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Abstract The distributions of many species are not
at equilibrium with their environment. This includes
spreading non-native species and species undergoing
range shifts in response to climate change. The habitat
associations of these species may change during range
expansion as less favourable climatic conditions at
expanding range margins constrain species to use only
the most favourable habitats, violating the species
distribution model assumption of stationarity. Alter-
natively, changes in habitat associations could result
from density-dependent habitat selection; at range
margins, population densities are initially low so
species can exhibit density-independent selection of
the most favourable habitats, while in the range core,
where population densities are higher, species spread
into less favourable habitat. We investigate if the
habitat preferences of the non-native common waxbill
Estrilda astrild changed as they spread in three
directions (north, east and south-east) in the Iberian
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Peninsula. There are different degrees of climatic
suitability and colonization speed across range expan-
sion axes, allowing us to separate the effects of climate
from residence time. In contrast to previous studies we
find a stronger effect of residence time than climate in
influencing the prevalence of common waxbills. As
well as a strong additive effect of residence time, there
were some changes in habitat associations, which were
consistent with density-dependent habitat selection.
The combination of broader habitat associations and
higher prevalence in areas that have been colonised for
longer means that species distribution models con-
structed early in the invasion process are likely to
underestimate species’ potential distribution.

Keywords Range expansion - Density-dependent
habitat use - Species distribution modelling - Species—
environment relationship - Common waxbill

Introduction

The distributions of many species are not static.
Species are shifting their ranges in response to climate
change (Gillings et al. 2015; Hickling et al. 2006; Hill
et al. 1999; Parmesan and Yohe 2003), while species
transported to new areas by humans are spreading to
suitable areas in their non-native range (Sullivan et al.
2012; Véclavik and Meentemeyer 2012). Species
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distribution models are commonly used to predict the
potential distribution of these species (Early and Sax
2014; Jimenez-Valverde et al. 2011; Peterson 2003).
For example, the environmental associations of a non-
native species can be characterised using their native
distribution and/or current distribution in their non-
native range (Broennimann and Guisan 2008; Mau-
Crimmins et al. 2006), and used to identify other areas
which share these suitable environmental conditions
and so could potentially be colonised in the future
(Fischer et al. 2016; Jimenez-Valverde et al. 2011).
This approach typically assumes spatial and temporal
stationarity in species’ environmental associations.
This assumption may be violated, as species some-
times show greater habitat specificity at expanding
range margins (Oliver et al. 2009), while increasing
temperatures can increase niche breadth and allow
species to exploit new resources during range expan-
sion (Pateman et al. 2012) or interact with microcli-
mate to cause shifts in species habitat associations
(Davies et al. 2006). Furthermore, many non-native
species, across a range of taxa, appear to show niche
shifts between their native and non-native range
(Broennimann et al. 2007; Cornuault et al. 2015;
Stiels et al. 2015), although there is debate as to the
extent these niche shifts are biologically meaningful
(Petitpierre et al. 2012; Strubbe and Matthysen 2014).
Additionally, most studies focus on climate niche
rather than other aspects of species’ niche (Larson
et al. 2010), such as habitat association.

Understanding if changes in habitat preferences
occur during range expansion will be important to
evaluate whether the assumption of stationarity is
justified in species distribution models of non-native
species. If changes in habitat preference are common,
techniques such as geographically weighted regres-
sion can be used to explore and account for non-
stationarity (Osborne et al. 2007), but these do not
capture the mechanisms that lead to non-stationarity.
Therefore, it is also be important to understand why
habitat preferences change in order to inform attempts
to incorporate non-stationarity in habitat preferences
into species distribution models.

Variation in habitat associations between areas that
have been colonised for a long time (the range core)
and areas that have been recently colonised (the range
margin) may be driven by climate. For example,
butterfly species in the UK have been found to exhibit
higher habitat specificity as they spread into areas with
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less favourable climate (Oliver et al. 2009), while for
endothermic species, climate and habitat may interact
as resource rich habitats can enhance survival and
breeding success in unfavourable climates (Robb et al.
2008). Alternatively, lower population densities in
range margins may lead to differences in habitat
associations if species exhibit density dependent
habitat selection (Brown 1984), where the most
favourable habitats are occupied at low population
densities, in the early colonisation stage, and less
favourable habitats are only occupied once the more
favourable habitats become saturated as population
density increases (Morris 1987; Sullivan et al. 2015b).
If this was occurring, species would be expected to
occupy a wider range of habitats in areas that have
been colonised for a long time, and hence population
densities are higher, than in recently colonised areas.

Disentangling the role of climate and residence
time in influencing the habitat associations of range
expanding species is challenging as they are often
confounded, with range expanding species moving
into climatically marginal areas. The spread of non-
native species provides an opportunity to disentangle
the effects of climate and residence time, as species are
not necessarily moving into less suitable climates in all
expansion axes, hence recently colonised areas will
have varying climatic suitability. The expansion of the
common waxbill Estrilda astrild in the Iberian Penin-
sula provides such an opportunity. We assess the
importance of climate and residence time in influenc-
ing the habitat associations of common waxbills. Our
aims are to (1) quantify the habitat associations of
common waxbills, (2) test whether these vary with
residence time or with climate and (3) evaluate the
importance of residence time and climate in influenc-
ing patterns of occurrence.

Methods

We employ a space-for-time substitution to test
whether the habitat associations of common waxbills
vary with residence time or climate as they expand
their range. Focal watches were carried out to identify
habitat features that are important for common
waxbills. We then modelled the occurrence of com-
mon waxbills in 349 point counts as a function of
habitat features identified to be important by the focal
watches, as well as climate and residence time.



Changes in habitat associations during range expansion

Field survey

We sampled along three main directions of common
waxbill range expansion in their European non-native
range. These expansion axes were along the west coast
of Portugal from introduction sites near Lisbon and
Obidos, along the south coast of Portugal into south-
west Spain from introduction sites in the Algarve, and
along the Guadiana Valley east into Spain (Silva et al.
2002). This sampling design enabled the influence of
residence time to be disentangled from climate, as
climate conditions varied between expansion axes. For
example, common waxbills introduced to the Lisbon
area spread along the west coast of Portugal through
areas identified to be climatically suitable by Sullivan
et al. (2012), and also eastwards into less climatically
suitable areas such as Extremadura.

We selected 41 10 x 10 km UTM squares (re-
ferred to as sites) that contained potentially suit-
able habitat for common waxbills (Reino and Silva
1998; Sullivan et al. 2012). These potentially suit-
able habitats were rice fields and irrigated agriculture
(Corine land-cover (CLC) classes 212 and 213),
wetlands and rivers (CLC 411 and 511), and hetero-
geneous agriculture (CLC level two class 24). At each
site, five to 12 point counts (mean = 8.5 & 2.5 SD
point counts per site) were carried out in these habitats,
with the number of point counts varying depending on
the extent of accessible suitable habitat. These point
counts were located in or around the selected 10 km
square (see Fig. 1 for locations of site centroids). In
total 349 point counts were performed. Point counts
were always > 200 m apart. Sites could be located in
adjacent 10 km squares, but point counts in each site
were non-overlapping. Sites were assigned a residence
time based on the date the 20 km x 20 km UTM grid-
cell their centroid fell in was colonised, using coloni-
sation data from Silva et al. (2002). The dataset
compiled by Silva et al. (2002) combined published
records of common waxbills with further records from
correspondence with birdwatchers in Portugal and
Spain to obtain the earliest record in each 20 x 20 km
UTM square (Reino 2005; Reino et al. 2009; Reino
and Silva 1998). We selected sites to provide an
approximately balanced sampling design by residence
time (< 10 years, n =8; 10-20 years, n = 10;
20-30 years, n = 10; > 30 years, n = 13), and
ensure the full ranges of residence times in each
expansion axis were sampled. There were at least 20

point counts in each habitat class in each residence
time strata (Table 1). Seasonal effects were controlled
for by surveying each expansion axis three times
during the fieldwork period (April-June 2011), sur-
veying a third of sites in each residence time strata in
each period, as well as by including survey date as a
covariate in subsequent statistical models.

At each point count location, the presence or
absence of common waxbills during a 5 min point
count was recorded, with the distance from observer
and flock size of each individual or group of common
waxbills also noted. Flock size was noted as we
expected flocks to be easier to detect than individuals
as birds in flocks make contact calls. The habitat
classes present (see Table 2 for habitat classes) at
30 m intervals on a grid stretching 90 m in each
cardinal direction from the point count location were
recorded (i.e. 49 habitat recording points per point
count, see Fig. 1b for schematic). The presence or
absence of a river within 100 m of the point count
location was noted. This scale enabled the majority of
common waxbills to be detected, and therefore
represented the resources that directly influenced the
occurrence of common waxbills at sampling points.
All point counts, including assessment of available
habitat, were performed by the same observer (MS).

Climate data

We selected two climate variables that we expected to
influence common waxbill occurrence and potential
habitat associations: mean temperature in the coldest
month (MTCM) and cumulative water deficit (CWD).
MTCM could affect habitat associations as birds
require more energy to survive colder winters (Newton
1998) so they may be restricted to habitats that provide
more resources. The effect of MTCM on breeding
habitat associations may be reduced by movements
between the breeding and non-breeding seasons,
however as common waxbills are largely sedentary,
limits on winter habitat associations are likely to carry
over to affect breeding habitat associations. MTCM
was extracted from the Worldclim database (Hijmans
et al. 2005) from the 1 km grid-cell containing each
point count. CWD was calculated by first calculating
the water deficit in a given month as the difference
between monthly precipitation and monthly evapo-
transpiration, plus cumulative water deficit in the
previous month. We then took the minimum value of
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Fig. 1 a Location of survey sites in the Iberian Peninsula. The
centroids of each site are plotted. Sites colonised before 1990 are
shown by filled circles, and colonised after 1990 are shown by
open circles. Arrows show axes of range expansion. The insert
map shows the location of point counts at one site. Point count
locations are shown by open circles. Rice fields are shaded grey,
wetlands shaded black, and heterogeneous agriculture (Corine
land-cover level two class 24) shown by hashing. The remaining
area is largely forestry. b Schematic of sampling protocol at

cumulative water deficit reached over the year. Values
of CWD were obtained from a database compiled by
Chave et al. (2014). CWD reflects the degree of
drought stress an area experiences. Common waxbills
may be more associated with wetland habitat features
(rivers and emergent vegetation) in areas experiencing
greater drought stress (Barnard 1997). We also
examined whether habitat associations varied with a
multivariate assessment of climate suitability by using
the predicted suitability from a dispersal weighted
species distribution model (suitability values taken
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each point count. The observer (position shown by binoculars)
records birds seen within a 100 m radius (shown by circle).
Habitat is recorded at regularly spaced points (shown by filled
circles, habitat also recorded at position of observer).
¢ Schematic of sampling protocol at focal watch locations.
The observer walks along a central transect (dashed arrow), and
records birds and percentage cover of habitats in each sub-
square

from Sullivan et al. 2012). This used generalised linear
models to relate the occurrence of common waxbills in
10 km grid cells in the Iberian Peninsula to MAT,
mean annual precipitation and mean daily temperature
range (see Sullivan et al. 2012 for a full description of
this model). We call this variable Climate SDM.
Residence time was weakly correlated with CWD
(r = 0.33), with stronger correlations with MAT
(r =0.55) and Climate SDM (r = 0.72). Habitat
variables were weakly correlated with climate and
residence time (I7l < 0.31); this variation in habitat



Changes in habitat associations during range expansion

Table 1 Proportion of point counts in each habitat and residence time strata where common waxbills were recorded

Residence
time (years)

Irrigated agriculture
(CLC 212, 213)

Wetland (CLC 411, 511)

Heterogeneous Total

agriculture (CLC 24)

> 30 19/39 (49%) 10/40 (25%)
20-30 13/23 (57%) 15/28 (54%)
10-20 9/31 (29%) 12/30 (40%)
<10 5/21 (24%) 8/36 (22%)
Total 46/114 (40%) 45/134 (34%)

13/27 (48%)
12/22 (55%)
10/30 (33%)

4122 (18%)

39/101 (39%)

42/106 (40%)
40/73 (55%)
31/91 (34%)
17/79 (22%)

130/349 (37%)

Data are presented as number of point counts where common waxbills were present/total number of point counts, with the percentage

of point counts where common waxbills were present in parenthesis

Table 2 Microhabitat selection by common waxbills, calcu-
lated using Jacobs index (J)

Habitat type Feeding Shelter
N J N J

Rough grass 34 0.35* 6 — 0.70*
Emergent vegetation 19 0.45% 44 0.75%
Forbs 18 0.14 13 - 0.07
Houses and gardens 1 —0.23 1 — 043
Arundo donax 3 — 0.03 12 0.77*
Trees and bushes 5 — 0.58* 17 0.10
Crops 6 — 0.63* 3 — 0.84*

N is the number of observations of each activity in each habitat.
Asterisks indicate that microhabitat use differs statistically
significantly from expected use if each microhabitat was
selected randomly (assessed by expected use of a microhabitat
falling outside the 95% Bonferoni confidence intervals of
observed proportional use). In total there were 96 observations
of feeding and 98 observations of shelter; in addition to
observations included in this table, ten observations were of
ground feeding birds where it was not certain which
microhabitat was being used, while two shelter observations
were of birds perched on bare ground. Data were obtained from
focal watches at 68 locations, with feeding and shelter
activities of common waxbills observed at 27 and 26
locations respectively

prevalence is implicitly accounted for in our subse-
quent analysis by using presence-absence models (see
“Data analysis”) which consider the prevalence of
different habitats in point counts where common
waxbills are present and absent.

Quantifying resource selection

We investigated how common waxbills use different
habitat features for feeding and shelter to identify
habitat features that provide important resources. This
microhabitat selection was quantified by performing
scan samples at 68 locations located throughout
residence time strata. Habitat availability was
recorded in a 180 m x 180 m square, divided into
30 m x 30 m sub-squares. The percentage cover of
each habitat type was recorded in each sub-square. By
recording the amount of habitat in sub-squares at
different distances from the observers we were able to
adjust the calculation of habitat availability to account
for the decline in detectability with distance from
observer (see Appendix S1 for details and Fig. 1c for
schematic). Habitat use by common waxbills was
recorded in scan samples performed every 10 min,
with the observer allowed to walk up and down a
transect crossing the middle of the recording area.
During each scan sample the distance from observer,
habitat use and activity (feeding or shelter) of each
group of common waxbill was recorded. Shelter was
defined as any rest activities while not feeding. We
quantified the selection of each habitat, given avail-
ability, for each activity using Jacobs index (Jacobs
1974), where Jacobs index for habitat & and activity
a is Jpa= Ona — En)/(Opa + Epng — 204, 4E.4),
where O, is the number of observations of activity
a in habitat h, and E,, is the expected number of
observations if the habitat was selected in proportion
to its availability (see Appendix S1 for further details).
Jacobs index ranges between — 1 and 1, and equals
zero if a habitat is selected in proportion to its
availability, is positive if a habitat is selected more
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than expected given availability, and is negative if a
habitat is selected less than expected given
availability.

Data analysis

We follow a two-step approach to modelling the
occurrence of common waxbills (Miller et al. 2013)
where we first use distance sampling to model the
detection probability of common waxbills at each
point count location, then use the predicted detection
probabilities as an offset in models of common waxbill
occurrence to account for spatial heterogeneity in
detectability (Massimino et al. 2015).

We constructed models of the probability of
detecting common waxbills, with gamma functions
modelling the decline in detection probability with
distance from the observer, using the R package mrds
(Laake et al. 2015). Gamma functions were selected as
they resulted in models with lower AIC than when
half-normal, hazard-rate or uniform functions were
used. The quantity of emergent vegetation and trees
and bushes were included as covariates (these were
quantified as the proportion of habitat recording points
that contained these habitat features), as these tall
habitat features could obscure birds. Flock size was
included as a covariate, as larger flocks may be easier
to detect as they make more contact calls. We fitted all
simplifications of this model, and used AIC to rank
models (Table S1). The best performing model (with
flock size and amount of trees and bushes as covari-
ates) was used to estimate the detection probability in
each point count location, but set flock size to one
when making predictions so that variation in modelled
detection probability is only based on variation in
habitat.

We then modelled the presence/absence of com-
mon waxbills at point count locations using gener-
alised linear mixed effects models with binomial
errors and a logit link. We formulated competing
hypotheses to explain variation in the occurrence of
common waxbills, and constructed models that repre-
sented these hypotheses (Table 3). These models
range in complexity from a null model without any
habitat terms, through to models with only habitat
terms (assuming that climate or residence time do not
affect fine-scale occurrence), models with an additive
effect of climate or habitat (assuming that habitat
associations do not vary with climate or residence
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time, but climate or residence time affects the
prevalence if common waxbills) and finally to models
with interaction terms which allow habitat associa-
tions to vary with residence time or with climate
(Table 3). We selected habitat variables for inclusion
in these models based on their use for feeding and
shelter as indicated by positive Jacobs index values
(Table 2), meaning that models contained terms
relevant to resource availability. These were emergent
vegetation (including Arundo donax), trees and
bushes, forbs, and rough grass The presence of a river
within 100 m of the point count location was also
included as a habitat variable as common waxbills
have been reported to be associated with riverine
vegetation (Reino and Silva 1998). Habitat variables
(except for the presence of a river, which was a binary
factor), residence time and climate were modelled
using second order polynomial terms to allow for non-
linear relationships. Where models contained interac-
tion terms with habitat variables, these were with both
first and second order terms. We used AIC to evaluate
the relative support for each model as it allows
comparison of models that are not nested (Burnham
and Anderson 2002). Models were constructed in a
mixed effects framework, with a random intercept site
effect to account for the expected correlation of
observations within each site (this was sufficient to
account for residual spatial autocorrelation, Fig. S1),
using the R package lme4 (Bates et al. 2014). All
models contained a survey date term to model seasonal
variation in occurrence that could occur due to the
swelling of common waxbill populations by fledglings
later in the season, as well as the logit of the predicted
detection probability of each point count location as an
offset to account for variation in detectability. The
explanatory power of the fixed effects component of
these models was quantified by calculating the
marginal R* (Nakagawa and Schielzeth 2013).

Results
Habitat associations of common waxbills

Common waxbills selected rough grass, emergent
vegetation and forbs for feeding (Table 2). Emergent
vegetation and A. donax were strongly selected for
shelter, with weaker selection for trees and bushes
(Table 2). In locations colonised for less than
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Table 3 Hypotheses to explain variation in the occurrence of common waxbills, and corresponding statistical models

Hypothesis

Model explanatory variables

1. Occurrence related to the extent of habitat used for feeding and
shelter. These habitat associations remain constant throughout the

range

2. Occurrence related to habitat and residence time. Habitat
associations remain constant throughout the range

3. Occurrence related to habitat and climate. Habitat associations

remain constant throughout the range

4. Occurrence related to habitat and residence time. Habitat
associations vary with residence time

5. Occurrence related to habitat and climate. Habitat associations vary

with climate

6. Occurrence not related to habitat, residence time or climate

Detect + Date + Habitat

Detect + Date + Habitat + Residence time

Detect + Date + Habitat + CWD

Detect + Date 4+ Habitat + MTCM
Detect + Date + Habitat + Climate SDM
Detect + Date + Habitat * Residence time

Detect + Date + Habitat * CWD

Detect + Date + Habitat * MTCM
Detect + Date + Habitat * Climate SDM
Detect + Date

Interactions between variables are shown by *. Habitat variables are forbs, rough grass, emergent vegetation and trees and bushes, all
expressed as the proportion of habitat recording points containing these habitat classes, and the presence of a river. Second order
polynomial terms were included for continuous habitat variables, climate and residence time. Detect is the logit detection probability

at a point count location, and is included in models as an offset

20 years, forbs and trees and bushes were not selected
for feeding and shelter more than expected given
availability (Table S2), but in general there were too
few observations of feeding or shelter to robustly test
whether microhabitat selection varied during range
expansion.

Common waxbills were recorded in 130 of the 349
point counts. The probability of recording common
waxbills did not differ significantly between the three
aggregated CLC habitat classes sampled (likelihood
ratio test with nested model lacking habitat class term,
;(22 = 0.26, P = 0.88, Table 1), however differences
in habitat suitability were evident within these broad
habitat classes. Relationships between common wax-
bill occurrence and the amount of emergent vegeta-
tion, forbs and rough grass were humped, indicating a
preference for intermediate values of these habitat
features. The relationship with the amount of trees and
bushes was negative over the range of tree and bush
extent where we have most data, indicating that higher
coverage of trees and bushes was avoided (Fig. 2).
This relationship switched to being positive when
> 50% of habitat sampling points contained trees and
bushes, which could indicate selection of areas with
high tree cover for shelter, but as this switch from
negative was driven by the occurrence of common

waxbills at a few point counts with high tree/bush
cover it is unlikely to be robust.

Effect of climate and residence time

Residence time was supported as a predictor variable,
appearing in the two best supported models (Table 4).
The probability of a point count being occupied
increased with residence time, peaking at sites that had
been colonised for at least 20 years (Fig. 3). There
was some uncertainty over whether habitat associa-
tions changed with residence time; despite a substan-
tial increase in model explanatory power by having
interactions between habitat variables and residence
time, improvements to AIC were small (AAIC = 2.6)
due to the associated increase in model complexity
(Table 4). The most marked change in habitat prefer-
ences was a tolerance of a wide range of emergent
vegetation cover in areas colonised for over 30 years,
contrasting with a preference for intermediate
amounts of emergent vegetation in areas that has been
colonised for no more than 10 years (Fig. 2). The
presence of a river also had a positive effect on
occurrence in areas colonised within 10 years, but was
not important in areas colonised for over 30 years
(Fig. 2). Increased residence time lead to greater
tolerance to areas with fewer forbs and more rough
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Fig. 2 Interactions between habitat and residence time in
explaining the occurrence of common waxbills. a Relationships
between occurrence probability and the proportion of habitat
recording points containing each variable. Relationships have
been shown for the oldest residence time strata (areas colonised
before 1980, black) and the most recent residence time strata
(areas colonised after 2000, grey) to visualise the effect of
residence time on habitat associations. Dashed lines show 95%

grass (Fig. 2). Despite these changes in fine-scale
habitat associations, the proportion of occurrences in
the three habitat classes (irrigated agriculture, hetero-
geneous agriculture and wetlands) did not change with
residence time (likelihood ratio test between models
with and without habitat class: residence time inter-
action term, 126 =75, P = 0.28, Table 1).

Climate was poorly supported as an additive effect
(Climate SDM AAIC from best model = 8.7, MTCM
AAIC = 9.1, CWD AAIC = 10.6), with less support
for interactions between climate and habitat variables
(Table 3). The null model, containing only season and
detection probability as fixed effects, was the least
supported model (AAIC = 34.5, Table 4).
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confidence intervals around relationships. b Occurrence prob-
ability at point counts where rivers are present or absent in areas
colonised before 1980 (dark grey) and after 2000 (light grey).
Error bars show 95% confidence intervals. Both (a) and (b) are
based on predictions from model 4 in Table 3 holding other
variables at their overall mean; note that this means occurrence
probabilities are generally high as these other variables have
values close to their optimum. N = 349 point counts in 41 sites

Discussion

Residence time had more support than climate
suitability in influencing variation in the fine-scale
prevalence of common waxbills across their European
non-native range. There was support for interactions
between habitat variables and residence time. In the
early stages of colonisation, common waxbills are
strongly associated with rivers and areas with inter-
mediate amounts of emergent vegetation (Fig. 2). This
association with rivers suggests these landscape
features have a role in assisting dispersal, as they
provide corridors of suitable habitat that facilitate
common waxbill dispersal. Previous studies have
documented the role of dispersal along linear land-
scape features, such as rivers, in facilitating the spread
of non-native species at expanding range margins (e.g.
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Table 4 Performance of models explaining patterns of common waxbill occurrence

Model Log Likelihood Parameters AAIC Marginal R
Detect + Date + Habitat * Residence time — 175.1 32 0 0.544
Detect + Date + Habitat + Residence time — 1944 14 2.5 0.315
Detect + Date + Habitat + Climate SDM — 1974 14 8.6 0.278
Detect + Date + Habitat + MTCM — 197.6 14 9.0 0.281
Detect + Date + Habitat — 200.4 12 10.5 0.244
Detect + Date + Habitat + CWD — 198.4 14 10.5 0.274
Detect + Date 4+ Habitat * MTCM — 185.8 32 21.3 0.435
Detect + Date + Habitat * Climate SDM — 1874 32 24.5 0.363
Detect + Date + Habitat * CWD — 191.2 32 32.1 0.493
Detect + Date — 2224 3 36.6 0.066

Interactions between variables are shown by *. Habitat variables are forbs, rough grass, emergent vegetation and trees and bushes, all
expressed as the proportion of habitat recording points containing these habitat classes, as well as the presence or absence of a river.
Logit detection probability was incorporated in models as an offset. N = 349 point counts in 41 sites
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Fig. 3 Proportion of count counts where common waxbills
were recorded in each residence time strata. N = 349 point
counts in 41 sites

Brown et al. 2006). This could lead to anisotropic
range expansion (Hengeveld 1989), which would need
to be accounted for in models of species’ range
expansion (Fitzpatrick et al. 2012). Alternatively,
rivers and their associated riparian vegetation may
also be important in recently colonised areas due to
density dependent habitat selection (Brown 1984;
Morris 1987), with rivers being preferred habitats that
are occupied when populations are at low densities,
and areas away from rivers less preferred so only

occupied at higher population densities. Residence
time influences the relationships between common
waxbill occurrence and emergent vegetation in a way
that is consistent with the occurrence of buffer effects,
observed by the more restricted habitat associations at
expanding range margins. The positive unimodal
relationship between common waxbill occurrence
and the quantity of emergent vegetation was most
pronounced in recently colonised areas, where com-
mon waxbills were most likely to be recorded at point
count locations containing 20% emergent vegetation.
In areas occupied for longer, common waxbills were
likely to occur across a wide gradient of emergent
vegetation quantity. These changes in habitat associ-
ation revealed by our space-for-time substitution are
consistent with anecdotal reports that common wax-
bills introduced to Portugal were initially restricted to
wetland edges before spreading to a wider range of
habitats (Reino and Silva 1998). Despite these changes
in preference for local habitat features, they do not
appear to be strong enough to affect coarser scale
habitat associations, as we did not detect any shift in
association with land-cover classes with residence
time. Thus, species distribution models relating to
occurrence to land-cover (e.g. Fischer et al. 2016) are
unlikely to have been affected by the variation in
habitat preference documented here.

Our results also show that the additive effect of
residence time was a strong influence on local
occurrence of common waxbills. This effect was
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independent of measured habitat variables, meaning
that common waxbills are less likely to occur at range
margins regardless of habitat, although it is possible
that habitat varied between the range core and range
margin in ways that were not captured in this study.
The prevalence of common waxbills took approxi-
mately 20 years to saturate following colonisation of
an area, supporting previous work reporting long lag
phases in biological invasions (Shigesada et al. 1995;
Wangen and Webster 2006). These lags have two
important consequences. Firstly, the lower population
densities in the early stages of invasion allow native
and non-native species to coexist through mechanisms
which may not be stable when non-native species
reach higher population densities (Grundy et al. 2014;
Newson et al. 2011), complicating the early assess-
ment of non-native species’ impacts. Secondly, the
lower prevalence of recently established non-native
species means that species distribution models trained
on these early distributions are likely to underestimate
the potential distribution of these species, even if
environmental associations are shown to be consistent
with the assumption of stationarity. Our results
indicate that this will be a particular problem when
fine-scale distribution data is used, as common
waxbills were able to spread to new areas before
reaching equilibrium prevalence within colonised
areas.

Our results contrast with previous studies that have
documented an effect of climate on habitat associa-
tions in expanding range margins (Lawson et al. 2014;
Oliver et al. 2009). The absence of a strong effect of
climate could be because this study looked at an
endotherm, while previous studies that have found
strong climate-habitat interactions have looked at
ectotherms (Lawson et al. 2014; Oliver et al. 2009)
where interactions were partially driven by the
microclimates provided by different habitats (Suggitt
et al. 2012); habitat is unlikely to modulate the
physiological effects of climate to the same extent in
endotherms. Despite this, climate could plausibly
interact with the common waxbill’s habitat associa-
tions in several ways. Firstly, winter survival is related
to a bird’s energy balance; in order to survive cold
weather birds need to increase their food intake
(Newton 1998; Siriwardena et al. 2008), so common
waxbills may be restricted to higher quality habitats in
colder areas (this could influence breeding habitat
associations as common waxbills are not migratory).

@ Springer

Secondly, common waxbills typically breed in mesic
habitats (Reino and Silva 1998), and in areas of their
native range with arid climates they are restricted to
wetlands (Barnard 1997). We did not find support for
such interactions, which may indicate that climatic
conditions in the range margin are not sufficiently
harsh to affect habitat associations. Residence time
effects are likely to be more pronounced in birds than
invertebrates, as population densities of the latter can
increase rapidly at range margins (Bourn and Thomas
2002), potentially reducing differences in population
density with residence time.

Habitat associations of common waxbills

Common waxbills strongly selected emergent vege-
tation for shelter and moderately selected forbs, rough
grass and emergent vegetation for feeding. Similar
patterns of resource selection are evident in other non-
native seed-eating birds in the Iberian Peninsula
(Sullivan et al. 2015a). The presence of these
resources influenced occurrence, with humped shaped
relationships with these variables indicating that
common waxbills were associated with areas with
intermediate amounts of these resources. Models
containing habitat variables had substantially greater
explanatory power than the null model only containing
date and detection probability (Table 4), and a model
containing habitat but not residence time had more
support than a model containing residence time but not
habitat (AAIC = 21.0), supporting the role of these
habitat variables in influencing patterns of occurrence.
The association of common waxbills with emergent
vegetation reflects habitat associations in their native
range, where although common waxbills are associ-
ated with a wide range of habitats they are particularly
strongly associated with wetland vegetation (Barnard
1997). Habitat associations appear to be similar
between the native and non-native range, and the
habitats occupied in the Iberian Peninsula enable
common waxbills to reach population densities com-
parable to those in the native areas; based on data from
Sullivan et al. (2015a) common waxbills reach
densities of up to 30 individuals per ha (mean 2.1
individuals per ha), while Sanz-Aguilar et al. (2014)
report ringing over 100 individuals at a single location,
cf. native range population density of 2.3 individuals
per ha in Swaziland (Monadjem 2002). We document
selection of A. donax, a non-native reed, for shelter
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and to a lesser extent feeding. Such positive interac-
tions between non-native species have been widely
documented (e.g. Adams et al. 2003), although as A.
donax does not occur in the common waxbill’s native
range this association must have developed in the
Iberian Peninsula.

Conclusion

The spread of non-native species along multiple
expansion axes provides an opportunity to disentangle
the effect of climate and residence time on habitat
specificity. We found that changes in the prevalence of
common waxbills between the range core and range
margin are likely to be driven by processes relating to
residence time rather than by marginal climatic
conditions, contrasting with results of previous studies
of spatial variability in habitat associations of range
expanding species (e.g. Oliver et al. 2009). Some
changes in habitat associations were evident, with
greater association of common waxbills with rivers
and areas with intermediate amounts of emergent
vegetation in the range margin. However, other
changes in habitat associations with residence time
were minor, and overall they did not translate into
changes in associations with land-cover classes. These
small violations of the assumption of stationarity in
environmental associations mean that while species
distribution models assuming stationarity are likely to
be able to predict the spread of common waxbills
across the Iberian Peninsula, they could be refined by
incorporating changes in habitat associations with
residence time. Further examples are needed in order
to establish how generalizable results of this and
previous studies are, with the spread of non-native
species along multiple expansion axes providing a
promising study system.
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