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Abstract 

High throughput confocal imaging poses challenges in the computational image analysis of 

complex subcellular structures such as the microtubule cytoskeleton. Here, we developed 

CellArchitect, an automated image analysis tool that quantifies changes to subcellular 

patterns illustrated by microtubule markers in plants. We screened microtubule-targeted 

herbicides and demonstrate that high throughput confocal imaging with integrated image 
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analysis by CellArchitect can distinguish effects induced by the known herbicides indaziflam 

and trifluralin. The same platform was used to examine six other compounds with herbicidal 

activity, and at least three different effects induced by these compounds were profiled. We 

further show that CellArchitect can detect subcellular patterns tagged by actin and 

endoplasmic reticulum markers. Thus, the platform developed here can be used to automate 

image analysis of complex subcellular patterns for purposes such as herbicide discovery and 

mode of action characterisation. The capacity to use this tool to quantitatively characterise 

cellular responses lends itself to application across many areas of biology. 

Introduction 

High throughput confocal imaging using genetically encoded fluorescent markers is a 

powerful tool to investigate individual cell structure and function, and mechanisms that 

underlie subcellular responses to environmental stresses and during development. Combined 

with automated multiparametric image and data analysis, high throughput confocal imaging 

has vastly expanded the potential to screen large chemical libraries to identify molecular 

regulators of subcellular trafficking1. In the context of drug discovery in human studies, 

multiparametric data acquired from high throughput confocal imaging has proven particularly 

informative in understanding the dynamics of subcellular trafficking and cellular responses to 

bioactive chemicals2. Few studies have explored the application of high throughput imaging 

with respect to its potential to facilitate screening for bioactive chemicals that perturb 

(sub)cellular responses in plants3-7. These few imaging-based screens were designed to detect 

perturbations of discrete subcellular structures, i.e. the localization of fluorescent markers at 

the cell periphery and vesicles8-10. Complex subcellular structures such as the patterns tagged 

by microtubule and actin markers pose challenges for their analysis; current tools (e.g. 

FibrilTool and MicrofilamentAnalzyer) rely upon manual selection of the cells, structures or 

other regions of interest (ROI)11,12. Manual image processing prior to analysis limits 

automated applications, which is impractical for high content screening. Additionally, 

computational analysis of z-stack images from whole tissues/organisms has not yet advanced 

sufficiently to allow for true automation of complex subcellular structures by high throughout 

confocal imaging in plants. 

To automate detection and analysis of complex subcellular patterns, we used an image 

analysis framework utilized for high-content screening. We have previously developed 

scripts for automated detection and quantification of discrete, spot-like (sub)cellular 
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structures such as Golgi and endosomes in the cytosol, as well as plasmodesmata, pathogen-

induced focal accumulations and callose deposits at the cell periphery8-10,13. These tools can 

identify and quantify structures with and without cell segmentation allowing for the potential 

for per cell or per image area outputs. The tools also find application beyond their intended 

initial use, e.g. by tracking the identified spot-like callose deposits between multiple images, 

CalloseMeasurer can also quantify the complex patterns of in planta pathogen growth13. An 

important feature of these scripts is the automated batch processing of large image data sets 

not requiring manual ROI selection. 

Regulatory processes and the associated costs strain the delivery of new agrochemicals to the 

market. Part of the problem for new herbicides originates from macroscopic phenotypic 

screening, in which typically the primary output is plant death and does not identify 

subcellular targets of herbicides or herbicidal mode of action that would reduce regulatory 

constraints. Further, agrochemicals with more subtle but exploitable effects are not identified 

by such an approach. In this study we wanted to test whether the use of high throughput 

confocal imaging combined with automated quantitative image analysis could be used to 

identify subtle effects of plant subcellular responses by herbicides. We chose microtubule-

targeted herbicides, most of which act via mitotic disruption by affecting microtubule 

polymerisation or stability. First, we addressed changes to subcellular patterns in leaf cells of 

plants expressing genetically encoded fluorescent microtubule markers such as GFP-MAP4 

and TUB6-GFP by live imaging14, 15. To automatically quantify features of subcellular 

patterns tagged by these microtubule markers, we developed CellArchitect, a fully automated 

analysis pipeline that quantitatively discriminates the different effects triggered by different 

herbicidal compounds. Furthermore, to identify additional (side)effects by the herbicides, we 

screened the compounds for alterations on endomembrane compartments and correlated the 

screen results using statistical analysis. Quantification and classification of subcellular 

responses aids in predicting the mode of action for the tested herbicides and the rapid 

identification of their cell biological targets. 

 

Results and discussion 

Automated quantification of microtubules by CellArchitect 
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To facilitate high throughput screening of microtubule-targeted herbicides, we developed the 

CellArchitect tool for extracting image patterns such as from microtubule markers (referred 

to as microtubule patterns). CellArchitect performs both cell segmentation and microtubule 

object detection combined with quantification. This involved sequential imaging of two 

cellular parameters. Microtubules were illuminated by genetically encoded fluorescent 

markers GFP-MAP4 and TUB6-GFP expressed in Arabidopsis. For cell definition we stained 

leaf tissue with propidium iodide before imaging. Images were acquired by two cameras in 

the Opera HCS system. Similar to our previous Acapella-based image analysis software 

tools8-10, 13, CellArchitect automatically discards images from further analysis if they are out-

of-focus or do not contain sufficient imaging areas or identified cells. Further, the script 

robustly filters background noise by intensity analysis and global adaptive thresholding. 

Building on our previous PDQUANT10, we improved the identification of cell boundaries 

and segmentation of cells. This was applied as a first step and the cell areas thereby detected 

marked as regions in which to search for microtubule objects. To recognize microtubule 

patterns, we applied a function that smooths the image and reduces noise using a tailored 5x5 

pixel Gaussian convolving kernel to reduce image noise16. This has the effect of relatively 

increasing the microtubule signal within the image at the expense of overall image detail. A 

local contrast-based adaptive thresholding method is then applied17 to identify objects within 

the image and a binary mask of potential microtubule/non-microtubule object pixels is 

generated. The microtubule signals are therefore examined separately to and without noise 

from other image elements within every recognised cell. A topological skeletonization 

method18 was applied to extract 1D skeleton lines from the microtubule masks by identifying 

the line within the shape equidistant from each boundary. The extracted skeleton is then 

further examined with a 4-connected Von Neumann neighbourhood method19 and 

fluorescence intensity values in order to identify continuous chains of skeleton pixels that 

have another microtubule pixel in each direction horizontally and vertically (but not 

diagonally). Thus, discrete chains within the skeleton are considered to be objects within the 

overall set of skeletons. The objects within the skeleton are finally selected and measured. 

Skeleton objects are classified on the basis of object length (Figure S1). CellArchitect 

produces accurate measurements of microtubule patterns in Arabidopsis epidermal pavement 

cells, and provides a platform for quantification of microtubule object features (Figures S1 

and S2).  
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For assessing the broader utility of CellArchitect, we tested this image pattern recognition 

tool on plant cells in which actin was visualized by genetically encoded ABD2-GFP20, as 

well as cells in which the endoplasmic reticulum (ER) was marked by genetically encoded 

GFP-HDEL21 in Arabidopsis. CellArchitect was able to detect both subcellular patterns 

(Figure S3). Representation of the tubular ER network suggests that with the definition of 

biologically relevant, measurable parameters, CellArchitect could be exploited in quantitative 

analysis of ER structure.  

Quantification of microtubule patterns induced by known herbicides 

We applied high throughput confocal imaging integrating computational image analysis using 

CellArchitect to profile altered microtubule patterns in herbicide-treated Arabidopsis 

epidermal pavement cells, with the aim to predict the biological process each herbicide 

targets. To validate our protocol, we first examined the known herbicides oryzalin, trifluralin 

and indaziflam for distinct effects on the microtubule cytoskeleton compared with control 

data (DMSO treatment). Images from replicate treatments were processed with CellArchitect 

to quantify the following features: object density per cell, relative population of object length 

categories and object width (Figure 1). Object density was expected to quantify a total 

reduction in objects of microtubule patterns per cell, that would be expected to infer on 

microtubule depolymerisation or bundling. Object length categorisation quantifies the 

number of microtubule objects in each of the short, medium and long size classes. These 

categories were selected based on overall distribution of microtubule object length (Figure 

S1). The total length (in pixels) of objects in a given category is expressed as a proportion of 

the total length of detected objects within a given cell such that pattern changes arising from 

microtubule fragmentation can be quantified. Increased object thickness or width represents a 

pattern feature that would be expected to infer on microtubule bundling. 

Qualitative assessment of oryzalin treatment showed strong effects on microtubules (Figure 

2), in agreement that oryzalin prevents microtubule polymerisation and thus making extend 

microtubules more likely to depolymerize22. Trifluralin treatment also reduced the number 

and length of microtubules in a cell, while indaziflam treatment has little to no effect (Figure 

2). High throughput imaging and CellArchitect analysis quantified the objects of microtubule 

patterns for each treatment and confirmed that oryzalin treatment increased the relative 

number of objects in the short class size for both, the GFP-MAP4 and the TUB6-GFP marker 

(Figure 3). Consistently, the relative number of GFP-MAP4 and TUB6-GFP tagged objects in 
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the long class size decreased in oryzalin treatments. This indicates that oryzalin effects are 

proportional to the total population of microtubule objects; the density of objects decreased 

significantly indicating depolymerisation and/or bundling also occurred. For both trifluralin 

and indaziflam, the relative number of microtubule objects in the short size class was similar 

for the GFP-MAP4 marker. The difference in the appearance of the patterns is accounted for 

by the significant difference in object density induced by trifluralin but not indaziflam. Short 

size microtubule objects marked by TUB6-GFP were marginally increased in trifluralin 

treatments, which was correlated with reduced microtubule objects in the long size class, and 

a similar effect was also detected with the GFP-MAP4 marker. 

Quantification of object density for both GFP-MAP4 and TUB6-GFP microtubule markers 

revealed similar effects of oryzalin and trifluralin. Both herbicides induced a significant 

reduction in microtubule objects per cell (Figure 3). This correlated with an increase in object 

width. By contrast, indaziflam treatment induced no change to either object density per cell or 

object width. Oryzalin and trifluralin are synthetic compounds of the dinitroaniline group, 

which bind to the α-subunit of tubulin, disassembling microtubules22. This mode of action is 

in agreement with our results measuring the relative proportion of short and long microtubule 

objects. In addition, object width measurement suggests the possibility that oryzalin and 

trifluralin induce bundling, an effect imperceptible in visual assessment of our microscopy 

images. In contrast to oryzalin and trifluralin, the herbicide indaziflam acts as cellulose 

biosynthesis inhibitor23, and in agreement we found no or little effects of indaziflam on 

objects of microtubule patterns. It can however decrease the co-localization of cellulose 

synthase and microtubules, suggesting a potential indirect effect on microtubule patterns, 

consistent with our findings on slightly decreased long class objects marked by TUB6-GFP 

(Figure 3). Together, these results demonstrate that CellArchitect enables the quantification 

of distinct microtubule patterns and is therefore suited to screening chemical libraries for 

distinct herbicidal activities. 

Quantification of microtubule patterns induced by compounds with herbicidal activity 

Known classes of herbicides have been reinforced by newer compounds with the aim to 

overcome resistances attributable to isotope specific differences of their targets in taxonomic 

groups. This is traditionally achieved by high throughput screening of natural product and 

synthetic compound libraries for herbicidal activities, measured as plant death specific to 

certain taxonomic groups. To gain insights into the mode of action of compounds identified 
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from such screens, we examined six compounds with known herbicidal activity but 

undescribed effects on the microtubule cytoskeleton. Compounds (C) 1-6 all induced 

fragmentation of microtubules when compared to control treatments (Figure 4). Quantitative 

analysis using CellArchitect revealed decreased object density, measured for both GFP-

MAP4 and TUB6-GFP markers, for C1-6 indicating that each compound induced a degree of 

microtubule depolymerisation (Figure 3). Each compound also induced a measurable increase 

in object width for GFP-MAP4 tagged microtubules, suggesting bundling. The trend in these 

measurements was replicated in TUB6-GFP tagged objects. Comparison of the relative 

abundance of microtubule objects of different sizes suggest that C1-6 each induced 

fragmentation, as evidenced from the decreased proportion of long objects while the 

proportion of short objects increased. This is most severe for C4-6. C4, C5 and C6 are 

visually and quantifiably indistinguishable in effect, each causing severe microtubule 

fragmentation. 

Qualitative differences in the compound effects were apparent (Figure 4), suggesting vastly 

different effects of C1 and both C2 and C3. C1 induced curled and fragmented objects 

indicative of microtubule nucleation while C2 and C3 both produced ‘shard-like’ objects 

suggesting bundling of microtubules. Quantitative analysis of the effects of C1, C2 and C3 by 

CellArchitect separates all three compounds when considering object density (Figure 3). This 

is represented by the measurable increase in object width - C2 and C3 can be grouped, and 

separated from the remaining compounds, with respect to object width. The ‘shard-like’ 

objects induced by C2 and C3 are reminiscent of microtubule patterns observed upon 

interference with katanin function required for severing (24). Based on these similarities it is 

possible to hypothesize that the biological process targeted by C2 and C3 may involve 

katanin-mediated severing.  

Our results show that the six tested compounds belong to the group of microtubule-targeted 

herbicides. Compared with microtubule patterns induced by oryzalin, compound C2 was 

most similar, including object length (short and long class), density, and width. C1 produced 

also similar patterns for object length with a similar trend for object density and width. It is 

possible to speculate that C1 and C2 exhibit a mode of action similar to oryzalin. By contrast, 

C4, C5, and C6 all showed much stronger effects on object length (more short and less long 

class objects) compared with oryzalin, while showing lesser effect on object density and 

width. Also, microtubule patterns induced by C4, C5 and C6 were distinct to those produced 

by trifluralin. This suggests that C4, C5, C6 act as compounds causing microtubule 
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disassembly likely through a distinct mode of action than the dinitroaniline herbicides 

oryzalin and trifluralin. However, despite differences in chemical structures and effects on 

microtubule patterns, the microtubule-targeted compounds usually associate with one of the 

three tubulin binding sites changing the confirmation of the tubulin molecule, thereby 

preventing polymerization22. 

Quantification of herbicide-treated endomembrane compartments 

The quantification of microtubule patterns revealed indistinguishable effects by C4-6. 

Microtubules are linked with the localization of cellulose synthase, another herbicidal target 

and a cargo of the endomembrane trafficking system22, 25. Therefore, to identify additional 

(side)effects by the herbicides that could further differentiate their mode of activity, we 

applied high throughput confocal imaging integrating computational image analysis by 

EndomembraneQuantifier9, and profiled the effect of each herbicide on endomembrane 

compartment subcellular structures. These included endosomes, the trans-Golgi network 

(TGN) and Golgi bodies, visualized by the well-established genetically encoded RFP-ARA7, 

VTI12-YFP, SYP32-YFP markers, respectively26. Effects on these endomembrane 

compartments by all tested compounds were subtle and imperceptible to the human eye 

without quantification. With respect to C4-6, C4 exhibited the strongest effects (Figure 5). 

Statistical analysis suggests that C4 induced an increase in endosome size correlated with a 

decrease in endosomal numbers relative to DMSO control. Both C4 and C6 perturbed the 

number of TGN compartments, while C5 specifically affected the size of Golgi 

compartments. These results indicate differences between C4 and C6 compared to C5. 

Correlation of these effects with their structures reveals that C5 is specified by a 

chlorobenzene group while C4 and C6 have a fluorobenzene group (2-fluorobenzene for C4 

and 1,5-difluorobenzene for C6; Figure S4). Thus, it is possible that microtubule effects are 

induced by the common backbone of the compound while the halide benzene group has 

additional differential effects on endomembrane compartments. Interestingly, indaziflam 

treatment reduced the number of Golgi compartments relative to DMSO control (Figure 5), 

broadening its effect from cellulose biosynthesis inhibition to generally altering secretory 

trafficking. 

In our study, we show the strength and advantages of quantitative multiparametric image 

analysis to measure subcellular patterns. This method enables the identification of modes of 

action of compounds in the process of herbicide discovery. We have developed CellArchitect, 
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an Acapella-based automated image analysis tool that batch processes images from high 

throughput confocal microscopy of genetically encoded microtubule markers expressed in 

Arabidopsis. In particular, CellArchitect performs feature-based extraction, quantifying 

microtubule patterns according to features relating to object length, width and density. We 

have demonstrated that these quantitative features differentiate between the effects of the 

tested herbicidal compounds on microtubule patterns. While CellArchitect quantifies image 

patterns and extracts image features, it only provides indirect estimates of microfilament 

organization, which are better estimated using FibrilTool and Microfilament Analyzer11, 12. 

Both software tools are excellent for investigating microtubule organization: 1) FibrilTool is 

developed as ImageJ plug-in and quantifies the anisotropy of fiber arrays and their cellular 

orientation11, and 2) Microfilament Analyzer is a software package for detecting the 

filamentous structures and their orientation in root epidermal cells12. Given that FibrilTool 

and Microfilament Analyzer require manual inputs e.g. to select a ROI, while this enables 

analysis of microfilaments, it makes the image processing of microtubule patterns time 

consuming and not applicable for batch processing. To automate image processing, we chose 

to detect and quantify microtubule patterns on a projection of the z-stack because it simplifies 

the processing considerably. Thus, CellArchitect provides a complementary software solution 

that automates the image processing step and not requiring manual selection of an ROI, 

making it a software tool suited for large screening of e.g. chemical libraries or mutant 

populations. 

As a testament, CellArchitect could differentiate between C1, C2, C3, and C4-C6 without any 

human intervention in the analysis. In combination with EndomembraneQuantifier, 

automated analysis could discriminate further between C4, C5 and C6 in patterns. This shows 

that these tools may be combined to identify the subcellular location of herbicidal targets, 

with applications in both agrochemical and research contexts. Beyond the quantification 

demonstrated here, CellArchitect carries the potential to extract additional features such as 

object fluorescence intensity and orientation, recognises other subcellular patterns such as 

those tagged by actin and ER markers. Thus, this tool may be widely exploited for the fully 

automated analysis of subcellular patterns of different markers. In conclusion, we have 

established an automated image analysis tool for complex subcellular patterns that facilitates 

high throughput confocal imaging. This creates the potential for image-based screenings, 

such as the patterns tagged by cytoskeleton markers, in the discovery process of herbicide 
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identification, as well as the application of rigorous quantitative methods for cellular 

responses in plant biology. 

 

Materials and Methods 

Plant material 

Plant material was Arabidopsis thaliana, of the Col-0 ecotype unless otherwise indicated. 

Marker lines used in the study were 35S::GFP-MAP4 (microtubule marker, in Ler 

ecotype,14); 35S::TUB6-GFP (microtubule marker, beta-tubulin6-GFP); pUBQ10::mRFP-

ARA7/RabF2b (endosome marker, provided by K. Schumacher, Heidelberg, Germany); 

pUBQ10::VTI12-YFP (trans-Golgi network marker26); pUBQ10::SYP32-YFP (Golgi 

marker26); 35S::GFP-FABD2 (actin marker20) and 35S::GFP-HDEL (ER marker21). 

Arabidopsis seedlings were grown on soil for 14 days in 12 h light and 60% humidity.  

 

Chemical treatments 

Cotyledons were detached from seedlings and incubated in 25 µM solutions (0.25% DMSO) 

of the respective compounds. Controls were incubated in 0.25% DMSO. Cotyledons were 

vacuum infiltrated for 2 min so that treatment solutions penetrated the tissue and then 

incubated at room temperature for 4 hrs. For microtubule labelled lines, 10 min prior to 

imaging propidium iodide was added to the solution to a final concentration of 100 µg/mL. 

 

Cotyledons were imaged by the Opera HCS microscope as described by Beck et al.9. In brief, 

leaves were secured on rubber tipped stamps and upended in glass bottom 96 well plates. 

Imaging was performed with 40x water immersion objective (0.9 NA) with an x-y optical 

resolution of 0.26 nm (measured at 500 nm). GFP was excited by 488nm laser and emission 

captured with the 540/75 band-pass filter. RFP and propidium iodide were excited with the 

561nm laser and collected with the 600/40 band-pass filter. The exposure was varied 

dependent on marker line in the range 40-120 ms. For z-stacks, 21 images with a resolution 

of 681 x 486 pixels were collected at 1 µm intervals. For single channel imaging, 6 z-stacks 

per leaf were collected. For dual channel imaging 3 z-stacks per leaf were collected. 3-6 

leaves per treatment were imaged within a replicate experiment, and for each experiment 3 

independent replicates were performed. 
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Image analysis 

CellArchitect is an Acapella-based image analysis tool that provides an automated workflow 

to detect and quantify patterns from plant bioimages. Broadly, it proceeds by identifying leaf 

epidermal cells of interest, performs detection of objects labelled by fluorescent-tagged 

cytoskeleton markers, and extracts features for quantifying cytoskeleton objects. To make 

CellArchitect suited for batch processing of bioimages taken from whole leaves, an uneven 

organ, we included a pre-processing step to calibrate Opera confocal microscopy images, 

then to generate maximum projections from optical z-planes and excluding maximum 

projections containing out-of-focus areas, thus not valid for pattern analysis (Figure 1). To 

this end, a maximum intensity projection is used to reconstruct optical z-planes captured by 

the two cameras of the Opera microscope. After that, CellArchitect applies fluorescence 

intensity histogram equalisation to calibrate the projected images so that batch processing 

could be carried out on maximum projections with similar fluorescence intensity 

histograms27. The intensity histogram is spread across the most frequent fluorescence 

intensity values of a maximum projection and then equalised to ensure that the intensity 

histogram of the maximum projection presents a roughly linear cumulative distribution 

function (rescaled to include all intensities that fall within the 2nd and 98th percentiles). To 

identify out-of-focus areas and valid focus areas of the maximum projections, CellArchitect 

applies a dynamic thresholding value based on signals captured by camera one. The value of 

the threshold is taken to be 75% of the computed whole maximum projection image Otsu 

thresholding value. Regions with low fluorescence intensity values (out-of-focus areas, below 

the threshold) and regions with high intensity and contrast values (valid focus areas, equal or 

above the threshold) are identified28. Background pixels are removed if they are lower than 

the thresholding value. Finally, a cell segmentation process10 is used to extract the pavement 

cell outlines as well as signals from stomata. In this step, CellArchitect applies an adaptive 

Gaussian thresholding method – a tailored 5x5 Gaussian convolving kernel [1,4,16,4,1; 

4,16,32,16,4; 16,32,128,32,16; 4,16,32,16,4; 1,4,16,4,1] to smooth and reduce image noise 

before thresholding16. The previously identified out-of-focus areas, the pavement cell outlines 

and stomata objects, are masked (Figure 1), and the resulting processed maximum projection 

images contain pavement cells that are considered valid for microtubule pattern detection. In 

a next step, CellArchitect removes pavement cells with sizes and width-to-length ratio above 

the 98th percentile (too big) or below the 2nd percentile (too small) from the maximum 

projection images. The remaining pavement cells of the maximum projection image are then 

analysed for signals captured by camera two, the microtubule patterns, and only kept with 
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median pixel intensities. If the algorithm retains at least two pavement cells per maximum 

projection image at this step, further analysis of the microtubule patterns will be triggered.   

 

For microtubule pattern analysis, the signals captured by camera two, CellArchitect applies a 

tailored 5x5 Gaussian convolving kernel [1,4,16,4,1; 4,16,32,16,4; 16,32,128,32,16; 

4,16,32,16,4; 1,4,16,4,1] to smooth and reduce image noise. As microtubule pattern signals 

can be unevenly distributed amongst identified pavement cells, the algorithm processes the 

signals from camera two of the maximum projections through a local contrast-based adaptive 

thresholding method from the Acapella framework. Pixels are retained if their fluorescence 

intensity values are higher than the 65th percentile of the intensity distribution in a given 

image object, e.g. a detected pavement cell or a microtubule object. The algorithm then 

applies a pattern recognition process generating binary masks of microtubule objects based 

on per-object thresholding. Briefly this uses the 4-connected Von Neumann neighbourhood 

method19 available from the Acapella framework to determine skeleton pixels that touch 

another pixel’s edges, either horizontally or vertically. Such pixels are considered connected 

and therefore part of the same microtubule object. Next, CellArchitect applies a “corner-

connected” fluorescence intensity approach, comparing the intensity values of previously 

connected pixels retaining only connected pixels with the 35% highest intensity values. The 

next step is to extract skeleton lines from the connected pixels, generating a 1-pixel wide 

mask of skeleton objects, again with the skeleton method available from the Acapella 

framework. As fluorescence intensities of pixels from z-planes of deeper layers inside the leaf 

are generally lower than those from higher layers, this breaks artefactual microtubule grid-

like patterns caused by the maximum projection and retains planar microtubule structures. By 

relying on natural spatial distinctions in the microtubule network our approach balances 

speed of execution with the inhibitory computational complexity of fully deconvoluting a 

large connected skeleton. 

 

The length of a microtubule object is then calculated based on the skeleton mask of 

connected pixels and between two end point skeleton pixels. An average width for each 

object is calculated by dividing the objects area (the total number of pixels contained within 

the object), by the number of skeleton pixels (the total pixels along the medial axis of the 

object). This method assumes that objects are of essentially constant width along the entire 

length. It should be noted that width measurements can only be used as an indicator of 

structural change as microtubule width is approximately 10 times smaller than the limits of 
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resolution of the confocal imaging system. With aims of providing a speedy approach to 

visualise changes of microtubule patterns triggered by different chemicals, CellArchitect 

classifies and colour codes the microtubule skeleton objects based on their length values 

(Figure S1), and sorts them into an object list so that microtubule objects are extracted, 

covering shard-shape to linear, filamentous patterns. CellArchitect calculates microtubule 

object density per cell (0-100%) based on the coverage of detected microtubule objects in a 

given pavement cell divided by the area of the cell. Microtubule object intensity (0-128) is 

determined based on the median fluorescence intensity value of all microtubule signals 

enclosed in a given pavement cell. Quantifiable results generated by CellArchitect are saved 

in two files, one containing results for every processed maximum projection image and one 

for overall results. The Acapella source code of CellArchitect is freely available at 

https://github.com/TeamMacLean/CellArchitect.  

 

Maximum projection images for microtubule patterns and endomembrane compartments 

were analysed with CellArchitect and EndomembraneQuantifier9 respectively. Quantification 

results were saved in CSV files including experimental metadata such as image name, 

treatment, experiment date, and other related phenotypic outputs. Experimental values for 

object number were normalised against the average of the control. 

 

Manual detection of microtubule patterns was performed on maximum intensity projections 

using Fiji tools29. Pavement cell outlines were manually determined as ROI using a polygon 

selection, prior manual adjustment of brightness and contrast. After that, a manual 

thresholding of the image was applied to capture the microtubule objects, which were then 

measured using the skeleton analysis tool. Manual measurements of the overall detected 

object length were compared to measurements by CellArchitect. 

Statistical Analysis 

Analysis of variance and post-hoc Tukey (HSD) tests are used to detect significant 

differences between the chemicals. Different letters indicate significant differences between 

chemicals, calculated for each parameter separately (p<0.05). All statistics are performed 

using R (R Development Core Team, 2008; http://www.R-project.org) and the packages 

agricolae30 and multcomp31. 
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Supporting Information 

Figure S1: Overall population analysis of microtubule objects. (A) Boxplot representing the 

overall population of microtubule objects (blue dots) detected by CellArchitect in control 

treated Arabidopsis cotyledons. Data show the results of one representative image. The 

plotted box indicates the boundaries of the upper and lower quartiles with bars indicating 

maximum and minimum values, the bold black bar identifies the median, and the dashed lines 

indicate the selected boundaries classified as short, medium, and long microtubule objects. 

(B) Density plot representing the proportion (y-axis) of the microtubule object lengths (x-

axis) detected by CellArchitect in Arabidopsis cotyledons treated with mock (DMSO), C2 

and C5. Data show the results of one representative image for each treatment revealing that 

the proportion of short microtubule objects is higher in C2 and C5 compared to DMSO. 

Figure S2: Comparison of microtubule objects measured per cell using CellArchitect and 

manual measurement. No significant differences were observed between the two methods 

using a Student t-test, neither in control conditions (p = 0.81, n = 11) nor after herbicide 

treatment (p = 0.86, n = 13). The overall % of variation between the two methods is 15.9% 

(+/- 11.7%). 

Figure S3: Detection of microtubule patterns tagged by GFP-MAP4, actin patterns tagged by 

GFP-FABD2 and endoplasmic reticulum patterns tagged by GFP-HDEL in Arabidopsis 

cotyledons using CellArchitect. Scale bars are 25 µm. 

Figure S4: Chemical structures for C4, C5 and C6. 

CellArchitect algorithm: https://github.com/TeamMacLean/CellArchitect 
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Figure Legends 

 

Figure 1: The CellArchitect analysis workflow. 1. The users loads image files. 2. Camera one 

captures cell outlines, which are used for cell segmentation. Recognized cell regions are 

retained in the analysis. 3. Camera two acquires microtubule signals and CellArchitect 

applies pattern recognition and feature-based extraction to 4. quantify microtubule objects in 

every recognized cell region.  

 

Figure 2: The effects of known herbicides oryzalin (Ory), indaziflam (Ind) and trifluoralin 

(Tri) on microtubules of Arabidopsis cotyledon epidermal pavement cells. Control treatment 

is 0.25% DMSO. Microtubules are marked by stable expression of GFP-MAP4 and TUB6-

GFP. Microtubule pattern detection by CellArchitect is shown with colour coding according 
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to object length: green: short; yellow: medium-short; orange: medium-long; red: long. Scale 

bars are 15 µm. 

 

Figure 3: Quantification of the effects of chemicals C1-C6, indaziflam, trifluralin and 

oryzalin on microtubule patterns by CellArchitect. Box plots: boxes indicate the boundaries 

of the upper and lower quartiles with bars indicating maximum and minimum values 

(excluding outliers which are shown by circles), the black bar identifies the median. Different 

letters indicate significantly different values at p <0.05 (ANOVA post-hoc Tukey). 
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Figure 5: Quantification of the effects of chemicals C1-C6, indaziflam and trifluralin on 

endomembrane markers mRFP-ARA7/RabF2b (endosomes), VTI12-YFP (trans-Golgi 

network) and SYP32-YFP (Golgi) by EndomembraneQuantifier. Box plots: boxes indicate 

the boundaries of the upper and lower quartiles with bars indicating maximum and minimum 

values (excluding outliers which are shown by circles), the black bar identifies the median. 

Different letters indicate significantly different values at p <0.05 (ANOVA post-hoc Tukey). 
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