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Abstract A mathematical model of oxygen uptake by bacteria in agricultural soils is presented with the goal
of predicting anaerobic regions in which denitrification occurs. In an environment with a plentiful supply of
oxygen, micro-organisms consume oxygen through normal respiration. When the local oxygen concentration
falls below a threshold level, denitrification may take place leading to the release of nitrous oxide, a potent
agent for global warming. A two-dimensional model is presented in which one or more circular soil aggregates
are located at a distance below the ground level at which the prevailing oxygen concentration is prescribed.
The level of denitrification is estimated by computing the area of any anaerobic cores, which may develop
in the interior of the aggregates. The oxygen distribution throughout the model soil is calculated first for
an aggregated soil for which the ratio of the oxygen diffusivities between an aggregate and its surround is
small via an asymptotic analysis. Second, the case of a non-aggregated soil featuring one or more microbial
hotspots, forwhich the diffusion ratio is arbitrary, is examined numerically using the boundary-elementmethod.
Calculations with multiple aggregates demonstrate a sheltering effect whereby some aggregates receive less
oxygen than their neighbours. In the case of an infinite regular triangular network representing an aggregated
soil, it is shown that there is an optimal inter-aggregate spacing which minimises the total anaerobic core area.

1 Introduction

In a soil environment where the rate of uptake of oxygen through normal respiration is greater than the rate
at which it is replaced from the atmosphere through diffusion, micro-organisms can instead generate energy
from nitrate, NO−

3 . This process is known as anaerobic denitrification (for a review, see Knowles [19]). As a
result of denitrification, nitrate is converted to nitrogen gas, N2, via the sequence of steps (e.g. Smith et al.
[30]):

NO−
3 �⇒ NO−

2 �⇒ NO �⇒ N2O �⇒ N2. (1)

Nitrous oxide (N2O) is created at the penultimate step and may be released in that form without being further
converted into nitrogen gas. Nitrous oxide produced in this way may escape up through the ground surface
and into the atmosphere, where it has a deleterious effect on stratospheric ozone and moreover poses a serious
threat as a potent agent for global warming. The use of arable soils with a high nitrogen content, and the
widespread use of fertilisers, has exacerbated the problem. While the levels of nitrous oxide released from
soils are much smaller than the wider levels of release of carbon dioxide into the atmosphere, and while the
latter is undoubtedly the most dangerous greenhouse gas, the warming potential of nitrous oxide is around 300
times greater (Houghton et al. [16]). Smith [29] notes that approximately 65% of the emissions of nitrous oxide
originate from soils (for a review of the processes governing the exchange of these and other gases between
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the soil and the atmosphere, see Smith et al. [30]). The notorious difficulty in measuring denitrification in the
field (e.g. Groffman et al. [14]) serves to underline the need for predictive theoretical models.

Simple one-dimensional models have been proposed to quantify oxygen uptake in soils and hence act
as a predictor for levels of denitrification (see, for example, Kanwar [17], Leffelaar [21], Papendick and
Runkles [24] and Radford and Greenwood [27]). Typically such models assume a constant surface-level
oxygen concentration at one end of the domain and include a no-flux boundary condition at the other end
to represent an impermeable layer of rock at either finite or infinite depth. Greenwood [12] constructed a
more sophisticated model in which an individual soil particle, hereinafter termed an aggregate, is exposed to a
known uniform oxygen concentration at its surface. The aggregate is assumed to be spherical and the oxygen
profile inside to be spherically symmetric. Denitrification occurs at points in the interior where the oxygen
concentration falls below a threshold level, whichGreenwood took to be zero. Thiswas assumed to occurwithin
a spherical-shaped region concentric with the aggregate boundary. Such a region is usually referred to as an
anaerobic core. (We note in passing that very similar mathematical models have been constructed to study solid
tumours—see, for example, Britton [4]). Greenwood and Berry [13] reported an error in Greenwood [12]’s
work and extended the formulation to non-spherical aggregates. In reality, soil structure is highly complex (e.g.
[9,15]), and while models have tended to assume some symmetry for mathematical simplicity, more complex
models based on fractal geometry have attempted to capture the clustering, fragmentation and stability of real
soils (e.g. [25]). Models that cater for a cluster of aggregates, assuming a log-normal distribution of aggregate
size and a spherically symmetric profile within each aggregate, have been proposed by Smith [28] and Arah
and Smith [2].

In the present work, we present a two-dimensional model of denitrification in soils, which determines the
oxygen profile in a model soil comprising multiple aggregates by solving the diffusion and uptake problems
inside the aggregates and in the surround. The surface distribution of oxygen on each aggregate boundary is not
known in advance and depends on the location of the aggregate beneath the ground surface and its proximity to
other aggregates.We consider solitary aggregates,multiple aggregates, aswell as extended networks containing
a formally infinite number of individual aggregates. Oxygen is assumed to be consumed within each aggregate
at a constant rate as a result of microbial action. Where the oxygen concentration falls below a prescribed
level, an anaerobic core develops. The assumption of a constant uptake rate has also been adopted by a number
of previous workers on the grounds of mathematical simplicity (e.g. [7,12,24]). Kanwar [17] notes that the
take-up rate is likely to vary both with time and with depth. Radford and Greenwood [27] formulated their
one-dimensional oxygen distribution problemwith the uptake rate a function of the local oxygen concentration,
although they assumed a constant rate in their calculations. Bocking [3] demonstrated that in the context of
the two-dimensional problem to be studied in the present work, the latter assumption has little qualitative
effect on the results and only a marginal quantitative effect. (A slightly larger anaerobic core is predicted in a
single aggregate for constant rate of uptake.) In keeping with previous models, and with established wisdom
(e.g. Currie [7]), we assume that diffusion is the dominant mechanism controlling oxygen transport within the
soil and is in itself sufficient to explain the necessary gas interchange between the soil and the atmosphere
(Keen [18]). By adopting a two-dimensional model, we aim to make some progress towards quantifying the
effect of soil structure, namely the distribution of aggregates within the soil, on anaerobic core volume without
importing the additional mathematical and computational complexity required by a fully three-dimensional
approach.

Our study embraces two different viewpoints. In the first, we consider a so-called aggregated soil, which
is viewed as a network of individual soil aggregates surrounded by air, or in the case of a saturated soil, water.
In the alternative viewpoint, the ground is filled with soil particles (so that there are no air or water pockets),
but in some parts the take-up of oxygen is effectively negligible and elsewhere there are hot spots of microbial
activity causing substantial oxygen depletion (e.g. Kuzyakov and Blagodatskaya [20]). This is referred to as a
non-aggregated soil (e.g. Montzka et al. [23]).

The layout of the paper is as follows: In the next section, we present our model problem for a single
aggregate. In Sect. 3, we present an asymptotic analysis for an aggregated soil on the assumption the diffu-
sion ratio between the aggregate interior and the surround is small. In Sect. 4, the case of a non-aggregated
soil is examined numerically using the boundary-element method. Finally, in Sect. 5 we summarise our
findings.
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Fig. 1 A single soil aggregate, ormicrobial patch, with boundary A located beneath the ground level S and containing an anaerobic
core with boundary C . Oxygen diffuses throughout region 1 and diffuses and is consumed throughout region 2

2 Statement of the model

We consider the diffusion and consumption of oxygen within a two-dimensional soil aggregate located at a
distance below ground level, as depicted in Fig. 1. We initially discuss the case of a single aggregate with a
circular boundary A of radius a. The case of two or more aggregates will be considered in a later section.
Referring to the set of Cartesian coordinates shown in Fig. 1, the surface of the soil (i.e. ground level), which
is designated boundary S, is located at y = 0, and the centre of the aggregate is located on the vertical axis at
y = −h.

An anaerobic core develops inside the aggregate when the local oxygen concentration drops below a
threshold level. The boundary of this anaerobic core is labelled C . The shape and location of the free boundary
C are unknown in advance and must be found as part of the solution to the problem. Although the shape of
C will be determined in the ensuing analysis, it is likely to be of secondary interest in practice; our principal
concern is to provide a framework for computing the anaerobic area enclosed by C to serve as a guide to the
overall level of denitrification.

Outside of the soil aggregate and below ground level, which we will henceforth refer to as region 1, we
assume that oxygen diffuses freely with diffusivity D1 so that the local concentration, φ, satisfies Laplace’s
equation, D1∇2φ = 0. The oxygen concentration at ground level is prescribed so that φ = φS , a constant, at
y = 0. Far below the aggregatewe impose the conditionφy → 0 as y → −∞, so that the oxygen cannot escape
downwards. Physically, we envisage a layer of rock lying some way beneath the soil through which oxygen
cannot permeate. Inside the soil aggregate and outside the anaerobic core, which we will henceforth refer to
as region 2, oxygen is assumed to diffuse while being consumed by bacteria at a constant rate. Accordingly
the local concentration, ψ , satisfies the Poisson equation D2∇2ψ = λ, where λ is the rate of consumption
and is subject to conditions of continuity of oxygen flux and oxygen concentration at the aggregate boundary
A. The consumption rate λ is assumed to be constant and independent of the local oxygen concentration. At
the anaerobic core boundary C , we impose a condition of zero oxygen flux together with the requirement
that ψ = T , where T is the threshold value below which normal respiration ceases and denitrification occurs
instead.

It is convenient to non-dimensionalise the problem using the aggregate radius a as the reference length and
the ground oxygen level φS as the reference concentration level. Accordingly, we obtain the dimensionless
problem in region 1,

∇2φ = 0, (2)

with φ = 1 on S, and the continuity conditions on A,

φ = ψ, n · ∇φ = δ n · ∇ψ, (3)
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where n is the unit normal to A pointing out of the aggregate, and also the condition that φy → 0 as y → −∞.
In region 2, we have the dimensionless problem

∇2ψ = α, (4)

with

ψ = τ, n · ∇ψ = 0 (5)

on C , where n is the unit normal to C pointing outwards. The pertinent dimensionless parameters are

α = a2λ

φSD2
, δ = D2

D1
, τ = T

φS
, H = h

a
, (6)

where the last parameter provides a measure of how far the aggregate is beneath ground level.
In general, the oxygen distribution around the boundary Awill be non-uniform, the exact variation depend-

ing on the location of the aggregate relative to the ground-level surface and to any other aggregates. Fixing
polar coordinates (r, θ) with origin at the centre of the aggregate, we suppose that the oxygen profile on the
boundary is given by φ(1, θ) = Φ0 + Φ(θ), where Φ0 is a constant and Φ has zero mean. Assuming that the
aggregate is aerobic throughout, the oxygen profile inside the aggregate is given by

ψ(r, θ) = 1

4
α(r2 − 1) + Φ0 +

∞∑

n=1

rn
(
Φ(c)

n cos(nθ) + Φ(s)
n sin(nθ)

)
, (7)

where the Φ
(c,s)
n are the Fourier coefficients of the boundary data on A. Evidently (7) is monotonic increasing

in r . An anaerobic core will therefore develop at the aggregate centre if

α > 4(Φ0 − τ), (8)

a condition which depends on the mean oxygen profile around the aggregate boundary and the threshold
parameter τ . Moreover, (8) underscores the physical importance of the parameter α as it essentially controls
whether or not denitrification occurs within the soil. It will be helpful to place this into a physical context.
Numerical values for the physical parameters in the model which are relevant to real soils have been estimated
by various authors. In Table 1, we present typical values for rate of oxygen consumption, λ, the aggregate
diffusivity D2, and the threshold concentration for denitrification T extracted from a number of sources in the
literature. The latter value is typically very small, and using the value due to Greenwood quoted in Table 1 we
find τ = 1.7 × 10−5. Consequently, we may reasonably assume that τ � 1. Based on a typical atmospheric
oxygen concentration of 21%, we will assume the value φS = 0.21 for the surface-level oxygen concentration.
We will also take the value for the diffusivity of oxygen in air, namely D1 = 0.2 cm2 s−1, as the reference
value in region 1.

Since the diffusivity of oxygen in air is around ten thousand times the diffusivity of oxygen in water,
selecting an appropriate value for δ depends crucially on the water content in the region around the aggregates,
and we expect a sharp contrast in the diffusivity ratio for dry and for water-logged soils. For example, using
Currie [8]’s estimates for D2 in the case of a water-saturated aggregate and a dry aggregate from Table 1, we
obtain δ = 0.5× 10−5 and δ = 0.05, respectively. Using instead Greenwood [11]’s estimate for D2 quoted in
Table 1 for a saturated aggregate, we obtain δ = 4.1 × 10−5.

Table 1 Typical physical parameter values

Parameter Source 1 Source 2 Source 3 Source 4

a 0.16 cm – 5.01 cm –
λ 0.5 × 10−5 s−1 – 2 × 10−7 s−1 –
D2 (A) 0.82 × 10−5 cm2 s−1 1.05 × 10−5 cm2 s−1 – 10−6 cm2 s−1

D2 (B) – – – 10−2 cm2 s−1

T 3 × 10−6 mol L−1 – – –

Source 1 refers to Greenwood [11,12], Source 2 is Radford and Greenwood [27], Source 3 is Smith [28] and Source 4 is Currie
[8]. The quoted values of the internal aggregate diffusivity D2 are for (A) a water-saturated aggregate and (B) a dry aggregate
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Gardner [10], Allmaras et al. [1] and Smith [28] note that experiments based on aggregate sizes in British
soils and in US soils have shown that aggregate size follows a log-normal distribution. Using the data quoted
for curve (a) of figure 2 of Smith [28], we obtain an estimate for the mean aggregate size of 5.01 cm. This
is the value quoted in Table 1. The smaller value of 0.16 cm obtained by Greenwood [11], and also quoted
in Table 1, indicates the range of possible aggregate sizes, which may be found in different soils. Using the
mean value provided by Smith for our aggregate size a, and taking the oxygen consumption rate λ = 2×10−7

s−1 extracted from Smith [28] in Table 1 together with the value D2 = 10−6 cm2s−1 for a water-saturated
aggregate from Currie [8], we obtain the estimate α = 23.9. Using the smaller value of a = 0.16 provided
by Greenwood [11], we obtain α = 0.02. It is clear, then, that quite a range of values of our dimensionless
parameter α is appropriate for a real soil.

It follows from the preceding discussion that for an aggregated soil comprising individual soil particles
surrounded by air, the diffusion ratio is very small, and this suggests that mathematical progress can be made
by seeking an asymptotic solution on this basis. This is examined in Sect. 3. For a non-aggregated soil, which
is a homogeneous soil that contains one or more compact regions of decaying organic matter, such as dead
leaves for example, the diffusion ratio δ is expected to be of order unity. In this case, the solution to the problem
(2)–(5), including the determination of the unknown boundaryC , must be found numerically. This is discussed
in Sect. 4.

3 Aggregated soil model: small diffusion ratio

As discussed in the previous section, in the case of an essentially dry soil containingwater-saturated aggregates,
the diffusion ratio δ is expected to be very small. Working on this assumption, in this section we seek an
asymptotic solution to (2)–(5), which is valid for small δ. The remaining parameters in (6) are assumed to be
O(1).

Assuming δ � 1, we expand the oxygen concentration in region 1 and region 2 by writing

φ = φ0(x, y) + δ φ1(x, y) + · · · , ψ = ψ0(x, y) + δ ψ1(x, y) + · · · . (9)

In region 1, the leading order concentration, φ0, satisfies Laplace’s equation with the conditions that φ0 = 1
on y = 0, and φ0y → 0 as y → −∞ and n · ∇φ0 = 0 on A so that the aggregate behaves as if it has an
impermeable boundary. The solution is given by φ0 = 1 everywhere in region 1. In region 2, the leading order
problem is given by

∇2ψ0 = α, (10)

with ψ0 = 1 on A. The other two boundary conditions require that ψ0 = τ and n · ∇ψ0 = 0 on C , whose
location is unknown. The symmetry of this problem suggests that to leading order C is a circle concentric
with A, of radius c0 say. Using polar coordinates (r, θ) with origin at the centre of the aggregate located at
(x, y) = (0, −H), we find

ψ0 = 1

4
α(r2 − 1) + 1 − 1

2
αc20 log r, (11)

which satisfies the required Dirichlet condition at the outer boundary and the required Neumann condition at
the inner boundary, namely ψ0r (c0) = 0. The remaining Dirichlet condition at the inner boundary requires the
anaerobic core radius c0 to satisfy the equation

τ − 1 − α

4
(c20 − 1) + αc20

2
log c0 = 0. (12)

It is straightforward to show that this equation is satisfied by a real value of c0 lying in the physical range
0 ≤ c0 ≤ 1, provided that α > 4(1 − τ). We note that this condition coincides with (8) on substituting
Φ0 = 1 as for the present case. Hence if τ � 1, as stated above, then we essentially require that α > 4 for
the presence of an anaerobic core; if 0 ≤ α ≤ 4 the aggregate is aerobic throughout and no denitrification
occurs. In Sect. 2, we obtained the physically realistic value α = 23.9, and evidently an anaerobic core will
exist in this case. Returning to dimensional variables the requirement α > 4 is equivalent to a > 2

√
φSD2/λ.

Using the values λ = 2 × 10−7 s−1 and D2 = 10−6 cm2 s−1 quoted in Table 1, together with φS = 0.21,
we see that an aggregate will contain an anaerobic core if its radius exceeds 2.05 cm; otherwise, the rate of
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Fig. 2 Results for δ � 1 when τ = 0: a κ versus α, and b c0 versus α. The large α asymptote c0 = 1 − (2/α)1/2 is shown with
a broken line

oxygen uptake inside the aggregate is too weak for an anaerobic core to develop. The precise value of c0 may
be determined by solving (12) numerically for a chosen set of parameter values. For large α, it is easy to show
that c0 ∼ 1−√

(1 − τ) (2/α)1/2 +· · · so that as α increases the anaerobic core tends to fill the aggregate. We
note in passing the similarity between the present leading order calculation and the textbook calculation for
the development of a necrotic core inside a solid tumour with a known nutrient concentration on its boundary
(e.g. [4]).

Assuming that α > 4(1 − τ), we describe the a priori unknown location of the anaerobic core boundary
C as r = c0 + δc1(θ) + O(δ2). For the first-order problem, it is convenient to introduce the new variable
φ̂1 = φ1/κ , where

κ = α(1 − c20)/2. (13)

Taking into account the leading order solution discussed above, the problem for φ̂1 in region 1 is

∇2φ̂1 = 0 with

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ̂1 = 0 at y = 0

φ̂1y → 0 as y → −∞

φ̂1r = 1 at r = 1.

(14)

Since κ > 0 there is a net flux of oxygen into the aggregate at this order of approximation. Figure 2a, b shows
how κ and c0 vary with α when τ = 0 (recall that we expect τ to be small in practice). It is interesting to note
that for the physically reasonable value α = 23.9 quoted in Sect. 2, the leading order approximation to the
anaerobic core radius, c0, is well approximated by the large α asymptotic formula. In this case, c0 = 0.69, so
that almost 70% of the aggregate is anaerobic.

The first-order problem in region 2 is

∇2ψ1 = 0 with

⎧
⎨

⎩

ψ1 = 0 at r = c0

ψ1r = −αc1 at r = c0;
(15)

and the two problems are coupled by the first of the two continuity conditions (3), which to first-order approx-
imation requires that

ψ1 = φ1(1, θ). (16)

In Sect. 3.1, we present an analytical solution of the problem for a single aggregate before turning our attention
to the case of multiple aggregates in Sect. 3.2.
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3.1 Single aggregate

Before proceeding to consider a network of aggregates making up an aggregated soil, it is of interest to examine
the case of a single aggregate in isolation and to determine its effect on the ambient oxygen distribution. The
first-order problem in region 1, namely (14), may be tackled by introducing an image aggregate above the
ground surface and then employing bipolar coordinates (see Bocking [3] for details). An appealing alternative
is to introduce an image aggregate as described and then to make use of the Villat formula from potential
theory, which is applicable to problems with doubly-connected domains (e.g. [5,6]). Following the latter path,
and writing z = x + iy, we seek a representation via a complex function,

w(z) = φ̂1(x, y) + iv(x, y), (17)

which is analytic in the region exterior to A and its image region AI , obtained by reflecting A in the x axis.
Furthermore, we demand that

v = Im(w) =
⎧
⎨

⎩

−s on A,

s on AI ,
(18)

where s denotes arc length around the boundary of either A or AI , measured in the counterclockwise direction
with s = 0 at the lowermost point. Condition (18) has been derived by using the Cauchy–Riemann equations
to recast the Neumann boundary condition on A in (14) and its counterpart on the image aggregate AI . Using
the terminology of fluid mechanics, according to (18) the aggregate is endowed with a nonzero circulation
and this must be properly accounted for in the solution. Proceeding, we transform the physical domain in the
z-plane to the annulus ρ < |ζ | < 1 in the ζ -plane via the conformal mapping

ζ = ρ1/2
(A + iz

A − iz

)
, with A2 = H2 − 1, ρ = H − A

H + A , (19)

and define W (ζ ) ≡ w(z). Under mapping (19), the circles A′ at |ζ | = 1 and A′
I at |ζ | = ρ are the ζ -plane

images of the circles A and AI , respectively.
We seek a solution in the annular region ρ < |ζ | < 1 in the form

− iW (ζ ) = i log(ζ/ρ1/2) − ig(ζ ), (20)

where g(ζ ) is analytic in the annulus. Again using the terminology of fluid mechanics, we may interpret the
first term in (20) as representing a point vortex of one sign located at z = −A i (inside A) and a point vortex of
the opposite sign located at z = A i (inside AI ) in the z-plane. In this way, each of the aggregates is furnished
with the necessary circulation alluded to above. To complete a solution which fulfils the boundary conditions
(18), the analytic function g(ζ ) must be such that its real part satisfies

Re(−ig) =
⎧
⎨

⎩

(θ̃ − s) on |ζ | = 1,

(θ̃ − s) on |ζ | = ρ,

(21)

where θ̃ is the polar angle in the ζ plane, with θ̃ = 0 on the real ζ axis. Notice that mapping (19) switches
the direction of transit around A from counterclockwise in the z-plane to clockwise in the ζ -plane and this
accounts for the first terms on the right-hand sides of (21) being of the same sign on each of the two ζ -image
circles. The problem to find the analytic function g is of the modified Schwarz type: it demands a single-valued
analytic function whose real part satisfies a prescribed condition on the domain boundary.

Using the Villat formula (e.g. Crowdy et al. [5], Crowdy [6]), the solution is given by

− ig(ζ ) = I+(ζ ) − I−(ζ ) + Ic + ig0, (22)

where g0 is a constant and

I+(ζ ) = 1

2π i

∫

|ζ ′|=1
K (ζ/ζ ′) (θ̃ − s)

dζ ′

ζ ′ , I−(ζ ) = 1

2π i

∫

|ζ ′|=ρ

K (ζ/ζ ′) (θ̃ − s)
dζ ′

ζ ′ ,

(23)

Ic = − 1

2π i

∫

|ζ ′|=1
(θ̃ − s)

dζ ′

ζ ′ ,
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where

K (ζ ) = 1 − 2ζ

Q(ζ )

dQ

dζ
, Q(ζ ) = (1 − ζ )

∞∏

k=1

(1 − ρ2kζ )(1 − ρ2kζ−1). (24)

The arc distance around each circle needed in (23) may be computed using the formula

s =
∫ θ̃

−π

|ζ z′(ζ )| dθ̃ . (25)

When ζ lies on either of the circles so that ζ = ζ ′ at some point in the range of integration in either I+ or I−, the
respective integral is to be interpreted in the Cauchy principal value sense. We also note that the compatibility
condition for single valuedness, equation (6) in [5], is satisfied. The solution to the φ̂1 problem is obtained by
taking the real part of w and choosing the constant g0 = 0 so that φ̂1 = 0 on y = 0. Independent confirmation
of this solution has been obtained by checking first against the solution obtained using bipolar coordinates and
second against a numerical solution obtained using the boundary-element method (see Bocking [3]).

Next we seek a solution to the first-order interior problem (15). Since the right-hand side of the continuity
condition (16) is a periodic function, we may express it as a Fourier series and seek a solution to the unknown
core boundary correction c1(θ) in the same form. Using the fact that the problem is symmetric about the
vertical line x = 0 passing through the aggregate centre, we may write the solution to the first-order exterior
problem in the form

φ1(1, θ) = κμ0 + κ

∞∑

n=1

μn sin(nθ), μ0 = 1

2π

∫ 2π

0
φ̂1(1, θ) dθ, (26)

where μ0 is the mean value of φ̂1 on the boundary. We seek a solution to the interior problem (15) in the form

ψ1 = A log r + B +
∞∑

n=1

(Cnr
n + Dnr

−n) sin(nθ), c1(θ) = ν0 +
∞∑

n=1

νn sin(nθ), (27)

where the constants A, B, Cn , Dn and the coefficients νn are to be determined. Of particular interest are the
values νn , which determine the first-order correction c1 to the anaerobic core radius. These are found to be

ν0 = κμ0

αc0 log c0
, νn = 2nκ

αc0(cn0 − c−n
0 )

μn (n 
= 0). (28)

To leading order the region exterior to the aggregate (region 1) is perfused with oxygen at the same
concentration level as at the ground surface, so that φ0 = 1. Although the leading order oxygen distribution
is uniform, the positioning of the aggregate inside region 1 is important. Intuitively, we expect the anaerobic
core to be larger the deeper the aggregate is located underground. In the present analysis, the area A of the
anaerobic core inside the aggregate is given by

A = πc20 +
(

πμ0(1 − c20)

log c0

)
δ + O(δ2). (29)

The first term corresponds to the anaerobic core area for an aggregate in an infinite surround with a uni-
form oxygen concentration. By considering the following identity for the harmonic function φ̂1, namely
∇ · (φ̂1∇φ̂1) = |∇φ̂1|2, and integrating over the domain of region 1 and applying the divergence theorem, we
obtain

μ0 = − 1

2π

∫

A
|∇φ̂1|2 dl < 0, (30)

where l measures arc length around the boundary, and so the mean oxygen concentration around the aggregate
perimeter A is negative. Therefore, since 0 < c0 < 1, the second term in (29) is positive and the area of the
anaerobic core is increased from its value in an infinite surround.

Figure 3a shows the variation of μ0 with depth H . The large-depth behaviour can be determined by
recognising that when the aggregate is a long way below ground level, it can be represented by a point sink of
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Fig. 3 Results for δ � 1 when τ = 0: a the dependence ofμ0 on dimensionless depth H . The result using the exact Villat formula
is shown with a solid line, and the approximate result μ0 = − log(2H) is shown with a dashed line. b The scaled anaerobic core
areaA/π according to (29) for depths H = − 1.00, − 3.21, − 5.42, − 7.63 (H increasing in the direction of the arrow as shown)
for δ = 0.05 (solid lines) and δ = 0.1 (broken lines)

oxygen located at its centre x0 = (x0, −H) such that φ1(x) = κ log(r/R), where x = (x, y), r = |x − x0|,
R = |x − x′

0|, and x′
0 = (x0, H) is the location of an image source above ground level. The dashed line in

Fig. 3a represents the valueμ0 = − log(2H), which is calculated by substituting the point sink approximation
for φ̂1 = φ1/κ into the second equation in (26). The approximate result qualitatively reproduces the true
behaviour over the whole range and quantitatively agrees closely with the correct value from a depth of only
a few aggregate radii. The anaerobic core area scaled by the area of the aggregate, A/π , is shown in Fig. 3b
plotted against α. The area is calculated using formula (29) neglecting the term O(δ2) and is shown for a
sequence of dimensionless depths H and for two different small values of δ. Evidently, the core area increases
with depth, as anticipated.

3.2 Multiple aggregates

We now extend our discussion to describe an aggregated soilmodelled as an organised network ofM aggregates
each with a circular boundary of unit dimensionless radius. The primary difficulty lies in determining the
solution to the exterior problem in region 1. Here the first-order problem is given by (14) with the Neumann
boundary condition represented by the last condition in (14) to be applied at each of the aggregate boundaries.
We obtain the solution numerically using the boundary-element method. Following an established procedure
for the Laplace equation (e.g. [26]), we first reformulate the problem for φ1 as the integral equation of the
second kind,

1

2
φ1(x0) = −κ

∫

A
G(1)(x, x0) dl(x) +

∫

A
n · ∇G(1)(x, x0) φ1(x) dl(x), (31)

where the point x0 lies on A, which now represents the union of all of the individual aggregate boundaries. The
Green’s function is taken to beG(1)(x, x0) = (1/2π) log(r/R), where r = |x−x0| = [(x−x0)2+(y−y0)2]1/2
and R = [(x − x0)2 + (y + y0)2]1/2; note that G(1) vanishes on y = 0.

The integral equation (31) is solved numerically by first discretizing each of the aggregate boundaries
comprising A using a sequence of N straight-line boundary elements alongwhich φ1 is assumed to be constant.
Enforcing (31) at the mid-point of each of these elements, and approximating the integrals using Gauss–
Legendre quadrature, we obtain a set of NM algebraic equations for the NM unknown constant values of φ1
on the elements. The linear system of equations is solved using Gaussian elimination. In implementing this
procedure, we employed codes made freely available in the BEMLIB library [26]. In the results to be discussed
below N was taken to be sufficiently large (typically between 100 and 200) to ensure that results are correct to
the quoted number of decimal places. Once the exterior problem is solved, the analysis for the interior problem
corresponding to (15) in each of the aggregates is similar to that presented above, and the same expression for
area (29) applies with μ0 representing the mean value of φ1/κ on the boundary of the aggregate in question,
this value being available from the numerical solution of the exterior problem.
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Fig. 4 Multi-aggregate case for δ � 1: a Illustrative sketch of three congruent aggregates separated by a dimensionless distance
d at an angle β. The first aggregate has centre at dimensionless depth H . Panels (b–d) show the mean value μ0 when b two
aggregates are present, c three aggregates are present, and d four aggregates are present, each for varying orientation angle β/π
with d = 3 and H = 2. In each case, the curve labels refer to the aggregate number, which follows the convention illustrated in
panel (a)

It is of interest to discuss how the number and relative arrangement of aggregates affect the mean value
μ0. Consider a number of aggregates whose centres are located on a straight line inclined at an angle β to the
horizontal and separated by a dimensionless distance d . The centre of the first aggregate, being the uppermost,
is located at a dimensionless depth H below the ground level. Figure 4a illustrates the envisaged scenario in
the case of three aggregates. Calculations were made for two aggregates, three aggregates and four aggregates.
Figure 4b shows the mean value μ0 for the two aggregate case, M = 2, over a range of orientation angles β
and for fixed aggregate separation d = 3. Note for comparison that if the second aggregate is removed so that
only the uppermost aggregate remains, then we find μ0 = −1.5. We observe in Fig. 4b that the value of |μ0|
for both aggregates exceeds this value for a single aggregate. If d is increased, the value of μ0 for aggregate
1 tends towards the value for a solitary aggregate, μ0 = −1.5, as might be expected. When β = 0, the same
mean value μ0 = −2.2 is computed for both aggregates. As the second aggregate moves beneath the first, it
feels a sheltering effect which accords with intuition. In particular, as the inclination angle β reaches π/2 the
anaerobic core in aggregate 2 is significantly larger than that in aggregate 1.

Results for the same scenario but now with three aggregates (M = 3) or four aggregates (M = 4) are
shown in panels (c) and (d) of the same figure. The mean valueμ0 decreases monotonically with β in all cases,
and so the configuration for which the total anaerobic core area (summed over the aggregates) is maximised
occurs when the aggregates are vertically aligned with β = π/2, as would be expected. For the three-aggregate
case shown in Fig. 4c, two features are particularly striking. First, the differential in the value of μ0 between
aggregates 1 and 2, for example, is much greater in the vertical alignment than in the horizontal alignment.
Second, in the vertical alignment themiddle aggregate (2) has a larger anaerobic core than the bottom aggregate
(3). For the case of four aggregates shown in Fig. 4d, we see that when in the horizontal alignment (β = 0),
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Fig. 5 Multi-aggregate case for δ � 1: a Sketch of a dislocated rectangular periodic lattice of aggregates located at a dimensionless
distance H below ground with vertical row spacing D, and with one row shifted to the right by an amount 0 ≤ χ ≤ L . b The
mean value μ0 for the array in panel (a) with H = 1.5, L = 2.5 and D = (

√
3/2)L = 2.17. The middle or bottom row (solid or

dashed line, respectively) is shifted horizontally by χ . The value of μ0 on one aggregate in the upper/middle/lower row is shown
in the upper/middle/lower panel

the anaerobic core sizes for aggregates 1 and 4 are the same and those for aggregates 2 and 3 are the same,
and moreover, the latter exceed the former. Evidently the innermost aggregates are sheltered by the outermost
aggregates and receive less oxygen. Curiously, the anaerobic core size for aggregate 4 is larger than that for
aggregate 2 when β ≈ 0.3, but remains smaller than that for aggregate 3 even up to β = π/2. Consequently,
for four aggregates in the vertically aligned position, the third aggregate down feels the greatest sheltering
effect and receives the least oxygen.

An infinite network made up of a periodic repetition of an individual cluster of M aggregates provides a
more realistic model of an aggregated soil. The periodic extension in the horizontal direction of the scenario
just discussed is illustrated in Fig. 5a. The calculations for M aggregates in this periodically extended network
are readily made by replacing G(1) with the singly periodic Green’s function,

G(3) = 1

4π
log

{
2 cosh

[
k(y + y0)

] − 2 cos
[
k(x − x0)

]}

− 1

4π
log

{
2 cosh

[
k(y − y0)

] − 2 cos
[
k(x − x0)

]}
, (32)

where k = 2π/L and L is the period. This function has been constructed so that G(3) = 0 on y = 0. It has
the property limy→−∞ G(3) = constant. Figure 5b shows calculated values of μ0 for three rows of circular
aggregates forming a rectangular lattice with periodicity L = 2.5. The first row is a dimensionless distance
H = 1.5 below ground level, and the rows are separated by a vertical distance D = (

√
3/2)L = 2.17

dimensionless units. Either the middle or the bottom row suffers a dislocation in which one of the rows is
shifted through a horizontal distance χ , where 0 < χ < L . For χ = 0, we have a regular rectangular lattice.
Evidently the largest anaerobic cores are obtained when χ = L/2, and the optimal state (under the stated
conditions) in which the total anaerobic core area is maximised is obtained when the aggregates are equally
spaced with their centres at the intersections of a uniform equilateral triangular network, corresponding to
χ = L/2. Investigating this equitriangular network further, we show in Fig. 6 how μ0 depends on the network
spacing L . Note that when L = 2.5 the network corresponds to that shown in Fig. 5a for χ = L/2. The results
predict that the anaerobic core size in each aggregate will increase sharply as the network spacing is reduced
and the aggregates become tightly packed. As the network spacing is increased, the mean value μ0 for the first
particle increases monotonically and eventually approaches the relevant value for an isolated aggregated at the
appropriate depth (see Fig. 3a) as L → ∞. This value is shown with a broken line in the figure. Interestingly,
we see that for aggregates 2 and 3 the curves have a maximum so that there is an optimal spacing to minimise
the size of the anaerobic cores in the second and the third rows of the network. Note that the maxima occur
at similar, but not equal, values of L: for the case shown in the figure the maxima are at L = 35.8 for row 2
and L = 37.6 for row 3. We note that adding more rows to the network gives qualitatively similar results. For
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Fig. 6 Multi-aggregate case for δ � 1: The mean value μ0 for a uniform triangular network with the aggregate centres equally
spaced by an amount L , and the uppermost row placed at a depth H = 1.5. The curves 1, 2, 3 correspond to values of μ0 on the
aggregates labelled by the same numbers in Fig. 5a. The asymptote μ0 = − 2.411 for a solitary particle is shown with a broken
line

example, including a fourth row we find results similar to those in Fig. 6 with an additional curve for aggregate
4 which is qualitatively similar to those for aggregates 2 and 3 and lying beneath both of them.

4 Non-aggregated soil: arbitrary diffusion ratio

For arbitrary values of the diffusion ratio δ, we compute the solution to problem (2)–(5) numerically using
the boundary-element method. First we reformulate the problem as a set of coupled integral equations. The
formulation for the Laplace equation in region 1 is standard (e.g. Pozrikidis [26]). Introducing the new variable
φ̂ = φ − 1, in region 1 and following the usual procedure, we obtain

1

2
φ̂(x0) = −

∫

A
G(1)(x, x0) n · ∇φ̂(x) dl(x) +

∫

A
n · ∇G(1)(x, x0) φ̂(x) dl(x), (33)

where x0 lies on A, and n is the unit normal to A pointing into region 1. The Green’s function G(1)(x, x0) was
defined in the previous section.

To develop a similar integral formulation for the Poisson equation (4) in region 2, we start with Green’s
second identity and integrate over region 2, denoted here by Ω , to obtain

ψ(x0) = −
∫

A,C
G(2)(x, x0) n · ∇ψ(x) dl(x) +

∫

A,C
ψ(x) n · ∇G(2)(x, x0) dl(x)

− α

∫∫

Ω

G(2)(x, x0) dx dy, (34)

where n is the unit normal to A or C pointing into region 2 in either case, and G(2)(x, x0) = (1/2π) log r is
the free-space Green’s function with r = |x − x0|. To recast the area integral in (34) as an integral around the
domain boundary, we make use of Green’s theorem in the plane for a domain Ω with boundary ∂Ω ,

∮

∂Ω

(L dx + M dy) =
∫∫

Ω

(Mx − Ly) dx dy, (35)

and choose

L(x, y) = − 1

8π

(
ŷ − 2 ŷ log r

)
, M(x, y) = 1

8π

(
x̂ − 2x̂ log r

)
, (36)
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where x̂ = x − x0 and ŷ = y − y0, in order that Mx − Ly = G(2). Accordingly, we obtain a pair of integral
equations in region 2 involving only integrals over the domain boundary. Writing a = (L , M), we have

1

2
(φ̂(x0) + 1) = − 1

δ

∫

A
G(2) n · ∇φ̂(x) dl(x) +

∫ PV

A
(φ̂(x) + 1) n · ∇G(2) dl(x) − α

∫

A
a · t dl(x)

−
∫

C
G(2) n · ∇ψ(x) dl(x) + τ

∫

C
n · ∇G(2) dl(x) + α

∫

C
a · t dl(x), (37)

valid when x0 is on A, and

1

2
τ = − 1

δ

∫

A
G(2) n · ∇φ̂(x) dl(x) +

∫

A
(φ̂(x) + 1) n · ∇G(2) dl(x) − α

∫

A
a · t dl(x)

−
∫

C
G(2) n · ∇ψ(x) dl(x) + τ

∫ PV

C
n · ∇G(2) dl(x) + α

∫

C
a · t dl(x), (38)

valid when x0 is on C . The superscript PV indicates that an integral should be interpreted in the Cauchy
principal value sense. The unit tangent vector t points in the direction of increasing arc length l along a given
boundary. We have made use of the continuity conditions (3) in deriving (37) and (38).

Our goal is to solve (33) together with (37) and (38) to determine the boundary concentration levels of φ̂
and ψ and to determine the shape and location of the unknown anaerobic core boundary C . To accomplish
this, we first guess the location of C and discretise the individual integrals using straight-edged boundary
elements, taking N elements each around A and C . Imposing each of the integral equations at the mid-points
of the elements, we obtain 3N linear algebraic equations for 3N unknowns including φ̂ and n · ∇φ̂ at the
element mid-points on A, and n ·∇ψ at the element mid-points onC . The equations are solved using Gaussian
elimination. Once we have solved the linear system, we update the location of C to enforce the zero flux
boundary condition. To do this, we perturb the location of each of the nodes at the joins of the boundary
elements in turn by moving the node a small increment in the direction of the local outward normal vector.
We then resolve the above system of integral equations for the perturbed core boundary and then iterate using
Newton’s method until n · ∇ψ at each node is less than a prescribed tolerance.

Once we have solved the integral equations and determined the position and shape of C , we may find the
oxygen concentration at any point in the interior of region 1 and region 2 using the expressions

φ̂(x0) = −
∫

A
G(1) n · ∇φ̂(x) dl(x) +

∫

A
φ̂ n · ∇G(1) dl(x), (39)

for x0 in the region 1, and

ψ(x0) = −
∫

A
G(2) n · ∇ψ dl(x) +

∫

A
ψ(x) n · ∇G(2) dl(x) − α

∫

A
a · t dl(x)

−
∫

C
G(2)n · ∇ψ(x) dl(x) + τ

∫

C
n · ∇G(2)dl(x) + α

∫

C
a · t dl(x) (40)

for x0 in region 2.
The preceding formulation is easily adapted to cater for multiple regions of oxygen-absorbing soil, and

the case of more than one microbial hot spot will be considered below an aggregated soil. Physically relevant
values of the dimensionless parameters are discussed in Sect. 2. Here we assume a small patch of microbial
activity with the oxygen diffusivities taken to be broadly the same in both the interior and the exterior of the
patch. Therefore, we consider a range of values for δ but with a focus on the case δ = 1. Since, as discussed
in Sect. 3, the critical oxygen level for denitrification to occur is very small, so that τ � 1, for computational
purposes we simply set τ = 0 throughout the remainder of this section.

4.1 Results

We present numerical results computed using the boundary-element method for arbitrary values of δ. Accord-
ingly, we assume that the whole of the underground domain y < 0 is densely occupied with soil and that
oxygen depletion occurs through high microbial activity in isolated regions which is much more significant
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Fig. 7 Dependence of the threshold value of α for the appearance of an anaerobic core on the diffusion ratio, δ, for the case τ = 0
and H = 4. An anaerobic core is present when α > αc
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Fig. 8 Contours of oxygen concentration for a non-aggregated soil with α = 0.91, δ = 1, and τ = 0. A circular area of high
microbial activity, whose boundary is indicated by the broken line, at depth H = 4 has depleted the surrounding oxygen levels.
Contours are shown in steps of 0.2 between 0 and 1. The label C marks the boundary of the anaerobic core

than the activity in the surrounding area. Consistent with the formulation in Sect. 2, we refer to the surrounding
soil as region 1 and a region populated by micro-organisms as region 2.

The asymptotic analysis presented in Sect. 3 for small values of the diffusion ratio δ predicts that an
anaerobic core will develop inside an aggregate when α exceeds a critical value which depends on the oxygen
concentration on the boundary (condition 8). We find that this critical value, which we label αc, decreases
as δ increases. This is illustrated by the sample calculation presented in Fig. 7. Assuming the presence of
a small microbial patch of size a = 0.5cm, and using the physical parameter values cited in Sect. 2, we
obtain α = 0.91. Taking this value for α = 0.91 and setting δ = 1, we deduce that if the patch is located
at dimensionless depth H = 4, then an anaerobic core will be present. Contours of oxygen concentration for
such a patch are shown in Fig. 8. The circular boundary of the microbial patch is shown in the figure with a
broken line. The innermost contour, where the oxygen level is zero, corresponds to the anaerobic core boundary
C . In contrast to the small δ case studied in Sect. 3, where the oxygen distribution is essentially uniform in
region 1, here the oxygen distribution around the patch is substantially altered from that at ground level. As
would be expected, the anaerobic core grows in size if the microbial patch is moved to a greater depth. This
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Fig. 9 Variation of the anaerobic fraction Γ with depth H for the case α = 0.91, δ = 1 and τ = 0
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Fig. 10 Anaerobic core boundaries C , shown with broken lines, for two horizontally aligned microbial patches, shown with solid
lines, at depth H = 3 for α = 0.91, δ = 1, and τ = 0

is illustrated in Fig. 9, where the anaerobic fraction Γ , defined as the area of the anaerobic core divided by
the area of the microbial patch, is plotted against depth H . It can be seen that the size of the anaerobic core
grows progressively more slowly as the depth increases. When the patch is near to the ground surface, the
anaerobic core is displaced a little way below the centre of the circular patch. As the depth H increases, the
core boundary C tends to become circular and concentric with the boundary A as would be the case in a soil
of infinite extent.

When multiple hotspot regions are present, we find that in general the anaerobic core within each region
is larger than it would be if the region were in isolation at the same position and under otherwise identical
conditions. A case with two microbial patches aligned horizontally is shown in Fig. 10. Here an anaerobic
core is present within each region only because of the presence of the other patch. (For the conditions of this
figure, a solitary patch at the same depth has no anaerobic core.) A vertical alignment of either two or three
patches is shown in Fig. 11. For the two-patch case in Fig. 11a, it is clear that the size of the anaerobic core in
the lower patch is considerably larger than that in the upper patch. This is in line with the sheltering effect felt
discussed in Sect. 3 for an aggregated soil. The three-patch case in Fig. 11b has the smallest anaerobic core in
the uppermost patch and a larger anaerobic core in the central patch than the lowermost patch. The latter is in
line with the findings of the asymptotic theory of Sect. 3 (see Fig. 4c).

5 Discussion

We have presented a mathematical model of the oxygen depletion in soil aggregates. Our motivation has been
to estimate the level of denitrification taking place in underground regions which have become depleted of
oxygen by calculating the area of the anaerobic cores within aggregates. An anaerobic core develops inside
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Fig. 11 α = 0.91, δ = 1 and τ = 0: a The anaerobic core boundaries C , shown with broken lines, for two vertically aligned
microbial patches, shown with solid lines, with centres at y = −2 and y = −5. b The anaerobic core boundaries, shown
with broken lines, for three vertically aligned patches, shown with solid lines, with centres at y = − 2, − 5 and − 8. The area
fractions of the anaerobic cores are a 0.08 and 0.21 for the upper and lower patches, respectively, and b 0.1, 0.63 and 0.56 for
the upper/middle/lower patches, respectively

an individual aggregate if the oxygen concentration on the surface of the aggregate is not large enough to
allow microbes to maintain normal respiration. In particular, an anaerobic core appears when the interior
concentration falls below a threshold level.

Isolated aggregates, multiple aggregates, and an infinite array of aggregates comprising a periodic network
have been considered. Both aggregated and non-aggregated soils have been examined. In the case of an
aggregated soil, the ground is viewed as comprising an array of individual particles or aggregates, inside
which oxygen is depleted, that is surrounded by air (or water in the case of a saturated soil) in which oxygen
diffuses but is not extracted. A non-aggregated soil views the ground as an essentially homogenous soil which
contains localised hot spots of microbial activity. Our results have been presented with particular reference to
the dimensionless depth at which an aggregate is located (taken as the ratio of the actual depth to the radius of
the assumed circular aggregate), the oxygen diffusivity ratio δ between the aggregate interior and its exterior,
and the dimensionless parameter α, which encapsulates the combined effects of aggregate size, rate of oxygen
depletion, oxygen diffusivity inside the aggregate, and the ground-surface oxygen concentration. In particular,
anaerobic sites appear within individual soil aggregates, or microbial patches, if α exceeds a critical value.
From a practical point of view, it seems reasonable to assume that one has some control over the aggregate
size, by tilling the soil, for example, and hence some practical control over the value of α.

For an aggregated soil, the oxygen diffusivity ratio between the air (or water) in the surround and the
aggregate itself is small and mathematical progress was made on this basis. At leading order the oxygen
concentration around the aggregates is constant and so each behaves as if embedded in an infinite medium
with a constant oxygen concentration. Consequently, the anaerobic core inside each aggregate is circular to
leading order. At first order, the location of an aggregate below the surface plays a role and acts to increase
the core size with depth, as would be expected. For a solitary aggregate, we derived an explicit formula for the
first-order correction to the anaerobic core size in terms of the mean concentration of oxygen on the aggregate
boundary. The latter was calculated by solving the first-order problem outside the aggregate using the Villat
formula frompotential theory.We studied the case of two, three or four aggregates anddemonstrated a sheltering
effect whereby an individual aggregate’s anaerobic core is increased in size if there are other aggregates lying
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above it. Counter-intuitively, for a vertically arranged line of aggregates, it is not the lowermost that feels the
greatest sheltering effect but the aggregate located one up from the bottom.

A model that includes a small collection of aggregates is naturally somewhat limited. In such a situation
the oxygen concentration in the soil returns to the ground-surface level at a large enough distance away from
the collection of aggregates. We constructed a more realistic representation of a soil by considering a periodic
extension of an arrangement of a small number of aggregates to create an ordered network consisting of a finite
number of rows each containing an infinite number of aggregates. With an infinite array like this, the oxygen
concentration does not return to the ground-surface level at sufficient distance below the aggregates. As more
rows are included in the network, so the anaerobic core size increases in the bottom row, and eventually we
expect the anaerobic core to effectively occupy the entire aggregate so that the oxygen level some distance
below the soil quickly drops well below the surface level. The drop in overall oxygen concentration with depth
is more significant the lower the diffusivity in the region surrounding the aggregates. A smaller diffusivity
ratio is expected if the surround is filled with water rather than air, as would be the case for a waterlogged soil.
We would infer, then, that a waterlogged soil would have greater total anaerobic core area and hence produce
a greater level of nitrous oxide through denitrification. This observation is in agreement with other reports in
the literature, such as in [22], where it is noted that denitrification rates are significantly higher after rainfall.

By studying dislocations of a rectangular network of aggregates, we found that the anaerobic core within
each aggregate reaches a maximum size when the aggregates are arranged at the nodes of an equitriangular
network. Increasing the spacing between the nodes of the network has the effect of first decreasing the anaerobic
core size in the lower rows of the network and then increasing it. This is in line with intuition, which suggests
that the anaerobic core size will be large for a tightly packed network, but that it will decrease as the network
spacing is increased, allowing greater aeration between aggregates.However, as the spacing is increased further,
aggregates not on the top row move to greater and greater depth, and so the core size starts to increase. As a
consequence, there is an optimal inter-node spacing, which may be selected to minimise the overall anaerobic
core size in the network and hence minimise the level of denitrification taking place in the soil. This could
indicate that a lower level of denitrification may occur in a well-ploughed field of soil than in a compacted soil.

For a non-aggregated soil, the ratio of oxygen diffusivity between a microbial patch, representing a hot
spot of bacterial activity, and the surrounding soil is not small. In this case, we formulated the problem for the
oxygen concentration in the interior of the microbial patch and in the surround as a set of integral equations,
which we solved using the boundary-element method. The novelty of this formulation lies in its treatment of
the Poisson equation to be solved inside an individual aggregate. Attention here was focused on the case of
a small number of hotspot regions. For a single microbial region located at a fixed depth below ground, our
computations showed that the value of α at which an anaerobic core appears decreases monotonically with
the oxygen diffusivity ratio δ. As might be expected, when multiple hotspot regions are present, the anaerobic
core size within each is larger than that which would have been found for the same region in isolation. This
means in particular that denitrification may occur within a microbial region as a direct result of its proximity
to another such region, where it would not have occurred otherwise. This underscores the importance of the
spatial distribution of such regions in influencing the overall level of denitrification taking place within a soil.

It should be emphasised that calculating the volume of soil which is anaerobic is not in itself sufficient to
quantify the release of nitrous oxide into the atmosphere. As was pointed out by Smith et al. [30], the amount
of N2O which is actually released into the atmosphere depends strongly on the structure of the soil and on its
water content. They note that a molecule of nitrous oxide gas created during the denitrification process stated
in Eq. (1) is more likely to be released to the atmosphere, rather than converted to N2 in the final step of the
process, if it can diffuse away from the production site and into an oxygenated pore; furthermore, denitrification
that occurs at significant depth in a saturated soil is much more likely to complete the denitrification process
and hence produce N2 rather than N2O.

Finally, we remark that in this study we have concentrated on the effect of diffusion in describing the
transport of oxygen within a model soil. As was noted in the Introduction, diffusion is expected to be the
dominant mechanism for gaseous exchange. Nevertheless, it is not clear that the role of advection can be
ignored in, say, a soil which has become saturated with water after a heavy rainfall event, and it would be
interesting to extend the present model to account for this. This is left as a topic for future investigation.
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