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Abstract 

Biomonitoring underpins the environmental assessment of freshwater ecosystems and guides 

management and conservation. Current methodology for surveys of (macro)invertebrates uses coarse 

taxonomic identification where species-level resolution is difficult to obtain. Next-generation 

sequencing of entire assemblages (metabarcoding) provides a new approach for species detection, but 

requires further validation. We used metabarcoding of invertebrate assemblages with two fragments 

of the cox1 "barcode" and partial nuclear ribosomal (SSU) genes, to assess the effects of a pesticide 

spill in the River Kennet (Southern England). Operational Taxonomic Unit (OTU) recovery was 

tested under 72 parameters (read denoising, filtering, pair merging and clustering). Similar taxonomic 

profiles were obtained under a broad range of parameters. The SSU marker recovered Platyhelminthes 

and Nematoda, missed by cox1, while Rotifera were only amplified with cox1. A reference set was 

created from all available barcode entries for Arthropoda in the BOLD database and clustered into 

OTUs. The River Kennet metabarcoding produced matches to 207 of these reference OTUs, five 

times the number of species recognised with morphological monitoring. The increase was due to: 

greater taxonomic resolution (e.g. splitting a single morphotaxon ‘Chironomidae’ into 55 named 

OTUs); splitting of Linnaean binomials into multiple molecular OTUs; and the use of a filtration-

flotation protocol for extraction of minute specimens (meiofauna). Community analyses revealed 

strong differences between "impacted" vs. "control" samples, detectable with each gene marker, for 

each major taxonomic group, and for meio- and macro-faunal samples separately. Thus, highly 

resolved taxonomic data can be extracted at a fraction of the time and cost of traditional non-

molecular methods, opening new avenues for freshwater invertebrate biodiversity monitoring and 

molecular ecology. 

 

INTRODUCTION 

The freshwater biota is affected by a host of natural environmental drivers and, increasingly, 

anthropogenic disturbances that alter local species assemblages. Biomonitoring therefore is required 

to assess the ecological status of freshwaters and to enforce their protection through legislation, such 

as the Water Framework Directive (WFD) of the European Union and the US Clean Water Act 

(United States 1972; European Commission 2000). However, this field of applied ecology is still 

largely reliant on techniques that were developed over a century ago, albeit with some statistical 

advances, tweaks, and adjustments in the intervening years, and has been roundly criticised for failing 

to adapt to a rapidly changing world (Friberg et al. 2011). The vast majority of biomonitoring 

schemes still relies on identifying macroinvertebrates by eye, or at best via microscopy, to a coarse 

level of taxonomic resolution, and the molecular revolution that is overtaking mainstream ecology has 

yet to be embraced (Pauls et al. 2014; Bohan et al. 2017). Because of the need for rapid and cost-
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effective approaches, it is routine practice that many taxa are not identified to individual species but 

instead are lumped taxonomically, e.g. by family, as used in RIVPACS and AUSIVAS systems 

(Wright et al. 2000), or, less frequently, into trait-based groupings, such as “riverflies”. The 

taxonomically difficult groups in which most of the aquatic biodiversity resides (e.g. chironomid 

midges) are typically either ignored or treated as a single entity (Schmidt-Kloiber & Nijboer 2004; 

Jones 2008).   

These labour-saving shortcuts can nonetheless provide a broad assessment of the ecological state of a 

water body, despite the huge amounts of environmental-status information that are inevitably 

jettisoned in the process, and has been successfully used for the assessment of habitat and water 

quality for many decades (Camargo 1993; Marshall et al. 2006; Sánchez-Montoya et al. 2007). 

However, population responses to changes in water quality can differ between even closely related 

species, and so taxonomically coarse inventories may miss the full impact of important environmental 

stressors (Stubauer & Moog 2000; Chessman et al. 2002; Gutiérrez-Cánovas et al. 2008). Species-

level identification can establish the link to known ecological, physiological and behavioural traits, 

which may reflect differential responses to environmental conditions, and also may reveal the 

membership in feeding groups and position in trophic networks (Bohan et al. 2017). These 

distinctions are lost if the assessment is at the level of genera or families, or other such coarse 

groupings (Schmidt-Kloiber & Hering 2015; Leese et al. 2016).  

Recent protocols for metabarcoding, i.e. the sequencing of PCR amplicons from environmental 

specimen mixtures, could provide faster and more highly-resolved taxonomic identification of 

complex assemblages (Taberlet et al. 2012). This methodology applies Hebert et al.’s (2003) idea of 

species identification through short diagnostic DNA barcodes (a fragment of the cox1 gene) to the 

community level, and thanks to new high-throughput sequencing (HTS) technology, the effort 

required for DNA barcoding of an entire assemblage now is not much greater than required for a 

single specimen with Sanger-sequencing (Taylor & Harris 2012; Brandon-Mong et al. 2015). 

Metabarcoding permits the simultaneous analysis of large numbers of minute specimens obtained 

from environmental samples, such as soil and leaf litter (Yang et al. 2014; Arribas et al. 2016; Zinger 

et al. 2016), the deep sea (Esling et al. 2015; Guardiola et al. 2015; Leray & Knowlton 2015; Lanzén 

et al. 2016), and freshwater sediments and the water column (Elbrecht & Leese 2015; Bista et al. 

2017). Metabarcoding can thus provide the elusive species-resolution desired for biomonitoring of 

entire ecosystems, and also for capturing the large proportion of organisms that are either too small to 

see or identify using traditional sorting and microscopy techniques (Creer et al. 2010; Ji et al. 2013; 

Hajibabaei et al. 2016; Bohan et al. 2017). 

Here, we applied metabarcoding to study the consequences of an insecticide spill on invertebrate 

freshwater communities in a large lowland river as a test case. On July 1, 2013, a pulse of the 
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organophosphate chlorpyrifos in the River Kennet, the largest tributary of the River Thames in 

southern England, led to population crashes and localised extinctions of many invertebrate taxa (see 

Thompson et al. 2016 for details). We used samples collected upstream and downstream from the 

spill site over several km of the river’s length to explore the effectiveness of metabarcoding, and to 

trial new environmental diagnostic protocols for identifying differential responses of invertebrate 

communities to a profound environmental perturbation. For example, some components of the local 

community such as the dominant detritivore, the amphipod Gammarus pulex, were greatly reduced in 

number downstream from the spill, whereas other taxa, especially those with an aerial adult life stage, 

were far less affected, and at a later sampling time returned to post-spill levels, possibly due to their 

ability to recolonize rapidly. The Chironomidae (non-biting midges) as a group greatly increased in 

abundance after the spill. However, because community composition was only measured at higher 

taxonomic levels, rather than with species-level resolution, it is not possible to gain further insight 

into the mechanisms of ecological resilience and recovery after the spill. Specifically, the species 

composition of the post-impact chironomid community might be largely unchanged from the pre-

impact community, or, despite the increased abundance, it might be composed of a subset of that 

community (nestedness) or of a new set of species dispersed from elsewhere (turnover).  

The cox1 gene is the obvious choice of a marker for metabarcoding of aquatic invertebrates, but due 

to the constraints on read length, the widely used Illumina platform is not suited for sequencing the 

full-length amplicon of the barcode region (658 bp). We have metabarcoded two gene fragments 

covering the entire cox1 barcode region using two primer pairs shown to have broad target ranges 

(Arribas et al. 2016), which here were applied for the first time to freshwater invertebrate 

communities. The parallel use of two barcode fragments provides a test of amplification breadth and 

potential biases due to primer choice, which could affect the success of species detection and 

delimitation. A major concern is that PCR amplification of the cox1 region in several aquatic phyla is 

generally low and thus this region may produce bias in the detectable species assemblages (Deagle et 

al. 2014; Lobo et al. 2015; Creer et al. 2016). We therefore also conducted metabarcoding with the 

nuclear 18S rRNA (SSU) gene, frequently used for sequencing marine meiofaunal communities but 

never tested in freshwater ecosystems to our knowledge. This gene contains highly conserved regions 

bracketing more variable segments and thus is less affected by primer bias across a larger 

phylogenetic range of taxa. However, lower sequence variation in SSU generally underestimates the 

true species diversity (Tang et al. 2012). The resulting metabarcode sequences are typically first 

clustered into de novo generated species proxies, i.e. Operational Taxonomic Units (OTUs) (Blaxter 

et al. 2005), that can be directly used for downstream ecological analyses. Species identification is 

critical for many uses of these data, and can be obtained against existing databases of DNA sequences 

from fully identified specimens available at public databases (NCBI or BOLD). These reference sets 

can be used in two ways, either by matching the de novo generated OTUs against the external 
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reference sequences, in a ‘taxonomy independent’ approach, or by matching the raw sequence reads 

directly to the reference set without prior OTU clustering in a ‘taxonomy dependent’ approach 

(Schloss & Westcott 2011), which has been used on various occasions to test species presence or 

absence (e.g. Shokralla et al. 2014; Arribas et al. 2016).  

The River Kennet pesticide spill, characterised previously with conventional approaches (Thompson 

et al. 2016), was used to trial the metabarcoding methodology for freshwater invertebrates. This 

included the development of protocols for extraction of meio- and macro-fauna from bulk sediment 

samples, the evaluation of existing universal primers for amplification of the cox1 and nuclear 18S 

ribosomal RNA (SSU) genes, and the calibration of bioinformatics tools and parameter settings for 

accurate estimates of species numbers and species identification. For identification of the local 

community we made use of the rapidly growing publicly available taxonomic sequence databases, 

whose species representation is increasingly complete at least for this ecosystem in Western Europe. 

Given the high quality of sequence data achievable with recent Illumina technology, future 

biomonitoring schemes may shift to the use of metabarcoding.  

 

MATERIALS AND METHODS 

Study site and sampling protocol 

The River Kennet is a lowland chalk river that was affected by widespread macroinvertebrate 

mortality along a 15-km stretch downstream from an insecticide spill site (Thompson et al. 2016). 

Invertebrates were collected using a Surber sampler (0.0625 m2, 335 μm mesh) at three upstream 

control and three downstream impacted reaches, each 50 m long, along a ca. 6 km river stretch 

(including the four sites sampled in Thompson et al. 2016). Sites were ca. 1 km apart, with similar 

channel forms and riparian surroundings, and were sampled at two times: time 1 (12th July 2013), 11 

days after the spill; time 2 (17th September 2013) (Suppl. Fig. S1). The latter was the same time as 

samples used in Thompson et al. (2016). The sampling regime permitted to explore the immediate 

effect downstream of the spill point relative to the unaffected upstream sites, and the short-term 

recovery of the arthropod community 2.5 months after the spill. One Surber sample per site and time 

was preserved immediately after collection in absolute ethanol and transferred to the laboratory, 

where we removed debris by hand and subsequently filtered the remainder through a 1 mm wire mesh 

sieve to retain macrofauna. The smaller material not retained by this sieve was then passed through a 

45 µm wire mesh sieve to capture the meiofaunal fraction (size < 1mm) while flushing out 

microorganisms and silt with copious amounts of water (Fonseca et al. 2010; Arribas et al. 2016). 

Note that the original Surber used a 335 µm mesh but many organisms below this size were retained 

in the Surber sample by debris and no effort was made to remove small organisms at this stage. The 
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filtrate from this second step was cleaned by flotation using LUDOX 40TM (Burgess 2001) to separate 

organisms, which tend to float, from inorganic particles, which tend to sink. The floating layer was 

extracted for DNA to represent the sampled meiofauna. Each sample was processed separately for the 

macro- and meiofauna, for a final number of 24 samples used for DNA extraction and sequencing 

(Fig. 1).  

 

DNA extraction and Illumina sequencing 

Each sample was dried and homogenised in a Falcon tube, and DNA was extracted from 200 µl of 

sample lysate using a DNeasy Blood and Tissue Spin-Column Kit (Qiagen). Three DNA markers 

were individually amplified: a fragment of the SSU gene, and two fragments (bc5' and bc3') within the 

mitochondrial cox1 barcode region. The two fragments were bracketed by the “Folmer” primers used 

for amplification of the standard animal barcode (Hebert et al., 2003), but with a higher degree of 

degeneracy. The bc5' fragment corresponds to ≈350 bp of the 5' end of the cox1 barcode fragment, 

and was amplified using primers already validated in a wide variety of arthropods (Fol-degen-for: 5' 

TCNACNAAYCAYAARRAYATYGG (Yu et al. 2012) and Ill_C_R: 5' 

GGIGGRTAIACIGTTCAICC (Shokralla et al. 2015).  Similarly, the bc3' fragment corresponding to 

≈420 bp of the 3' end of the cox1 barcode was amplified with primers Ill_B_F (5'-

CCIGAYATRGCITTYCCICG) (Shokralla et al. 2015) and Fol-degen-rev (5'-

TANACYTCNGGRTGNCCRAARAAYCA) (Yu et al. 2012). The SSU marker was amplified using 

primers SSU-FO4 (5'-GCTTGTCTCAAAGATTAAGCC) and SSU-R22 (5'-

GCCTGCTGCCTTCCTTGGA), producing a fragment of varying length of 300 to 400 bp (Blaxter et 

al. 1998). 

Primers were modified to include an overhang adapter sequence for subsequent nested PCR, in 

analogy to the Illumina protocol for sequencing the 16S rRNA gene in microbial samples (16S 

Library Preparation Protocol at http://support.illumina.com) (see Arribas et al. 2016). For each 

sample, three independent reactions for each pair of primers were performed, and the PCR amplicons 

were pooled. All information regarding PCR reagents and conditions was included in Data S1. 

Amplicon pools were cleaned using Ampure XP magnetic beads, after which these primary amplicons 

were used as template for a limited-cycle secondary PCR amplification to add dual-index barcodes 

and the P5 and P7 Illumina sequencing adapters (Nextera XT Index Kit; Illumina, San Diego, CA, 

USA). For each sample, the three gene fragments were processed individually but using the same 

indexes for sample tagging, thus combined in a single library and reducing the costs. The 24 resulting 

metabarcoding libraries were sequenced on an Illumina MiSeq sequencer (2x300 bp paired end reads) 

on 1.5% of the flow cell each, to produce paired reads (R1 and R2) with a given dual tag unique 

combination for each sample.  
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Creating a reference sequence database 

A custom reference set of OTUs for Arthropoda was created from sequences obtained from the BOLD 

Public Data Portal (Ratnasingham & Hebert 2007; accessed on 8th January 2017). All available full-

length (658 bp) cox1 sequences for Arthropoda were retrieved from BOLD and subsequently 

clustered with Usearch v7 (Edgar 2013) under a 3% similarity threshold. This resulted in thousands of 

OTUs (referred to as BOLD-OTUs from hereon), each of which was based on variable numbers of 

primary entries in the BOLD database, ranging from just a single sequence to several hundred 

sequences in some cases. For simplicity, the centroid sequence of each BOLD-OTU was used as the 

“representative sequence” in subsequent analyses for the taxonomic identification of metabarcoding 

sequences. The BOLD database already provides clustering of barcode data based on a graph theory 

method that produces the so-called BIN (Barcode Identification Number) groups (Ratnasingham & 

Hebert 2013). We established the correspondence of our BOLD-OTUs with the BINs based on the 

representative sequences, which permitted to attach a BIN number and, where available, the 

associated species name to the BOLD-OTUs. We obtained species names for most of the OTUs that 

were matched by the metabarcoding study, but there were 18 cases where metabarcoding reads 

matched a single sequence on BOLD that was not attached to any named BIN group and which was 

identified to order level only.  

In general, each BOLD-OTU corresponded to a unique Linnaean species name, but in several cases 

the same species name was attached to multiple BOLD-OTUs, indicating high intraspecific genetic 

diversity, identification problems in the reference database, or the existence of cryptic species (Table 

1, Suppl. Table 4). The BINs on the BOLD database equally are affected by splitting of Linnaean 

species. For example, sequences associated with the isopod Asellus aquaticus were assigned to eight 

separate BOLD-OTUs matching 8 different BINs. High intraspecific variation (>3% divergence in 

cox1) is a well-established observation in the case of Asellus (Sworobowicz et al. 2015). Three 

BOLD-OTUs were assigned to Baetis rhodani (Ephemeroptera), which is also reflected in the 

incomplete taxonomy of this species complex (Williams et al. 2006; Bisconti et al. 2016).  

 

Bioinformatic read processing 

Various bioinformatics steps were applied to reduce the proportion of low-quality data (Schirmer et 

al. 2015). These steps included the trimming of 3’ ends, merging R1 and R2 reads, and the detection 

and removal of hybrid molecules formed during PCR from mixed templates. Raw reads were quality 

checked in Fastqc (Babraham Institute 2013) and subsequently de-multiplexed to get independent 

datasets for each of the three DNA fragments, using the fastx_barcode_splitter.pl option of the 

FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/; accessed 18/07/2016). Primers were 
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trimmed using fastx_trimmer and reads were processed in Trimmomatic (Bolger et al. 2014) using 

TRAILING:20 MINLEN:250 CROP:270 (CROP 250 for R2). R1 and R2 reads were paired using 

Pairfq 0.16 (Staton 2013) and the makepairs option.  

Alternative procedures for read denoising, pair merging, quality filtering and clustering method were 

tested for each DNA marker (Suppl. Fig. S2). These analyses included: (i) Four different denoising 

parameters using BFC (Li 2015) (s=0.35 K=33; s=2 K=33; s=20 K=33; without de-noising); (ii) two 

procedures for pair merging using either Pear v0.9.6 (Zhang et al. 2014) with –q 26 and other default 

parameters or Usearch v7 (Edgar 2013) as above; and (iii) three alternative quality filtering 

parameters in Usearch (Maxee=0.5; Maxee=1; without Maxee). Processed sequences were OTU 

clustered with three different algorithms: Usearch (greedy heuristic approach; Edgar 2013) (-

cluster_otus option); CROP (Bayesian approach; Hao et al. 2011); and Swarm (agglomerative 

approach; (Mahé et al. 2014) (Suppl. Fig. S2). 

The combination of 24 read processing settings and 3 OTU clustering methods yielded a total of 72 

OTU sets for each of the three metabarcode fragments. For each DNA fragment (bc5’, bc3’, SSU) we 

estimated the number of exclusive and shared OTUs between each pair of the 72 OTU sets obtained. 

This required that we possess a list of all OTUs present in the various sets. We assembled the 72 OTU 

sets with a minimum similarity threshold of 3% in Geneious v7.1.9 (Kearse et al. 2012). The resulting 

assemblies were exported as a 50% majority rule consensus sequence to represent each OTU, and 

used as references to subsequently map the OTUs obtained for each of the 72 OTU sets under a 3% 

similarity threshold, using the command –usearch_global. The proportion of shared and exclusive 

OTUs in each pair of the 72 OTU sets were estimated from the OTU table using R.  

Based on the results from these tests (below), we used the following parameters for all further 

analyses: reads were denoised using BFC (Li 2015), and processed following several steps of the 

Usearch (Edgar 2013) pipeline: reads were merged (option mergepairs –fastq_minovlen 150 (130 for 

bc3’), -fastq_maxdiffs 30), quality filtered (Maxee=1), dereplicated (-derep_fulllength) and sorted (-

sortbysize options). Sequences with only one read (-minsize 2) were excluded, and a de novo chimera 

checking was conducted (-uchime_denovo option).  

 

De novo OTU generation from metabarcoding 

Quality-filtered metabarcode sequences were subjected to clustering with each of the three clustering 

algorithms using 3% and 10% dissimilarity thresholds for the cox1 bc5' and bc3' fragments, and 3% 

threshold for the SSU gene fragment. Each OTU set was filtered to retain only OTUs, which 

corresponded to the targeted invertebrates and to remove bacterial and other sequences. For this 
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purpose, Geneious was used in batch mode to align each OTU set (the representative sequence, i.e. 

the centroid according to Usearch) with MAFFT options FFT-NS-2 (Katoh & Standley 2013) and to 

generate an UPGMA tree based on Tamura-Nei distances. Only the OTUs included in the largest 

clade of the UPGMA tree within a 30% dissimilarity threshold were retained, and all other sequences 

presumably not representing the targeted gene fragment were removed with a custom R script using 

the libraries ape (Paradis et al. 2004), rncl and stringr (Wickham 2013). Finally, the retained cox1 

sequences were aligned in Geneious using MAFFT and the Translation Align option, and 

subsequently sequences with insertions, deletions or stop codons disturbing the reading frame were 

excluded. 

 

Identification of OTUs against NCBI and the BOLD-OTUs reference set 

Assignments of OTUs to high level taxonomic categories were conducted with the lowest common 

ancestor (LCA) algorithm implemented in Megan v5 (Huson et al. 2007). Each OTU representative 

sequence was subjected to BLAST searches against the NCBI nt database (December 2016; blastn -

outfmt 5 -evalue 0.001). BLAST matches were fed into Megan to compute the taxonomic affinity of 

each OTU. We accepted the taxonomic ranks in the NCBI Taxonomy database (December 2016) and 

Megan was used to estimate richness for phyla within Metazoa, classes within Arthropoda, and orders 

within Insecta and Crustacea.  

Secondly, the identifications were conducted against BOLD-OTUs. Analyses were based either on 

metabarcoding reads only, after filtering, or after the de novo OTU clustering step described earlier. 

Processed reads of bc5' and bc3' were matched against BOLD-OTUs using the -usearch_global option 

with the same 3% threshold. The python script uc2otutab.py was used to generate a list of matched 

OTUs. For the identification of de novo OTUs from clustering with Usearch, Swarm and CROP the 

same protocol of matching the BOLD-OTUs in the reference database was applied to the 

representative sequences from each OTU (at 3% threshold).  

 

Community composition and indicative species analyses 

Ecological statistical analyses for total beta diversity and the associated turnover and nestedness 

components (Baselga 2010) across sampling sites were conducted for the Metazoa, Arthropoda, 

Insecta and Crustacea sub-datasets. Community composition tables (OTU x site tables) were obtained 

by matching Illumina processed reads (blastn -outfmt 5 -evalue 0.001) against (a) the selected sets of 

de novo OTUs obtained with Usearch (3% and 10% similarity thresholds for bc5' and bc3', and 3% 

for SSU); and (b) the BOLD-OTUs reference dataset (for bc5' and bc3' gene fragments, only for 
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Arthropoda, Insecta and Crustacea sub-datasets). When using de novo generated OTUs, taxonomic 

assignments obtained in Megan (see above) were used to extract sub-datasets of OTUs identified as 

(a) Metazoa, (b) Arthropoda, (c) Insecta and (d) Crustacea with an LCA parameter value of 90. 

Likewise, the BOLD-OTUs reference sequences were taxonomically assigned to Arthropoda, Insecta 

and Crustacea sub-datasets.  

Taxonomic subsets of data were used to conduct analyses of community composition, either for the 

meio- and macro-fauna samples separately or after combining both samples from the same site and 

time as a single sample. Distance matrices by pairs of sites were generated for total beta diversity 

(Sorensen index), turnover (Simpson index; species replacement, without the effect of variation in 

richness) and nestedness (Sorensen - Simpson index; pure richness effect) using the R library betapart 

(Baselga & Orme 2012), and the R library vegan (Oksanen et al. 2013) was used to perform 

Nonparametric Multidimensional Scaling analyses (NMDS). Analyses were plotted with the ordisurf 

option to generate clines based on richness values and ordispider to connect the samples from 

upstream and downstream of the spill. Finally, a Permutational Anova (Permanova) was conducted 

using the function adonis, and the significance of differences was assessed using a stress test and the 

envfit test of correlation. Jaccard distances were used to verify the existence of significant differences 

in the communities upstream and downstream of the spill. We additionally used the mvabund package 

for the analysis of multivariate abundance data (Wang et al. 2012) to test upstream and downstream 

effects (factor spill) on community composition (manyglm function) and to identify which individual 

species show significant differences in their distribution between control and impacted sites 

(anova.manyglm function; test=LR, nBoot=999) using the results from the reference database 

(taxonomy-dependent) approach. Finally, we used Dufrene-Legendre indicator species analysis 

(indval) (Dufrêne & Legendre 1997) using the R package labdsv (Roberts 2007) to compare control 

versus impacted sites.  

 

RESULTS 

Sequencing, read processing and OTU clustering 

OTU delimitation was conducted on tens of thousands of Illumina (2x300 bp) sequence reads per 

sample from both the meio- and macro-fauna extracts (ranging 41,306 - 177,653 for bc3’; 5,487 -

100,344 for bc5’; and 34,555 - 107,016 for SSU) (Suppl. Table S1). A single sample (Impacted site 1-

Time 1: IS1-T1) failed to produce a PCR product and was removed from the analysis. For the 

remaining 11 samples, Spearman’s rho correlation tests revealed no correlation between raw read 

numbers and the number of OTUs classified as Metazoa for the three DNA fragments (Suppl. Fig. 

S3), i.e. different read abundances between samples did not affect the number of OTUs recovered. 
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The raw reads were subjected to basic quality filtering, which reduced the usable reads to about 90% 

of the initial reads for the SSU marker, while for both cox1 markers in many samples a much greater 

proportion was lost, sometimes retaining only 10-20% of reads.  There were no systematic differences 

in total read numbers after quality filtering between upstream and downstream or between meio- and 

macro-fauna samples (Suppl. Table S1). The paired-end merging of R1 and R2 (forward-reverse) 

reads resulted in a further reduction, but was broadly uniform across samples (Suppl. Table S1). 

Various modifications of the basic protocol for quality filtering and read merging under 24 different 

parameter settings were applied. The resulting merged reads were then subjected to OTU clustering 

using three different clustering methods (Suppl. Fig. S2). After excluding OTUs not matching the 

expected gene fragments or taxonomic groups using a tree-based method (see Materials and 

Methods), the number of OTUs under these various parameter settings ranged from 479 to 810 for the 

bc5' fragment, from 543 to 1150 for bc3', and from 193 to 590 for SSU (Suppl. Table S2).  

The proportion of shared and exclusive OTUs obtained (for each gene) showed broadly similar results 

across the parameter settings (Fig. 2). The OTUs obtained with different clustering methods (Usearch, 

CROP and Swarm) were shared in 91.1% and 92.7% of the cases for the bc5' and bc3' fragments, 

respectively, with the major difference attributed to the CROP clustering method that lacked 4.6% of 

OTUs obtained with the other methods. The same trend was observed for SSU, where a 65.6% of the 

OTUs were generated with the three methods and an additional 20.3% were shared between Usearch 

and Swarm, but not with CROP. The implementation of a denoising tool (BFC software) resulted in a 

moderate effect on the number of obtained OTUs (~90% of OTUs shared), except for s=20 which 

resulted in the absence of 30%-50% of the OTUs. The use of the Maxee filtering option also produced 

a moderate effect on OTU recovery (~90% of OTUs shared among parameters settings). Finally, 

using PEAR or Usearch for the merging step resulted in ~90% shared OTUs (Fig. 2). 

 

Taxonomic profiles based on de novo OTUs using Megan 

Next, de novo OTUs were identified against the Genbank database via LCA assignment to major 

taxon (see Materials and Methods). We only assessed the OTU set obtained under a single 

representative parameter setting (BFC with s=0.5 for read denoising, Maxee=1 for read filtering, and 

mergepairs in Usearch for read merging), to which we applied the three clustering methods (Usearch, 

Swarm, CROP) under similarity thresholds of 3% and 10% for the cox1 fragments, and 3% for the 

SSU fragment (Fig. 3). In the bc5' and bc3' fragments, the LCA assignment showed that samples were 

dominated by OTUs of Arthropoda, followed by Rotifera and Annelida. Within Arthropoda, Insecta 

was the most abundant group, followed by Arachnida and various classes within the subphylum 

Crustacea (Fig. 3). The Insecta were dominated by Diptera, followed by Coleoptera, Ephemeroptera 

and Trichoptera. In the SSU data, the OTU composition was also dominated by Arthropoda but the 
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total number of OTUs was substantially lower compared to those from cox1, in particular in the 

Insecta and specifically the Diptera, which was reduced to approximately 1/4th of the bc3’ and bc5’ 

OTUs (Fig. 4; Suppl. Table S3). In Crustacea, both genes detected the major orders such as 

Podocopida, Isopoda, Amphipoda, Cyclopoida and Diplostraca. OTU numbers were reduced in SSU 

compared to the cox1 marker in Annelida, and Rotifera were not detected with SSU at all, despite the 

recovery of several dozen OTUs with cox1. In contrast, the SSU dataset retrieved a similar number of 

OTUs of Mollusca, while for Platyhelminthes and Nematoda most OTUs were only detectable with 

the SSU marker (Suppl. Table S3). Taxonomic profiles obtained at a 10% similarity threshold showed 

the same trend as described above, but with a substantial reduction in the total number of OTUs (Fig. 

4; Suppl. Table S3).  

 

Taxonomic assignment against the BOLD-OTU reference database 

Direct mapping of sequence reads against the reference set resulted in matches to 207 BOLD-OTUs. 

The majority of these BOLD-OTUs matched a unique BIN in the BOLD database (Table 1 for Diptera 

and Suppl. Table S4 for the complete dataset). Eighteen of these 207 BOLD-OTUs included a single 

sequence, but were not included by BOLD in their BIN system. In two cases, a pair of BOLD-OTUs 

produced separate clusters of sequences from a single BIN, and data for these were lumped, to 

maximise consistence with BOLD. Read numbers for each OTU varied by four orders of magnitude, 

to a maximum of >20000 reads for some species of Baetidae. Out of a total of 207 BOLD-OTUs with 

read matches, 36 OTUs were obtained exclusively with the bc5' fragment and 46 OTUs with the bc3' 

fragment, but in most of these cases only a few reads (<10) were obtained.   

 

Next, we mapped the de novo generated OTUs against the BOLD-OTUs. Species detections obtained 

in this way closely matched those from the read mapping, although the method was slightly less 

sensitive in cases of low number of reads that did not produce an OTU (Table 1, Suppl. Table 4).  

Species detection depending on the three clustering methods (Usearch, Swarm, CROP) or marker 

(bc5' and bc3') was generally consistent, and observed differences tend to occur for species with low 

read counts (Fig. 4; Suppl. Table S4).  

 

The total numbers of identified OTUs from read matching and de novo clustering were generally 

similar, in particular in Diptera for both bc5' and bc3'. In other taxonomic groups, the OTU counts 

from read matching were closer to those at the 10% thresholds of the de novo OTU analysis or even 

lower, as in the case of several classes and orders within Crustacea (Fig. 4; Suppl. Table S3), whose 
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reference databases were less complete. The reduction at the 10% threshold generally affected cases 

that were split into multiple OTUs at 3%; for some of these cases, the sequence reads also matched 

several BOLD-OTUs but based on taxonomic assignments were identified as the same species, e.g. 

some of the eight BOLD-OTUs identified as the isopod Asellus aquaticus (Fig. 4; Suppl. Table S4).  

Comparisons with the taxon list of macroinvertebrates provided by traditional analysis (Thompson et 

al. 2016) were made for Arthropoda based on identifications by read mapping with the bc5' and bc3' 

(cox1) fragments at the 3% threshold level. The identifications included many exact matches to the 

Thompson et al. (2016) list, although the latter included only 38 arthropod taxa in total, of which 11 

taxa were not represented in the OTUs dataset (not even at higher taxonomic level). The missing taxa 

were from a range of higher taxa, including Ephemeroptera, Plecoptera, Coleoptera, Isopoda, 

Arachnida and others, while other species in these taxa were easily recovered by the cox1 

metabarcodes. In many cases, Thompson et al. (2016) did not separate the entities at the species level. 

Notably the Chironomidae, which were listed as two taxa (Chironomidae and subfamily Tanypodinae) 

in Thompson et al. (2016) were split into a total of 55 OTUs in the current analysis and most could be 

identified to species. Similarly, the single entry for Limnephilidae in Thompson et al. (2016) was split 

into 5 OTUs, the entry for Dytiscidae into 3 OTUs, and even genus-level entries were split further, 

e.g. Baetis sp. corresponded to 9 OTUs and Simulium sp. corresponded to 4 OTUs in the cox1 

analysis. In other cases, several BOLD OTUs were assigned the same binomial (although not 

unequivocally in all cases; see Suppl. Table 4), indicating the high intraspecific diversity on some 

species or even the possible existence of cryptic species. 

 

Effect of the spill on community composition and indicative species  

The presence or absence of species in various metabarcoding samples was used to establish the 

turnover and nestedness of assemblages above and below the spill site.  NMDS analyses for total beta 

diversity, nestedness and turnover across sampling sites were conducted for the Metazoa, Arthropoda, 

Insecta and Crustacea datasets for: (a) OTUs at 3% and 10% for bc5' and bc3'; (b) OTUs at 3% for 

SSU; and (c) for the BOLD reference dataset and bc5' and bc3' gene fragments (summarized in Table 

2). Significant differences in community composition were detected in all cases between impacted 

and control sites that were mainly driven by a high turnover of species, but not for the nestedness 

component of beta diversity (Fig. 5, S4-S9). Results were very similar for de novo clustering with 

BLAST+Megan for OTU classification and reads based approaches using BOLD-OTUs for 

identification (Fig. 6, Table 2).  The NMDS plots conducted on the meio- and macro-faunal fractions 

separately also showed very similar patterns (Fig. 7).  
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Of the 207 OTUs detected by matching the reads to BOLD-OTUs, 170 were obtained from the 

meiofauna sample, against only 126 OTUs from the macrofauna fraction (filtration at >1 mm), and 70 

OTUs were unique to the meiofauna. There were clear patterns in the distribution of meio- and macro-

faunal samples, for example showing that Brachiopoda, Collembola and some Arachnida were almost 

entirely found in the former, reflecting their small body size, but most large-bodied insects were also 

recovered in the meiofauna fraction (in addition to the macrofaunal fraction). Second, combining the 

total species count of meio- and macro-faunal fraction, the control sites had slightly more species 

compared to the impacted sites but both had a high proportion of unique OTUs (65 versus 53)   

Indval analyses for strong effects of the spill revealed a statistically significant indicative value of 

Gammarus pulex associated to control sites (indval p<0.05), while Asellus aquaticus and several 

Chironomidae species (Tanytarsus eminulus, T. brundini, T. pallidicornis, T. ejuncidus, Cricotopus 

bicinctus, Paratendipes albimanus) were associated to impacted sites (indval p<0.05) (Table 3). 

Mvabund analyses resulted in significant differences for Asellus aquaticus and Tanytarsus eminulus 

(p<0.05). Additional tests conducted with the indval function to identify indicative species associated 

to the two sampling periods resulted in the Ephemeroptera Centroptilum luteolum as indicative of 

sampling period 2 (2.5 months after the spill), whereas when the factor spill and the sampling period 

were considered in combination, two Chironomidae (Eukiefferiella claripennis and Cricotopus 

bicinctus) and one Branchiopoda (Chydorus sphaericus) were found as indicative of the impacted 

sites at the sampling period 2. 

 

DISCUSSION 

Metabarcoding revealed high species turnover between control and pesticide-impacted sites in the 

River Kennet, in line with the earlier study based on conventional taxonomic assignments (Thompson 

et al. 2016), but with far more complete and taxonomically resolved data.  This was also achieved at a 

fraction of the cost and time, although absolute abundance data were sacrificed as a result (note that 

most routine biomonitoring approaches only ever use relative abundance anyway; Friberg et al. 2011; 

Gray et al. 2016). The high read depth and accuracy of Illumina sequences, in addition to an increased 

completeness of reference databases, now can determine the identity of taxa as effectively as 

conventional biomonitoring, but with the added advantage of capturing data at the species level for 

virtually all components of the sample – including both the temporary and permanent meiofauna, 

which are very diverse and abundant yet are routinely ignored due to difficulties in their identification 

via traditional microscopy (Friberg et al. 2011; Gray et al. 2016). Our study takes a further step 

towards this explicit species level approach, by addressing two key issues: the selection of appropriate 

gene regions and universal primers for metabarcoding, and the choice of the most appropriate 

bioinformatics tools and parameter settings. If linked with existing DNA databases, metabarcoding 
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provides the species level resolution of community composition, to identify the indicators of disturbed 

and undisturbed sites and, ultimately, to bridge biomonitoring of community structure and ecosystem 

functioning.  

 

Methodological decisions: choice of gene markers and bioinformatics 

Researchers are confronted with a wide range of options for data processing and parameter settings at 

all stages of metabarcoding. The final outcome is affected by the early steps of the wet lab procedures 

for DNA extraction from various environmental samples and the choice of PCR primers. The two 

genetic markers used here amplifying portions of the mitochondrial cox1 and the nuclear 18S rRNA 

genes illustrate the important effects of marker choice, affecting: amplification of major taxonomic 

groups, power of separation of species, and the completeness of available reference data. Based on 

these criteria, the barcode fragment of the cox1 gene remains the most powerful choice for 

metabarcoding studies of animal communities. The advantage of using the cox1 gene is due to (i) the 

benefits from an already available and growing database for this marker from standard barcoding; (ii) 

the widely accepted standardization of the marker choice, allowing for a comparison of different 

studies; and (iii) the demonstration that universal primers recover complex communities composed of 

a taxonomically wide range of arthropods and other metazoans. 

The primers used here for both cox1 fragments produced rather similar results for total OTU numbers 

and taxonomic distribution of major groups, indicating that amplification from mixtures is largely 

reliable. Differences between OTU detection with both primers are mainly at the level of individual 

species, which requires further investigation, but possibly is due to variation among individual PCR 

on low-abundance (low biomass) species, as reflected in the fact that disagreements are mostly due to 

OTUs represented by low numbers of reads. In contrast, the SSU (rRNA) marker is far less variable 

than mitochondrial DNA and thus presumably closely related species are collapsed into single OTUs 

(Tang et al. 2012). This was evident from the lower number of OTUs obtained, in particular for 

groups containing multiple congeneric species, such as the Chironomidae. However, in addition to the 

lumping of close relatives, the overall taxonomic profiles also differed strongly, presumably due to 

the greater conservation of SSU primer binding sites across phyla. Specifically, Platyhelminthes and 

Nematoda were only recovered with SSU, whereas the efficiency was lower for Arthropoda. The 

former groups are rarely if ever considered in traditional biomonitoring, whereas arthropods underpin 

most schemes around the world. These well-known issues of taxonomic resolution and differences in 

the spectrum of PCR amplification breadth need to be considered carefully depending on the target 

taxa. It is unlikely that truly universal primers can be found for amplification of all animal phyla or 

that a single locus can separate species universally. Even so, poor amplification of some groups for 

cox1 possibly can be alleviated with different primer sequences, at least for regions that are partly 
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overlapping, using multiple PCRs on the DNA extracts, to be included in the Illumina libraries with 

relatively little added effort. An alternative is the use of slightly more conserved markers, such as the 

mitochondrial rRNA (12S and 16S) genes suggested in recent metabarcoding studies, which present a 

compromise between broad, unbiased PCR and species-level differentiation (Taberlet et al. 2012), but 

this approach misses the advantage of comparisons against the available sequence databases for the 

barcode cox1 gene fragment. 

For the bioinformatics processing, different parameter settings had little effect. Different clustering 

algorithms employing fundamentally different methodology generated largely uniform OTUs, except 

perhaps the CROP algorithm, which detected slightly fewer OTUs than the Usearch and Swarm 

methods. Equally, the first step of denoising was robust over a range of parameters that are broadly 

within the boundaries of most published applications of the software. The read pairing step and the 

final filtering based on the error frequency in the reads (the maximal expected error, Maxee) only 

changed the outcome of the final assembly for <10% of OTUs. Presumably, the denoising procedure 

mainly eliminates minor variants among the reads that are subsumed into the OTUs at the minimum 

clustering threshold of 3% that was applied here, and thus their prior elimination has little impact on 

the final outcome of the OTU delimitation. We also find that many OTUs are generated that are either 

non-mitochondrial or correspond to non-target taxa, including bacteria. These were removed via a 

phylogenetic approach using rapid UPGMA trees and retaining only the major target clade for 

metazoans, thus avoiding later complications with species counts and turnover analysis. As a general 

rule, stringent parameters settings should be applied, but the appropriate parameter space is fairly 

wide and so its reassessment is not necessary for each study; for comparability, a particular parameter 

set should be chosen and applied consistently. 

 

Species definitions in de novo clustering and read mapping  

A key aspect of the metabarcoding procedure is the recognition and identification of the species in the 

sample, which requires a valid taxon concept for each species based on solid data for species 

circumscription (Wheeler 2004). The clustering algorithms define the species limits based on 

similarity thresholds, akin to the search for a barcoding gap in standard (Sanger) barcoding (Meyer & 

Paulay 2005), but the actual variation is overlain by sequencing read errors, and true variants from 

variable mitochondrial copies (heteroplasmy) and nuclear mitochondrial insertions (numts). While the 

various clustering algorithms broadly agreed on the number and extent of OTU delineations, 

differences in particular species hypotheses were evident and dependent on the threshold. If set to 3% 

in the cox1 marker, OTU delineation largely reflected the species numbers expected from the 

Linnaean taxonomy, whereas the highly conservative 10% threshold lumped many species. The 

application of more refined algorithms to the OTU circumscriptions is desirable, although coalescence 
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based procedures including GMYC and PTP (Pons et al. 2006; Zhang et al. 2013) currently are not 

easily applicable to the very large number of reads. In addition, metabarcoding sequences are 

comparatively short, which limits the resolving power of these sequences in any species delimitation 

procedure.  

The two principal approaches used here for generating community OTU lists, i.e. the ‘taxonomy 

independent’ approach based on de novo generated OTUs, and the ‘taxonomy dependent’ approach 

via read mapping against the reference database (Schloss & Westcott 2011) produced generally 

similar results (although with slightly fewer entities detected in the latter). When working with de 

novo generated OTUs, special attention should be paid to the method used for classifying OTUs. 

Megan has been proven as a useful tool based on Blast searches against reference databases, as here 

conducted. Nevertheless, incompleteness of reference databases can result on inaccurate 

classifications when relaxed similarity thresholds are considered (e.g. 70%), whereas higher similarity 

stringency (about 90%) will result in many OTUs with no taxonomic assignation. This is here 

illustrated by the classification of one OTU retrieved independently with both cox1 fragments as 

Echinodermata, a marine group not expected to be present in the target sample. This identification 

corresponds to a few matches with similarity below 80% and the sequence requires several indels to 

align to the identified reference. For sequences with such a weak match, Megan may use similarly 

weak matches with several other reference sequences from distantly related taxa, to return an 

identification at the deepest taxononomic level corresponding to all of these weak matches. If the 

focal sequence has no close match in the database, spurious Blast similarities might indicate a best 

match in a certain area of the reference database, despite representing a lineage quite divergent from 

these best matches, and thus this sequence is not necessarily related to Echinodermata. 

In the read mapping approach, the problem of species delimitation is shifted to the reference databases 

that define intraspecific variation and link a set of sequences to a Linnaean binomial. In the European 

freshwater arthropods we could heavily draw on the relatively good species representation in BOLD. 

For simplicity, we downloaded all available sequences and conducted OTU clustering on these 

sequences, in analogy to the metabarcode data, to produce a reference database (the BOLD-OTUs), 

after which only those with similarity to the metabarcoding sequences encountered in the target 

samples were considered further (a total of 207 OTUs). The BIN groups presented in the BOLD 

database are an alternative compilation of the existing reference data, and we established that they 

produce similar OTU circumscriptions as those from the Usearch clustering at a 3% similarity 

threshold. Both compilations show a good general congruence with the Linnaean names, but in 

several cases multiple BINs and BOLD-OTUs were associated to a single binomial, probably 

reflecting high intraspecific variation in some species whose real species limits need to be evaluated 

with additional information. The relevance of these closely related OTUs remains unclear but may be 

related to the presence of multiple divergent mitogenome copies in the focal species. For example, 
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some isopods, including A. aquaticus, exhibit atypical mitogenomes composed of duplicated regions 

that apparently are maintained constitutively as heteroplasmic copies (Doublet et al. 2012). Other 

cases, such as the ephemeropteran Baetis rhodani or the amphipod Gammarus pulex, are already well 

established species complexes consisting of multiple cryptic species (Karaman & Pinkster 1977; 

Williams et al. 2006; Rutschmann et al. 2014; Bisconti et al. 2016). Taxonomic difficulties associated 

to these cases may affect the reference sequence databases, such the detection of the oriental 

Gammarus nekkensis with the bc5' fragment, whereas G. pulex is exclusively found with bc3'. It 

should be noted that G. pulex is represented by 5 different BINs at BOLD, whereas G. nekkensis 

forms up to 10 BINs (accessed 13-06-2017). This taxonomic and molecular complexity highlights the 

need of a careful assessment by expert taxonomists and molecular biologist for consensus species 

delineation. Yet, beyond these taxonomically complicated cases, the existing barcode database already 

holds an excellent coverage for European aquatic macroinvertebrates.  

Whereas the direct read mapping approach could circumvent the problematic step of OTU clustering, 

maximising comparability between different studies, OTUs from the de novo clustering could still be 

useful in particular to identify species not yet embedded in reference databases, albeit without link to 

a Linnaean name. The robustness of the de novo approach shown here therefore offers a defensible 

option for species assemblages whose coverage of reference sets is still patchy, and could be used in 

biodiversity discovery in hitherto unstudied ecosystems. Ideally, standardized protocols should use a 

combined approach, where direct mapping for biomonitoring is complemented with de novo OTU 

clustering under defined parameters and a comparison of OTUs with reference databases.  This can 

help to identify gaps in the reference database, through an iterative process, contributing to refine 

local reference databases. Once a validated reference set is in hand, the straightforward mapping of 

sequence reads against these DNA-based grouping provides easily repeatable and stable species 

identification for biomonitoring. This provides a reliable link to taxonomy and resolution to species 

level even in the most problematic taxa, such as Chironomidae, which can be used to improve 

conclusions reached by river monitoring programs, and subsequently to improve conservation and 

management practices (e.g., Chironomidae richness can be stable while high turnover happens after an 

impact). In future, through the direct link with taxonomic identifications, metabarcoding can then be 

connected to traits databases available for a large proportion of aquatic invertebrates species in Europe 

(Tachet et al. 2002; Schmidt-Kloiber & Hering 2015), to bridge the critical gap that still exists 

between structural biodiversity and functional measures related to ecosystem processes (Friberg et al. 

2011; Woodward et al. 2013).  
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Implications for biomonitoring and ecological studies 

The total diversity of identified species in our metabarcoding study far exceeds the number of 

invertebrate species detected using conventional analyses (Thompson et al. 2016) - by at least a factor 

of 5 - even under the most conservative OTU detection parameters. Three aspects contribute to the 

high numbers: (i) the greater taxonomic resolution compared to the morphological analysis that was 

conducted on higher taxonomic levels, especially for the Chironomidae; (ii) the split of binomial 

species names into multiple molecular OTUs (at the 3% threshold in cox1); and (iii) the better 

detection of minute specimens, especially those in the temporary meiofauna, in part representing early 

instars of otherwise larger-bodied species, which are often overlooked in visual assessments, even 

under light microscopy. These factors thus resolve some of the drawbacks of conventional techniques, 

namely the incomplete species identification, poor separation of cryptic diversity, and incomplete 

sampling of the freshwater assemblage. The study also highlights some of the remaining challenges of 

generating complete metabarcoding inventories: the problem of lumping and splitting of Linnaean 

species, the low primer efficiency for particular taxa, the variation among PCR runs, and the sampling 

itself which is affected by stochastic error. Our sample consisted of two independent Surber samples 

each, from three sites above and three below the impact zone. The methodology is now sufficiently 

well developed to be applied to many more samples, and denser sampling may reveal additional 

species that show a clear response to environmental conditions. Ultimately these methods should be 

applicable in a highly consistent manner for regulatory purposes, perhaps after matching these data 

against existing schemes and indexes for assessing water quality. For instance, the 600+ pre-defined 

reference stream sites used for the UK-wide RIVPACS biomonitoring scheme would offer an ideal 

testbed for this ‘next-generation biomonitoring’ approach (Bohan et al. 2017), as would the UK Acid 

Waters Monitoring Network species-level data that now span several decades and multiple standing 

and running waters (e.g. Gray et al. 2016).  

Our analyses confirmed the previously observed shifts in community composition, despite the 

variation among individual samples, as the ordinations clearly separated samples from the control and 

impacted sites. This can be discerned at various taxonomic levels, for different arthropod classes, for 

meio- and macro-fauna, and for the communities established with each of the three markers. The 

detailed species list now complements this broad-scale information with the traditional approaches, 

and in particular it shows that the most resilient r-selected taxa, such as chironomids, recover most 

rapidly to occupy vacant niches following the crashes in K-selected taxa. Our study confirms that this 

increase is indeed an increase in species richness, not just in abundance of species present already at 

lower density.  The conventional approach, as is common in freshwater ecology, simply lumped these 

highly responsive and speciose taxa into a single entity that revealed marked increases in abundance 

in the absence of potential competitors and predators, but provided no information on chironomid 

biodiversity. Most of the taxa in the impact samples are orthoclads (grazers on stones and plant 
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surfaces), with a few others that are detritivores living in soft sediments, in addition to some predatory 

species.  The increase of several species of Tanytarsus, a group of dominant sediment-dwelling 

detritus feeders that have been shown to feed on diatoms in the early larval stages (Ingvason et al. 

2004), is consistent with the increase of several large diatom species observed in the post-spill sites 

(Thompson et al. 2016). These preliminary data suggest that inferences about the ecological response 

in terms of both impacts and resilience is masked by limited taxonomic resolution, and that this in 

turn is likely to reflect marked functional trait shifts that are overlooked in routine biomonitoring 

schemes. Biomonitoring at present is focused on responses to organic pollution or, to a lesser extent, 

acidification, whereas responses to other stressors are still poorly characterised in natural systems: the 

next-generation biomonitoring approach we use here could open the door to improving the sensitivity 

and power of detection in relation to both response variables and a wider range of drivers than is 

currently possible.. 

 

Conclusions 

Our study refines the parameter space of metabarcoding studies generally, and our specific case study 

highlights its potential for next-generation biomonitoring to advance the current state-of-the-art 

assessment of water quality and ecological status. At least in terms of detecting relevant changes in 

community, neither the marker, the read processing or the clustering method or threshold affected our 

ability to detect the spill’s impact on the community. The availability of full species-level inventories 

for the first time enabled us to exploit the extensive ecological databases that are now available for 

freshwater species in Europe, and also to begin to elucidate relevant trait differences. In addition, the 

capacity to use all taxa, rather than a narrow subset for which taxonomic expertise is available, 

promises to deliver a far more informative and mechanistic understanding of biodiversity in 

freshwater ecosystems and its responses to environmental stressors. 
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Table 1. BINs of Diptera from BOLD identified based on usearch_global searches under a 3% similarity 
threshold of (i) processed reads and (ii) OTUs clustered at 3% (details in text).  
BIN Family Main species id of  BIN bc-5' bc-3' r-bc-5' r-bc-3' C I MC MS T1 T2
BOLD:AAJ7051 Agromyzidae Agromyza pseudoreptans [19] -/-/-/- R/U/C/S 0 5    b3  b3    b3   
BOLD:ACI4790 Bibionidae Dilophus febrilis [21] R/U/C/S R/U/C/S 478 428 b5 b3   b5 b3 b5  b5  b5 b3
BOLD:ACP0608 Cecidomyiidae Cecidomyiidae [3] R/U/C/S R/-/-/S 455 31   b5 b3   b5 b3   b5 b3
BOLD:ACS1169 Ceratopogonidae Palpomyia flavipes [6] R/U/-/- R/U/C/S 20 41 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:ACD1957 Chironomidae Apsectrotanypus trifascipennis [9]R/U/C/S R/U/C/S 81 1446 b5 b3 b5 b3 b5 b3 b5 b3   b5 b3
BOLD:ADE2432 Chironomidae Brillia bifida [6] R/-/-/- -/-/-/- 1 0 b5    b5  b5    
BOLD:ACR1089 Chironomidae Chironomidae  R/U/C/S R/U/C/S 550 93 b5 b3 b5 b3 b5  b5 b3 b5 b3 b5 b3
BOLD:ACP8764 Chironomidae Chironomidae [13] R/U/C/S -/-/-/- 130 0   b5  b5  b5    b5  
BOLD:ACP6740 Chironomidae Chironomidae [60] R/-/-/- R/U/C/S 11 9   b5 b3  b3 b5 b3   b5 b3
BOLD:ACP2182 Chironomidae Chironomidae [92] R/U/C/S R/U/C/S 33 26 b5 b3   b5 b3   b5 b3
BOLD:AAW5799 Chironomidae Conchapelopia hittmairorum [3] R/-/-/- R/-/-/- 1 4   b5 b3   b5 b3   b5 b3
BOLD:AAP5886 Chironomidae Conchapelopia melanops [11] R/U/C/S R/U/C/S 1018 331 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:ACQ3496 Chironomidae Conchapelopia pallidula [1] R/U/C/S -/-/-/- 3 0 b5    b5    b5 
BOLD:ACD1670 Chironomidae Corynoneura sp. R/U/C/S R/U/C/S 1178 1263 b5 b3 b5 b3 b5 b3 b5 b3   b5 b3
BOLD:ACT8698 Chironomidae Corynoneura sp. [6] R/U/C/S R/U/C/S 21 72 b5 b3 b5 b3   b5 b3   b5 b3
BOLD:AAW5785 Chironomidae Cricotopus albiforceps [139] R/-/-/- R/-/-/- 2 4 b5 b3     b5 b3   b5 b3
BOLD:AAF2345 Chironomidae Cricotopus annulator [19] R/U/C/S R/U/C/S 30 14 b5 b3 b5 b3 b5    b5 b3
BOLD:AAP5931 Chironomidae Cricotopus bicinctus [1] R/-/-/- -/-/-/- 60 0   b5  b5  b5    b5  
BOLD:ACU8677 Chironomidae Cricotopus bicinctus [1] R/-/-/- -/-/-/- 5 0   b5  b5  b5    b5  
BOLD:AAI6018 Chironomidae Cricotopus bicinctus [123] R/U/C/- R/-/C/S 5751 4759 b5 b5 b3 b5 b3* b5 b3 b5  b5 b3
BOLD:AAT9677 Chironomidae Cricotopus bicinctus [27] R/U/-/S R/U/C/- 123 1991 b3 b5 b3 b5 b3 b5 b3   b5 b3
BOLD:AAM5377 Chironomidae Cricotopus rufiventris [289] R/U/C/S R/U/C/S 8 44   b5 b3 b5 b3  b3   b5 b3
BOLD:AAA5299 Chironomidae Cricotopus sylvestris [64] R/U/C/S R/U/C/S 4 88   b5 b3 b5 b3     b5 b3
BOLD:AAU2576 Chironomidae Cricotopus trifascia [5] R/U/C/S R/U/C/S 119 126 b5 b3 b5 b3 b5 b3   b5 b3
BOLD:AAE4568 Chironomidae Eukiefferiella claripennis [185] R/U/C/- R/U/C/- 164 116   b5 b3 b5 b3 b5 b3   b5 b3
BOLD:ACT0982 Chironomidae Heterotrissocladius sp. 2SW [2] R/U/C/S R/U/C/S 48 234 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAX3566 Chironomidae Macropelopia nebulosa [13] R/U/C/S R/U/C/S 29 58 b5 b3 b5  b5 b3 b5 b3 b5 b3  b3 
BOLD:AAB8862 Chironomidae Metriocnemus eurynotus [18] R/-/-/- R/U/C/S 3 18 b5 b3   b5 b3 b5 b3   
BOLD:AAD4167 Chironomidae Micropsectra atrofasciata [26] R/U/C/S R/U/C/S 826 596   b5 b3 b5 b3 b5 b3   b5 b3
BOLD:AAC7823 Chironomidae Micropsectra contracta [14] R/U/C/S R/U/C/S 62 98   b5 b3 b5 b3 b5 b3   b5 b3
BOLD:AAD1527 Chironomidae Micropsectra lindrothi [18] R/U/C/S R/-/-/- 5 4   b5 b3 b5 b3     b5 b3
BOLD:AAC7552 Chironomidae Micropsectra pallidula [24] R/U/C/S R/U/C/S 91 53 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAI1530 Chironomidae Micropsectra sp. 5ES [33] R/U/C/S R/U/C/S 61 1641   b5 b3 b5 b3 b5 b3  b3 b5 b3
BOLD:ACR0263 Chironomidae Microtendipes pedellus [8] R/U/C/S R/U/C/S 12 19   b5 b3   b5 b3   b5 b3
BOLD:AAW0928 Chironomidae Nanocladius rectinervis [6] R/U/C/S R/U/C/S 593 166 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAD8971 Chironomidae Orthocladius oblidens [330] R/U/C/S R/U/C/S 11359 5138 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAM5389 Chironomidae Orthocladius rubicundus [119] R/U/C/S R/U/C/S 98 64 b5  b5 b3 b5 b3 b5 b3   b5 b3
BOLD:AAW5449 Chironomidae Orthocladius rubicundus [25] R/U/C/S R/U/C/S 39 145   b5 b3 b5 b3 b5 b3   b5 b3
BOLD:ACX3335 Chironomidae Paracladius quadrinodosus [2] -/-/-/- R/-/-/- 0 5  b3    b3    b3
BOLD:ACT5340 Chironomidae Paracladopelma camptolabis [2] R/U/C/S R/U/C/S 13 15 b5 b3  b3 b5 b3  b3   b5 b3
BOLD:AAW4635 Chironomidae Paratanytarsus dissimilis [12] R/U/C/S R/U/C/S 35 90   b5 b3 b5 b3     b5 b3
BOLD:AAL3267 Chironomidae Paratanytarsus lauterborni [3] R/U/C/S R/U/C/S 157 239   b5 b3 b5 b3 b5 b3   b5 b3
BOLD:ACM0242 Chironomidae Paratanytarsus sp. R/U/C/S R/U/C/S 47 4 b5 b3   b5 b3   b5 b3
BOLD:AAO1037 Chironomidae Paratendipes albimanus [127] R/U/C/S R/U/C/S 161 159   b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAU2481 Chironomidae Phaenopsectra flavipes [13] R/U/-/S R/U/C/S 10 20 b5 b3  b3   b5 b3  b3 b5 b3
BOLD:AAL0178 Chironomidae Polypedilum albicorne [78] R/U/C/S R/U/C/S 145 104 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAM9576 Chironomidae Polypedilum albinodus [3] R/U/C/S R/U/C/S 227 25   b5 b3 b5 b3 b5 b3   b5 b3
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BIN Family Main species id of  BIN bc-5' bc-3' r-bc-5' r-bc-3' C I MC MS T1 T2 
BOLD:AAW4728 Chironomidae Polypedilum pullum [2] R/-/-/- -/-/-/- 4 0   b5    b5    b5  
BOLD:AAD7458 Chironomidae Prodiamesa olivacea [46] R/U/C/S R/U/C/S 79 16 b5 b3 b5 b3 b5  b5 b3   b5 b3
BOLD:ACQ1908 Chironomidae Rheocricotopus chalybeatus [6] R/U/C/S -/-/-/- 58 0   b5    b5    b5  
BOLD:AAV2322 Chironomidae Rheocricotopus fuscipes [20] R/U/C/S R/U/C/S 11 31 b5 b3     b5 b3   b5 b3
BOLD:AAD0309 Chironomidae Stempellina bausei [10] R/U/C/S R/U/C/S 141 438 b5 b3   b5  b5 b3 b5 b3 b5 b3
BOLD:AAU2625 Chironomidae Stempellinella edwardsi [10] R/U/-/S R/U/C/S 7 9   b5 b3   b5 b3   b5 b3
BOLD:ACM5335 Chironomidae Synorthocladius semivirens [7] R/U/C/S R/U/C/S 950 3924 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:ACQ8988 Chironomidae Tanytarsus brundini [13] R/U/-/S R/U/C/S 2716 3155 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAB9119 Chironomidae Tanytarsus brundini [5] R/-/C/- R/-/-/- 1496 16   b5 b3 b5 b3 b5  b5  b5 b3
BOLD:AAW1102 Chironomidae Tanytarsus ejuncidus [24] R/U/C/- R/U/C/S 2398 3230 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAU4439 Chironomidae Tanytarsus eminulus [124] R/U/C/S R/U/C/S 4847 2023 b5 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:ACF7553 Chironomidae Tanytarsus heusdensis [5] R/-/-/- R/-/-/- 1 5 b5 b3   b5 b3 b5 b3  b3
BOLD:AAV3526 Chironomidae Tanytarsus heusdensis [6] R/U/C/S R/U/C/S 2 34 b5 b3    b3 b5 b3   b5 b3
BOLD:ACR3318 Chironomidae Tanytarsus pallidicornis [10] R/U/C/S R/U/C/S 34 469  b3 b5 b3 b5 b3 b5 b3  b3 b5 b3
BOLD:ACD2995 Empididae Chelifera precatoria [6] R/U/C/S R/U/C/S 156 385 b5 b3 b5 b3   b5 b3 b5 b3 b5 b3
BOLD:ACZ6583 Ephydridae Scatella tenuicosta [8] R/U/C/S R/U/C/S 27 13   b5 b3   b5 b3 b5 b3   
BOLD:ACP1316 n.a Diptera  R/U/C/S R/U/C/S 106 95 b5 b3 b5 b3 b5  b5 b3   b5 b3
BOLD:ACY5064 n.a Diptera  R/U/C/S R/U/C/S 97 260 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:ABA7297 Pediciidae Dicranota bimaculata [6] R/-/-/- R/U/C/S 12 140 b5 b3   b5 b3     b5 b3
BOLD:AAL7819 Psychodidae Psychoda sp. [8] R/U/C/- R/-/-/- 60 3   b5 b3   b5 b3 b5 b3   
BOLD:AAN3314 Simuliidae Simulium ornatum [41] R/U/C/S R/U/C/S 524 178 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAA8323 Simuliidae Simulium silvestre [151] R/-/-/- -/-/-/- 1 0 b5   b5      b5 
BOLD:AAP9556 Simuliidae Simulium velutinum [11] R/U/C/S R/U/C/S 191 191 b3 b5 b3 b5 b3    b3 b5 b3
BOLD:AAB8624 Simuliidae Simulium vernum [27] R/U/C/S -/-/-/- 162 0 b5    b5      b5  
BOLD:AAN6407 Sphaeroceridae Coproica ferruginata [126] R/U/C/S -/-/-/- 11 0 b5      b5    b5  
BOLD:AAJ5023 Tabanidae Chrysops caecutiens [8] R/U/C/S -/-/-/- 18 0 b5   b5      b5 
BOLD:ABV4656 Tipulidae Tipula benesignata [2] R/U/C/S R/U/C/S 21 26 b5 b3     b5 b3   b5 b3
BOLD:AAE7386 Tipulidae Tipula paludosa [355] R/U/C/S R/U/C/S 238 1516 b5 b3     b5 b3   b5 b3
BOLD:AAF6378 Tipulidae Tvetenia calvescens [14] -/-/-/- R/-/-/- 0 4    b3    b3  b3   
BOLD:AAG1011 Tipulidae Tvetenia calvescens [186] R/U/C/S R/U/C/S 14729 1930 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
Notes: bc-5': cox1 barcode 5' fragment; bc-3': cox1 barcode 3' fragment; R/U/C/S: Indicates detection based on Reads, USEARCH, CROP 
and SWARM respectively. r-bc-5' and r-bc-3': Number of reads matched for bc-5' and bc-3' respectively. C: Control (upstream) sites; I: 
Impacted (downstream) sites; MC: Macrofauna subsamples; MS; Meiofauna subsamples; T1: Samples collected in time 1 (11 days after the 
spill); T2: Samples collected in time 2 (2.5 months after the spill). b5 and b3 indicates the detection of the OTU with the bc-5' and bc-3' 
fragments respectively based on the processed reads. In bold species identified with indval analyses as indicative for impacted sites. Named 
species are the most abundant within each BIN, in brackets the number of specimens identified to species level in the reference database.
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Table 2. Betadiversity values, NMDS stress values and p-values for the comparison between 
control and impacted sites. 

 
 

Dataset 
Betadiversity (Sorensen index) 

Turnover (Simpson 
index) 

Nestedness (Sorensen-
Simpson index) 

Taxa 
DNA 

fragment 
Method 

beta.so
r 

Adonis  
p-value 

Adonis 
r2 stress 

envfit  p-
value 

beta.sim stress
envfit  

p-value 
beta.sne stress 

envfit   p-
value 

Metazoa cox1-3' de novo 3% 0.85 0.007 0.18 0.086 0.023 0.763 0.144 0.179 0.087 0.067 0.099
 de novo 10% 0.835 0.011 0.19 0.075 0.018 0.736 0.143 0.054 0.099 0.053 0.099 
 cox1-5' de novo 3% 0.833 0.004 0.17 0.122 0.016 0.743 0.149 0.089 0.09 0.042 0.158
 de novo 10% 0.821 0.005 0.18 0.12 0.036 0.731 0.118 0.144 0.09 0.035 0.107
 SSU de novo 3% 0.775 0.007 0.21 0 0.107 0.726 0.108 0.036 0.049 0.032 0.35 

Insecta cox1-3' de novo 3% 0.862 0.004 0.18 0.087 0.025 0.776 0.143 0.035 0.085 0.07 0.382
  de novo 10% 0.849 0.005 0.19 0.088 0.009 0.761 0.144 0.028 0.088 0.066 0.37 
  BOLD ref 0.857 0.014 0.17 0.109 0.108 0.758 0.146 0.033 0.099 0.096 0.536
 cox1-5' de novo 3% 0.841 0.03 0.16 0.14 0.153 0.749 0.154 0.328 0.092 0.063 0.369
  de novo 10% 0.818 0.019 0.17 0.108 0.066 0.739 0.115 0.226 0.079 0.058 0.314 
  BOLD ref 0.846 0.023 0.16 0.154 0.089 0.759 0.162 0.041 0.087 0.058 0.196
 SSU de novo 3% 0.805 0.037 0.16 0.173 0.132 0.739 0.161 0.057 0.066 0.059 0.62

Crustacea cox1-3' de novo 3% 0.801 0.002 0.23 0.107 0.013 0.684 0.122 0.001 0.118 0.069 0.656
  de novo 10% 0.773 0.004 0.28 0.078 0.009 0.67 0.133 0.006 0.103 0.081 0.779
  BOLD ref 0.826 0.004 0.29 0.089 0.001 0.753 0.077 0.001 0.073 0.181 0.669 
 cox1-5' de novo 3% 0.762 0.002 0.38 0.085 0.006 0.658 0.095 0.003 0.104 0.047 0.102
  de novo 10% 0.763 0.006 0.43 0.098 0.004 0.663 0.073 0.005 0.1 0.079 0.196 
  BOLD ref 0.797 0.006 0.34 0.091 0.004 0.725 0.073 0.009 0.072 0.132 0.475 
 SSU de novo 3% 0.746 0.005 0.32 0.057 0.004 0.675 0.103 0.011 0.07 0.076 0.223

Arthropoda cox1-3' de novo 3% 0.845 0.005 0.19 0.113 0.011 0.77 0.136 0.179 0.075 0.061 0.26 
  de novo 10% 0.832 0.007 0.20 0.092 0.017 0.758 0.135 0.015 0.074 0.043 0.317 
  BOLD ref 0.856 0.005 0.19 0.104 0.113 0.779 0.128 0.006 0.077 0.095 0.569
 cox1-5' de novo 3% 0.829 0.005 0.18 0.142 0.002 0.746 0.143 0.003 0.083 0.064 0.457
  de novo 10% 0.82 0.002 0.18 0.139 0.017 0.75 0.142 0.013 0.07 0 0.236 
  BOLD ref 0.843 0.004 0.18 0.171 0.006 0.771 0.164 0.02 0.072 0.059 0.242 
 SSU de novo 3% 0.787 0.001 0.22 0.095 0.006 0.745 0.118 0.004 0.042 0.059 0.798

Notes: de novo 3% and de novo 10% refers to OTU clustering at these threshold values. BOLD ref 
indicates the results from the ‘taxon dependent’ approach of mapping reads against OTU clusters 
generated from BOLD data.  
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Table 3. Species with indicative value as identified by indval analyses based on the results of the reference 
database-dependent approach for the cox1 gene fragments bc-5' and bc-3'. 

BIN Class Order Family Species GENE  T Ind.  
value P 

BOLD:AAF2659 Branchiopoda Diplostraca Chydoridae Chydorus sphaericus bc-5' I 0.6 0.046
BOLD:AAF2659 Branchiopoda Diplostraca Chydoridae Chydorus sphaericus bc-5' T2-I 1 0.014
BOLD:AAP5931 Insecta Diptera Chironomidae Cricotopus bicinctus [1] bc-5' T2-I 1 0.024
BOLD:ACU8677 Insecta Diptera Chironomidae Cricotopus bicinctus [1] bc-5' T2-I 1 0.022
BOLD:AAI6018 Insecta Diptera Chironomidae Cricotopus bicinctus [123] bc-3' I 0.6 0.048
BOLD:AAI6018 Insecta Diptera Chironomidae Cricotopus bicinctus [123] bc-3' T2-I 1 0.023 
BOLD:AAE4568 Insecta Diptera Chironomidae Eukiefferiella claripennis [185] bc-5' T2-I 1 0.019
BOLD:AAO1037 Insecta Diptera Chironomidae Paratendipes albimanus [127] bc-3' I 0.8 0.024
BOLD:AAO1037 Insecta Diptera Chironomidae Paratendipes albimanus [127] bc-5' I 0.8 0.014
BOLD:ACQ8988 Insecta Diptera Chironomidae Tanytarsus brundini [13] bc-3' I 0.8 0.02
BOLD:ACQ8988 Insecta Diptera Chironomidae Tanytarsus brundini [13] bc-5' I 0.8 0.02
BOLD:AAB9119 Insecta Diptera Chironomidae Tanytarsus brundini [5] bc-5' I 0.8 0.017
BOLD:AAW1102 Insecta Diptera Chironomidae Tanytarsus ejuncidus [24] bc-3' I 0.75 0.049
BOLD:AAU4439 Insecta Diptera Chironomidae Tanytarsus eminulus [124] bc-3' I 1 0.002 
BOLD:AAU4439 Insecta Diptera Chironomidae Tanytarsus eminulus [124] bc-5' I 0.86 0.015 
BOLD:ACR3318 Insecta Diptera Chironomidae Tanytarsus pallidicornis [10] bc-3' I 0.86 0.015
BOLD:AAU1007 Insecta Ephemeroptera Baetidae Centroptilum luteolum [17] bc-5' T2 1 0.001
BOLD:ACH6832 Malacostraca Amphipoda Gammaridae Gammarus pulex [11] bc-3' C 0.83 0.016
BOLD:ACH7960 Malacostraca Amphipoda Gammaridae Gammarus nekkensis [1] bc-5' C 1 0.004
BOLD:ACG8343 Malacostraca Amphipoda Gammaridae Gammarus fossarum [37] bc-5' C 0.83 0.025
BOLD:AAA1971 Malacostraca Isopoda Asellidae Asellus aquaticus [85] bc-3' I 1 0.004
BOLD:ACV6778 Malacostraca Isopoda Asellidae Asellus aquaticus [7] bc-3' I 0.8 0.01 
BOLD:AAA1971 Malacostraca Isopoda Asellidae Asellus aquaticus [85] bc-5' I 0.86 0.019 
Notes: T: Treatment; C: Control sites, I: impacted sites; T2: collection period 2 (2.5 months after the spill); T2-I: Impacted sites at collection 
period 2. Named species are the most abundant within each BIN, in brackets the number of specimens identified to species level in the 
reference database. 
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FIGURES 

Figure 1. The flotation method for extracting meio- and macro-fauna from the original Surber 

samples.  The figure illustrates how after flotation (A) both fractions were separated by passage (B) 

through a 1 mm metal mesh sieve that retains the macrofauna (C), whereas a 0.45 micron sieve retains 

the meiofauna (D). At both sieving steps ample water was used to flush smaller items, including 

bacteria and other microorganisms that otherwise might also produce PCR products.  

Figure 2. Shared OTUs from using alternative parameter settings of de novo OTU generation, for 

each of the four steps in Fig. S2. The diagrams show the proportion of shared OTUs in a list for any 

pair of parameter settings. Note that in most analyses the intersection of OTU lists indicates a large 

percentage common to all settings, except for the clustering with CROP in the SSU dataset and the 

BFC=20 in the denoising step. 

Figure 3. Number of OTUs at 3% similarity thresholds at various hierarchical levels. Black: Usearch; 

dark grey: CROP; light grey: Swarm. The clustering of OTUs with each program was started from 

paired reads after quality filtering using the following parameters: BFC with s=0.5 for read denoising, 

Maxee=1 for read filtering, and mergepairs in Usearch for read merging. 

Figure 4. Total number of OTUs with the de novo generation and read mapping approaches for the 

two portions of cox1. The OTU count is based on BLAST+Megan for de novo generated OTUs and 

on the matches to the BOLD-OTU reference database for the read mapping approach. Black: Usearch 

at 3% sequence similarity threshold; dark grey: Usearch at 10% similarity threshold; light grey: read 

mapping to BOLD reference dataset.  

Figure 5. NMDS ordinations for Metazoa, Arthropoda, Insecta and Crustacea based on 

presence/absence community matrices as obtained by read mapping against de novo generated OTUs 

at a 10% similarity threshold for the bc-3' gene fragment. 

Figure 6. NMDS total betadiversity ordinations for Arthropoda, Insecta and Crustacea based on 

presence/absence community matrices as obtained by read mapping against de novo generated OTUs 

at 3% and 10% for the bc-3' and bc-5' gene fragments (bc-5' 3%; bc-3' 3%; bc-5' 10%; bc-3' 10%), at   

3% for SSU (SSU 3%), and by read mapping against BOLD-OTUS (bc-3' BOLD and bc-5' BOLD) 

Figure 7. NMDS ordinations for Arthropoda and the cox1-5’and cox1-3' datasets using the reference 

database approach with Macro (labelled with “M”) and meiofauna (labelled with “m”) subsamples 

considered independently. 
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Table 1. BINs of Diptera from BOLD identified based on usearch_global searches under a 3% similarity 
threshold of (i) processed reads and (ii) OTUs clustered at 3% (details in text).  
BIN Family Main species id of  BIN bc-5' bc-3' r-bc-5' r-bc-3' C I MC MS T1 T2 
BOLD:AAJ7051 Agromyzidae Agromyza pseudoreptans [19] -/-/-/- R/U/C/S 0 5    b3  b3    b3   
BOLD:ACI4790 Bibionidae Dilophus febrilis [21] R/U/C/S R/U/C/S 478 428 b5 b3   b5 b3 b5  b5  b5 b3
BOLD:ACP0608 Cecidomyiidae Cecidomyiidae [3] R/U/C/S R/-/-/S 455 31   b5 b3   b5 b3   b5 b3
BOLD:ACS1169 Ceratopogonidae Palpomyia flavipes [6] R/U/-/- R/U/C/S 20 41 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:ACD1957 Chironomidae Apsectrotanypus trifascipennis [9]R/U/C/S R/U/C/S 81 1446 b5 b3 b5 b3 b5 b3 b5 b3   b5 b3
BOLD:ADE2432 Chironomidae Brillia bifida [6] R/-/-/- -/-/-/- 1 0 b5    b5  b5    
BOLD:ACR1089 Chironomidae Chironomidae  R/U/C/S R/U/C/S 550 93 b5 b3 b5 b3 b5  b5 b3 b5 b3 b5 b3
BOLD:ACP8764 Chironomidae Chironomidae [13] R/U/C/S -/-/-/- 130 0   b5  b5  b5    b5  
BOLD:ACP6740 Chironomidae Chironomidae [60] R/-/-/- R/U/C/S 11 9 b5 b3  b3 b5 b3   b5 b3
BOLD:ACP2182 Chironomidae Chironomidae [92] R/U/C/S R/U/C/S 33 26   b5 b3   b5 b3   b5 b3
BOLD:AAW5799 Chironomidae Conchapelopia hittmairorum [3] R/-/-/- R/-/-/- 1 4   b5 b3   b5 b3   b5 b3
BOLD:AAP5886 Chironomidae Conchapelopia melanops [11] R/U/C/S R/U/C/S 1018 331 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:ACQ3496 Chironomidae Conchapelopia pallidula [1] R/U/C/S -/-/-/- 3 0 b5    b5    b5 
BOLD:ACD1670 Chironomidae Corynoneura sp. R/U/C/S R/U/C/S 1178 1263 b5 b3 b5 b3 b5 b3 b5 b3   b5 b3
BOLD:ACT8698 Chironomidae Corynoneura sp. [6] R/U/C/S R/U/C/S 21 72 b5 b3 b5 b3   b5 b3   b5 b3
BOLD:AAW5785 Chironomidae Cricotopus albiforceps [139] R/-/-/- R/-/-/- 2 4 b5 b3     b5 b3   b5 b3
BOLD:AAF2345 Chironomidae Cricotopus annulator [19] R/U/C/S R/U/C/S 30 14 b5 b3 b5 b3 b5    b5 b3
BOLD:AAP5931 Chironomidae Cricotopus bicinctus [1] R/-/-/- -/-/-/- 60 0   b5  b5  b5    b5  
BOLD:ACU8677 Chironomidae Cricotopus bicinctus [1] R/-/-/- -/-/-/- 5 0   b5  b5  b5    b5  
BOLD:AAI6018 Chironomidae Cricotopus bicinctus [123] R/U/C/- R/-/C/S 5751 4759 b5 b5 b3 b5 b3* b5 b3 b5  b5 b3
BOLD:AAT9677 Chironomidae Cricotopus bicinctus [27] R/U/-/S R/U/C/- 123 1991 b3 b5 b3 b5 b3 b5 b3   b5 b3
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BIN Family Main species id of  BIN bc-5' bc-3' r-bc-5' r-bc-3' C I MC MS T1 T2 
BOLD:AAM5377 Chironomidae Cricotopus rufiventris [289] R/U/C/S R/U/C/S 8 44   b5 b3 b5 b3  b3   b5 b3
BOLD:AAA5299 Chironomidae Cricotopus sylvestris [64] R/U/C/S R/U/C/S 4 88   b5 b3 b5 b3     b5 b3
BOLD:AAU2576 Chironomidae Cricotopus trifascia [5] R/U/C/S R/U/C/S 119 126   b5 b3 b5 b3 b5 b3   b5 b3
BOLD:AAE4568 Chironomidae Eukiefferiella claripennis [185] R/U/C/- R/U/C/- 164 116 b5 b3 b5 b3 b5 b3   b5 b3
BOLD:ACT0982 Chironomidae Heterotrissocladius sp. 2SW [2] R/U/C/S R/U/C/S 48 234 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAX3566 Chironomidae Macropelopia nebulosa [13] R/U/C/S R/U/C/S 29 58 b5 b3 b5  b5 b3 b5 b3 b5 b3  b3 
BOLD:AAB8862 Chironomidae Metriocnemus eurynotus [18] R/-/-/- R/U/C/S 3 18   b5 b3   b5 b3 b5 b3   
BOLD:AAD4167 Chironomidae Micropsectra atrofasciata [26] R/U/C/S R/U/C/S 826 596 b5 b3 b5 b3 b5 b3   b5 b3
BOLD:AAC7823 Chironomidae Micropsectra contracta [14] R/U/C/S R/U/C/S 62 98   b5 b3 b5 b3 b5 b3   b5 b3
BOLD:AAD1527 Chironomidae Micropsectra lindrothi [18] R/U/C/S R/-/-/- 5 4   b5 b3 b5 b3     b5 b3
BOLD:AAC7552 Chironomidae Micropsectra pallidula [24] R/U/C/S R/U/C/S 91 53 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAI1530 Chironomidae Micropsectra sp. 5ES [33] R/U/C/S R/U/C/S 61 1641 b5 b3 b5 b3 b5 b3  b3 b5 b3
BOLD:ACR0263 Chironomidae Microtendipes pedellus [8] R/U/C/S R/U/C/S 12 19   b5 b3   b5 b3   b5 b3
BOLD:AAW0928 Chironomidae Nanocladius rectinervis [6] R/U/C/S R/U/C/S 593 166 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAD8971 Chironomidae Orthocladius oblidens [330] R/U/C/S R/U/C/S 11359 5138 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAM5389 Chironomidae Orthocladius rubicundus [119] R/U/C/S R/U/C/S 98 64 b5  b5 b3 b5 b3 b5 b3   b5 b3
BOLD:AAW5449 Chironomidae Orthocladius rubicundus [25] R/U/C/S R/U/C/S 39 145   b5 b3 b5 b3 b5 b3   b5 b3
BOLD:ACX3335 Chironomidae Paracladius quadrinodosus [2] -/-/-/- R/-/-/- 0 5    b3    b3    b3 
BOLD:ACT5340 Chironomidae Paracladopelma camptolabis [2] R/U/C/S R/U/C/S 13 15 b5 b3  b3 b5 b3  b3   b5 b3
BOLD:AAW4635 Chironomidae Paratanytarsus dissimilis [12] R/U/C/S R/U/C/S 35 90   b5 b3 b5 b3     b5 b3
BOLD:AAL3267 Chironomidae Paratanytarsus lauterborni [3] R/U/C/S R/U/C/S 157 239   b5 b3 b5 b3 b5 b3   b5 b3
BOLD:ACM0242 Chironomidae Paratanytarsus sp. R/U/C/S R/U/C/S 47 4 b5 b3   b5 b3   b5 b3
BOLD:AAO1037 Chironomidae Paratendipes albimanus [127] R/U/C/S R/U/C/S 161 159 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAU2481 Chironomidae Phaenopsectra flavipes [13] R/U/-/S R/U/C/S 10 20 b5 b3  b3   b5 b3  b3 b5 b3
BOLD:AAL0178 Chironomidae Polypedilum albicorne [78] R/U/C/S R/U/C/S 145 104   b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAM9576 Chironomidae Polypedilum albinodus [3] R/U/C/S R/U/C/S 227 25 b5 b3 b5 b3 b5 b3   b5 b3
BOLD:AAW4728 Chironomidae Polypedilum pullum [2] R/-/-/- -/-/-/- 4 0   b5    b5    b5  
BOLD:AAD7458 Chironomidae Prodiamesa olivacea [46] R/U/C/S R/U/C/S 79 16 b5 b3 b5 b3 b5  b5 b3   b5 b3
BOLD:ACQ1908 Chironomidae Rheocricotopus chalybeatus [6] R/U/C/S -/-/-/- 58 0   b5    b5    b5  
BOLD:AAV2322 Chironomidae Rheocricotopus fuscipes [20] R/U/C/S R/U/C/S 11 31 b5 b3     b5 b3   b5 b3
BOLD:AAD0309 Chironomidae Stempellina bausei [10] R/U/C/S R/U/C/S 141 438 b5 b3   b5  b5 b3 b5 b3 b5 b3
BOLD:AAU2625 Chironomidae Stempellinella edwardsi [10] R/U/-/S R/U/C/S 7 9   b5 b3   b5 b3   b5 b3
BOLD:ACM5335 Chironomidae Synorthocladius semivirens [7] R/U/C/S R/U/C/S 950 3924 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:ACQ8988 Chironomidae Tanytarsus brundini [13] R/U/-/S R/U/C/S 2716 3155   b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAB9119 Chironomidae Tanytarsus brundini [5] R/-/C/- R/-/-/- 1496 16   b5 b3 b5 b3 b5  b5  b5 b3
BOLD:AAW1102 Chironomidae Tanytarsus ejuncidus [24] R/U/C/- R/U/C/S 2398 3230 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAU4439 Chironomidae Tanytarsus eminulus [124] R/U/C/S R/U/C/S 4847 2023 b5 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:ACF7553 Chironomidae Tanytarsus heusdensis [5] R/-/-/- R/-/-/- 1 5   b5 b3   b5 b3 b5 b3  b3 
BOLD:AAV3526 Chironomidae Tanytarsus heusdensis [6] R/U/C/S R/U/C/S 2 34 b5 b3    b3 b5 b3   b5 b3
BOLD:ACR3318 Chironomidae Tanytarsus pallidicornis [10] R/U/C/S R/U/C/S 34 469  b3 b5 b3 b5 b3 b5 b3  b3 b5 b3
BOLD:ACD2995 Empididae Chelifera precatoria [6] R/U/C/S R/U/C/S 156 385 b5 b3 b5 b3   b5 b3 b5 b3 b5 b3
BOLD:ACZ6583 Ephydridae Scatella tenuicosta [8] R/U/C/S R/U/C/S 27 13   b5 b3   b5 b3 b5 b3   
BOLD:ACP1316 n.a Diptera  R/U/C/S R/U/C/S 106 95 b5 b3 b5 b3 b5  b5 b3   b5 b3
BOLD:ACY5064 n.a Diptera  R/U/C/S R/U/C/S 97 260 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:ABA7297 Pediciidae Dicranota bimaculata [6] R/-/-/- R/U/C/S 12 140 b5 b3   b5 b3     b5 b3
BOLD:AAL7819 Psychodidae Psychoda sp. [8] R/U/C/- R/-/-/- 60 3   b5 b3   b5 b3 b5 b3   
BOLD:AAN3314 Simuliidae Simulium ornatum [41] R/U/C/S R/U/C/S 524 178 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
BOLD:AAA8323 Simuliidae Simulium silvestre [151] R/-/-/- -/-/-/- 1 0 b5   b5      b5 
BOLD:AAP9556 Simuliidae Simulium velutinum [11] R/U/C/S R/U/C/S 191 191  b3 b5 b3 b5 b3    b3 b5 b3
BOLD:AAB8624 Simuliidae Simulium vernum [27] R/U/C/S -/-/-/- 162 0 b5    b5      b5  
BOLD:AAN6407 Sphaeroceridae Coproica ferruginata [126] R/U/C/S -/-/-/- 11 0 b5      b5    b5  
BOLD:AAJ5023 Tabanidae Chrysops caecutiens [8] R/U/C/S -/-/-/- 18 0 b5   b5      b5 
BOLD:ABV4656 Tipulidae Tipula benesignata [2] R/U/C/S R/U/C/S 21 26 b5 b3     b5 b3   b5 b3
BOLD:AAE7386 Tipulidae Tipula paludosa [355] R/U/C/S R/U/C/S 238 1516 b5 b3     b5 b3   b5 b3
BOLD:AAF6378 Tipulidae Tvetenia calvescens [14] -/-/-/- R/-/-/- 0 4  b3    b3  b3   
BOLD:AAG1011 Tipulidae Tvetenia calvescens [186] R/U/C/S R/U/C/S 14729 1930 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3 b5 b3
Notes: bc-5': cox1 barcode 5' fragment; bc-3': cox1 barcode 3' fragment; R/U/C/S: Indicates detection based on Reads, USEARCH, CROP 
and SWARM respectively. r-bc-5' and r-bc-3': Number of reads matched for bc-5' and bc-3' respectively. C: Control (upstream) sites; I: 
Impacted (downstream) sites; MC: Macrofauna subsamples; MS; Meiofauna subsamples; T1: Samples collected in time 1 (11 days after the 
spill); T2: Samples collected in time 2 (2.5 months after the spill). b5 and b3 indicates the detection of the OTU with the bc-5' and bc-3' 
fragments respectively based on the processed reads. In bold species identified with indval analyses as indicative for impacted sites. Named 
species are the most abundant within each BIN, in brackets the number of specimens identified to species level in the reference database. 
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Table 2. Betadiversity values, NMDS stress values and p-values for the comparison between 
control and impacted sites. 

 
 

Dataset 
Betadiversity (Sorensen index) 

Turnover (Simpson 
index) 

Nestedness (Sorensen-
Simpson index) 

Taxa 
DNA 

fragment 
Method 

beta.so
r 

Adonis  
p-value 

Adonis 
r2 stress 

envfit  p-
value 

beta.sim stress
envfit  

p-value 
beta.sne stress 

envfit   p-
value 

Metazoa cox1-3' de novo 3% 0.85 0.007 0.18 0.086 0.023 0.763 0.144 0.179 0.087 0.067 0.099
 de novo 10% 0.835 0.011 0.19 0.075 0.018 0.736 0.143 0.054 0.099 0.053 0.099 
 cox1-5' de novo 3% 0.833 0.004 0.17 0.122 0.016 0.743 0.149 0.089 0.09 0.042 0.158
 de novo 10% 0.821 0.005 0.18 0.12 0.036 0.731 0.118 0.144 0.09 0.035 0.107
 SSU de novo 3% 0.775 0.007 0.21 0 0.107 0.726 0.108 0.036 0.049 0.032 0.35 

Insecta cox1-3' de novo 3% 0.862 0.004 0.18 0.087 0.025 0.776 0.143 0.035 0.085 0.07 0.382
  de novo 10% 0.849 0.005 0.19 0.088 0.009 0.761 0.144 0.028 0.088 0.066 0.37 
  BOLD ref 0.857 0.014 0.17 0.109 0.108 0.758 0.146 0.033 0.099 0.096 0.536
 cox1-5' de novo 3% 0.841 0.03 0.16 0.14 0.153 0.749 0.154 0.328 0.092 0.063 0.369
  de novo 10% 0.818 0.019 0.17 0.108 0.066 0.739 0.115 0.226 0.079 0.058 0.314 
  BOLD ref 0.846 0.023 0.16 0.154 0.089 0.759 0.162 0.041 0.087 0.058 0.196
 SSU de novo 3% 0.805 0.037 0.16 0.173 0.132 0.739 0.161 0.057 0.066 0.059 0.62

Crustacea cox1-3' de novo 3% 0.801 0.002 0.23 0.107 0.013 0.684 0.122 0.001 0.118 0.069 0.656
  de novo 10% 0.773 0.004 0.28 0.078 0.009 0.67 0.133 0.006 0.103 0.081 0.779
  BOLD ref 0.826 0.004 0.29 0.089 0.001 0.753 0.077 0.001 0.073 0.181 0.669 
 cox1-5' de novo 3% 0.762 0.002 0.38 0.085 0.006 0.658 0.095 0.003 0.104 0.047 0.102
  de novo 10% 0.763 0.006 0.43 0.098 0.004 0.663 0.073 0.005 0.1 0.079 0.196 
  BOLD ref 0.797 0.006 0.34 0.091 0.004 0.725 0.073 0.009 0.072 0.132 0.475 
 SSU de novo 3% 0.746 0.005 0.32 0.057 0.004 0.675 0.103 0.011 0.07 0.076 0.223

Arthropoda cox1-3' de novo 3% 0.845 0.005 0.19 0.113 0.011 0.77 0.136 0.179 0.075 0.061 0.26 
  de novo 10% 0.832 0.007 0.20 0.092 0.017 0.758 0.135 0.015 0.074 0.043 0.317 
  BOLD ref 0.856 0.005 0.19 0.104 0.113 0.779 0.128 0.006 0.077 0.095 0.569
 cox1-5' de novo 3% 0.829 0.005 0.18 0.142 0.002 0.746 0.143 0.003 0.083 0.064 0.457
  de novo 10% 0.82 0.002 0.18 0.139 0.017 0.75 0.142 0.013 0.07 0 0.236 
  BOLD ref 0.843 0.004 0.18 0.171 0.006 0.771 0.164 0.02 0.072 0.059 0.242 
 SSU de novo 3% 0.787 0.001 0.22 0.095 0.006 0.745 0.118 0.004 0.042 0.059 0.798

Notes: de novo 3% and de novo 10% refers to OTU clustering at these threshold values. BOLD ref 
indicates the results from the ‘taxon dependent’ approach of mapping reads against OTU clusters 
generated from BOLD data.  
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Table 3. Species with indicative value as identified by indval analyses based on the results of the reference 
database-dependent approach for the cox1 gene fragments bc-5' and bc-3'. 

BIN Class Order Family Species GENE  T Ind.  
value P 

BOLD:AAF2659 Branchiopoda Diplostraca Chydoridae Chydorus sphaericus bc-5' I 0.6 0.046
BOLD:AAF2659 Branchiopoda Diplostraca Chydoridae Chydorus sphaericus bc-5' T2-I 1 0.014
BOLD:AAP5931 Insecta Diptera Chironomidae Cricotopus bicinctus [1] bc-5' T2-I 1 0.024
BOLD:ACU8677 Insecta Diptera Chironomidae Cricotopus bicinctus [1] bc-5' T2-I 1 0.022
BOLD:AAI6018 Insecta Diptera Chironomidae Cricotopus bicinctus [123] bc-3' I 0.6 0.048
BOLD:AAI6018 Insecta Diptera Chironomidae Cricotopus bicinctus [123] bc-3' T2-I 1 0.023 
BOLD:AAE4568 Insecta Diptera Chironomidae Eukiefferiella claripennis [185] bc-5' T2-I 1 0.019
BOLD:AAO1037 Insecta Diptera Chironomidae Paratendipes albimanus [127] bc-3' I 0.8 0.024
BOLD:AAO1037 Insecta Diptera Chironomidae Paratendipes albimanus [127] bc-5' I 0.8 0.014
BOLD:ACQ8988 Insecta Diptera Chironomidae Tanytarsus brundini [13] bc-3' I 0.8 0.02
BOLD:ACQ8988 Insecta Diptera Chironomidae Tanytarsus brundini [13] bc-5' I 0.8 0.02
BOLD:AAB9119 Insecta Diptera Chironomidae Tanytarsus brundini [5] bc-5' I 0.8 0.017
BOLD:AAW1102 Insecta Diptera Chironomidae Tanytarsus ejuncidus [24] bc-3' I 0.75 0.049
BOLD:AAU4439 Insecta Diptera Chironomidae Tanytarsus eminulus [124] bc-3' I 1 0.002 
BOLD:AAU4439 Insecta Diptera Chironomidae Tanytarsus eminulus [124] bc-5' I 0.86 0.015 
BOLD:ACR3318 Insecta Diptera Chironomidae Tanytarsus pallidicornis [10] bc-3' I 0.86 0.015
BOLD:AAU1007 Insecta Ephemeroptera Baetidae Centroptilum luteolum [17] bc-5' T2 1 0.001
BOLD:ACH6832 Malacostraca Amphipoda Gammaridae Gammarus pulex [11] bc-3' C 0.83 0.016
BOLD:ACH7960 Malacostraca Amphipoda Gammaridae Gammarus nekkensis [1] bc-5' C 1 0.004
BOLD:ACG8343 Malacostraca Amphipoda Gammaridae Gammarus fossarum [37] bc-5' C 0.83 0.025
BOLD:AAA1971 Malacostraca Isopoda Asellidae Asellus aquaticus [85] bc-3' I 1 0.004
BOLD:ACV6778 Malacostraca Isopoda Asellidae Asellus aquaticus [7] bc-3' I 0.8 0.01 
BOLD:AAA1971 Malacostraca Isopoda Asellidae Asellus aquaticus [85] bc-5' I 0.86 0.019 
Notes: T: Treatment; C: Control sites, I: impacted sites; T2: collection period 2 (2.5 months after the spill); T2-I: Impacted sites at collection 
period 2. Named species are the most abundant within each BIN, in brackets the number of specimens identified to species level in the 
reference database. 
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