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Both plants and animals rely on nucleotide-binding domain and
leucine-rich repeat-containing (NLR) proteins to respond to in-
vading pathogens and activate immune responses. An emerging
concept of NLR function is that “sensor” NLR proteins are paired
with “helper” NLRs to mediate immune signaling. However, our
fundamental knowledge of sensor/helper NLRs in plants remains
limited. In this study, we discovered a complex NLR immune net-
work in which helper NLRs in the NRC (NLR-required for cell death)
family are functionally redundant but display distinct specificities
toward different sensor NLRs that confer immunity to oomycetes,
bacteria, viruses, nematodes, and insects. The helper NLR NRC4
is required for the function of several sensor NLRs including Rpi-
blb2, Mi-1.2 and R1, whereas NRC2 and NRC3 are required for
the function of the sensor NLR Prf. Interestingly, NRC2, NRC3
and NRC4 redundantly contribute to the immunity mediated by
other sensor NLRs including Rx, Bs2, R8 and Sw5. NRC family and
NRC-dependent NLRs are phylogenetically related clustering into a
well-supported superclade. Using extensive phylogenetic analysis,
we discovered that the NRC-superclade has probably emerged
over 100 million years ago from an NLR pair that diversified to
constitute up to one half of the NLRs of asterids. These results
reveal a complex genetic network of NLRs by linking evolutionary
history to immune signaling. We propose that this NLR network
increases robustness of immune signaling to counteract rapidly
evolving plant pathogens.

immunity | host-microbe interactions | evolution

Text:

Plants and animals rely on nucleotide-binding domain and
leucine-rich repeat-containing (NLR) proteins to activate im-
mune responses to invading pathogens (1-3). NLRs are among
the most diverse and rapidly evolving protein families in plants
(4, 5). They are modular proteins that broadly fall into two
classes based on their N-terminal domain, which is either a Toll-
interleukin 1 receptor (TIR) or a coiled coil (CC) domain (6).
Most plant disease resistance genes encode NLR receptors that
detect effector proteins secreted by pathogens either by directly
binding them or indirectly via effector-targeted host proteins
(3, 7). An emerging model is that “sensor” NLRs dedicated to
detecting pathogen effectors require “helper” NLRs to initiate
immune signaling resulting in a hypersensitive cell death response
that restricts pathogen invasion (8-12). Although paired NLRs
have been described across flowering plants, the degree to which
plant NLRs have evolved to form higher order networks is poorly
known.

The Solanaceae forms one of the most species-rich plant fam-
ilies that includes major agricultural crops, such as potato, tomato
and pepper (13). The extensive breeding efforts for improving
disease resistance within this family has led to the identification
of many NLR-type disease resistance genes from wild Solanaceae
species (14, 15). To date, over 20 NLR-type disease resistance
genes have been identified from different solanaceous species,
which confer resistance to infection by diverse and destructive
pathogens and pests, including the oomycete Phytophthora infes-
tans, Tomato spotted wilt virus (TSWV), and the potato cyst and
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root-knot nematodes (14, 15). Several of these solanaceous NLR-
type disease resistance genes have been deployed in agriculture
through either traditional breeding, cisgenesis or transgenesis
(15, 16). For example, Rpi-blb2 has been introgressed into potato
cultivars to confer broad-spectrum resistance to isolates of P, in-
festans (17). Mi-1.2, an ortholog of Rpi-blb2, confers resistance to
root-knot nematodes, aphids and whiteflies in cultivars of tomato
(18-20). Expression of the pepper NLR gene Bs2 in tomato
confers resistance to the bacterial spot pathogen Xanthomonas
campestris pv. vesicatoria (21). Sw5b, a NLR gene originated from
the wild tomato species Solanum peruvianum, mediates the resis-
tance against TSWViin tomato (22). Furthermore, introgressions
of NLR genes Rx and Gpa?2 into potato cultivars confer resistance
to Potato virus X (PVX) and potato cyst nematode, respectively
(23,24).

In addition to their agricultural importance, the solanaceous
plants and their NLRs are a great experimental model system for
understanding plant immunity. Many of the cloned solanaceous
NLR genes recapitulate their effector recognition and disease
resistance phenotypes when expressed into N. benthamiana, one
of the most widely used model plant species for laboratory-
based research (25). Classic examples of mechanistic studies of
solanaceous NLRs in N. benthamiana include Prf/Pto complex
which provides resistance to Pseudomonas syringae through as-
sociation with the effectors AvrPto and AvrPtoB (26-30), and
Rx/RanGAP2 complex which confers resistance to PVX by rec-
ognizing the coat protein (CP) (24, 31-33). These studies con-
tributed to our understanding of NLR function, particularly the
role of effector recognition and interacting partners in activating
immunity.

Significance

Plant and animal nucleotide-binding domain and leucine-rich
repeat-containing (NLR) proteins often function in pairs to
mediate innate immunity to pathogens. However, the degree
to which NLR proteins form signaling networks beyond geneti-
cally linked pairs is poorly understood. In this study, we discov-
ered that a large NLR immune signaling network with a com-
plex genetic architecture confers immunity to oomycetes, bac-
teria, viruses, nematodes, and insects. The network emerged
over 100 million years ago from a linked NLR pair that diver-
sified into up to one half of the NLRs of asterid plants. We
propose that this NLR network increases robustness of immune
signaling to counteract rapidly evolving plant pathogens.
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Fig. 1. . NRC4 isrequiredforRpi-blb2-mediatedimmunity(A) Silencing of NRC4 compromises Rpi-blb2-mediated resistance. Phytophthora infestans strain 88069
(Pi 88069) was inoculated on Rpi-blb2 transgenic Nicotiana benthamiana pre-infected with Tobacco rattle virus (TRV) to silence NRC2/3 or NRC4. Wild type
(WT) plant with TRV empty vector (TRV-EV) was used as a susceptible control. Experiments were repeated 3 times with 24 inoculation sites each time. The
numbers on the right bottom indicate the sum of spreading lesions/total inoculation sites from the three replicates. Images were taken under UV light at
4 days post inoculation (dpi). (B) Silencing of NRC4 compromises Rpi-blb2- but not Prf-mediated hypersensitive cell death. Rpi-blb2/AVRbIb2 or Pto/AvrPto
(cell death mediated by Prf) were co-expressed in NRC2/3- or NRC4-silenced plants by agroinfiltration. Hypersensitive response (HR) was scored at 7 days after
agroinfiltration. Bars represent mean + SD of 24 infiltration sites. Statistical differences among the samples were analyzed with ANOVA and Tukey’s HSD
test (p-value < 0.001). (C) Expression of silencing-resilient synthetic NRC4 (NRC4*") rescues Rpi-blb2-mediated resistance in NRC4-silenced plants. Experiments
were repeated 3 times with 24 inoculation sites each time. The numbers on the right bottom indicate the sum of spreading lesion/total inoculation sites from
the three replicates. Images were taken under UV light at 5 days post inoculation (dpi). (D) Expression of silencing-resilient synthetic NRC4 (NRC4*") rescues
Rpi-blb2-mediated cell death in NRC4-silenced plants. Hypersensitive response (HR) was scored at 7 days after agroinfiltration. Bars represent mean + SD of

24 infiltrations sites. Statistical differences among the samples were analyzed with ANOVA and Tukey’s HSD test (p-value < 0.001).

Genome-wide annotation and cross-species comparison re-
vealed that the number of NLR genes are often dramatically
expanded in the genomes of flowering plants reaching hundreds
of genes in diverse species like rice, soybean, grapevine and potato
(34). Across different plant species, NLR genes belonging to dif-
ferent phylogenetic clades may show distinct expansion and gene-
loss patterns, indicating that NLR evolution exhibits dynamic
patterns of birth and death (4, 6, 34-36). Strong selection caused
by pathogens is thought to drive functional diversification of NLR
genes, which tend to be clustered in dynamic regions of plant
genomes (36-38). Despite the extensive knowledge generated
through comparative genomics, the degree to which phylogeny
correlates with mechanisms of NLR activation and signaling
remains unclear.

In a previous study, we reported that helper NLR proteins
NRC2 and NRC3 are functionally redundant and are required for
the function of Prf/Pto complex in N. benthamiana (9). However,
whether NRC2 and NRC3 are essential for other sensor NLRs
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remained an open question. Here, we discovered another helper
NLR, termed NRC4, which also belongs to the NRC family.
NRCH4 is required for immunity triggered by Rpi-blb2, a NLR
that provide resistance to P infestans, but it is not required for
Prf-mediated immunity. Surprisingly, in addition to their roles
in Rpi-blb2 and Prf mediated resistance, NRC2, NRC3, and
NRCH4 are functionally redundant and essential for the activity
of at least 7 other NLRs that confer immunity to oomycetes,
bacteria, viruses, nematodes, and insects. Remarkably, both the
NRC family and NRC-dependent NLRs fall into a well-supported
phylogenetic superclade. Using extensive phylogenetic analyses
of plant NLR sequences, we revealed that the NRC-superclade
which constitutes up to one half of the NLRs of asterid species
has probably evolved from a common ancestral NLR pair over
100 million years ago. We conclude that NRC and their mates
form a complex genetic network that confers resistance to diverse
pathogens and pests. We propose that this complex NLR network
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Fig. 2. NRC clade and its sister clades form a complex signaling networkLeft panel: phylogenetic tree of CNL proteins identified from genomes of solanaceous
plants, simplified from Fig. S5. Middle panel: list of pathogens and avirulence effectors (AVR) sensed by the corresponding NLR immune receptors. TSWV,
tomato spotted wilt virus; Ps., Pseudomonas; PVX, Potato virus X; X., Xanthomonas. Right panel: analysis of hypersensitive cell death mediated by different
solanaceous NLR proteins in NRC-silenced plants. Different NLR and AVR effector combinations were expressed in control (EV), NRC2/3-, NRC4-, NRC2/3/4- and
SGT1-silenced plants by agroinfiltration. “+” indicates cell death phenotype was observed. “-” indicates cell death phenotype was compromised. Hypersensitive
response (HR) was scored at 7 days after agroinfiltration. Bars represent mean + SD of 24 infiltration sites. Statistical differences among the samples were
analyzed with ANOVA and Tukey’s HSD test (P-value < 0.001). ®Pathogen proteins sensed by Mi-1.2 have not been identified yet. Hence, the autoactive mutant
Mi-1.2"57% was used here. bCo—expression of Pto and AvrPto was used for testing Prf-mediated cell death. “<CNL-11990, a CNL cloned from tomato, has no
assigned function. The autoactive mutant CNL-11990°4%V was used here. 9Bs4 senses both AvrBs3 and AvrBs4 from X. campestris. AvrBs3 was used here.
Silencing of SGT1, a co-chaperone that is required for steady-state accumulation of NLR proteins (62), was used as a control that compromises cell death

mediated by all the NLRs tested here.

increased evolvability and robustness of immune signaling path-
ways to counteract rapidly evolving plant pathogens.

Results and Discussion

NRC4 is required for Rpi-blb2-mediated immunity. As part of
a study performed in Nicotiana benthamiana to identify genetic
components required for resistance to P, infestans conferred by
the potato NLR-type gene Rpi-blb2 (39, 40), we discovered that
another NLR protein, NRC4 (NLR required for cell death 4),
is required for Rpi-blb2 function (Fig. 1). Silencing of NRC4
compromised Rpi-blb2 resistance to P infestans (Fig. 1A) and
hypersensitive cell death to the P infestans AVRDIb2 effector
(Fig. 1B) (40). This phenotype was rescued by a silencing-resilient
synthetic NRC4 gene (Fig. 1C-D, Fig. S1A-B), showing that the
observed phenotype was indeed caused by the silencing of NRC4.
NR(C4-silencing did not affect Rpi-blb2 accumulation (Fig. S1C).

The finding that Rpi-blb2 requires NRC4 for its function
reminds of previously studied NLR pair, in which only one NLR
in the complex requires ATP binding p-loop motif (41, 42), as

Footline Author

well as the ADR1 helper NLR from Arabidopsis thaliana which
displays p-loop independent activity in immunity triggered by
other NLRs (8). We tested the role of the p-loop in Rpi-blb2 and
NRC4 functions. Mutations in either Rpi-blb2 or NRC4 p-loops
abolished the hypersensitive cell death response (Fig. S2). Thus,
the classic helper/sensor NLR model is not sufficient to explain
how the Rpi-blb2/NRC4 mediates immunity.

NRC4 defines a distinct clade within the NRC family (Fig.
S3A). Of the 9 NRC genes in N. benthamiana, four were expressed
to significant levels in leaves but only NRC4 transcript levels were
reduced in NRC4-silenced plants (Fig. S1D, Fig. S3B). Among
the expressed genes, NRC2 and NRC3 are required for bacterial
resistance mediated by the NLR protein Prf in N. benthamiana (9,
26) but were not essential for Rpi-blb2 functions in our silencing
experiments (Fig. 1A-B). In contrast, NRC4 was not essential for
Prf-mediated cell death and resistance to the bacterial pathogen
Pseudomonas syringae (Fig. 1B, Fig. S4).

NRC clade and its sister clades form a signaling network.
Phylogenetic analyses of the complete repertoire of CNL (NLR
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with a N-terminal coiled-coil domain) proteins from the solana-
ceous plants tomato, potato, pepper and N. benthamiana revealed
that the NRC family groups with the Rpi-blb2 and Prf clades in a
well-supported superclade (Fig. S5). Interestingly, this superclade
includes additional well-known NLRs, such as Rx (24, 31), Bs2
(21), R8 (43), Sw5b (22), R1(44) and Mi-1.2 (18), which confer
resistance to diverse plant pathogens and pests (Fig. S5, Table S1).
This prompted us to test the extent to which NRC proteins are
involved in immune responses mediated by these phylogenetically
related disease resistance proteins.

Silencing of NRC2 and NRC3 affected Prf and moderately re-
duced the hypersensitive cell death triggered by the potato blight
resistance gene R8 (43), but did not alter the response mediated
by 12 other NLR proteins (Fig. 2). In contrast, silencing of NRC4
compromised the hypersensitive cell death mediated by Mi-1.2
(18), an Rpi-blb2 ortholog that provides resistance to nematodes
and insects; CNL-11990°*#V_ an autoactive mutant of a CNL of
unknown function, and R1 (44), an NLR that confers resistance to
P, infestans (Fig. 2, Fig. S6A). Further, NRC4 silencing abolished
R1-mediated disease resistance to P, infestans and the phenotype
was rescued by a silencing-resilient synthetic NRC4 gene (Fig.
S6B-D).

Given that the three expressed NRC proteins share extensive
sequence similarity (Fig. S7), we hypothesized that NRC2, NRC3
and NRC4 are functionally redundant for additional NLRs in the
“NRC-superclade” (Fig. 2). To test our hypothesis, we simultane-
ously silenced the three NRC genes and discovered that triple
silencing of NRC2/3/4 compromised hypersensitive cell death
mediated by Sw5b, R8, Rx and Bs2 in addition to the 5 NLRs
mentioned above (Fig. 2, Fig. S8, Fig. S9). In contrast, the triple
NRC silencing did not affect hypersensitive cell death mediated
by the 5 tested NLRs that map outside the NRC-superclade (Fig.
2) and did not abolish resistance to P, infestans conferred by two
of these NLR proteins (Fig. S10).

We validated NRC2, NRC3 and NRC4 redundancy by com-
plementation in the triple silencing background with silencing-
resilient synthetic NRC (Fig. S11). This confirmed that the three
NRC proteins display specificity to Rpi-blb2 and Prf but have
redundant functions in Rx, Bs2, R8 and Sw5b mediated hyper-
sensitive cell death (Fig. S11).

P-loop is essential for the activity of NRC4 in all the tested
combinations. We further tested whether p-loop is essential for
the activity of NRC homologs in different helper-sensor NLR
combinations. Since the lysine (K) to arginine (R) mutation in
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NRC2/3  NRC2/3/4

SGT1

Fig. 3. Triple silencing of NRC2, NRC3 and NRC4
compromised Rx-mediated extreme resistance to PVX
NRC2, NRC3, or NRC4 were silenced individually or
in combination in Rx transgenic plants by TRV. SGT71
silencing, which compromises Rx-mediated resistance
(62), was used as a control. The circles on the inocu-
lated leaves indicate the area of PVX inoculation by
agroinfection. Pictures were taken 2 weeks after PVX

virus: PVX' jhoculation.

the p-loops of NRC2 and NRC3 dramatically compromised the
steady-state protein accumulation (Fig. S12A), we focused on
NRCH4 for the subsequent experiments. P-loop mutants of NRC4
failed to rescue cell death mediated by any of the sensor NLRs
we tested here (Fig. S12B-C), indicating that p-loop is essential
for NRC4-mediated immunity. These results challenge our un-
derstanding of helper NLR activation, in which proteins such as
ADRI1-L2 displays p-loop independent activity in NLR-triggered
immunity (8). Phylogenetically, ADR1/NRG1 family belongs to
RPWS clade that is distantly related to the NRC family (CNL-
14) (45, 46). Therefore, despite having different evolutionary
paths to become components that are genetically downstream of
other NLRs, the mechanisms by which the ADR1/NRG1 family
and the NRC family activate immune signaling could be differ-
ent. Interestingly, a recent report indicated that activation of
DM1/DM2d, a TNL complex that contribute to hybrid necrosis,
also requires the p-loops of both NLRs (47), suggesting that not
all genetic or physical NLR complexes are regulated through the
same mechanism.

NRC2, NRC3 and NRC4 redundantly contribute to Rx-
mediated resistance to Potato virus X. To further validate that
NRC2, NRC3 and NRC4 redundantly contribute to immunity,
we examined the resistance mediated by Rx to Potato virus X
(PVX) (24, 31) in plants silenced for single, double or triple
combinations of NRC genes. Rx-mediated resistance to PVX was
only abolished in the triple silencing background resulting in sys-
temic spread of necrotic lesions (Fig. 3, Fig. S13). This phenotype,
known as trailing necrosis, reflects spread of the virus when Rx-
mediated extreme resistance is compromised (31). We further
validated systemic spread of the virus by detecting accumulation
of GFP driven by the subgenomic promoter of PVX (Fig. S14).
Indeed, silencing-resilient NRC2, NRC3 and NRC4 individually
complemented the loss of resistance to PVX in triple NRC-
silenced plants confirming their functional redundancy in disease
resistance (Fig. S15). This and previous results indicate that the
three NRC proteins display varying degrees of redundancy and
specificity towards the 9 NLRs revealing a complex immune
signaling network (Fig. S16).

Tomato NRC homologs rescue NRC-dependent cell death in
N. benthamiana. Most of the sensor NLRs in the NRC network
we tested here originated from wild Solanum species, and yet
they conferred disease resistance when introduced into tomato
(S. lycopersicum), potato (S. tuberosum), and N. benthamiana
(Table S1). This prompted us to test whether NRC homologs
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Solanum lycopersicum tomato Solanales 98 80 47 9 38 of the full phylogenetic tree can be found in Fig. S21-
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from tomato display the same sensor NLR spectrum as their
N. benthamiana orthologs. Largely consistent with the model
we proposed, expression of tomato NRC homologs rescued cell
death when the corresponding N. benthamiana NRC homologs
were silenced (Fig. S16, Fig. S17). However, tomato NRC3 res-
cued Rpi-blb2/Mi-mediated cell death in NRC4-silenced N. ben-
thamiana unlike N. benthamiana NRC3 (Fig. S17A, Fig. S11).
Furthermore, tomato NRC2 only weakly rescued Prf-mediated
cell death in NRC2/3-silenced N. benthamiana (Fig. S17B), and
tomato NRC4 only weakly rescued Sw5-mediated cell death in
NRC2/3/4-silenced N. benthamiana (Fig. S17C). Given that dis-
tantly related solanaceous species may have encountered distinct
selection pressures during evolution, NRC network structure may
have evolved differently in each species since divergence from
their last common ancestor. Further studies on sequence poly-
morphisms and sensor NLR spectrum of different NRC homologs

Footline Author

representation of the NRC gene cluster on sugar beet
chromosome 5. The two NRC-S paralogs are marked
in blue, and the NRC-H gene is marked in red. (D)
Physical map of NRC superclade genes on tomato
chromosomes. The NRC-S paralogs are marked in blue,
and the NRC-H paralogs are marked in red. The detail
information of the physical map can be found in Fig.
S23.

may help reveal how helper-sensor specificity is determined in a
NLR signaling network.

NRC-superclade emerged from a NLR pair over 100 million
years ago. Our observation that NRC proteins and their NLR
mates are related in the phylogeny of solanaceous CNL proteins
(Fig. S5) prompted us to reconstruct the evolutionary history of
the NRC-superclade. Higher order phylogenetic analyses of com-
plete CNL repertoires from representative plant taxa revealed
that the NRC-superclade is missing in rosids but present in the
examined representatives of caryophyllales (sugar beet) and as-
terids (kiwifruit, coffee, monkey flower, ash tree and Solanaceae
species) (Fig. S18, Fig. 4A-B, Fig. S19-22). Interestingly, sugar
beet and kiwifruit, the early branching species, have only a single
protein that groups with the NRC family (referred to as NRC-H),
along with 2 and 4 NLRs that cluster with the NRC-dependent
NLRs (referred to as NRC-S) (Fig. 4A-B, Fig. $22). The dramatic
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Fig. 5. Constraints and plasticity in plant NLR evolu-
tion(A) NLR evolution must be constrained by their
mode of action. Some NLR pairs are known to operate
by negative regulation with the helper NLR exhibiting
autoimmunity (NLR*) and the sensor NLR acting as a
helper inhibitor. In such cases, expansion of the pair
will be constrained throughout evolution due to the
genetic load caused by autoimmunity. In contrast, NLR

B

Ancestral state

helper-sensor

helper-sensor

that function through a different mechanism, e.g.
positive regulation of the NLR helper by the sensor,
will be less constrained to evolve into networks be-
yond genetically linked pairs of NLR. (B) A model of
the expansion of the NRC superclade from an ances-
tral pair of NLR. The NRC-helper clade has expanded
to create genetic redundancy and thus flexibility for

NLR pair NLR network the sensor NLR to evolve rapidly. However, due to the
‘ ) constraints for mediating a conserved downstream

sensor NLR massive expansion sensor NLR signaling the diversification of the helper clade is
and functional diversification clades likely to remain limited. In contrast, the NRC-sensor

homologs have evolved into several diversified clades

helper NLR limited diversitication and helper NLR to detect proteins from a diversity of pathogens.
redundancy clade This network system with redundant helper NLR may

expansion of the NRC superclade started prior to the divergence
of Gentianales (coffee) from other asterids around 100 million
years ago (48, 49) to account for over one half of all NLRs in some
of the species (Fig. 4B). We postulate that the NRC superclade
has probably evolved from an ancestral pair of genetically linked
NLR genes, as in sugar beet, to duplicate and expand throughout
the genomes of asterid species into a complex genetic network
that confers immunity to a diversity of plant pathogens (Fig. 4C-
D, Fig. S23).

What forces modulate the evolution of NLR pairs into a net-
work? NRC family members appear to be a convergent signaling
point for a large repertoire of NLRs. The observation that sugar
beet (caryophyllales) has only three closely linked NLR genes
belonging to the NRC-superclade supports the hypothesis that
NRC and its mates evolved from a genetically linked NLR pair.
Studies on mechanisms of NLR evolution have suggested that
once a NLR gene has duplicated or translocated to an unlinked
locus, it becomes more likely to diversify into a new function
than by remaining in a gene cluster (38). Thus, the expansion of
the NRC-superclade from a genetically linked pair to a geneti-
cally unlinked network may have been a key evolutionary step
that accelerated functional diversification to confer immunity to
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provide a framework for rapid evolution of plant
NLR-triggered immunity in order to counteract fast
evolving pathogens.

multiple pathogens and pests. However, NLR evolution must be
constrained by their mode of action. Recent studies on geneti-
cally linked NLR pairs such as RPS4/RRS1 and RGA4/RGAS
suggested that the encoded proteins activate immune signaling
through release of negative regulation (41, 42). The selective
pressures shaping the evolution of NLR pairs that operate by
negative regulation can be expected to limit their expansion due
to the genetic load caused by autoimmunity (Fig. 5A). Autoac-
tive NLR helpers and their negative regulators are expected to
function as a single unit (supergene) and are likely to remain
genetically linked over evolution. A recent study revealed that
two NLR genes with antagonistic function in resistance and yield
evolved in a single cluster, and these immune inhibitory effects
may be selected for in the process of crop domestication (50).
In contrast, NRC and NRC-dependent NLR proteins appear to
function through a mechanism that accommodates evolutionary
plasticity beyond genetically linked pairs of NLR. We propose
that NRC and NRC-dependent NLR proteins act through posi-
tive regulation rather than suppression of autoactivity (Fig. 5A).
Such mode of action would have enabled massive duplication and
functional diversification without accumulation of deleterious ef-
fects. Interestingly, some recent studies showed that mismatched
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NLRs probably operating through positive regulation trigger au-
toimmunity leading to hybrid necrosis, adding another layer of
complexity in NLR evolution (47, 51). Future studies on how NRC
and NRC-dependent NLR proteins function should shed light on
the mechanistic detail of how this NRC-network mediate immune
responses and disease resistance.

NLR network increase robustness of plant immune system.
Genetic redundancy is known to enhance robustness and evolv-
ability of biological systems (52-55). The emergence of genetic
redundancy ultimately leads to network architecture, a general
feature of many complex biological processes (56). Traits under
strong natural selection, such as immunity, should benefit from
the increase in evolutionary plasticity and tolerance to environ-
mental disturbance conferred by gene duplications (57, 58). Re-
dundant helper NLRs may, therefore, provide a stepping-stone
for rapid expansion and functional diversification of their match-
ing sensor NLRs to counteract rapidly evolving pathogens (Fig.
5B). Interestingly, a recent analysis of NLR evolutionary patterns
in Solanaceae revealed that the NRC clade (termed CNL-G8
by Seo et al. 2016) stands out as having only a few duplications
that occurred recently after speciation of pepper, tomato and
potato (35). This is consistent with the view-that, unlike. their
NLR mates, NRCs may not be directly co-evolving with pathogens
and are constrained by their function-in immune signaling thus
acting as nodes in a signaling network with bow-tie architecture,
although the signaling output downstream of NRCs have not been
identified yet. Similar bow-tie network architectures have also
been described in immunity of other systems, such as animal TLR
receptors, in which diversified receptors sense a wide variety of
microbial molecules with few core elements play important roles
in mediating downstream output (59, 60). We propose that the
NRC network is a powerful system to study robustness, redun-
dancy and specificity of an NLR immune signaling network within
a solid evolutionary framework. Harnessing the processes that
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underpin NLR network structure and function would open up
new approaches for developing disease resistant crops.

Materials and Methods

Hypersensitive cell death assays. Hypersensitive cell death assays were per-
formed using Agrobacterium-mediated transient gene expression. The cell
death (HR index) was scored at 7 days post infiltration. Detail procedures
and information of constructs used in this study are provided in S/ Materials
and Methods.

Disease resistance assays. Rpi-blb2, Rpi-blb1, R3a, Pto/Prf and Rx trans-
genic N. benthamiana plants were used for disease resistance assays. R1 was
transiently expressed on leaves of N. benthamiana for disease resistance
assay. Inoculation of P infestans was performed by applying droplets of
zoospore suspension on detached leaves and imaged under UV light at
indicated days post inoculation. Ps. syringae pv. tomato DC3000 2hopQ1-1
was infiltrated into N. benthamiana leaves using needleless syringe. Bacterial
growth assays were performed to evaluated the extent of resistance medi-
ated by Pto/Prf. A. tumefaciens stains harboring expression vector pGR106
(or pGR106-GPF) were used for inoculating PVX on N. benthamiana. Trailing
necrotic lesions and accumulation of GFP were used as indications of systemic
spread of the virus. Detail procedures are provided in S/ Materials and
Methods.

Virus-induced gene silencing (VIGS) and complementation. VIGS was
performed in N. benthamiana as described previously (61). For comple-
mentation, silencing-resilient NRC variants were generated by introducing
synonymous substitutions into the targeted codons. Detail procedures for
VIGS, construction of VIGS vectors, RT-PCR, and design of complementation
are described in S/ Materials and Methods.

Phylogenetic analysis. Sequences of NLR were aligned using Clustal
OMEGA or MAFFT, and then manually edited in MEGA7. The sequences of
the NB-ARC domains were used for generating maximum-likelihood tree
in MEGA7. NLR-parser was used to identify the NLR sequences from the
databases of different plant species. Detail procedures are provided in S/
Materials and Methods.
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