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Quantum delocalization in photon-pair generation
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The generation of correlated photon pairs is a key to the production of entangled quantum states, which have a
variety of applications within the area of quantum information. In spontaneous parametric down-conversion—the
primary method of generating correlated photon pairs—the associated photon annihilation and creation events
are generally thought of as being colocated: The correlated pair of photons is localized with regards to the pump
photon and its positional origin. A detailed quantum electrodynamical analysis highlights a mechanism exhibiting
the possibility of a delocalized origin for paired output photons: The spatial extent of the region from which the pair
is generated can be much larger than previously thought. The theory of both localized and nonlocalized degenerate
down-conversion is presented, followed by a quantitative analysis using discrete-volume computational methods.
The results may have significant implications for quantum information and imaging applications, and the design
of nonlinear optical metamaterials.
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I. INTRODUCTION

There are various methods to generate correlated photon
pairs [1–3]. The most widely utilized approach is spontaneous
parametric down-conversion (SPDC) [4], in which light passed
through a suitable optically nonlinear medium, generates
a double-wavelength output. Fundamentally a third-order
electric-dipole response, the process occurs through material
interactions which involve the second-order nonlinear optical
susceptibility, entailing conversion of a single pump photon
into a pair of phase-matched cogenerated photons. Each pair
of photons generated through this mechanism has a combined
energy and momentum equal to that of the corresponding
annihilated photon. Significantly, they can also exhibit cor-
related polarizations; the same method of pair production can
even lead to “hyperentangled” photon pairs [5,6]. When the
output photon pair equally share the energy of the input, the
process is known as degenerate down-conversion (DDC): Thus
DDC can be alternatively viewed as the exact time reversal of
second-harmonic generation [7,8]. Much interest centers on
the entanglement exhibited by DDC emission.

Quantum entanglement [4,9,10] is widely regarded as
the most nonclassical feature of quantum physics. The phe-
nomenon occurs when two or more particles have mutually
interdependent quantum states, such that it is only meaningful
to formulate a state for the total system. Entanglement has
become one of the primary means for achieving quantum
operations that are forbidden with classical methods [11],
commonly involving the generation of correlated photon pairs.
A plethora of contemporary applications utilizing entangle-
ment have generated the rapidly growing area of quantum
information [12,13]. Particular disciplines that come under
this umbrella term include quantum cryptography [14,15],
quantum teleportation [16–18], and quantum computing
[19–21]. Entanglement has been demonstrated with various
microscopic entities whose information obeys the quantum
regime, such as neutrinos [22,23] and electrons [24]. Another
active area of contemporary research involves looking at
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entanglement between macroscopic bodies [25]. However,
most theoretical and experimental work is centered upon the
production and manipulation of entangled states involving two
or more correlated photons [10]—with one recent experiment
achieving entanglement with as many as ten photons [26]. It
was with the use of correlated photon pairs that Aspect et al.
performed the first experiment that violated Bell’s inequalities
[27–29]. Further work is centered upon their manipulation
[30–32] and application [33–35], as well as the continuation
of the study of entanglement at a fundamental level [36,37].

The work to be presented is concerned with further develop-
ment of the quantum theory of the optically nonlinear process
of SPDC [38–40], highlighting and quantifying an important
contribution to the overall mechanism—the possibility of
which arises from taking into account nonlocalized couplings
[41]. Of course, an exact location for the creation of any output
photon cannot be inferred by direct observation—although
pump photon annihilation and down-converted photon emis-
sion are generally assumed to be colocated. However, the
spatial extent of the region from within which any pair of down-
converted photons may emerge is considerably larger than may
usually be supposed. It is shown that there is a finite amplitude
for each pair of correlated photons to be created at two separate
locations, as indicated in Fig. 1: The mechanism proves to
be mediated by a fifth-order nonlocal electric-dipole response.
Accounting for such delocalized interactions provides insights
concerning nonlocalization in the origin of correlated photon
pairs. Moreover, allowing for each photon of the correlated
pair to emerge from spatially distinct (and separated) points in
space introduces a positional uncertainty of a fundamentally
quantum origin. In the following analysis, utilizing a quantum
electrodynamical (QED) approach cast in terms of virtual
photon coupling [42], we fully account for both the localized
and nonlocalized generation of correlated photon pairs. The
results, cast in the form of quantum amplitudes, are further
developed for computational implementation, which we then
use to quantify the net effect of SPDC nonlocalization on the
total rate of pair production, within a model lattice structure.

The structure of the paper is as follows. In Sec. II, the
foundations of the quantum electrodynamical theory used to
study SPDC in dielectric media is first laid out, beginning with
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FIG. 1. The generation of correlated photon pairs (red): The left-
hand side shows the localized mechanism of SPDC; the right-hand
side depicts the nonlocalized mechanism.

the complete Hamiltonian used to quantify the interactions
of nonrelativistic matter and the electromagnetic field. It
is also shown how to develop an appropriate multicenter
form of time-dependent perturbation theory, to tackle the
lattice sums that arise in the later modeling. Section III deals
with calculating the matrix element of localized degenerate
down-conversion; Sec. IV fully develops the theory for the
mechanism of nonlocalized generation of correlated photon
pairs in SPDC, along with the calculation of its matrix element.
Section V brings together both the matrix elements previously
calculated for the localized and nonlocalized mechanisms of
SPDC, in order to secure an expression for the overall rate,
and in Sec. VI the result is quantitatively analyzed using a
numerical lattice model. Finally, Sec. VII concludes the paper
with a discussion involving the implications and applications
of the full analysis.

II. THEORETICAL FOUNDATION

The essence of the following analysis is a treatment of
mutual interaction between particles and fields in a single elec-
trodynamical system, whereby energy is exchanged between
matter and radiation through photon annihilation and creation
events. In particular, the formalism of noncovariant quan-
tum electrodynamics, commonly known as molecular QED
[43–45], is adopted, as the system to be studied consists of
matter possessing nonrelativistic energies. This contrasts with
techniques commonly employed in studying down-conversion
[46], where systems are studied using effective Hamiltonians
which cast the material response in classical terms. A key
advantage of QED methods is that it gives a microscopic
description of the matter, including the explicit form of
electrodynamic coupling between atoms or molecules. Non-
relativistic implementations of QED have been successfully
employed in a wide range of optical processes and phenomena.
Arguably the most well-known application of the theory is the
formulation of the Casimir-Polder potential [47]—which takes
due account of retardation effects. Contemporary examples of
the spheres of application include optical trapping [48–52]
optical binding [53–58], and optical vortices [59–62], to name
but a few.

Any process of SPDC necessarily entails as a minimum
three photons—to be more precise, three distinct but concerted,

i.e., not separately identifiable, photon-matter interactions
in the Power-Zienau-Woolley (PZW) formulation [63,64]
of QED. Observations of the process may in general be
considered to occur within a region of material comprising
N optical centers, such as unit cells in a crystalline material.
Each is electrically neutral and has its own electronic integrity,
and the system as a whole comprises not only these centers but
also the radiation field. Commonly, neglecting self-interaction
terms, the system Hamiltonian is written as

H = Hrad +
N∑
ξ

Hmol(ξ ) +
N∑
ξ

Hint(ξ ). (1)

The PZW Hamiltonian, Eq. (1), is written as a sum of
three terms: (i) the second-quantized Hamiltonian for the
radiation field in vacuo, Hrad; (ii) a sum over all particles
with corresponding nonrelativistic Hamiltonians, Hmol(ξ );
(iii) a sum of the interaction Hamiltonians that describe the
coupling between each particle and the electromagnetic field,
Hint(ξ ). The subscript “mol” in the second term designates
a common application to molecular systems; however, the
general formalism is equally applicable to aggregates and bulk
media. In this sense “mol” may be taken to represent any
one of a set {ξ} of electrically neutral material components,
representative of the whole, each with a distinct locality
and electronic identity: We shall commonly refer to these as
“optical centers.”

While the first two terms of Eq. (1) signify an “unperturbed”
Hamiltonian H0, with eigenstates suitable as a basis for a
perturbation theory development, the third term describes the
interaction between the radiation field and matter, accounting
for the perturbative coupling and exchange of energy between
the two parts of the system. This form of Hamiltonian
is conveniently cast in terms of multipolar coupling [65].
(A comparison with the deployment of minimal coupling,
detailing the judicious choice of framework adopted here,
can be found elsewhere [66–69]). Developing the multipolar
theory in expanded form, the leading term in the expansion
of Hint(ξ ), using the convention of implied summation over
repeated indices, is as follows:

Hint(ξ ) = −ε−1
0 μi(ξ )d⊥

i (rξ ), (2)

where μi(ξ ) is a component of the electric-dipole operator
and d⊥

i (rξ ) is a component of the transverse displacement
electric field operator at the relevant position. Higher-order
couplings that occur outside the electric-dipole approximation
become significant when studying chiral discriminatory effects
in optical processes including forces [70] and nonlinear optics
[71,72].

Although the quantum field description outlined above is
cast in a form best suited to describe couplings in which the
material part of the system consists of only the individual
optical centers involved in the interactions of interest, it can
be readily expanded to account for condensed phase materials
in which the interacting (active) centers are surrounded by
other atoms or molecules not directly involved with the
photon annihilation and creation events. This surrounding
medium will, however, have electronic properties that modify
the fields experienced and produced by the active optical
centers, and thus play an indirect but important role in any
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FIG. 2. Schematic representation of various optical mechanisms producing correlated photon pairs. [AAA] represents the dominant
localized contribution to the rate of SPDC, while those labeled [AAAAA] are minor corrections which present no new physics; [AAAAB]
highlights a static contribution to SPDC, the dotted line signifying a static electric field associated with polar components; [AAABB] depicts
the nonlocalized mechanism of SPDC (virtual photon in green), the main subject matter of this paper. There also exists another mechanism
[AABBB] (not shown), involving forward scattering by A prior to conventional SPDC at B; this need not concern us as it is accounted for by
the inclusion of material-induced field corrections, manifest in the field expansions.

optical interaction taking place. These media corrections are
accommodated within the field operators, specifically in our
case the displacement electric field operator d⊥. This is in con-
trast to the semiclassical formalism whereby all Lorentz field
corrections are incorporated into the optical susceptibilities
[8]. Since the microscopic electric displacement field is the net
field experienced by the optical centers of the medium, it can be
seen as a fundamental electric field that is dynamically dressed
by interaction with the surrounding electronic environment.
As such, when these media effects are taken account of, the
propagation and coupling of radiation in the system is properly
described in terms of polaritons [73–76].

A key result for the work to be presented here is the correct
form of the explicitly position-dependent electric displace-
ment field operator d⊥, accounting for material-induced field
corrections. A suitable form is as follows:

d⊥(r ) = i
∑
k,η

[
h̄ε0vgωk

2cV n(ωk)

]1/2[
n(ωk) + 2

3

]

× [
e(η)

k a
(η)
k eik·r − ē(η)

k a
†(η)
k e−ik·r], (3)

where n(ωk) is the complex, frequency-dependent refractive
index at polariton frequency ωk; the group velocity is labeled
vg; V denotes the quantization volume; e is the polarization

vector for the radiation mode (k, η); finally a
(η)
k and a

†(η)
k

designate the annihilation and creation operators, respectively,
for modes of wave vector k. These operate upon corresponding
radiation state vectors |q(k,η)〉, where q is the mode occupa-
tion number (number of photons) in a mode of wave vector k
and polarization η;

a
(η)
k |q(k,η)〉 = √

q|(q − 1)(k,η)〉, (4)

a
†(η)
k |q(k,η)〉 =

√
q + 1|(q + 1)(k,η)〉. (5)

The fundamentally simplest mechanism for SPDC is where
all three interactions (one input photon annihilation and two
output photon creations, in any sequence) occur at the same
location—within the limits of uncertainty necessarily imposed
by the physical extent of the unit cell. We shall label this center
as A, taken to be one of N identical centers within the complete
system. More specifically, A is chosen as the designation of
a center at which an input photon is annihilated in the course
of SPDC. Accordingly, we can represent the fundamental
mechanism for SPDC as [AAA], schematically depicted in
Fig. 2. Now since the electric radiation field operator is
linear in a sum of photon creation and annihilation operators,
the lowest order that can deliver a nonvanishing result is
cubic in Hint (discounting only a very weak diamagnetic
contribution). Beyond this specifically local leading term,
additional contributions can only be of order 3 + 2p, where p

is a positive integer. Therefore, the leading corrections come
from fifth order, necessarily requiring that the two additional
photon events are the creation and annihilation of a photon in
an arbitrary mode—i.e., a virtual photon, fleetingly borrowing
energy from the background vacuum fluctuations.

The two possibilities arise: [AAAAA] and [AAABB]. The
former is, as such, not separately identifiable: It signifies a
self-energy correction to the fundamental process at A, with no
bearing on issues of nonlocality, and may indeed be regarded as
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a minor correction (accounting for an optical Kerr effect shift
in energy levels). The latter is a feature that can be identified
only using a microscopic theory of light-matter interactions:
It signifies a mechanism wherein SPDC is cooperatively
delivered by two centers, A and B, coupled by a virtual photon
that is created at one center and annihilated at the other. It
delivers subtly different physics, the subject of the detailed
analysis that follows. The designation [AAABB] signifies only
a partition of the N physical centers into N (N–1) potential
AB pairs; it does not imply any specific time ordering, since
theory requires all time orderings to be taken into account.
It serves to identify the most prominent source of nonlocal
SPDC, associated with fifth-order perturbation theory.

We now turn to the foundational equations for the quantum
amplitude Mf i , whose modulus square will determine the
efficiency of the overall process [77]:

Mf i =
∑
s=0

〈f |(HintT0)sHint|i〉, (6)

T0 ≈ (Ei − H0)−1, (7)

where the latter expression for the propagator T0 is based on
the eigenstates of the full Hamiltonian H being similar to
those of H0. Equation (6) represents a coupling that in general
propagates from an initial system state i into a final state
f , where s is the order of perturbation theory based on the
eigenstates of H0. In both these equations, all states, energies,
and operators relate to the system as a whole, i.e., the material
as a whole plus the radiation field. For a wave-vector-matched
process such as SPDC, the optical center sums that feature in
the quantum amplitude (6) will be phase coherent and therefore
directly additive. Noting that only even values of s � 2 can
contribute to the sum in Eq. (6), then on implementing the

optical center sums we obtain a result expressible as

Mf i =
∑
p=0

〈frad|
N∏

j=1

〈0(ξj )|
[

N∑
k=1

Hint(ξk)T0

]2(p+1)

×
N∑

m=1

Hint(ξm)
N∏

l=1

|0(ξl)〉|irad〉. (8)

The leading term, p = 0, delivers interactions that are third
order in Hint, comprising a sum of N terms, each signifying
single-center SPDC. To this order, it is readily established that
all terms for which the three operations of Hint are not effected
at the same center vanish—as, of course, energy conservation
must require. With the use of the completeness relation

1 =
∑

r

|r(ξq)〉〈r(ξq)| (9)

for any individual center ξq , the leading term to emerge from
Eq. (8) takes the form

M
(3)
f i =

∑
r (2),r (1)

〈f |Hint|r (2)〉〈r (2)|Hint|r (1)〉〈r (1)|Hint|i〉
(Ei − Er (2) )(Ei − Er (1) )

, (10)

where it is implicit that the entire expression relates to a
single, representative center. Equation (10) thus relates to all
N conventional SPDC interactions of type [AAA] identified
above. The next order, p = 1 in Eq. (8), delivers the leading
corrections, of the form [AAAAA] and [AAABB]. By similar
arguments to those used above, the following emerges as a
representative of the former:

M
(5)
f i =

∑
r (4),r (3).r (2),r (1)

〈f |Hint|r (4)〉〈r (4)|Hint|r (3)〉〈r (3)|Hint|r (2)〉〈r (2)|Hint|r (1)〉〈r (1)|Hint|i〉
(Ei − Er (4) )(Ei − Er (3) )(Ei − Er (2) )(Ei − Er (1) )

. (11)

The expression signifies a self-energy [AAAAA] correction
to single-center SPDC, all interactions once again occurring
at the same center. However, the p = 1 term in Eq. (8) can
also deliver nonvanishing results when two distinct centers are
involved. Then, the completeness relation of Eq. (9) is to be
implemented not only for any center taking the role of A, but
also in each case for the full set of (N–1) centers that can act
as component B. Accordingly one can write

1 = (N − 1)−1
N−1∑
q �=A

∑
r

|r(ξq)〉〈r(ξq)|. (12)

This signifies that a normalization factor of 1/(N–1) has
to be included in implementing a global sum over all centers
that can take the role of B. This factor will arise once in
each state sequence, at the point where the operation of
Hint is first effected at center B. To summarize, we can thus

write

Mf i =
N∑
ξ

M
(3)
f i (ξ ) +

N∑
ξ

M
(5)
f i (ξ )

+ (N − 1)−1
N∑
ξ

N−1∑
ξ ′

M
(5)
f i (ξ,ξ ′) + · · · , (13)

where the three successive terms represent explicit calculations
for quantum amplitude contributions of the form [AAA],
[AAAAA], and [AAABB].

To proceed further we need to be able to follow the time
development of the state of the closed dynamical system at
any time, given its initial conditions. Herein, we employ the
Fermi rate to calculate the desired quantum rates:

�δ = 2π

h̄
|Mf i |2δ(h̄ω − 2h̄ω′), (14)
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where the Dirac delta function ensures energy conservation:
The sum of the energies for the two emergent photons, 2h̄ω′,
equals that of the input photon, h̄ω. The subscript on the left-
hand side of Eq. (14) signifies that the observed rate � will, in
practice, be secured on integrating over all energy-conserving
outputs.

To evaluate quantum amplitudes using the perturbative
expansion of Eq. (13) and ultimately the measurable rates
with the aid of Eq. (14), diagrammatic techniques are used
to reduce the computational complexity of the calculations.
Such tools also provide valuable insight into the underlying
physical mechanisms by providing a visual representation of
the photon-matter interactions. The most widely known and
commonly deployed of these methods are the time-ordered
graphs of Feynman [78–80]. As far as the radiation states are
concerned, summation over all intermediate states that link
the same initial and final states is equivalent to drawing all
the possible topologically distinct Feynman diagrams for that
particular given series of photon annihilation and/or creation
events. However, the relative drawback to these time-ordered
diagrams is that for higher-order processes involving many
photon annihilation and creation events, or processes involving
multiple optical centers, the number of possible Feynman
diagrams describing all the possible pathways from initial to
final states can become daunting. To overcome this, the state-
sequence method [81] has been developed as an alternative
diagrammatic technique to time-ordered diagrams. As will be
shown by its deployment in Sec. IV, a state-sequence diagram
encapsulates all possible intermediate states that link the initial
and final states, with each pathway signifying a single time
ordering; thus, a single state-sequence diagram contains all
time orderings for any given process.

III. LOCALIZED SPDC

In the theory of quantum electrodynamics, the generation
of correlated photon pairs by SPDC occurs through the
annihilation of a pump photon possessing a wave vector k
and the creation of two output photons of wave vector k′,
where k = 2k′ and hence the output is coherent in character.
Indeed, the pair of down-converted photons not only conserve

FIG. 3. The three topologically distinct Feynman time-ordered
diagrams representing the degenerate down-conversion of a pump
photon with wave vector k into a pair of correlated photons with
wave vector k′ at a single, physically distinct center A.

the energy and momentum of the original input photon
in degenerate down-conversion; they also exhibit correlated
polarization states. Traditionally, the positional range of the
location for the emission of down-converted photons and input
photon annihilation is assumed to be small—certainly well
within the span of a wavelength. It would usually be assumed
that the process of SPDC occurs in an essentially localized,
colocated fashion, where only the diffuse nature of atomic and
molecular orbitals limits the precision with which the location
for any photon creation event can be linked to a site of input
photon annihilation.

Using the methods outlined in Sec. II, we now proceed to
calculate the quantum amplitude for single-center, localized
SPDC. As indicated in the previous section, the three photon-
matter interactions that are intrinsic to the nature of SPDC lead
to a formulation in time-dependent perturbation theory whose
leading, third-order term is associated with three distinct time
orderings, as exhibited in Fig. 3.

The initial and final states of the system are |i〉 = |EA
0 ; h̄ck〉

and |f 〉 = |EA
0 ; 2h̄ck′〉, respectively, where both the initial

and final states of the material system are ground states.
Considering a single interaction at position A in a suitable
nonlinear optical medium and, for reasons outlined above,
applying the electric-dipole approximation with Eq. (10) and
the first term in Eq. (2) gives the result of Eq. (15) below—in
which the three terms within the square brackets correspond
to the three time orderings exhibited in Fig. 3.

MA = i

ε3
0

∑
k′,η′

√
q

[
h̄ε0vgωk

2cV n(ωk)

]1/2[ h̄ε0v
′
gω

′
k′

2cV n(ω′
k′ )

][
n2(ωk) + 2

3

][
n2(ω′

k′ ) + 2

3

]2

e
(η)
i (k)ē(η′)

j (k′)ē(η′)
k (k′)

×
∑
r,s

[
μ0r

i μrs
j μs0

k

(Es0 − h̄ck′)(Er0 − 2h̄ck′)
+ μ0r

j μrs
i μs0

k

(Es0 − h̄ck′)(Er0 + h̄ck′)
+ μ0r

j μrs
k μs0

i

(Es0 + 2h̄ck′)(Er0 + h̄ck′)

]
ei(k−2k′)·rA . (15)

Assuming no down-converted photons are initially present, i.e., q ′ = 0, in principle demands retention of the sum over the
output mode (k′, η′). However, the conservation of photon momentum is intrinsic to the coherent process; i.e.,k = 2k′ for SPDC.
The optical frequency of the input is such that n(ω) ω = ck ≡ c|k|, and for the output n(ω′)ω′ = c|k′|. This means that for SPDC
to occur at any sizable rate in the condensed phase, the process must occur with index matching—and for simplicity we can
neglect any minor difference in refractive index at frequencies ω and ω′: The index therefore appears as simply n below. In the
absence of significant optical dispersion, group velocity reduces to phase velocity such that vg = c/n. Eq. (15) can be further
modified to highlight the role that the frequency-dependent nonlinear-susceptibility χ (2)(ω) [8] takes in SPDC, the form of which
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is conventionally cast in tensor form as follows:

χ
(2)
i(jk)(−ω, − ω; 2ω)

= N ′

2ε0

(
n2 + 2

3

)3 ∑
r,s

[{
μ0r

i μrs
j μs0

k

(Es0 − h̄ω)(Er0 − 2h̄ω)
+ μ0r

j μrs
i μs0

k

(Es0 − h̄ω)(Er0 + h̄ω)
+ μ0r

j μrs
k μs0

i

(Es0 + 2h̄ω)(Er0 + h̄ω)

}
+ {j ↔ k}

]
,

(16)

where N ′ is the number density of active centers, equivalent
to V −1, and {j ↔ k} signifies the other terms by exchanging
these indices. Taking all the above into consideration, Eq. (15)
can be written more succinctly as

MA = i

4

(
h̄ω

n2

)3/2(
q

ε0V

)1/2

ei ē
′
j ē

′
kχ

(2)
i(jk)(−ω, − ω,2ω).

(17)
The product polarization tensor ei ē

′
j ē

′
k in Eq. (15) is j,k

symmetric, and therefore in its contraction with the nonlinear-
susceptibility tensor Eq. (16), only the j ,k-symmetric part of
the latter contributes. The above equation (17), signifying the
matrix element for single-center degenerate down-conversion
within a dielectric medium, now represents a basis from which
to develop the theory of nonlocalized down-conversion.

IV. NONLOCALIZED SPDC

As intimated earlier, nonlocalized contributions to the
overall rate of SPDC entail a secondary mechanism involving
the coupling of point A with a new point in the optical medium,
which we label B. No constraints are imposed on the relative
positions of A and B—at a later stage in the theory, a sum is
to be effected over all sites that can fulfill B’s role. We assume
that A and B are electronically equivalent, so that the labeling
of A and B is arbitrary—the former being associated only
with the position of input photon annihilation. For this reason

there is no need to entertain role reversal A↔B. The mecha-
nism for the delocalized form of SPDC is as follows: A pump
photon of frequency ω is annihilated at point A (as in the
localized mechanism derived above in Sec. III); however, A
only emits a single real photon of frequency ω′ while it also
couples to B, via virtual photon propagation—B itself emitting
another single real photon of frequency ω′. The correlated
photon pair thus emerges from two, delocalized points within
the medium.

The delocalized mechanism entails five photon-matter
interaction events (Fig. 4), so we now have recourse to Eq. (11)
for the corresponding quantum amplitude. The initial and final
states are the same as in the previous section, but now position
B is specifically included as a constituent of the system |i〉 =
|EA

0 ; EB
0 ; h̄ck〉 and |f 〉 = |EA

0 ; EB
0 ; 2h̄ck′〉. The sum over all

intermediate virtual states r (1) · · · r (4) naturally decomposes
into a sum over 5! = 120 time-ordered permutations of the
five interaction events, each of which delivers a distinct form
for the quantum amplitude’s energy-difference denominator
(see Fig. 5).

To exemplify the calculation, if we initially choose just
one of these time orderings—say, the upper pathway in
Fig. 5—then the sum over system states reduces to a sum
over intermediate states for the sites A and B and a sum over
radiation modes for the virtual photon. The result for this
pathway is as follows:

MAB(1) = i

4N ′
∑
r,s

∑
p,φ

(
h̄ck

n2

)3/2(
h̄cp

ε0V n2

)(qε0

V

)1/2
(

n2 + 2

3

)5

ei ē′
kē′

mē
(φ)
l e

(φ)
j μr0(B)

m μ
r0(A)
k μ

sr(A)
l μ

0s(A)
i μ

0r(B)
j

× {(
EB

0r − h̄ck′)(EA
0r + EB

0r − 2h̄ck′)[EA
0s + EB

0r − h̄c
(
2k′ + p

)](
EB

0r − h̄cp
)}−1

ei( p−k′)·rB . (18)

We have chosen the position A to be the origin of our spatial coordinate system, so the positional vector rB is the displacement
of site B from site A. The virtual photon has wave vector p and polarization state φ, but these will not appear as variables in the
final result, as all of their possible values are included in the sum [82]. Combining the result of Eq. (18) with the other 119 terms
for the other state sequences in Fig. 5 yields the full nonlocalized quantum amplitude:

MAB = i

4N ′

(
h̄ω

n2

)3/2(qε0

V

)1/2 1

n2
e−ik′·rBei ē′

kē′
mχ

(2)
i(jk)(−ω, − ω; 2ω)χ (1)

lm (−ω; ω)Vjl(n,k′,rB). (19)

As with the single-center contribution, Eq. (17), the above equation succinctly expresses the nonlinear-susceptibility and other
tensors as known functions: the linear susceptibility,

χ (1)
lm

(−ω,ω) = N ′

ε0

(
n2 + 2

3

)2 ∑
r

[
μ0r

l μr0
m

EB
r0 + h̄ω

+ μ0r
m μr0

l

EB
r0 − h̄ω

]
, (20)
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and the retarded resonance electric-dipole coupling [83],

Vjl(n,k′,rB) = eink′rB

4πε0r
3
B

[
(δjl − 3r̂B j r̂B l)(1 − ink′rB)−(δjl − r̂B j r̂B l)n

2k′2r2
B

]
. (21)

In Eq. (21), n is the complex refractive index. Fully
engaging the complex value enables dissipative effects to be
incorporated in the theory without contriving an additional
damping factor.

V. PAIR-GENERATION RATE

With the results of the previous two sections we now
have the matrix elements for both the localized Eq. (17)
and nonlocalized Eq. (19) mechanisms, together applicable
within the Fermi rule Eq. (14) in order to determine an overall
down-conversion rate. Since the amplitudes MA and MAB are
terms of Eq. (13) for a specific site ξ labeled A and a second
ξ ′ labeled B, the amplitude argument in Eq. (14) becomes a
sum over all pairs of sites A and B,

Mf i →
N∑
A

⎛
⎝MA +

N−1∑
B �=A

MAB

⎞
⎠. (22)

The MA term in principle has both third- and fifth-order
contributions, but the latter can be ignored as it is a minor
correction adding no new physics (see Fig. 2). Our focus is
therefore upon the modification to Mf i wrought by including
the nonlocal contributions, MAB. Substitution of Eqs. (17) and
(19) into Eq. (22) and using the Fermi rule, Eq. (14), gives a
rate equation for SPDC modified by delocalization:

� = S

∣∣∣∣∣ei ē′
kχ

(2)
i(jk)

[
ē′
j+ē′

mχ
(1)
lm

ε0

n2N ′(N−1)

N−1∑
B

e−ik′·rB Vjl

]∣∣∣∣∣
2

.

(23)

The tensor functions have been written without their
arguments for brevity. All scalar factors common to both terms

FIG. 4. One of the 120 Feynman time-ordered diagrams repre-
senting nonlocalized generation of correlated photon pairs of wave
vector k′. This particular diagram represents the upper pathway
in Fig. 5, and the single contribution to the total matrix element
represented by Eq. (18).

are consolidated into an undefined constant of proportionality
S. Notably, the amplitude Mf i has the same form for every
site A, so the sum over all positions of A becomes a factor of
N2 hidden within S.

The SPDC rate � is calculated by performing a global sum
of all sites B, including every possible interacting site in the
medium other than the chosen A. In a solid medium sample
any larger than a few micrometers this is an unfeasible number
of terms to include, so we only include sites that lie within a
certain cutoff distance from the point A. Each active site of the
medium is only included in the summation over B if rB � C,
such that C is the cutoff radius of a spherical region centered
on A, within which nonlocalization is to be accounted. By
calculating the rate as a function of this parameter C, we
can determine the relative contribution of sites B at various
distances from A.

The first step is to formulate the summation over B with
(N–1) terms as a function of C, yielding a tensor labeled σjl .

σjl(C) ≡
NC∑
B

e−ik′·rB Vjl . (24)

The integer (N–1) in Eq. (23) becomes NC , equal to the
number of centers B obeying rB � C. Expressed as a function
of the cutoff C, the rate equation (23) then becomes

�C = S

∣∣∣∣ei ē′
kχ

(2)
i(jk)

(
ē′
j + ε0

n2N ′ ē
′
mχ

(1)
lm

σjl

NC

)∣∣∣∣
2

. (25)

The expansion of the system from a single center to
a spherical region of radial cutoff C has implications for
interpreting the overall rate of observed pair emission. The
observable rate is increased by the cross-section area of
the active region. Rate equation (25) describes the down-
conversion from an individual center A, but by allowing for
emission of the second photon from any B within the sphere,
it is implicit that we are measuring emission over this circular
area. Hence the effective observable rate, �′

C , is given by
multiplying the second term by the cross-section area of the
sphere, πC2—since this is the transverse area from within
which a pair of photons can emerge when delocalization is
engaged:

�′
C = S

∣∣∣∣ei ē′
kχ

(2)
i(jk)

(
ē′
j + ε0

n2N ′ ē
′
mχ

(1)
lm

πC2σjl

NC

)∣∣∣∣
2

. (26)

Note that in the case of very small C such that there are no
centers B included, NC = 0 and therefore σ = 0. The second
term thus includes an indeterminate 0/0 factor. Choosing this
to be zero collapses the rate equation into the single-center
rate:

�′
0 = S|MA|2 = S

∣∣ei ē′
kχ

(2)
i(jk)ē

′
j

∣∣2
. (27)

Also note that expanding C indefinitely turns Eq. (24) into
a global sum of all possible centers B. The rate result in this
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FIG. 5. State-sequence diagram for the nonlocal process. The state for the system (comprising three parts: A, B, and radiation) evolves
from left to right, from state i shown at the far left, to state f at the far right. The process entails five distinct interaction events, each illustrated
with parallel lines of a given color: absorption of the input photon by A (green), creation of an output photon k′ by A (red), creation of an
output photon k′ by B (gray), interaction of the virtual photon p by A (blue), and interaction of the virtual photon p by B (gold).

case is the overall rate encompassing delocalization across all
available sites. If the material is of uniform density, the ratio
πC2σjl/NC converges at the limit of infinite C, and therefore
the overall rate �′

∞ can be found by the convergence of Eq. (26)
at long range.

VI. RATE COMPUTATION

In this section we describe numerical calculations of the
total rate of pair production, given by the complete index
summation of Eq. (26). The numerical procedure, a lattice sum
calculation, follows earlier approaches for calculating quan-
tum amplitudes associated with molecular aggregates [84,85].
Here, we expand upon a preliminary, less computationally
demanding treatment of SPDC, in which results were restricted
to a single element of the coupling tensor [41].

Calculations of this kind require information about the
physical structure of the medium, as each term of Eq. (24)
is an explicit function of B’s position rB. For computational
efficiency it is convenient to approximate the medium as a
primitive cubic lattice. Point A is an appropriate origin for the
coordinate system, and an optical center B is placed at every
site that has integer values for the x, y, and z coordinates
in units of the unit-cell length u, such that N ′ = u−3. The

latter length is chosen to be approximately one-tenth of the
wavelength for the output mode k′, as given by λ′ = 2π/k′.
The computational implementation of this calculation begins
by constructing a virtual cubic lattice of 1013 positions.

Implementation of the numerical rate calculation was
achieved using FORTRAN 90 with Intel compilers. This work
was broken down into two phases. The first (and most
computationally demanding) phase was an implementation of
Eq. (24), calculating values of σjl for all values of C up to 50u,
in increments of 0.1u. The results from this are illustrated in
Fig. 6. It is important to note that the σjl values feed into
the quantum amplitude in the form of a tensorial product, and
that it is the modulus square of the overall amplitude that
determines the rate—as given by Eq. (26).

While Eq. (20) allows for the linear susceptibility to have an
arbitrary second-rank tensor form, the assumption of medium
isotropy allows it to be cast as a scalar such that χ (1)

lm = δlm χ (1).
The relationship χ (1) = |n|2–1 serves as a useful estimate for
this scalar value. To secure values that give an indicative
magnitude of the effects that might arise with a nonlinear
optical medium typically used for SPDC, we adopt scalar
nonlinear-susceptibility values for β-barium borate (BBO).
It is to be understood that, as regards its linear optical
susceptibility, the implications are no more than a neglect of
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FIG. 6. The four independent components of the tensor σjl(C), computed according to Eq. (24) in our virtual cubic lattice of 1013 positions.
In order to avoid alignments that might influence the sum over positions, the direction of the radiation mode is chosen to be misaligned with
the Cartesian unit vectors—in a standard basis, k′ = 0.25u−1 î + 0.5u−1 ĵ + 0.25u−1k̂. The index symmetry of Vij [Eq. (21)] leads to σjl = σlj ,
and the equality kx = kz in our choice of k′ leads to σxx = σzz and σxy = σyz.

simple orientational features in the propensity for nonlocal
down-conversion. However, for the nonlinear-susceptibility
tensor χ

(2)
i(jk) that plays a central role in down-conversion, we

need not entertain such approximations. If the plane of each
BBO unit is aligned to the lattice xy plane, then only four com-
ponents of χ (2) are significant: χ (2)

x(xx) = χ
(2)
y(yy); χ

(2)
z(xx) = χ

(2)
z(yy),

and the other 14 components are negligible. It is expedient to
use dimensionless values for these components, as the units of
χ (2) are absorbed by the proportionality constant S in Eq. (23).

The second phase of computation utilized the σjl data and
a calculation of NC in an explicit implementation of Eq. (26),
to calculate the rate of SPDC as a function of the cutoff radius
C from zero to 50u. The results are shown in Fig. 7.

The nearest six centers B are at a distance of 1.0u from the
origin A, so the first nine data points where C < 1.0u describe
the limit �′

C = �′
0 according to Eq. (27). The opposite limit,

�′
∞, is found at the convergence of �′

C in the region C > 4λ′,
where delocalization over more than 300 000 centers B is
accounted for. It is worth observing that the physically sensible
convergence to a stable plateau is crucially dependent on
correctly applying the normalization factor for the milticenter
form of the sum over states, as in Eq. (12); otherwise, asymp-
totic convergence cannot be secured. Comparing the overall
delocalized result to the single-center rate gives us the ratio
�′∞/�′

0 = 1.022, meaning that the inclusion of long-range
delocalization enhances the observable rate of SPDC by 2.2%.

VII. DISCUSSION

The main result of this work is concerned with the nonlocal
mechanism of generating photon pairs in SPDC, and possible
manifestations of these effects are discussed below. First,
however, we note that few previous works have attempted

to tackle, at quantum electrodynamical level, the multicenter
sums required for this kind of analysis. By far the largest
body of such calculations is limited to two-center interactions,
as featured extensively in works by Power [86], Craig and
Thirunamachandran [44], Andrews and Bradshaw [42], and
Salam [45] amongst others. These are generally calculations
that concern the energies, forces, and spectroscopic transitions
associated with specifically pairwise interactions. To take
one recent example [87], an article on medium-modified
resonance energy transfer (RET) cast the effects in terms of
pairwise coupling between the nearest individual molecules of
the bulk; i.e., N = 2. For all such cases the (N–1)−1 factor that
arises in the appropriate counterpart to Eq. (12) is simply unity,
and no notice needs to be taken of it. There are a limited number
of reports on explicit three-molecule calculations using QED
[88,89], for which lattice sums were irrelevant. Following
some earlier work in terms of dopant concentrations [90], an
explicit summing of quantum amplitudes over crystallographic
lattices of various kinds appears in the work of Leeder and
Andrews [91], which did not engage the full analysis reported
here.

The results that we have secured confirm and consolidate
our preliminary results identifying a potentially significant
mechanism for the nonlocal production of down-converted
photon pairs, [41] now fully accounting for the multicenter
sums. The unique aspect of this work extends from an advance-
ment of the underlying theory, through a more substantial
computational analysis, to results that indicate an effect that is
meaningfully within the reach of experimental detection—the
possibility of one photon pair in every 50 or so emerging
from close but physically distinct locations. Of course, for
different materials, different axial orientations, and different
optical frequencies, the results could be quite different—but
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FIG. 7. The observable rate of SPDC, �′
C , computed according to Eq. (26) using the σ results shown in Fig. 6, and normalized against the

C = 0 rate given by Eq. (27). Values for the material parameters are chosen to approximately match BBO: n ∼= 1.7 + 0.1i; χ
(2)
x(xx) = 5.8 and

χ
(2)
z(xx) = 0.29 (manufacturer reported values relative to standard KDP reference) [101].

the magnitudes of the computational parameters in our
quantitative analysis are realistically representative: Some
systems could exhibit less prominent nonlocal effects, but
others could indeed give such effects even greater prominence.

In terms of physical significance, the dampened oscillatory
form of behavior exhibited in Fig. 7 merits a number of com-
ments. Although the results should be taken within the context
of a rectangular lattice model, several interesting insights
arise, and may lead to more sophisticated numerical models. It
is worth noting that the abscissa scale meaningfully signifies
not only the effects of expanding the scale of the calculation,
to distances more and more remote from the site of input
photon annihilation: it can also be understood to represent the
actual effect of increasing the size of nanoparticles in their
capacity to produce down-conversion, including provision for
the nonlocal mechanism. In this respect the rise in efficiency
that runs out to about half an output wavelength means that
the efficiency of down-conversion actually increases with
particle size, up to a limit that represents an optimum size,
where the propensity for SPDC is markedly larger per unit
volume than a bulk of the same material. Hence, essentially
due to local effects of constructive optical interference, it is
possible for compacted nanoparticles of similar dimensions
to exhibit enhanced nonlinear optical activity, compared to
the bulk. An analogous manifestation of coherence came to
light in connection with second-harmonic generation (the
time reversal of SPDC) in nanomaterials [92–95]. Beyond
this point, the trailing off to an asymptotic limit signifies that
as the sample size grows beyond a couple of wavelengths, the
scale of such advantages is quickly lost—because additional
contributions presenting destructive interference come into
play. Eventually, any individual particle becomes more and
more representative of the bulk phase. The nonlinear conver-

sion efficiency plateaus—but still the efficiency is higher than
would be expected from entirely localized pair emission.

Several features of nonlocal origin can be expected to be
detectable in the output. First, one can anticipate a degree of
temporal broadening, associated with some photon pairs being
emitted from positions that are within a wavelength or so in
advance of, or behind, each other with respect to the forward
emission direction. The corresponding lateral broadening is
also interesting; it signifies that in applications such as “ghost
imaging” [33,96–98], the resolution of the image will be to
some extent compromised by an insurmountable phenomenon
of quantum origin—notwithstanding experimental limitations
associated with physical optics [99]—because perfect imaging
would require each photon pair to originate from precisely the
same spatial origin. This effect, if the nonlocal mechanism had
not been identified, might indeed be interpreted as simply man-
ifesting a position-momentum quantum uncertainty with re-
spect to directions perpendicular to the down-converted photon
propagation. It is also interesting to conjecture whether effects
of a similar kind might play a role in the creation of two-photon
states through interactions between Rydberg atoms [100]. It
remains to be seen what other forms of photon-pair nonlocality
might prove amenable to experimental determination; the pos-
sible implications for quantum entanglement between emitted
photons is a subject now under further active investigation.
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