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Abstract—In cloud computing paradigm, virtual resource au-
toscaling approaches have been intensively studied recent years.
Those approaches dynamically scale in/out virtual resources to
adjust system performance for saving operation cost. However,
designing the autoscaling algorithm for desired performance with
limited budget, while considering the existing capacity of legacy
network equipment, is not a trivial task. In this paper, we
propose a Deadline and Budget Constrained Autoscaling (DBCA)
algorithm for addressing the budget-performance tradeoff. We
develop an analytical model to quantify the tradeoff and cross-
validate the model by extensive simulations. The results show
that the DBCA can significantly improve system performance
given the budget upper-bound. In addition, the model provides
a quick way to evaluate the budget-performance tradeoff and
system design without wide deployment, saving on cost and time.

Index Terms—Autoscaling Algorithm, Modeling and Analysis,
Network Function Virtualization, 5G, Cloud Networks, Virtual-
ized EPC

I. INTRODUCTION

The emergence of Network Functions Virtualization (NFV)

is changing the way of how mobile operators increase the

capacities of their network infrastructures. NFV offers fine-

grained on-demand adjustment of network capabilities. Vir-

tualized Network Functions (VNFs) instances can be scaled-

out/in (turn on/off) to adjust computing and network capa-

bilities for saving energy and resources. A classic case is

Animoto, an image-processing service provider, experienced

a demand surging from 50 VM instances to 4,000 instances in

three days, April 2008. After the peak, the demand fell sharply

to an average level. Animoto only paid for 4,000 instances for

the peak time [1].
Designing good autoscaling strategies for budget constraints

while meeting performance requirements is challenging. In

particular, operation cost is decreased by reducing the number

of power-on VNF instances. On the other hand, resource

under-provisioning may cause Service Level Agreements

(SLAs) violations, leading to low Quality of user Experience

(QoE). Therefore, the goal of desired autoscaling strategies is

to meet the budget constraint while maintaining an acceptable

level of performance. Then, a budget-performance tradeoff is

formed: The system performance is improved by adding more

VNF instances while operation cost is reduced by the opposite

way.
Designing autoscaling strategies for 5G mobile networks is

different from that for traditional cloud computing scenarios.

Specifically, in previous cloud autoscaling schemes (e.g., [2]–

[13] ), only virtualized resources are considered. This is not

suitable for typical cellular networks. Given widely deployed

existing legacy network equipment, the desired solution should

consider the capacities of both legacy network equipment and

VNFs. For example, consider VNF only case that a VNF

scaling-out from 1 VNF instance to 2 VNF instances increases

100% capacity. Whereas, its capacity only grows less than

1% if legacy network equipment (say 100 VNF instance

capability) is counted. Current cloud autoscaling schemes

usually ignore the non-constant issue.

In this paper, we investigate the budget-performance trade-

off in terms of deadline constraint, VM setup time, and the

legacy equipment capacity. We improve our recent work [14]

by further considering deadline constraint for incoming re-

quests, i.e., a request will be dropped if a pre-specified timer

is expired. This is a more practical assumption compared with

that in [14], in which no deadline constraint is considered.

To the best of our knowledge, this is the first work from

this perspective. We then propose a Deadline and Budget

Constrained Autoscaling (DBCA) algorithm for addressing

the tradeoff. The DBCA considers available legacy equipment

powered on all the time, while virtualized resources are

divided into k VNF instances. Then the DBCA scales out/in

(turns on/off) VNF instances depending on job arrivals. Here,

a central issue is how to choose a suitable k for balancing the
tradeoff. We then derive a detailed analytical model to answer

this question. The analytical model quantifies the budget-

performance tradeoff and cross-validates against extensive ns2

simulations. Furthermore, we propose a recursive approach to

reduce the complexity of the computational procedure from

O(k3K3) to O(kK) where K the system capacity. Our model

provides mobile operators with guidelines to design optimal

VNF autoscaling strategies by their management policies in a

systematical way, and enable wide applicability in various sce-

narios, and therefore, have important theoretical significance.

The rest of this paper is organized as follows. Section II

reviews the related work. Section III briefly introduces some

background material on mobile networks and NFV archi-

tecture. Section IV presents the proposed optimal algorithm

for VNF autoscaling applications. Section V addresses the

analytical models, followed by numerical results illustrated in

Section VI. Section VII offers conclusions.9781-5090-1445-3/16$31.00 c© 2016 IEEE (CloudCom’16)
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II. RELATED WORK

Recent years, autoscaling mechanisms have been intensively

studied [2]–[19]. A straightforward and commonly used au-

toscaling approach is that autoscaling decisions are made

based on resource utilization indicators (e.g., CPU, memory

usage, etc). An example is the default autoscaling approaches

offered by Amazon EC2 and Microsoft Azure. A scale-out

request is sent right way if the current CPU usage exceeds a

predefined threshold. However, specifying the threshold value

is not easy while considering VM setup time. Indeed, the setup

lag time could be as long as 10 min or more to start an instance

in Microsoft Azure; and the lag time could be various from

time to time [20]. Thus it may happen that the instance is too

late to serve the VNF so that one needs to leave more redun-

dant while setting the threshold. To handle the setup time, pre-

diction/learning models are utilized to estimate the workload

arrivals for autoscaling decision making, such as Exponential

weighted Moving Average (EMA) [2], [3], Auto-Regressive

Moving Average (ARMA) [4], [5], Auto-Regressive Integrated

Moving Average (ARIMA) [6], [7], machine learning [8], [9],

Markov model [10], [11], recursive renewal reward [12], and

matrix analytic method [13]. However, the mechanisms [2]–
[13] only consider virtualized resource itself (cloud resource)
while overlooking legacy (fixed) resources, which are not

suitable for typical cellular networks.

Perhaps the closest models to ours were studied in [14]–[19]

that both the capacities of fixed legacy network equipment and

dynamic autoscaling cloud servers are considered. The authors

in [15], [16] consider setup time without defections [15]

and with defections [16]. Our recent work [18] relaxes the

assumption in [15], [16] that after a setup time, all the

cloud servers in the block are active concurrently. We further

consider a more realistic model that each server has an

independent setup time. However, in [15], [16], [18], all the

cloud servers were assumed as a whole block, which is not

practical where each cloud server should be allowed to scale-

out/in dynamically. Considering all cloud servers as a whole

block was relaxed to sub-blocks in [17], [19]. However, either

setup time is ignored [17], or fixed legacy network capacity is

not considered [19]. Our recent work [14] fixes the research

gap, whereas job deadline constraint is not considered.

III. BACKGROUND

Mobile Core Network (CN) is one of the most important

parts in mobile networks. The main target of NFV is to

virtualize the functions in the CN. The most recent CN is

the Evolved Packet Core (EPC) introduced in Long Term

Evolution (LTE). Here, we use an example to explain EPC and

virtualized EPC (vEPC) when NFV is deployed. Fig. 1 shows a

simplified example of NFV enabled LTE architecture consisted

of Radio Access Network (RAN), EPC, and external Packet

Data Network (PDN). In particular, the EPC is composed of

legacy EPC and vEPC. In the following, we brief introduce

them respectively.

Fig. 1: A simplified example of NFV enabled LTE architecture.

A. Legacy EPC and vEPC

EPC is the CN of the LTE system. Here, we only show

basic network functions, such as Serving Gateway (S-GW),

PDN Gateway (P-GW), Mobility Management Entity (MME),

and Policy and Charging Rules Function (PCRF) in the EPC.

To virtualize the above network functions, 3GPP introduces

NFV management functions and solutions for vEPC based

on ETSI NFV specification [21], as shown in Fig. 1. The

network functions (e.g., MME, PCRF) are denoted as Network

Elements (NE), which are virtualized as VNF instances. Net-

work Manager (NM) provides end-user functions for network

management of NEs. Element Manager (EM) is responsible

for the management of a set of NMs. NFV management and

orchestration controls VNF instance scaling procedure, which

are detailed as follows.

• VNF scale-in/out: VNF scale-out adds additional VMs

to support a VNF instance, adding more virtualized

hardware resources (i.e., compute, network, and storage

capability) into the VNF instance. In contrast, VNF scale-

in removes existing VMs from a VNF instance.

• VNF scale-up/down: VNF scale-up allocates more hard-

ware resources into a VM for supporting a VNF instance

(e.g., replace a One-core with Dual-core CPU). Whereas,

VNF scale-down releases hardware resources from a VNF

instance.

95



IV. PROPOSED DEADLINE AND BUDGET CONSTRAINED

AUTOSCALING ALGORITHM

In this section, we propose Deadline and Budget Constraint

Autoscaling (DBCA) algorithm to meet budget constraint

while maintaining acceptable levels of performance. More

running VNF instances reduce the possibility of SLAs vio-

lations. However, this may lead to redundant power-on VNF

instances, resulting in extra operation cost. We refer the trade-

off as budget-performance tradeoff. Section IV-A introduces

the DBCA algorithm for balancing the tradeoff. Section IV-B

further defines budget constraint and other three performance

metrics for evaluating SLAs violations.

A. System Model and DBCA: Deadline and Budget Constraint
Autoscaling

In general, we consider that a 5G EPC consists of legacy

network entities (e.g., MME, PCRF) and VNFs [22], [23].

For a network entity, its capacity is supported by both legacy

network equipment and VNF instances. Fig. 2 illustrates a

simplified example of a network entity queueing model consid-

ering the capacities of both VNF instances and legacy network

equipment. Specifically, the capacity of its legacy network

equipment is assumed to be n0 VNF instance capacities while
k denotes the number of VNF instances for supporting the

network entity. That is, the total capacity of the network entity

is k + n0 = N .

From the network entity’s point of view, we assume that

user requests arrive according to a Poisson process with rate

λ. The capacity of a VNF instance is assumed to accept

one job at a time and the service time is assumed to follow

the exponential distribution with mean 1/μ. When a user

request arrives, the job first enters a limited First-Come-First-

Served (FCFS) queue waiting for processing. Each job has

deadline constraint, which is a random variable following the

exponential distribution with mean 1/θ. In other words, the job
will quit the queue if its waiting time exceeds its deadline.

Without loss of generality, the legacy network equipment

is always on while VNF instances will be powered on (or

off) according to the number of waiting jobs in the queue.

Moreover, a VNF instance needs a setup time to be available

to serve user requests, which is assumed to be an exponentially

distributed random variable with mean value 1/α.
DBCA utilizes two thresholds, ’Up’ and ’Down’, or Ui and

Di to control the VNF instances i = 1, 2, · · · , k. Further, let
n1 = n0+1 and ni = ni−1+1 (i = 1, 2, · · · , k), i.e., nk = N .

In other words, DBCA sends orders to NFV management and

orchestration to turn on/off VNF instances to adjust network

capacities.

• Ui, power up the i-th VNF instances: If the i-th VNF

instance is turned off and the number of requests in the

system increases from Ui−1 to Ui, then the VNF instance

is powered up after a setup time to support the system.

During the setup time, a VNF instance cannot serve user

requests, but consumes power (or money for renting cloud

services). Here, we specify Ui = ni. It is equivalent to

1
2

: Capacity of a VNF instance

queue 1
2

k

 arrivals  departures
n1n2nk

Legacy euip.n0

Virtual euip.

 drops
Fig. 2: A service center with reserve blocks.

that when the number of requests increases from ni−1 to

ni, the i-th VNF instance is powered up.
• Di, power down the i-th VNF instances: If the i-th VNF
instance is operative, and the number of requests in the

system drops from Di+1 to Di, then the VNF instance is

powered down instantaneously. In this paper, we choose

Di = ni−1. It is equivalent to that when the number of

requests drops from ni to ni−1, we turn off the i-th VNF
instance.

B. Performance Metrics

The system performance is evaluated by four metrics: the

average response time in the queue Wq , the average number

of running VNF instance S, user request blocking probability
Pb, and user request dropping probability Pd. We define them

as follows.

• The average response time in queue Wq is defined as a

job request’s waiting time in queue. In other words, it

reveals how long time a job request can be served.

• The average number of running VNF instances S ad-

dresses the operation cost of virtual equipment.

• Dropping probability Pd is the probability that a request’s

waiting time in queue exceeds its deadline constraint.

• Blocking probability Pb is the probability that a request

is denied due to system busy.

The closed-form solutions of Wq , S, Pb, and Pd are given

as (4), (5), (2), and (6) in Section V. Thus, the system

performance P has the form

P = w1Wq + w2S + w3Pb + w4Pd, (1)

where coefficients w1, w2, w3, and w4 denote the weight

factors for Wq , S, Pb, and Pd, respectively. Increasing w1 (or

w2, w3, w4) emphasizes more on Wq (or S, Pb, Pd). Here,

we do not specify either w1 or w2 (w3, w4) due to the fact

that such a value should be determined by a mobile operator

and must take management policies into consideration.

V. ANALYTICAL MODEL

In this section, we propose the analytical model for DBCA.

The goal of the analytical model is to cross-validate the

accuracy of the simulation experiments and to analyze both the
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TABLE I: List of Notations

Notation Explanation
N The total capacities of a network entity
K The number of maximum jobs can be accommodated

in the system
k The number of VNF instances
P System performance
W Average response time
Wq Average response time in queue
S Average VM cost
Pb Blocking probability
Pd Dropping probability
w1 Weight factor for Wq

w2 Weight factor for S
w3 Weight factor for Pb
w4 Weight factor for Pd
n0 The capacities of legacy network equipment
Ui The Up threshold to control the VNF instances
Di The Down threshold to control the VNF instances
mi The i-th reserve sub-block (i = 1, 2, · · · k).
λ Job arrival rate
μ Service rate for each server
α Setup rate for each virtual server
θ Abandonment rate of each job

operation cost and the system performance for DBCA. Given

the analytical model, one can quickly obtain the operation cost

and system performance for DBCA, without real deployment,

saving on cost and time.

We model the system as a queueing model with N servers

and a capacity of K, i.e., the maximum of K jobs can be

accommodated in the system. Job arrivals follow the Poisson

distribution with rate λ. A VNF instance (server) accepts one

job at a time, and its service time follows the exponential

distribution with mean 1/μ. There is a limited FCFS queue

for those jobs that have to wait for processing.

In this system, a server is turned off immediately if it has no

job to do. Upon arrival of a job, an OFF server is turned on if

any and the job is placed in the buffer. However, a server needs

some setup time to be active so as to serve waiting jobs. We

assume that the setup time follows the exponential distribution

with mean 1/α. Let j denotes the number of customers in the
system and i denotes the number of active servers. The number
of reserves (server) in setup process is min(j − ni, N − ni).
Here, ni = ni−1 + mi, where mi = 1 for all i (block size is
one). Therefore, in this model a server in reserve blocks is in

either BUSY or OFF or SETUP. We assume that waiting jobs

are served according to an FCFS manner. We call this model

an M/M/N/K Setup queue.

Here, we present a recursive scheme to calculate the joint

stationary distribution. Let C(t) and L(t) denote the number
of active servers and the number of customers in the system,

respectively. It is easy to see that {X(t) = (C(t), L(t)); t ≥ 0}
forms a Markov chain on the state space:

S ={(i, j); 1 ≤ i ≤ k, j = ni, ni + 1, . . . ,K − 1,K}
∪ {(0, j); j = 0, 1, . . . ,K − 1,K}.

Fig. 3 shows the transition among states for the case where
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Fig. 3: Transition among states (N = 4, n0,= 2,m1 = m2 =
1, and K = 7).

N = 4, n0 = 2,m1 = m2 = 1, and K = 7. Let πi,j =
limt→∞ P(C(t) = i, L(t) = j) ((i, j) ∈ S) denote the joint
stationary distribution of {X(t)}. Here, we derive a recursion
for calculating the joint stationary distribution πi,j ((i, j) ∈ S).
The balance equations for states with i = 0 read as follows.

λπ0,j−1 = jμπ0,j ,

for j = 0, 1, . . . , n0,

λπ0,j−1 + n0μπ0,j+1 = (λ + min(j − n0, N − n0)α + n0μ)π0,j ,

for j = n0, n0 + 1, . . . ,K − 1,

λπ0,K−1 = (n0μ + (N − n0)α)π0,K ,

leading to

π0,j = b
(0)
j π0,j−1, j = 1, 2, . . . ,K.

The sequence, {b(0)j ; j = 1, 2, . . . ,K} is given as follows.

b
(0)
j =

λ

jμ
, j = 1, 2, . . . , n0,

and

b
(0)
j =

λ

A1j
, j = K − 1,K − 2, . . . , n0 + 1,

where A1j = λ+n0μ+min(j−n0, N −n0)α+(j−n0)θ−
(n0μ + (j + 1 − n0)θ)b

(0)
j+1 and

b
(0)
K =

λ

n0μ + (N − n0)α + (K − n0)θ
.

Furthermore, it should be noted that π1,1 is calculated using
the local balance equation in and out the set {(0, j); j =
0, 1, . . . ,K} as follows.

n1μπ1,1 =

K∑

j=n1

min(j,N − n0)απ0,j .

Remark. We have expressed π0,j (j = 1, 2, . . . ,K) and π1,1
in terms of π0,0.
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(a) Impacts on S. (b) Impacts on Wq. (c) Impacts on Pb. (d) Impacts on Pd.

Fig. 4: Impacts of k on the performance metrics (n0 = 100). Thelines denote analytical results, and the points represent
simulation results.

Similarly, we can express π1,j (j = 2, 3, . . . ,K) in terms

of π1,1. Then π2,2 is obtained according to π1,j (j =
2, 3, . . . ,K). Next, using similar recursive formulae, we can

express all πi,j ((i, j) ∈ S) in terms of π0,0 which is uniquely
determined using the normalization condition:

∑

(i,j)∈S
πi,j = 1.

It is worth to mention that the complexity of the computational

procedure is of order O(k×K) instead of O(k3×K3) if we
directly solve the system of balance equations by a general

method.

Due to the page limitation, we only show the final derivation

results as follows. Interested reader may refer to [24] for

detailed mathematical analysis.

Let E[L] denote the mean number of jobs in the system.

We have

E[L] =
∑

(i,j)∈S
πi,jj =

n0−1∑

i=0

π0,jj +

k∑

i=0

K∑

j=ni

πi,jj.

Let Pb denote the blocking probability. We have

Pb =

k∑

i=0

πi,K . (2)

It follows from Little’s law that

W =
E[L]

λ(1 − Pb)
=

∑n0−1
i=0 π0,jj +

∑k
i=0

∑K
j=ni

πi,jj

λ(1 −∑k
i=0 πi,K)

. (3)

We obtain

Wq = W − 1

μ
. (4)

The mean number of VNF instances is given by

S =
∑

(i,j)∈S
πi,j(ni − n0) +

k∑

i=0

K∑

j=ni

πi,j min(j − ni, N − ni),

(5)

where the first term is the number of VNF instances that are

already active while the second term is the mean number of

VNF instances in setup mode.

Let E[Q] denote the mean number of waiting jobs in the

system. We have

E[Q] =

k∑

i=0

K∑

j=ni

πi,j(j − i).

Let Pd denote the reneging probability that a waiting job

abandons from the system. We have

Pd =
E[Q]θ

λ(1 − Pb)
=

∑k
i=0

∑K
j=ni

πi,j(j − i)θ

λ(1 − Pb)
, (6)

where the numerator and the denominator are the abandonment

rate and the arrival rate of accepted jobs, respectively.

Again, based on the above derived performance metricsWq ,

S, Pb, and Pd, mobile operators can easily design network

optimization strategies according to (1).

VI. SIMULATION AND NUMERICAL RESULTS

This section provides both simulation and numerical results

for the analytical model addressed in Section V. The analytical

model is cross-validated by extensive simulations by using ns2,

version 2.35 [25] with real measurement results for parameter

configuration1: λ by Facebook data center traffic [26], μ by

the base service rate of a Amazon EC2 VM [27], and α by

the average VM startup time [28]. If not further specified,

the following parameters are set as the default values for

performance comparison: n0 = 110, μ = 1, α = 0.005,
K = 250, λ = 50 ∼ 250 (see Table 1 for details). The

results are based on exponential distribution for job request

inter arrival time and VNF instance service time with mean

1/λ and 1/μ. The simulation time is 300,000 seconds. And
15 ∼ 75 millions job requests were generated during the

extensive simulations.

Figs. 4, 5, 6, 7, 8 not only demonstrate the correctness of

our analytical model, but also illustrate the impacts of λ, k,
θ, α, n0, K on the performance metrics: average VM cost

S, average response time in queue Wq , blocking probability

Pb, and dropping probability Pd, respectively. In the figures,
the lines denote analytical results, and the points represent
simulation results. Each simulation result in the figures is

1Due to simulation time limitation, λ and μ are scaled down accordingly
with the same ratio λ/μ.
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(a) Impacts on S. (b) Impacts on Wq. (c) Impacts on Pb. (d) Impacts on Pd.

Fig. 5: Impacts of θ on the performance metrics (n0 = 100, k = 50). The lines denote analytical results, and the points
represent simulation results.

(a) Impacts on S. (b) Impacts on Wq. (c) Impacts on Pb. (d) Impacts on Pd.

Fig. 6: Impacts of α on the performance metrics (k = 80). The lines denote analytical results, and the points represent
simulation results.

the mean value of the results in 300,000 seconds with 95%

confidence level.

A. Impacts of Arrival Rate λ

We first look into the impacts of job request arrival rate λ.
Mobile operators cannot adjust λ but are able to monitor it and
configure network parameters k, θ, α, n0, and K for network

optimization accordingly.

Figs. 4(a), 5(a), 6(a), 7(a), 8(a) depict the impacts of λ on

S. In general, one can see that S initiates at 0 at the beginning

and then starts to raise sharply when λ passes noμ. The reason
is that the incoming job requests are served by the legacy

equipment when λ < n0μ. No VMs are powered on. Then

DBCA starts to turn on VMs to handle job requests as λ is

increasing. Later, S reaches at a bound even if λ continues

growing. This is because all the k VMs are turned on so that

S is bounded as k VM costs.

Figs. 4(b), 5(b), 6(b), 7(b), 8(b) show the impacts of λ on

Wq . Interestingly, the trend of the curves can generally be

divided into four phases: zero phase, ascent phase, descent

phase, and saturation phase. In the zero phase, Wq is zero

because incoming jobs are served immediately by available

capacities. In the ascent phase, Wq raises sharply due to the

setup time of VMs. Specifically, when λ approaches to n0μ
and then larger than n0μ, VMs start to be powered on and

to serve jobs. In doing so, however, Wq still grows sharply

because jobs have to wait for turning on processes of VMs.

Later,Wq starts to decrease due to new running VMs as shown

as the third (descent) phase. In the forth (ascent) phase, Wq

starts to grow again and then saturates at a bound. The reason

of ascent is that the system is not able to serve the coming jobs

when λ ≥ (n0 + k)μ. Finally, the curves reach to saturation
because the capacity of the system is too full to handle the jobs

and the value of Wq is limited by the total system capacity

K.

In Figs. 4(c), 5(c), 6(c), 7(c), and 8(c), we study the impacts

of λ on Pb. The trends of the curves are relatively simple

compared with the above two metrics. Generally, the curves

are growing as λ increases. In particular, Pb initiates at 0 and

starts to increase when λ > (n0 + k)μ. The reason is that the
system starts to reject jobs when the queue is full.

Figs. 4(d), 5(d), 6(d), 7(d), 8(d) illustrate the impacts of λ
on Pd. One can see that the trends of the curves are similar

with that of Wq . Note that job requests start to quit the queue

if the waiting time exceeds their deadline constraints. So Pd

is highly related to Wq . If Wq is large then jobs are dropped

with high probability. This also explains why the trends are

similar. Please refer to the above discussion of Wq for Pd.

B. Impacts of the Number of VNF Instances k

The figures in Fig. 4 depict the impacts of k on performance
metrics S, Wq , Pb, and Pd, respectively. We can see that

increasing k from 10 to 60 leads to the gains of S while

decreasing Wq , Pb, and Pd accordingly. A larger k means that
more VMs could be used to handle the growing job requests

so Wq , Pb, and Pd are improved. If a operator wants to adjust
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(a) Impacts on S. (b) Impacts on Wq. (c) Impacts on Pb. (d) Impacts on Pd.

Fig. 7: Impacts of n0 on the performance metrics (k = 60). The lines denote analytical results, and the points represent
simulation results.

(a) Impacts on S. (b) Impacts on Wq. (c) Impacts on Pb. (d) Impacts on Pd.

Fig. 8: Impacts of K on the performance metrics (k = 50). The lines denote analytical results, and the points represent
simulation results.

budget constraint S, the operator can specify a suitable k based
on (5).

C. Impacts of Abandon Rate θ

In Figs. 5(a), 5(b), 5(c), and 5(d), we study the impacts of

abandon rate θ on S, Wq , Pb, and Pd, respectively. Recall

that a job request is assumed to have a deadline constraint

with mean 1/θ, meaning that the job will stop waiting in the
queue if the waiting time exceeds its deadline. We observe

that increasing θ decreases S, Wq , and Pb while enlarging

Pd. Specifically, as shown in Fig. 5(a), θ has no impacts on

S when λ < n0μ or λ > (n0 + k)μ. The reason is that

S only depends on the number of running VMs. Whereas,

when n0μ < λ < (n0 + k)μ, a larger θ leads to less S
because more jobs are dropped from the system. In addition,

the impacts of θ on Wq is illustrated in Fig. 5(b). A larger θ
makes a smaller Wq . The reason is that when more jobs quit

from the queue, the rest of the jobs need to wait less time.

Fig. 5(c) shows that increasing θ leads to less Pb. The reason

is straightforward. More jobs quitting from the queue means

that the system has more available capacities to handle the

incoming jobs. In Fig. 5(d), we observe that a larger θ means
more Pd. It coincides with the definition of Pd.

D. Impacts of VM Setup Rate α

Figs. 6(a), 6(b), 6(c), 6(d) illustrate the impacts of α on S,
Wq , Pb, and Pd, respectively. Recall that VMs are assumed to

have a setup time with mean value 1/α. To reduce the setup

time, NFV Management and Orchestration can perform scale-

up procedure to add resources (e.g., CPU, memory) to make

VMs more powerful. We observe that less setup time decreases

S,Wq , Pb, and Pd. The reason is that short setup time leads to

that VMs can be quicker to be available for handling the jobs,

resulting in less operation cost (see Fig. 6(a)), lower waiting

time for jobs (see Fig. 6(b)), smaller blocking probability

(see Fig. 6(d)), and reduced dropping probability as shown

in Fig. 6(d).

E. Impacts of Capacities of Legacy Equipment n0
Figs. 7(a), 7(b), 7(c), 7(d) show the impacts of n0 on S,Wq ,

Pb, and Pd, respectively. We observe that the curves initiate

at 0 then stay at 0 for a period and start to grow up as λ
increases. n0 decides the length of the period when the curves
start to ascend. The reason is that the legacy equipment can

handle incoming jobs within its capacity. When λ exceeds the
capacity of the legacy equipment, the performance metrics S,
Wq , Pb, and Pd start to grow up.

F. Impacts of System Capacity K

In Figs. 8(a), 8(b), 8(c), and 8(d), we investigate the impacts

of K on S, Wq , Pb, and Pd, respectively. As shown in

Fig. 8(a), we observe that K has limited impacts on S. As
we discussed in Section VI-B, S is mainly decided by k.
Figs. 8(b), 8(c), and 8(d) show that K has significant impacts

on Wq , Pb as well as Pd. Different K makes huge gaps

between the curves. Moreover, a large K leads to a larger

Wq as well as Pd but makes Pb smaller. The reason is that it
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enables more jobs waiting in the queue rather than dropping

them.

VII. CONCLUSIONS

In this paper, we have proposed DBCA for addressing the

tradeoff between operation budget constraint S and system

performance which is evaluated by three performance metrics:

the average job response timeWq , blocking probability Pb, and

dropping probability Pd. Our work addresses the research gap

by considering both VM setup time and the capacity of legacy

equipment in NFV enabled EPC scenarios. Compared with

our previous work [14], the model quantifies a more practical

case. Our results show that the analytical model provides a

quick way to help mobile operators to plan and design network

optimization strategies without wide deployment, saving on

cost and time. Moreover, based on our analytical model,

mobile operators can easily estimate operation budget given

desired system performance, vice versa.

As our future work, one extension is to generalize the

VM setup time and the arrival and service time. Right now

there is no literature to support that they are exponential

random variables. These results could be generalized by using

orthogonal polynomial approaches [29]. Also, we plan to relax

the assumption of VM scaling in/out capability, i.e., from one

VNF instance per time to arbitrary instances per time. We plan

to complete these works in follow-up papers.
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