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Abstract: 

Ag3PO4/TiO2 nanocomposite was fabricated by an in-situ precipitation method and then blended into 

poly(vinylidene fluoride) (PVDF) casting solution to prepare the ultrafiltration membrane via wet 

phase inversion technique. The water flux and bovine serum albumin (BSA) rejection rate of 

membrane were investigated meanwhile the ultrafiltration membrane morphologies and structural 

properties were analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD). 

Compared with the control membrane, the permeate performance of blended membranes was improved 

while possessing a steady BSA retention due to enhanced hydrophobility. Mechanical tests revealed 

that the modified membranes exhibited a larger tensile strength and breakage elongation. SEM images 

and the halo zone testing were employed to assess the antibacterial performances of the nanocomposite 

membranes against E. coli. The antibacterial tests confirmed that the modified membranes showed an 

effective antibacterial property against E. coli. 
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1. Introduction 

As a increasing global demand for water security and more stringent environmental requirements, 

membrane treatment processes play a significant role in water and wastewater treatment and maintain 

steady increase over the past few years ascribed to its advantages and specific characteristics such as 

compactness, high efficiency, ease operation, and low energy consumption [1-3]. In particular, 

polyvinylidene fluoride (PVDF) membrane is broadly employed for the processes of pervaporation, 

reverse osmosis, microfiltration and ultrafiltration ascribed to its extraordinary thermal, chemical 

stability, high mechanical strength, and inertness derived from its fluorinated structure [4, 5]. 

Nevertheless, membrane fouling, which results in unpredictably decreased life span and severe damage 

of the membranes, is still one of the important threats for PVDF membrane treatment technology 

because of its intrinsic hydrophobic nature and low surface energy property [1, 6, 7]. 

In order to make PVDF membranes less prone to irreversible fouling, lots of efforts have been 

devoted to improve membrane antifouling property and permeability in addition to the optimization of 

cleaning methods and operating conditions [8, 9], including material modification, polymer blend and 

surface modification [10, 11]. Among them, blending modification by incorporation inorganic 

nanomaterials to synthesize nanoparticle functionalized membranes has become a great interest for 

manufactures and researchers [12-14]. The blended membranes normally achieve the desired 

enhancement of separation properties since the resultant nanocomposite membranes simultaneously 

possess comprehensive characteristics of the blended nanomaterials and matrix membrane materials. 

Currently, many researchers have focused on Al2O3, SiO2, and TiO2 nanoparticles as blending materials 

for PVDF surface modification [15-19]. Among them, TiO2 nanoparticles have achieved great attention 

due to the high hydrophilicity, excellent chemical stability, and potential antifouling abilities [20, 21 , 

22, 23].  

A large number of studies have investigated the influences of TiO2 blending on the enhancement of 

PVDF membrane properties [24]. Cao et al. reported the effects of TiO2 nanoparticle size on the 

separation behavior and morphology of PVDF membrane and suggested nanosized TiO2 with 10 nm 

for blending modification [25]. Damodar et al. investigated the impacts of different dosages of TiO2 

nanoparticles in the PVDF dope on their antibacterial and antifouling behaviors, and found that good 

hydrophilicity of membrane was established by adding low concentration of TiO2 into the PVDF 

casting solution [26]. Oh et al. modified PVDF-UF membrane with TiO2 nanoparticles and found that 



the anti-fouling capability of the nanocomposite PVDF membranes was significantly improved [27]. 

Normally, blending TiO2 nanoparticles greatly influenced the pore size distribution and surface 

hydrophilicity of the nanocomposite membrane and thus the flux and permeability of TiO2 blended 

PVDF membrane was improved [28]. Compared to the unmodified PVDF membrane, incorporation of 

TiO2 nanoparticles into membrane matrix could also show better antibacterial and antifouling 

capabilities upon UV light irradiation [28]. Bacteria are the major microorganisms which lead to severe 

membrane fouling and irreversibly deteriorate membrane performance. To alleviate the bacteria 

induced membrane fouling the during membrane filtration processes, it is vitally important to ensure 

the membrane possessing an antibacterial property [29, 30]. Therefore, an effective strategy is usually 

proposed to add inorganic antibacterial agents such as silver nanoparticles or Ag-loaded 

nanocomposites.  

In this study, an Ag-loaded TiO2 nanocomposite (Ag3PO4/TiO2) was successfully blended into 

casting solution to improve the antifouling behavior and surface hydrophilicity of the PVDF 

nanocomposite membrane via the wet phase inversion process. The surface hydrophilicity, antibacterial 

behaviors and mechanical strength of the as-synthesized PVDF nanocomposite membranes were 

expected to be substantially approved. The influence of the different dope solution composition on the 

structural properties and separation performances of the resultant nanocomposite membranes were 

comprehensively explored with respect to BSA rejection ratios, pure water flux, surface morphologies, 

surface hydrophilicity, tensile strength, pore size and fouling resistance. The antibacterial property of 

Ag3PO4/TiO2 blended nanocomposite membrane was revealed by the adhesion of E. coli bacteria to 

membranes and halo zone testing.  

 

2. Materials and methods 

2.1 Material 

All reagents were used without further purification. FR-904 PVDF was purchased from Shanghai 3F 

New Material Co., Ltd. It was dried at 100 ℃ overnight in a vacuum oven prior to use for dope 

solution. Commercial TiO2 (Degussa P25, Germany), silver nitrate (99.8%), polyvinyl pyrrolidone 

(PVP, K-30), ethyl alcohol (99.7%), sodium chloride (99.5%), N，N-dimethyl formamide (DMF), 

trisodium phosphate, anhydrous disodium hydrogen phosphate, anhydrous sodium hydrogen phosphate, 

glutaral dehyde, isoamyl acetate were supplied by Shanghai Aladdin Bio-Chem Technology Co., Ltd. 



Nutrient agar, yeast extract, and peptone were provided by Shanghai bluetech and Beijing Aoboxing 

Biotechnology Co. Ltd, respectively. A Millipore Milli-Q Advantage A10 system was used to produce 

the DI water. E. coli DH 5α was provided by Sun Yat-sen University.  

2.2 Preparation of Ag3PO4/TiO2 nanocomposite  

The immobilization of Ag3PO4 nanoparticles onto the TiO2 surface was achieved by an in-situ 

precipitation method [31]. Firstly, 10 g TiO2 was dispersed in 50 ml deionized water and sonicated for 

five minutes. Then 3 g AgNO3 was added to the above TiO2 suspension. Na3PO4 solution was prepared 

by dissolving 2.3 g Na3PO4 in 30 mL deionized water. Na3PO4 solution was subsequently added 

dropwise to the TiO2 suspension. The mixture was continuously stirred for five hours at room 

temperature, finally the color of the solution changed from white to yellow. The precipitated solid 

product (Ag3PO4/TiO2) was then filtered, washed and dried for subsequent use.  

2.3 Fabrication of Ag3PO4/TiO2 blended membranes 

Different amounts of TiO2 and Ag3PO4/TiO2 nanocomposite were uniformly dispersed in the DMF 

solvent with the aid of sonication. Subsequently, PVDF and PVP were added into the suspensions with 

the aid of agitation for 4 h to prepare a homogeneous mixture, and then degassed at 60 °C overnight 

under negative pressure to remove air bubbles. All the as-synthesized nanocomposite membrane 

compositions were illustrated in Table 1. The dope solution was casted evenly onto a glass substrate 

with a casting knife gap of 250 μm. The fresh membrane was transferred into the DI water bath at 

ambient temperature. A similar casting dope without any blending material was prepared as a control.  

2.4 Characterization of Ag3PO4/TiO2 nanocomposite 

The XRD patterns were recorded using a Y-2000 diffractometer (Bruker AXS D8 Advance, Germany) 

with monochromatic Cu Kα1 radiation (λ = 1.5406 Å, 40 kV, 20 mA). The 2θ angular regions between 

10 and 90 °were used to confirm the crystalline structures of TiO2 and Ag3PO4/TiO2 nanocomposite.  

The morphological properties and selected area electron diffraction (SAED) were observed on a JEOL 

JEM-2100HR Transmission electron microscopy (TEM) equipped with an energy-dispersive X-ray 

(EDX) spectrometer. 

 

2.5 Characterization of the blended membranes  

2.5.1 Structural characterization 

The membranes were coated with a conductive platinum film by sputter coating method under vacuum 



and positioned on a metal holder to investigate the surface morphologies with a ZEISS Ultra 55 

FE-SEM. The samples for a clear cross-section SEM images were prepared by a fracture of the dried 

membranes in liquid nitrogen and then a platinum coating. The XRD patterns were recorded in the 2θ 

angular regions from 10 to 60 ° to study the crystalline structures of the nanocomposites. 

2.5.2 Separation performance of membrane samples 

The water flux of the nanocomposite membranes was carried out using a MSC300 ultrafiltration cup 

(Shanghai Mosu Science Equipment Co., Ltd.). The membrane was firstly filtered with DI water for 40 

min at 0.1 MPa until the flux was steady prior to investigating the membrane retention behavior by 1 

g/L BSA aqueous solution. BSA concentrations in the feed solution and the permeation were measured 

by a UV-Vis spectrophotometer (UV-1800, Shimadzu) at λmax of 280 nm. 

The permeate flux (Jw) was calculated using Eq. (1)                                                                                                                                    

tA

V
Jw


                     (1) 

where V is the total volume of permeation (L), Δt was the permeation time (h), and A is the effective 

membrane area (m2). The whole experiments were carried out at room temperature.   

The BSA rejection was determined by the ratio the BSA concentration in the feed solution and 

permeation according to Eq. (2)       
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where Cp and Cf were the concentrations of the permeate and the feed solution, respectively. 

The membrane hydrophilicity of was characterized by the water contact angle using a contact angle 

instrument (SL200B, USA KINO Industry Co., Ltd.). Firstly, a drop of DI water with 5 μL was loaded 

onto the outer surface of the as-synthesized membrane by a manual microliter syringe. Subsequently, 

the static water contact angle was measured immediately after taking the droplet image. Finally, the 

average value of the contact angle was obtained from the measurements of ten different points on each 

membrane. 

The porosity of the nanocomposite membranes was determined by the dry-wet weight method 

reported elsewhere [32]. The porosity ε (%) of the membranes was determined according to Eq. (3) 
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where W1 is the weight of wet sample, W2 is the weight of the dry sample, ρwater is the density of pure 

water, and ρPVDF is the density of dry state membrane (kg/m3). 

A universal tensile testing machine was utilized to explore tensile strength and elongation at break 

of the PVDF membranes by under ambient conditions. Each membrane sample with an effective length 

of 100 mm were tested at a constant uniaxially stretching with a rate of 100 mm/min. An average value 

from ten-times testing was finally collected.  

 

2.6 Determination of antibacterial activity 

2.6.1 Halo zone test 

The antibacterial activity of the nanoparticle blended membranes (P1 and P4) and the control 

membrane P0 were investigated qualitatively using the anti-E. coli zone of inhibition test as reported 

elsewhere [33]. The testing E. coli bacteria were firstly cultivated in 100 mL of a 2.5 wt % 

yeast-dextrose broth (consisting of 5 g/L yeast extract, 10 g/L sodium chloride, and 10 g/L peptone at a 

pH of 7.2) at 37 °C with shaking at 100 rpm for 24 h. The membrane samples were punched to prepare 

circular samples with ~ 2 mm in radius, and 100 μL of the E. coli solution (1×106 cfu/ml) was 

uniformly spread on the Luria-Bertani (LB) agar plate. The circular membrane specimens were then 

placed on the surface of treated LB plate and incubated at 37 °C for 24 h. The inhibition zone formed 

after 24 h served as an indicator for the antibacterial activity and was analyzed for growth inhibition.  

2.6.2 Bacteria adhesion test 

The bacterial adhesion to the surfaces of the control and modified membranes was evaluated by shake 

flask method. All membrane specimens were irradiated for sterilization by UV light (300W xenon lamp) 

for 1 h and presoaked in PBS solution prior to immersing into E. coli solution. Three pieces 2×2 cm2 

membranes were immersed in 50 mL E. Coli solution (1×106 cfu/ml) in a 100 mL sterile Erlenmeyer 

flask at 37 °C and then shaken at 100 rpm for 4 h. Subsequently, the target membranes were drew out 

of the E. Coli solution and gently rinsed three times with PBS solution. Then the E. Coli cells on the 

membrane surfaces were quickly fixed with 2.5 % glutaraldehyde in PBS for ~ 4 h at 4 °C. After 

fixation, the membranes were removed from glutaraldehyde solution and rinsed by PBS buffer six 

times. Finally, they were suffered to dehydration by sequential washes of 30, 50, 70, 90 and 100 % 

ethanol for 10 min. After washing with 100 % isoamyl acetate, the membranes were critical point dried 

with CO2 so as to observe the quantities and morphologies of bacteria adhered on the membrane 



surfaces by SEM. 

3. Results and discussion 

Fig. 1 depicts the XRD patterns of pristine TiO2 and as-synthesized Ag3PO4/TiO2 nanocomposite. The 

TiO2 diffraction pattern exhibits sharp peaks at 25.3 °, 37.9 °, 48.0 °, 54.3 °, 55.4 ° and 63.0 ° which 

correspond to (101), (004), (200), (105), (211), and (204) crystal planes, respectively, indicating a 

mixture of rutile and anatase phase. In the curve of Ag3PO4/TiO2, there are three obvious peaks 

centered at 29.8 °, 33.3 °, and 36.6 ° which were in good agreement with the diffractions from the (200), 

(210), and (211) crystal planes of a body-centred cubic Ag3PO4, respectively. The results suggested that 

Ag3PO4 phase had been successfully deposited on the surfaces TiO2 nanoparticles. 

The dispersion of Ag3PO4 in Ag3PO4/TiO2 nanocomposites was revealed by TEM measurements. It 

can be clearly seen from Fig. 2 that a lot of dark spots, which present Ag3PO4 nanoparticles possessing 

particle size of 2-8 nm in diameter, were highly dispersed on the surface of TiO2 with particle diameter 

ranging from 16 to 50 nm. During the silver impregnation process, Ag+ was pre-adsorbed onto the TiO2 

surface and Ag3PO4 was thereafter formed due to the reaction of PO4
3− ion with Ag+. It is noteworthy 

that selected area electron diffraction rings and points correspond to the TiO2 multicrystalline phase and 

Ag3PO4 monocrystalline phase, respectively, which is consistent with the previous XRD 

characterizations. Both XRD patterns and TEM image of Ag3PO4/TiO2 nanocomposites clearly show 

that the Ag3PO4 nanoparticles have been successfully loaded onto the surface of TiO2 support. 

Fig. 3 depicts the top-view and cross-sectional SEM images of the nanoparticle blended 

nanocomposite membranes (P1, P2, P4, and P5) and the control membrane (P0). As shown in Fig. 3A, 

the nanocomposite membranes (P1 and P2) is of flat and smooth features on the top surface which is 

similar to that of pristine control membrane (P0). From P2 to P5, it is obvious that the increased 

concentration of Ag3PO4/TiO2 nanocomposites in the casting solution resulted in rougher surface with 

more fully developed macro pores on the top side of modified membranes.  

 

As the casted PVDF dope solution on the glass substration was immersed into the water bath for 

coagulation, a non-solvent/solvent exchange immediately occurred across the interface between the 

non-solvent and casting film. Therefore, the near-surface nanocomposites dispersed in solvent may 

serve as pore-forming agent. The repulsive forces between water and PVDF together with the fast 

non-solvent/solvent interchange caused an immediate PVDF precipitation at the interface. 



Consequently, a typical asymmetric structure composed of well-developed macrovoids and finger-like 

pores connected by sponge walls in sub-layer was formed.  

Fig. 4 presents the XRD patterns of PVDF–Ag3PO4/TiO2 composite membranes and pristine PVDF 

membrane. There are two characteristic peaks of PVDF crystal at 2θ of 18.5 ° and 20.1 °, which 

correspond to the planes of (100) and (020). After incorporating TiO2 and Ag3PO4/TiO2 into the PVDF 

matrix, no characteristic peaks of TiO2 and Ag3PO4/TiO2 NPs were observed in the XRD patterns 

indicating a high compatibility between PVDF and blending materials from phase inversion process.  

Table 2 summarizes all as-prepared membrane properties with respect to their porosity, contact 

angle, mechanical strength, and Breakage elongation. Normally, blending TiO2 nanoparticles would be 

expected to significantly increase membrane porosity [34], but the membrane porosity was slightly 

affected by the blending materials of Ag3PO4/TiO2 in this study as all the membranes prepared 

displayed reasonably high porosity ranging from between 84.67 to 85.05 %, which is in accord with the 

results elsewhere [35]. There is no controversy that high membrane porosity was dominantly 

contributed by the presence of hydrophilic PVP with high MW in dope solution regardless of the 

Ag3PO4/TiO2 concentration due to the occurrence of solution demixing induced by PVP and 

enhancement of phase separation [36]. Mechanical properties are extremely important for PVDF 

membranes as the membranes breaking will lose separation performances. As shown in Table 2, with 

respect to mechanical strength and breakage elongation, all PVDF membranes incorporated with 

blending nanoparticles demonstrated greater mechanical strength compared to that of pristine 

membrane. The tensile strength and breakage elongation gradually reach a maximum of 1.98 MPa and 

31.77 % when adding 0.3 wt % Ag3PO4/TiO2 nanocomposite and then successively drop down as 

further increasing of the loadings of Ag3PO4/TiO2. These results revealed that blending appropriate 

amount of Ag3PO4/TiO2 in PVDF dope solution can enhance the mechanical properties of the resultant 

nanocomposite membranes which is consistent with the results elsewhere the literature [37, 38]. The 

variation of the membrane hydrophobicity caused by the casting mixture composition was investigated 

by the water contact angle measurements. When the weight ratio of Ag3PO4/TiO2 was successively 

increased up to 1 wt. %, a gradual decreasing in membrane contact angle from 76.05 ° to 63.46 ° was 

observed since the surface of TiO2 was abundant with oxygenated hydrophilic groups and therefore 

enhanced surface hydrophilicity. 

As shown in Fig. 5, the pristine membrane exhibits a minimum permeate water flux of 47.15 



L/m2·h and a maximum BSA rejection of 91.1 %. As the addition of TiO2 and Ag3PO4/TiO2, a 

remarkable improvement in permeate water flux from 57.35 to 103.72 L/m2·h was observed for the 

modified membranes, whereas a plateaus of BSA rejection around 83.5 % was maintained from P1 to 

P4 membranes until a sudden drop occurred for P5 samples. Apparently, the trend of an enhancement 

in water flux was complied with that of the surface hydrophilicity and water contact angle. It is 

universally acknowledged that an improvement in surface hydrophilicity of the nanoparticle blended 

nanocomposite membranes have a favorable effect on the water flux via attracting water molecules 

inside the modified PVDF membrane matrix and therefore facilitating their permeation across the 

blended membrane.  

The antibacterial property of the Ag3PO4/TiO2 modified membranes against Escherichia coli was 

characterized using the halo testing. Ag3PO4 nanoparticle has been found to be a significant 

antibacterial material due to slow-released silver ions which could attach to the cell membrane and then 

interact with the DNA or protein macromolecules in the cell to interfere or impede vital metabolic 

processes. As shown in Fig. 6a, it is noticeably found that P0 and P1 membranes has no inhibitive 

ability on the E. coli bacterial owning to the absence of the zone of inhibition. In contrast, a remarkable 

zone of inhibition without bacterial growth was observed surrounding the P2 membrane. A zone width 

is of ~ 2 mm clearly indicated P2 membrane had a promising antibacterial activity against E. coli and 

Ag3PO4/TiO2 blending was able to improve the antifouling behavior of the modified PVDF 

nanocomposite membranes. 

The bacterial colonies derived membrane fouling could be induced by the bacteria accumulation 

and adhesion on the membrane surface [39]. To investigate the E. coli adhesion on membranes, SEM 

was employed to study the quantities and morphology of cells on surface of the membranes. As shown 

in Fig. 6b, Ag3PO4/TiO2 blended P4 membrane were found to have much less rod-shaped bacterial 

adherence to the surfaces compared to P0 and P1 membranes. Moreover, the E. coli on P4 membrane 

displayed an obviously deformed shape. The E. coli attachment results indicate that P4 membrane had 

a better anti-adhesive activity against E. coli owing to the slow-released Ag+ and expectedly had a 

greater potential in antifouling. 

 

4. Conclusions 

Hydrophilic and antibacterial membranes were successfully synthesized with wet phase-inversion 



method by blending Ag3PO4/TiO2 nanocomposite. Results revealed that water flux was dramatically 

increased with the addition of Ag3PO4/TiO2 in dope solution. P4 membrane doped with 0.5 wt. % 

Ag3PO4/TiO2 exhibits an enhanced permeate water flux of 80.41 L/m2·h while high BSA rejection 

remains nearly unchanged due to synchronously increased hydrophilicity. FE-SEM images indicated 

that the degree of E. coli cells adhesion to the membrane surface was markedly reduced with blending 

Ag3PO4/TiO2. Meanwhile, the halo zone tests also implied that P4 membrane had an obvious 

antibacterial activity against E. coli. Moreover, P4 membrane has a tensile strength of 1.80 MPa and 

30.33 % elongation implying its potential application as an ultrafiltration membrane. In conclusion, 

Ag3PO4/TiO2 blended PVDF nanocomposite membrane is of excellent separation performance while 

possessing a good antibacterial behavior and a high fouling resistance. 
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Tables and Figures  

 

 

Table 1. Composition (wt %) of the different dope solutions for membrane preparation. 

Membranes PVDF PVP DMF TiO2 Ag3PO4/TiO2 

P0 18 1.5 80.5 0 0 

P1 18 1.5 80.4 0.1 0 

P2 18 1.5 80.4 0 0.1 

P3 18 1.5 80.2 0 0.3 

P4 18 1.5 80.0 0 0.5 

P5 18 1.5 79.5 0 1.0 

 

 

 

Table 2 Contact angle, mechanical property, and porosity of the membranes. 

Membrane 
Contact angle 

 (°) 

Tensile strength 

(MPa) 

Breakage elongation 

(%) 

Porosity 

(%) 

P-0 76.05 1.59 22.42 84.67 

P-1 67.01 1.67 30.26 84.66 

P-2 66.70 1.61 29.50 84.75 

P-3 67.56 1.98 31.77 84.79 

P-4 64.95 1.80 30.33 84.92 

P-5 63.46 1.69 29.89 85.05 

 

 



 

Fig. 1 XRD patterns of the pristine TiO2 (a) and as-prepared Ag3PO4/TiO2 nanocomposites (b). 

 

 

 

 

Fig. 2 The TEM image of Ag3PO4/TiO2 nanocomposites. The inset shows the SEAD image of 

Ag3PO4/TiO2 nanocomposites.  

 

 



 

Fig. 3 Top-view (A) and cross-sectional (B) SEM images of the control (P0) and modified membranes 

(P1, P2, P4, P5). 



 

Fig. 4 XRD patterns of the pristine membrane (P0) and modified membranes (P1 and P4). 

 

 

 

Fig. 5 Water flux (0.1 MPa) and the rejection of BSA of the PVDF membranes made with different 

TiO2 and Ag3PO4/TiO2 content. 

 

 



 

Fig. 6 a) Measurement of the antibacterial property of P0, P1 and P4 membranes using the halo zone 

test, b) SEM images of the bacteria adhered on the membrane surfaces. 

 

 

 

 


