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ABSTRACT

For a camera image, the RGB response from the imaging sensor cannot be used to drive display devices
directly. The reason behind this is two-fold: different cameras have different spectral sensitivities, and there are
different target output spaces (e.g. SRGB, Adobe RGB, and XYZ). The process of mapping from captured RGBs to
an output colour space is called colour correction. Colour Correction is of interest in its own right (e.g. for colour
measurement), but it is also an important part of the colour processing pipelines found in digital cameras. In this
paper, we look at the problem of mapping device RGB values to corresponding CIE XYZ tristimuli. We make three
contributions. First, we review and implement a range of colour correction algorithms. We benchmark these
algorithms in experiments using both synthetic data (so we can numerically assess a wider range of cameras) and
real image data. In our second contribution, we develop an ensemble method to combine colour correction
algorithms to further enhance performance. For the methods tested, we find there is small extra power in combining
the methods. Our final — and perhaps most important contribution — is to provide an open source colour correction
MATLAB toolbox for the community, implementing the algorithms described in the paper. As well, all our
experimental data is provided.
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INTRODUCTION

The problem of colour correction arises from the fact that cameras do not measure colour in the same way as
human vision. Imaging sensors in the camera do not have the same spectral sensitivity as the cone cells in the human
eye. The spectral sensitivities for cameras do not perfectly satisfy the Luther conditions, i.e. they are not a perfect
linear transformation of the cone sensitivities [1]. Violation of the Luther conditions can result in metamerism
between cameras and the eye. This happens when two lights with different spectrum power distributions introduce
different responses to the eye but the same response to cameras, and vice versa [2]. There has been sustained
research interest in correcting camera colour measurements to colour spaces that are referenced to the human visual
system since it is easier to measure the quality of colour reproduction in such colour coordinates. Common target
colour spaces include sRGB, CIE XYZ [3], CIE Lab [4] and cone responses.

Colour contributes to the decision process when humans make visual judgements. This means that accurate
colour reproduction is important when a computer vision system attempts to replicate the process [5]. On the image
capturing side, colour correction involves mapping the device specific camera RGBs to device independent colour
space such as SRGB. In the image reproduction side, colour correction involves mapping device independent colour
spaces to the colour spaces of the image reproduction device [6]. For displays, this can be the display specific RGB;
for printers, this can be the printer specific CMYK [7]. In this work, we explore different methods which map an
(R,G,B) triplet p to the corresponding (X,Y,Z) triplet x. To evaluate the performance of colour correction
algorithms, we then convert colours from CIE XYZ colour space to CIE Lab colour space. In CIE Lab colour space,
the Euclidean distance between two colour coordinates tolerably corresponds to the perceived colour difference [8].
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COLOUR CORRECTION ALGORITHMS

Linear Colour Correction [9]

The simplest and most commonly used colour correction method is linear colour correction. Let P and X denote
3xN matrices representing camera RGBs and the corresponding XYZs, in linear colour correction, we find the 3x3
matrix M which minimises:

min|[MP - X|| 1)
The 3x3 regression matrix is found in closed form using the Moore-Penrose pseudoinverse:
M = XP'[PP"]™! 2)

The 3x3 colour correction matrix is well-justified when reflectance can be approximated by a 3D linear model
[10]. If we adopt this approximation, then under a given illuminant, the mapping between RGB to XYZ is
necessarily a 3x3 matrix.

An advantage of linear colour correction is that it unaffected by scene radiance/exposure changes. This is known
as exposure invariance.

Polynomial Colour Correction [11]

To reduce colour reproduction error, one can use polynomial colour correction (PCC) instead [11]. This is
achieved by modifying Eq. 1 by adding into P extra rows containing polynomial component terms. For example,
for 2" PCC, rows with the following terms need to be added: r2, g2, b?,rg,rb, gb. P becomes a 9x N matrix and
M has the dimension of 3x9. For third order PCC, in addition to the rows with second order polynomial terms,
rows with the following terms need to be added:r3, g3,b3,rg? gb? rb?, gr? bg? br? rgb, P then has the
dimension of 19xN and M has dimension of 3x19. Higher order polynomial terms can also be derived. However,
PCC above the 3™ degree does not tend to be used often, due to the potential for overfitting — when overfitting
occurs, the colour correction matrix produces images with excessive noise. Overfitting can be avoided by using
regularisation [12]. Under polynomial colour correction, brightness changes may result in a hue shift, PCC does not
have exposure invariance [2].

Root-Polynomial Colour Correction [13]

Root polynomial colour correction (RPCC) [13] provides better performance than linear colour correction,
while preserving the important property of exposure invariance. This is achieved by adding rows with root-
polynomial terms into P in Eq. 1. For example, for second order RPCC, rows with the following terms need to be

added: \/r_g Jgb, \rb. For third order RPCC, the following terms need to be added in addition to the second order

root polynomial terms: 3/r2g, ¥r2b,3/rg?, Vrb?,3/g%b,/gb?. The polynomial degree of the added terms is
always 1. Exposure invariance is a property that follows from the inverse root.

Hue Plane Preserving Colour Correction [14]

A hue plane is a geometrical half-plane defined by the neutral axis and a chromatic colour. In hue plane
preserving colour correction, the colour spaces are divided in sub-regions defined by hue planes. In order to map
RGBs to XYZs, a 3x3 matrix is learned and applied in each subregion separately [14]. These matrices can also be
constrained to preserve the whitepoint. The sub-regions can also be flexibly chosen in number and position to
regularise and optimise results, while constraining continuity across hue planes. Hue plane preserving colour
correction provide significantly higher colorimetric accuracy compared to linear colour correction, while
maintaining exposure invariance. Its performance is comparable to root-polynomial colour correction.

Colour Correction by Angular Minimisation [15]

Most colour correction algorithms are sensitive to the brightness difference in training RGBs and XYZs. In
order to avoid that problem either the lighting field has to be uniform, or the radiance of each individual colour
patch need to be measured. Both of these are hard to accomplish.
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Colour correction by angular minimisation avoids the problem of uniform lighting field by ignoring the
magnitude differences between the RGB and XYZ vectors, and minimising the angular differences between them.
This results in a 3x3 colour correction matrix that is exposure invariant [15]. The minimisation process is a search
procedure which may not converge to global minimum.

Homography Colour Correction [16]

In mathematics, a homography is a mapping between two projective spaces. Finlayson et al. showed that the
mapping between RGB and XYZ is well related by a homography [16], and this homography can be solved using
Alternating Least Square algorithm.

Like colour correction by angular minimisation, homography colour correction is exposure invariant. A uniform
lighting field is not required for capturing the training data. Advantageously, homography colour correction discards
less information during training.

Maximum Ignorance Colour Correction [17]

The maximum ignorance (MI) approach to colour correction is a method which operates without an explicit
calibration data set. Instead, the transform used for colour correction is defined to be the mapping which best takes
the device response functions onto the XYZ matching curves. The effective statistical assumption made here is that
all possible spectra, with both positive and negative power at each wavelength, all occur with equal likelihood. This
approach can be justified, as Horn [9] and Vrhel and Trussell [18] have shown, in that perfect colour correction for
any colour stimulus is possible if and only if the device sensitivities are a linear transform from the colour matching
functions.

Maximum Ignorance with Positivity Colour Correction [17]

Maximum ignorance with positivity colour correction (MIP) is similar to MI colour correction, as it does not
require an explicit calibration data set. The major difference for this method is that the colour signal is assumed
correctly to be strictly positive and equally likely [17].

MIP improves on the conventional MI zero-calibration method by providing a better statistical assumption, as
negative spectral power does not make physical sense. It also provides substantially improves colour correction
performance.

ENSEMBLE COLOUR CORRECTION

Here we propose a new colour correction algorithm, presented here for the first time. We call this method
Ensemble Colour Correction. Ensemble colour correction provides a method for combining multiple methods of
colour correction. In fact, it has been shown that combining multiple algorithms together may be of use for
improving accuracy, e.g. in improving results for illuminant estimation methods [19].

Assuming we have m constituent colour correction algorithms, and n colour patches in our training set, the
RGB and XYZ matrices follow a row-wise format (we use 3xn matrices to store RGBs and XYZs), The training
process for our ensemble colour correction is as follows:

1. The m colour correction algorithms are trained.

2. Each colour correction algorithm is then applied to the training RGBs, in order to obtain estimated
XYZs for each method.

3. The estimated XYZs are combined row-wise forming a 3nxm matrix (which is denoted by eXYZ).

4. Regression is performed between the eXYZ matrix and the true XYZ matrix, with the regression
coefficients termed the ensemble matrix.
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RESULTS

Experiment 1: Regression-based colour correction

For regression-based colour correction algorithms (that is all colour correction algorithms other than maximum
ignorance-based methods), we used a 140-patch X-Rite ColorChecker Digital SG for performance evaluation.
Under uniform D65 illumination, we measured the XYZs of the colour checker using a Photo Research PR-670
spectroradiometer. We then photographed the colour checker using a Nikon D70 camera. The colour correction
experiments were performed using three-fold cross-validation. For the Ensemble Method, the ensemble consists of
Homography, Second Order Root-polynomial and Hue Plane Preserving methods.

Table 1. CIELAB AE for regression-based colour correction algorithms

Method Mean Median 95%  Max
Linear least squared [9] 2.95 2.06 8.34  23.06
Second order polynomial [11] 2.39 1.94 6.35 8.01
Second order root-polynomial [13] 1.97 1.47 4.57 5.52
Homography [16] 2.65 2.19 5.48 12.91
Hue Plane Preserving [14] 2.05 1.63 55 10.41
Angular Minimisation [15] 2.69 2.26 6.76 11.87
Ensemble method 1.86 1.52 4.74 5.87

Experiment 2: Maximum-ignorance based colour correction

Maximum ignorance colour correction algorithms require the spectral sensitivity curve of the camera. We were
not able to obtain the spectral sensitivity for the Nikon D70 camera, so a Nikon D5100 was used instead. We decided
to collect colour checker data outdoor. In order to avoid change in lighting condition and save time, we used a 24-
patch X-Rite ColorChecker Classic instead. Under cloudy daylight, the XYZ values of the colour checker were
measured using a Photo Research PR-670. Then the colour checker was photographed. The spectral sensitivity for
the camera we used can be found in [20]. As maximum ignorance-based colour correction was trained using the
spectral sensitivity curve and data from the colour checker was not used for training, cross validation was not
performed.

Table 2. CIELAB AE for maximum ignorance-based colour correction algorithms

Method Mean Median  95% Max
Maximum Ignorance 5.32 4.46 1222 1361
Maximum Ignorance with Positivity | 3.99 3.66 8.25 9.35

COLOUR CORRECTION TOOLBOX

We created a new Colour Correction Toolbox, a MATLAB toolbox for running colour correction experiments.
It is provided under the MIT License. It contains the implementation of all the algorithms described above. The
toolbox can train colour correction algorithms, and apply the algorithms on RAW images or matrices containing
device-specific RGB values. Test data sets are shipped with the toolbox. The toolbox also contains a utility function
for extracting RGB values from colour checker images. The toolbox also provides the facility for evaluating colour
correction functions. Cross-validation can be optionally performed.

For more information on colour correction toolbox, please visit:

https://github.com/fangfufu/Colour_Correction_Toolbox.

CONCLUSION

In this paper, we provide three contributions. First, we reviewed a range of colour correction functions. Our
second contribution is developing an ensemble method for combining assorted colour correction algorithms. The
ensemble method for colour correction marginally improves the performance of its constituent colour correction
algorithms. Our final and perhaps most important contribution is providing the community with a Colour Correction
Toolbox.
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