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Abstract  

Shelf seas represent only 10 % of the ocean area, but support up to 30 % of all oce-

anic primary production. There are few measurements of shelf-sea biological produc-

tion at high spatial and temporal resolution in such heterogeneous and physically dy-

namic systems. Here, we use dissolved oxygen-to-argon (O2/Ar) ratios and oxygen 

triple isotopes (
16

O, 
17

O, 
18

O) to estimate net and gross biological production in the 

Celtic Sea during spring 2015. O2/Ar ratios were measured continuously using a ship-

board membrane inlet mass spectrometer (MIMS). Additional discrete water samples 

from CTD hydrocasts were used to measure O2/Ar depth profiles and the δ(
17

O) and 

δ(
18

O) values of dissolved O2. These high-resolution data were combined with wind-

speed based gas exchange parameterisations to calculate biologically driven air-sea 

oxygen fluxes. After correction for disequilibrium terms and diapycnal diffusion, 

these fluxes yielded estimates of net community (N(O2/Ar)) and gross O2 production 

(G(
17

O)). N(O2/Ar) was spatially heterogeneous and showed predominantly autotro-

phic conditions, with an average of (33±41) mmol m
-2

 d
-1

. G(
17

O) showed high vari-

ability between 0 and 424 mmol m
-2

 d
-1

. The ratio of N(O2/Ar) to G(
17

O), ƒ(O2), was 

(0.18±0.03) corresponding to 0.34±0.06 in carbon equivalents. We also observed 

rapid temporal changes in N(O2/Ar), e.g. an increase of 80 mmol m
-2

 d
-1 

in less than 6 

hours during the spring bloom, highlighting the importance of high-resolution bio-

logical production measurements. Such measurements will help reconcile the differ-

mailto:i.seguro-requejo@uea.ac.uk
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ences between satellite and in situ productivity observations, and improve our under-

standing of the biological carbon pump. 

 

Keywords: Net community production, gross production, O2/Ar ratio, oxygen triple 

isotopes, shelf seas, spring bloom. 
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1. Introduction  

Phytoplankton primary production is the main mechanism of oceanic carbon fixation. 

Although shelf seas comprise only 10 % of the world's oceans by area, they contribute 

15 to 30 % of ocean primary production (Hickman et al., 2012). This disproportion-

ately high productivity yields 90 % of the global fish catch (Pauly et al., 2002). Fish 

catch models greatly rely on net primary production estimates. Providing these mod-

els with inaccurate data or an incomplete understanding of the food web (e.g. the effi-

ciency of trophic transfer) would hinder the ability of these models to project variabil-

ity in primary production under future climate change (Stock et al., 2017) or due to 

changes in other anthropogenic and natural factors (CO2 emissions, sewage, maritime 

transit, industrial waste, continental runoff, river discharge). Quantifying primary 

production is also of central importance to understanding the shelf sea carbon pump, 

and its role in the uptake of anthropogenic CO2 emissions from the atmosphere 

(Thomas et al., 2005). The discussion on how our seas will react to anthropogenic 

forcing and climate change would therefore benefit from high-resolution primary pro-

duction measurements adapted to the complex dynamics of shelf seas. 

Temperate shelf seas are relatively well sampled and studied (see also other papers in 

this special issue). The highest primary productivity in temperate shelf seas typically 

occurs in spring (e.g. Barnes et. al. 2015). However, quantitative estimates of primary 

production are often highly divergent (Holligan et al., 1984; Joint & Pomroy, 1983; 

Joint, 1986; Rees et al., 1999; Robinson et al., 2009), confounding efforts to better 

understand inherent patterns and drivers of spatial and temporal variability. In part, 

this gap in knowledge reflects that different methods are often difficult to reconcile 

given that they quantify different quantities related to photosynthesis (Reuer et al., 

2007; Robinson et al., 2009; Suggett et al., 2009). Also, most methods used, notably 

14
C, 

18
O and 

15
N assimilation methods, light-dark bottle method using O2 concentra-

tions or closed-chamber CO2 fluxes, are snap shots at the time and place sampled and 

require discrete incubations that are unlikely to represent the natural conditions in the 

inherently highly dynamic context of shelf seas (Quay et al., 2012; Sharples et al., 

2006). 

Novel approaches of continuous in situ measurements can resolve temporal and spa-

tial variability over large areas, e.g. fast repetition rate fluorometry (FRRF). This 

technique has been adopted to better evaluate how productivity changes over space 

and time (Moore et al., 2006), but suffers from fundamental challenges in reconciling 
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its results with actual O2 evolution or carbon uptake where environmental conditions 

are highly changeable. Satellite ocean colour remote sensing can provide synoptic 

scale observations of production at or near the surface of the water, but most current 

satellite sensors only provide these observations 1-2 times a day during cloud-free 

conditions. Also, recent studies show that chlorophyll a concentration mismatches 

with in situ measurements in shelf seas are in part due to errors in satellite estimates, 

which lead to bias in phytoplankton productivity (Stock et al., 2017). Therefore, satel-

lite estimates require better validation against independent in situ observations 

(Campbell et al., 2002). 

In the last 15 years, considerable efforts have been made in developing and improving 

techniques to measure marine biological productivity (Cassar et al., 2009; Juranek & 

Quay, 2013; Kaiser et al., 2005; Tortell, 2005). There are different terms and metrics 

in use to express marine biological productivity (or production), in particular gross 

and net primary production (GPP, NPP) and net community production (NCP), either 

expressed in terms of C or O2 equivalents. GPP, here measured as G(
17

O), represents 

the total photosynthetic O2 production by autotrophs. NCP, here measured as 

N(O2/Ar), is GPP minus community respiration by autotrophs and heterotrophs. NPP 

is GPP minus autotrophic respiration, an approximation of which is derived from 24 

hour 
14

C incubations, here designated P(
14

C; 24 h). 

Despite spatio-temporal limitations during a research cruise and inherent uncertainties 

to any productivity determination, the non-incubation methods based on dissolved 

oxygen-to-argon (O2/Ar) ratios and triple oxygen isotopes (
16

O, 
17

O, 
18

O) provide an 

improved way to derive estimates of net and gross biological production (Juranek & 

Quay, 2013; Quay et al., 2012). These two methods together can be used to estimate 

the efficiency of the carbon pump (Haskell et al., 2017; Palevsky et al., 2016), based 

on the ratio of N(O2/Ar) to G(
17

O), or ƒ(O2). 

Here, we use the biogeochemical O2/Ar method to derive mixed layer net community 

production rates from continuous membrane inlet mass spectrometry (MIMS) meas-

urements (Kaiser et al., 2005), which resolves variability at sub-km scale resolution. 

Using the measured O2/Ar supersaturation and wind-speed based air-sea gas exchange 

parameterisations, we calculate biological O2 air-sea fluxes (Fbio), correct them for 

diapycnal diffusion and disequilibrium terms to estimate mixed layer net community 

production rates. These measurements are combined with shore-based analyses of 

discrete samples for oxygen triple isotope ratios to derive gross O2 production rates 
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(Luz et al., 1999). Our combined approach results in high-resolution in situ estimates 

of primary production during the spring bloom in the Celtic Sea. Such measurements 

can serve to validate satellite ocean colour productivity estimates, and feed models of 

the carbon pump to predict the impact of climate change. This will improve our un-

derstanding of primary production variability and potential impacts of human activi-

ties in the temperate shelf seas.  

 

2. Material and Methods 

2.1 Study area 

The temperate Celtic Sea comprises an area of the North Atlantic Ocean and is part of 

the northwest European shelf. Throughout the Celtic Sea, the spring bloom typically 

initiates in April when the water column becomes stratified, and can last anywhere 

from weeks to two months (Rees et al., 1999; Sharples et al., 2006). The barotropic 

M2 tide is responsible for the predominant currents in this region, which are consid-

ered weak and spatially variable compared with the adjacent areas of the European 

Shelf Sea (Holt et al., 2001). We sampled during the DY029 “spring cruise” in April 

2015, as part of the NERC Shelf-Sea Biogeochemistry (SSB) programme. MIMS 

O2/Ar data collection started in the English Channel and continued almost uninter-

rupted for 28 days in the Celtic Sea, focussing on repeat transects between Celtic 

Deep (station A) and Shelf Edge (stations CS2 and Fe). Discrete samples were taken 

from Niskin bottles attached to a CTD rosette water sampler at all stations (Fig. 1).  
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Fig. 1. Area of study in the Celtic Sea, with Ireland in the north and Great Britain in 

the east. White circles, superimposed on a chlorophyll a concentration (in mg m
-3

) 

composite image from VIIRS Chlorophyll OC5 (11
th
 to 19

th
 of April; courtesy of 

NEODAAS), indicate the approximate station locations (A, J2, J4, J6, CCS, O2, O4, 

CS2). Straight white blocks represent multiple stations outside the shelf (Fe). The 

curved white line between CS2 and Fe indicates the shelf-edge, represented by the 

200 metre isobath. The contextual wider area map (grey inset) was plotted using 

QGIS software. 

 

2.2 Methods 

Along-track O2/Ar ratios were determined using a shipboard MIMS connected to the 

ship’s non-toxic underway seawater (USW) intake. We also collected discrete sam-

ples for triple oxygen isotopes that were subsequently analysed with a dual-inlet iso-

tope ratio mass spectrometer (IRMS Finnigan MAT 252) in the Stable Isotope Labo-

ratory at the University of East Anglia.  

Continuous sampling 

The USW intake was located in the middle of the bow at a nominal depth of 6 m, and 

plumbed to the main laboratory. To avoid biofouling (Juranek et al., 2010), the USW 

pipes were treated with dilute bleach solution and flushed immediately prior to the 
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cruise and after two weeks at sea. Comparison between samples collected from near-

surface Niskin bottles and USW samples, measured by IRMS, showed no consump-

tion or production of oxygen in our ship’s pipes. 

The MIMS was set-up according to Kaiser et al. (2005), but with the vacuum on the 

inside of the membrane and modified flow (45 ml/min) and temperature control. Be-

fore entering the membrane inlet, a small open flask (500 ml) was used to smooth 

fluctuations in the pumped seawater delivery (1 L min
-1

). The flow to the membrane 

inlet was delivered by a gear pump (Micropump) controlled by a frequency inverter 

(Allen-Bradley). The USW circuit in the lab and the membrane (Teflon AF mem-

brane, Random Technologies) were maintained at 1 to 3 ºC below sea surface tem-

perature, to avoid degassing. The temperature of the mass spectrometer flight tube 

was kept constant at 50 °C using an insulated box with an electric heater and fan in-

side. Standards of 0.2 μm-filtered seawater, aerated and stirred for 24 hours to reach 

air-saturation were used for daily calibration. Standard error in O2/Ar of 0.09 %. 

O2/Ar ion current ratios were measured with a quadrupole mass spectrometer QMS 

200 M Prisma (Pfeiffer Vacuum) with Faraday cup and recorded every ten seconds. 

The analyser was at a constant pressure of 1.0 × 10
–6

 mbar. 

The shipboard MIMS calibration was cross-checked against O2/Ar ratios derived from 

discrete samples extracted and analysed as described in the next paragraph. Both cali-

brations gave identical results, with a mean difference of Δ(O2/Ar) between discrete 

and continuous measurements of (0.0±0.6) % (1σ; R
2
 = 0.98, n = 142). 

Discrete sampling 

We also took discrete samples from 33 CTD Niskin casts at six different depths (three 

in the surface mixed layer and three below) and measured their O2/Ar ratio with the 

MIMS. During analysis of these samples, flow was alternated between continuous 

USW supply and discrete samples using a six-port valve (Valco Cheminert). 

Further discrete samples from the same CTD casts as mentioned above were taken to 

measure oxygen triple isotopes and O2/Ar ratios from three depths, (surface, near the 

bottom of the surface mixed layer, and below the surface mixed layer), using evacu-

ated 330 ml-glass sampling bottles with Viton O-rings stopcocks (Louwers Hapert) 

that were treated with 100 μl saturated HgCl2 solution (7 mg HgCl2) before sampling 

(Emerson et al., 1995). Samples were carefully drawn into the vessel by overflowing 

the side-neck, to avoid atmospheric oxygen contamination, filling the vessel up to 

about 55 % by volume (range: 40 to 69 %), slightly below the optimum fill level of 
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85 % that is required to extract the maximum fraction of O2 (Appendix A). Samples 

were prevented from leaking by filling the side-necks with water and capping (Luz et 

al., 2002). Within one month of the end of the cruise the gas from all samples was ex-

tracted and stored in sealed glass tubes with molecular sieves. We extracted the gas 

samples and removed water vapour, CO2 and N2 by cryogenic trapping and gas chro-

matography before measuring O2/Ar and O2 isotopologue ratios (
16

O
17

O/
16

O2, 

16
O

18
O/

16
O2) using a Finnigan MAT 252 isotope ratio mass spectrometer. The stan-

dard error for standard samples was 0.03 ‰ for δ(
17

O) and 0.05 ‰ for δ(
18

O). Our 

purification line was based on the method of Barkan and Luz (2003) and Abe (2008). 

Tests with artificial O2/Ar mixtures showed that there was no isotopic fractionation of 

the gas sample during extraction and purification. 

 

2.3 Calculation of net community production, N(O2/Ar) 

The O2/Ar method is based on the similar solubility and diffusivity properties of the 

dissolved oxygen and argon. Only dissolved O2 is affected by biological production 

and consumption processes. The relative difference between sample O2/Ar and calcu-

lated saturation O2/Ar ratio can therefore be used to express the magnitude of the bio-

logical O2 supersaturation (Craig and Hayward, 1987; Kaiser et al., 2005): 

 Δ(O2/Ar) = [c(O2)/c(Ar)]/[(csat(O2)/csat(Ar)] – 1 (1) 

where c is the dissolved gas concentration and csat is the air-saturation concentration at 

a certain temperature, salinity and atmospheric pressure. 

Δ(O2/Ar) reflects the biological processes affecting mixed layer oxygen concentra-

tions (production and respiration), but is not significantly affected by physical proc-

esses such as heat and freshwater fluxes or bubble injection and exchange. In combi-

nation with estimates of gas exchange rates (usually based on wind-speed), Δ(O2/Ar) 

can be used to calculate biological O2 fluxes (Fbio): 

 Fbio = k(O2)csat(O2)Δ(O2/Ar) (2) 

where k(O2) is the O2 gas exchange coefficient calculated from a wind speed-based 

parameterisation (Nightingale et al., 2000) and csat(O2) is the oxygen in air-saturation 

concentration at a given seawater temperature, salinity and atmospheric pressure 

(García & Gordon, 1992; Hamme & Emerson, 2004). 

Fbio can be used to estimate net community production, where the second derivative 

of oxygen concentration c(O2) with respect to time is 0, and the effects of horizontal 
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and vertical mixing on the O2/Ar ratio are negligible (Kaiser et al., 2005). In shelf 

seas, these conditions are often not met, and we apply corresponding corrections for 

non steady-state conditions here. 

For k(O2), we compared the parameterisation of Nightingale et al. (2000) to that of 

Wanninkhof (2014), but prefer the former because it is based on two experiments in 

European shelf seas and because its use was recommended for winds at intermediate 

speed (3.5-15 m s
-1

), which cover the range we encountered in the Celtic Sea. How-

ever, Fbio calculated using the Wanninkhof (2014) parameterisation or other recent 

wind-speed gas-exchange parameterisations (e.g. Ho et al., 2006; Sweeney et al., 

2007) would change k(O2) by <5 %, which is a negligible uncertainty. The gas ex-

change coefficient is scaled to the in situ Schmidt number of O2 by multiplication 

with the factor (Sc(O2)/600)
–0.5

. The calculation of the Schmidt number is based on 

Wanninkhof (2014). We use Cross Calibrated Multi Platform (CCMP) wind speeds at 

0.25° and 6 h resolution (http://www.remss.com/measurements/ccmp) for the calcula-

tion of the gas exchange velocities. A comparison of CCMP winds with anemometer 

measurements at the Met Office ODAS buoy positioned in the centre of the Celtic Sea 

showed that they agreed to within (0.2±0.2) m s
–1

. Winds measured directly by the 

ship were also compared with the CCMP winds, and appeared to be (1.5±2.0) m s
-1

 

higher. Ship wind measurements can be affected by the ship’s hull geometry (Moat et 

al., 2005) and for this reason have not been used in the present analysis. 

 

Correction for non-steady state conditions, entrainment into the mixed layer and 

diapycnal mixing across the base of the mixed layer 

Entrainment of water from below the mixed layer and diapycnal mixing across the 

base of the mixed layer need to be taken into account for accurate biological oxygen 

production calculations (Luz & Barkan, 2000; Nicholson et al., 2012; Palevsky et al., 

2016; Quay et al., 2012; Quay et al., 2010). The O2/Ar gradient will determine if Fbio 

over- or underestimates production in the mixed layer. The contribution of vertical 

mixing across the base of the mixed layer (Fv) was calculated according to the follow-

ing equation (see Appendix B):  

 F
v
K

z
c(O

2
)

d ln
c(O

2
)

c(Ar)

dz
 (3) 

http://www.remss.com/measurements/ccmp
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where Kz = (3±2) × 10
-5

 m
2
 s

-1
 (Osborn, 1980; Palmer et al., 2013; Simpson & 

Sharples, 2012) is the vertical diffusivity coefficient, c(O2) is the oxygen concentra-

tion from the CTD oxygen sensor calibrated against discrete samples analysed on 

board by automatic Winkler titration to a potentiometric endpoint (Culberson, 1991; 

Holley & Hydes, 1995), and the third term is the O2/Ar gradient across the base of the 

mixed layer. 

During the period of our study, no sustained increases in mixed-layer depth (entrain-

ment) occurred (Fig. C.1, Appendix C). Entrainment events, deepening of the mixed 

layer (Δz > 0), make a significant contribution only two times and were calculated as 

in Eq. B.7, Appendix B. 

According to Ruiz et al. (this issue) there were no upwelling events in this region, 

thus the influence of vertical advection was not explored further. 

Lateral advection was not considered either since (a) its calculation requires O2/Ar 

measurements in two places at the same time and (b) we did not expect to find strong 

currents or gradients perpendicular to the transect. Surface currents were weak at <1 

km d
–1

 (0.01 m s
–1

) during spring 2015 (M. P. Humphreys and E. Ruiz-Castillo, pers. 

comm., January 2017) and previous studies have shown fronts in the Celtic Sea only 

in waters below the mixed layer (Brown et al., 2003; Sharples et al., 2013).  

Temporal non-steady state changes in the oxygen mass balance are taken into account 

by the term Fnss: 

 F
nss

z
mix
c(O

2
)

d ln
c(O

2
)

c(Ar)

dt
 (4) 

This gives the following combined equation for the calculation of N(O2/Ar): 

 

N (O
2
/Ar) F

bio
F

nss
- F

v

k(O
2
)c

sat
(O

2
) (O

2
/Ar) c(O

2
) z

mix

dln
c(O

2
)

c(Ar)

dt
-K

z

dln
c(O

2
)

c(Ar)

dz

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

 (5) 

The mixed layer depth (zmix) is typically defined using density (Kara et al., 2000). 

However, here we use a criterion based on the O2 concentration gradient (Fig C.1, 

Appendix C), which is expected to more reliably define the depth of active mixing, 

which is relevant for gas exchange (Castro-Morales & Kaiser, 2012). 
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In order to asses if primary production values could be higher for times when zeu was 

deeper than zmix, the depth of the euphotic layer (zeu) (1 % of incident light) deter-

mined from daytime CTD casts was used to assess to what extent mixed-layer produc-

tion reflects the overall productive zone. The contribution of N(O2/Ar) below the 

mixed layer depth was calculated as Δ(∫c(O2)dz) / Δt at stations A, J2, J4, J6, CCS and 

CS2 because these were the only stations where we had frequent repeated vertical 

profiles (n = 25).  

 

2.4 Calculation of gross production, G(
17

O) 

Oxygen has three naturally occurring isotopes (Hoefs, 2004). The triple oxygen iso-

tope ratios (
17

O/
16

O and 
18

O/
16

O) of dissolved O2 can be used to estimate gross oxy-

gen production in the mixed layer. Initial work used an approximated equation based 

on the 
17

O excess, Δ(
17

O) (Luz & Barkan, 2000). Here we use the improved dual-

isotope approach with the following equation (Kaiser, 2011b; Kaiser & Abe, 2012): 

 G
ss
(17O) k(O

2
)c

sat
(O

2
)

(1 17 )
17 17

sat

1 17
(1 18 )

18 18

sat

1 18
s(17 18 )

17

P

17

1 17

18

P

18

1 18

 (6) 

where ε is the kinetic isotope fractionation during O2 evasion (
18
ε = –2.095 ‰ (Knox 

et al., 1992) and 
17
ε = –1.463 ‰ (based on a mass-dependent relationship between 

18
O/

16
O and 

17
O/

16
O fractionation with an exponent of 0.522 (Kaiser, 2011b) and δsat 

at the measured temperature and salinity, i.e. 
17δsat = (0.373±0.02) ‰ and 

18δsat = 

(0.695±0.04) ‰ (Luz & Barkan, 2009). γ = 
17
εR / 

18
 εR = 0.5179 is the triple isotope 

fractionation coefficient during respiration. 
17
δP = –11.644 ‰ and 

18
δP = –22.832 ‰ 

are assumed as the photosynthetic end-member delta values (Kaiser, 2011a; Kaiser, 

2011b; Kaiser & Abe, 2012). Prokopenko et al. (2011) proposed a similar approach to 

the dual-delta method of Kaiser (2011b); the only difference being that they omitted 

the isotopic fractionation during gas exchange (ε) and the biological O2 supersatura-

tion s = Δ(O2/Ar). The dual delta method has been used by a number of authors to 

calculate gross production rates (Castro-Morales et al., 2013; Hamme et al., 2012; 

Juranek et al., 2012; Nicholson et al., 2012; Palevsky et al., 2016).  

The above equation 6 is valid for steady-state conditions (Gss(
17

O)) (Kaiser, 2011b). 

Similar corrections therefore have been applied for non steady-state conditions:  
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diapycnal diffusion (dln[(1+
17
δ) / (1+

18
δ)

γ
] / dz ≠ 0) in all the stations and 

(dln[(1+
17
δ) / (1+

18
δ)

γ
] / dt ≠ 0) where there are Δ(

17
O) gradients for the mixed layer 

and below the mixed layer until the euphotic zone (Fbml), as well as entrainment 

(dln[(1+
17
δ) / (1+

18
δ)

γ
] / dz ≠ 0) where Δz > 0 for the stations sampled repeatedly 

(Kaiser, 2011b). 

 

2.5 Calculation of f ratio 

The combination of net oxygen community production and gross oxygen production 

allow us to calculate the efficiency of the biological pump or ƒ-ratio: ƒ(O2) = 

N(O2/Ar) / G(
17

O).  

To calculate net community production in carbon equivalents, N(O2/Ar) was con-

verted using a photosynthetic quotient of 1.4: NC = N(O2/Ar) / 1.4 (Laws, 1991). 

Similarly, to convert G(
17

O) and to make it compatible with conventional 
14

C-labelled 

24 hour-incubations, we used PC(
14

C; 24 h) = G(
17

O) / 2.7 (Marra, 2002). These con-

versions were then used to calculate the "historic" f-ratio ƒC(historic) = NC / PC(
14

C; 

24 h).  

However, this value is not always constant. Then, for comparison we also used 

GC(
17

O) = N(O2/Ar) / 1.4 + [0.8G(
17

O) - N(O2/Ar)] / 1.1 which uses photosynthetic 

quotients of 1.4 for "new" production (assumed to equal net community production) 

and 1.1 for "regenerated" production. The factor of 0.8 corrects for water-to-water cy-

cling reactions such as the Mehler reaction, which produce O2 with the oxygen iso-

tope signature of photosynthetic O2 and consume O2 with ambient δ values, without 

associated C fixation. These conversion was then used to calculate the f-ratio in terms 

of carbon equivalents, i.e. fC(O2) = NC / GC(
17

O) (Hendricks et al., 2004). 

 

3. Results 

3.1 Metabolic balance 

Continuous O2/Ar measurements showed a metabolic balance corresponding to net 

autotrophic conditions (Δ(O2/Ar) > 0) for the whole month of April (Fig. 2), with a 

mean of (6±4) %. During the two days of transect from the western English Channel 

(50° N 2° W) to station CCS (49.4° N 8.6° W), then south to CS2 and back to CCS on 

10
th
 of April, Δ(O2/Ar) values remained relatively constant at (1.8±1) % (Figs. 2 – 

transit 1 & 3a). Δ(O2/Ar) began to increase substantially from April 11
th
 whilst the 

ship remained at CCS. The highest Δ(O2/Ar) values were recorded on 15
th

 April (up to 
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26 %) moving south from A to CCS. The cruise track followed the same transect 

(51.2° N 6.1° W to 48.1° N 10° W) on two occasions (numbers 1 and 2 in figure 2) 

and partially a third one at the end of the cruise. The first complete transect covered 

pre-bloom, bloom and the bloom-peak according to the Δ(O2/Ar) recorded values (1
st
 

- 15
th
 April). The second (15

th
 – 27

th
) and third (27

th
 – 29

th
) transects recorded similar 

values in the inner shelf of about 12 % (Fig 2). Outside the shelf, southwest of CS2, 

waters were undersaturated or at lower saturation than on the shelf, presumably due to 

Atlantic waters with lower Δ(O2/Ar) values mixing with shelf waters in the less strati-

fied water column. 

 

Fig. 2. Δ(O2/Ar) along the cruise track in the Celtic Sea and English Channel. Num-

bers 1, 2, 3 shows the first (1
st
 – 15

th
 April), second (15

th
 – 27

th
) and third transect 

(27
th
 – 28

th
), respectively. For clarity, transects 2 and 3 have been displaced by 0.9 

and 1.9 ° W to the west, respectively. A, CCS, CS2, indicate approximate location of 

the inner, central and outer stations, arrows shows direction of traveling and approxi-

mate date, and dashed line indicates the shelf edge. 

 

3.2 Biological oxygen sea-air fluxes from continuous sampling 

Biological oxygen fluxes between surface waters and the atmosphere for the entire 

cruise were calculated from Δ(O2/Ar) (Fig. 3a) using Eq. 2. The resulting Fbio values 

from two wind-speed gas exchange parameterisations, Wanninkhof (2014) and 
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Nightingale et al. (2000), are shown in Figure 3b. Both parameterisations give virtu-

ally indistinguishable results except during the strongest winds (> 9 m s
-1

; correspond-

ing to k > 5 m d
-1

; Fig 3a). For low and intermediate wind speeds the differences in 

Fbio with different parameterisations were negligible. Mean Fbio(N2000) was (56±32) 

mmol m
-2

 d
-1

, but was higher after 11 April when the spring bloom started. The com-

bination of O2 supersaturation in the surface layer during the spring bloom and 

stronger winds resulted in the highest Fbio values during spring bloom decay (Fig. 3b). 

 

Fig. 3. (a) O2/Ar supersaturation (Δ(O2/Ar) ) from the USW during April 2015. Nega-

tive values mean undersaturation. Gas exchange coefficients based on wind speed 

parameterisations according to Wanninkhof (2014) shown in pink (W2014); accord-

ing to Nightingale et al. (2000) in dashed blue (N2000). (b) Biological sea-to-air O2 

fluxes (Fbio) are >0, air-to-sea fluxes are < 0. 

 

3.3 Net community production, diapycnal diffusion and temporal changes 

To evaluate how well Fbio approximates net community production, we considered the 

influence of vertical transport due to diapycnal diffusion and temporal non-steady 

state. 

Diapycnal diffusion  
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Diapycnal diffusion, Fv, was calculated as per Eq. 3 (Fig. 4) when the ship was on sta-

tion and linearly interpolated over time. The mixed layer depth was generally shallow, 

around 20 m. Fv was generally negative throughout, which corresponds to loss of 

oxygen from the mixed layer to below; consequently, subtracting negative Fv values 

from Fbio result in higher N(O2/Ar) values. Values of Fv ranged from +0.5 to -10.1 

mmol m
-2

 d
-1

. The average Fv (Kz = (3±2) × 10
-5

 m
2
 s

-1
), –3.7 ± 2.5 mmol m

-2
 d

-1
, ac-

counts for about 6.7 % of Fbio, thus diapycnal diffusion made a small contribution to 

N(O2/Ar). 

 

Fig. 4. Time variations in Fbio accounting for diapycnal diffusion. Diapycnal diffusion 

(Fv) calculated from oxygen based mixed layer depth (differences of 0.5 % with the 

near-surface concentration) in dashed brown. Fbio – Fv in black. 

 

Temporal non-steady state changes 

The temporal change term, Fnss, was calculated as the change in Δ(O2/Ar) over the 

time interval between repeat occupations of the transects 1 and 2 (Fig. 2 & 5), as indi-

cated in equation 4. Transect 3 was not used for the calculation of Fnss as there is not 

significant change in Δ(O2/Ar) in respect to transect 2. Fnss was mainly negative from 

the central to the southern part of the transect (Fig. 6), meaning a loss of oxygen with 

time. From 50.2° N, Fnss was positive, corresponding to a biological oxygen gain. 
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Overall, values of Fnss ranged from +61 to -56 mmol m
-2

 d
-1

. The average Fnss, -2 

mmol m
-2

 d
-1

, accounted for about -3.6 % of Fbio. In the calculation of N(O2/Ar), Fnss 

was added to the mean Fbio – Fv (O2) for the main transect.  

 

Fig. 5. Δ(O2/Ar) time variation for the 13-17 April transect from station A to CS2 

(grey line) and the 24-27 April transect from CS2 to A (dashed black) between 48.5° 

N and 51.5° N. The approximate locations of stations A, CCS and CS2 are also indi-

cated on the plot.  
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Fig. 6. Net community production, diapycnal diffusion and temporal non-steady state 

oxygen fluxes during the first transect (13 to 17 April; light blue and purple) and the 

second transect (24 – 27 April; dark blue and purple). Fnss (in black) and N(O2/Ar) (in 

orange) correspond to the period between first and second transect. 

Net community production, N(O2/Ar), represents the combination of the biological 

oxygen fluxes, diapycnal diffusion and temporal changes, cf. Eq. 5. The average value 

was (33±41) mmol m
-2

 d
-1

, thus the Celtic Sea was net autotrophic (see Fig. 7). The 

highest N(O2/Ar) values were found at stations CCS and A, 133 and 117 mmol m
-2

 d
-1 

respectively (Figs. 6 & 7). However, from CCS to the CS2, the Celtic Sea appeared 

very patchy in its southern part with some negative N(O2/Ar) values, accordingly this 

section was net heterotrophic. Therefore, our N(O2/Ar) calculations show that at high 

spatial resolution the Celtic Sea is heterogeneous during the spring bloom. 

 

Fig. 7. Zonal variations of net community oxygen production (N(O2/Ar)) along the 

Celtic Sea as a composite of first and second transect, calculated using equation 5. 

The approximate location of the main stations A, CCS and CS2 is also indicated on 

the plot. Dashed line indicates the shelf edge. 

 

3.4 Net community production, gross production and f ratio from discrete sam-

ples 

Gross oxygen production is calculated from in situ discrete CTD samples and calcu-

lated using the dual-delta method (Eq. 6). G(
17

O) also shows that the Celtic Sea ap-

peared very patchy with an average value of 225 mmol m
-2

 d
-1

, ranging from 0 to 424 
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mmol m
-2

 d
-1 

(Fig. 8). Values of Fv(
17

O) ranged from +20 to -21 mmol m
-2

 d
-1

. The 

average Fv(
17

O), -5.4 mmol m
-2

 d
-1

, accounts for about 2.6 % of G in steady state, thus 

diapycnal diffusion made small contribution to G(
17

O). Fnss(
17

O) was mainly negative 

during the peak of the bloom, meaning a loss of photosynthetic oxygen over time. Be-

fore and after the peak of the bloom Fnss was positive, corresponding to a biological 

oxygen gain. Overall, values of Fnss ranged from +217 to -201 mmol m
-2

 d
-1

. The av-

erage Fnss, 36.4 mmol m
-2

 d
-1

 or 18 % of G in steady state, made more significant con-

tribution to G(
17

O). Euphotic zone deeper than the mixed layer depth occurred seven 

times. Only in two of them, before the peak of the bloom, Fbml was positive (63 and 

22 mmol m
-2

 d
-1

), meaning gross production below the mixed layer. Entrainment 

made an important contribution (291 mmol m
-2

 d
-1

) only at CCS at the end of the 

sampling period. 

 

Fig. 8. Zonal variations of gross oxygen production (G(
17

O)) based on oxygen triple 

isotopic measurements from CTD along the Celtic Sea and calculated using equation 

6. The approximate location of the main stations A, CCS and CS2 is also indicated on 

the plot. Dashed line indicates the shelf edge. 

 

From the same discrete samples, N(O2/Ar) values were obtained. These samples has 

been corrected in the same way as G(
17

O) measurements. The average of Fv, Fnss, 

Fbml, and Fe was -1, 19, 3 and 8 mmol m
-2

 d
-1 

respectively (Table 1). Using Fv, Fnss, 

Fbml, and Fe terms for the calculation of  N(O2/Ar) and G(
17

O) we found a correlation 
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(R
2
 = 0.22, n = 11, p < 0.001). The ƒ(O2)-ratio was determined by linear regression of 

N(O2/Ar) against G(
17

O) as (0.14±0.09) for the stations that we sampled multiple 

times, therefore, not including two of the station on shelf neither the station out of 

shelf. To calculate ƒ(O2) for the entire sampled area (on and off shelf) and from the 

beginning to the end of the sampled period, we used a more simple mass balance ap-

proach by using the Fv as non steady-state term only. We found a good correlation be-

tween N(O2/Ar) and G(
17

O) values (R
2
 = 0.58, n = 33, p < 0.001). ƒ(O2)-ratio for the 

entire sampled area was (0.18±0.03) (Fig. 9), similar to the more complex approach 

value of (0.14±0.09). However, interestingly ƒ(O2) yielded different correlations and 

slopes for samples taken on or off the shelf. The ƒ(O2) ratio slope corresponding to 

the samples off the shelf was notably lower (0.07±0.02, R
2
 = 0.69) than from the sam-

ples on the shelf (0.25±0.02, R
2
 = 0.91) regardless of the time. In terms of carbon 

equivalents and for comparison with historical data (i.e. the ratio NC / PC(
14

C; 24 h), 

see Method section 2.5), ƒC(historic) for off and on the shelf was 0.13 and 0.49, re-

spectively. fC(O2) in terms of carbon according to Hendricks et al. (2004) (i.e. the ratio 

NC / GC(
17

O), see Method section 2.5), for off and on the shelf was 0.06 and 0.25 re-

spectively. 

  

Fig. 9. Net oxygen community production (N(O2/Ar)) vs. gross oxygen production 

(G(
17

O)) from CTD water samples in the Celtic Sea. A linear regression for samples 

on the shelf gives N(O2/Ar) = (0.25±0.02) G(
17

O) - (5.7±4.5) mmol m
–2

 d
-1

 (blue cir-

cles and line; R
2
 = 0.91). The regression for samples from outside the shelf gives 
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N(O2/Ar) = (0.07±0.02) G(
17

O) – (6.9±6.9) mmol m
–2

 d
-1

 (orange circles and line; R
2
 

= 0.69). 

 

Table 1. Net community production at steady-state or biological O2 fluxes (Fbio), 

gross production at steady-state (Gss(
17

O)), diapycnal diffusion (Fv) and ƒ(O2) for all 

stations visited. Temporal non-steady state term (Fnss), production below the mixed 

layer (Fbml) and entrainment (Fe) for the stations visited repeatedly (units: mmol m
-2

 d
-

1 
of O2 equivalents). Stations on the first column as per order sampled. Hypens mean 

there is no sample. 

 

Fbio  Fv  Fnss  Fbml  Fe Gss(
17

O) Fv  Fnss  Fbml  Fe ƒ(O2) 

CCS 20 0 78 13 -4.9 153 -2 86 13 2 0.1 

CCS 37 -1 40 0 

 

- - - - 

 

- 

Fe08 -6 0 

   

225 3 

   

0.0 

Fe11 -2 -1 

   

277 -2 

   

0.0 

Fe14 0 0 

   

65 -18 

   

0.0 

CS2 1 -1 18 0 

 

41 -1 214 0 

 

0.0 

O4 16 0 

   

75 4 

   

0.2 

O2 43 -2 

   

159 -10 

   

0.3 

CCS 35 -3 58 10 

 

152 -2 217 10 

 

0.2 

A 28 0 15 0 

 

164 0 113 0 

 

0.2 

J2 5 0 4 0 

 

32 -3 40 0 

 

0.1 

J4 6 0 18 0 0 27 -6 19 0 1 0.2 

J6 0 1 29 0 -1 16 -3 -29 0 5 0.0 

J6 138 -4 

   

541 -18 

   

0.3 

CCS 64 -2 -35 -5 

 

227 -4 -72 -10 

 

0.3 

CCS 5 -1 

  

0 32 -4 

  

0 0.2 

CS2 1 0 13 3 

 

21 -9 -69 3 

 

0.0 

Fe01 4 1 

   

22 -5 

   

0.1 

CCS 19 -1 19 5 

 

120 -3 81 -42 

 

0.2 

CCS 27 -1 

   

128 -2 

   

0.2 

CCS 34 3 

   

276 -17 

   

0.1 

CCS 70 8 

   

345 -14 

   

0.2 

CCS 52 5 

   

264 20 

   

0.2 

CCS 126 -2 

   

675 -11 

   

0.2 

Fe17 45 -2 

   

664 -9 

   

0.1 

Fe20 6 2 

   

67 15 

   

0.1 

CS2 27 0 

   

129 -5 

   

0.2 

CCS 4 -3 -34 7 48 20 -9 -201 7 291 0.2 

A 45 -7 

   

157 -21 

   

0.3 

J2 39 -2 

   

307 -13 

   

0.1 

J4 101 -7 

   

335 -9 

   

0.3 

J6 140 -4 

   

550 -11 

   

0.3 
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CCS 48 -3 

   

221 -7 

   

0.2 

 

4. Discussion 

Our MIMS-based approach has shown that within a relatively short period during the 

spring bloom, Δ(O2/Ar) can increase very rapidly (e.g. 15 %  in less than 6 hours). In 

the following, we discuss the dynamic changes during the spring bloom period, to 

what extent the steady state assumption can be used when relating biological oxygen 

air-sea fluxes to net community production and what the implications of the observed 

changes in ƒ(O2) are for organic carbon export.  

 

4.1 Evolution of the spring bloom 

Low winds 10
th
-11

th
 April on the outer part of the shelf (between the shelf edge (CS2) 

and CCS) led to zmix shoaling above the euphotic depth (zeu), which led to an increase 

in the biological oxygen production, Δ(O2/Ar) (Fig 3a & Fig C.1, Appendix C). Dur-

ing transitting (13
th
- 16

th
) we covered the inner part of the shelf (stations A to CCS) 

when lower wind speed seemed to trigger the highest Δ(O2/Ar) values of the spring 

bloom on the 15
th
. This was also considered the peak of the spring bloom by inde-

pendent primary production experiments using 
14

C uptake (Poulton et al. in this issue, 

García-Martín et al. in this issue). This period is also coincident with the maximum in 

Chl-a as observed by satellite (Fig C.2, Appendix C) On this occasion zmix was very 

shallow and generally coincident with zeu. After two days in CCS, we continued the 

transect in the direction of CS2. Net community production decreased further south 

with values of oxygen supersaturation close to 0 % or below on some areas out of the 

shelf. This could be due to the fact that the water column tends to stratify later at the 

shelf edge than on the shelf (Joint et al., 2001) and therefore mixing with the deeper 

Atlantic undersaturated waters (Nolan & O’Boyle, 2011). Although, this could be due 

to the timing of the bloom being later off of the shelf than on shelf, the chlorophyll 

satellite observations of the last week of the cruise does not show the same high val-

ues of chlorophyll off shelf than in the previous two weeks on shelf. Nevertheless, we 

cannot assume that other regions would not exhibit a peak in biological activity after 

our period of sampling. 

Back at CCS, average Δ(O2/Ar) remained almost constant on 20 and 21 April. This 

suggests that spatial variability is greater than temporal variability after the peak of 

the bloom (Fig 3a). From the 25
th
 to the end of the sampling period on 29

th
 of April, 
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we passed the same transect on the inner shelf twice. During this time, Δ(O2/Ar) was 

quite constant. In general, higher values occurred on the inner shelf and lower ones on 

the outer shelf. The differences in Δ(O2/Ar) for stations occupied repeatedly shows 

that the shelf sea is a dynamic and heterogeneous system. To assess if it is due to: a) 

the timing of the bloom varying across the study region and that the cruise captured 

different phases of the bloom in different areas, or b) if the spring bloom is really 

more intense in some areas we used chlorophyll maps at different times of the bloom 

(Fig C.2, Appendix C). Based on it, we can say that the later is true, and the Celtic 

Sea is very heterogeneous, and that the short-lived peak in biological oxygen super-

saturation (e.g. an increase of 15 % in Δ(O2/Ar) over less than 6 hours and a distance 

of 20 km) was captured during the spring bloom. This shows the importance of high-

resolution techniques for biological production measurements under the studied sea-

sonal and geographical conditions. 

What triggered the spring bloom should be a combination of light, water column 

stratification and the availability of nutrients (Simpson & Sharples, 2012). As ex-

pected prior to the spring bloom, surface nutrient concentrations were at their annual 

peak (Ruiz-Castillo et al. in this issue). The water column became more stratified after 

the 10
th
 of April due to lower winds (Fig. 3a), which probably have triggered the be-

ginning of the spring bloom. The peak of the bloom occurred around the 15
th
. From 

the beginning of the bloom, the water column was well stratified. But from the 14
th

 to 

the 16
th
, the mixed layer shoaled in response to weaker winds Moreover, zeu was coin-

cident with zmix (Fig C.1, Appendix C). This condition of shallower mixed layer, with 

nutrients and light available may have triggered the peak values of the spring bloom. 

After the peak of the bloom, Δ(O2/Ar) showed oversaturation, to a lesser degree, until 

the end of the cruise. Only on the last day, a decrease in Δ(O2/Ar) oversaturation was 

recorded (Fig. 2 & Fig. 3a). That could be an early observations of the decay of the 

bloom, perhaps triggered by nutrient depletion, grazing or coagulation (Tiselius & 

Kuylenstierna, 1996). 

 

4.2 Biological production in the Celtic Sea 

For comparison, we converted previous studies that measured biological production in 

the Celtic Sea during springtime to O2 equivalents (Table 2). However, different tech-

niques do not measure the same quantity even if they all measure "biological produc-

tion", making the comparison between techniques very difficult (Juranek & Quay, 
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2013). Incubation times can vary from one study to another, leading to recycling of 

14
C, and dissolved organic carbon fluxes are often ignored. For example, 

14
C with in-

cubation time of 24 hours approximates to net primary production (gross primary pro-

duction minus autotrophic respiration), while incubation times between 2 and 6 hours 

are considered to get results closer to gross primary production. 

With these caveats in mind, we compared our gross and net values with previous stud-

ies in the Celtic Sea spring bloom (Table 2). Our production estimates are within the 

range of previous studies, mainly because the range of previous studies is very large. 

Studies conducted in summer in the Celtic Sea show PC(
14

C, 2–4 h) between 38 to 88 

mmol m
-2

 d
-1 

(Hickman et al., 2012) and PC(
14

C; 24 h) from 63 to 180 mmol m
-2

 d
-1 

(Poulton et al., 2014). Incubation experiments gave spring bloom PC(
13

C; 24 h) values 

of 31 to 310 mmol m
-2

 d
-1

 in a relatively close North Atlantic temperate shelf sea area 

(Daniels et al., 2015), showing that our values are in the same order of magnitude of 

adjacent spring bloom events.  

We compared our values with other studies that assumed steady state or integrated 

over the euphotic zone instead of the mixed layer. To asses for the contribution of 

production below the mixed layer, we calculated its contribution for times when zeu 

was deeper than zmix, but calculation of production below the mixed layer did not 

show a significant contribution to our N(O2/Ar) estimation (see section 2.3). To test 

for the difference between steady and non-steady state with high spatio-temporal reso-

lution measurements, we calculated the diapycnal diffusion and the temporal changes. 

In general, diapycnal diffusion (Fv) was less than 4 mmol m
–2

 d
-1

, and the temporal 

non-steady state change flux Fnss was 2 mmol m
–2

 d
-1

. This is a small contribution to 

the Fbio; then, the steady state assumption could be valid to represent the net commu-

nity production when considering the Celtic Sea transect as a whole and assuming we 

are always sampling the same water mass. However, the magnitude of Fnss varies 

from positive to negatives values (+61 to -56 mmol m
-2

 d
-
1). This suggests that al-

though the time resolution is very fine (every 10 s), the time resolution inherent to 

cruise track (time between transect 1 and 2) may not be enough to fully capture all of 

the changes in this dynamic system. From station J6 to the shelf edge the contribution 

of Fnss is mainly negative, greatly contributing to the heterotrophic conditions, while 

in the inner area of the shelf, from station A to J4 (51.5º N to 50.5º N), Fbio was 41 

mmol m
–2

 d
-1 

, but with the contribution of Fv and Fnss to the final N(O2/Ar) it is 74 

mmol m
–2

 d
-1 

and clearly showing this area as net autotrophic. Therefore, the steady 
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state assumption could underestimate daily primary production in the northern Celtic 

Sea by up to 55 %. 

 

Table 2. Summary of previous results on biological production during the Celtic Sea 

spring bloom in comparison to the present study (units: mmol m
-2

 d
-1 

of O2 equiva-

lents). Different methods are shown in brackets. G stands for gross production; P for 

primary production, which is expected to be closer to N for 24 h. N stands for net 

community production. 

 

References G(
17

O) G(
18

O) G(O2) P(
14

C 24 h) N(O2) N(O2/Ar) 

Present study 225±115     33±41 

(Robinson et al., 2009) - 58-2400 37-840 22-496 16-760  

(Joint et al., 2001; Rees 

et al., 1999) 

   168   

(Joint, 1986)    11-91   

 

4.3 Carbon export efficiency of the shelf sea during the spring bloom 

During winter, nutrients in the mixed layer are used incompletely. Primary production 

fuelled by nitrate is called new production (Eppley & Peterson, 1979). The ratio of 

new production to total production is called f ratio, which, indicates the efficiency of 

the biological pump. Many factors can affect the efficiency of the biological pump: 

the structure of the plankton community, zooplankton vertical migration, phytoplank-

ton size and taxa, and physical forcing of surface waters (Lutz et al., 2007).The com-

bination of N(O2/Ar) and G(
17

O) shows the portion that had not been used for respira-

tion and therefore the proportion that is available for export in O2 terms (Laws et al., 

2000). 

Our samples show two different ƒ(O2) ratios, with values much higher on the shelf 

sea than off the shelf. This indicates that off shelf the majority of the organic matter 

gets recycled in the mixed layer likely due to either, or a combination of, physical or 

biological processes like a community shift: increase in grazing pressure, smaller 

autotrophic cell community, larger representation of bacterial heterotrophic activity 

(Haskell et al., 2017; Rees et al., 1999). ƒ(O2) ratios were 0.18±0.03 for the whole 

Celtic Sea and 0.25±0.02 on shelf. It is in agreement with biogeographic controls of 

transfer efficiency suggested in the global forecast of annual export (Lutz et al., 2007) 



  

 25 

and values found in autotrophic areas of the Southern Ocean (Reuer et al., 2007). 

Slightly higher values (0.35±0.06) has been found during the spring bloom in the sub-

polar N. Atlantic (Quay et al., 2012) and in the N. Pacific coast (∼ 0.50) (Haskell et 

al., 2017). Robinson et al. (2009) measured plankton production in the Celtic Sea with 

different incubation techniques in April 2002. Although their experiment doesn’t in-

clude ƒ(O2) ratio estimations, we calculated it from their Table 2 for comparison 

(G(O2) / NCP(O2) = 0.37±0.07), where production values were not obtained from tri-

ple oxygen isotopes but from oxygen evolution from incubations. Our ƒ(O2) ratio is 

still higher than the most globally observed values of 0.10 to 0.20 (Juranek & Quay, 

2013). 

Some studies tried to find GOP (gross oxygen production) : GC (gross carbon produc-

tion; 3 – 6 h 
14

C incubation) ratio that would allow to scale between the two tech-

niques, but the reported values typically vary from 1.7 to 7.6 (Juranek & Quay, 2013; 

Luz et al., 2002; Munro et al., 2013). Recently, an experiment that compare G(
17

O) : 

GC ratio found a value of 1.2±1.1 which they conclude is not a definitive value and 

further studies are needed (Jurikova et al., 2016). With this caveats on mind, we fol-

lowed Hendricks et al. (2004) to convert G(
17

O) in GC and Laws (1991) to convert 

N(O2/Ar) to NC using the photosynthetic quotient of 1.4. Our average ƒC(O2) ratios 

(0.25±0.02) for the on shelf are comparable with average ƒC(O2) ratios found by 

Prokopenko et al. (2011) in the spring bloom on the Bering Sea shelf. In addition, to 

make our values comparable to the more common ƒC(historic) ratio, we divided our 

G(
17

O) by 2.7 (Marra, 2002) in order to convert our values to 
14

C production PC(
14

C; 

24 h). This robust relationship has been widely used for comparison with historical 

14
C and satellite-based estimates (see Juranek and Quay (2013) for more extensive 

discussion) and still been in use (e.g. Palevsky et al. (2016)). To convert N(O2/Ar) to 

NC we still using the photosynthetic quotient of 1.4 (Laws, 1991). Here, we study f in 

terms of carbon, as ƒC(historic) = NC / PC(
14

C; 24 h) represents the probability of us-

ing carbon for new production and therefore, an approximation of total primary pro-

duction that is available for carbon export, whereas 1 – f would be the fraction of car-

bon used for regenerated or recycled production (Eppley & Peterson, 1979). Impor-

tantly, new production requires net inorganic carbon uptake while regenerated pro-

duction does not. Our ƒC(historic) ratios were 0.34±0.06 for the whole Celtic Sea. 

These are not the highest values recorded (Laws et al., 2000), but still higher than val-
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ues found in open ocean, e.g. the equatorial Pacific (0.12 ±0.12) (Hendricks et al., 

2005) or the global average of 0.20 (Laws et al., 2000). 

Only two studies calculated f ratios in the Celtic Sea, specifically in the shelf edge, 

during the spring bloom: Rees et al. (1999) and Joint et al. (2001); they calculated f 

ratios of 0.8 from nitrate assimilation for samples close to the shelf edge. This values 

are much higher than those found in our study. This discrepancies with nitrate f  ratios 

has been also found before (Hendricks et al., 2004). Moreover, we think that a com-

parison is complicated here because we would need a conversion factor C : N, but 

Rees et al. (1999) found highly variable C : N ratios (2.5 – 9) in their study. There-

fore, converting nitrate assimilation f ratios to C or O2 f ratios, will not give an appro-

priate comparison with our study.  

Large microphytoplankton cells (20-200 μm) that are typical of the spring bloom are 

associated with higher f ratios (Tremblay et al., 1997). However, the phytoplankton 

community found on during the spring bloom was dominated by nanoplankton (2-20 

μm) (Hickman et al. this issue), which thus may explain the lower values found in this 

study. Rees and Joint studies found that the spring bloom was dominated by large 

cells and higher f ratios when larger phytoplankton dominated the assemblage. In ad-

dition, experiments had demonstrated that phytoplankton communities dominated by 

small cells are more sensitive to changes in carbon concentrations (Richier et al., 

2014), and the shift to smaller size-cell population, reduce the export efficiency, 

which could indicate an effect of climate change (Palevsky et al., 2016). 

Compared to the on-shelf values, the ƒC(historic) values off the shelf seems implicate 

three times less particulate organic carbon (POC) export than the shelf edge.  

On average, our ƒC(historic) ratios suggest that about 35 % of the total production is 

available for export and 65 % for remineralisation. It is in good agreement with an-

nual global estimation of coastal margin carbon sequestration (Muller-Karger, 2005), 

because although our study does not represent annual carbon export, the spring bloom 

is typically the most productive season. To calculate annual carbon export requires 

further studies during other seasons (Palevsky et al., 2016), which will be presented in 

a follow-on paper. 

Therefore, our f ratio is comparable, albeit sometimes slightly lower than those re-

ported previously in other shelves, but higher than the global average, indicating that 

the Celtic Sea is indeed a highly productive region of the northwest European Shelf.  
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5. Conclusions 

This is one of the first data sets of net community (N) and gross production (G) rates 

during a Celtic Sea spring bloom at high resolution. Our results apply to the mixed 

layer and below up to the euphotic zone. 

We find net community production rates based on continuous membrane-inlet mass 

spectrometry measurements of oxygen-to-argon ratios, N(O2/Ar), of up to 144 mmol 

m
-2

 d
-1

 in April 2015, with an average of (33±41) mmol m
–2

 d
-1

. Biological air-to-sea 

oxygen fluxes (Fbio) were the dominant term in the N(O2/Ar) calculation. The diapy-

cnal diffusion term (Fv) was negligibly small (< 4 mmol m
–2

 d
–1

). The disequilibrium 

term (Fnss) contributed between –50 and +50 mmol m
–2

 d
–1

 at specific locations, but 

had a negligible effect when considering the Celtic Sea as a whole. In other words, for 

measurement of net community production at high spatial resolution in dynamic 

shelf-sea environments, good temporal resolution and repeat occupations of transects 

are required. The assumption of steady state (i.e. assuming N(O2/Ar) = Fbio) may lead 

to errors of 50 %  or more. In turn, when integrating over larger areas, Fbio may pre-

sent a faithful representation of the metabolic balance of the Celtic Sea as a whole. 

Gross production rates based on oxygen triple isotopologues in discrete samples, 

G(
17

O), were up to 424 mmol m
-2

 d
-1

 and (225±115) mmol m
-2

 d
-1

 on average. Calcu-

lating net community production just for these discrete samples gave an average of 

N(O2/Ar) = (55±34) mmol m
-2

 d
-1

. f(O2) ratio for the entire shelf was 0.18±0.03, or 

ƒC(historic) = 0.34±0.06 in carbon equivalents. f(C) ratio is more than four times 

higher on the shelf than on the shelf edge. The average of nearly 0.34 for the Celtic 

Sea is expected to lead to a large organic carbon export flux.  

The observed heterogeneity in the continuous N(O2/Ar) estimates as well as the vari-

ability of discrete G(
17

O) values along the cruise transect demonstrate the virtue of 

high-resolution techniques. Our results could help improve the validation of remote 

sensing algorithms and ecosystem models. 
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Appendix A: Optimum headspace for extraction of gases from water 

To get the best possible precision during isotope ratio mass spectrometric analyses, it 

is important to maximise the amount of O2 available for measurement. For a fixed 

sample bottle volume (V), the larger the water fill volume (VW), the more O2 is poten-

tially available for analysis. However, a larger water fill volume reduces the head-

space volume (VA) and since only the gas in the headspace is used for our analyses, 

this reduces the fraction of gas in the sample available for measurement. The trade-off 

between these two constraints results in an optimum headspace fraction (η = VA / V) 

that is solely determined by the solubility of O2, as shown in the following. 

To determine the optimum headspace fraction η, we consider the mass balance be-

tween headspace and water after equilibration as described by the equation 

 V
A
c

A
V

W
c

A
V

W
c

0
 (A.1) 

where VA and VW are the headspace and water volume, cA and c0 are the O2 concentra-

tion in the headspace and the initial water sample and α = cW / cA is the Ostwald solu-

bility coefficient. Substituting VW = V – VA and rearranging for the headspace concen-

tration gives: 
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To find the optimum headspace for extracting the maximum amount of O2 from the 

sample, we find the maximum of the amount of O2 in the headspace (nA = cA VA) with 

respect to the headspace fraction η using 
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which has the solution 

 
1

1
1

1
 (A.4) 

for 0 < η < 1. 

For salinity S = 35 and a temperature of 10 ºC, α equals 0.032 (García & Gordon, 

1992), which gives η = 0.15, i.e. the bottle should be filled with water to 85 % of its 

capacity. For temperatures between –2 and 35 ºC, α varies between 0.022 and 0.040, 

which gives η values between 17 % and 13 %. 

The fraction of O2 extracted relative to the amount in the original sample is given by 
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i.e. under optimum extraction conditions, about 85 % of the O2 amount in the sample 

are available for isotope ratio mass spectrometric analysis. 

The optimum extraction conditions for argon are similar to those of O2 because both 

gases share similar solubility characteristics. For less soluble gases, the headspace 

fraction should be decreased. For more soluble gases, the headspace fraction should 

be increased (Fig. A1). In the latter case, the fraction of initial gas extracted is lower, 

but there is also more gas to work with because of the higher solubility. This could 

have implications for the total volume of gas needed for an accurate measurement if a 

single sample is used to measure multiple gases with a range of solubilities and a 

range of instrument detection limits. 

 

Figure A1: Optimum headspace fraction η (=VA / V, i.e. ratio of headspace to total 

bottle volume) required to maximise the amount of gas in the headspace as a function 

of the Ostwald solubility coefficient α = cW / cA and amount fraction of initial gas ex-

tracted (= cAVA / c0VW). 
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Appendix B: Combined oxygen and argon mass balance in the mixed layer 

We present the one-dimensional mass-balance equations for dissolved oxygen and ar-

gon in the mixed layer under the influence of net community production, air-sea gas 

exchange, diapycnal eddy diffusion across the base of the mixed-layer and vertical en-

trainment (mixed-layer deepening); last one not included in the calculations of the 

manuscript as no sustained increases in mixed-layer depth occurred. These equations 

are used as a diagnostic model to derive net community production in this study. We 

use the following symbols: 

c, c': O2, Ar concentrations 

c0, c0': O2, Ar in air saturation concentrations 

cT, cT': O2, Ar concentrations in the entrained water 

s = c / c0 – 1, s' =  c' / c0' – 1: O2, Ar saturation anomalies  

Δ = (c / c') / (c0 / c0') – 1: O2-to-Ar ratio saturation anomaly 

zmix: mixed-layer depth 

k, k': O2, Ar gas exchange coefficients 

Kz: vertical eddy diffusion coefficient 

N: net community production of O2 

The one-dimensional mixed layer mass balance for O2 and Ar is 
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where the eddy-diffusion terms (with Kz) include the concentration gradients at the 

base of the mixed layer. Using c = c0(1+s) and c' = c0'(1+s'), this can be rewritten as 
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Subtracting equation B.4 from equation B.3 gives 
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Using the O2/Ar saturation anomaly 1 + Δ = (1 + s) / (1 + s') and multiplying by c, we 

obtain 
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The entrained concentration can be approximated by the concentration gradient at the 

base of the mixed layer and the increase in mixed-layer depth Δzmix: 

 c
T
c

1

2

dc

dz
z
mix

z
mix

 (B.7) 

½Δzmix is the entrainment length scale (Castro-Morales et al., 2013; Gruber et al., 

1998). This results in an entrainment term very similar to the eddy-diffusion term: 
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Using the Schmidt numbers Sc to relate the O2 and Ar gas exchange coefficients and 

rearranging for net community production N gives 
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The term 1–(Sc/Sc')
0.5

 is about +4.2 % (Wanninkhof (2014) Sc parameterisation) or 

+4.4 % (Keeling et al. (1998) Sc parameterisation). The third term in Eq. (B.9) can 

therefore be neglected. 

This gives the final diagnostic equation 
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with the relation of the four terms of the equations to the quantities discussed in the 

manuscript: biological oxygen air-sea flux (Fbio), non-steady state flux (Fnss), diapy-

cnal diffusion flux (Fv) and entrainment flux (Fe).  
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Appendix C: Mixed layer and euphotic zone depths 

 

 

Figure C.1: Δ(O2/Ar), mixed layer and euphotic zone from CTD casts. Δ(O2/Ar) are 

plotted as blue lines. The mixed layer depth (zmix) based on the change in density is in 

dashed black and oxygen in dashed pink. Aphotic zone (less than 1 % of incidental 

PAR) in shaded grey. For profiles “13
th

 A” and “14
th
 J2” there were no light profile 

measurements. 
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Figure C.2: Satellite images of seven days composite image from VIIRS Chlorophyll 

OC5 (mg m
-3

) evolution during the spring bloom 2015. White circles, superimposed 

to image (A) indicate the approximate station locations (only A, CCS, and CS2 has 

been labelled). Straight white blocks represent multiple stations outside the shelf. The 

curved white line indicates the shelf-edge. (A) 1
st
 – 7 April, (B) 8

th
 – 14

th
 April (C) 14 

– 20
th
 April, (D) 21 – 27 April. Images courtesy of NEODAAS. 
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Highlights  

 

 Net community and gross production rates during a spring bloom at high reso-

lution.  

 Results apply to the mixed layer and below up to the euphotic zone. 

 N(O2/Ar) was spatially heterogeneous and shows autotrophic conditions. 

 Gross production rates based on oxygen triple isotopologues were up to 424 

mmol m
-2

 d
-1

. 

 Carbon export efficiency much higher on the shelf sea than off the shelf. 

 


