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Abstract

We prove the existence of S-integral solutions of simultaneous diophantine inequalities for pairs

(Q,L) involving one quadratic form and one linear form satisfying some arithmetico-geometric

conditions. This result generalises previous results of Gorodnik and Borel-Prasad. The proof uses

Ratner’s theorem for unipotent actions on homogeneous spaces combined with an argument of

strong approximation.

Keywords: Quadratic forms, Diophantine approximation, Algebraic groups, Strong
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1. Introduction

A famous conjecture made by Oppenheim in 1929 and proved by G.A. Margulis in the mid-

eighties states that given a nondegenerate indefinite real quadratic form Q in n � 3 variables

which is not proportional to a form with rational coefficients then Q(Zn) is dense in Rn. It is not

difficult to see that the latter statement is equivalent to the following assertion,

∀ε > 0, ∃ x ∈ Zn − {0}, 0 < |Q(x)| < ε . (1)

A natural generalization of the Oppenheim conjecture concerns the existence of integral solu-

tions of system of inequalities involving several quadratic forms. More precisely given a family

(Qj)1≤j≤r of real nondegenerate quadratic forms in n variables we may ask whether there exist

solutions to the diophantine inequalities

∀ε > 0, ∃ x ∈ Zn − {0}, |Qj(x)| < ε for j = 1, . . . , r. (2)

Such kind of problems have been intensively studied and a general solution is still an open prob-

lem when r > 1. Some partial results have been obtained and almost all of them assume two

fundamental necessary conditions for (2) to hold. The first condition is the existence of nonzero

real solution x ∈ Rn (n ≥ 3):

Q1(x) = . . . = Qr(x) = 0.

The second condition is of arithmetical nature: it asks that for any (α1, . . . , αr) ∈ Rr − {0}, the

pencil forms
∑r

i=1 αiQi(x) are not proportional to a rational form. Notice that these two con-

ditions are natural generalisation of the assumptions of the Oppenheim conjecture to the general

case of systems of quadratic inequalities.

Preprint submitted to Journal of Number Theory July 14, 2017



To the best of our knowledge, the most general result proving that (2) has a solution is due to W.

Müller [14]. The method used by W. Müller is a variant of the circle method which applies to

families for which the rank of each pencil form is greater than 8r. One of the main inconvenient

of those analytic methods is that it fails to work when n is small. In view of this, it is natural to

try to generalise Margulis’s proof to systems of quadratic forms with the help of Ratner’s rigidity

theorems. A first obstruction regarding this, is that the use of Ratner’s theory requires that the

intersection
⋂r

j=1 SO(Qj) is large enough, in the sense that it should at least contain a unipotent

one-parameter subgroup. If it is the case then one can take advantage in working in low dimension

in order to elucidate the structure of intermediate subgroups arising from the possiblities for the

orbit closure. Unfortunately solving (2) using rigidity theorems leads to untractable situations in

the general case. In [10], Gorodnik gave necessary and sufficient conditions for such systems (2)

to have a solution. One of these conditions is the existence of a nonzero vector v ∈ Rn lying

in the intersection
⋂

1≤j≤r

{
Qj = 0

}
such that for some vi �= 0 the vector (

vk
vi

: 1 ≤ k ≤
nd, k �= i) is well-approximable of order one. In general, the latter condition appears to be very

difficult to check even for a system involving only two quadratic forms. However if we consider

a pair of two quadratic forms Q1 and Q2 with Q2 = L2 where L is a linear form, a solution

for (2) has been obtained using ergodic theory. The first result in that direction is due to S.G

Dani and G.A. Margulis [7] and concerns the dimension 3 for a pair (Q,L2) consisting of one

nondegenerate indefinite quadratic form and a nonzero linear form in dimension 3 such that the

cone {Q = 0} intersects tangentially the plane {L = 0} and no linear combination of Q and

L2 is rational. Under those conditions they proved using the original method used to prove the

Oppenheim conjecture that the set {(Q(x), L(x)) : x ∈ Z3} is dense in R2. In higher dimension,

the density for pairs holds if one replaces the previous transversality condition by the assumption

that Q|L=0 is indefinite, this result is due to A.Gorodnik [9]:

Theorem 1.1 (Gorodnik). Let F = (Q,L) be a pair consisting of a quadratic form Q and L a
nonzero linear form in dimension n ≥ 4 satisfying the the following conditions

1. Q is nondegenerate.
2. Q|L=0 is indefinite.
3. No linear combination of Q and L2 is rational.

Then the set F (P(Zn)) is dense in R2 where P(Zn) is the set of primitive integer vectors.

The conclusion of the theorem implies immediately that the set F (Zn) is dense in R2. The proof

of this theorem reduces to the case of the dimension 4. The condition (2) is a sufficient condition

to ensure that we have F (Rn) = R2. The most important obstruction to prove density for pairs

is that the identity component of the stabilizer of a pair (Q,L) is no longer maximal among

the connected Lie subgroups of G = SL(4,R) in contrast with the case of the isotropy groups

SO(3, 1)◦ or SO(2, 2)◦.

The stabilizer of the pair (Q,L) is defined by the following subgroup of G,

Stab(Q,L) =
{
h ∈ SO(Q) | L(hx) = L(x)}.

The pairs such that Q|L=0 is nondegenerate (resp. degenerate) are said to be of type (I) (resp.

II). The proof of Theorem 1.1 is divided in two parts following each type and consists to apply

Ratner’s orbit closure theorem, and to study the action of the stabiliser on the dual space of C4.

A remarkable fact is that the density is proved without showing the density of the orbit closure of
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the stabilizer in the homogeneous space G/Γ. Indeed the intermediate subgroups which possess

non-trivial irreducible components have closed orbits in G/Γ, in particular they are not maximal.

However, one is able to classify all the complex semisimple Lie algebras in sl(4,C), and Gorodnik

used this classification to check density case by case using the constrain on rationality given by

the condition (3). The situation for pairs of type (II) is more complicated compared with the pairs

of type (I) since the dual action of the stabilizer has three irreducible components for the pairs of

type (II), instead of two for the pairs of type (I).

2. Main results

2.1. S-arithmetic setting

Let us recall what we mean by S-arithmetic setting by fixing some notations. Let k be a num-

ber field, that is a finite extension of Q and let O be the ring of integers of k. For every normalised

absolute value |.|s on k, let ks be the completion of k at s. We identify s with the specific absolute

value |.|s on ks defined by the formula μ(aΩ) = |a|sμ(Ω), where μ is any Haar measure on the

additive group ks, a ∈ ks and Ω is a measurable subset of ks of finite measure. We denote by

Σk the set of places of k. In the sequel S is a finite subset of Σk which contains the set S∞ of

archimedean places, kS the direct sum of the fields ks(s ∈ S) and OS the ring of S-integers of

k (i.e. the ring of elements x ∈ k such that |x|s ≤ 1 for s /∈ S). We denote by Sf the set of

non-arichimedean places of S. For s ∈ Sf , the valuation ring of the local field ks is defined to be

Os =
{
x ∈ k | |x|s ≤ 1

}
. We denote by K an algebraic closure of k and for each s ∈ S, we de-

note Ks the algebraic closure of the completion ks. Note that Ks is not necessarily the completion

of K at s, indeed Ks is not complete at least at finite places.

In view of a generalisation of the previous results to the S-adic setting, let us consider a number

field k of degree d with ring of integers O and a finite set of places S containing the archimedean

ones. Suppose we are given a familiy of r quadratic forms Q1, . . . , Qr with coefficients in the

product of the completions ks (s ∈ S). The S-arithmetic version of the system (2) is given by the

following diophantine inequalities,

∀ε > 0, ∃ x ∈ On
S − {0}, ∀s ∈ S, |Qj,s(x)|s < ε for j = 1, . . . , r. (3)

In the case when the set S only contains archimedean places, O is a free Z-module of rank d and

let us choose a basis for O given by ω = (ω1, . . . , ωd). if we introduce the quadratic form

Qω
j (x1,1, . . . , xd,n) := Qj

(
d∑

k=1

xk,1ωk, . . . ,
d∑

k=1

xk,nωk

)
.

Then (3) reduces to the system (2)

∀ε > 0, ∃ x ∈ Znd − {0}, |Qω
j (x)| < ε for j = 1, . . . , r. (4)

Using such kind of restriction of scalar does not simply the problem. Indeed this operation in-

creases the number of variables and the hope to apply Ratner’s orbit closure together with the

classification of intermediate subgroups seems compromised. For example, even in the simplest

case of a quadratic number field and n ≥ 3, we already have to deal with quadratic forms in
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at least six variables for which the classification of intermediate subgroups is out of reach. The

only case for which system (3) has been solved is when r = 1 and n ≥ 3 which corresponds

to the S-arithmetic version of the Oppenheim conjecture proved by Borel and Prasad [3]. Their

proof appeals to the same method used in the original proof of Margulis, namely, it shows that

the orbit closure of the lattice On
S under

∏
s∈S SO(Qs)

+ is dense in the homogeneous space

ΩS = SL(n, kS)/SL(n,OS) provided the form QS is an isotropic form not proportional to a

form with coeffcients in k. The aim of this paper is to give a S-adic version of the Theorem

1.1 corresponding to the system (3) for pairs given by (Qs, L
2
s)s∈S using Ratner’s orbit closure

theorem.

2.2. Main results
Let (Q,L) be a pair consisting of one quadratic form and one nonzero linear form on knS . Equiv-

alently, (Q,L) can be viewed as a family (Qs, Ls)(s ∈ S), where Qs is a quadratic form on kns
and Ls a nonzero linear form on kns . The form Q is nondegenerate if and only each Qs is nonde-

generate. We say that Q is isotropic if each Qs is so, i.e. if there exists for every s ∈ S an element

xs ∈ kns −{0} such that Qs(xs) = 0, in particular if s is a real place an isotropic form is also said

to be indefinite. For any quadratic form Q, we denote by rad(Q) (resp. c(Q)) the radical (resp. the

isotropy cone) of Q. By definition Q is nondegenerate (resp. isotropic) if and only if rad(Q) �= 0
(resp. c(Q) �= 0). The form Q is said to be rational (over k) if there exists a quadratic form Qo

on kn and a unit c of kS such that Q = c.Q0, and irrational otherwise. If G is a locally compact

group, G◦ denotes the connected component of the identity in G and G+ is the subgroup of G
generated by its one parameter unipotent subgroups.

Given a pair F = (Qs, Ls)s∈S on knS , we say that the set F (On
S) is dense in k2S for the S-adic

topology if for any (a, b) ∈ k2S and any ε > 0, there exists an S-integral vector x ∈ On
S

|Qs(x)− as|s < ε and |Ls(x)− bs|s < ε for each s ∈ S.

Our main result gives the required conditions for density to hold when S = S∞. This may be seen

as an S-arithmetic version of Theorem 1.1 for archimedean places.

Theorem 2.1. Assume S = S∞ and let Q = (Qs)s∈S be a quadratic form on knS and L =
(Ls)s∈S be a linear form on knS with n ≥ 4 and Ls �= 0 for all s ∈ S. Suppose that the pair
F = (Q,L) satisfies the following conditions,

1. Q is nondegenerate.
2. Q|L=0 is nondegenerate and isotropic.
3. For each s ∈ S the forms αsQs+βsL

2
s are irrational given any αs, βs in ks with (αs, βs) �=

(0, 0).

Then the set F (On) is dense in k2S .

Whenever S contains in addition non-archimedean places, one can easily deduce from Gorodnik’s

theorem a weaker conclusion than the one appearing in Theorem 2.1.

Corollary 2.2. Assume S be a finite set of places of k such that S � S∞. Let (Q,L) be a pair
satisfying conditions of Theorem 2.1 for S. Then for any ε > 0, there exists x ∈ On

S − {0} such
that

|Qs(x)|s < ε and |Ls(x)|s < ε for each s ∈ S.
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2.3. Remarks.

(1) The proof of Theorem 2.1 reduces to dimension 4, (see § 3) this reduction is necessary since the

proof of Theorem 2.1 relies essentially on classification of intermediate subgroups and requires

low dimension1. The reduction process is made possible by the weak approximation property

applied to Grassmanian varieties.

(2) The conclusion of Corollary 2.2 follows immediately from Theorem 1.1 when k = Q and

S = {p1, . . . , pr}∪{∞}where the pi are distinct primes. In this case we have QS =
∏

pi
Qpi×R

and OS = ZS = Z[1/(p1 . . . pr)]. Given any ε > 0, there exists an integer N sufficiently divisible

by the primes p in S such that for any y ∈ Zn we have

N2|Q(y)|p < ε and N |L(y)|p < ε for any p ∈ S.

From Theorem 1.1 there exists a non-zero integer x ∈ Zn such that

|Q(x)| < ε/N2 and |L(x)| < ε/N .

Thus Nx ∈ On
S satisfies the conclusion of Corollary 2.2.

(3) The proof of Theorem 2.1 relies on Ratner’s Theorem which gives a precise description of the

closure orbits of lattices under the action of a Lie group generated by its unipotent one parameter

subgroups. We need to apply an S-adic version of Ratner’s theorem in order to find an integral

solution simultaneously at all places. We treat first the case when S = S∞, by Weil’s restriction

of scalars we can use results of [9] to elucidate the structure of the intermediate subgroups. This

is exactly where we need to work in dimension 4, indeed the proof relies on the classifications of

semisimple Lie algebras in sl(4,C) which contain the Lie algebra of the stabilizer. For a general

finite set of places S containing both archimedean and nonarchimedean places, we need to use

strong approximation for number fields in order to prove Corollary 2.2.

(4) For Theorem 2.1 even if we assume that αQ + βL2 is irrational, it can be possible that the

pencil form αsQs + βsL
2
s is rational for some place s, in this situation it is not possible to apply

Ratner’s theorem. It can be possible that the result is still true in this situation but there are serious

obstacles to (see § 8).

(5) Unfortunately we are not able to show the density of F (On
S) under the conditions of theo-

rem 2.1 when S contains both archimedean and non-archimedean places with our method.

(6) It should be noticed that it can be possible that |Qs(x)|s and |Ls(x)|s are both zero for any

s ∈ S and x ∈ On
S as in the conclusion of Corollary 2.2.

(7) In the real case, one can hope to relax condition (2) by only asking αQ+ βL2 to be isotropic

as it is conjectured by Gorodnik (see § 8, Conjecture 8.1). The major issue is that reduction to

lower dimension fails to hold.

Acknowledgements.
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3. Weak approximation, rationality and reduction to dimension 4

3.1. Weak approximation in number fields and Grassmannian varieties

Number fields satisfy a nice local-global principle called the weak approximation which can be

seen as a refinement of the Chinese remainder theorem.

Theorem 3.1 (Weak approximation in number fields). Let S be a finite set of Σk. Let us give
αs ∈ ks for each s ∈ S. Then there exists an α ∈ k which is arbitrarily close to αs for all s ∈ S
with respect to the s-adic topology.

Proof. (See e.g. [12], Theorem1, p.35)

One can reformulate this theorem as follows: the diagonal embedding k ↪→∏
s∈S ks is dense,

the product being equipped with the product of the s-adic topologies.

Definition 3.2 (Weak approximation in algebraic varieties). Let X be an algebraic variety defined
over k, then X is said to satisfy the weak approximation property with respect to a finite set of
places S if the diagonal embedding X(k) ↪→∏

s∈S X(ks) is dense for the S-adic topology.

To prove reduction we need to introduce a useful class of algebraic varieties which satisfies

weak approximation,

Definition 3.3. Let V be a k-vector space of dimension n ≥ 1 and for each 1 ≤ m ≤ n let us
define the set

Gm(V ) =
{
k-vector subspaces W ⊂ V with dimW = m

}
.

This is an algebraic variety defined over K called the Grassmannian variety, if V = kn the set of
k-rational points of Gm(V ) is simply denoted Gn,m(k).

Proposition 3.4. Let be given two integers 1 ≤ m ≤ n, then the Grassmannian variety Gn,m

satisfies the weak approximation property with respect to S, that is,

Gn,m(k) ↪→∏
s∈S Gn,m(ks) is dense.

Proof. Let us give a family (Vs)s∈S of ks-vector subspaces of dimension m in kns for each s ∈ S.

Each of these subspaces Vs are determined by m linearly independent vectors in kns . For each of

the Vs, the coefficients of these vectors in the standard basis of kns give rise to a m× n-matrix As

with coefficients in ks. By weak approximation property in knmS we obtain a matrix B ∈Mm,n(k)
such that for any s ∈ S, Bs is arbitrarily close to As. Since the rank is locally constant and Bs

is in a sufficiently small open neighbourhood of As, we get that rank As = rank Bs. Let V
′

be

the vector subspace generated by the n columns of B, obviously V ∈ Gn,m(k) and V ′
s is arbitrary

close to Vs for all s ∈ S.
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3.2. Rationality criterion for polynomial maps

Let us recall that K denotes an algebraic closure of k and Ks an algebraic closure of ks for each

s ∈ S. The following result gives a nice criterion in order to prove that a polynomial map is

defined over k (see also Proposition 3.1.10, [22]).

Proposition 3.5. Let be given s ∈ S and f : Kn
s −→ Ks be a regular map. Suppose there exists

a k-rational subspace V in kn which is Zariski dense in Kn
s and such that f(V ) ⊂ k. Then f is

defined over k.

Proof. Since f is regular, there exists a α1, . . . , αr ∈ K such that
{
1, α1, . . . , αr

}
are linearly

independent over k so that we can write f = f0 +

r∑
i=1

αifi where f0, f1, . . . , fr are polynomials

with coefficients in k. By assumption, f(V ) ⊂ k and the linear independence of the family{
1, α1, α2, . . . , αr

}
, it implies that f(x) = f0(x) for all x ∈ V . Since the Zariski density of V in

Kn
s is equivalent to V having dimension n, we obtain f = f0 on all Kn

s and f is defined over k.

3.3. Reduction of Theorem 2.1 to the dimension 4

Proposition 3.6. Let F = (Q,L) be a pair consisting of a quadratic form Q and a nonzero linear
form L in knS (n � 5) such that

(1) Q is nondegenerate
(2) Q|L=0 is isotropic
(3) Any quadratic form αsQs + βsL

2
s with αs, βs in ks such that (αs, βs) �= (0, 0) for all s ∈ S

is irrational.

Then there exists a k-rational subspace V of kn of codimension 1 such that F|VS
satisfies the

conditions (1)(2)(3), moreover V can be chosen such that Q|{L=0}∩VS
is nondegenerate.

Proof. When s is an archimedean real place, it is proved in ([9], Proposition 4) that there exists

a subspace Vs of kn of codimension 1 such that Fs|Vs
verifies conditions (1)(2)(3). (therein

the condition that Qs|Ls=0 is nondegenerate for s ∈ S refers to the condition Qs|Ls=0 of type

(I) in [9]). The proof non-archimedean case of ([9], Proposition 4) is analog to the real case.

Therefore there exists a subspace Vs of kn of codimension 1 such that Fs|Vs
verifies conditions

(1)(2)(3). Hence for any s ∈ S we may find Vs a subspace of kn of codimension 1 so that the

conditions (1)(2)(3) are satisfied by Fs|Vs
and one can choose Vs to be such that Qs|{Ls=0}∩Vs

is

nondegenerate.

Assume that n � 5. Let us give s ∈ S and Vs a k-subspace of codimension 1 in kns such that

the restriction of Qs on Vs is non-degenerate and isotropic. Let us define Hs := SO(Qs) the

ks-algebraic subgroup of the orthogonal group, the set of ks-points Hs = Hs(Ks) is a Lie group

over the algebraic closure Ks of ks. For our needs, we introduce the following lemma which is

valid for any field of characteristic zero (see e.g. [18], §3.1, Corollary 2).

Lemma 3.7. Let G × X −→ X a K-defined action of a K-algebraic group on K-algebraic
variety. If x ∈ X(K) and Y is the closure of the orbit Gx then for any open F ⊂ G(K), the set
Fx is open on Y (K). In particular Gx is open in Y (K).
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Following Borel and Prasad ([3] Proposition 1.3), let us consider the ks-action of the group Hs on

the Grassmanian variety Gn−1,n of the hyperplanes over ks. Since Q|Vs
is non-degenerate we can

use the previous lemma above in order to infer that the orbit HsV is open in Gn−1,n(ks) for the

S-adic topology. Moreover by weak approximation in kS we can find a rational subspace in V ′ of

codimension 1 in kn such that V ′ ⊗k ks is arbitrarily close to Vs for all s ∈ S, in particular they

belong to the same open orbit under Hs. We have established that Fs|Vs
satisfies conditions (1)

and (2), it is equivalent to say that

rad(Qs) ∩ Vs = {0} and c(Qs|Ls=0) ∩ Vs �= {0}. (∗)

The condition (2) remains true if we replace Vs by any subspace sufficiently close to Vs. Since

the subspace rad(Qs) is invariant under the action of the orthogonal group SO(Qs), the condition

(1) above is verified by any element of Gn−1,n(ks) which lies in the orbit of Vs under SO(Qs). In

particular, V ′ ⊗k ks satisfies (∗) for each s ∈ S. Hence we obtain a k-rational subspace V ′ of kn

such that F|V ′
S

satisfies the conditions (1)(2). It remains to find such V such that in addition F|VS

satisfies condition (3). Let us put

V =
{
V ∈ Gn−1,n(k) | F|VS

satisfies conditions (1) (2)
}

.

It is nonempty because it contains V ′. Suppose there exists no V in V for which F|VS
satisfies

condition (3), that is to say that for any V ∈ V, it should exists some s ∈ S and some (αs, βs) ∈
k2s − {(0, 0)}, such that the quadratic form αsQs(x) + βsLs(x)

2
|Vs

is rational. Let us consider the

map f : kns −→ ks given by

f : x �→ αsQs(x) + βsLs(x)
2.

Clearly f is a regular function on Kn
s and for each V ∈ V we have f(V (k)) ⊂ k.The Zariski

density of
⋃

V ∈V V (k) in Kn
s implies by Proposition 3.5 that f is defined over k. In other words,

αsQs(x) + βsLs(x)
2 is rational over k, contradiction. Hence there exists V ∈ V such that F|VS

satisfies condition (3).

Corollary 3.8. It suffices to prove Theorem 2.1 for n = 4.

Proof. It follows from the proposition by descending induction on n.

3.4. Adeles and strong approximation for number fields

The set of adeles A of k is the subset of the direct product
∏

s∈Σk
ks consisting of those x =

(xs) such that x ∈ Os for almost all s ∈ Σk. The set of adeles A is a locally topological ring with

respect to the adele topology given by the base of open sets of the form
∏

s∈S Us×
∏

s/∈S Os where

S ⊂ Σk is finite with S ⊃ S∞ and Us are open subsets of ks for each s ∈ S. reversemarginpar

For any finite subset S ⊂ Σk with S ⊃ S∞, the ring of S-integral adeles is defined by:

A(S) =
∏

s∈S ks ×
∏

s/∈S Os, thus we can see that A =
⋃

S⊃S∞

A(S).

We define also AS to be the image of A onto
∏

s/∈S ks, clearly A = kS × AS .

Theorem 3.9 (Strong approximation). If S �= ∅ the image of k under the diagonal embedding is
dense in AS .
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4. Stabilizers of pairs (Q,L)

For each s ∈ S let us define Gs = SL4(ks), GS =
∏

s∈S SL4(ks) = SL4(kS). Let F = (Q,L)
be a pair on k4S satisfying the conditions (1)(2)(3) of Theorem 2.1.

For every s ∈ S we realize Qs on a four-dimensional quadratic vector space (k4s , Qs) over ks
equipped with the standard basis B = {e1, · · · , e4}. For each s ∈ S, let us define Hs to be the

stabilizer of the pair Fs under the action of Gs, in other words

Hs =
{
g ∈ Gs | Qs ◦ g = Qs , Ls ◦ g = Ls

}
.

Equivalently one can write Hs =
{
g ∈ SO(Qs) | Ls ◦ g = Ls

}
, clearly it is a linear algebraic

group defined over ks. Also let us define Vs = {Ls = 0}, it is an hyperplane of k4s which induces

a quadratic isotropic subspace (Vs, Qs|Vs
) of dimension 3 in k4s . We have two cases following

(Vs, Qs|Vs
) is nondegenerate or not. If s is a real place the first case corresponds to pairs of type

(I) in the terminology of [9].

Lemma 4.1. Let be given a pair (Q,L) satisfying the conditions of Theorem 2.1 in dimension 4.
Then the stabilizer of (Q,L) under the action of G is of the form (up to conjugation)

H =

{(
A 0

0 1

)
| A ∈ SO(Q|L=0)

}
⊆ SL4(ks).

In particular, H is semisimple. Moreover, any quadratic form Q̃ which is H-invariant is of the
form αQ+ βL2 for some α, β ∈ kS not both zero.

Proof. Since (Vs, Qs|Vs
) is nondegenerate, one can write the the following decomposition k4s =

Vs ⊕ V ⊥
s where V ⊥

s the orthogonal complement w.r.t. Q. Since dimV ⊥
s = 1 there exists some

nonzero u vector of k4s such that V ⊥
s =< u > with Ls(u) �= 0. Moreover by definition Ls is

Hs-invariant so Vs is Hs-invariant. Moreover any element of h ∈ Hs is in particular an element

of SO(Qs), that is, hT = h hence V ⊥
s =< u > is also Hs-invariant. Then for any h ∈ Hs, the

restriction h|Vs
induces an automorphism of Vs and hu = u. Let us put w4 = u, and complete

with a basis
{
w1, w2, w3

}
of Vs to obtain the following matrix representation of Hs up to a ks-

isomorphism of k4s ,

Hs �
{(

A 0

0 1

)
| A ∈ SO(Qs|Vs

)

}
⊆ SL4(Ks).

It is well-known that the orthogonal group of a nondegenerate quadratic form is a semisimple

group. The last statement is the Lemma 9 in [9].

S-adic products
Now let F = (Qs, Ls)s∈S be a pair satisfying the conditions of the main theorem. Let Hs be the

algebraic group defined over ks such that Hs(ks) = Hs. Given any subgroup H , the notation H+

denotes the subgroup of H generated by its one-dimensional unipotent subgroups. Let us put

HS =
∏

s∈S Hs and H+
S =

∏
s∈S H+

s .

9



Therefore HS is an algebraic subgroup of SL4(kS) which leaves invariant the pair F = (Q,L)
with respect to the S-basis B′ =

{
w1, w2, w3, w4

}
as in the previous lemma. In other words, we

have

HS �
{(

A 0

0 1

)
| A ∈ SO(Q|VS

)

}
⊆ ∏

s∈S SL4(Ks)

and

H+
S �

{(
A 0

0 1

)
| A ∈ SO(Q|VS

)+
}
⊆ ∏

s∈S SL4(Ks).

5. Topological rigidity in S-adic homogeneous spaces

5.1. Ratner’s topological rigidity theorem for unipotent groups actions

In this section, we are assuming that S is the set of archimedean places in Σk i.e. S = S∞.

However, we allow ourselves to use the explicit notation S∞ if necessary.

Let us consider the S-adic linear group defined over kS , GS = SLn(kS). It is not difficult to

see that GS is a Lie group which has a discrete subgroup a finite covolume ΓS = SLn(OS). Let

us define ΩS to be the quotient space given by GS/ΓS where GS = SLn(kS). A well-known

easy fact says that the homogeneous space ΩS is one-to-one with the space of unimodular free

OS-modules of maximal rank in knS . For every s ∈ S, let Us be a ks-subgroup of Gs generated by

its one-parameter unipotent subgroups. We denote by U =
∏

s∈S Us(ks) the product subgroup of

GS . We are interested in the left action of U on the homogeneous space ΩS and more particularly

with the closure of such orbits taken with respect to the topology on ΩS induced by the projection

π : GS → ΩS . If x ∈ ΩS it turns out that the closure of the orbit Ux is also an orbit of x.

The following result is the generalisation of Ratner’s orbit closure theorem for S-products proven

independently by Margulis-Tomanov and Ratner (see [15], [20]).

Theorem 5.1 (Ratner’s Theorem for S-adic groups). For each x ∈ ΩS , there exists a closed
subgroup M = M(x) ⊂ GS containing U such that the closure of the orbit Ux coincides with
Mx and Mx admits M -invariant probability measure.

In the real case, this result was conjectured by Raghunathan who stated it with G = SL(3,R),
U = SO(2, 1)◦ and Γ = SL(3,Z). He noticed that the proof of this Conjecture should lead to a

solution of the Oppenheim conjecture. Despite appearences, the proof of this theorem is measure

theoretic and consists to classify ergodic measures under the action of the unipotent flow on the

homogeneous space Ω. In both proofs made by Margulis-Tomanov ([15]) and Ratner ([20]) the

notion of entropy plays a central role for the measure classification.
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5.2. The structure of intermediate subgroups in the archimedean case.
The application of Ratner’s Theorem 5.1 above gives a nice description of the orbit closure

under the action of a subgroup H+ generated by unipotent one parameter subgroups in GS . Con-

sidering a unimodular lattice x ∈ ΩS , we get that

H+x = L.x

for some closed connected subgroup L (depending on x) such that H+ ⊂ L ⊂ G.

The following theorem due to N. Shah gives extra information about the structure of the interme-

diate subgroups arising from Ratner’s orbit closure theorem above,

Theorem 5.2 ([21], Prop. 3.2). Let G = G(R)◦ with G an algebraic subgroup of SL(n,C)
defined over Q and Γ = G ∩ SL(n,Z). Let H be a subgroup of GCom-

ment
(1)

generated by its unipotent one
parameter subgroups and assume that

HΓ = PΓ where P is a closed connected subgroup of G

such that P ∩ Γ has finite covolume in P . Then P = P̃ (R)◦ where P̃ is the smallest Q-subgroup
of G whose group of real points contains H .

By combining Ratner’s theorem and previous proposition, we obtain immediately the following

corollary stated in the set-up of the previous proposition.

Corollary 5.3 ( [3], Corollary 7.2). Let g ∈ G such that x = g.0 where 0 is the coset of Γ in G/Γ.
Then g−1Lg = P̃ (R) where P̃ is the smallest subgroup of whose group of real points contains
g−1Hg.Com-

ment
(2) To use the results of this section for our purposes, we need to reduces to the case when k = Q.

This can be done by using the functor of restriction of scalars for algebraic groups.

Proposition 5.4. Let k be a number field. Given any algebraic group G ⊂ GLn(k) defined over
k, there exists an algebraic group G′ defined over Q such that G′(Q) � G(k).

Proof. See e.g. [18], §2.1.2 for a general construction for finite separable extensions.

Definition 5.5 (Restriction of scalars). We denote G′ by Rk/Q(G) and it is called the algebraic
group associated to G obtained by restriction of scalars from k to Q.

The operation Rk/Q defines a functor from the category of k-groups to the category of Q-groups.

This functor has a nice arithmetic property regarding the set of integral points, given any algebraic

group defined over k, we have2

Rk/Q(G)(Z) � G(Ok)

Assume that G = SLn|k viewed as a algebraic group defined over k and all the places are

archimedean i.e. S = S∞. The fact that kS = k ⊗Q R implies GS = Rk/Q(G)(R) and the

intermediate subgroups have still an interesting structure by means of restriction of scalars

Proposition 5.6 ([3], Prop. 7.3). Let Hs be a closed subgroup of Gs = SLn(ks) for each s ∈ S∞
and H the product of the Hs. Then the smallest Q-algebraic subgroup L of G whose group of real
points contains H is of the form L = Rk/QL

′, where L′ is a connected k-subgroup of G.

2This result will not be used in the sequel.
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6. Proof of the Theorem 2.1

Let F = (Q,L) be a pair in knS which satisfies the conditions of Theorem 2.1. After § 3, we know

that it suffices to show it for n = 4. By condition (3) all the forms αsQs + βsL
2
s are irrational

for each αs, βs in ks such that (αs, βs) �= (0, 0) for any s ∈ S. Let g ∈ GS be the matrix of the

basis B′
S with respect to the standard basis of k4S . By definition g−1HSg leaves invariant the pair

F = (Qs, Ls)s∈S , and H+
S is generated by one-dimensional unipotent subgroups. We consider

ΓS as an element of the homogeneous space ΩS . By applying Ratner’s Theorem 5.1, one obtains

g−1H+
S gΓS = PΓS (5)

where P is a closed subgroup of GS which contains g−1H+
S g.

Since we assume that S = S∞, we have O4
S = O4. Let us write k∞, H∞ and G∞ respectively

for kS∞ , HS∞ and GS∞ . One can also note that H+∞ is nothing else than the component of the

identity H◦∞. Using equality (5) one deduces that the set F (O4) is dense in k2∞. Indeed, we are

going to adapt the proof of ([9], Proposition 10) to the S∞-products, as follows3. We first reduce

the ground field from k to the field of rational numbers. To achieve this we realise G∞ as the

group of real points of an algebraic group G defined over Q. In view of Proposition 5.6 this is

given explicitly by taking G = Rk/QSL4 where Rk/Q is the functor restriction of scalars of the

field extension k/Q and where SL4 is regarded as the usual algebraic group over k. In other words,

G∞ = G(R) with G an algebraic group defined over Q. Now let us precise the structure of P .

From Corollary 5.3 above, we infer that there exists an algebraic group P̃ defined over Q which is

the smallest Q-algebraic group whose group of real pointsCom-

ment

(3)

contains g−1H◦∞g. In the other hand,

Proposition 5.2 implies that P = P̃ (R)◦ and the unipotent radical U of P̃ is also defined over Q.

Thus equality (5) may be read as

g−1H◦∞gΓ = P̃ (R)◦Γ. (6)

Let us set the group U = U(R), then for each s ∈ S∞, we define Ps (resp. Us) to be the

intersection of P (resp. U ) with Gs , where Gs is identified with the subgroup of G consisting of

elements (gt)t∈S with gt = 1 for all s �= t.

Lemma 6.1. If Ps acts irreducibly on C4, then Ps = Gs. Otherwise, Ps = MsUs where

Ms = ug−1
s

(
SL3 0

0 1

)
gsu

−1 for some u ∈ Us.

Proof the Lemma. This result is the core of the proof of Proposition 10 in [9] for which we

recall the outlines. If Ps acts irreducibly on C4, then Ps is semisimple and the classification of

irreducible semisimple Lie groups in SL4 implies that Ps is equal either to Gs or SO(Bs) for some

nondegenerate form Bs (Proposition 7 and Lemma 8, [9]). Such form Bs being Hs-invariant is

necessarily of the form αsQs + βsL
2
s for some (αs, βs) �= (0, 0) (Lemma 4.1). As seen before Ps

is defined over Q, so that Bs is forced to be rational which is a contradiction. Hence Ps = Gs.

For the second assertion, we consider the induced action of Ps on the space L of linear forms in

C4, it is reducible by hypothesis. There only two reducible components in L under H , namely

3For more precisions, the reader is invited to read the original proof which is similar.
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〈x1, x2, x3〉 and 〈x4〉. Since Ps contains g−1Hsg, there are only two Ps-invariant subspaces in L,

which are given by L1 = 〈L1, L2, L3〉 and L2 = 〈L4〉 where Li(x) = (gx)i for i = 1, . . . , 4, note

that L4 = L. Since Ps is defined over Q, one infers that M is semisimple thus admitting a Levi

decomposition

Ps = MsUs

where Ms and Us are respectively a Levi subgroup and the unipotent radical of Ps. The Levi

subgroup Ms is defined over Q since Ps is. Also as seen above, U is defined over Q and Mal-

cev’s theorem ensures that the Levi subgroups are unique up to conjugacy (e.g. see §4.3 [16]), in

particular

g−1
s H◦

s gs ⊆ u−1Msu for some u ∈ Us. (7)

Moreover this inclusion is strict, indeed Hs leaves invariant any linear combination of Qs and L2
s

which by assumption are always irrational thus Hs is not defined over Q. The latter fact and the

maximality of SO(Q|L=0) in SL3 (Q|L=0 is isotropic) give the equality

Ms = ug−1
s

(
SL3 0

0 1

)
gsu

−1.

This achieves the proof of the Lemma.

Let us define the subgroup

M ′
s := u−1Msu = g−1

s

(
SL3 0

0 1

)
gs.

By the previous Lemma 6.1, one can rephrase equality (6) in the following way

g−1H◦∞gΓ = M ′(R)◦U(R)Γ. (8)

Now let be given (a, b) ∈ k2∞ and let us choose x ∈ O4 − 〈g−1e4〉. It is not difficult to see that

there exists m ∈M ′(R)◦ and u ∈ U(R) such that

F (mux) = (Q(mux), L(mux)) = (a, b).

Using density in (8), we infer that there exists hn ∈ g−1H◦∞g and γn ∈ Γ such that

hnγn → mu as n→∞.

We conclude that

F (γnx) = F (hnγnx)→ F (umx) = (a, b) as n→∞.

Hence F (O4) is dense in k2∞ and Theorem 2.1 is proved.
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7. Proof of Corollary 2.2

Now let us assume S �= S∞ and let be given s ∈ Sf . The set O4 is bounded in k4s , thus for any

neighbourhood U of the origin in k4s one can find an integer as ∈ Os such that as.O
4 ⊂ U . In

other words, given any ε > 0 one can find as ∈ Os such that :

|Qs(asx)|s � ε and |Ls(asx)|s � ε for all x ∈ O4. (9)

Thus for each s ∈ Sf , we can associate an integer as ∈ Os satisfying the previous inequalities.

By strong approximation one can find a ∈ O such that |a|s = |as|s for all s ∈ Sf . Put ‖a‖∞ =
maxs∈S∞ |a|s, by Theorem 2.1 we can find x ∈ O4 − {0} such that:

|Qs(x)|s � ε/‖a‖2∞ and |Ls(x)|s � ε/‖a‖∞ for all s ∈ S∞.

We immediately obtain for all s ∈ S∞

|Qs(asx)|s = |as|2s|Qs(x)|s � ε and |Ls(asx)|s = |as|s|Ls(x)|s � ε. (10)

Let us consider the initial choice of ε > 0. By combining (10) with the choice of a satisfying (9),

we obtain a nonzero element y = a.x ∈ O4
S satisfiying the conclusion of Corollary 2.2, i.e.

|Qs(y)|s � ε and |Ls(y)|s � ε for all s ∈ S.

8. Comments and open problems

Irrationality of the pencils forms
The rationality condition in Theorem 2.1, namely asking irrationality of all the pencils of

Q and L2 at all places of S is more restrictive than assuming irrationality of the pencils over

kS . Indeed the latter condition leaves the possibility that some pencil could be rational at some

place(s) of S. In this case, using Ratner’s theorem and therefore the classification of intermediate

subgroups cannot be achieved by our methods. By analogy with the work of Borel and Prasad in

the case of a family of quadratic forms (Qs)s∈S , it may be possible to apply strong approximation

and avoiding reduction of dimension. The problem is that this method does not give integral

solutions x ∈ On
S of inequalities |Q(x)| ≤ ε and |L(x)| ≤ ε but only nonzero integral solutions

of the pencil forms |αQ(x) + βL2(x)| ≤ ε which may depend on the coefficients α and β. The

most serious issue is to eliminate the dependance on the coefficients, that is, to replace the valid

assertion

∀ε > 0, ∀P ∈ P1(kS), ∃x ∈ On
S − {0}, |Q̃P (x)|S ≤ ε

by the one we would like

∀ε > 0, ∃x ∈ On
S − {0}, ∀P ∈ P1(kS), |Q̃P (x)|S ≤ ε.

Indeed if one is able to do so, such x will satisfies those inequalities for both P1 = [0 : 1] and

P2 = [0 : 1] and by homogeneity it would give the solution of our problem.
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Towards density
It should be possible to obtain the density of F (On

S) for a pair F = (Q,L) over kS under the

same assumptions generalising those of Theorem 1.1. For this we need a analog of Lemma 6 of

[9] for nonarchimedean completions which has no clear reason to fail in characteristic zero. A

significant difference with the classical Oppenheim conjecture is that the stabilizer of such pairs

is no more maximal, and the classification of intermediate subgroups is much more involved.

Unfortunately we are not able to prove Lemma 6.1 for non archimedean completions and to avoid

the use of strong approximation.

Some Open problems
We conclude by mentioning two conjectures of Gorodnik (see [9], conjecture 15) and (see

[10], conjecture 13) which concerns the assumption (2) of Theorem 1.1 in the real case. It is

conjectured that the condition Q|L=0 is isotropic can be replaced by the weaker assumption that

the pencil αQ+ βL2 is isotropic for any real numbers α, β such that (α, β) �= (0, 0).

Conjecture 8.1 (Gorodnik). Let F = (Q,L) be a pair consisting of one nondegenerate quadratic
and one nonzero linear form in dimension n ≥ 4. Suppose that

1. For every β ∈ R, Q+ βL2 is indefinite.
2. For every (α, β) �= (0, 0), with α, β ∈ R, αQ+ βL2 is irrational.

Then F (P(Zn)) is dense in R2.

The first condition is necessary for density to hold. The main issue is that this condition (contrarily

to the condition that Q|L=0 is indefinite) does not allow us to reduce to the four dimensional case.

Hence all the strategy of the proof of Theorem 1.1 becomes needless regarding the impossibility

to classify all the intermediate subgroups in higher dimension.
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