated in Chapter 1, the global nitrogen cycle has been altered since the significant expansion of agriculture and industry. This includes a large increase in nitrogen fixation (Galloway et al., 2004) due to agricultural practices and a 3- to 5-fold increase in nitrogen deposition in industrialized regions of the world (Lamarque et al., 2005; Denman et al., 2007) due to increased industrial activities. The two processes (nitrogen fixation and nitrogen deposition) contribute to the enhancement of N₂O emissions (Butterbach-Bahl et al., 2011; Pinder et al. 2012).

Studies using nitrogen and oxygen isotopes (Park et al., 2012; Roeckmann et al., 2003) have helped identify the sources of rising levels of N₂O. Measurements of air samples from Cape Grim, Tasmania, dating back to 1978, combined with data from Antarctica firn air dating back to 1940 (Park et al., 2012), show that the isotopic composition of N₂O has changed. The observed changes in isotopes are consistent with an increase of N₂O from fertilized agricultural fields, and therefore provide further evidence that the N₂O buildup is mostly related to increasing fertilizer use ¹⁴.

2.2. Role of N₂O in climate change and ozone layer depletion

Increasing concentrations of N₂O in the atmosphere have significant implications for efforts to mitigate climate change and prevent the depletion of the ozone layer.

¹² “Natural” emissions of N₂O are referred to as those that would have occurred in the absence of significant human activity while “human-influenced” emissions (or “anthropogenic” emissions) refer to direct emissions caused by human activities, as well as net increases in emissions from natural sources caused by the alteration of natural processes due to human activities.

¹³ The background atmospheric concentration level of N₂O (attributed to natural emissions) is assumed to be 275 parts per billion (ppb) (see Chapter 1).

¹⁴ When nitrogen substrate is plentiful, as in a fertilized agricultural field, microbes readily discriminate against nitrogen-15, producing N₂O that has a lower nitrogen-15 to nitrogen-14 ratio relative to when nitrogen substrate is limited. Measurements of isotopic changes in nitrogen, along with the changes in isotopes of oxygen that are not sensitive to the amount of reactive nitrogen fertilizer, clearly show that the recent increase in atmospheric N₂O is due to fertilization of the soil.

¹⁵ “Well-mixed” is a term used for gases that have lifetimes long enough to be relatively homogeneously mixed in lower part of the atmosphere. Hence, their impact on climate and ozone depletion does not depend on where in the atmosphere they are emitted. Measurements of such a gas in one remote surface location will be almost identical to measurements in any other remote location. It should be noted that well-mixed gases may still demonstrate concentration variations in non-remote locations, particularly right next to large source or sink regions.

¹⁶ An emitted molecule of N₂O is about 300 times more potent than an emitted molecule of CO₂ for a 100-year time horizon when the Global Warming Potential (GWP) (which takes into account the atmospheric lifetime) is used as a metric (GWP-100 yr for N₂O = 300). The GWP is a ratio of the integrated radiative forcing from a pulse of a unit mass of a given well-mixed greenhouse gas as compared to that from the pulse of a unit mass of CO₂, and is thus a unitless quantity. The time horizon, typically chosen to be 100 years (referred to as GWP-100 yr in the previous sentence), is the time over which the forcing is integrated. GWP values thus represent a measure of the relative impact on climate among greenhouse gases over that time horizon. The choice of the time horizon is more of a policy decision than a scientific one.

¹⁷ Radiative forcing is a measure of how a climate forcing agent influences the Earth’s energy balance, with a positive value indicating a net heat gain to the lower atmosphere, which leads to an increase in global average surface temperature (warming) and a negative value indicating a decrease in heat gain (cooling).

¹⁸ See, for example, UNEP. 2011. HFCs: A Critical Link in Protecting Climate and the Ozone Layer. United Nations Environment Programme (UNEP), Kenya.
emissions would help in mitigating the future total climate forcing.

2.2.2. N₂O is also an “ozone depleting gas”. N₂O emissions are currently the most significant ozone-depleting emission.

The ozone layer in the stratosphere, as has been well established, protects humans and the biological world from harmful ultraviolet radiation from the sun. Depletion of the ozone layer has been mostly attributed to human-related emissions of halogenated (chlorine- and bromine-containing) chemicals. Amongst these, manmade chlorofluorocarbons (CFCs) and brominated chemicals such as halons and methyl bromide are the major contributors.

The Montreal Protocol on Substances that Deplete the Ozone Layer, a protocol of the Vienna Convention, regulates a wide variety of chemicals that deplete the ozone layer, but N₂O is not among the substances it controls. Nevertheless, N₂O is the source of nitrogen oxides (NOₓ) in the stratosphere, which efficiently destroy ozone in a manner similar to that of chlorine and bromine chemicals (see Box 2.1). The role played by NOₓ in ozone depletion was identified even before the role of CFCs and halons was known. In fact, the earliest concerns about ozone layer destruction came about because of the threat posed by NOₓ emitted by supersonic aircraft flying in the stratosphere (Johnston, 1971; Crutzen, 1970).

To compare the importance of different substances in depleting stratospheric ozone, a metric called the “Ozone Depletion Potential” (ODP) is used. Although not listed in the Montreal Protocol Annexes, anthropogenic N₂O could also be considered an ozone-depleting substance (ODS) if it were evaluated using the same criteria as that used for the selection of currently controlled ODSs. The ODP of N₂O has been calculated to be about 0.017 (Ravishankara, et al., 2009), which is comparable to the ODPs of Montreal Protocol-controlled chemicals such as HCFC-123 (0.02), HCFC-124 (0.022), HCFC-225ca (0.025), and HCFC-225cb (0.033).

More importantly, when the current emissions of ozone-depleting substances are weighted by their ozone-depleting potential, N₂O emissions are currently the most important ozone-depleting emission (Figure 2.3). Indeed, it was already the fourth most important type of emission in 1987 when the Montreal Protocol was adopted. Undoubtedly, N₂O has only become important because CFCs and other ozone-depleting substances have been drastically reduced through the Montreal Protocol. The contributions of CFCs and halons to ozone depletion continue to decrease and are projected to continue doing so, while the contribution of N₂O to ozone-layer depletion is rising now and will continue to do so in the future under business-as-usual conditions as shown in Figure 2.3. Therefore, N₂O is expected to remain the dominant ozone-layer-depleting emission.

ODP is defined in different ways, but the common metric used in the Montreal Protocol is referred to as the steady-state ODP. This ODP is defined as the ratio of ozone-layer depletion by the continued emission of one kilogramme of a substance relative to that by the continuous emission of one kilogramme of CFC-11 when both reach steady state, i.e., when their atmospheric abundances no longer demonstrate any long-term changes due to those emissions. Because it is a ratio of ozone depletion amounts, it is a unit-less quantity.

Beyond 2050 anthropogenic N₂O emissions have a bigger impact on ozone layer depletion than the sum of all other substances considered under the Montreal Protocol (Figure 2.3, right panel). Even during the next few decades, the contribution of N₂O emissions are greater than any of the other individual measures available to reduce ODS emissions.

On the other hand, there are a number of factors that may lessen the impact of N₂O on the ozone layer (Ravishankara et al., 2009, Portmann et al., 2012). These include the presence of CH₄, the presence of aerosols from volcanoes, and the influence of stratospheric cooling caused by increased CO₂, all of which influence the relative effectiveness of ozone destruction by halogens, chlorine and nitrogen oxides.

Even so, these factors are secondary to the direct impact of N₂O and do not change the main conclusion that N₂O currently has a significant effect on the ozone layer and this is expected to grow unless action is taken to reduce N₂O emissions (Portmann et al., 2012).

2.2.3. N₂O has a long atmospheric lifetime and this has important implications.

Nitrous oxide is essentially inert in the lower part of the atmosphere, the troposphere. Its loss occurs higher in the atmosphere, with the majority of it taking place in the stratosphere. Furthermore, unlike CO₂, in which a significant fraction, between 45 and 55%, of gas emitted into the atmosphere is sequestered within two decades by the biosphere or ocean mixed layer (Joos et al., 2013; Ballantyne et al., 2012), N₂O is not significantly removed by dissolution into the oceans. As a result, N₂O has a long atmospheric lifetime currently estimated to be approximately 120 years (See Chapter 1), and has almost the same concentration at all surface locations.

The long atmospheric lifetime has significant implications (Ravishankara and Lovejoy, 1994). Firstly, emitted N₂O accumulates in the atmosphere for many decades, implying that most of the natural and human induced N₂O emissions over the past 50 years are still in the atmosphere today. Secondly, even if its emissions were stopped immediately, it would take several centuries for N₂O to be removed from
Forty years ago, projections of enhanced emissions of reactive nitrogen oxides (NO\textsubscript{x}) due to potential increases in stratospheric supersonic aircraft activity led to the earliest concern (circa 1971) about ozone layer depletion. Later, from around 1974, attention shifted to manmade CFCs and Halons. Those concerns and the discovery of the ozone hole led to the Montreal Protocol. Now, there is concern about the increasing concentrations of N\textsubscript{2}O that would, if unabated, continue to deplete the ozone layer in the future.

Ozone is produced in the stratosphere via the splitting of O\textsubscript{2} by light (photolysis) to give oxygen atoms, followed by the reaction of O atoms with molecular O\textsubscript{2}. This process is balanced by the reaction of O atoms with O\textsubscript{3} to destroy ozone. In addition to the O atom reaction with ozone, there are catalytic reactions involving chlorine, bromine, hydrogen, and nitrogen radicals that contribute significantly to ozone destruction. These chemical processes along with O\textsubscript{3} production processes and transport account for the distribution of ozone in the stratosphere.

The sequence of reactions that destroys ozone via nitrogen oxides (NO\textsubscript{x} = NO + NO\textsubscript{2}) are:

\[
\begin{align*}
\text{NO} + \text{O}_3 & \rightarrow \text{NO}_2 + \text{O}_2 \\
\text{O} + \text{NO}_2 & \rightarrow \text{NO} + \text{O}_2 \\
\text{Net:} \quad \text{O} + \text{O}_3 & \rightarrow \text{O}_2 + \text{O}_2
\end{align*}
\]

Gas phase catalytic reactions of NO\textsubscript{x} through the above catalytic cycle, like those involving chlorine atoms, bromine atoms, or OH/\textsubscript{HO}_2 radicals, can destroy millions of ozone molecules before NO\textsubscript{x} is removed from the stratosphere. Thus a small amount of NO\textsubscript{x} can cause a large depletion in ozone abundance, as was discovered and quantified in the early 1970s.

N\textsubscript{2}O is transported to the stratosphere where it is degraded by light to inert nitrogen and oxygen as well as via reactions with highly energetic oxygen atoms; the latter process leads to NO\textsubscript{x} production and makes N\textsubscript{2}O the primary source of NO\textsubscript{x} in the stratosphere. Roughly 10% of destroyed N\textsubscript{2}O is converted to NO. The nitrogen oxides from natural N\textsubscript{2}O have been a part of the catalytic cycles that have contributed to the natural levels of stratospheric ozone over the past centuries. The same is true for chlorine and bromine atoms from naturally occurring chemicals such as methyl chloride and methyl bromide from the oceans. But now that N\textsubscript{2}O is increasing due to anthropogenic emissions, it is leading to a higher-than-natural degree of ozone depletion.

BOX 2.1: Nitrous oxide and the depletion of the stratospheric ozone layer (WMO, 2011)

Forty years ago, projections of enhanced emissions of reactive nitrogen oxides (NO\textsubscript{x}) due to potential increases in stratospheric supersonic aircraft activity led to the earliest concern (circa 1971) about ozone layer depletion. Later, from around 1974, attention shifted to manmade CFCs and Halons. Those concerns and the discovery of the ozone hole led to the Montreal Protocol. Now, there is concern about the increasing concentrations of N\textsubscript{2}O that would, if unabated, continue to deplete the ozone layer in the future.

Ozone is produced in the stratosphere via the splitting of O\textsubscript{2} by light (photolysis) to give oxygen atoms, followed by the reaction of O atoms with molecular O\textsubscript{2}. This process is balanced by the reaction of O atoms with O\textsubscript{3} to destroy ozone. In addition to the O atom reaction with ozone, there are catalytic reactions involving chlorine, bromine, hydrogen, and nitrogen radicals that contribute significantly to ozone destruction. These chemical processes along with O\textsubscript{3} production processes and transport account for the distribution of ozone in the stratosphere.

The sequence of reactions that destroys ozone via nitrogen oxides (NO\textsubscript{x} = NO + NO\textsubscript{2}) are:

\[
\begin{align*}
\text{NO} + \text{O}_3 & \rightarrow \text{NO}_2 + \text{O}_2 \\
\text{O} + \text{NO}_2 & \rightarrow \text{NO} + \text{O}_2 \\
\text{Net:} \quad \text{O} + \text{O}_3 & \rightarrow \text{O}_2 + \text{O}_2
\end{align*}
\]

Gas phase catalytic reactions of NO\textsubscript{x} through the above catalytic cycle, like those involving chlorine atoms, bromine atoms, or OH/\textsubscript{HO}_2 radicals, can destroy millions of ozone molecules before NO\textsubscript{x} is removed from the stratosphere. Thus a small amount of NO\textsubscript{x} can cause a large depletion in ozone abundance, as was discovered and quantified in the early 1970s.

N\textsubscript{2}O is transported to the stratosphere where it is degraded by light to inert nitrogen and oxygen as well as via reactions with highly energetic oxygen atoms; the latter process leads to NO\textsubscript{x} production and makes N\textsubscript{2}O the primary source of NO\textsubscript{x} in the stratosphere. Roughly 10% of destroyed N\textsubscript{2}O is converted to NO. The nitrogen oxides from natural N\textsubscript{2}O have been a part of the catalytic cycles that have contributed to the natural levels of stratospheric ozone over the past centuries. The same is true for chlorine and bromine atoms from naturally occurring chemicals such as methyl chloride and methyl bromide from the oceans. But now that N\textsubscript{2}O is increasing due to anthropogenic emissions, it is leading to a higher-than-natural degree of ozone depletion.

20 DU (Dobson Unit) is a common unit used to measure overhead column ozone amounts. One DU is the number of molecules of ozone that would be required to create a layer of pure ozone 0.01 millimeters thick at a temperature of 0 degrees Celsius and a pressure of 1 atmosphere (the air pressure at the surface of the Earth).

21 The smaller impact of the halocarbons is due to the fact that their emissions are already scheduled for elimination under the Montreal Protocol. For reference, the column amount of ozone is roughly 300 DU.
the atmosphere. In other words, just like CO₂ and CFC-12, a quick reduction in the atmospheric concentration of N₂O is not possible even if rapid policy decisions were to lead to instant reductions in emissions. This is the reason why CFCs are still persisting and destroying the ozone layer today even though their emissions have been reduced to less than 10% of what they were during the 1980s, when they were near their peak. Thirdly, because of its long lifetime, N₂O is well-mixed in the lower atmosphere. This uniform mixing, coupled with the diffuse nature of the N₂O emission sources, makes it challenging to identify the individual sources of N₂O via atmospheric observations. Hence, bottom-up (see section 3.2 and 3.3 for further explanation) inventory estimates are required to attribute N₂O emissions by source and sector.

2.3. Continuing N₂O emissions: implication for climate and the ozone layer

Unlike the CFCs, N₂O emissions and concentrations will continue to increase in the future under most current projections. These continued increases will lead to additional ozone depletion and will contribute to the warming of the climate system. Although the abundance of CFCs has begun to fall and are projected to continue to decline, leading to an ozone increase, the presence of anthropogenic N₂O emissions will lead to more ozone layer depletion compared to what would have occurred in the absence of such emissions. Therefore N₂O is somewhat counteracting the benefits gained by the Montreal Protocol

Figure 2.3 shows that ODP-weighted emissions of N₂O are greater than those of CFCs in 2010. The GWP-weighted emissions of N₂O are also larger than those of CFC emissions in 2010. Indeed, the majority of future projections suggest that N₂O will increasingly affect stratospheric ozone and warm climate. But Figure 2.3 also shows that even in 2100 N₂O is not expected to have the impact on ozone depletion that CFCs had in the 1980s.

2.4. Conclusions

- Nitrous oxide is the third most important anthropogenic well-mixed greenhouse gas today and is currently the most important ozone depleting substance emission to the atmosphere.
- Observations show that human activities have increased the atmospheric concentration of N₂O by about 20% relative to its natural level, which had been roughly constant over ten thousand years. Currently, anthropogenic emissions are already more than 40% of the natural emissions. The anthropogenic emissions could equal those from natural sources towards the end of the 21st century if emissions continue to increase unabated.
- Atmospheric observations are consistent with agriculture being the largest contributor to human influenced emissions of N₂O.
- The dual benefits to the Earth System of reducing N₂O emissions are clear, both in terms of protecting the ozone layer and reducing climate forcing in the future. The extent to which these benefits can be achieved requires, among other things, clear knowledge of the emissions of N₂O from different sources and reconciliation of the N₂O budget.
Chapter 3
N₂O: Sources, Inventories, Projections

3.1. Introduction
Chapter 1 of this report described how human activities have disrupted the natural nitrogen cycle and the consequent increase in N₂O emissions, while Chapter 2 highlighted the role of N₂O in climate change and ozone layer depletion. This chapter provides estimates of N₂O emissions from its various natural and anthropogenic sources, partitioning them into different economic sectors, and outlining the inherent uncertainties in these estimates. The chapter then summarizes published scenarios and projections for future emissions and resulting atmospheric N₂O concentrations through 2050.

3.2. Natural emissions

3.2.1. Approaches for estimating natural N₂O emissions.
Two approaches can be used to estimate natural N₂O emissions – “bottom-up” or “top-down”. The “bottom-up” approach sums up emission inventories from field measurements organized according to ecosystem type and/or by geographic region. The “top-down” approach estimates global N₂O emission from averages of atmospheric mixing ratios measured in ice cores prior to the industrial revolution and estimates of the lifetime of N₂O in the atmosphere, assuming that atmospheric concentrations were at an approximate steady state at that time.

3.2.2. Estimation of natural emissions.
Using the “bottom-up” approach, estimates of current natural emissions of N₂O from terrestrial, marine and atmospheric sources based on several inventories range from 10.2 to 12.0 Tg N₂O-N/yr (Mosier et al., 1998; Galloway et al., 2004; IPCC, 2007; Crutzen et al., 2008; Syakila and Kroeze, 2011). The IPCC fourth assessment report (AR4) estimated that current natural sources of N₂O add up to roughly 11.0 Tg N₂O-N/yr, which is the sum of emissions from terrestrial (6.6 ± 3.3), marine (3.8 ± 2.0) and atmospheric sources (0.6; range: 0.3 to 1.2) – see Figure 3.1. The indicated uncertainty ranges come from the range of bottom-up estimates. Studies published after AR4 suggest that these uncertainties may be even larger than those given in AR4. For example, recent estimates of the oceanic source include values up to 6.2 Tg N₂O-N/yr (Bianchi et al., 2012; Suntharalingam et al., 2012), which would extend the uncertainty range of both oceanic and total N₂O emissions.

Using the “top-down” approach, with an assumed atmospheric lifetime of N₂O of 120 years (Chapter 2), pre-industrial emissions are estimated to be about 11.1 Tg N₂O-N/yr. It should be noted that this estimate is uncertain because of the lack of complete understanding about the influence of anthropogenic changes prior to the industrial revolution (such as the expansion of agriculture) and variability of natural emissions.

Between 1730 and 1850 N₂O concentrations in the atmosphere varied slightly from year to year and decade to decade, but showed little or no consistent long term trend (see Chapter 2 and Machida et al., 1995). Although Syakila and Kroeze (2011) estimated that average net anthropogenic emissions were around 0.5 Tg N₂O-N/yr during the 18th and early 19th centuries, these emissions were so low that their signal cannot be distinguished from the effects of natural climatic variation.

Despite the large uncertainties of both bottom-up inventories and top-down modelling based on atmospheric N₂O, there is general agreement that natural emissions were and probably still are between 10 and 12 Tg N₂O-N/yr. These natural emissions are not contributing to the increase of N₂O in the atmosphere because they are balanced by an equal amount of sinks, primarily natural chemical breakdown of N₂O in the stratosphere, which has developed over a long period of time. Meanwhile, anthropogenic emissions are accumulating in the atmosphere and increasing the atmospheric concentration of N₂O because they are not balanced by sinks. However the stratospheric sink should
eventually come into a new equilibrium after emissions stop growing, and atmospheric concentrations will then stabilize at a much higher concentration than currently.

3.3 Anthropogenic emissions

3.3.1. Top-down atmospheric modelling constraints

Modern anthropogenic emissions of \(\text{N}_2\text{O} \) can be calculated using the same top-down method described above. In this case, the change in atmospheric concentrations from 1850 to the present is assumed to be entirely from anthropogenic sources, assuming relative stability of natural emissions over the same period and the same atmospheric \(\text{N}_2\text{O} \) lifetime of 120 (±10) years (Prather et al., 2001). The atmospheric concentrations were averaged for the period 2000-2007 to avoid artefacts of interannual variation, yielding an estimate for net anthropogenic emissions of 5.3 Tg \(\text{N}_2\text{O-N}/\text{yr} \) (range 5.2 – 5.5) for that period. This estimate includes a decrease in emissions from forest soils because of deforestation, and an increase in emissions from expanded activity in agriculture and other sectors.

3.3.2. Bottom-up inventory estimates

A protocol has been developed by the IPCC (2006) for use by countries to estimate their \(\text{N}_2\text{O} \) emissions using driving force data and emission factors. The most basic IPCC approach (“Tier 1 Protocol”) to calculate \(\text{N}_2\text{O} \) emissions is to multiply “activity” data from agriculture, energy generation, transportation, and other sectors by emission factors (EFs). “Activity” data are indicators of the level of activity in the sector and “emission factors” give the amount of \(\text{N}_2\text{O} \) emitted per unit of activity. They are averages across a broad range of conditions and often do not yield accurate estimates for individual sites. Nevertheless, there is evidence that errors on the small scale are largely cancelled when aggregated to larger scales (Del Grosso et al., 2008).

Countries that have sufficient data to calculate EFs more specific to their particular situations are allowed to use them under IPCC’s “Tier 2 Protocol”, which presumably yields more accurate estimates for those specific regions and management practices than those calculated under the “Tier 1 Protocol”. Under the “Tier 3 Protocol”, countries with access to validated biogeochemical models (and sufficient input data) are allowed to use these models to calculate \(\text{N}_2\text{O} \). This presumably yields even more accurate estimates if the models skilfully account for the spatial and temporal variation of the most important factors affecting emissions.

With the advent of new laser technologies for measurements of \(\text{N}_2\text{O} \) fluxes, there is likely to be continued improvement in estimating emission factors for the “Tier 1 and Tier 2 Protocols” and for validating the biogeochemical models used with the “Tier 3 Protocol”. However, it will remain difficult to fully account for the large spatial and temporal variation of \(\text{N}_2\text{O} \) emissions. Improvement in the quality of activity data for each country, such as its fertilizer application rates, livestock production, and manure handling procedures, is also necessary for improved emission estimates. Another source of inaccuracy in the use of EFs is that they assume a linear relationship between nitrogen application rates and \(\text{N}_2\text{O} \) emissions, which is not necessarily the case (see Chapter 4).

Table 3.1 shows the most recent and comprehensive efforts at estimating anthropogenic emissions from bottom-up inventories and from combinations of integrated bottom-up and top-down analyses. The column labeled “This Report” sums the estimates from other chapters to derive a “best estimate” for total net anthropogenic \(\text{N}_2\text{O} \) emissions of 5.3 Tg \(\text{N}_2\text{O-N}/\text{yr} \), which is equal to the top-down estimate (section 3.3.1). The best estimate from this report is lower than the estimates from other inventories shown in Table 3.1, partly because of lower updated estimates in chapters 4-7 and partly because this report’s inventory includes the effect of lower emissions of \(\text{N}_2\text{O} \) from tropical forest soils due...
Table 3.1: Best estimate values of anthropogenic N\textsubscript{2}O emissions based on review of published inventories

<table>
<thead>
<tr>
<th>Category</th>
<th>FAO 1</th>
<th>USEPA 2</th>
<th>EDGAR 2</th>
<th>IPCC AR4 7</th>
<th>Mosier et al., 1998 8</th>
<th>This Report 9</th>
<th>Historic 5</th>
<th>Estimate range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>4.1</td>
<td>3.8</td>
<td>4.6</td>
<td>5.1</td>
<td>4.9</td>
<td>4.3-5.8</td>
<td>5.1</td>
<td>3.6-6.8</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>Direct</td>
<td>1.1</td>
<td>0.3</td>
<td>1.8</td>
<td>1.4</td>
<td>1.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Indirect</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Manure</td>
<td>Direct</td>
<td>4.1</td>
<td>3.6</td>
<td>4.2</td>
<td>4.5</td>
<td>2.8</td>
<td>2.6</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>Indirect</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Organic Soils</td>
<td>1.1</td>
<td>1.7</td>
<td>1.6</td>
<td>0.1</td>
<td>0.01</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Crop Biological Nitrogen Fixation (C - BNF)</td>
<td>Crop Residues</td>
<td>0.3</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Residue Burning</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Biomass Burning</td>
<td>Others 11</td>
<td>0.1</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Industry and Fossil Fuel (Stationary and Mobile) Combustion</td>
<td>1.7</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Wastewater, Aquaculture and Others</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Solvent and Other Product Use</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Land Use Change</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td></td>
<td>Ocean</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>6.8</td>
<td>7.6</td>
<td>6.5</td>
<td>5.4</td>
<td>5.4</td>
<td>5.6-6.5</td>
<td>6.7</td>
<td>5.3-8.4</td>
</tr>
</tbody>
</table>

1 2010 estimates; The United Nations Food and Agriculture Organization (FAO) estimates agricultural N\textsubscript{2}O emissions by applying IPCC Tier 1 EFs to their country data gathered from national publications and questionnaires.

2 2008 estimates; the Emissions Database for Global Atmospheric Research (EDGAR) category “Indirect N\textsubscript{2}O from non-agricultural NH\textsubscript{3} and NO\textsubscript{x}” is partitioned between “Biomass Burning” and “Industry and Fossil Fuel Combustion” and weighted by their total direct emissions. The EDGAR database uses a blend of private and public data, applying IPCC Tier 1 EFs to estimate both non-agricultural and agricultural N\textsubscript{2}O emissions (with the exception of biomass burning, where they use EFs described in Andreae and Merlet, 2001).

3 2006 estimates for agriculture and waste (adapted by Syakila and Kroeze, 2011), 1989 estimates for industrial/energy.

4 The UNEP estimates for agriculture, biomass burning, wastewater, aquaculture, and land use change are from chapters within this report.

5 The FAO estimates are adopted in Chapter 4 of this report. This estimate does include indirect emissions from downwind and downstream ecosystems, but does not include sewage wastewater emissions.

6 The FAO estimates for agriculture and waste (adapted by Syakila and Kroeze, 2011), 1989 estimates for industrial/energy.

7 The SFM estimates for agriculture and waste (adapted by Syakila and Kroeze, 2011), 1989 estimates for industrial/energy.

8 The FAO estimates for agriculture and waste (adapted by Syakila and Kroeze, 2011), 1989 estimates for industrial/energy.

9 The UNEP estimates for agriculture, biomass burning, wastewater, aquaculture, and land use change are from chapters within this report.

10 The FAO estimates are adopted in Chapter 4 of this report. This estimate does include indirect emissions from downwind and downstream ecosystems, but does not include sewage wastewater emissions.

11 Includes category “large-scale biomass burning” which denotes savannah burning, forest fires, peat fires, grassland fires, decay of wetland/peatland and post burn decay after forest fires, agricultural residue burning, and other vegetation fires.

12 “Other” biomass burning includes tropical, temperate and boreal forest fires, tropical peat fires, and fuelwood fires.

13 Several literature sources combine emissions from industry and/or energy and transport into one overall estimate.

14 The Syakila and Kroeze (2011) estimate of reduced natural emissions is for pre-industrial land use change only. Crutzen et al. (2008) provide a wider range of pre-industrial land use change.

15 Emissions from the ocean due to anthropogenic N deposition should be included in indirect emission factors for agriculture and other sectors, but are probably underestimated, so we include this estimate from Suntharalingam et al. (2012).
to historic and on-going deforestation, which is neglected in many other inventories. Our best estimate of gross anthropogenic emissions is 6.2 Tg N₂O-N/yr, and our best estimate of reduced soil emissions due to anthropogenic land-use change is 0.9 Tg N₂O-N/yr, resulting in a best estimate of 5.3 Tg N₂O-N/yr for net anthropogenic emissions. Without this adjustment to the bottom-up inventory estimates, the bottom-up and top-down approaches would not agree.

To put the anthropogenic emissions of N₂O into perspective, UNEP (2012) estimates that these emissions make up about 6% of total global greenhouse gas emissions (in carbon dioxide equivalents). This makes N₂O the third most important greenhouse gas in terms of global emission after carbon dioxide and methane.24

The next section describes the breakdown of N₂O emissions from the various economic sectors and the factors responsible for the emissions. In this section, we will compare sectoral emissions with total current gross anthropogenic emissions of 6.2 Tg N₂O-N/yr.

3.3.3. Anthropogenic emissions by sector

Agriculture (Chapter 4)

Agriculture is the largest source of anthropogenic N₂O emissions, responsible for 4.1 Tg N₂O-N/yr (3.8-6.8 Tg N₂O-N/yr) or 66% of total gross anthropogenic emissions (Table 3.1). Emission estimates include direct soil emissions from synthetic nitrogen fertilizer and manure application and indirect emissions that occur from downstream or downwind water bodies and soils after nitrate leaches away from croplands and after nitrogen emitted from croplands as ammonia or nitrogen oxide gases falls back to the earth as atmospheric nitrogen deposition. Also included are N₂O emissions resulting from crop residues, manure management, cultivation of organic soils, and crop biological nitrogen fixation (C-BNF). The central factor responsible for agricultural N₂O emissions is a lack of synchronization between crop nitrogen demand and soil nitrogen supply. On average, around 50% of nitrogen applied to soils is not taken up by the crop (see Chapter 4). Inputs of nitrogen to agricultural soils are mainly from synthetic nitrogen fertilizer and manure application, with additional supply from legume nitrogen fixation, crop residues, and nitrogen deposition.

Industry and fossil fuel combustion (Chapter 5)

The industry sector plus fossil fuel combustion (stationary combustion and transportation) together are responsible for about 0.9 Tg N₂O-N/yr (0.7-1.6 Tg N₂O-N/yr) or 15% of total gross anthropogenic N₂O emissions. Nitric and adipic acid production are the major industrial sources. Nitric acid is mainly used as a feedstock in the production of explosives and nitrogen fertilizer, particularly ammonium nitrate, with N₂O emitted during the ammonia oxidation process (USEPA, 2012). Adipic acid is a key feedstock in synthetic fibre production, with N₂O resulting from the use of nitric acid to oxidize several organic chemicals (Schneider et al., 2010). Stationary combustion (mainly coal power plants) is the principal source of N₂O from the energy sector.

Wastewater, aquaculture and other sources (Chapter 7)

This category includes a variety of sources, including N₂O emissions from wastewater, aquaculture, the ocean, and emission reductions from land conversion. N₂O emissions from wastewater were 0.2 Tg N₂O-N/yr in 2010, or 3% of total gross anthropogenic emissions. This includes N₂O emitted either directly from wastewater effluent or from bioreactors removing nitrogen in biological nutrient removal plants (Law et al., 2012). A small amount of N₂O is also emitted in aquaculture (<0.1 Tg N₂O-N/yr in 2010) through the release of nitrogen wastes to surface waters where nitrogen is transformed and released as N₂O emissions. Various human-related changes to the oceanic environment have affected the amount of N₂O emissions produced by the oceans. These include: (i) increases in atmospheric nutrient deposition (Duce et al., 2008; Suntharalingam et al., 2012), (ii) the formation of low- or no-oxygen zones in the coastal environment (Gruber, 2008; Keeling et al., 2010), (iii) changes in marine productivity associated with ocean stratification and circulation change (Dutreuil et al., 2009), (iv) ocean acidification impacts on nitrification (Beman et al., 2011), and (v) eutrophication of coastal zones (Galloway et al., 2004).

Emissions of N₂O from this sector arise via the oxidation of both atmospheric N₂ and organic nitrogen in fossil fuels, with the extent of emissions dependent on the amount of organic nitrogen in the fuel, the operating temperature, and the oxygen levels during combustion (USEPA, 2012). N₂O from transport is released primarily by catalytic converters used to control NOₓ, carbon monoxide, and hydrocarbons in tailpipe emissions.

Biomass burning (Chapter 6)

Biomass burning is currently responsible for about 0.7 Tg N₂O-N/yr (0.5-1.7 Tg N₂O-N/yr) or 11% of total gross anthropogenic emissions. This includes crop residue burning, forest fires (resulting from both natural and human activities), and prescribed savannah, pasture, and cropland burning. It also includes N₂O emissions from household biomass stoves. N₂O is released via the oxidation of organic nitrogen in biomass during combustion. Although some wildfires are ignited naturally by lightning, all emissions from biomass burning have been attributed as anthropogenic emissions because it is impossible to separate out which wildfires are ignited by humans. Furthermore, anthropogenic climate change may also be increasing natural fire frequency and severity (Pechony and Shindell, 2010).

24 UNEP used a different estimate of anthropogenic N₂O emissions than used in this report.
Because tropical forest soils are a large natural source of N_2O emissions, tropical deforestation should be considered as a significant anthropogenically induced change in emissions. Soil N_2O emissions from recently converted tropical forests may initially increase, but the long-term trend is for emissions from the pasture soils and degraded land soils to be lower than those from intact, mature tropical forests, resulting in current estimates of a decreased source of 0.9 Tg N_2O-N/yr. This decreased soil source of N_2O due to anthropogenic activity is equal to about 15% of total gross anthropogenic emissions, so that estimated net anthropogenic emissions are 15% lower than gross anthropogenic emissions (Davidson, 2009).

3.4 Trends in emissions over the last 20 years

Figure 3.2 illustrates how N_2O emissions from three of the most important sectors of the Emissions Database for Global Atmospheric Research (EDGAR, 2009) have changed from 1990 to 2008. The dominance of emissions by agricultural soils is clear, with the importance of South Asia, parts of Latin America and especially East Asia as sources of these emissions growing in the last two decades. Large-scale biomass burning emissions are most important in tropical savannah regions. Industrial emissions are most important in developed countries and are growing in South and East Asia.

3.5 Emission projections

Projections of future emissions depend upon assumptions about changes in:

- Population growth rates.
- Per capita consumption of calories and protein needed for human nutrition and the avoidance of overconsumption.
- Relative sources of vegetable versus animal products for meeting food demands.
- Rates of wastage/loss of food from production to consumption.
- Nutrient use efficiency in crop and animal production systems.
- Production of new fixed nitrogen for agriculture (including biofuels) and aquaculture.
- Emissions of NH_3 and NO_x from all sectors, which contribute to nitrogen deposition on native soils and oceans.
- Fire frequency, including slash-and-burn agriculture, pasture clearing and wildfire.
- Industrial sectors.
- Land-use change.
- Energy sector technology and demand for biofuels.
- Climate and its effects on nitrogen cycle processes.

Climate change also has an effect on the rate of N_2O emissions from water bodies and soils under native vegetation, but this effect is not well represented in current models (Pinder et al., 2012) and it is not dealt with here. Most published projections of future emissions focus on assumptions about changes in emissions from agriculture, biomass burning, energy, transportation, and industry. Here, three sets of published emission scenarios were aggregated to characterize the potential range of future anthropogenic N_2O emissions.

Figure 3.2: Global maps of direct emissions from agricultural soils, large scale biomass burning, and industrial processes (mostly adipic and nitric acid production) for 1990 and 2008 from the Emissions Database for Global Atmospheric Research (EDGAR), version 4.0 (2009) (http://edgar.jrc.ec.europa.eu). Units are tons of N_2O-N per 0.1 x 0.1 degree grid cell per year. Note that this size grid cell is about 123 km2 at the equator and declines with increasing latitude, approaching zero near the poles.
Davidson (2012) used FAO projections of population and dietary demands to estimate fertilizer and manure demands and subsequent N2O emissions, including five variants (S1-S5) of mitigation and dietary habits.

The Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000) created four major global greenhouse gas emissions scenarios (A1, A2, B1 and B2) based on the degree of globalization vs. regionalization and the priority given to economic vs. social and environmental objectives. These were used in the IPCC’s Third and Fourth Assessment Reports.

The Representative Concentration Pathways (RCP; Van Vuuren et al., 2011a) are widely viewed as the next iteration of SRES, with four scenarios based on differing radiative forcing levels rather than emissions (RCP 2.6, 4.5, 6.0 and 8.5, with the numbers referring to different radiative forcing levels). They were developed for use with climate simulations for climate change analyses.

These studies have different base years and employ different inventory sources. In order to make their results comparable, all emission estimates from these scenarios were normalized to the best estimate of 2005-2010 average net anthropogenic emissions from this report (5.3 Tg N2O-N/yr).

The scenarios are organized into three groups:

a. **Business-as-usual scenarios** with little or no mitigation. The RCP 8.5, SRES A2, and Davidson’s S1 scenarios are business-as-usual (BAU) scenarios, which, on average, project a near doubling of annual net anthropogenic emissions by 2050 relative to 2005.

b. **Moderate mitigation scenarios**. The scenarios RCP 4.5, RCP 6.0, SRES A1, SRES B1, and Davidson’s S2 and S3 are “moderate mitigation” scenarios, defined here as scenarios showing emission trends that are higher than 2005 emissions in 2050 but below BAU. The range of increased annual net anthropogenic emissions in 2050 compared to 2005 is 7 to 64%.

c. **Concerted mitigation scenarios**. The RCP 2.6, SRES B2, and Davidson’s S4 and S5 mitigation scenarios are called “concerted” because they lead to emissions in 2050 that are below the 2005 level. In 2050 these scenarios are 2 to 34% below 2005 net annual anthropogenic emissions.

The scenarios of annual emissions are presented graphically in Figure 8.1 of Chapter 8. In Chapter 8 we also present further analysis of the three published sets of scenarios combined with a new set of scenarios developed in this report.

Here in Figure 3.3 we present the implications of the three published sets of scenarios on the atmospheric concentration of N2O. The concerted mitigation scenarios result in near stabilization of atmospheric N2O between 340 and 350 ppb by mid-century and probable stabilization before the end of the century, whereas N2O concentrations continue rising for the BAU and moderate mitigation scenarios (Figure 3.3). The differences in emissions and concentrations between the BAU scenario and the mitigation scenarios reveal the potential for considerable emission reductions, which are discussed in Chapter 8.

One caveat of these projections is that they all begin in 2005, and significant differences are already apparent in their trajectories by 2013. So far (up to 2013), actual global N2O emissions have been closer to BAU trajectories than the mitigation trajectories. Missing from these projections are the possible impacts of expansion of biofuels production due to the wide uncertainty bounds surrounding the potential land area devoted to biofuel, energy demand for biofuels and their fertilizer requirements. These projections are therefore explored separately in Box 3.1.

3.6 Conclusions

- Natural N2O emissions are 10.2 to 12.1 Tg N2O-N/yr but they do not contribute to the increase of N2O in the atmosphere. This is because about the same amount of N2O is removed from the atmosphere, primarily by natural chemical reactions in the stratosphere, as is emitted to the atmosphere through natural processes.

![Figure 3.3: Projected atmospheric concentrations of N2O for groupings of published scenarios for business-as-usual (“BAU” in red, including RCP 8.5, SRES A2 and Davidson’s S1), moderate mitigation (“Mod” in blue, including RCP 4.5, RCP 6.0, SRES A1, SRES B1, and Davidson’s S2 and S3), and concerted mitigation (“Conc” in green, including RCP 2.6, SRES B2, and Davidson’s S4 and S5), based on Nakicenovic et al (2000), Van Vuuren et al (2011a) and Davidson (2012). Solid lines show the average (av) for each grouping and dotted lines show the high (hi) and low (lo) estimates. All projections have been adjusted to a common emission estimate baseline in 2005 consistent with this report’s best estimate of net anthropogenic emissions of 5.3 Tg N2O-N/yr.](image-url)
Box 3.1. A major source of uncertainty in N₂O emission projections: Biofuel scenarios

The potential impacts of expanding first- and second-generation biofuels beyond 2020 are highly uncertain. In addition to uncertainties about total biofuel production, the nitrogen fertilization rates needed for producing second- or third-generation fuel stocks and the N₂O emission factors for those cultivation practices are not known. Fertilization rates and emission factors for rapidly growing trees and native grasses, forbs, and shrubs may be much lower than for most current food and fibre crops. Two methods were used here to bound the range of future N₂O emissions from biofuels—one based on the potential to deploy bioenergy from the demand and supply side, and the other based on total land available for biofuel crop cultivation.

For the first method, Edenhofer et al. (2011) estimate a bioenergy deployment range of 100-300 EJ/yr by 2050, which takes into account soil conservation and biodiversity goals, as well as potential water scarcity and the use of land for subsistence farming (Edenhofer et al., 2011; Creutzig et al., 2012). This approach generates estimates of 0.02-8.1 Tg N₂O-N/yr from biofuels by 2050, depending on the fuel source and the total amount of bioenergy deployed, with a central estimate of 2.1 Tg N₂O-N/yr.

The second method focuses on the amount of land potentially available to cultivate biofuel crops. Estimates range from 60-3700 Mha (covering 0.4%-28% of the earth’s land surface, excluding Greenland and Antarctica), with a number of estimates clustering between 240-500 Mha (Creutzig et al., 2012). Using this approach, N₂O emissions were estimated to be 0.08-4.9 Tg N₂O-N/yr (with a central estimate of 0.5 Tg N₂O-N/yr) depending on the amount of land devoted to biofuel crop cultivation.

The estimates calculated here are considerably lower than the Melillo et al (2009) estimates of 16.1-18.6 Tg N₂O-N/yr by 2100, though they are consistent with the Erisman et al (2008) estimate of 0.9 Tg N₂O-N by 2100. These data illustrate the huge uncertainty that still remains in future estimates of N₂O emissions from biofuels. Comparing these estimates from <1 to >18 Tg N₂O-N/yr to the range of the aggregated RCP, SRES and Davidson (2012) scenarios (4.4 to 9.9 Tg N₂O-N/yr) demonstrates that biofuels could either remain a relatively trivial source or become the most significant source of anthropogenic N₂O emissions at some point this century. Energy and climate policy decisions in the coming decades as well as the pace of technical innovation will be among the major determinants of future N₂O emissions from biofuels.

25 For this calculation, it was assumed that by 2050 all bioenergy demand will be supplied by second-generation biofuels. Given data constraints, the estimation focused on jatropha (Jatropha curcas), miscanthus (Miscanthus x giganteus), eucalyptus (Eucalyptus cinerea) and switchgrass (Panicum virgatum L). To estimate emissions, the range of published N₂O emission factors for these biofuels (which varies between 0.2 and 27.1 g N₂O-N/kJ) (Hoefnagels, 2010), were used.

26 In comparison, Melillo et al (2009) estimate that about 2000 Mha of biofuel crop cultivation will be needed by 2100 to stabilize atmospheric CO₂ concentrations at 550ppm (40%-90% of which would come from clearing forest for new crop land), while Van Vuuren et al (2011) estimated that 3000-4000 Mha will be needed by 2100 in order to reach the RCP 2.6 scenario for total radiative forcing of all greenhouse gases.

27 These calculations assume an average fertilizer application rate of 100 kg N/ha/yr for land devoted to biofuel crops, as was assumed by Erisman et al. (2008), although some crops may require less nitrogen fertilizer. These calculations also use the IPCC (2006) direct and indirect default emission factors.

- Net anthropogenic N₂O emissions are now (2005-2010) about 5.3 Tg N₂O-N/yr. These emissions are not being removed from the atmosphere at a fast enough rate to prevent build-up of N₂O in the atmosphere.
- Agriculture currently accounts for 56-81% of gross anthropogenic N₂O emissions. A major reason for this is the lack of synchronization between crop nitrogen demand and soil nitrogen supply. On average, around 50% of nitrogen applied to soils is not taken up by the crop. Future N₂O emissions from agriculture will be determined by several factors, including population, dietary habits, and agricultural management to improve nitrogen use efficiency.
- Industry, energy and transport sectors are responsible for 10-25% of gross anthropogenic N₂O emissions and are also the source for much of the NOx emissions that contribute to indirect N₂O emissions from land and the oceans.
- Emission reductions under the concerted mitigation scenarios lead to a near stabilization of atmospheric concentration of N₂O below 350 ppb by the middle of the current century. However, under the business-as-usual and moderate mitigation scenarios atmospheric N₂O concentrations continue to climb throughout the century.
- The impact of growing demand for biofuels on future projections of N₂O emissions is highly uncertain, depending mostly on the types of plants grown, their nutrient management, the amount of land dedicated to their cultivation, and the fates of their waste products. Considering the area of land that could be devoted to biofuel crops, the nitrogen fertilizer application rates, and the management practices, N₂O emissions from second and third generation biofuels could remain trivial or could become the most significant source to date. Therefore, research is urgently needed to reduce the uncertainty of the future impact of biofuels on N₂O and other aspects of the environment.
Part 2

Solutions to the N$_2$O Challenge
Chapter 4

Reducing N_2O Emissions from Agricultural Sources

Lead Authors: Oene Oenema (Wageningen University, The Netherlands), Xiaotang Ju (China Agricultural University, P.R. of China), Cecile de Klein (Agricultural Research Institute, New Zealand)

Contributing Authors: Marta Alfaro (Institute for Agricultural Research, Chile), Agustin del Prado (ICM Basque Centre for Climate Change, Spain), Jan Peter Lesschen (Wageningen University, The Netherlands), Xunhua Zheng (LAPC, Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), P.R. of China), Gerard Velthof (Wageningen University, The Netherlands), Lin Ma (Wageningen University, The Netherlands), Bing Gao (China Agricultural University, P.R. of China), Carolien Kroese (Wageningen University, The Netherlands), Mark A. Sutton (NERC Centre for Ecology and Hydrology, UK).

4.1. Introduction

Chapter 3 reviewed the many sources of anthropogenic N_2O in the atmosphere and highlighted the fact that agriculture is its largest source. In this chapter, we briefly review the sources of N_2O emissions in agriculture and possible strategies for reducing these emissions. For the purpose of this chapter, “agriculture” includes (1) producing crops for food, feed and biofuel, and (2) raising animals for meat, egg and dairy products. Aquaculture is not covered here, but in Chapter 7.

4.2. Sources of N_2O emissions from agriculture

Nitrogen is essential for producing food and feed; it is a constituent of protein, amino acids, vitamins, and nucleic acids, which have critical functions in plants, animals and humans. Application of nitrogen generally boosts the growth and development of crops, and hence the production of food. Similarly, animals grow and develop well when there are sufficient proteins and essential amino acids in their feeds. However, nitrogen also causes N_2O emissions. On average 1% of the nitrogen applied to crop land is directly emitted as N_2O into the atmosphere, depending on nitrogen source and environmental conditions (IPCC, 2001, 2006). In addition, there are N_2O emissions related to the storage and management of animal manures, the recycling of residues and wastes, the production of synthetic fertilizers, and some additional nitrogen losses.

Current total N_2O emissions from global agriculture are estimated at approximately 4.1 Tg N_2O-N/yr (range: 3.8 - 6.8)28. Nine main sources of N_2O emissions are distinguished (Table 4.1) and these can be classified as either direct or indirect29. Each of these sources has a specific emission factor30. Fertilizer and animal manure (including droppings from grazing animals) are the largest sources of emissions. Table 4.1 indicates that indirect emissions accounted for approximately 22% of total emissions in 2010. Nitrogen-fixing crops including soybean, clover, alfalfa and other leguminous crops have not been distinguished as separate N_2O sources because emissions during their growth are considered to be negligible (Rochette and Janzen, 2005). However, the total nitrogen stored in these plants is relatively large and they contribute significantly to N_2O emissions as crop residues (Marinho et al. 2004, Mosier et al., 2006, Herridge et al., 2008).

28 Estimated range taken from Table 3.1 in Chapter 3 of this report.

29 Emissions associated with the microbial nitrification and denitrification of fertilizer and manure nitrogen that remains in agricultural soils or animal waste management systems are referred to as direct emissions, while those associated with the volatilization, leaching or runoff of nitrogen from agricultural soils and animal waste management systems are referred to as indirect emissions.

30 Though source-specific, there is a considerable uncertainty in N_2O emission factors (Rydal and Winisarst, 2001), especially at field and farm scales, but less at the global scale (e.g., Kros et al., 2012, Leip et al., 2011, Butterbach-Bahl et al., 2013). The large uncertainty at lower scales is related to the diversity of agriculture and environmental conditions, the complexity of the N_2O producing processes and their controls (Robertson and Tiedje, 1987; Davidson et al., 2000), but also to the uneven spread of studies, with few field measurements in Africa (Baggs et al., 2006; Chapuis-Lardy et al., 2009). According to a default inventory methodology (IPCC, 2006), it is assumed that N_2O emissions are linearly related to the amounts of N input, representing 1% of nitrogen applied, with an uncertainty range of 0.03 to 3%. However, some authors have challenged this linearity (McSweeney and Robertson, 2005; Stehfest and Bowman, 2006; Cardenas et al., 2010; Hoben et al., 2011), and argue that emissions increase more than proportionally with nitrogen applied. Furthermore, emission factors have been differentiated according to nitrogen-input sources and environmental conditions. For example, Lesschen et al. (2011a) and Leip et al. (2011) derived fertilizer type, crop residue type, land-use, soil type and rainfall specific emission factors for Europe. For Mediterranean agriculture, Aguilara et al. (2013) differentiated emission factors according to fertilizer type and irrigation scheme. However, lack of activity data (e.g. N fertilizer type and application, N excretion) hamper the reduction of uncertainties (Philibert et al., 2012; Rosenstock et al., 2013).
Asia is the continent with the largest N\textsubscript{2}O emissions (Table 4.1), reflecting the fact that it also has the largest agricultural area and population. On a per capita basis, Asia has the lowest estimated N\textsubscript{2}O emissions, followed by Africa and Europe. Expressed per surface area of agricultural land, emissions are highest in Asia and Europe and lowest in Oceania and Africa. The largest source of N\textsubscript{2}O emissions in Asia, Europe and North America is the use of fertilizers for food, feed and biofuel production, while in Africa, Latin America and Oceania, the largest source is nitrogen excreted from grazing animals.

4.3. Options for emission reductions

Though intrinsically related to the cycling of nitrogen and the production of food, not all N\textsubscript{2}O emitted from agriculture should be considered ‘inevitable’. There are possibilities for reducing N\textsubscript{2}O emissions, which can be grouped into the following broad strategies:
- Changing diet and reducing food loss/waste.
- Improving nitrogen use efficiency in crop and animal production.
- Adopting technologies and management practices that decrease the fraction of input nitrogen that is released as N\textsubscript{2}O (i.e., the emission factor).

These strategies, which may be combined, depending on local situations, to reduce N\textsubscript{2}O emission in the food production, processing and consumption chain (Figure 4.1) are further discussed below.

4.3.1. Changing diet and reducing food loss/wastes

Changing diet

Food choices have major impacts on nitrogen use and N\textsubscript{2}O emissions per capita. For example, emissions associated with the production of animal-derived protein are about a factor of ten larger than those associated with the production of plant-derived protein (Galloway and Cowling, 2002; Figure 4.2). Within animal-derived food types, the production of ruminants (cattle, sheep and goat) releases more N\textsubscript{2}O per kg of product than pork and poultry. Hence, reducing the intake of animal-derived protein, especially by consumers in affluent countries, would reduce demand and consequently production of these food types, thereby decreasing associated N\textsubscript{2}O emissions. Reay et al. (2011) showed that the average European consumes 70% more protein than needed to meet dietary requirements (WHO, 2007) indicating a potential to reduce N\textsubscript{2}O emissions without compromising good nutrition.

Apart from reduced N\textsubscript{2}O emissions, dietary change has the additional benefits of improving human health and reducing ecological impacts associated with animal food production (Steinfeld et al., 2006; Erismann et al., 2008; Sutton et al., 2011a,b). However, it is also obvious that reducing the consumption of

Table 4.1. Emissions of N\textsubscript{2}O from agriculture per continent in 2010, estimated here using the Tier 1 IPCC (2006) approach with source-specific emission factors and national-level activity data from FAOSTAT.

<table>
<thead>
<tr>
<th>General characteristics & Sources of N\textsubscript{2}O</th>
<th>Asia</th>
<th>Africa</th>
<th>Europe</th>
<th>North America</th>
<th>Latin America</th>
<th>Oceania</th>
<th>Global Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human population, billion</td>
<td>4.26</td>
<td>1.02</td>
<td>0.74</td>
<td>0.34</td>
<td>0.59</td>
<td>0.04</td>
<td>7</td>
</tr>
<tr>
<td>Agricultural utilized area, Mha</td>
<td>1633</td>
<td>1170</td>
<td>469</td>
<td>474</td>
<td>737</td>
<td>412</td>
<td>4895</td>
</tr>
<tr>
<td>Synthetic fertilizer N use, Tg</td>
<td>67</td>
<td>3</td>
<td>14</td>
<td>14</td>
<td>7</td>
<td>2</td>
<td>107</td>
</tr>
<tr>
<td>Manure N excretion, Tg</td>
<td>39</td>
<td>22</td>
<td>12</td>
<td>7</td>
<td>22</td>
<td>5</td>
<td>107</td>
</tr>
<tr>
<td>Grain production, Tg</td>
<td>9455</td>
<td>1669</td>
<td>1818</td>
<td>2170</td>
<td>2101</td>
<td>213</td>
<td>17426</td>
</tr>
</tbody>
</table>

Direct Emissions, Gg N\textsubscript{2}O-N

- Applied fertilizer: 670 30 135 135 74 15 1059
- Nitrogen fertilizer production*: - - - - - - -
- Manure management: 109 12 45 29 20 4 219
- Applied manure: 50 5 63 25 22 1 166
- Grazing animals: 387 331 55 73 342 63 1251
- Applied crop residues: 119 17 40 45 32 4 257
- Burning crop residues**: 6 2 1 2 2 0 13
- Drainage of peatlands***: 90 11 62 24 3 10 200

Indirect Emissions, Gg N\textsubscript{2}O-N

- Emission from loss of nitrates (NO\textsubscript{3}) to surface and ground water and volatilization of ammonia (NH\textsubscript{3}): 420 106 127 97 128 26 904

Total emissions, Gg N\textsubscript{2}O-N

- 1852 514 528 429 623 123 4069

Emissions, kg N\textsubscript{2}O-N per capita

- 0.4 0.5 0.7 1.3 1.1 3.1 0.6

Emissions, kg N\textsubscript{2}O-N per ha

- 1.1 0.4 1.1 0.9 0.8 0.3 0.8

* N\textsubscript{2}O emissions from industrial processes for fertilizer production are discussed in Chapter 5.
** Emission reduction options for agricultural burning are discussed in Chapter 6
*** Peatlands are organic matter rich soils. Because of their high organic matter content, they may serve as sources of greenhouse gases including carbon dioxide, methane and N\textsubscript{2}O. Human activities (land-use change and drainage of the soil for agriculture, forestry and peat extraction) result in the emission of especially carbon dioxide and N\textsubscript{2}O into the atmosphere.
animal-derived protein is not relevant or an option for millions of people in South Asia, Africa, and elsewhere who are currently consuming very low levels of this protein.

Reducing food loss/waste

Globally, an estimated 20 to 40% of food produced is either lost or wasted at various stages in the food production-consumption chain (Parfitt et al., 2010; Gustavsson et al., 2011). For example, the annual amount of wasted food in China is now equivalent to the food needed by 200 million people (Ren, 2013). According to UNEP (2012), American consumers throw away around 25% and British consumers about 33% of food purchased. Furthermore, food is lost in developing countries due to lack of infrastructure for the processing, transportation and storage of produced food. Reducing food loss/waste may proportionally decrease global food requirements, thus, reducing N₂O emissions associated with production. Assuming a wastage reduction of 50%, i.e. from the current 20 to 40% loss to 10 to 20%, (Gustavsson et al., 2011; Kummu et al., 2012), total agricultural N₂O emissions could also decrease by 10 to 20%.³¹

Options for minimizing food wastage include increased public awareness about the importance of not wasting food, improved food labelling, relaxation of quality standards that do not affect taste or quality of food, developing markets for sub-standard products or consumable products deemed as waste, and change in business behaviour aimed at waste reduction. Food loss in developing countries can be substantially lowered by providing necessary infrastructure to small-holders (UNEP, 2012).

It must be noted however, that some level of wastage is inevitable in the food production-consumption chain. Recycling of these wastes as manure for agriculture could potentially reduce the quantity of synthetic fertilizers used in agriculture, thereby decreasing the total N₂O emissions in the food system.

The two strategies discussed above fall under the overall concept of sustainable food systems³² as described in UNEP (2012).

4.3.2. Increasing nitrogen use efficiency in crop and animal production

Crop production

Although defined in various ways, nitrogen use efficiency (NUE) generally provides an indication on how well nitrogen applied to crops is taken up and converted to crop yield (e.g., Dobermann, 2007). NUE is high when the amount of produce per unit of nitrogen applied is high. If NUE is high, the risks of

³¹ This is based on the assumption that total N₂O emissions from agriculture are linearly related to the amount of food produced. Hence, a 10-20% reduction in food production will result in similar reduction in N₂O emissions.

³² Sustainable food systems apply sustainability practices in the production, processing, distribution, storage, marketing and consumption of food so as to increase human well-being and minimize impact on the environment. It enables the production of sufficient, nutritious food, while conserving the resources that the food system depends on (UNEP, 2012).
nitrogen losses and N\textsubscript{2}O emissions are relatively low. Hence, efforts aimed at improving NUE can yield dual benefits: an increase in crop yield and reduced nitrogen losses, including N\textsubscript{2}O emissions (Burney et al., 2010; Thomson et al., 2012).

Emissions of N\textsubscript{2}O from crop production rise with increased nitrogen input from fertilizers, manures, composts, wastes, and crop residues (Bouwman et al., 2002; Snyder et al., 2009). However, emissions per unit of crop produce tend to decrease with increased nitrogen input until an optimum input level is reached. Beyond this level, N\textsubscript{2}O emissions per unit of crop produce increase sharply because an increasing fraction of applied nitrogen is not utilized by the crops (van Groenigen et al., 2010; Venterea et al., 2011).

Hence, a straightforward strategy for increasing NUE and consequently reducing N\textsubscript{2}O emissions is to apply only the crops (van Groenigen et al., 2010; Venterea et al., 2011). Increasing fraction of applied nitrogen is not utilized by the overall idea of nutrient management.

A notable nutrient management strategy is the “4R nutrient stewardship” also referred to as the “4Rs”. This strategy encourages the application of the right nutrient sources, in the right amount, at the right time and in the right place (IPNI, 2012). For it to be successful, the 4Rs requires site, soil and crop type-specific knowledge and information, accompanied by appropriate technologies and best management practices. Snyder and Fixen (2012) reported that nitrogen uptake of more than 70% could be achieved for many cereal crops when site-specific nutrient management practices based on the 4Rs are implemented. This is a significant increase over current levels since, for example, nitrogen recovery by corn (Zea mays) typically ranges between 40 to 50% (Dobermann 2007).

For global food security, large efforts have to be made to further increase crop yields through plant breeding (increasing the genetic potential of the crop), improved crop husbandry (appropriate seeding time and planting density, appropriate weeding), improved irrigation and drainage management, and improved pest and disease management. When properly combined, these efforts have the potential to increase crop yield and nitrogen use efficiency simultaneously (Chen et al., 2011; Hirel et al., 2011). Other options for enhancing NUE include cover cropping, multiple cropping, buffer strips, and conservation tillage.

Studies so far indicate that, depending on the local situation, N\textsubscript{2}O emissions per surface area and per unit crop produced may decrease by 10 to 60% through the implementation of the above options (Table 4.3). It must be noted however, that significant investments in education, training, demonstration and development of site-specific technologies are needed in order to be able to implement NUE improvement measures. This is because these measures would have to be implemented by the millions of small-holder farmers in the world in site-specific ways. Also, different areas may require different priorities and strategies. For example, crop yields have been stagnant in Africa during the last four decades (Lobell et al., 2009), in part because breeding efforts have not focused on crops predominantly grown in Africa. Meanwhile poor functioning markets have largely prohibited the use of technologies and management practices to increase yields and NUE.

Animal production

Although animals do not directly release N\textsubscript{2}O into the atmosphere (or only in trivial amounts), animal wastes are a large source of nitrogen and hence, N\textsubscript{2}O production (Steinfeld et al., 2006). Animals convert between 10 to 45% of the nitrogen in their feed into protein nitrogen in meat, milk, eggs, wool and hides, depending on animal species, feed quality and management. The remaining 55 to 90% of the nitrogen in feed is excreted in dung and urine.

Increasing nitrogen use efficiency (NUE) in animal production is increasing the percentage of feed nitrogen that is converted into animal products (Powell et al., 2010). By doing so, less animal feed and less nitrogen are needed to produce a unit of meat, milk, egg, wool and hides, and hence, N\textsubscript{2}O emissions associated with animal production will decline. Increasing NUE in animal production requires targeted combinations of animal breeding, improvements in feed quality and feed management, and improvements in herd management (Steinfeld et al., 2010, Herrero et al., 2010, Bai et al., 2013). We estimate that a site-specific implementation of these management measures could greatly increase animal productivity and decrease the need for additional feed and farm inputs. This would result in increased efficiency in feed use and hence, lower and less direct N\textsubscript{2}O emissions.

Nutrient management involves putting in place practices aimed at using nutrients, either as fertilizer or manure, in an effective manner such that crop nutrient needs are met, agricultural yield and profitability are enhanced, and environmental protection and sustainability goals are achieved.

43 The use of cover crops following the harvest of the main crop may mop up residual nitrogen from the soil, thereby reducing indirect N\textsubscript{2}O emissions as well as improving soil quality (e.g., Bergstrom and Jokela, 2001; Sprow et al., 2003). However, ploughing cover crops into the soil may increase direct N\textsubscript{2}O emissions (Garland et al., 2011).

44 Multiple cropping, including perennial cropping, intercropping and agroforestry systems have the potential to increase biomass yield, reduce leaching and erosion, thereby increasing N\textsubscript{2}O emissions. The remaining 55 to 90% of the nitrogen in feed is excreted in dung and urine.

45 Increasing nitrogen use efficiency (NUE) in animal production is increasing the percentage of feed nitrogen that is converted into animal products (Powell et al., 2010). By doing so, less animal feed and less nitrogen are needed to produce a unit of meat, milk, egg, wool and hides, and hence, N\textsubscript{2}O emissions associated with animal production will decline. Increasing NUE in animal production requires targeted combinations of animal breeding, improvements in feed quality and feed management, and improvements in herd management (Steinfeld et al., 2010, Herrero et al., 2010, Bai et al., 2013). We estimate that a site-specific implementation of these management measures could greatly increase animal productivity and decrease the need for additional feed and farm inputs. This would result in increased efficiency in feed use and hence, lower and less direct N\textsubscript{2}O emissions.

46 Conservation tillage reduces erosion and runoff from soil thus reducing indirect N\textsubscript{2}O emissions.

47 Buffer strips slow down runoff thereby enhancing infiltration of nutrients and increasing N\textsubscript{2}O emissions, which may consequently decrease direct and indirect N\textsubscript{2}O emissions (Snyder and Bruulsema, 2007).

48 Improved irrigation and water saving techniques may increase crop yields and N\textsubscript{2}O emissions by up to 50% (Scherer et al., 2008; Sanchez-Martin et al., 2010; Kennedy et al., 2013).
amount of nitrogen excreted per unit animal product by 10 to 30%. However, as in crop production, significant investments in education, training, demonstration and development of site-specific management measures are needed to realize these improvements.

Manure management

The estimated total amount of nitrogen excreted by animals in the world ranges from about 85 to 143 Tg (Oenema and Tammenga, 2005, Davidson, 2009). About half of the urine and faeces (those from grazing animals) are dropped in the field and left unmanaged. The other half is dropped in animal confinement (housing) systems, but less than half of that amount (i.e., 15 to 25% of total nitrogen excreted) is currently collected, properly stored and recycled to agricultural land. However, the ratio of housed animals to grazing animals is increasing because the current expansion of animal production is largely in ‘slurry-based, confined animal feeding operations’44 (Steinfeld et al., 2010). Ideally, with proper technology, management and incentives, all manure dropped in animal confinements could be recycled to agricultural land, with only a small fraction of the available nitrogen lost during housing, storage and processing. We estimate that adoption of improved manure management measures, such as improved animal housing45 and improved manure storage techniques46 (e.g., Rotz, 2004; UNECE, 2013), could increase the fraction of manure nitrogen that is recycled to agricultural land over the next 20 to 40 years from 15-25% to 30-40% of total nitrogen excreted. Additionally, the effectiveness of manure as a fertilizer can be enhanced through the application of the “4R nutrient stewardship” practices discussed earlier. This can double the effectiveness of the manure nitrogen (relative to fertilizer nitrogen) from the estimated current value of 20-30% to 40-60%47 (Schröder, 2005). As a result, the fertilizer nitrogen value of applied manure could be increased from the current 3-8% of total nitrogen excreted (Oenema and Tammenga, 2005) to as high as 12-24% within the next 20 to 40 years. This could lead to a proportional decrease in the amount of synthetic fertilizer needed for crop production thereby decreasing direct and indirect N₂O emissions associated with fertilizers. Increased recycling of manure nitrogen also has the added advantage of reducing ammonia and methane emissions. However, installing a proper manure collection, processing, storage and application system can be costly (e.g., UNECE, 2013) and may therefore require financial incentives for farmers. For hygienic reasons, manure in some countries has to be pasteurized or composted before application to land, which is also costly.

4.3.3. Technological approaches for reducing N₂O emissions from crop and animal production

Emissions of N₂O from agricultural land are dependent on the site and the type of fertilizer applied (Bouwman and Boumans, 2002; Lesschen et al., 2011a). Under well-drained conditions, emissions tend to be lower from nitrate-based fertilizers than from ammonium- and urea-based fertilizers, while the opposite seems true under moist conditions (Tenuta and Beauchamp, 2003; Smith et al., 2013). Some studies have shown greater N₂O emissions with anhydrous ammonia (used in North America) compared with urea (Venterea et al., 2010; Fujinuma et al., 2011). Hence, N₂O emissions can be reduced by choosing a particular fertilizer for a specific location.

44 Animal excrements are collected either as slurries or solid manures (mixed with bedding material). Solid manure in storages is in general a much larger source of N₂O (factor 10 or more) than slurries stored anaerobically (Mosier et al., 1998a). Stable management practices that accumulate a deep layer of litter and that include composting of manure can be large sources of N₂O. Hence, the design of the animal confinement and the manure stores have a large influence on N₂O emissions from manure management.

45 Animal manures and especially slurries contain a relatively large fraction of nitrogen in the form of ammonium, which is rapidly lost to the atmosphere via ammonia volatilization. Decreasing ammonia losses from manures in animal houses requires improved animal housing systems and also low-protein animal feeding (Rotz, 2004; UNECE, 2013).

46 Decreasing ammonia volatilization losses during manure storage requires roofs on top of the storages or decreasing the surface area where losses can take place, and lowering the pH of stored manure (Rotz, 2004; UNECE, 2013).

47 That is, the fertilization effect of 1 kg of nitrogen manure can be increased from its current value of 0.2-0.3 to 0.4-0.6 kg fertilizer nitrogen. Here, we assume also that the expected growth in livestock production between now and 2050 occurs predominantly in slurry-based, improved animal housing systems, where slurries are stored in leak-tight and covered storages, and applied via low-ammonia-emission-application techniques to land.
Another technological option is the use of ‘enhanced efficiency fertilizers’ instead of conventional fertilizers.48 Enhanced efficiency fertilizers have been developed to improve fertilizer efficiency by increasing the availability of nitrogen to crops while reducing nitrogen loss to the environment (Snyder et al., 2009; Zhang et al., 2013) including N₂O emissions (Shoji et al., 2001; Akiyama et al., 2010; Ju et al., 2011). Experiments have shown that these types of fertilizer can decrease N₂O emissions by 35-38%, relative to conventional nitrogen fertilizer (Akiyama et al., 2010). N₂O emission reductions can be further enhanced if site-specific recommendations become available. However, the use of enhanced efficiency fertilizers may increase the cost of fertilizer use by 10% to more than 100%.

N₂O emissions from grazed pastures can be reduced by avoiding animal urine and faeces deposition onto wet soils, taking advantage of the fact that emissions are substantially lower on dry soils than wet soils. Hence, emissions can be reduced by diverting animals onto the drier areas of a field or farm. De Klein et al. (2012) estimated that N₂O emissions may be reduced by 4 to 7% for every 10% reduction in urine nitrogen deposition onto wet soils.

Emissions of N₂O from grazed pastures can also be reduced by using nitrification inhibitors. Results from 46 studies in New Zealand indicate an average of 57% lower N₂O emissions when the nitrification inhibitor dicyandiamide was applied directly with, or shortly after, urine deposition. Studies in Chile indicated an emissions decrease of up to 35% when nitrogen fertilizer and urine were amended with the same chemical (Vistoso et al., 2012; Lanuza et al., 2012). Although nitrogen inhibitors have been shown to be effective in reducing emissions from grazed pastures, they have some practical drawbacks that need to be overcome. First, it is not easy to apply nitrification inhibitors to urine-affected areas in a timely fashion. Second, use of dicyandiamide increases the cost of animal feed production with little or no yield benefit to the farmer. Third, the impacts of inhibitor residues in soil, waters and food have not been sufficiently evaluated. While synthetic chemicals are commonly used as nitrification inhibitors, biological variants are also being studied. 49

As a final word, scientists are also investigating the possibility of manipulating soil bacteria genetically such that they produce less N₂O (Richardson et al. 2009).

4.4. Co-benefits, success stories and challenges

Apart from reducing N₂O emissions, the four emission reduction strategies discussed above all have potential co-benefits and trade-offs. For example, increasing nitrogen use efficiency reduces requirements for nitrogen inputs (fertilizer, animal manure, etc.) per unit of product produced, and thereby (other factors remaining the same) lowers ammonia emissions from cropland and its contribution to nitrogen deposition, and decreases the total amount of nitrogen that runs off or is leached from fields. Lower nitrogen runoff and leaching means less frequent eutrophication of lakes and rivers and its impacts (Sutton et al., 2011a, 2013).

Some policies targeted at other environmental problems associated with agriculture have ended up contributing to N₂O emissions reduction. An example is the Nitrates Directive of the European Union, which aims “to protect water quality across Europe by preventing nitrates from agricultural sources polluting ground and surface waters” (EC, 2013), but has also decreased N₂O emissions from agriculture by up to 10% (Velthof et al., 2013). In the Netherlands, emissions of N₂O from agriculture have decreased by more than 30% between 1990 and 2010, mainly due to the implementation of governmental policies and economic incentives to reduce ammonia emissions and nitrate leaching. These actions have increased nitrogen use efficiency without decreasing productivity (Coenen et al., 2012). Similar experiences have been reported for Denmark (Mikkelsen et al., 2010). However, the economic costs of implementing the various measures are considerable. It must also be noted that some measures aimed at reducing ammonia emissions and nitrate leaching may increase the risk of N₂O emissions (e.g., Smith, 2010; Venterea et al., 2012). This points to the need to make strategies site-specific, and to consider the full nitrogen cycle.

Implementing these emission reduction strategies is not without challenges and barriers. These include: balancing the costs of implementation with returns; the need for guidance and training of farmers; and the need for research to make strategies more site- and farm-specific (Johnson et al., 2007, Smith et al., 2008). In addition, some technical options may not be relevant to small-holder farms that continue to produce the bulk of food in developing countries (UNEP, 2012).

In general, measures specifically to reduce N₂O have not been widely implemented in agriculture. An important factor is probably that N₂O emissions are important globally rather than locally, and therefore farmers are not particularly motivated to address the problem. Also, the lack of a simple easy technical fix is a barrier to adopting emission reduction measures. On the other hand, local actions against N₂O emissions in agriculture are critical to lowering global N₂O emissions and protecting the climate system and ozone layer, and these can be supported by national and international policies as discussed elsewhere in this report.

4.5. Estimating emission reduction potential

The business-as-usual scenarios presented in Chapter 3 anticipate that N₂O emissions from global agriculture will increase over the next decades. This is mainly because of increasing demand for food, animal feed and the associated increase in fertilizer nitrogen use and production of manure nitrogen. Here we provide an estimate of possible future N₂O emissions from agriculture under different mitigation scenarios, based on estimated fertilizer nitrogen use and
manure nitrogen production and estimated \(\text{N}_2\text{O} \) emission factors, using the concept of Davidson (2009).

Business-as-usual scenario (BAU)

To estimate the baseline emissions for 2030 and 2050, separate assumptions were made about fertilizer nitrogen use and manure nitrogen production. These projections were derived from Alexandratos and Bruinsma (2012). Multiplying fertilizer nitrogen use and manure nitrogen production by their associated emission factors yields estimates of 6.4 Tg \(\text{N}_2\text{O}-\text{N}/\text{yr} \) for 2030 and 7.5 Tg \(\text{N}_2\text{O}-\text{N}/\text{yr} \) for 2050\(^52\) from the agricultural sector\(^31\) (Table 4.4). Emissions for 2020\(^2\) are estimated by extrapolation to be 6.0 Tg \(\text{N}_2\text{O}-\text{N}/\text{yr} \).

Reduction option 1: Improved efficiency of crop and animal production

Here, the same projections of crop production and animal production from BAU were assumed. For crop production, it is assumed that improved nitrogen use efficiency reduces fertilizer requirements per hectare. Also, the use of enhanced efficiency fertilizers leads to lower \(\text{N}_2\text{O} \) emission factors. For animal production, it is assumed that improved nitrogen use efficiency leads to less manure production per unit of milk, meat and egg produced. These assumptions lead to emissions of 5.2 Tg \(\text{N}_2\text{O}-\text{N}/\text{yr} \) for 2030 and 4.9 Tg \(\text{N}_2\text{O}-\text{N}/\text{yr} \) for 2050\(^3\) from the agricultural sector (Table 4.4). Emissions in 2020 are estimated by extrapolation to be 5.3 Tg \(\text{N}_2\text{O}-\text{N}/\text{yr} \).

Emissions reduction option 2: Option 1 plus improved efficiency of manure use

Here, the same assumptions from Option 1 were used, plus it was assumed that the increased recycling of manure from animal production reduces the total fertilizer nitrogen use for crop production\(^53\). This leads to emissions of 5.0 Tg \(\text{N}_2\text{O}-\text{N}/\text{yr} \) for 2030 and 4.4 Tg \(\text{N}_2\text{O}-\text{N}/\text{yr} \) for 2050 (Table 4.4). Emissions in 2020 are estimated by extrapolation to be 5.3 Tg \(\text{N}_2\text{O}-\text{N}/\text{yr} \).

Emissions reduction option 3: Option 2 plus reducing food loss and waste

Here, the same assumptions from Option 2 were used, plus it was assumed that food waste is cut by half relative to current estimates and that this leads to a reduction in the fertilizer requirements and manure production. This leads to emissions of 4.6 Tg \(\text{N}_2\text{O}-\text{N}/\text{yr} \) for 2030 and 3.7 Tg \(\text{N}_2\text{O}-\text{N}/\text{yr} \) for 2050.

50 Uncertainty ranges are not provided in the estimation of emission reduction potential because the starting data from Alexandratos and Bruinsma (2012) do not include ranges.

51 In crop production, total projected fertilizer usage in 2030 and 2050 is estimated at 231 and 263 Tg per year respectively (Alexandratos and Bruinsma, 2012). This translates into 132 and 150 Tg per year of fertilizer nitrogen respectively, assuming that fertilizer nitrogen use is 57% of total fertilizer use.

52 All 2020 emissions in the estimation of emission reduction potential were derived by extrapolating the values of 2030 and 2050 assuming a linear relationship.

53 For this scenario, it is assumed that nitrogen use efficiency of crop production increases through a massive implementation in practice of combinations of higher yielding and more efficient crop varieties, improved crop husbandry, use of enhanced efficiency fertilizers and improved nutrient management. In their fertilizer use projections for 2050, Alexandratos and Bruinsma (2012) considered a modest improvement in nitrogen use efficiency of 4% between 2005 and 2030. However, nitrogen use efficiency can be improved by a higher percentage; for example, Cassman et al. (2002, 2003), Doberman and Cassman (2005) and Chen et al. (2011) indicated that nitrogen use efficiency in cereal production could increase by 20 to 50% through a combination of plant breeding, proper technology and incentives (see section 4.3.2). Here, we assumed that the mean nitrogen use efficiency for all crops would increase by 10% in 2030 and by 15% in 2050 relative to the BAU scenario. This will decrease fertilizer use by the same percentage in these years, that is by 14 Tg in 2030 and by 22 Tg in 2050, relative to the BAU scenarios.

54 Currently, only 15 to 25% of the total amount of manure nitrogen excreted is effectively collected and returned to crop land, with an estimated fertilizer nitrogen effectiveness value of 20 to 30% (see section 4.3.2). In some countries, animal manures are simply discharged into rivers or stockpiled in lagoons and landfill where the liquids evaporate (Ma et al., 2012). As a result, the estimated fertilizer nitrogen effectiveness value of the total amount of manure excreted ranges between 4 and 11 Tg, with an overall mean of 8 Tg (equivalent to 6% of manure nitrogen excreted). For 2030, we assumed that 30% of manure nitrogen excreted is collected and applied to crop land with an efficiency of 40%, and for 2050 we assumed that 40% of manure nitrogen excreted is collected and applied to crop land with an efficiency of 60%, through a massive implementation in practice of improved animal housing systems, leak-tight manure storage systems, and improved nutrient management (4R-strategy). As a result the fertilizer nitrogen effectiveness value of the manure excreted increases to 12% (30% collected and used with an efficiency of 40%) in 2030 and to 24% (40% collected and used with an efficiency of 60%) in 2050. Hence, the fertilizer nitrogen effectiveness value of the total amount of manure excreted will have increased by 6% in 2030 and by 18% in 2050, relative to the BAU scenario. This would result in a fertilizer nitrogen replacement of 10 Tg in 2030 (6% * 174 Tg) and of 29 Tg in 2050 (18% * 161 Tg).

Emission factors for fertilizer nitrogen and manure nitrogen are the same as those in Option 1. Multiplying fertilizer nitrogen use and manure nitrogen production by the emission factors results in 5.0 and 4.4 Tg \(\text{N}_2\text{O}-\text{N}/\text{yr} \) for 2030 and 2050, respectively.
Emissions in 2020 are estimated by extrapolation to be 5.1 Tg N\textsubscript{2}O-N/yr.

Table 4.4. Fertilizer nitrogen use and manure nitrogen excretions in 2030 and 2050, and the mean N\textsubscript{2}O emission factors (EF), using the concept of Davidson, (2009). Effects of the emission reduction strategies on fertilizer nitrogen use and manure nitrogen excretion were assumed to be additive. See text.

<table>
<thead>
<tr>
<th>Emission reduction strategy</th>
<th>Nitrogen source</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nitrogen input, Tg</td>
<td>Revised EF</td>
<td>N\textsubscript{2}O Emissions Tg N\textsubscript{2}O-N</td>
</tr>
<tr>
<td>Business-as-usual (BAU)</td>
<td>Fertilizer</td>
<td>132</td>
<td>2.37</td>
</tr>
<tr>
<td></td>
<td>Manure</td>
<td>193</td>
<td>1.71</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>Option 1: Improving efficiency of crop & animal production</td>
<td>Fertilizer</td>
<td>118</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td>Manure</td>
<td>174</td>
<td>1.62</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>Option 2: Option 1 plus improved efficiency of manure use</td>
<td>Fertilizer</td>
<td>108</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td>Manure</td>
<td>174</td>
<td>1.62</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Option 3: Option 2 plus reducing food loss and waste</td>
<td>Fertilizer</td>
<td>103</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td>Manure</td>
<td>156</td>
<td>1.62</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>Option 4: Option 3 plus changing diets</td>
<td>Fertilizer</td>
<td>98</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td>Manure</td>
<td>133</td>
<td>1.62</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4.1</td>
<td></td>
</tr>
</tbody>
</table>

55 Reducing food waste by half from the current estimates of 20 to 40% (see section 4.3.1), would decrease the amount of food required to be produced by the same percentage. This will result in a 5-10% decrease in fertilizer needed for crop production, assuming that half of the food produced is derived from fertilizer nitrogen (Smil, 2000; Erisman et al. 2008). Similarly, the manure nitrogen production would decrease by 10 to 20%, when assuming that the relative waste of plant-derived food and animal derived food is similar. Hence, we assume that fertilizer nitrogen use and manure production would have decreased by 5% and 10% in 2030, and by 10% and 20% in 2050, respectively. As a result, fertilizer nitrogen use would decrease further by 5 Tg to 103 Tg in 2030, and by 10 Tg to 89 Tg in 2050, while manure nitrogen excretion would decrease by 18 Tg to 156 Tg in 2030, and by 32 Tg to 129 Tg in 2050.

56 The World Health Organization recommends a daily protein intake of 0.05 kg per capita per day, which translates to about 18 kg per capita per year. WHO also recommends that not more than 50% of the recommended protein intake is animal-derived protein (WHO, 2007). Currently, about 3.5 billion people consume more than 9 kg animal-derived protein per capita per year (range 12-27 kg/capita/yr). In 2030, some 5 billion will consume more than 9 kg animal-derived protein per capita per year (Westhoek et al., 2011). Here, we assume that the affluent half of the world population now consuming an excess amount of proteins in their diet will have reduced their intake of animal-derived protein by 30% in 2030 and by 50% in 2050. As a result, manure nitrogen production would have decreased by roughly 15% in 2030 and by 25% in 2050. This equates to a decrease in manure nitrogen excretion to 133 Tg in 2030 and to 97 Tg in 2050.

Furthermore, currently, 60 to 70% of the utilized agricultural area in the world is used for feed production, including one-third of the cereal area (Steinfeld et al., 2010). If animal production decreases by 15 to 25%, the demand for animal feed also decreases by roughly 15 to 25%. Here, we assume that total fertilizer nitrogen use will have decreased by 5% in 2030 and by 10% in 2050 as a consequence of lower feed needs. As a result, fertilizer nitrogen use will have decreased further by 5 Tg to 98 Tg in 2030, and by 9 Tg to 80 Tg in 2050.

Emission factors for fertilizer nitrogen and manure nitrogen are the same as those in Option 1. Multiplying fertilizer nitrogen use and manure nitrogen production by specific emission factors results in 4.1 and 3.0 Tg N\textsubscript{2}O-N/yr for 2030 and 2050, respectively.
decreases in fertilizer nitrogen and manure nitrogen excreted. Total N₂O emissions may decrease by approximately 22% in 2020, 36% in 2030 and 60% in 2050 (Table 4.4). Evidently, these significant reductions can only be achieved with adequate incentives, the help of hundreds of millions of farmers and billions of consumers, and the support of governments and research (see Chapter 8).

4.6. Conclusions

- Agriculture is the main anthropogenic source of atmospheric N₂O. It is in part an inevitable side product of food production due to inefficiencies in the nitrogen cycle.
- N₂O emissions associated with agriculture can be minimized through:
 a) Increasing nitrogen use efficiency in crop and animal production, including manure nitrogen use efficiency.
 b) Implementing technology and management practices that decrease the fraction of input nitrogen that is released as N₂O. These include the use of enhanced efficiency fertilizers and nitrification inhibitors in crop production.
 c) Changing diet and reducing food loss/wastes.

- Total N₂O emissions from the food system can be reduced by up to 60% by 2050 relative to business-as-usual for that year through combinations of these measures.
- Apart from environmental benefits, reducing N₂O emissions from agriculture also yields several health and economic co-benefits.
- Significant investments in education, training, demonstration and development of site-specific technologies are needed to achieve the projected N₂O emission reductions because measures will have to be implemented by billions of consumers and millions of small-holder farmers in the world in site-specific ways.
5.1 Introduction

This chapter focuses on N\textsubscript{2}O emissions from the combustion of fossil fuels and from the manufacturing industry. It begins with a discussion of their sources of N\textsubscript{2}O emissions as well as options for emissions abatement, and then presents estimates of current emissions and trends and N\textsubscript{2}O emission reduction potential.

Virtually all combustion processes have N\textsubscript{2}O emissions as a by-product. These emissions arise mainly from two pathways. The first pathway is the homogeneous gas-phase reaction57 of nitric oxide (NO) with isocyanate (NCO) or imidogen (NH) radicals present in combustion gases (Hayhurst and Lawrence, 1992). The NCO and NH radicals in turn stem from trace amounts of hydrogen cyanide (HCN) and ammonia (NH\textsubscript{3}). For N\textsubscript{2}O to be produced in these reactions either HCN and/or NH\textsubscript{3} must be present in fuel or they must be generated as the fuel is heated during the combustion process (Hayhurst and Lawrence, 1992). The second pathway involves heterogeneous reactions on, for example, char surfaces during coal combustion and catalyst surfaces in vehicle emission systems.

As we see later in this report, in simple terms N\textsubscript{2}O formed in NO\textsubscript{x} emission control systems can be viewed as an intermediate in the reduction of NO which escapes the emission control system before complete reduction to N\textsubscript{2} has occurred. A similar principle applies to the main industrial emissions of N\textsubscript{2}O. In such systems, N\textsubscript{2}O is generally an intermediate in the formation of the intended product. The control of N\textsubscript{2}O from these sources is therefore closely linked to efforts to improve efficiency in both NO\textsubscript{x} emission control systems and industrial processes.

5.2 Stationary combustion sources

The emissions of N\textsubscript{2}O from stationary combustion facilities (public and industrial power plants and other facilities burning fossil fuels) are strongly dependent on fuel characteristics, the type of combustion technology, the temperature of combustion, and the type of emission control technologies. Thermal decomposition of N\textsubscript{2}O is rapid and emissions are negligible for combustion significantly above 1200 K58. The N\textsubscript{2}O emission rates are highest when combustion temperature is in the range 800 K to 1200 K.

Measurements show that N\textsubscript{2}O emissions are low from conventional stationary combustion units, but relatively high from bubbling, re-circulating and pressurized fluidized bed units (De Soete, 1997). The relatively high N\textsubscript{2}O emissions from fluidized bed combustors are primarily due to the lower temperature of combustion (800 – 900 K) (Leckner and Åmand, 1992 and refs. therein). Updated estimations of annual N\textsubscript{2}O emissions from fluidized bed combustion can be found in Tsupari et al. (2007).

Emission abatement options

The technological options for reducing N\textsubscript{2}O emissions from combustion sources include a variety of selective catalytic reduction techniques which can remove up to 80\% of emissions (Kanter et al., 2013 and references therein). Emissions can also be reduced through fuel shifting (for example, a shift from coal to oil or gas would result in lower N\textsubscript{2}O emissions) or a reduction in fossil fuel consumption through improving energy efficiency (IEA, 2000; de Jager et al., 2001).

Current emissions, trends and emissions reduction potential

Current global emissions from stationary combustion and transport sources are estimated at around 0.59 (0.4-1.0) Tg N\textsubscript{2}O-N/yr (USEPA, 2012). Transport emissions are estimated at 0.115 Tg N\textsubscript{2}O-N/yr (see Section 5.3.3). Hence, a best estimate for stationary combustion is 0.48 (0.32-0.80) Tg N\textsubscript{2}O-N/yr. Assuming increasing rates of global energy consumption (EC, 2006), baseline emissions (without additional abatement) in 2020 and 2050 are projected to be around 0.55 (0.37-0.93) and 0.87 (0.59-1.46) Tg N\textsubscript{2}O-N/yr, respectively.

57 Homogeneous reactions are chemical reactions in which the reactants are all in the same phase. One pathway to N\textsubscript{2}O formation during combustion occurs when nitric oxide (NO) and isocyanate (NCO) or imidogen (NH) radicals, present in combustion gases react.

58 “K” denotes temperature on the Kelvin scale
The current trend to regulate emissions of nitrogen oxides (NOx) could lead to an increase in N2O emissions at industrial combustion facilities. This is because NOx emissions are controlled at lower combustion temperatures, and these lower temperatures increase the rate of N2O emissions, as noted above. Although N2O emissions from stationary combustion sources are likely to remain a small percentage of total anthropogenic N2O emissions, they may nevertheless increase in size for this reason and because of increased capacity of gas turbines for generating electricity.

As stated earlier, N2O emissions from stationary combustion sources can be reduced by up to 80% through a variety of techniques centering on selective catalytic reduction (Kanter et al., 2013 and references therein). If a robust set of policies were implemented to achieve a 20% adoption of the most effective technologies by 2020 and 60% by 2050, this would achieve an overall reduction of around 16% by 2020 and 48% by 2050. Applying these reduction percentages to the baseline figures above, gives an emission reduction potential of 0.09 Tg N2O-N/yr (0.06-0.15) in 2020 and 0.42 (0.28-0.71) in 2050, relative to the baseline in these years.

At present, the main barrier to achieving these reductions is that N2O emissions have not yet been recognized as a problem in this sector. As a result, it does not appear that any country is currently regulating N2O emissions from stationary combustion sources. However, given the potential for N2O emission reductions identified here, there is a strong case for giving more attention to mitigation in this sector.

5.3 N2O emissions from mobile combustion

5.3.1. Vehicular emissions

Light duty vehicles

N2O emissions from vehicles are small compared to emissions of other air pollutants (Smith and Carey, 1982; Berges et al., 1993; Sjödin et al., 1995). For the small amounts produced, vehicles equipped with 3-way catalysts generally emit more N2O than vehicles without catalysts (Berges et al., 1993; Dasch, 1992; Hupa and Matinlinna, 1994; Siegl et al., 1996; Sjödin et al., 1995). In this section we consider these N2O emissions from light-duty gasoline and light-duty diesel vehicles.

The magnitude of N2O emissions from light-duty vehicles is dependent on the employed emissions control technology and on operating conditions such as fuel sulfur level, driving cycle, ambient temperature, and catalyst operating temperature (Michaels et al., 1998; Odaka et al., 2002; Koike et al., 1999; Baronick et al., 2000; Graham et al., 2009). Estimates from Graham et al. (2009) indicate emission factors of between 14 and 100 µg N2O/g CO2 for various types of gasoline and diesel-powered vehicles. CO2 emissions from the global light-duty vehicle fleet are estimated at approximately 3 Gt CO2/yr (WBCSD, 2004). Assuming an emission factor in the range 31-57 µg N2O/g CO2 (which is a representative range for the emissions technology of the on-road fleet in 2010), N2O emissions from the global light-duty fleet will be approximately 0.08 ± 0.03 Tg N2O-N/yr.

Heavy duty vehicles

The need to meet the increasingly stringent emissions standards for heavy duty diesel vehicles (HDDVs) has led to changes in the implementation of air pollution controls over the last few years60. A 2004 estimate of the N2O emission factor for HDDVs was approximately 3 µg N2O/g CO261. Using data from Khalek et al. (2009, 2011), the average N2O emission factors for 2007 and 2010 compliant diesel oxidation catalysts and diesel particulate traps on HDDVs were estimated to be between 27 µg and 100 µg N2O/g CO2. These numbers indicate that the emission rate of N2O has increased because of the advanced emission control systems used in modern HDDVs. Adopting an emission factor of between 3 and 27 µg N2O/g CO2 for the on-road fleet in 2010, and considering that CO2 emissions from the global HDDV fleet in 2010 were approximately 1.5 Gt/yr (WBCSD, 2004) yields emissions from the global HDDV fleets of approximately 0.015 ± 0.012 Tg N2O-N/yr.

Current emissions and trends

Emissions from on-road vehicles (light-duty and heavy-duty) in 2010 are estimated to be 0.095 ± 0.042 Tg N2O-N/yr. To roughly estimate the 2020 and 2050 emissions from light-duty vehicles, the proportional correlation between N2O emissions and volatile organic compound (VOCs) emissions, as noted by Graham et al. (2009), was used. Global VOC emissions from light-duty vehicles are expected to decline by approximately 60% and 90% by 2020 and 2050, respectively, relative to 2010 (WBCSD, 2004). Hence, N2O emissions are estimated to be 0.03 ± 0.02 Tg N2O-N/yr in 2020 and 0.010 ± 0.004 Tg N2O-N/yr in 2050 for light-duty vehicles. At present, it is unclear how the new emissions control technology for heavy-duty diesel vehicles introduced in 2010 will be further modified, how and when this technology will be taken up by the global fleet, or how N2O emissions might change as a result. Hence, to estimate emissions in 2020 and 2050, emissions in 2010 were simply scaled up by 136% and 211% reflecting the projected increase in transport energy use to give 0.020 ± 0.016 Tg N2O-N/yr and 0.032 ± 0.025 Tg N2O-N/yr. Total emissions from the combined light-duty and heavy-

59 Measurements of N2O emissions were carried out on 200 gasoline and diesel-powered vehicles and the data were combined with those from other studies to create a dataset for 667 vehicles representing a wide range of emission standards. The median emission rates for aged vehicles meeting the progressively more stringent Tier 0 (1981-1993), Tier 1 (1993-1999), low emission vehicle and super ultra-low emission vehicle standards of the United States were 0.242, 0.135, 0.072, and 0.009 g N2O /liter fuel. This equates to emission factors of 100, 57, 31 and 14 µg N2O /g CO2, respectively.

60 Prior to 2004, heavy duty diesel vehicles (HDDVs) were not equipped with catalyst-based emissions control technology. To meet the increasingly stringent emissions standards, catalyst-based technology has been added to HDDVs over the past decade; in 2004 diesel oxidation catalysts were added and later in 2007 diesel particulate traps were further added. The selective catalytic reduction technology was then added in 2010.

61 This is based on USEPA (2004) which estimates N2O emissions from HDDVs at approximately 0.003 g/km and CO2 emissions from HDDVs at approximately 1000 g/km. Hence the N2O emission factor was approximately 3 µg N2O/g CO2.

62 Estimates for 2007 compliant vehicles were calculated from N2O and CO2 data for 18 different vehicle/test combinations as reported by Khalek et al. (2009), while that for 2010 compliant vehicles were calculated from information presented in Khalek et al. (2013), which states that CO2 emissions from three 2010 compliant HDDVs are approximately 3% lower than values for 2007 compliant vehicles (i.e. approximately 650 g CO2 per brake horse power hour) and N2O emissions were approximately 70-75 mg per brake horse power hour.
N2O emissions from aircraft

Based on very limited data, current N2O emissions from aviation are estimated to be around 0.020 ± 0.005 Tg N2O-N/yr. Baseline emissions of N2O in 2020 are estimated to be slightly higher at 0.030 ± 0.005 Tg N2O-N/yr. Using the emission reduction potential of 0.1 Gt CO2 for 2020 (UNEP, 2011), gives a reduction potential for N2O of around 0.003 Tg N2O-N/yr. Even if CO2 emissions from aviation grow by 2050 between a factor of 2.0 and 3.6 (Owen et al, 2010), the global N2O emissions from aviation will still be very low if they maintain their current proportion to CO2 emissions.

5.3.3. Estimating future N2O emissions from the transport sector

Summing the contributions from road transportation and aircraft, total N2O emissions from the transportation sector came to 0.115 ± 0.047 Tg N2O-N/yr in 2010; 0.090 ± 0.046 Tg N2O-N/yr in 2020; and 0.082 ± 0.047 Tg N2O-N/yr in 2050. These baseline estimates show a decrease in emissions from the 2010 value by approximately 20% in 2020 and 30% in 2050. The emissions from the transport sector are currently low and are decreasing mainly as a result of the diffusion of more efficient emissions control technology for road vehicles mandated by regulations focused on NOx and VOC control. There appears to be little additional scope for further reductions in N2O emissions from the transport sector over those noted above.

5.4 N2O emissions from industrial processes

5.4.1. N2O from nitric acid production

Industrial emissions of N2O come mainly from two manufacturing processes: nitric and adipic acid production. Nitric acid (HNO3) is a key ingredient in some nitrogen-based fertilizers and is also used for the production of adipic acid, explosives, and metal etching, as well as in the processing of ferrous metals. More than 80% of the world nitric acid production goes into the production of ammonium nitrate and calcium ammonium nitrate. About three quarters of the ammonium nitrate produced is used for fertilizers and one quarter for various industrial applications (IHS, 2013). The entire production of nitric acid takes place at around 500 to 600 plants worldwide (Kollmuss and Lazarus, 2010).

Nitric acid production involves the oxidation of ammonia using a platinum catalyst in the Ostwald process. Nitrous oxide is released as a by-product of this process. Emission rates depend on operating conditions at the facility (e.g., operating pressure), catalyst type and age, nitric acid concentration and the type of abatement technology applied.

Emission abatement technologies

Nitric acid plants now represent the single largest industrial source of N2O and so there has been strong interest in technologies to lower these emissions. The installation of N2O abatement technologies in nitric acid plants became commercially attractive in the European Union with the onset of the emissions trading system as of 2013 (Ecofys/Fraunhofer Institute/Oko-Institut, 2009). In the US, 20% of nitric acid plants are currently equipped with some type of NOx abatement equipment, which also reduces N2O as a side benefit (USEPA, 2006).

In principle, there are several different ways to control N2O emissions from this source. The nitric acid industry in the US uses both selective (SCR) and non-selective catalytic reduction (NSCR). While NSCR is more effective than SCR at controlling N2O, these units are generally not used in current facilities because of their high energy costs. Recently, progress has been made in reducing N2O released from the NH3 oxidation process by using more efficient oxidation conditions with lower reaction temperatures.

Abatement of N2O and NOx emissions in nitric acid plants can also be accomplished by using an iron zeolite catalyst. The catalyst either decomposes N2O into N2 and O2 (an effect, which increases significantly in the presence of NO2 in the exhaust gas) or reduces N2O using various reducing agents such as hydrocarbons. In addition, the iron zeolites allow NOx and NOx abatement to be combined. Several nitric acid plants have been equipped with these systems, which achieve N2O removal rates of 98-99% with NOx emission levels also being reduced (Groves and Frank, 2009).

Kollmuss and Lazarus (2010) evaluated industrial nitric acid projects under the Clean Development Mechanism (CDM) and concluded that the risk of carbon leakage is unlikely for these projects. The authors also provided detailed recommendations on how the current nitric acid methodologies could be improved and simplified through the use of a common benchmarking approach leading to a further reduction of N2O emissions from nitric acid production.

Current emissions, trends and emission reduction potential

Some recent estimates of N2O emissions from industrial processes do not distinguish between emissions from nitric acid and adipic acid manufacturing (e.g., USEPA, 2012; JRC, 2013). USEPA (2012) estimated current (2010) worldwide emissions of N2O from industry at 0.24 Tg N2O-N/yr. However, detailed data available on emissions from adipic acid plants point to a capacity and emissions increase in China after 2006 which presumably was not included in
the USEPA (2012) estimates\(^{67}\) (see Section 5.4.2). Hence, to estimate 2010 N\(_2\)O emissions from nitric acid plants, the total emissions from adipic acid plants existing before 2008 (0.04 Tg N\(_2\)O-N/yr – see Section 5.4.2) were subtracted from the USEPA (2012) estimate of 0.24 Tg N\(_2\)O-N/yr to arrive at 0.20 (0.13-0.40) Tg N\(_2\)O-N/yr.

As demand for fertilizer and industrial products grows over the coming decades, baseline emissions of N\(_2\)O from nitric acid production are also expected to grow. Assuming that the relative contribution of nitric acid to industrial emissions of N\(_2\)O remains the same, USEPA (2012) estimates growth rates of 1.5% annually from 2015 (after a stagnation period between 2010 and 2015). This translates to a projected 7% and 24% growth up to 2020 and 2050, respectively. Emissions from nitric acid production could therefore grow to 0.21 (0.14-0.43) and 0.25 (0.17-0.50) Tg N\(_2\)O-N/yr in 2020 and 2050 respectively. Extrapolating from these trends and assuming further growth at 1% per annum will yield a 50% production increase by 2050. Hence, business-as-usual emissions from this sector would be 0.30 (0.20-0.61) Tg N\(_2\)O-N/yr in 2050.

Relative to 2020 and 2030 baseline emissions, the maximum technical emission reduction potential in the nitric acid production sector is around 48% and 71% for these years respectively\(^{68}\). This is equivalent to emission reductions of 0.10 and 0.18 Tg N\(_2\)O-N/yr, respectively. By 2050 the maximum technical emissions reduction potential could reach 90%\(^{69}\), equivalent to an emissions reduction of 0.27 Tg N\(_2\)O-N/yr relative to the 2050 baseline.

5.4.2. N\(_2\)O from adipic acid production

Adipic acid production is the second important industrial source of N\(_2\)O emissions. Adipic acid (CH\(_3\))\(_2\)C\(_6\)H\(_4\)COOH)\(_2\) is a major input to nylon production, and is used for manufacturing carpets, clothing, tires, dyes and insecticides. N\(_2\)O emissions arise as an unintended by-product during the oxidation of a ketone-alcohol mixture with nitric acid.

According to Schneider et al (2010), there are only about two dozen adipic acid plants in the world. The largest production takes place in the US, EU and China, which together account for 70% of the worldwide N\(_2\)O emissions from this sector (USEPA, 2006).

Emissions abatement technologies

The most common approaches to abating N\(_2\)O emissions in this sector are catalytic decomposition and thermal destruction. These methods convert N\(_2\)O into elemental nitrogen (N\(_2\)) and oxygen. N\(_2\)O can also be recycled as feedstock for nitric or adipic acid production. In addition, another abatement process under development consumes N\(_2\)O as an oxidant for phenol synthesis (Shimizu et al., 2000, and references therein). These authors give a detailed description of the technology for each adipic acid producing company that has been made public through their patent applications.

Generally, for adipic acid production, N\(_2\)O emission reduction is estimated to have improved from approximately 32% in 1990 to approximately 90%. Current abatement technologies allow N\(_2\)O emissions in the exhaust to be reduced up to 99% (Schneider et al., 2010), but this does not include emissions that occur during service intervals of the abatement equipment\(^{70}\). This can however be addressed by installing a second N\(_2\)O abatement device which could result in almost zero N\(_2\)O emissions (SEtatWork, 2009).

An evaluation by Schneider et al (2010) shows that approximately 70% of the existing and operating adipic acid plants already have abatement technologies installed, either voluntarily or under the Clean Development Mechanism (CDM) or the Joint Implementation (JI) programme\(^{71}\). The evaluation concluded that the CDM has been effective in reducing N\(_2\)O emissions but also indicated that CDM projects have probably also caused carbon leakage, particularly during the economic crisis in the years 2008 and 2009\(^{72}\). This amount was equivalent to about 13.5 Mt CO\(_2\). It follows that future N\(_2\)O emissions reduction projects need to take this into consideration. Options for avoiding carbon leakage, according to Schneider et al., include revision of the baseline and monitoring methodology, exclusion of adipic acid plants from the CDM, restrictions on the use of CERs from adipic acid projects or sectoral emissions trading.

Current emissions, trends and emission reduction potential

Estimating current emissions of N\(_2\)O from adipic acid manufacture clearly needs to consider the abatement devices installed. In some countries, such as the US, emission controls have led to a sharp decrease in N\(_2\)O emissions over the last two decades (Figure 5.1). Some industry sources suggest that nearly all new adipic acid producers install N\(_2\)O abatement technologies (Wiesen, 2010). Detailed accounting by plant (Schneider et al., 2010) indicates that about 20% of the overall production capacity nevertheless operates without abatement. Interestingly these are mostly modern plants in China that started operation in 2008 or 2009 and which are too new to be eligible for CDM projects. There seems to be no technical reason for not installing abatement technologies apart from the cost.

Current global emissions of N\(_2\)O from adipic acid manufacturing have been estimated to be one third of industrial emissions (USEPA, 2006). This however comes with considerable uncertainty regarding the degree of emission abatement already implemented; hence a bottom-up approach was used here to estimate 2010 global N\(_2\)O emissions from adipic acid plants.

\(^{67}\) The USEPA (2010) figures indicate a decrease in emissions from adipic acid since the earlier publication in 2006 (USEPA, 2006), instead of the increase that probably occurred because of new plants (without abatement technology) in China after 2006.

\(^{68}\) This is based on the assumption that by 2020 and 2030, 50% and 75% respectively of all nitric acid plants are equipped with best available technology for N\(_2\)O emissions removal and that this technology achieves a reduction of 95% of uncontrolled emissions on average. This equates to a net emission reduction of 48% in 2020 and 71% in 2030.

\(^{69}\) If 95% of all nitric acid plants are equipped with best available technology that achieves 95% emission reduction.

\(^{70}\) N\(_2\)O formed during the service of the N\(_2\)O abatement facility is usually released into the atmosphere unabated.

\(^{71}\) If projects in a country with an emission reduction or limitation commitment under the Kyoto Protocol (Annex B Party) to earn emission reduction units (ERUs) from an emission-reduction or emission removal project in another Annex B Party. Each ERU is equivalent to one tonne of CO\(_2\) and can be counted towards meeting its Kyoto target.

\(^{72}\) In other words, controlling N\(_2\)O emissions resulted in a shift of adipic acid production partially from plants, which installed abatement technology in the 1990s, to CDM plants. A contrary view has been expressed regarding this claim. See http://cdm.ccchina.gov.cn/WebSite/CDM/UpFile/File2546.pdf and http://cdm.ccchina.gov.cn/WebSite/CDM/UpFile/File2546.pdf.
Using the list of all existing adipic acid plants in Schneider et al. (2010), global 2010 emissions were estimated as 0.12 (0.05-0.20) Tg N$_2$O-N/yr. The estimation shows that almost two thirds (0.07 Tg N$_2$O-N/yr) comes from new plants in China (mentioned earlier), which do not have emissions abatement equipment. As this increase in emissions since 2008 was apparently not incorporated in reports up to now (including USEPA, 2012), we assume that these reports have not considered the new emission sources and have only accounted for emissions from older plants (estimated as 0.04 Tg N$_2$O-N/yr using the bottom-up approach). It should be noted, however, that this discrepancy obviously increases the uncertainty of estimates.

Projections of future emissions from this sector must take into account the likelihood of increased adipic acid production as a consequence of growing global demand for nylon (especially in carpets and plastics). Using the USEPA (2012) projections and assuming no implementation of additional abatement, baseline emissions would increase by 7% in 2020 and by 24% in 2030 (similar to the projections for nitric acid production). Using these estimates and again assuming a 50% increase by 2050, then baseline emissions would be approximately 0.13 (0.05-0.22) in 2020, 0.15 (0.06-0.25), in 2030, and 0.18 (0.07-0.31) Tg N$_2$O-N/yr, in 2050. This assumes that 20% of adipic acid plants remain unabated, which of course depends very much on incentives and other factors influencing the adoption of abatement equipment.

With many plants already having abatement technology installed, additional emission reduction potential consists of (i) expanding coverage to the remaining 20% of capacity, which we assume can be achieved by 2020, and (ii) a gradual installation of improved equipment in existing and new plants that would further extend emission reductions from 95% to 99% (see above). It is estimated that the remaining emission reduction potential in the adipic acid sector from these two activities could be 84% or 0.11 Tg N$_2$O-N/yr in 2020 and 89% or 0.13 Tg N$_2$O-N/yr in 2030 relative to baseline for these years. By 2050, the maximum technical emission reduction potential could reach 95%, equivalent to a reduction of 0.17 Tg N$_2$O-N/yr relative to the 2050 baseline.

5.4.3. Towards reducing N$_2$O emissions in the industrial sector

The two industries just described – adipic acid and nitric acid production – account for around 5% of gross global anthropogenic N$_2$O emissions. Considering the limited number of production plants involved, and the wide availability of abatement technologies, emission reductions might be easier to achieve here than in sectors having many diffuse emission sources such as in the biomass burning and agriculture sectors.

Significant progress has already been achieved in reducing emissions from adipic acid plants with approximately 70% of existing plants (as of 2010) already having N$_2$O abatement technologies. Not as much progress has been made in controlling N$_2$O from nitric acid plants. As an example, Figure 5.1 shows that substantial progress has been made in reducing emissions from adipic acid plants in the United States, but only modest progress in the nitric acid manufacturing sector. The nitric acid plants in developing countries with N$_2$O abatement technology appear to be supported by the Clean Development Mechanism of the Climate Convention (Kollmuss and Lazarus, 2010). These authors also reported that, as of 2010, regulations controlling N$_2$O emissions from nitric acid plants were rare in developed countries and absent in developing countries.

In general, N$_2$O abatement in nitric acid plants is still only rarely implemented and happens in most cases only under some form of incentive, such as offset programs or emissions trading systems. But progress in reducing N$_2$O from nitric acid production might be accelerated by transferring some of the successful experience gained in reducing N$_2$O from adipic acid production.
While the cost of installing abatement technologies could be a possible barrier to reducing N_2O emission in adipic and nitric acid plants, incentives such as the CDM, JI and the EU-Emissions Trading System (EU-ETS) have helped increase the rate of adoption of abatement technologies76. Also, a public-private partnership could accelerate the uptake of N_2O controls in these plants.

5.5 Conclusions

- N_2O emissions from combustion and industrial sources are small compared to agriculture, but offer key opportunities for significant emission reductions.
- Until now, stationary combustion has not been a major focus of N_2O mitigation. However, technologies and practices are available for this sector that could reduce emissions by 0.09 Tg N_2O-N/yr in 2020 and 0.42 Tg N_2O-N/yr in 2050, relative to the baseline emissions in these years.
- Emissions from the mobile combustion sector (road and air transport) are currently small and are projected to decline by approximately 20% in 2020 and 30% in 2050 relative to emissions in 2010 as a side effect of controlling other air pollutants.

76 Kollmuss and Lazarus (2010) stated that except for a few pilot projects in Europe, N_2O abatement was not practiced before the implementation of CDM, JI and the EU-ETS. New N_2O abatement technologies and monitoring standards were introduced in 63 plants in 11 Non-Annex-1 countries with CDM support.

- Techniques to reduce N_2O emissions from nitric acid plants with N_2O removal efficiency of 98-99% are available. However, these techniques are yet to be widely implemented. Implementing these technologies could potentially decrease N_2O emissions by 0.10 Tg N_2O-N/yr and 0.27 Tg N_2O-N/yr in 2020 and 2050 respectively, relative to baseline emissions in these years.
- N_2O emissions from adipic acid production have already been significantly reduced because of the wide adoption of abatement techniques. This is an example of how quick implementation of abatement techniques can lead to significant emission reductions. However, emissions can be further reduced from this sector by adopting advanced abatement technologies and by increasing the number of plants with pollution control equipment. Implementing these steps could reduce emissions by 0.11 Tg N_2O-N/yr in 2020 and 0.17 Tg N_2O-N/yr in 2050 relative to baseline emissions in these years.
Chapter 6

Reducing N₂O Emissions from Biomass Burning in Landscape Fires and Household Stoves

Lead Author: Guido R. van der Werf (VU University Amsterdam, The Netherlands),
Contributing Authors: C. P (Mick) Meyer (CSIRO Marine and Atmospheric Research, Australia), Paulo Artaxo (University of São Paulo, Brazil)

6.1. Introduction

This chapter describes N₂O emissions from two main categories of biomass burning – landscape fires and household biomass stoves. Biomass burning occurs throughout the world whenever dry biomass and an ignition source come together. Earlier, fires were started mostly by lightning but nowadays the majority of fires are thought to be ignited by humans (USEPA, 2010). This is particularly the case in tropical savannahs and forests. But even in boreal and temperate regions, fire frequency is highest near human settlements and roads. Nevertheless, the increase in ignition frequency has not necessarily led to an increase in emissions. This is because the landscape fragmentation associated with human settlements limits fire size. Also, land uses such as agriculture often exclude parts of the landscape from burning. This is especially the case in tropical savannahs. Besides landscape fires, the burning of biomass in households mostly for cooking and heating purposes is an important source of N₂O emissions.

6.2. N₂O Emissions from biomass burning

In landscape fires, the amount of N₂O emitted depends on the extent of fires, biomass density, combustion completeness, and other factors represented by an “emission factor”. The emission factor indicates how much N₂O is emitted per unit dry matter combusted and depends on the nitrogen content of the fuel and burning characteristics.

Emissions from landscape fires are computed as part of the Global Fire Emissions Database (GFED) (Figure 6.1). Calculations are based on burned area estimates from satellite observations (Giglio et al., 2010), estimates of biomass and combustion completeness from a biogeochemical model (van der Werf et al., 2010), and emission factors estimated by Andreae and Merlet (2001).

Over the period 1997-2011, mean annual landscape fire emissions were estimated to be about 0.6 Tg N₂O-N/yr (Table 6.1). Around 85% are emitted in the tropics, mostly from savannahs, grasslands, and woodlands, although clearing of tropical rainforest for agriculture and the burning of agricultural waste is also significant. Africa is the most important continent (around 50% of total global emissions), mostly due to savannah fires. Savannah fires are also very important in Australia.

Fires in temperate and boreal forests are responsible for 15-20% of the global budget as are fires in tropical forests. Smaller contributions come from tropical peat fires (mostly in Indonesia) and from the burning of crop residues in agricultural lands. However, agricultural residue fires are small in size and therefore difficult to detect by satellite. Consequently, their emissions tend to be underestimated in the GFED. Hence, the estimate of agricultural residue burning in Table 6.1 is based instead on survey data of crop residue fires from Yevich and Logan (2003).

On the global scale, no trends have emerged from the satellite record which now spans about 15 years. Furthermore, it is difficult to assess a change in frequency and scope of future landscape fires. Therefore, baseline emissions for 2020 and 2050 are assumed to be the same as current rates.

In many parts of the world, stoves fired by biomass are used for household cooking and heating. Fuel wood is the most important source of biomass, but charcoal, dung, and crop residues are also used. N₂O emissions from these fires are more difficult to estimate than from landscape fires as they cannot be detected by satellite. The most recent estimates of total biomass burned in household stoves is 2460 Tg in year 2000 (Fernandes et al., 2007). Combining this information with emission factors from Andreae and Merlet (2001) yields an estimate of 0.15 Tg N₂O-N emitted per year (Table 6.1).

77 Combustion completeness is defined as the fraction of fuel load that is actually combusted.
Reducing N₂O emissions from biomass burning in landscape fires and household stoves

6.3 Options for emission reductions

6.3.1. Options for reducing emissions in landscape fires

Although landscape fires are a natural phenomenon, humans have modified the frequency and extent of these fires in many parts of the world. The degree to which N₂O emissions from landscape fires can be reduced depends in large part on the relative importance of humans versus nature in starting these fires. This varies between biomes and regions. To broadly assess mitigation options, three classes of fire regimes can be distinguished — anthropogenic fire regimes, natural fire regimes, and natural fire regimes modified by humans. They are explained below and summarized in Table 6.2 along with their potential mitigation options.

Table 6.1. Current emissions for various biomass burning categories using several estimates of biomass burned explained in the footnotes, and emission factors from Andreae and Merlet (2001). Baseline emissions for 2020 and 2050 are assumed to be similar to current rates.

<table>
<thead>
<tr>
<th>Source</th>
<th>Current emissions in Tg N₂O-N/yr (Various time periods. See footnotes).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Savannah fires</td>
<td>0.32¹</td>
</tr>
<tr>
<td>Tropical forest fires (deforestation)</td>
<td>0.10²</td>
</tr>
<tr>
<td>Temperate and boreal forest fires</td>
<td>0.10²</td>
</tr>
<tr>
<td>Tropical peat fires</td>
<td>0.02¹</td>
</tr>
<tr>
<td>Agricultural waste burning (crop residue)</td>
<td>0.04¹</td>
</tr>
<tr>
<td>Total from landscape</td>
<td>0.58</td>
</tr>
<tr>
<td>Household biomass stoves</td>
<td>0.15</td>
</tr>
<tr>
<td>Total</td>
<td>0.73</td>
</tr>
</tbody>
</table>

¹ Average for the 1997-2011 period based on GFED dry matter emissions
² For the year 1985, based on Yevich and Logan (2003)
³ For the year 2000, based on Fernandes et al. (2007)

An anthropogenic fire regimes

Because fire is a cheap and efficient tool for clearing fields, it is widely used in agriculture to remove stubble prior to sowing or a fallow period, or to clear forest for crops or pasture. The burning of agricultural crop residues is subject to air quality regulations in some regions, mostly to reduce impacts from particulate matter pollution. In such regions, agricultural waste is not burned but chipped, shredded, mulched, or used as composting waste. Exporting this approach to other regions would therefore lower emissions, keeping in mind that some of the nitrogen contained in these wastes is ultimately returned to the atmosphere as N₂O through mineralization and denitrification during composting. Nevertheless, substituting the burning of waste with composting generally reduces emissions (Davidson et al., 2008; Cook and Meyer 2009).

Emission reductions can also be achieved by lessening the use of fires to clear forests (as part of the deforestation process). As noted, fires are routinely used as a clearing tool during the dry season in preparation for agriculture. To maximize the emission reduction potential, it is important that the use of fire is also minimized after forest clearing (Aragao and Shimabukuro 2010). Tropical peat fires (mostly in Indonesia) can also be reduced by rewetting previously drained peatlands and by discouraging the use of fire to clear land.

Natural fire regimes

While wildfires are often considered disasters, they are also sometimes a prerequisite for the sustenance of an ecosystem. For example, species composition and regeneration in boreal forests, Eucalyptus forests, and savannahs are dependent on fire. This is particularly important in temperate and boreal forests where large fires are usually ignited by lightning. These fires may increase in extent and severity under climate change due to warmer and drier conditions (Flannigan et al.,
2013; Westerling et al., 2006), potentially offsetting some of the emission reductions discussed elsewhere in this chapter.

On the other hand, wildfires also pose a threat to human settlements and have therefore traditionally been controlled. This has led to the unnatural and excessive build up of combustible vegetation, resulting in extremely destructive wildfires that cannot be controlled. But fire management strategies are now shifting since it has been recognized that active suppression of all fires is often counterproductive.

One way to reduce the destructiveness of fires is by “fuel reduction”, also known as “prescribed burning”. This is a practice by which forest vegetation is burned early in the fire season when fires tend to spread more slowly because of cooler and more moist conditions. The aim is to reduce the amount of burnable vegetation and thereby reduce the severity and/or frequency of wildfires. Prescribed burning has been practiced for millennia and is now recognized as a way to lower the risks of uncontrolled wildfires. However, this approach has drawbacks, among which may be a more frequent exposure to smoke.

Natural fire regimes modified by humans

This category includes mostly savannah fires which are responsible for around 50% of N\textsubscript{2}O emissions from all landscape fires. Savannas have distinct dry and wet seasons. Fires occur during the dry season, and mostly consume only grass, leaf litter and low shrubs which regrow during the following wet season. Assuming a stable fire regime, the amount of vegetation burned is about equal to the amount regrown, implying that savannah systems tend to be CO\textsubscript{2} neutral over decades (Cook and Meyer, 2009). Since most trees here have a thick bark protecting them from fire, savannah fires tend to be low in intensity in comparison to forest wildfires, and tree canopies are rarely destroyed. But they occur with a high frequency, i.e. every 1 to 5 years.

In tropical savannahs, the distinct seasonality, relatively constant rates of fuel production, and high rates of litter decay related to high ambient temperatures offer great potential for reducing N\textsubscript{2}O emissions from fires. Strategies for reducing emissions, mostly tried out in Australia (see Section 6.4), focus on two areas: reducing fire frequency and adjusting fire seasonality.

Because fuel accumulation rates decline with time since the last fire, reducing fire frequency has the effect of shifting the pathway by which fuel carbon is returned to the atmosphere. Reducing fire frequency reduces the fraction of vegetation burnt and increases the fraction that decays, resulting in lower overall emissions of N\textsubscript{2}O and CH\textsubscript{4}. An extreme variant of this approach is to exclude fire completely, which could ultimately change a savannah to a forest.

The second strategy is adjusting the fire seasonality of savannahs. Under normal circumstances fires occur at an increasing rate during the dry season and cover a wide continuous area in which much of the combustible material is completely consumed by fire (Figure 6.2, right photo). “Adjusting the fire seasonality” in this case means introducing prescribed burning early in the dry season, and encouraging more patchy fires with a lower fraction of combustible material being burned (Figure 6.2, left photo). This type of prescribing burning burns much less fuel carbon and produces proportionately fewer greenhouse gas emissions as compared to the usual fire regime.

6.3.2 Options for reducing emissions from household biomass stoves

One way to reduce N\textsubscript{2}O emissions from household biomass stoves is to improve their fuel and combustion efficiency. Several stove types consume less fuel wood than simple open fires or traditional cook stoves, and produce proportionately fewer emissions. An example is given in Section 6.4.

Another option is to change the fuel source, for example, by switching from wood fuels to liquefied petroleum gas. Although the latter fuel produces CO\textsubscript{2}, its net effect on greenhouse gas emissions can be lower than that of wood combustion for an equivalent task, when all products of incomplete combustion are considered (Smith et al., 2000).

A side benefit of improving the efficiency of stoves or switching the fuels they use is that these measures tend to produce less smoke than traditional biomass cook stoves and thereby reduce exposure to dangerous indoor air pollution (e.g., WHO, 2006). Another side benefit is that these actions tend to reduce emissions of black carbon – a contributor to climate change (UNEP/WMO, 2011; UNEP 2011).

6.3.3. Co-benefits and barriers

As noted above for improved household stoves, each of the mitigation options described above has important co-benefits. For example early-season prescribed burning not only reduces N\textsubscript{2}O and other emissions but also helps to conserve biodiversity. Other co-benefits of mitigation actions are summarized in Table 6.2.

Despite the fact that mitigation options bring climate protection and many other co-benefits, there are many

Figure 6.2: Early (left) and late (right) season burning in an Australian savannah. Copyright Garry Cook, CSIRO
Table 6.2. Options, co-benefits and barriers to N2O mitigation for various fire types

<table>
<thead>
<tr>
<th>Biomass burning category</th>
<th>N2O emission mitigation option</th>
<th>Main co-benefits</th>
<th>Barriers and drawbacks to implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Savannah and pasture fires</td>
<td>Early season prescribed burning</td>
<td>Biodiversity conservation</td>
<td>Uncertain consequences for CH4 emissions</td>
</tr>
<tr>
<td>Savannah and pasture fires</td>
<td>Fire suppression</td>
<td>CO2 sequestration</td>
<td>Risk of catastrophic fires, change of landscape, potential loss of biodiversity</td>
</tr>
<tr>
<td>Tropical forest fires</td>
<td>Reduction in deforestation rates or reduced use of fire for deforestation</td>
<td>Biodiversity conservation, reduced CO2, CH4, and black carbon emissions, improved air quality</td>
<td></td>
</tr>
<tr>
<td>Temperate forest fires</td>
<td>Prescribed burning</td>
<td>Reduced wildfire severity and impacts</td>
<td>More frequent exposure to lower air quality</td>
</tr>
<tr>
<td>Tropical peat fires</td>
<td>Restoration of peatlands (rewetting)</td>
<td>Biodiversity conservation, reduced CO2 emissions by preventing oxidation, improved air quality</td>
<td></td>
</tr>
<tr>
<td>Agricultural waste burning</td>
<td>Replace burning by mechanical removing of biomass and composting</td>
<td>Reduced CH4 and black carbon emissions, improved air quality</td>
<td>Costly, more labour intensive, potentially higher soil N2O emissions</td>
</tr>
<tr>
<td>Household fires</td>
<td>Improve stove efficiency or replace wood stoves with stoves fired by liquefied petroleum gas</td>
<td>Improved (indoor) air quality, reduced landscape degradation, mitigate black carbon emissions, less time needed to collect fuelwood</td>
<td></td>
</tr>
</tbody>
</table>

barriers and drawbacks to their implementation that need to be addressed. While the most obvious is cost, other examples are given in Table 6.2. For instance, replacing agricultural waste burning with composting could be more labour intensive and lead to higher emissions of N2O from soils. These factors need to be carefully considered when evaluating options for reducing N2O emissions.

6.4 Successful examples of emission reductions

Three successful examples of reducing N2O emissions from biomass burning are described here:

1) **Lowering of deforestation rates and fire emissions in the Brazilian Amazon:** According to INPE (Brazilian National Institute for Space Research)78, deforestation rates in the Brazilian Amazon have been greatly reduced from 27,800 km²/yr in 2004 to 4,660 km²/yr in 2012. This was at least partly due to government involvement (Neptstad et al., 2009). Because fire is often used to remove biomass in the deforestation process, fire activity has decreased in parallel to the reduction of deforestation rates, except for drought years such as 2007 and 2010 when increased burning in the cerrados or previously cleared forests cancelled out the lower emission trends from deforestation fires. Comparing fire-related N2O emissions in the GFED for the periods 2009-2011 versus 1997-2011 (in grid cells that according to INPE were subject to deforestation) indicates an N2O emission reduction of about 50%.

2) **Adjusting fire seasonality in northern Australia:** Several projects in the Australian savannah have focused on abating CH4 and N2O emissions by introducing early season prescribed burning as described in Section 6.3.1. The largest is the Western Arnhem Land Fire Abatement (WALFA) project. Implemented over 28,000 km², the mean annual N2O emission reduction was estimated at 37% (Russell-Smith et al, 2013) compared to the pre-project 10-year baseline.

3) **Replacement of traditional stoves with Patsari cookstoves:** In several regions in Central America, the replacement of traditional stoves with so-called “Patsari” cookstoves has achieved fuelwood savings of between 44 and 67% with even larger decreases in indoor pollution levels (e.g., Masera et al., 2007; Berrueta et al., 2008; Garcia-Frapolli, et al., 2010). These solid household stoves are designed to burn fuel more efficiently and lower heat losses. Likewise, modern prototypes, such as stoves equipped with fans or semi-gasifying stoves, can greatly reduce particulate matter and carbon monoxide emissions. Although not yet widely tested, improved cookstoves have been shown to lead to a reduction in the emissions of greenhouse gases including N2O and methane (Bhattacharya and Abdulsalam, 2002). This reduction is expected to be proportional to the reduction in fuel wood usage.

6.5 Potential emission reductions

For 2050, it is assumed that the N2O emission reductions already achieved in some regions, as described in Section 6.4, can be scaled up. Specifically, it is assumed that the 50% emission reductions achieved in the Brazilian Amazon (through lowering of deforestation rates and fire emissions) can be applied to all emissions (Table 6.1) from tropical forest and peat fires. This gives a reduction potential of 0.06

78 See http://www.obt.inpe.br/prodes, which provides information on the satellite monitoring of the Brazilian Amazon Rainforest.
Tg N₂O-N/yr from these two sectors in 2050. In the same way it is assumed that the 37% reduction already achieved in some Australian savannahs (through the adjustment of fire seasonality) can be applied to all emissions from savannah fires. A 50% emission reduction is assumed for household stoves. No reduction is assumed for emissions from temperate and boreal forests, or agricultural waste burning. Adding up these assumptions leads to a total emission reduction potential in 2050 of 0.26 Tg N₂O-N/yr relative to baseline emissions.

It is assumed that reductions linearly increase from zero to 0.26 between 2014 and 2050, such that the potential reduction in 2020 is 0.04 Tg N₂O-N/yr.

6.6. Unresolved questions

As has been noted, estimates of fire-related N₂O emissions and the factors influencing these emissions are very uncertain and difficult to quantify. Research is needed to reduce this uncertainty. Atmospheric inversion studies have given some confidence in CO₂ emissions estimates, which are derived in the same way as N₂O emissions, but have also indicated disagreements with inventories.

One priority area for research is to understand the degree to which increased methane emission rates early in the season may offset part of the benefits of reduced N₂O emissions accomplished through early season burning. This may be the case in Africa (Korontzi et al., 2003) but not in Australia, and may be related to the time required to cure the fuel (Meyer et al., 2012). More research is needed to resolve these differences and provide more robust calculations of the full potential for greenhouse gas savings.

6.7 Conclusions

- Biomass burning in landscape fires and household stoves currently emits a total of about 0.7 Tg N₂O-N/yr to the atmosphere. Future emissions may be similar to current rates although warming of high-latitude regions may lead to more frequent fires there.
- Options for reducing N₂O emissions from biomass burning in landscapes include reducing the use of fires for land management in forests and tropical peatlands and modification of fire frequency and fire seasonality. Options for reducing emissions from household cookstoves include improving their efficiency and using alternative fuels such as liquefied petroleum gas.
- Mitigating fires influenced by humans, such as forest clearing by fire, agricultural residue burning, and stove combustion, can bring important co-benefits such as better air quality.
- A combination of available mitigation options, if implemented, could reduce N₂O emissions from biomass burning by 0.04 and 0.26 Tg N₂O-N/yr relative to baseline emissions in 2020 and 2050, respectively.
Chapter 7

Reducing N_2O Emissions from Wastewater and Aquaculture

Lead Authors: Lex Bouwman (PBL Netherlands Environmental Agency / Utrecht University, Netherlands); Sietske van der Sluis (PBL Netherlands Environmental Agency, Netherlands)

Contributing Authors: Gui-Ling Zhang (Ocean University of China, P.R. of China); Sirintornthep Towprayoon (King Mongkut’s University of Technology, Thailand); Sandor Mulsow (Universidad Austral de Chile, Chile)

7.1 Introduction

This chapter focuses on the important sources of N_2O emissions from household and industrial wastewater and from fish production through aquaculture. The chapter begins by discussing the wastewater processes leading to N_2O emissions, and then estimates the current level of these emissions, options for abating them, and the emission reduction potential. The same information is then presented for aquaculture.

Wastewater can lead to N_2O emissions in two main ways. First, from the chemical and biological transformations of wastewater that take place during its treatment. Second, when wastewater is discharged to surface waters and the nitrogen contained in it is transformed by biological and chemical processes.

Aquaculture is a source of N_2O emissions because it involves cultivating freshwater and saltwater species by providing large amounts of nitrogen-rich dietary inputs (including feed, fertilizer or manure) which in turn generate substantial amounts of nitrogen rich wastes (Crab et al., 2007; William and Crutzen, 2010). The decomposition of this waste leads to N_2O emissions.

Together, wastewater and aquaculture account for approximately 4% of total gross anthropogenic N_2O emissions (Chapter 3) and their contributions are set to increase under business-as-usual assumptions, as noted in the table, because of continued population and economic growth, and technological developments.

7.2. Wastewater

7.2.1. Nitrogen flows

Nitrous oxide emissions are roughly proportional to the size of the flow of nitrogen through society and the natural environment. Therefore, to estimate nitrous oxide emissions it is useful to start by estimating the total size of nitrogen flows.

Table 7.1 provides an overview of global nitrogen flows in the wastewater sector for year 2010 and for years 2020 and 2050 based on business-as-usual assumptions. Total nitrogen contained in household and industrial wastewater amounted to 37.6 Tg N/yr in 2010. This is not as large, for example, as world fertilizer use (107 Tg N/yr in 2010; FAO, 2010), but it is still significant. About 27% or 10 Tg N/yr of this wastewater receive some degree of treatment (Van Dreetch et al., 2003; and Morée et al., 2013).

Estimates pertaining to rural regions in developing countries are particularly uncertain because of the lack of sanitation data from this part of the world. These flows are expected to increase under business-as-usual assumptions, as noted in the table, because of continued population and economic growth, and technological developments.

7.2.2. N_2O emissions associated with wastewater and wastewater treatment

Nitrous oxide is emitted from wastewater, its treatment and natural waters as an intermediate product of the biological or chemical transformation of different forms of nitrogen through “nitrification” and “denitrification” (Ahn et al., 2010; Law et al., 2012; Thomson et al., 2012). Different amounts of nitrous oxide are produced by these transformations at different stages of the nitrogen flow. These different amounts are expressed here as “emission factors” which give the percentage of N_2O emissions produced per nitrogen flow. Emissions of N_2O are then estimated by multiplying these emission factors by the nitrogen flows in Table 7.1.

79 “Wastewater” here refers to any residual water from households or industries that has been degraded in quality.

80 Nitrification is the process by which ammonium is converted to nitrite and then nitrate. Denitrification is the process by which nitrate is converted to molecular nitrogen gas. Nitrification normally occurs in the presence of oxygen while denitrification occurs without oxygen.
Nitrogen emission factor in this case is assumed to be 0.5% of the total nitrogen content of the wastewater discharged into the natural waters (with an uncertainty range of 0 to 2%). This is a rough default value from IPCC (2006). This means that about 0.5% of sewage nitrogen escapes to the atmosphere in the form of N$_2$O gas. The total anthropogenic nitrogen release from wastewater sector = A = B + C + D + E + F. Table based on Van Drecht et al. (2003) and Moree et al. (2013). Estimates based on country-specific data from various sources on urban and rural population, improved sanitation and connection to sewage systems, and the presence of different treatment systems (primary, secondary, tertiary or advanced). Future estimates of household and industry emissions are based on the Global Orchestration scenario for population growth and per capita income growth (Alcamo et al., 2006). In this scenario, the gap between full access to improved sanitation and the situation in the year 2000 is assumed to be reduced by 50% in 2030, and by another 50% in 2050; the fraction of the population with a connection to a sewage system will increase likewise up until 2030, and is constant up until 2050. The nitrogen removal in wastewater treatment plants is assumed to improve by a shift of 50% of each treatment class to the next treatment class in line in the period up until 2030, and by another 50% in the period 2030-2050. More details can be found in Van Drecht et al. (2003).

N_2O emissions are produced by wastewater after it is discharged into surface waters either inland, along the coast, or in the open ocean. The different forms of nitrogen in wastewater (either treated or untreated) are transformed by nitrification or denitrification in the surface waters. The emission factor in this case is assumed to be 0.5% of the total nitrogen content of the wastewater discharged into the natural waters (with an uncertainty range of 0.05 to 2.5%).

Nitrogen in wastewater is also transformed during the wastewater treatment process, releasing N_2O as a by-product. Here we assume an emission factor of 0.043% (with an uncertainty range of 0.035 to 0.05%) for primary and secondary wastewater treatment based on Law et al. (2012). In other words, we assume that 0.043% of the nitrogen in wastewater flowing into primary and secondary treatment plants is released to the atmosphere during treatment as N_2O.

For tertiary treatment, an emission factor of 0.6% (with an uncertainty range of 0 to 2%) is assumed, which is an average of several studies (e.g. Tallec et al., 2006; Kampschreur et al., 2009; Ahn et al., 2010). Based on this assumption, current tertiary treatment may lead to higher emissions than direct discharge to surface water. However, generally the reduction of eutrophication by nutrient discharge is the aim of tertiary treatment in wastewater treatment.

As indicated, these numbers have wide uncertainty ranges because of the variation in treatment plant design and operation as well as other factors.

Applying these emission factors to the global wastewater nitrogen flows in Table 7.1 produces global emission estimates of 0.16 Tg of $\text{N}_2\text{O}-\text{N/yr}$ (range: 0.02-0.77) from wastewater for 2010; 0.19 Tg of $\text{N}_2\text{O}-\text{N/yr}$ (range: 0.02-0.89) in 2020 and 0.29 Tg of $\text{N}_2\text{O}-\text{N/yr}$ (range 0.03-1.31) in 2050 (Figure 7.1). These are business-as-usual estimates. Emissions increase up to 2050 because of the increases in nitrogen flows in different sectors noted in Table 7.1.

7.2.3. Technical options to reduce N_2O from wastewater

The main strategy for reducing N_2O emissions from wastewater is to reduce the nitrogen content of wastewater.
The efficiency of nitrogen removal in an existing wastewater treatment plant can be enhanced by several means: ensuring sufficient oxygen supply during the nitrification phase of treatment, allowing for a sufficiently long sewage solids retention time, employing stepwise feeding, and ensuring adequate carbon supply during the denitrification phase of treatment (Barton and Abwater, 2002; Kampschreur et al., 2009; Yang et al., 2009; Ahn et al., 2010).

Another relevant European policy instrument is the Sewage Sludge Directive (EEC, 1986), which encourages and regulates the use of sewage sludge in agriculture. The Directive, apart from preventing harmful effects of sewage sludge on soil, vegetation, animals and humans, also helps avoid emissions that are produced by recycled sludge if it is discharged directly to surface waters or allowed to decompose.

However, implementing emission reduction strategies is not without barriers. For example, high construction and operational costs are one factor slowing down the construction of sewage systems and wastewater treatment plants, and replacement of leaky old sewage collection systems.

The first obvious option to lower the nitrogen content of discharged wastewater is to treat wastewater. As indicated in Table 7.1, the higher the level of treatment, the greater the nitrogen removal, with tertiary treatment achieving roughly 80% nitrogen removal.

Another option is to boost the efficiency of nitrogen removal of current wastewater treatment plants (Tansel et al., 2006; Law et al., 2012). One way to do this is to reduce the wastewater leaked from sewage piping. Leakage of wastewater sometimes leads to ammonia contamination of groundwater and this is a source of N₂O emissions (e.g. Wakida and Lerner, 2005). Another way is to increase the efficiency of nitrogen removal in the treatment plant (Law et al., 2012) through technical means.82

Still another option is to recycle wastewater by applying it as a fertilizer on cropland (Langergraber and Muelleggera, 2005). This avoids the emissions of N₂O coming from wastewater discharged to surface waters. Applying wastewater to cultivated soils can be an economically viable alternative to synthetic fertilizers if done safely.

7.2.4. Policies and barriers to their adoption

An important example of a policy instrument leading to N₂O emission reductions is the European Union “Urban Waste Water Treatment Directive” (EEC, 1991). The aim of the Directive is to reduce nitrogen in its waste streams up to 75% and this will have many benefits, including a reduction in the amount of N₂O released to the atmosphere by wastewater.

82 The efficiency of nitrogen removal in an existing wastewater treatment plant can be enhanced by several means: ensuring sufficient oxygen supply during the nitrification phase of treatment, allowing for a sufficiently long sewage solids retention time, employing stepwise feeding, and ensuring adequate carbon supply during the denitrification phase of treatment (Barton and Abwater, 2002; Kampschreur et al., 2009; Yang et al., 2009; Ahn et al., 2010).

Figure 7.1: Estimated global N₂O emission from wastewater in Tg N₂O-N/yr. Based on Morée et al. (2013) and assumptions discussed in Section 7.2.2.

flows and thereby avoid emissions from taking place after wastewater is dumped into surface waters. The lower the nitrogen content of discharged wastewater, the lower the emissions of N₂O from wastewater once it is discharged into surface waters.

Still another option is to recycle wastewater by applying it as a fertilizer on cropland (Langergraber and Muelleggera, 2005). This avoids the emissions of N₂O coming from wastewater discharged to surface waters. Applying wastewater to cultivated soils can be an economically viable alternative to synthetic fertilizers if done safely.

Another barrier to the recycling of sewage sludge or wastewater as fertilizer on cropland is the possible health risk posed by the presence of heavy metals, trace organic compounds, and pathogenic organisms in the sludge or wastewater. However, this public health risk can be minimized through technical measures, which have been encouraged, for example, by the Sewage Sludge Directive mentioned above83.

Another barrier to the recycling of wastewater as fertilizer is that conventional flush toilets dilute the concentration of nitrogen and phosphorus in sewage, making it unsuitable for use as fertilizer. Since wastewater recycling requires a substantial capital investment, a long-term perspective is needed for gradually implementing this approach for achieving multiple benefits of water conservation, cost savings for fertilizer, and emission reductions (Langergraber and Muelleggera, 2005).

7.2.5. Emission reduction potential

Emissions of N₂O are likely to increase under business-as-usual conditions of increased population and economic growth (Figure 7.1). This is despite the assumption of much wider coverage of advanced wastewater treatment (Table 7.1). Here we estimate the potential to reduce emissions relative to these business-as-usual estimates.

First, a 95% emission reduction is assumed through improved management in the wastewater treatment sector, based on Kampschreur et al. (2009) who show that zero N₂O emissions are possible in tertiary treatment plants. This will lead to a decrease in the emission factor of tertiary treatment plants and would result in a reduction of 0.02 Tg N₂O-N and 0.05 Tg in 2020 and 2050, respectively.

Second, it is assumed that all primary and secondary wastewater treatment plants under business-as-usual conditions are upgraded with tertiary treatment facilities in 2020, and that the 95% emission reduction for tertiary treatment as described above is achieved. This would reduce N₂O emissions by 0.03 Tg N₂O-N/yr in 2020 and 0.04 Tg N₂O-N/yr in 2050 relative to the baseline in these years, because of the reduced load of nitrogen to surface waters.

Third, a 100% reduction of leakage from sewage systems is assumed, and treatment of this amount in well-managed treatment plants with 95% emission reduction compared to the current situation. This will lead to an emission reduction due to the removal of N₂O from wastewater.
of 0.001 Tg N₂O-N/yr in 2020 and 0.0014 Tg N₂O-N/yr in 2050.

Finally, a major boost in the recycling of wastewater and sludge as fertilizer on agricultural land is assumed. If 50% of the waste from urban populations lacking sewage connection is collected and recycled, a reduction of 0.01 Tg N₂O-N/yr will be achieved in both 2020 and 2050\(^\text{84}\). If, in addition, 25% of waste from rural populations is collected and recycled, this would lead to a reduction of 0.02 Tg N₂O-N/yr in 2020 and 0.03 Tg N₂O-N/yr in 2050 compared to the baseline.

Adding up these options, gives an N₂O emission reduction potential from wastewater of 0.08 Tg N₂O-N/yr below the baseline in 2020, and 0.13 Tg N₂O-N/yr in 2050.

7.2.6. Unresolved questions

A major source of nitrogen to coastal seas is wastewater, and this contributes to eutrophic conditions in these seas (Seitzinger et al., 2010). If eutrophic conditions are severe they could lead to low-oxygen conditions and in some cases to the temporary depletion of oxygen (Diaz and Rosenberg, 2008; Zhang et al., 2010). In this situation, these seas could be a significant source of N₂O (Naqvi et al., 2010; Freing et al., 2012; Zamora et al., 2012). Since these low-oxygen zones may be increasing, they could also lead to an increase in N₂O emissions. This example presents yet another benefit of expanding wastewater treatment, but also the need for further research about coastal eutrophication.

7.3. Aquaculture

7.3.1. Nitrogen flows

Similar to emissions from wastewater, we estimate the release of N₂O from aquaculture by first estimating flows of nitrogen and then multiplying them by emission factors. Total aquaculture production results in the release of about 4.6 Tg N/yr in 2010, computed by subtracting nitrogen in feed input minus harvested fish (Table 7.2). The percentage of nitrogen in harvested fish relative to feed input was only 20% in 2010, which is the mean for all fish species and production systems in inland and marine waters (Bouwman et al., 2011; Bouwman et al., 2013). Nitrogen flows are expected to increase in the future under a business-as-usual scenario (see Table 7.2).

7.3.2. N₂O emissions associated with aquaculture

Here we estimate emission factors for N₂O which have the same form as those for wastewater, namely, the percentage of N₂O emissions produced per nitrogen flow. Emissions of N₂O are then estimated by multiplying these emission factors by the nitrogen flows in Table 7.2. Here, we use an emission factor of 1% of the nitrogen input as a best estimate which is close to the value of 1.3% from Hu et al. (2013). The uncertainty range is from 0.5% (IPCC, 2006) to 5% (Williams and Crutzen, 2010). The emission factors used here are higher than those for wastewater due to the fact that a large fraction of aquaculture is in ponds or other confined systems (Bouwman et al., 2011; Bouwman et al., 2013), where conditions may be more prone to N₂O emissions than open surface waters. Applying these emission factors to the waste in the nitrogen flows of Table 7.2 provides baseline estimates of N₂O emissions from aquaculture of 0.05 (0.02-0.23) Tg N₂O-N/yr in 2010; 0.06 (0.03-0.31) Tg N₂O-N/yr in 2020, and 0.08 (0.04-0.41) Tg N₂O-N/yr in 2050.

7.3.3. Technical options to reduce N₂O from aquaculture

One option available in Asia and elsewhere to reduce total N₂O emissions from agriculture and aquaculture is to combine them into “integrated agriculture-aquaculture farming systems” (e.g. Tacon and De Silva, 1997; Michielsens et al., 2002; Ahmed et al., 2007). In such systems, farmers add manure to ponds to increase plant and fish productivity. The type, quality and dose of manure or fertilizer used to fertilize ponds for increasing plankton production and fish growth are important determinants of a pond’s environmental impacts (Michielsens et al., 2002; Kumar et al., 2004; Matthews et al., 2004). Conversely, solid wastes and nutrient-rich water from ponds can be used as manure for cropping, and aquatic plants can be used as animal feed (Sindilariu, 2007). With proper fertilizer and manure management, integration of agriculture and aquaculture can lead to higher total nitrogen use efficiency (with an associated reduction in N₂O emissions) at the farm level compared to separate crop, livestock and fish production systems. Data on N₂O emissions from such integrated systems are required to verify this expectation.

Another promising strategy is to reduce nitrogen waste by combining different trophic levels of aquatic species (salmon, shellfish, algae) in an “integrated aquaculture system” where the waste from one species is the food for another (Neori et al., 2004; Ridler et al., 2007; Abreu et al., 2009; Barrington et al., 2009; Soto, 2009; Troell, 2009). This could be a promising option although it is not yet widely practiced because of difficulties in combining the management of different species and production systems in one farm. The potential savings in nitrogen inputs, and associated N₂O and other emissions could be very large. For example, a system including finfish and seaweed can effectively remove as much as 60% of the nitrogen produced by a sea bass farm (Hernández et al.,

84 Assuming that the urban population lacking a sewage connection is more or less constant between 2020 and 2050. See table 7.1

| Table 7.2. Global N flows in Tg per year in global freshwater and marine culture of shellfish and finfish aquaculture for 2010, and a business-as-usual scenario for 2020 and 2050. |
|-----------------|--------|--------|--------|
| N flow (Tg N/yr) | 2010 | 2020 | 2050 |
| Feed intake | 5.7 | 7.9 | 10.6 |
| Fish harvest | 1.2 | 1.7 | 2.5 |
| Waste | 4.6 | 6.2 | 8.1 |

Based on (Bouwman et al., 2011; Bouwman et al., 2013). For 2010, most global production was in Asia (97% for finfish and 93% for shellfish), with over half in East Asia. Finfish represented 83% of total feed nitrogen intake (of which 88% was freshwater), while shellfish contributed 17% (of which two thirds was marine). Future estimates of emissions are based on the Global Orchestration scenario for population growth and per capita income growth (Alcamo et al., 2006). Annual growth rates calculated from Delgado et al. (2003) and IFPRI (2003), which provide an estimate of future aquaculture production in high-value and low-value fish whereby the growth rate for a specific species is assumed to be the same for inland and marine production. Further scenario assumptions were made for the feed conversion ratio (FCR), apparent digestibility of feed, nutrient content of the feed, and the fraction of compound feed. See (Bouwman et al., 2011; Bouwman et al., 2013) for more details.
denitrification and consequent N\textsubscript{2}O production in pond carp, catfish and tilapia (Bureau and Hua, 2010). This approach, wastes can also be reduced in the farming of various feed additives, such as enzymes. (NRC, 2011). Using of ingredients, improved feed formulation and the use of nutrients inputs to aquaculture ponds in order to improve their digestibility and efficiency of utilization, and this in turn reduces waste output from fish farming. Bureau and Hua (2010) reported a reduction of approximately 15% in total nitrogen wastes (solid and dissolved) from the production of rainbow trout through better selection and processing of ingredients, improved feed formulation and the use of various feed additives, such as enzymes. (NRC, 2011). Using this approach, wastes can also be reduced in the farming of carp, catfish and tilapia (Bureau and Hua, 2010).

Another option is to use aeration to limit or avoid denitrification and consequent N\textsubscript{2}O production in pond systems (Chandran et al., 2011). Finally, nutrient outflow from pond systems can be reduced through effluent treatment. For example, screening and sedimentation can remove nitrogen-rich suspended solids before they are discharged to surface waters (Bergheim and Brinker, 2003).

7.3.5. Emission reduction potential

Over the coming years it is likely that aquaculture production will increase because of increasing population, a greater accent on fish consumption, and a continuing market shift to fish farming. Along with this growth will come an increase in nitrogen flows (Table 7.2) and accompanying N\textsubscript{2}O emissions (Section 7.3.2). On the other hand, we articulated above some of the many options for drawing down N\textsubscript{2}O emissions from the baseline.

All of the above options work towards improving the nitrogen use efficiency of fish production which leads to a reduction in nitrogen inputs and discharges, and thereby to reduced N\textsubscript{2}O emissions. While the aggregate nitrogen use efficiency is now around 40% in salmonid aquaculture (Bouwman et al., 2013), it may be 20-30% in most other mariculture and freshwater aquaculture depending on the species cultured (Bouwman et al., 2011; Bouwman et al., 2013). Based on the options described in Section 7.2.3 and Bureau and Hua (2010) it may be feasible to increase this efficiency to 40% in most feed-dependent aquaculture systems by 2020. This would reduce nitrogen waste by around 20% and consequently N\textsubscript{2}O emissions by the same percentage. This will be equivalent to an emissions reduction potential of approximately 0.01 and 0.02 Tg N\textsubscript{2}O-N/yr below the baselines in 2020 and 2050 respectively. Hence, emissions in 2020 and 2050 after mitigation could be approximately 0.05 Tg N\textsubscript{2}O-N/yr and 0.06 Tg N\textsubscript{2}O-N/yr respectively.

7.3.6. Unresolved questions

Similar to other waste-related emissions of N\textsubscript{2}O, emissions from aquaculture waste are not well understood. Denitrification in fish ponds may be considerable (Gross et al., 2000), but little is known about the processes of N\textsubscript{2}O production in the ponds. Similarly, we also know little about emissions from cage aquaculture in marine ecosystems. Further measurements would be needed to reduce uncertainties.

7.4. Conclusions

- Wastewater and aquaculture account for approximately 4% of total anthropogenic N\textsubscript{2}O emissions. It can be expected that these emissions will increase in magnitude under business-as-usual assumptions due to population growth and anticipated trends in consumption patterns.
- Reduction of nitrogen flows in wastewater and aquaculture is an important strategy for preventing N\textsubscript{2}O formation. This can be accomplished by increased recycling of nitrogen flows and by improving the efficiency of fish production.
- Technical options for minimizing N\textsubscript{2}O emissions in wastewater treatment and recycling nitrogen waste could add up to an emission reduction potential of 0.08 Tg N\textsubscript{2}O-N/yr by 2020, and 0.13 Tg N\textsubscript{2}O-N/yr by 2050, resulting in a total emission reductions of approximately 45% by 2050.
- Increasing the aggregate nitrogen use efficiency in the aquaculture sector would reduce N\textsubscript{2}O emissions by about 20% below their baseline values, leading to an emission reduction potential of approximately 0.01 and 0.02 Tg N\textsubscript{2}O-N/yr below the baselines in 2020 and 2050 respectively.
Chapter 8

Lead Authors: Mark A. Sutton (NERC Centre for Ecology and Hydrology, UK), Ute M. Skiba (NERC Centre for Ecology and Hydrology, UK), Eric Davidson (Woods Hole Research Center, USA), David Kanter (Princeton University, USA)

Contributing Authors: Hans J. M. van Grinsven (PBL Netherlands Environmental Assessment Agency, The Netherlands), Oene Oenema (Wageningen University, The Netherlands), Rob Maas (RIVM, National Institute for Public Health and the Environment, The Netherlands), Himanshu Pathak (Indian Agricultural Research Institute, New Delhi, India).

8.1. The N₂O challenge

Previous chapters have presented a wide range of options to reduce anthropogenic N₂O emissions. It remains to ask whether these options are already being adopted, and if not, then what would be needed to encourage and enable them. This chapter argues that there is substantial benefit to be found from reducing N₂O emissions, especially when actions to tackle N₂O help improve the efficient use of nitrogen compounds, simultaneously avoiding other nitrogen pollution problems. From this perspective a stronger emphasis on N₂O reduction can contribute multiple benefits for businesses and the environment and can be linked to the larger goals of the “green economy.”

In the following, we draw on the preceding chapters to summarize the global potential for N₂O emission reductions, and how it would reduce emissions in terms of global warming potential and ozone depletion potential. We then examine how N₂O mitigation can fit into ideas of the green economy and help turn the potential into actual emission savings. We end by reflecting on international structures that can support action.

8.2. Scenarios for reducing N₂O emissions

As described in Chapter 3, projections depend on many different driving forces including: changes in human population; per capita consumption of food, especially meat; food wastage; and nutrient use efficiency in crop and livestock production. Each of these factors is linked to the production of new usable forms of nitrogen for food, fibre and bioenergy production. Other driving forces include technological improvements in industry, energy, and transportation sectors; air pollution (which leads to N deposition onto soils and aquatic systems); the frequency of prescribed and wild fires; land-use change; and climate.

Several published scenarios based on these and other driving forces were reviewed in Chapter 3, along with a synthesis of inventories of current emissions. The potentials for mitigation of N₂O emissions in agriculture, industry, biomass burning, sewage treatment, and aquaculture were reviewed in Chapters 4-7. Here we derive a new set of scenarios based on this report’s best estimates of current emissions and future mitigation potential. We compute a business-as-usual scenario (BAU) and four mitigation scenarios to make up a set of five cases referred to as cases from “This Report” (TR):

- **TR Case 1. Business-As-Usual.** In this scenario, the driving forces of emissions are assumed to increase according to the assumptions presented in Chapters 4 to 7.
- **TR Case 2. Mitigation of Industry, Fossil Fuel Combustion and Biomass Burning.** This scenario assumes that the combined emissions from industry, fossil fuel combustion and biomass burning are reduced by 28% in 2020 relative to BAU and 58% in 2050, as described in Chapter 5.
- **TR Case 3. Efficiency of Agricultural Production.** This scenario assumes decreases in fertilizer use, manure production, and emission factors relative to BAU, associated with an increase in the nitrogen use efficiency of agricultural production, as described in Chapter 4 (incorporating Options 1 and 2 of Table 4.4).

85 The method of Davidson (2009) was used to derive new emission factors (EFs) for N₂O emissions associated with use of N fertilizers and the production of manure, including direct on-farm emissions and all downwind and downstream emissions. In brief, the “top down” modeling described in Chapter 3 was used to estimate total anthropogenic N₂O emissions, and then the best estimates of emissions from industry, transportation, energy, biomass burning, and land-use change were subtracted, leaving the remainder as emissions attributable to agriculture. Current estimates from this report and historical estimates (Davidson, 2009; Lamarque et al., 2010) were used in a regression analysis to estimate the EFs of annual fertilizer-N use and manure-N production from 1860 to 2005. The new EFs are 2.37% and 1.71% for fertilizer and manure, respectively. These values are somewhat lower than those reported by Davidson (2009), because that study used somewhat lower estimates of non-agricultural emissions.
Table 8.1. Projections of net anthropogenic N₂O emissions (Tg N₂O-N/yr) based on this report’s assessment of current emissions and potential mitigation scenarios by sector.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>2005</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR Case 1. Business-as-Usual</td>
<td>5.3</td>
<td>6.7</td>
<td>7.6</td>
<td>8.2</td>
<td>8.9</td>
</tr>
<tr>
<td>TR Case 2. Mitigation of industry, fossil fuel combustion and biomass burning</td>
<td>5.3</td>
<td>6.2</td>
<td>6.7</td>
<td>7.1</td>
<td>7.6</td>
</tr>
<tr>
<td>TR Case 3. Efficiency of agricultural production</td>
<td>5.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>5.8</td>
</tr>
<tr>
<td>TR Case 4. Efficiency of agricultural production and consumption (food changes)</td>
<td>5.3</td>
<td>5.7</td>
<td>5.3</td>
<td>4.9</td>
<td>4.5</td>
</tr>
<tr>
<td>TR Case 5. All Mitigation actions</td>
<td>5.3</td>
<td>5.2</td>
<td>4.4</td>
<td>3.8</td>
<td>3.1</td>
</tr>
</tbody>
</table>

TR Case 4. Efficiency of Agricultural Production and Consumption. This scenario includes efficiency improvements on the production side of agriculture from TR Case 3, plus additional efficiency improvements on the consumption side as a result of reductions in food waste and lower per capita consumption of meat in the developed world. These changes in consumption lead to a further lowering of demand for fertilizer nitrogen and the production of manure, as described in Chapter 4 (incorporating Options 3 and 4 of Table 4.4).

TR Case 5. Combined Mitigation. This scenario combines all the mitigation options of TR Cases 2-4. Projected emissions for each of these scenarios are presented in Table 8.1. According to BAU, emissions of N₂O for 2050 are 68% higher than in 2005. Hence, failing to take action in mitigating N₂O will lead to substantial increases in its emissions over the coming decades. Nevertheless, this is a smaller increase than other published BAU scenarios (see Chapter 3 and Figure 8.1) because we assume that BAU will include some on-going improvements in agricultural efficiencies (Chapter 4).

The scenarios “Mitigation of Industry and Biomass Burning” and “Efficiency of Agricultural Production” lead to smaller increases by 2050, with N₂O emissions being 43% and 9% higher than in 2005, respectively. Hence taking action in these sectors alone can only slow down the upward trend in emissions. The scenario that combines efficiency improvements in agricultural production and consumption (TR Case 4) projects a 15% decrease of emissions in 2050 relative to 2005, showing the substantial additional effect of reducing food losses and changing diets.

Finally, the “Combined Mitigation” scenario projects a decrease in N₂O emissions of 42% by 2050 as compared with 2005. This emphasizes how concerted action across all sectors can make a substantial contribution to reducing global N₂O emissions. Note that the concerted mitigation scenario from this report is more ambitious (projections of the lowest emissions shown in Figure 8.1) than the other published scenarios we term “concerted”. As a general conclusion, the emission reduction measures identified in previous chapters can significantly slow down and even reverse the trend of increasing global N₂O emissions over the coming decades.

8.3. Relevance of reduced N₂O emissions for protecting climate and the ozone layer.

The new scenarios described above provide useful information about the potential to turn around global N₂O emission trends given different mitigation actions. Here we combine these new scenarios with the set of published N₂O emission scenarios reviewed in Chapter 3 and examine their collective message about the range of N₂O emission reduction potentials. (Note that the results presented here are not the same as in Chapter 3. Here we consider composite results of the three scenario sets from Chapter 3 together with the new scenario set summarized in Table 8.1.)

As explained in Chapter 3, all scenarios are normalized to 2005 emissions of 5.3 Tg N₂O-N (this report’s best estimate of net anthropogenic emissions) in order to enable comparisons despite differences in base years and emissions for these base years among these studies.

The scenarios are clustered into three groups 86:

- **Business-as-usual scenarios.** These are scenarios with no or little mitigation. On average, the emissions of these scenarios increase to 9.7 Tg N₂O-N/yr by 2050, which is nearly double their level in 2005 (83% increase).

- **Moderate mitigation scenarios.** These are scenarios in which emissions rise at a slower rate than business-as-usual. Here emissions grow on average to 6.7 Tg N₂O-N/yr by 2050, an increase of 26% relative to 2005. Hence moderate mitigation actions significantly slow down the growth of N₂O emissions.

- **Concerted mitigation scenarios** These are scenarios in which emissions decrease between 2005 and 2050. On average, emissions decline to 4.2 Tg N₂O-N/yr by 2050, a decrease of 22% relative to 2005. These scenarios “bend the curve” of rising global N₂O emissions.

As noted in Chapter 3, the published “concerted mitigation” scenarios result in near stabilization of atmospheric concentrations of N₂O between 340 and 350 ppb by 2050, whereas N₂O concentration continues rising beyond 2050 for the BAU and moderate mitigation scenarios.

The differences between BAU and the mitigation scenarios reveal the potential to reduce global emissions of N₂O with significant implications for N pollution, climate change and stratospheric ozone depletion (Figure 8.1).

These potentials are apparent in Table 8.2, which shows the emissions for 2020, 2030, 2040 and 2050 in terms of annual amounts of nitrogen pollution (Tg N₂O-N), carbon...
dioxide equivalent (Gt CO2eq), and ozone depletion potential (ODP Kt).

By 2020 the set of concerted mitigation scenarios are about 1.8 Tg N2O-N/yr or 25% below the BAU scenarios. In terms of carbon dioxide equivalents, this is about 0.8 Gt CO2 eq/yr less than BAU. The 0.8 Gt CO2 eq/yr can be compared to the “emissions gap” in 2020 of 8-12 Gt CO2 eq which needs to be closed to have a “likely” chance of meeting the global 2°C climate target (UNEP, 2013a). Therefore, determined action over the coming few years on reducing N2O emissions can help close up to 10% of the gap.

By 2050, the concerted mitigation scenarios are around 5.5 Tg N2O-N/yr or 57% lower than BAU, or about 2.6 Gt CO2 eq/yr lower. Therefore, the abatement of N2O can make an even greater contribution to the mitigation of nitrogen pollution and climate change over the medium-term.

Another way to look at the climate-related benefits of N2O reductions is to sum up the avoided emissions between 2013 and 2050. This amounts to about 122 Tg N2O-N, which is equivalent to about 57 Gt CO2 eq. This is nearly double the global energy-related CO2 emissions in 2012 of 32 Gt CO2 (IEA, 2013).

To assess their impact on ozone layer depletion, N2O emissions can be weighted according to their ozone-depleting potential (ODP). Emissions in these terms are shown in the bottom rows of Table 8.2. On the average, the set of concerted mitigation scenarios in 2050 are ODP 147 Kt/yr below business-as-usual. This amount is equivalent to a 13% decrease in chlorofluorocarbon (CFC) emissions from their peak in the late 1980s. Because N2O is anticipated to remain the dominant ozone depleting substance emitted for the remainder of the 21st century (Chapter 2), the concerted mitigation scenarios would roughly halve the ozone-depleting effect of anthropogenic emissions in 2050 as compared with BAU.

Another way of gauging the effectiveness of N2O emission reductions is to estimate the magnitude of avoided emissions over the coming decades in terms of their ability to deplete the ozone layer. If the emissions avoided by the concerted mitigation scenarios are summed up between 2013 and 2050, they amount to an equivalent of 3270 Kt of CFC-11 emissions. This is of comparable magnitude to the kilotons of ozone depletion potential (ODP Kt) estimated to be locked up in the stock of old refrigerators, air conditioners, insulation foams, and other units (1550-2350 ODP Kt), otherwise referred to as banks. This stock is considered the most significant remaining source of ozone depleting substances for which action should be taken to accelerate ozone layer recovery (UNEP, 2010).

As discussed in Chapter 3, the expansion of biofuels could have a large influence on future N2O emissions. This factor is

87 This refers to the mean of the four scenarios: SRES, RCP, Davidson and this report. The Case 5 scenario for this report estimates 1.5 Tg N2O-N/yr below BAU for 2020 (Table 8.1).

88 The ‘emissions gap’ in 2020 is the difference between global emission levels in 2020 consistent with meeting the 2°C target, and levels expected in that year if country emission reduction pledges are met. The 2°C target (keeping the increase in global average temperature to less than 2°C relative to pre-industrial) was agreed upon by parties at the Conference of Parties of the Climate Convention in Cancun in 2010. See UNEP (2013) for details about the emissions gap. A “likely” chance refers to a greater than, or equal, probability of 66%.

89 Banks are stocks of ozone depleting substances that have already been manufactured and used, but not yet released to the atmosphere.

Figure 8.1: Projections of anthropogenic N2O emissions according to the business-as-usual, moderate mitigation, and concerted mitigation scenarios, based on calculations in this report and previous calculations. The mean for each grouping of scenarios are shown by square, circle, and triangle markers, respectively.
not included in these scenarios due to the wide uncertainty about the potential land area devoted to biofuels, about future energy demand for biofuels, and about their extra fertilizer requirements. Projections for biofuels are explored in Chapter 3 (Box 3.1).

To sum up, the collection of scenarios agree that concerted action can significantly draw down N$_2$O emissions relative to business-as-usual, both in the near term (2020) and over the longer term (2050), contributing substantially to the protection of climate and the ozone layer. To achieve a reduction in emissions relative to 2005, rather than simply a slowing down of their rate of increase, will require substantial mitigation efforts in all the main source sectors (Table 8.1).

8.4. Realizing N$_2$O reduction potential through the green economy

The preceding chapters show the significant potential to reduce emissions of N$_2$O from many aspects of the economy – the manufacturing of chemicals, the burning of fuels in households and transportation, the treatment of wastewater, the production of fish through aquaculture, and most importantly, the cultivation of crops and rearing of livestock. With these economic connections in mind, it makes sense to think about N$_2$O mitigation as part of a larger effort to build a “green economy” linked to better overall N management.

There are many different views of what constitutes green economy.90 According to the UNEP Green Economy Report, green economy is defined as an economy that encompasses all the economic opportunities arising from actions that promote sustainability, improving “human well-being and social equity, while significantly reducing environmental risks and ecological scarcities” (UNEP 2010). A related concept, ‘green growth’ is also frequently used, and focuses more on the contribution of environmental technologies to a growing economy (OECD, 2011). Green economy thinking is also centrally embedded within the Rio+20 Declaration (UN, 2012).

Whatever the emphasis, there are strong shared challenges for everyone, where actions to reduce N$_2$O emissions become part of a wider effort to improve green economic performance by both businesses and consumers. This can enhance human wellbeing though improved environmental quality with reduced threats to climate, human health and ecosystems, while contributing to global food and energy security.

8.4.1 Nitrogen use efficiency

A central idea for linking N$_2$O mitigation with green economic performance is the concept of “nitrogen use efficiency” (NUE). This concept applies across many scales, from an agricultural field (Chapter 4) to the full chain of national nitrogen flows in the economy (Box 8.1)91. At its simplest, NUE is the ratio of nitrogen contained in a product (such as grain, meat or a manufactured chemical) divided by the amount of nitrogen used to produce that product. Therefore, the higher the NUE, the lower the N losses, and this includes N$_2$O released to the atmosphere. The result is that measures focused on improving NUE contribute to a reduction in N$_2$O and other nitrogen emissions per unit of product produced. While there are both trade-offs and synergies involved in managing the N cycle, an emphasis on improving efficiency provides the key to maximizing the co-benefits. For example, good fertilizer management increases the fraction of fertilizer taken up

90 Concerning contrasting views of the green economy, see Sutton et al. (2014), including an explanation of the critical distinction between the Sector View (green actions consistent with improved sector profit) and the Societal View (net economic balance, combining the Sector View with all other factors, incorporating the value of reducing pollution threats on climate, human health and ecosystems). Recognizing these different views and finding ways to bring them closer together is fundamental to overcoming the barriers-to-change to reducing N$_2$O emissions through the green economy. Allen and Clouth (2012) provide an overview of recent perspectives and definitions in the green economy.

91 For a discussion of different definitions of NUE in crop systems, see Dobermann and (2007) and Snyder and Bruulsema (2007). Sutton et al. (2013a) define the concept of full-chain NUE, and compare first estimates with crop NUE estimates at the national scale for 121 countries of the world. Other useful indicators include regional nitrogen balances (surpluses and deficits), with the aim to use all available N resources. The use of nitrogen balances complements NUE, giving a more complete picture (UNECE, 2012).

<table>
<thead>
<tr>
<th>Units: Nitrogen equivalents (Tg N$_2$O-N/yr) *</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business-as-usual</td>
<td>7.0</td>
<td>8.1</td>
<td>8.9</td>
<td>9.7</td>
</tr>
<tr>
<td>Moderate mitigation</td>
<td>6.0</td>
<td>6.3</td>
<td>6.5</td>
<td>6.7</td>
</tr>
<tr>
<td>Concerted mitigation</td>
<td>5.2</td>
<td>5.0</td>
<td>4.7</td>
<td>4.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units: Equivalents of carbon dioxide (Gt CO$_2$ eq/yr)**</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business-as-usual</td>
<td>3.3</td>
<td>3.8</td>
<td>4.2</td>
<td>4.5</td>
</tr>
<tr>
<td>Moderate mitigation</td>
<td>2.8</td>
<td>3.0</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Concerted mitigation</td>
<td>2.5</td>
<td>2.3</td>
<td>2.2</td>
<td>1.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units: Ozone depletion potential (ODP Kt/yr)***</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business-as-usual</td>
<td>187</td>
<td>216</td>
<td>238</td>
<td>258</td>
</tr>
<tr>
<td>Moderate mitigation</td>
<td>160</td>
<td>169</td>
<td>175</td>
<td>178</td>
</tr>
<tr>
<td>Concerted mitigation</td>
<td>140</td>
<td>133</td>
<td>125</td>
<td>111</td>
</tr>
</tbody>
</table>

* The values given here are the mean of four sets of scenarios according to SRES, RCP, Davidson and the calculations of this report, and therefore differ from the values given in Table 8.1, which refer specifically to the calculations of this report.

** Calculated using a 100-year global warming potential of 298 for N$_2$O

*** Calculated using an ozone depletion potential of 0.017 for N$_2$O
by crops, reduces the losses of N, and thereby lowers N₂O emissions (Oenema et al., 2011).

If we consider the entire chain of nitrogen flows in the economy (Box 8.1), we can speak about “full-chain nitrogen use efficiency”, meaning the ratio of N in final products for human use divided by all the new nitrogen inputs needed for these products. While it is also important to address the NUE efficiency of each stage in the chain, this ‘whole-systems perspective’ helps decision makers to see the overall efficiency of human nutrient use, while offering flexibility in the options that can be used to improve performance. The options include improving technical efficiency at each stage, as well as optimizing food choices, reducing food waste and improving nitrogen recycling practices to improve overall system efficiency.

Besides reducing N₂O emissions, increasing the full-chain NUE has many benefits, including the simultaneous reduction of air pollutants such as nitrogen oxides and ammonia; and water pollutants such as nitrates (Skiba et al., 2012; Reay et al., 2012; Sutton et al., 2013a).

8.4.2. Costs and benefits in the context of the nitrogen cycle

The potential contribution of improving NUE to the green economy can be shown using calculations from the recent Global Overview on Nutrient Management.92 This included estimates of what would be achieved by a goal to improve NUE by 20% by the year 2020. It was calculated that such an improvement would provide a global saving of 23 million tonnes of nitrogen, worth an estimated US $23 billion (range: $18-$28 billion). The value of annual benefits to the environment, climate and human health was much larger, estimated at US $160 billion (range: $40-$400 billion). By comparison, the annual costs of actions to increase NUE were estimated at about US $12 billion (range: $5-$35 billion). The following important conclusions can be drawn from these estimates:

- Of relevance to businesses, the estimates highlight that the value of the N saved through improved NUE can be larger than the cost of taking action. A key example is improved management and recycling of fertilizers and manures, allowing farmers to reduce fertilizer costs (Chapter 4). The ongoing challenge is to further up-scale such methods to reduce costs and risks, strengthening the business case for action. Scaling-up may initially require financial and other incentives to increase the profitability of taking action, and as a catalyst for stimulating green development.
- From society’s viewpoint, the estimates given above show that the benefits of improving NUE for the environment, climate and human health are substantially larger than the direct costs and benefits to business associated with taking action. This means that there is a very strong economic case for society to develop actions that stimulate improved NUE with reduced N₂O emissions.
- The impact of N₂O in these estimates makes up 3.5% of the total environmental costs that have been monetized, hence a very modest fraction.93 This emphasizes the substantial added value to be found by linking N₂O emission reductions to increasing overall NUE performance across the nitrogen cycle.

For policymakers to accept the economic case for reducing N₂O emissions, it must be clear that the monetary value of the benefits are substantial. Yet benefits such as better public health, a clean environment and a protected climate are usually not monetized and do not show up as part of national Gross Domestic Products (GDP). In addition, the beneficiaries are often different from those absorbing additional costs. This can provide a significant barrier-to-change which may be addressed at the societal scale (Sutton et al., 2014).

It is feasible to value several of the benefits of N₂O mitigation such as improved NUE and its side benefits, as shown in the above example and other work (e.g. Birch et al., 2011; Compton et al. 2011; Gu et al., 2012). This valuation can make a good contribution to comprehensive national accounting systems for natural capital where the value of protected forests, waterways and soils can be monitored and where the value of protecting this natural capital through nitrogen mitigation can be assessed.

There is still some way to go in incorporating N₂O mitigation into the green economy. Until recently, N₂O mitigation had often taken a back seat compared with efforts to reduce CO₂ and CH₄. However, a comparative analysis by Winiwarter et al. (2010) for different greenhouse gases shows a higher share of N₂O emissions can be mitigated compared to the share of CO₂ emissions in the low cost-range (<5 €/ton CO₂-eq), suggesting that N₂O mitigation might be more cost-effective.

The benefit-to-cost ratio could also be larger for N₂O than for CO₂, as improved nitrogen management simultaneously addresses many different environmental issues while contributing to improved food security. This is evident from the large share of the estimated environmental benefits of improving NUE that are associated with human health and ecosystem benefits, which are in addition to the climate benefits94.

8.4.3. N₂O in relation to human consumption

It is also vital to consider N₂O control within the context of future societal aspirations for sustainable consumption patterns. The central issue here is the dominating influence of livestock farming on the global agricultural system as a whole, where an estimated 82% of nitrogen in harvests (including forage) goes to feeding livestock, with less than 20% of nitrogen in harvests feeding humans directly (Sutton et al., 2013a).

92 Sutton et al. (2013a) drawing on the approach of Brink et al. (2011) and van Grinsven et al. (2013). The following calculations were based on a relative improvement in national NUE using 2008 as a reference.

93 Based on the N₂O costs associated with climate and human health (stratospheric ozone depletion) being around 3.5% of the total estimated costs of N pollution (van Grinsven et al., 2013), combined with estimated total N costs at a global scale of US $800 billion/yr (range: $200 - $2000 billion) (Sutton et al., 2013a). With a global 20% improvement in NUE for a constant output scenario, the estimated climate and health benefits from reduced N₂O emissions are therefore estimated at US $6 billion/yr (range: $1.4-$14 billion).

94 See previous footnote.
et al., 2013a). At the same time, affluent citizens in many countries are consuming more protein than needed. For example, in Europe the average citizen consumes 70% more protein than needed based on dietary guidelines (Reay et al., 2011).

There are several consequences of these observations. Firstly, citizens in the developed world are setting a standard for food consumption patterns, especially of meat and dairy products, that is far from being sustainable, while at the same time leading to significant additional health risks through over consumption (WHO/FAO, 2002). Secondly, many people in the developing world are aspiring to western food consumption patterns, with increasing per capita rates of meat and dairy consumption. While there is a critical need for improved diets among the world’s poorest, a matching challenge is arising in some parts of the developing world where increasing consumption of meat and dairy products, combined with increasing world population, is setting the stage for a substantial worsening of N$_2$O and N pollution (Table 8.1; Winiwarter et al., 2013).

Reducing excess meat and dairy consumption in the developed world is expected to have several positive consequences: a) full-chain NUE would increase, b) N$_2$O and other N emissions would substantially reduce, c) the fraction of income spent on food would tend to decrease, d) the incidence of obesity- and cardiovascular-related illness may decrease, e) new societal aspirations may emerge in developing countries, where people with rapidly increasing income adopt more optimal dietary consumption patterns, reducing global health risks associated with over consumption, and f) increased agricultural land would become available to support food security goals among the world’s most vulnerable populations.

These interactions raise a whole host of questions, associated with improving quality of life and developing competitive advantages, which are likely to become central to the debate on the green economy and its relationship to N$_2$O mitigation.

8.4.4. Policy instruments to foster change

In this report we have reviewed a wide range of options for technical measures and behavioural change to reduce N$_2$O emissions. Here we briefly summarize some of the requirements needed to foster these changes.

- Research, development and training are needed to promote the use of innovative NUE techniques in agriculture, aquaculture, waste management, and industry. While there are many techniques that are already known, incentives are needed to promote adoption of available approaches, while training in low N$_2$O emission approaches is critical.
- Better nitrogen use may be encouraged by avoiding subsidies that encourage nitrogen overuse. Over recent decades, fertilizer subsidies in some countries to meet food security objectives have encouraged over-fertilization, reduced manure recycling and increased pollution, including N$_2$O emissions. A greater awareness of crop and livestock nutrient needs could allow fertilizer subsidies to be restructured or decreased, reducing N$_2$O emissions without compromising food security (Zhang et al., 2013; Sutton et al., 2013a).
- Targeted use of nitrogen subsidies can nevertheless encourage best practices. This is illustrated by the example of the Bangladesh government, which in 2008 wanted to reduce its expenditure on fertilizer subsidy payments in the face of higher fertilizer prices. To reduce the demand for fertilizer and consequently the amount of subsidies, the government strengthened its national programme for using deep soil placement of urea fertilizer (Savant and Stangel, 1990; IFDC, 2012). This reduced fertilizer requirements, ammonia emissions and is expected to have decreased N$_2$O emissions.
- Options for enabling N$_2$O mitigation measures include levies, incentives or tradable permits. These could catalyze new markets for improving NUE until they can become self-sustaining. For example, the inclusion of N$_2$O in existing greenhouse gas emission trading schemes still needs further development (DECC, 2011). Here one can expect an ongoing debate on the relative merit of regulatory, economic and voluntary approaches.
- Where voluntary approaches are favoured, the key is to set clear targets in relation to specific indicators, such as NUE, and to quantify the improvements achieved in relation to these targets (Sutton et al., 2007).
- It is vital to develop communication strategies and tools to encourage N$_2$O mitigation and wider N management. Promoting the market benefits of Clean-N technologies will encourage environmental competition between businesses. At the same time, better public communication is needed to explain the health, environmental and price benefits of optimizing consumption rates of meat and dairy products (Sutton et al., 2013b).

8.5. Embedding N$_2$O mitigation in international governance

Up to now we have reviewed prospects for mitigating N$_2$O emissions and examined its links to the green economy and policy instruments to encourage mitigation. Another important aspect of achieving N$_2$O mitigation is to find the proper governance setting for taking action on its emissions. While there is a wide range of local to national settings for action, here we concentrate on opportunities at the international level. We focus our attention on existing international institutions, as this appears to be the preference of many policymakers (Sutton et al. 2013b).

Given the impacts of N$_2$O on climate change and ozone layer depletion, we first consider international agreements that address these issues:

United Nations Framework Convention on Climate Change (UNFCCC): N$_2$O is currently included under the 1997 Kyoto Protocol of the UNFCCC. Some success has been achieved through projects in the nitric and adipic acid and caprolactam production sectors under the Clean Development Mechanism (CDM), with certified emissions reductions (CERs) equivalent to 0.5 Tg N$_2$O-N issued in 2012 (UNEP, 2013b). However, as noted in Chapter 5, there is some ongoing discussion...
Nitrous oxide emissions are closely coupled to the overall flow of reactive nitrogen compounds, which can be seen as a cycle from resource through use (blue arrows), with recycling (green arrows). The system is driven by the ‘motors’ of human consumption. Circles highlight ten key actions to increase Full-chain Nitrogen Use Efficiency (NUE), incorporating improved technical efficiency (green circles) and the effects of altered consumption patterns (red circles). Each of these actions offers potential for N₂O mitigation by reducing the overall nitrogen flows required to meet human needs.

(Source: Sutton et al., 2013a).
steps for the Convention include:

(i) establishing measurable milestones to evaluate the progress of Target 8, and
(ii) setting up a clearing-house to provide countries with information on options for implementing Target 8.

UNEP Convention on Long Range Transport of Air Pollution (LRTAP): The 1999 Gothenburg Protocol (revised 2012) under the LRTAP sets national limits on NOx and NH3 emissions. These controls, in turn, are expected to reduce secondary N2O emissions through its connections in the nitrogen cycle. LRTAP’s Task Force on Reactive Nitrogen focuses on strategies for reducing N pollution, and includes an expert panel on N and climate change. A drawback of LRTAP is its limitation at present to Parties in Europe, Central Asia and North America, not covering countries where much of the growth in N2O emissions is occurring. Options for next steps include:

(i) attracting new Parties, with a particular focus on emerging economies with increasing N fertilizer use such as in South and East Asia, and
(ii) building on the work of the Task Force on Reactive Nitrogen to incorporate N2O mitigation strategies.

Global Program of Action on the Protection of the Marine Environment from Land-based Activities (GPA): In contrast to the agreements described above, GPA is a non-binding program subject to regular intergovernmental review, which supports regional programs to protect the marine environment. Nutrient management is one of its three focal points, making it directly relevant to N2O. It has functioned for many years as a very useful clearinghouse for information among many states worldwide. This body could play a key advisory role in implementing N2O controls, particularly in agriculture. Next steps could include:

(i) strengthening the role of the GPA to incorporate mitigation of N2O emissions and other forms of nitrogen pollution (Sutton et al., 2013b), and
(ii) applying the approach of the Climate and Clean Air Coalition (CCAC) to heighten awareness of nitrogen pollution at high levels of government and create a central forum in which to begin to address it.

Each of these options has specific advantages and drawbacks as a policy setting for N2O mitigation. Another option is that responsibility for managing N2O could be shared among several of these agreements, which would require a new coordination mechanism. It is not the task of this report to recommend one policy pathway in particular. Whichever approach policy makers decide to take, the complexities of regulating N2O should be kept in mind, including interactions with food and energy security, the inequitable distribution of fertilizer use, the diverse nature of farming practices, and the consequences of the nitrogen cascade. In order to motivate action, it will be critical to take into account the multiple benefits of improved nitrogen management and N2O mitigation.

8.6 Conclusions

• Based on four sets of scenarios, including three published scenarios and a new set of scenarios described here, concerted mitigation could lead to a decline in anthropogenic N2O emissions of 22% in 2050 compared with 2005.
• The mitigation scenarios developed in this report show substantially reduced N2O emissions compared with the BAU in 2050. Whereas BAU emissions of the new scenario set are 8.9 Tg N2O-N/yr in 2050, the scenario of mitigating industry and biomass burning emissions lowers emissions to 7.6 Tg N2O-N/yr; efficiency of agricultural production lowers emissions to 5.8 Tg/yr; a combination of efficiency of agricultural production with more efficient consumption (reduced food waste and lower meat consumption) lowers emissions to 4.5 Tg/yr; and a combination of all measures lowers emissions to 3.1 Tg/yr.
• In arable and livestock agriculture, aquaculture and waste management, N2O measures that focus on improving nitrogen use efficiency (NUE) benefit the green economy by saving nitrogen fertilizer as a valuable resource.
• Reducing excess per capita meat and dairy consumption in the developed world would improve full chain NUE, reducing N2O and other N emissions, and could foster societal aspirations across the world to avoid levels of livestock consumption significantly in excess of dietary needs. It could simultaneously offer opportunities to reduce the fraction of income spent on food, the incidence of obesity-related illness and the amount of land needed to support food security goals.
• Recent valuation suggests that the total economic benefits to society of improving nitrogen use efficiency substantially exceeds the benefits of taking action to the emitting sectors. The additional benefits to society include reduced threats to human health and ecosystems through improved air, soil and water quality.
• The linking of efficiency savings for some business sectors, especially agriculture, with the wider economic value of less nitrogen pollution provides a strong case for society to reduce N2O and other forms of nitrogen pollution simultaneously.
• Policy instruments to encourage N2O mitigation include: capacity building and training in low N2O emission approaches, avoidance of environmentally damaging nitrogen subsidies, internalizing the price of nitrogen pollution through appropriate levies, abatement subsidies or tradable permits, insurance to manage risks to farmers, and communication to promote the benefits of clean-nitrogen technologies.
• There is currently no single international policy framework leading on N2O and nitrogen mitigation. Options include strengthening or extending existing agreements and developing improved coordination mechanisms. A key to success in drawing down N2O emissions will be to demonstrate the multiple benefits to be gained by holistically managing the nitrogen cycle as part of the green economy.

95 This BAU value comes from the new scenario set developed in this report and summarized in Table 8.1. It should not be confused with the mean value (9.7) of BAUs from four scenario sets summarized in Table 8.2.
Chapter 1

Chapter 2

Chapter 3

EPA 430-R-12-006

Chapter 4

residues in western Kenya. Soil Tillage & Research, 90, 69-76

Science of Total Environment (in press).

Chapter 6

Naqvi, S.W.A., Bange, H.W., Farrow, L., Monteiro, P.M.S., Scranton, M.I., Zhang, J. (2010) Marine hypoxia/anoxia as a source of C 4 and N 2O. Biogeosciences 7, 2159-2190
Thomson, A.J., Giannopoulos, G., Pretty, J., Bags, E.M., Richardson, D.J. (2012) Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 1157-1169

