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Post-error slowing (PES) is consistently observed in decision-making tasks after
negative feedback. Yet, findings are inconclusive as to whether PES supports
performance accuracy. We addressed the role of PES by employing drift diffusion
modeling which enabled us to investigate latent processes of reaction times and
accuracy on a large-scale dataset (>5,800 participants) of a visual search experiment
with emotional face stimuli. In our experiment, post-error trials were characterized
by both adaptive and non-adaptive decision processes. An adaptive increase in
participants’ response threshold was sustained over several trials post-error. Contrarily,
an initial decrease in evidence accumulation rate, followed by an increase on
the subsequent trials, indicates a momentary distraction of task-relevant attention
and resulted in an initial accuracy drop. Higher values of decision threshold and
evidence accumulation on the post-error trial were associated with higher accuracy
on subsequent trials which further gives credence to these parameters’ role in post-
error adaptation. Finally, the evidence accumulation rate post-error decreased when the
error trial presented angry faces, a finding suggesting that the post-error decision can
be influenced by the error context. In conclusion, we demonstrate that error-related
response adaptations are multi-component processes that change dynamically over
several trials post-error.

Keywords: post-error slowing, drift diffusion model, visual search, cognitive control, error monitoring, facial
emotional stimuli

INTRODUCTION

A typical response to errors in decision making tasks is an increase in response time on trials
following the error (Rabbitt, 1969; Laming, 1979). This so-called post-error slowing (PES) has
traditionally been attributed to indicate a cognitive control process (Botvinick et al., 2001;
Ridderinkhof et al., 2004), ensuring more cautious decision making. However, whether PES is
indeed a beneficial process linked to a post-error improvement in accuracy in the sense of a
speed-accuracy trade-off, as predicted by the cognitive control account (Laming, 1979; Bogacz
et al., 2010), a by-product of a re-orienting process initiated by the error (Notebaert et al., 2009;
Houtman and Notebaert, 2013), or a detrimental process reflecting capacity limitations in response
monitoring (Jentzsch and Dudschig, 2009) is not clear (as discussed in reviews by Danielmeier
and Ullsperger, 2011; Ullsperger et al., 2014). For instance, in a visual search task, Steinhauser
et al. (2017) found operation specific post-error adjustments in the same source as the faulty
cognitive process, which lends support for cognitive (and thus adaptive) control processes playing
a role post-error. And in a modified Stroop task, Hajcak et al. (2003) found a relation between
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the duration of the PES and post-error accuracy, even after inter-
trial intervals of up to 5 s. On the other hand, Notebaert et al.
(2009) observed that participants were slowing after both errors
and corrects if these were infrequent. Notebaert et al. (2009)
proposed that it is instead the commonly low frequency of errors
which captures attentional resources. Another explanation for
a non-functional account of PES was given by Jentzsch and
Dudschig (2009) who suggested that the post-error monitoring
process takes up limited central resources and therefore inhibits
decision processes subsequent to the error.

Beyond the immediate error-correction on the first trial
after an error, there are indications that error monitoring
processes may improve accuracy on responses that occur later
in time (Hester et al., 2007, 2008, 2009; Klein et al., 2007;
Schiffler et al., 2016). For instance, Hester and colleagues
demonstrated that posterior medial frontal cortex activity both
on error (Hester et al., 2009) and post-error trials (Hester
et al., 2007) was associated with decision accuracy several
trials later. Further, a recent study showed that memory-
reliant PES may benefit learning in a reinforcement learning
context (Schiffler et al., 2016). Here, the slowing was related
to stimulus specific errors that occurred on average 22 s
earlier, which demonstrates that post-error response time
adaptations can serve a function in learning on a longer
timescale.

A recently proposed framework by Ullsperger and
Danielmeier (2016) could potentially link the conflicting
accounts of PES. This account suggests, based in part on
results from a motion discrimination task (Purcell and Kiani,
2016) that an error invokes a two-component adaptation
process: The post-error reaction is marked by (a) an increase
in the threshold to commit a decision on the one hand and
(b) a decreased rate of sensory evidence accumulation on
the other hand. In practice, this means that the reaction
time (RT) on the first trial after an error is slower, but the
time is momentarily used less efficiently with regard to
gathering necessary task-specific information. According to
this proposal, task selective attention should increase over
the trials following the first post-error trial and thereby
increase performance accuracy. This stipulation is reinforced
by recent results from a dual task paradigm, showing both
control and interference components in PES (Steinhauser et al.,
2016).

The unifying framework by Ullsperger and Danielmeier
(2016) is further supported by results from drift diffusion
modeling. Drift diffusion models have become increasingly
instrumental in studying the latent decision process underlying
RT adaptations (for recent reviews, see Forstmann et al.,
2016; Ratcliff et al., 2016). These models rely on the idea
that during decision making in two-alternative forced choice
tasks, evidence is accumulated in a noisy fashion toward one
or the other response alternative presented until a decision
boundary is reached (Ratcliff and McKoon, 2008). When
studying response speed adaptations on immediate post-error
trials, Dutilh et al. (2012b) found that PES reflected an increase
in the distance between the two decision boundaries, the so
called decision threshold, which indicates increased response

caution. In addition, Purcell and Kiani (2016) also demonstrated
a decrease in evidence accumulation related to PES, suggesting an
attentional decoupling from the current task on the first post-
error trial. Changes in non-decision time in diffusion models
can be attributed to afferent and efferent processes relative to
the decision. Thus, the non-decision time entails both early
visual processing, e.g., time until stimulus reaches the retina
and feature extraction, and motor execution of the decision
(Ratcliff and McKoon, 2008). Previously, reductions in non-
decision time have particularly been found when response
speed was emphasized (Rinkenauer et al., 2004; Mulder et al.,
2010).

A possible reason as to why evidence accumulation rate
decreases and response time slows at a time apparently calling for
alertness and efficient cognition, may be that error monitoring
is influenced by the emotional content on the error trial
(Wiswede et al., 2009; Caudek et al., 2015; Maier et al., 2016)
and hence involves emotional processes. For instance, Wiswede
et al. (2009) have found that a transient induction of negative
affect enhanced the error-related negativity measured by EEG
and Van der Borght et al. (2016) found that PES is adaptive
for individuals low in anxiety, but relates to a non-adaptive
process in individuals high in trait anxiety. Furthermore, a recent
study showed that post-error changes in RT were influenced
by emotional properties of the error stimulus (Caudek et al.,
2015), and Verbruggen et al. (2016) showed that PES can
depend on the context in which the error occurs, where
response times after gambling losses were shorter than after
winning (unlike PES). Follow-up experiments pointed to an
impulsive and non-adaptive underlying cause, rather than a
cognitive one.

That the study of post-error processing can reveal the
specific influence of emotion on adaptive processes presents an
interesting alternative approach when exploring the influence of
emotion on visual attention in general. Indeed, despite the fact
that there is now a large literature on using facial emotional
stimuli in visual search tasks going back almost three decades, the
field has been troubled by difficulties in separating the influence
of emotional factors on search behavior from the influence of
perceptual factors (for an overview, see e.g., Lundqvist et al.,
2015). Hence, an approach that moves away from analyzing RTs
and accuracy on successful responses and focuses on post-error
effects may offer new insights into understanding how emotional
stimuli influence our behavior.

Adaptive post-error adaptations have recently been identified
in a visual search experiment (Steinhauser et al., 2017). In
the current study, we use the proposed model by Ullsperger
and Danielmeier (2016) to explore whether this framework of
adaptive and non-adaptive PES components can be applied
to results from a visual search paradigm consisting of
neutral, angry, and happy faces with three levels of difficulty.
We then extend the study of drift diffusion parameters
to include five consecutive responses after the error to
explore the impact of an error on forthcoming decisions.
Furthermore, we examine the influence from the emotional
stimulus on the error-monitoring process to study how the
emotional valence of an error trial influences latent decision
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processes on the first post-error trial. Finally, we investigate
how different decision components on the first post-error
trial contribute to accuracy improvements on the following
trials.

MATERIALS AND METHODS

Participants
In total, 6,047 participants (2,935 women) took part in the
experiment. The experimental setup was at display at the art
exhibition “Passions” at Nationalmuseum, Stockholm, Sweden,
March 8th to August 12th, 2012, and the data analyzed have
been collected from visitors who volunteered to do the task.
Apart from gender, no other information about participants was
collected. Institutional review board approval was not required
for this study as per our institution’s guidelines and national
regulations. Consent was implied by participants voluntarily
initiating the task after detailed information about the aims of
the research was provided to participants, both on the text panels
accompanying the installation, and on the TV screen before the
experiment began.

Apparatus
The experiment was programmed using Adobe Director 11
software (Adobe Inc.), run on a Pentium IV computer, with a 60
inch LED TV at a 1024 by 768 pixels resolution and viewed from
approximately three meters distance.

Stimuli
The emotional facial stimuli were selected from the AKDEF
dataset (Lundqvist and Litton, 1998). These stimuli consist
of images of an averaged male and an averaged female face,
each displaying three different expressions (neutral, happy, and
angry). The original angry and happy faces were modified to
produce emotional expressions at intensities varying between
80 and 100%. The modification of the faces was made with
Sqirlz Morph 2.11, and key points were used to guide the
morph between facial features (e.g., lips, mouth shape, eyes,
nose wrinkles, facial outline). Faces with 80, 90, and 100%
emotional intensity were created in the neutral-to-angry and
neutral-to-happy continua for the female and male averaged
faces, respectively. The morphed faces reflect varying difficulty
levels and we refer to the levels of difficulty as I80, I90, and I100,
respectively, with I80 being the most difficult one to distinguish
from neutral. The size of each face was 150× 200 pixels.

Visual Search Task
During the visual search task (Figure 1), each stimulus display
consisted of six faces, presented in a circular display. In 40% of
the displays, the so-called “no target” conditions, all faces were of
the same emotional expression (neutral). In 60% of the displays,
the so-called “target present” conditions, one of the six faces was
of a different emotional expression from that of the background
distractors (angry or happy). A target face could occur at any of

1http://www.xiberpix.net

the six positions, resulting in a total of 12 (2 distractor emotions
∗ 6 positions) different displays containing a target, and one
display type without target. The gender of presented faces was
randomized between participants.

Initial self-paced instructions explained that the task was
to decide whether all faces in a display were similar (and
then the left key should be pressed with the left index finger),
or if one face was different from the others (the right key
should be pressed with the right index finger). A trial was
initiated by a fixation point presented for 500 ms at the
center of the screen. The stimulus display was then exposed
until the participant responded, after which a two second
feedback message was presented (“Correct!” or “Wrong.”) during
which the target face was highlighted, before the fixation point
reappeared on the screen, initiating a new trial (RSI: 2,500 ms).
Each participant was exposed to a minimum of 20 randomly
ordered trials with the same face intensity (difficulty level) on
all trials. The experiment ended when participants reached a
criterion of 20 correct trials. Error trials were recycled and
presented again at a later randomized point among the remaining
trials.

Data Exclusion
We excluded participants who performed with an accuracy of at
least three standard deviations below the mean and participants
with any single trial above 10 s since this likely reflects little
engagement with the task. After exclusion, 5,814 participants
(2,868 women) remained in the analysis. Furthermore, we
discarded all trials with a log-transformed RT of two standard
deviations above or below mean log-transformed RT to constrain
analyses to a reasonable range of RT, which lead to removal of
about 5% of all trials (Ratcliff, 1993). Thus in total, we analyzed
121,915 trials (110,601 correct trials, 11,314 errors).

Statistical Analysis
The data were analyzed within R (R version 3.3.0, R Core
Team, 2016). We used (generalized) mixed level model analyses
with subjects as random effects using the linear mixed-effects
models R package lme4 version 1.1-12 (Bates et al., 2015) and
maximum likelihood estimation. For linear mixed models, we
used the R package lmerTest version 2.0-30 (Kuznetsova et al.,
2015) to conduct F-tests and Sattherwaite’s approximations to
the degrees of freedom and likelihood ratio tests for generalized
mixed models. Post hoc pairwise tests (single-step method)
were implemented with the R package multcomp version 1.4-5
(Hothorn et al., 2015) and we report corrected p-values where
appropriate.

As we were interested in overall effects across task difficulties,
we controlled for the effects of difficulty by including it as an
independent variable in the statistical models.

Reaction Times
To control for potential effects of RT of different trial types on
PES we calculated PES by subtracting trial type specific post-
error RTs from associated same-trial pre-error RTs (1RT, see
Dutilh et al., 2012a) and report these results in addition to the
post-error RT.
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FIGURE 1 | Visual search paradigm. On every trial, six morphed faces from the Averaged Karolinska Directed Emotional Faces dataset (Lundqvist and Litton, 1998),
used with consent from the copyright holder, were presented in a circular display. Participants had to decide whether all faces displayed the same emotion (“all
neutral”) or one face showed a different emotion (“one deviant”). Angry and happy faces were used as deviant emotions. Feedback (“Correct!” or “Wrong.”) was
displayed after a choice and in the case of a missed deviant emotion, that particular face was highlighted.

Accuracy
We tested whether difficulty level and trial type (Angry, Happy,
Neutral) had an influence on accuracy and also tested if
accuracy was related to RTs on a trial-by-trial level. Similarly,
we examined if accuracy was systematically related to RTs after
errors in particular. Finally, we investigated whether accuracy was
influenced by the previous emotion on an error trial (happy faces
against angry faces).

Drift Diffusion Analysis
To investigate decision processes underlying the RTs, we used
drift diffusion modeling as implemented in the Hierarchical Drift
Diffusion Modeling toolbox (HDDM version 0.6.0, Wiecki et al.,
2013) in Python 2.7 (see Figure 2 for a conceptual overview).
In all analyses, we set up seven models related to three central
parameters in the drift diffusion model: the decision threshold
(a), the drift rate (v) and the non-decision time (Ter). The
seven models were [a], [v], [Ter], [a,v], [a,Ter], [v,Ter], [a,v,Ter].
Among these models, the best-fit model was determined by

model comparison using the Deviance Information Criterion
(DIC, Spiegelhalter et al., 2002), which takes into account the
likelihood of the model and number of parameters modeled, i.e.,
the complexity of the model, with lower DIC values indicating
better fit. It should be noted that DIC values for the second
best model fit were in many cases similar to the best model fit.
Directions of differences in parameter estimates in these second
best models were all concordant with the best fitting model. For
the modeled parameters, we used the default priors implemented
in HDDM, based on previous studies as collected by Matzke and
Wagenmakers (2009).

Convergence of chains was assessed through visual inspection
and use of the Gelman Rubin convergence statistic (Gelman
and Rubin, 1992). For all diffusion models, we included only
participants who committed at least one error.

Drift diffusion model chains did not converge properly when
estimating parameters on individual participant level. This was
likely due to individual participants having a very low absolute
amount of errors (1.72 CCEx error trials per participant on
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FIGURE 2 | Schematic of the drift-diffusion model. Random walks of two example decisions along the three critical diffusion parameters used in this study are
displayed. Evidence is accumulated in a noisy fashion with a drift rate v until it reaches one of the two decision boundaries. The distance between the two
boundaries is determined by the decision threshold a. Non-decision processes before (e.g., early visual processing) and after (e.g., motor execution, not shown) the
decision are reflected in the non-decision time Ter.

average in the final models). We therefore report all drift diffusion
parameters estimated on group level. However, it should be
noted that the parameters for single subject models indicated
effects into the same direction as the group based models for all
parameter estimates besides non-decision time estimates for two
models.

For each of the final models, we generated 50,000 samples
from the joint posterior distribution of all respective parameters
using Markov chain Monte Carlo sampling (Gamerman and
Lopes, 2006) and discarded the initial 10,000 samples as burn-in.

Model 1: First Trial after an Error
First, we implemented a model that captures the decision process
on the trial after an error, by comparing these trials to those that
are preceded by at least three correct trials. To avoid processes
biased by several consecutive errors we also constrained error
trials to be preceded by at least two correct responses (CCEx:
n = 6,195, CCCx: n = 41,407). To investigate whether difficulty
of trials had an effect on the decision process we added a model
that estimated separate parameters for the three difficulty levels
used in the task, separately for post-error and post-correct trials.

Model 2: Trials 2–5 after an Error
Next, we ran models for trials with a distance of two to five
trials following the error or correct trial to investigate whether
an error had a lasting effect on the decision process several trials
ahead. For this analysis, all intervening trials were required to be
correct (two trials in between: n= 34,191; three trials in between:
n = 24,848; four trials in between: n = 18,439; five trials in
between: n= 13,521).

Model 3: First Post-error Trial Predicting Accuracy on
Following Trials
Third, to isolate components of the decision process of the first
post-error trial that facilitate more accurate responses in the
future, we compared post-error trials that were followed by five

correct trials (n= 2,476) with those that were followed by one or
more errors on the next five trials (n= 1,679).

Model 4: First Post-error Trial, Divided by Error on
Angry or Happy Trials
Finally, we specified a model comparing first post-error trials
depending on whether the error was committed when an angry
(n= 3,905) or when a happy (n= 1,325) face was shown.

RESULTS

Reaction Times
Participants slowed their response time on the first trial after
errors compared to after correct responses, as demonstrated both
by RT [b = 452.96, t(75934) = 43.81, p < 0.001, Figure 3A]
and 1RT [b = 583.41, t(21491) = 27.34, p < 0.001]. This
was also the case for the subsequent trials 2–5 after the error,
even though regression coefficients indicated a progressively
smaller difference between post-error and post-correct trials
over time [Figure 3B; Dist2 RT: b = 143.42, t(58135) = 12.47,
p < 0.001, Dist2 1RT: b = 327.12, t(20135) = 13.68, p < 0.001,
Dist3 RT: b = 99.36, t(55630) = 7.79, p < 0.001, Dist3
1RT: b = 281.07, t(15985) = 10.25, p < 0.001, Dist4 RT:
b = 65.41, t(42449) = 4.66, p < 0.001, Dist4 1RT: b = 245.79,
t(13389)= 8.36, p < 0.001, Dist5 RT: b= 55.34, t(37599)= 3.54,
p < 0.001, Dist5 1RT: b = 247.60, t(11809) = 7.20,
p < 0.001].

Errors on trials showing an angry face among the neutral faces
lead to PES on first trial after error of larger magnitude than
happy faces [RT, b = 69.63, t(4567) = 2.01, p = 0.044, 1RT,
b= 132.54, t(1414)= 2.32, p= 0.020]. This effect persisted when
we constrained the analysis of the post-error trial to only neutral
trials [RT, b= 151.95, t(1557)= 2.66, p= 0.008, 1RT, b= 319.53,
t(488)= 3.56, p < 0.001].
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FIGURE 3 | RT and accuracy results. (A) Average RTs on trials pre- and post-error. All trials besides the error are required to be correct trials. Bold line indicates
minimal sequence of analysis for an error (CCEC). Error bars represent SEM. (B) Beta estimates indicating the difference between post-error and post-correct trials
in RT, depending on distance to error/correct. Error bars represent 95% CI. (C) Average accuracy on post-error trials. Dotted line displays average accuracy over the
whole task. Error bars represent SEM. ∗∗∗p < 0.001.

Accuracy
Accuracy was lower on the first trial after an error than
after correct trials [χ2(1) = 77.42, p < 0.001; b = −0.395,
z = −9.02, p < 0.001; average accuracy post-correct: 92.6%,
average accuracy post-error: 85.8%]. After Bonferroni correction
for multiple comparisons, there was no significant difference
in individual comparisons for post-error against post-correct
trials at any of the four subsequent distances investigated [Dist2
Acc: χ2(1) = 0.299, p = 0.585, Dist3 Acc: χ2(1) = 4.596,
p = 0.032, Dist4 Acc: χ2(1) = 0.26, p = 0.608, Dist5
Acc: χ2(1) = 4.49, p = 0.034]. We found that accuracy
increased over time after the error [Figure 3C, χ2(4) = 86.58,
p < 0.001] and this increase was driven mainly by trials
after the initial post-error dip in accuracy (E+2 > E+1:
z = 6.18, p < 0.001; E+3 > E+2: z = 2.46, p = 0.051;
E+4 > E+3: z = −1.35, p = 0.487; E+5 > E+4: z = −0.98,
p= 0.745).

Further, accuracy differed slightly between the three difficulty
levels [χ2(2) = 46.86, p < 0.001; average accuracy I100:
91.6%, average accuracy I90: 90.8%, average accuracy I80: 89.7%;
I100 > I90: z = 2.82, p = 0.013, I100 > I80: z = 6.81, p < 0.001,
I90 > I80: z= 3.97, p < 0.001] and between the three different trial
types [χ2(2)= 4127.8, p < 0.001; average accuracy all neutral face

trials: 95.5%, average accuracy happy face trials: 93.3%, average
accuracy angry face trials: 82.9%; neutral > happy: z = 13.10,
p < 0.001, neutral > angry: z = 56.28, p < 0.001, happy > angry:
z = 41.98, p < 0.001]. Accuracy on the post-error trial did
not significantly differ between previous errors on angry trials
and happy trials [angry: 85.7%, happy: 87.1%, χ2(1) = 1.48,
p= 0.224].

Relationship between Accuracy and
Reaction Times
We found a general relation between z-scored RT and accuracy
on the first post-correct trial [b = 0.1499, χ2(1) = 85.19,
p < 0.001] but there was no significant relationship between
z-scored RT on the first post-error trial and accuracy [b=−0.03,
χ2(1) = 0.6893, p = 0.406]. RTs on the first post-error trial were,
however, associated with average accuracy on the five subsequent
trials [b= 753.08, t(3544)= 7.495, p < 0.001].

Drift Diffusion Analysis
Model 1: First Trial after an Error
Among the diffusion models tested, a model with decision
threshold, drift rate and non-decision time as freely varying
parameters provided the best fit when comparing the first
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TABLE 1 | Relative DIC to best fitting model.

Model a v Ter a, v a, Ter v, Ter a, v, Ter

Distance 1 152.12 237.18 507.18 14.41 133.68 214.63 w

Distance 2 19.91 83.71 76.82 8.16 13.51 78.45 w

Distance 3 62.15 99.43 104.45 4.61 60.95 86.2 w

Distance 4 52.31 56.8 68.88 20.07 37.17 58.75 w

Distance 5 17.88 36.19 37.32 2.22 16.88 34.64 w

Accuracy 19.47 65.78 63.89 4.36 15.65 62.29 w

Emotion 4.38 w 6.91 1.5 4.02 1.28 1.36

Smaller DIC values indicate better fit. Best fitting models are denominated with a “w”.

FIGURE 4 | HDDM parameter estimates for post-error and post-correct trials. a, decision threshold; v, drift rate; Ter, non-decision time. (A) Posterior estimates of
HDDM parameters by distance from error and correct trial, respectively. Error bars represent standard deviation of posterior estimate. Bayesian probability for
posterior differences of all comparisons between post-error and post-correct trials was larger than 95%. (B) Violin plots for posterior estimates of HDDM parameters
for the decision process on post-error against post-correct trials at distance 1, separately for the three difficulties (80 denotes the hardest, 100 the easiest difficulty)
and diffusion parameters. Bayesian probabilities for posterior differences greater than 95% are marked with a “∗”. Note that this denotation is different to the
Frequentist probability of a p-value.

TABLE 2 | Drift diffusion model parameter estimates for distances 1–5 to an error/correct trial.

Measure Distance 1 Distance 2 Distance 3 Distance 4 Distance 5

a(PC) 2.874 2.848 2.828 2.811 2.82

P = 0 P = 0 P = 0 P = 0 P = 0

a(PE) 3.219 3.09 3.136 3.087 3.055

v(PC) 0.721 0.713 0.712 0.708 0.72

P = 1 P < 0.01 P = 0 P = 0 P = 0

v(PE) 0.596 0.766 0.836 0.815 0.802

Ter(PC) 0.795 0.802 0.801 0.803 0.804

P > 0.99 P > 0.99 P > 0.99 P = 1 P = 0.984

Ter(PE) 0.767 0.778 0.780 0.763 0.784

Parameter values correspond to Figure 4A. P-values below post-correct parameters indicate Bayesian probability of a larger posterior estimate for post-correct trials
compared to post-error trials. PC = post-correct. PE = post-error.

trial after an error and the first trial after a correct response
(see Table 1 for DIC values). The first trial after an error
was characterized by an increase in decision threshold
and a simultaneous decrease both in drift rate and non-
decision time (Figure 4A and Table 2). Posterior predictive
checks indicated that the modeling could account for RT
distributions observed in the task in relation to the two
conditions (Figure 5). Manipulations of task difficulty had the

strongest effect on the drift-rate v, with easier difficulties leading
to a higher drift rate. This effect was most pronounced
for post-correct trials [Bayesian posterior probabilities:
Pv(PC I100 > I80) = 100%, Pv(PC I100 > I90) = 95.14%,
Pv(PC I90 > I80) > 99.99%; Pv(PE I100 > I80) = 96.74%,
Pv(PE I100 > I90) = 72.31%, Pv(PE I90 > I80) = 89.09%,
Figure 4B and Table 3]. Furthermore, we found a higher
non-decision time for post-error trials between highest
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FIGURE 5 | Posterior predictive checks. Quantile probability plots for post-correct trials (Left) and post-error trials (Right), respectively. Crosses mark reaction time
means of five quantiles (10, 30, 50, 70, and 90%). Ellipses indicate quantile mean RTs predicted by the model. Height of ellipses corresponds to standard deviation
of posterior predictive distribution for respective quantile.

TABLE 3 | HDDM parameter estimates for distance 1 by difficulty.

Measure Post-correct Post-error

I80 I90 I100 I80 I90 I100

a 2.883 2.87 2.869 3.226 3.224 3.202

v 0.689 0.73 0.748 0.573 0.602 0.617

Ter 0.798 0.795 0.793 0.757 0.759 0.787

difficulty and both medium [Pt(PE I100 > I90) = 95.03%] and
lowest difficulty [Pt(PE I100 > I80) = 96.08%]. None of the other
parameter differences surpassed a threshold of 95%.

Model 2: Trials 2–5 after an Error
Diffusion analyses for trials subsequent to the first trial after
errors (trials 2–5) showed a sustained increase in decision
threshold and decrease in non-decision time, similar to the
first trial after the error. However, the initially lowered drift
rate increased after the first post-error trial and reached a
higher level than after post-correct trials (Figure 4A and
Table 2).

Model 3: First Post-error Trial Predicting Accuracy on
Following Trials
A drift diffusion model letting all three parameters vary provided
the best fit to the data as measured by DIC (Table 1). We found a
larger decision threshold (Bayesian posterior probability: 100%)
and higher drift rate (Bayesian posterior probability: 100%) as
well as shorter non-decision time (Bayesian posterior probability:
99.4%) on the first post-error trials which were followed by only
correct trials compared to the ones followed by one or more
errors (Figure 6).

Model 4: First Post-error Trial, Divided by Error on
Angry or Happy Trials
Model comparisons (Table 1) suggested that the best fit was
attained for the model which included only the parameter for the
drift rate (v) when comparing first post-error trials by the error
trial type. Errors on angry face trials resulted in a lower drift rate
(Bayesian posterior probability of the drift rate being lower after
errors on angry faces: 99.56%, Figure 7).

DISCUSSION

Our results (see Table 4 for an overview) show that after errors
are made on a visual search task, response time slows down
and response accuracy deteriorates on the first trial post-error.
Errors hence entail a cost. The results also show that this cost is
influenced by the error context, where errors on angry face trials
lead to PES of larger magnitude compared to errors on happy face
trials. We further demonstrate that the PES magnitude on the first
trial after an error influences future (five subsequent trials), but
not immediate (first trial after the error), response accuracy. PES
on the first trial after an error therefore appears to reflect both the
impact of the past error, and an adaptation toward future trials.
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FIGURE 6 | Posterior estimates of HDDM parameters on first trial after an error, comparing trials with five subsequent correct trials against those with at least one
error. Bayesian probabilities for posterior differences greater than 95% are marked with a “∗”. a, decision threshold; v, drift rate; Ter, non-decision time.

Post-error Decision Making Is Marked by
a Sustained Increase in Decision
Threshold and a Transient Decrease in
Evidence Accumulation
From drift diffusion modeling of our data we provide further
support for the notion that response time adaptation after errors
is a multi-component phenomenon, synthesizing both functional
and non-functional accounts of PES (Purcell and Kiani, 2016;
Steinhauser et al., 2016; Van der Borght et al., 2016). Our models
show that errors during the visual search task were followed
by an increase in decision threshold that remained above post-
correct decision threshold levels over the course of the following
five trials. This result indicates that the error prompts not only
an immediate adjustment in response caution, but also leads
to subsequently more cautious decisions. Drift rate initially
declined after an error but increased over the following trials,
reaching even higher levels compared to post-correct trials. The
decline most likely reflects the initial dip in accuracy during
the first post-error trial and the subsequent increase reflects the
regained accuracy across trials 2–5, a mechanism which could
be taken to correspond to task-related decreases and increases
in attention as proposed by a recent theoretical account of post-
error adjustments (Ullsperger and Danielmeier, 2016).

Higher Decision Threshold and Drift Rate
Immediately Post-error Benefit
Subsequent Performance
Both higher decision threshold and evidence accumulation rate
on the first trial after an error were associated with better

performance on subsequent trials in this task. In drift diffusion
models, positive adjustments of these two parameters usually
reflect higher response accuracy (Cavanagh et al., 2014; Ratcliff
et al., 2016). We find that on the first trial after an error, this
relationship also holds for accuracy on future trials (the next five
trials) after the error.

This result illustrates how the post-error adaptation process
may influence accuracy of future responses (Hester et al., 2007;
Schiffler et al., 2016). Given that task-relevant neural activation
increases and decreases have previously been found in relation to
post-error adaptations (King et al., 2010; Danielmeier et al., 2011;
Steinhauser et al., 2017), this finding is not surprising.

Non-decision Time and Errors
The modeling also shows that errors were associated with small,
but sustained decreases in non-decision time on trials after the
error. Conceivably, the lower non-decision time found after
errors in this task reflects a more vigorous and therefore quicker
motor execution. However, whether that is the case or whether
it corresponds to quicker encoding of relevant stimuli as shown
previously (Rinkenauer et al., 2004) is a question to be explored
in future studies, potentially employing neural measurements
to corroborate the evidence (Roitman and Shadlen, 2002; Kiani
et al., 2008).

Diffusion Parameters Are Influenced by
Task Difficulty and Stimulus-Dependent
Error Properties
Model parameters proved to vary consistently with how
external factors had been manipulated. The rate of evidence
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FIGURE 7 | Posterior estimates of HDDM parameters on first trial after an error, comparing previous errors on angry faces against happy faces. Bayesian probability
for posterior difference greater than 95% is marked with a “∗”. v, drift rate.

TABLE 4 | Behavioral and modeling results.

Measure First post-error trial Post-error trials 2–5

Reaction
time

Slowing (enhanced slowing
for angry compared to
happy errors)

Progressive decrease in
slowing

Accuracy Decrease No significant difference

Reaction
time and
accuracy

No significant relation Long RTs on first post-error
trial associated with higher
accuracy on the next five
trials

Decision process

Decision
threshold

Increase (higher decision
threshold related to higher
accuracy on trials 2–5)

Increase

Drift rate Decrease (stronger
decrease for angry than
happy errors; higher drift
rate related to higher
accuracy on trials 2–5)

Increase

Non-
decision
time

Decrease Decrease

All reported measures refer to comparisons of post-error versus post-correct trials.

accumulation was faster for easier difficulty levels on both post-
error and post-correct trials. Yet, both drift rate and decision
threshold differences were larger when comparing post-error
to post-correct trials than across difficulties, which shows that
endogenous error monitoring had a larger effect on the decision
process parameters than external manipulation of difficulty.

The results also demonstrated that the emotional expression
of the stimuli on the trial during which the error was made had
an impact on the decision process after the error. Errors on angry
face trials led to a decrease in evidence accumulation following
the error, compared to errors committed on happy face trials.
As no increase in accuracy concurred with PES on the first trial
after the error, this suggests a distraction from the task induced
by the emotional processing of the different facial stimuli. These
differences may stem from an attentional re-orienting response
when evaluating a potentially threatening situation (as suggested
by Ullsperger and Danielmeier, 2016).

In support of such a notion, it has been demonstrated that
the emotional valence of facial stimuli directly influences how
attention is engaged during visual search tasks such as the one
used in this study (Lundqvist et al., 2015). However, the literature
also shows that angry faces on average require more time for
emotion recognition as compared to happy faces (Nummenmaa
and Calvo, 2015). Hence, the question of whether the increased
PES caused by errors on angry faces stems from effects on how
attention is engaged by emotional valence, or from differences in
the processing speed during emotion recognition which affect the
drift rate on next trial after the error needs to be explored in future
studies.

In a similar visual search paradigm to ours, Caudek et al.
(2015) found (unlike us) that errors on angry face trials led
to response time speeding on the next trial. The discrepancies
in results could possibly reflect differences in how aware
participants were of their mistake, since in the study of Caudek
et al. (2015), no explicit feedback was provided to participants
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after they made a decision. Although error detection exists
in the absence of explicit feedback (Hester et al., 2005;
Bengtsson et al., 2009), PES has been more consistently observed
after perceived compared to unperceived errors (Nieuwenhuis
et al., 2001; Wessel et al., 2011). It could also be that the
discrepancies in results depend on differences between the
particular emotional stimuli used since stimulus selection and
between-expression intensity differences have been demonstrated
to strongly influence the direction of results when comparing
angry and happy faces in visual search tasks (Lundqvist et al.,
2014).

Limitations
While this study investigated adaptive and non-adaptive
reactions to an error in a large pool of participants, the low
amount of trials per participant implies that the distribution
of errors is skewed toward initial encounters of errors rather
than a repeated error reaction. Future studies should investigate
whether the results obtained here generalize to errors made
in later phases of a task after the initial adaptations to an
error. Furthermore, future experiments could also address
whether it is possible to influence the different post-error
decision components, e.g., by providing varying error feedback
that selectively impacts on decision threshold adaptations or
evidence accumulation changes. Another interesting question
that could be investigated in the future is whether individual
differences exert a specific influence on time courses of post-error
adaptations as for instance suggested by a recent study relating
trait anxiety to post-error accuracy (Van der Borght et al., 2016).

CONCLUSION

Taken together, our findings in a large scale visual search
experiment elucidate the time courses of both adaptive and
non-adaptive decision components of PES. That PES consists of
non-adaptive as well as adaptive components is in line with recent
findings (Steinhauser et al., 2016; Van der Borght et al., 2016).

We demonstrated that errors evoked a sustained increase
in response threshold that lasted for several trials, suggesting
a stable rise in response caution. In parallel, errors also
entailed a transient decrease in evidence accumulation with
a gradual increase over the following trials. This indicates a
disadvantageous immediate impact of the error and a potential
subsequent increase in attention, corresponding to accuracy
returning to average levels.

These findings resonate with recent empirical findings in
primates (Purcell and Kiani, 2016) and theoretical outlines
on post-error adaptations (Ullsperger and Danielmeier, 2016).
Further, our results suggest that emotional stimulus-specific
information from the error trial affects post-error adaptation, and
primarily seems to influence the attentional component, which
is in line with the findings of Van der Borght et al. (2016).
Finally, more accurate future trials could be differentiated from
less accurate trials through latent process components of the
decision during the first post-error trial. This shows that even in
the absence of a direct relation of RT and accuracy on the post-
error trial, post-error adaptations could still be beneficial with
regard to future trials, as has been previously observed (Schiffler
et al., 2016).

Our results show the importance of not only focusing on the
immediate post-error trial but also investigating the medium- to
long-term effects of an error on latent decision processes using
model-based approaches in order to improve the understanding
of how learning takes place.

AUTHOR CONTRIBUTIONS

BS conceived the idea for the study. DL contributed to the
experimental design and data acquisition. BS analyzed the data.
BS, SB, and DL contributed to the interpretation of the data.
BS, SB, and DL drafted the manuscript and provided critical
revisions. BS, SB, and DL approved the manuscript version to
be published, and agreed to accountability for all aspects of
the work.

FUNDING

This research was supported by KI KID-funding (ki.se; 2012),
Cornell’s Foundation (no webpage; 25213063) and Riksbankens
Jubileumsfond, the Swedish Foundation for Humanities and
Social Sciences (rj.se; Flexit RMP15-0913:1), all granted to SB.

ACKNOWLEDGMENTS

We are grateful to Nationalmuseum (www.nationalmuseum.se)
for including this data collection within the exhibition Passions.
We are also grateful to the 6,047 visitors who participated in the
experiment.

REFERENCES
Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects

models using lme4. J. Stat. Softw. 67, 1–48. doi: 10.18637/jss.v067.i01
Bengtsson, S. L., Lau, H. C., and Passingham, R. E. (2009). Motivation to do well

enhances responses to errors and self-monitoring. Cereb. Cortex 19, 797–804.
doi: 10.1093/cercor/bhn127

Bogacz, R., Wagenmakers, E. J., Forstmann, B. U., and Nieuwenhuis, S. (2010).
The neural basis of the speed-accuracy tradeoff. Trends Neurosci. 33, 10–16.
doi: 10.1016/j.tins.2009.09.002

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., and Cohen, J. D.
(2001). Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652.
doi: 10.1037/0033-295X.108.3.624

Caudek, C., Ceccarini, F., and Sica, C. (2015). Post-error speeding after threat-
detection failure. J. Exp. Psychol. Hum. Percept. Perform. 41, 1–50. doi: 10.1037/
a0038753

Cavanagh, J. F., Wiecki, T. V., Kochar, A., and Frank, M. J. (2014).
Eye tracking and pupillometry are indicators of dissociable latent
decision processes. J. Exp. Psychol. Gen. 143, 1476–1488. doi: 10.1037/
a0035813

Frontiers in Psychology | www.frontiersin.org 11 June 2017 | Volume 8 | Article 1077

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1093/cercor/bhn127
https://doi.org/10.1016/j.tins.2009.09.002
https://doi.org/10.1037/0033-295X.108.3.624
https://doi.org/10.1037/a0038753
https://doi.org/10.1037/a0038753
https://doi.org/10.1037/a0035813
https://doi.org/10.1037/a0035813
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-01077 June 27, 2017 Time: 17:11 # 12

Schiffler et al. Influence of Errors on Future Decision-Making

Danielmeier, C., Eichele, T., Forstmann, B. U., Tittgemeyer, M., and Ullsperger, M.
(2011). Posterior medial frontal cortex activity predicts post-error adaptations
in task-related visual and motor areas. J. Neurosci. 31, 1780–1789. doi: 10.1523/
JNEUROSCI.4299-10.2011

Danielmeier, C., and Ullsperger, M. (2011). Post-error adjustments. Front. Psychol.
2:233. doi: 10.3389/fpsyg.2011.00233

Dutilh, G., Vandekerckhove, J., Forstmann, B. U., Keuleers, E., Brysbaert, M.,
and Wagenmakers, E.-J. (2012a). Testing theories of post-error slowing. Atten.
Percept. Psychophys. 74, 454–465. doi: 10.3758/s13414-011-0243-2

Dutilh, G., Van Ravenzwaaij, D., Nieuwenhuis, S., Van der Maas, H. L. J.,
Forstmann, B. U., and Wagenmakers, E. J. (2012b). How to measure post-
error slowing: a confound and a simple solution. J. Math. Psychol. 56, 208–216.
doi: 10.1016/j.jmp.2012.04.001

Forstmann, B. U., Ratcliff, R., and Wagenmakers, E.-J. (2016). Sequential sampling
models in cognitive neuroscience: advantages, applications, and extensions.
Annu. Rev. Psychol. 67, 641–666. doi: 10.1146/annurev-psych-122414-033645

Gamerman, D., and Lopes, H. F. (2006). Markov chain Monte Carlo?: Stochastic
Simulation for Bayesian inference, 2nd Edn. Milton Park: Taylor & Francis.

Gelman, A., and Rubin, D. B. (1992). Inference from iterative simulation using
multiple sequences. Stat. Sci. 7, 457–472. doi: 10.1214/ss/1177011136

Hajcak, G., McDonald, N., and Simons, R. F. (2003). To err is autonomic: error-
related brain potentials, ANS activity, and post-error compensatory behavior.
Psychophysiology 40, 895–903. doi: 10.1111/1469-8986.00107

Hester, R., Barre, N., Mattingley, J. B., Foxe, J. J., and Garavan, H. (2007). Avoiding
another mistake: error and posterror neural activity associated with adaptive
posterror behavior change. Cogn. Affect. Behav. Neurosci. 7, 317–326. doi: 10.
3758/CABN.7.4.317

Hester, R., Barre, N., Murphy, K., Silk, T. J., and Mattingley, J. B. (2008). Human
medial frontal cortex activity predicts learning from errors. Cereb. Cortex 18,
1933–1940. doi: 10.1093/cercor/bhm219

Hester, R., Foxe, J. J., Molholm, S., Shpaner, M., and Garavan, H. (2005). Neural
mechanisms involved in error processing: a comparison of errors made with
and without awareness. Neuroimage 27, 602–608. doi: 10.1016/j.neuroimage.
2005.04.035

Hester, R., Madeley, J., Murphy, K., and Mattingley, J. B. (2009). Learning
from errors: error-related neural activity predicts improvements in
future inhibitory control performance. J. Neurosci. 29, 7158–7165.
doi: 10.1523/JNEUROSCI.4337-08.2009

Hothorn, T., Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A., and
Scheibe, S. (2015). Package “ multcomp.” R Packag. version 1.3-3. Available at:
https://cran.r-project.org/web/packages/multcomp/multcomp.pdf.

Houtman, F., and Notebaert, W. (2013). Blinded by an error. Cognition 128,
228–236. doi: 10.1016/j.cognition.2013.04.003

Jentzsch, I., and Dudschig, C. (2009). Why do we slow down after an error?
Mechanisms underlying the effects of posterror slowing. Q. J. Exp. Psychol.
(Hove) 62, 209–218. doi: 10.1080/17470210802240655

Kiani, R., Hanks, T. D., and Shadlen, M. N. (2008). Bounded integration in
parietal cortex underlies decisions even when viewing duration is dictated by
the environment. J. Neurosci. 28, 3017–3029. doi: 10.1523/JNEUROSCI.4761-
07.2008

King, J. A., Korb, F. M., von Cramon, D. Y., and Ullsperger, M. (2010). Post-
error behavioral adjustments are facilitated by activation and suppression
of task-relevant and task-irrelevant information processing. J. Neurosci. 30,
12759–12769. doi: 10.1523/JNEUROSCI.3274-10.2010

Klein, T. A., Neumann, J., Reuter, M., Hennig, J., Von Cramon, D. Y., and
Ullsperger, M. (2007). Genetically determined differences in learning from
errors. Science 318, 1642–1645. doi: 10.1126/science.1145044

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2015). Package “
lmerTest.” R Packag. version 2.0-6. Available at: https://cran.r-project.org/web/
packages/lmerTest/lmerTest.pdf.

Laming, D. (1979). Choice reaction performance following an error. Acta Psychol.
(Amst). 43, 199–224. doi: 10.1016/0001-6918(79)90026-X

Lundqvist, D., Bruce, N., and Öhman, A. (2015). Finding an emotional face in
a crowd: emotional and perceptual stimulus factors influence visual search
efficiency. Cogn. Emot. 29, 621–633. doi: 10.1080/02699931.2014.927352

Lundqvist, D., Juth, P., and Öhman, A. (2014). Using facial emotional stimuli
in visual search experiments: the arousal factor explains contradictory results.
Cogn. Emot. 28, 1012–1029. doi: 10.1080/02699931.2013.867479

Lundqvist, D., and Litton, J.-E. (1998). The Averaged Karolinska Directed Emotional
Faces - AKDEF. Stockholm: Karolinska Institute.

Maier, M. E., Scarpazza, C., Starita, F., Filogamo, R., and Làdavas, E. (2016). Error
monitoring is related to processing internal affective states. Cogn. Affect. Behav.
Neurosci. 16, 1050–1062. doi: 10.3758/s13415-016-0452-1

Matzke, D., and Wagenmakers, E.-J. (2009). Psychological interpretation of the ex-
gaussian and shifted wald parameters: a diffusion model analysis. Psychon. Bull.
Rev. 16, 798–817. doi: 10.3758/PBR.16.5.798

Mulder, M. J., Bos, D., Weusten, J. M. H., Van Belle, J., Van Dijk, S. C., Simen, P.,
et al. (2010). Basic impairments in regulating the speed-accuracy tradeoff
predict symptoms of attention-deficit/hyperactivity disorder. Biol. Psychiatry
68, 1114–1119. doi: 10.1016/j.biopsych.2010.07.031

Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P., and Kok, A. (2001).
Error-related brain potentials are differentially related to awareness of response
errors: evidence from an antisaccade task. Psychophysiology 38, 752–760.
doi: 10.1111/1469-8986.3850752

Notebaert, W., Houtman, F., Opstal, F., Van Gevers, W., Fias, W., and Verguts, T.
(2009). Post-error slowing: an orienting account. Cognition 111, 275–279.
doi: 10.1016/j.cognition.2009.02.002

Nummenmaa, L., and Calvo, M. G. (2015). Dissociation between recognition
and detection advantage for facial expressions: a meta-analysis. Emotion 15,
243–256. doi: 10.1037/emo0000042

Purcell, B. A., and Kiani, R. (2016). Neural mechanisms of post-error adjustments
of decision policy in parietal cortex. Neuron 89, 658–671. doi: 10.1016/j.neuron.
2015.12.027

R Core Team (2016). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing. Available at: https://www.R-
project.org/

Rabbitt, P. M. (1969). Psychological refractory delay and response-stimulus
interval duration in serial, choice-response tasks. Acta Psychol. (Amst). 30,
195–219. doi: 10.1016/0001-6918(69)90051-1

Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychol. Bull.
114, 510–532. doi: 10.1037/0033-2909.114.3.510

Ratcliff, R., and McKoon, G. (2008). The diffusion decision model: theory and data
for two-choice decision tasks. Neural Comput. 20, 873–922. doi: 10.1162/neco.
2008.12-06-420

Ratcliff, R., Smith, P. L., Brown, S. D., and McKoon, G. (2016). Diffusion decision
model: current issues and history. Trends Cogn. Sci. 20, 260–281. doi: 10.1016/
j.tics.2016.01.007

Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., and Nieuwenhuis, S. (2004). The
role of the medial frontal cortex in cognitive control. Science 306, 443–447.
doi: 10.1126/science.1100301

Rinkenauer, G., Osman, A., Ulrich, R., Muller-Gethmann, H., and Mattes, S.
(2004). On the locus of speed-accuracy trade-off in reaction time: inferences
from the lateralized readiness potential. J. Exp. Psychol. Gen. 133, 261–282.
doi: 10.1037/0096-3445.133.2.261

Roitman, J. D., and Shadlen, M. N. (2002). Response of neurons in the lateral
intraparietal area during a combined visual discrimination reaction time task.
J. Neurosci. 22, 9475–9489. doi: 10.1016/S0377-2217(02)00363-6

Schiffler, B. C., Almeida, R., Granqvist, M., and Bengtsson, S. L. (2016). Memory-
reliant posterror slowing is associated with successful learning and fronto-
occipital activity. J. Cogn. Neurosci. 28, 1539–1552. doi: 10.1162/jocn_a_
00987

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002). Bayesian
measures of model complexity anf fit. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 64,
583–639. doi: 10.1111/1467-9868.00353

Steinhauser, M., Ernst, B., and Ibald, K. W. (2016). Isolating component processes
of posterror slowing with the psychological refractory period paradigm. J. Exp.
Psychol. Learn. Mem. Cogn. 43, 653–659. doi: 10.1037/xlm0000329

Steinhauser, R., Maier, M. E., and Steinhauser, M. (2017). Neural signatures of
adaptive post-error adjustments in visual search. Neuroimage 150, 270–278.
doi: 10.1016/j.neuroimage.2017.02.059

Ullsperger, M., and Danielmeier, C. (2016). Reducing speed and sight: how
adaptive is post-error slowing? Neuron 89, 430–432. doi: 10.1016/j.neuron.2016.
01.035

Ullsperger, M., Danielmeier, C., and Jocham, G. (2014). Neurophysiology of
performance monitoring and adaptive behavior. Physiol. Rev. 94, 35–79.
doi: 10.1152/physrev.00041.2012

Frontiers in Psychology | www.frontiersin.org 12 June 2017 | Volume 8 | Article 1077

https://doi.org/10.1523/JNEUROSCI.4299-10.2011
https://doi.org/10.1523/JNEUROSCI.4299-10.2011
https://doi.org/10.3389/fpsyg.2011.00233
https://doi.org/10.3758/s13414-011-0243-2
https://doi.org/10.1016/j.jmp.2012.04.001
https://doi.org/10.1146/annurev-psych-122414-033645
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1111/1469-8986.00107
https://doi.org/10.3758/CABN.7.4.317
https://doi.org/10.3758/CABN.7.4.317
https://doi.org/10.1093/cercor/bhm219
https://doi.org/10.1016/j.neuroimage.2005.04.035
https://doi.org/10.1016/j.neuroimage.2005.04.035
https://doi.org/10.1523/JNEUROSCI.4337-08.2009
https://cran.r-project.org/web/packages/multcomp/multcomp.pdf
https://doi.org/10.1016/j.cognition.2013.04.003
https://doi.org/10.1080/17470210802240655
https://doi.org/10.1523/JNEUROSCI.4761-07.2008
https://doi.org/10.1523/JNEUROSCI.4761-07.2008
https://doi.org/10.1523/JNEUROSCI.3274-10.2010
https://doi.org/10.1126/science.1145044
https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf
https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf
https://doi.org/10.1016/0001-6918(79)90026-X
https://doi.org/10.1080/02699931.2014.927352
https://doi.org/10.1080/02699931.2013.867479
https://doi.org/10.3758/s13415-016-0452-1
https://doi.org/10.3758/PBR.16.5.798
https://doi.org/10.1016/j.biopsych.2010.07.031
https://doi.org/10.1111/1469-8986.3850752
https://doi.org/10.1016/j.cognition.2009.02.002
https://doi.org/10.1037/emo0000042
https://doi.org/10.1016/j.neuron.2015.12.027
https://doi.org/10.1016/j.neuron.2015.12.027
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1016/0001-6918(69)90051-1
https://doi.org/10.1037/0033-2909.114.3.510
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1016/j.tics.2016.01.007
https://doi.org/10.1016/j.tics.2016.01.007
https://doi.org/10.1126/science.1100301
https://doi.org/10.1037/0096-3445.133.2.261
https://doi.org/10.1016/S0377-2217(02)00363-6
https://doi.org/10.1162/jocn_a_00987
https://doi.org/10.1162/jocn_a_00987
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1037/xlm0000329
https://doi.org/10.1016/j.neuroimage.2017.02.059
https://doi.org/10.1016/j.neuron.2016.01.035
https://doi.org/10.1016/j.neuron.2016.01.035
https://doi.org/10.1152/physrev.00041.2012
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-01077 June 27, 2017 Time: 17:11 # 13

Schiffler et al. Influence of Errors on Future Decision-Making

Van der Borght, L., Braem, S., Stevens, M., and Notebaert, W. (2016). Keep
calm and be patient: the influence of anxiety and time on post-error
adaptations. Acta Psychol. (Amst). 164, 34–38. doi: 10.1016/j.actpsy.2015.
12.007

Verbruggen, F., Chambers, C. D., Lawrence, N. S., and McLaren, I. P. L. (2016).
Winning and Losing: Effects on Impulsive Action. J. Exp. Psychol. Hum. Percept.
Perform. 43, 147–168. doi: 10.1037/xhp0000284

Wessel, J. R., Danielmeier, C., and Ullsperger, M. (2011). Error awareness
revisited: accumulation of multimodal evidence from central and autonomic
nervous systems. J. Cogn. Neurosci. 23, 3021–3036. doi: 10.1162/jocn.201
1.21635

Wiecki, T. V., Sofer, I., and Frank, M. J. (2013). HDDM: hierarchical bayesian
estimation of the drift-diffusion model in python. Front. Neuroinform. 7:14.
doi: 10.3389/fninf.2013.00014

Wiswede, D., Münte, T. F., Goschke, T., and Rüsseler, J. (2009). Modulation
of the error-related negativity by induction of short-term negative affect.
Neuropsychologia 47, 83–90. doi: 10.1016/j.neuropsychologia.2008.08.016

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Schiffler, Bengtsson and Lundqvist. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 13 June 2017 | Volume 8 | Article 1077

https://doi.org/10.1016/j.actpsy.2015.12.007
https://doi.org/10.1016/j.actpsy.2015.12.007
https://doi.org/10.1037/xhp0000284
https://doi.org/10.1162/jocn.2011.21635
https://doi.org/10.1162/jocn.2011.21635
https://doi.org/10.3389/fninf.2013.00014
https://doi.org/10.1016/j.neuropsychologia.2008.08.016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive

	The Sustained Influence of an Error on Future Decision-Making
	Introduction
	Materials And Methods
	Participants
	Apparatus
	Stimuli
	Visual Search Task
	Data Exclusion
	Statistical Analysis
	Reaction Times
	Accuracy

	Drift Diffusion Analysis
	Model 1: First Trial after an Error
	Model 2: Trials 2–5 after an Error
	Model 3: First Post-error Trial Predicting Accuracy on Following Trials
	Model 4: First Post-error Trial, Divided by Error on Angry or Happy Trials


	Results
	Reaction Times
	Accuracy
	Relationship between Accuracy and Reaction Times
	Drift Diffusion Analysis
	Model 1: First Trial after an Error
	Model 2: Trials 2–5 after an Error
	Model 3: First Post-error Trial Predicting Accuracy on Following Trials
	Model 4: First Post-error Trial, Divided by Error on Angry or Happy Trials


	Discussion
	Post-error Decision Making Is Marked by a Sustained Increase in Decision Threshold and a Transient Decrease in Evidence Accumulation
	Higher Decision Threshold and Drift Rate Immediately Post-error Benefit Subsequent Performance
	Non-decision Time and Errors
	Diffusion Parameters Are Influenced by Task Difficulty and Stimulus-Dependent Error Properties
	Limitations

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References


