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Abstract

This work is concerned with using deep neural networks for
estimating binary masks within a speech enhancement frame-
work. We first examine the effect of supplementing the audio
features used in mask estimation with visual speech informa-
tion. Visual speech is known to be robust to noise although
not necessarily as discriminative as audio features, particularly
at higher signal-to-noise ratios. Furthermore, most DNN ap-
proaches to mask estimate use the cross-entropy (CE) loss func-
tion which aims to maximise classification accuracy. However,
we first propose a loss function that aims to maximise the hit
minus false-alarm (HIT-FA) rate of the mask, which is known
to correlate more closely to speech intelligibility than classifi-
cation accuracy. We then extend this to a hybrid loss function
that combines both the CE and HIT-FA loss functions to pro-
vide a balance between classification accuracy and HIT-FA rate
of the resulting masks. Evaluations of the perceptually moti-
vated loss functions are carried out using the GRID and larger
RM-3000 datasets and show improvements to HIT-FA rate and
ESTOI across all noises and SNRs tested. Tests also found that
supplementing audio with visual information into a single bi-
modal audio-visual system gave best performance for all mea-
sures and conditions tested.

Index Terms: HIT-FA, speech separation, binary mask

1. Introduction

Speech separation from a monaural source aims to separate tar-
get speech from interfering background noise to produce a more
intelligible signal. Such systems have widespread application
in areas such as speech enhancement, robust speech recognition
and hearing aid design [1, 2, 3]. There are two main approaches
to this problem. The first is to derive a statistical model that
makes certain assumptions about the background noise, and in-
cludes methods such as spectral subtraction, Weiner filtering
and mean-square error estimation [4]. These approaches have
been shown to not provide an increase in intelligibility for hu-
man listeners [5, 6]. This is because distortions (e.g. musical
noise) are introduced and low-intensity sounds (e.g. unvoiced
consonants), which are important for intelligibility, are lost.
The second approach uses computational auditory scene anal-
ysis (CASA) [7], inspired by perceptual principles of auditory
scene analysis (ASA), and can be effective in both stationary
and non-stationary noise [8].

In CASA, speech is extracted by applying a mask to a time-
frequency (T-F) representation of noisy speech. An ideal binary
mask (IBM) retains speech dominant T-F units and suppresses
noise dominant T-F units. An IBM can be constructed from
premixed speech and noise and defined as
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Figure 1: Overview of the speech separation system.
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where ¢ and f represent time frame and frequency bin respec-
tively and LC is a local criterion. T-F units dominated by speech
are assumed to have a signal-to-noise ratio (SNR) greater than
or equal to LC are represented by 1 and retained. Noise dom-
inant units are assumed to be less than LC are represented
by O and suppressed. Several studies have reported subjec-
tive test results where IBMs improve intelligibility for speech
in noise for both normal-hearing and hearing-impaired listen-
ers [9, 10, 11, 12]. In practice an IBM is not available and in-
stead the binary mask must be estimated from the noisy signal.
This allows speech separation to be treated as a mask estimation
problem that uses supervised learning to map acoustic features
extracted from noisy speech to a binary mask [13].

This work considers two extensions to mask estimation.
First, information from visual speech is investigated as a supple-
ment to the audio information used in mask estimation. The use
of visual speech information in traditionally audio-only speech
processing applications has given significant gains in perfor-
mance in noisy conditions. For example, in speech recognition,
supplementing the audio with visual features has reduced error
rates in low SNR conditions [14, 15, 16]. A benefit of using
visual speech information within mask estimation is that visual
features are not degraded by acoustic noise, although in them-
selves they may not have the discriminative ability that audio
features possess in terms of mask estimation. To investigate this
we explore mask estimation, and subsequently speech intelligi-
bility, by comparing audio-only, visual-only and audio-visual
speech mask estimation.

The second extension to mask estimation proposed in this
work is development of perceptually motivated loss functions
within a deep neural network (DNN) framework. Most existing
methods of mask estimation using DNNs use the classification
accuracy of the T-F units as the basis of the cross-entropy (CE)
loss function that is used during training []. However, several
studies have shown that the HIT-FA rate of the mask correlates
more closely to speech intelligibility than classification accu-
racy [17, 18, 19, 20, 21]. Therefore, we propose using percep-
tually motivated loss functions that are based on maximising the
HIT-FA rate with the aim of increasing the intelligibility of the
resulting masked speech.



Figure 1 shows the overall speech separation system. Fea-
tures are extracted from noisy speech and visual frames and in-
put into a DNN to estimate a binary mask. Masking is applied to
a cochleagram [7] of the noisy speech which suppresses noise-
dominated T-F units and the remaining signals are overlapped
and summed to produce the enhanced signal. The same system
is used for all speech enhancement configurations, except the
visual stream is removed for audio-only, and the audio stream
is removed for visual-only.

The remainder of the paper is organised as follows. Section
2 provides an overview of acoustic and visual feature extrac-
tion methods. The classifier and proposed loss functions are
described in Section 3. Performance evaluations are made in
Section 4 which first compare the performance of including vi-
sual information through visual-only and audio-visual systems,
and secondly the effectiveness of the proposed perceptual loss
functions under varying noise and SNR conditions using both a
small dataset (GRID) and large dataset (RM-3000).

2. Audio-visual feature extraction

Feature extraction aims to identify suitably discriminative in-
formation in the noisy input speech and the visual speech that
enables the DNN to determine whether T-F units are target (1)
or noise (0) dominated.

2.1. Acoustic feature extraction

The acoustic feature selected is the multi-resolution cochlea-
gram (MRCGQG) feature, designed specifically for cochleagram
mask estimation. The MRCG feature combines four cochlea-
grams at different resolutions [19]. The first captures high res-
olution localised detail while the remaining cochleargrams cap-
ture lower resolution spectrotemporal content. Cochleagrams
are computed by passing the input signal through a 64-channel
gammatone filterbank [22].

The outputs from the gammatone filterbank are split into
20 ms frames with 10 ms frame shift with power spectrum com-
puted followed by a log which gives the first cochleagram,
CG1. Similarly, CG2 uses 200 ms frames with 10 ms frame
shift. Finally, CG3 and C G} are derived by applyingan 11x 11
and 23 x 23 mean filter kernel to C'G; [19]. The final MRCG
feature, A+, is produced by stacking all four CGs for time .

2.2. Visual feature extraction

The visual feature selected is the active appearance model
(AAM) which has proven to be an effective feature within
audio-visual speech recognition [14, 23, 24] and is a model-
based combination of shape and appearance. AAMs require la-
belled data with landmarks to generate features and use a model
to perform this task automatically. The model requires hand la-
belled training images to learn the variation in mouth shapes
and in this work 43 training images were used with 101 land-
marks tracked. Forty-six and 20 landmarks represent the outer
and inner lip respectively, with the extra landmarks for the eyes
and jaw line, which assist the model in locating the face and
fitting landmarks. A new model is produced by selecting only
the mouth landmarks, and is used to produce AAM features,
v = [s¢ a¢], that comprise shape, s, and appearance, a;, com-
ponents for time ¢.

The shape feature, s, is obtained by concatenating n x and
y coordinates that form a two-dimensional mesh of the mouth,
s = (z1y1, ... xnyn)T. A model that allows linear variation in

shape is produced using PCA,
s=s0+ me @)
i=1

where s¢ is the base shape, s; are the shapes corresponding to
the m largest eigenvectors and p; are shape parameters. Coef-
ficients comprising 90 % of the variation are selected, resulting
in a vector size of 8 shape coefficients, s;.

The appearance feature, a, is obtained from the pixels that
lie inside the base mesh, so [25]. As with the shape model, an
appearance model, a, can also be expressed with linear varia-

tion,
m

a=ap+ Z qia; 3)
i=1

where ag is the base appearance, a; are the appearances that
correspond to the m largest eigenvectors and g; are appearance
parameters. Coefficients comprising 95 % of the variation are
selected, giving a vector size of 15 appearance coefficients, a;.
Combining the shape and appearance features gives an AAM
vector, vy, with 23 dimensions which is extracted from the
video at a rate of 25fps.

2.3. Temporal information

Including temporal information along with static features has
shown to improve accuracy in automatic speech recognition
(ASR) [26, 27]. In this work we include temporal informa-
tion via vector stacking. Given a sequence of static feature
vectors, {...,@i—2, Ti—1, Tt, Te41, Tit2, - .. }, Neighbouring
vectors within a window that extends K vectors either side of
the current vector are stacked, i.e.

STACK
Ty [:Bth,...,:Bt,.,,,wtﬂkK} (4)

Preliminary tests found a window of 7 frames (i.e. K=3) gave
best performance. Due to the difference in frame rates between
acoustic and visual features, visual features are upsampled to
that of the acoustic features. For audio-only systems «; = a,
for visual-only &; = v and for audio-visual: : = [a: v¢|.

3. Perceptually motivated loss functions

The purpose of the classifier is to learn a mapping between
the input audio and visual features extracted from the noisy
speech and the binary mask output. Previous studies have
shown a progression in classifiers used, beginning with GMMs
through to support vector machines (SVMs), multilayer percep-
trons (MLPs) and finally deep learning [17, 18, 19, 20, 21, 28].
‘We use DNNGs as the classifier in this work which normally uses
the binary cross-entropy (CE) loss function in training for clas-
sification tasks. The DNN uses rectified linear units for hidden
layers and a sigmoid layer for the output. The CE loss func-
tion is now reviewed and two new perceptually motivated loss
functions introduced inspired by the HIT-FA rate.

3.1. Binary cross-entropy (CE) loss function

Binary cross-entropy (CE) is a standard loss function used
within DNN training for classification tasks [29] and forms the
baseline loss function. The aim of CE is to maximise the ac-
curacy of the estimated mask where accuracy is defined as the
proportion of correctly labeled T-F units. The CE loss, L°F, is



calculated as
N
Z [yn log(gn) + (1 — yn) log(1 — z)n)] ©)

where y and g are vectors that comprise concatenated frames of
T-F units for each mini-batch in DNN training, from the IBM
and estimated mask respectively. Each of these vectors com-
prises N T-F units which are indexed by n.

3.2. HIT-FA (HF) loss function

Our first perceptually motivated loss function (HF) is based on
maximising the HIT-FA rate, which several studies have shown
correlates more closely to intelligibility than mask accuracy
[17, 18, 19, 20, 21]. In terms of the loss function, HITs refer
to the proportion of correctly labeled target-dominant T-F units
while FAs refer to the proportion of incorrectly labeled noise-
dominant T-F units. Studies have shown that achieving high
HITs and low FAs produces higher intelligibility [17].

The key difference between the CE and HF loss functions is
that CE calculates accuracy over all T-F units together, whereas
HF calculates the accuracy of target-dominant (1) and noise-
dominant (0) T-F units separately. HIT-FA has a range between
1 and -1, with 1 being best performance. However within DNN
training loss is minimised, therefore we use FA-HIT to give best
performance at -1 and remove this discrepancy. The HIT-FA
loss, LI¥ | is calculated as

N 1 N
S5 DI (EVATAEES o P8 T
n=1 n=1

where S is the number of T-F units within y that should be
suppressed (0s) and R is the number of T-F units within y that
should be retained (1s).

01 \

3.3. Binary cross-entropy HIT-FA hybrid (CHF) loss func-
tion

Within an IBM the number of retained T-F units, R, and number
of suppressed units, .S, are generally not equal. In most cases
there are more noise-dominant T-F units than target-dominant
units, due mainly to areas of non-speech. The HF loss function
is calculated as proportions of R and S separately, and is there-
fore less affected by bias towards a difference between R and
S.

Conversely, the CE loss function is calculated as an overall
accuracy of R and S and is therefore biased towards the greater
of the two. We take inspiration from the HF loss function to
produce a hybrid cross-entropy HIT-FA (CHF) loss function by
modifying the CE function to remove this bias. To do this we
normalise the ratio between R and S such that R = S. This is
achieved by multiplying the portion related to S by R/S. The
cross-entropy HIT-FA loss function, LMY is calculated as

LCHF
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Our data has a bias towards S, therefore this normalisation will
cause an increase of HITs at a cost of increasing FAs. The oppo-
site would occur if the bias was towards R. A reduction to over-
all classification accuracy will occur in all cases where R # S
prior to normalisation.

4. Experimental results

The experiments examine the effect of including visual speech
features in mask estimation through audio-only, visual-only and
audio-visual tests. Comparisons are also made of the proposed
loss functions across these different input feature configura-
tions. Tests first use a small dataset (GRID) and then expand
to a larger vocabulary dataset (RM-3000).

The GRID audio-visual dataset contains recordings from 34
speakers who each produced 1000 sentences [30]. Each sen-
tence comprises six words and follows the grammar shown in
Table 1. Speaker 12 (male) was selected for the evaluations with
the audio downsampled to 16 kHz, and the video was captured
at 25 fps. The speech database is split into 200 test sentences,
and 800 training sentences of which 160 are removed for vali-
dation within training.

Table 1: GRID sentence grammar.

’ command ‘ colour ‘ preposition ‘ letter ‘ digit ‘ adverb ‘

bin blue at A-Z 1-9 | again

lay green by minus W | zero | now
place red in please

set white with soon

The second audio-visual dataset, RM-3000 [31], consists of
3000 sentences spoken by a single native English speaking male
speaker. The sentences were randomly selected from the 8000
sentences in the Resource Management (RM) Corpus [32]. The
vocabulary size of 1000 words and no strict grammar give a
more realistic environment, and more challenging task when
compared to GRID. The audio was downsampled to 16 kHz and
the video was captured at 25 fps. The speech database is split
into 600 test sentences, and 2400 training sentences of which
480 are removed for validation within training.

The DNN architecture for all experiments consisted of 5
hidden layers with 1024 rectified linear units [33] with an output
sigmoid layer of 64 units. Input data was z-score normalised
and grouped into minibatches of 256. Dropout of 0.2 was used
after all hidden layers to prevent overfitting [34]. Training was
performed using backpropagation with the RMSprop optimiser
[35]. A learning rate of 3e~> was chosen with 0.9 momentum
applied. The DNN was built using the Lasagne [36] library with
a Theano [37] backend.

For evaluating the performance of our speech separation
systems, we utilise three objective measures: i) classification
accuracy of T-F units, ii) HIT-FA rate and iii) ESTOI [38].
Within the ESTOI function, non-speech frames are removed
via dynamic range thresholding, however in our experiments,
we found this method to perform poorly and not remove the
desired non-speech frames. Therefore, we remove the non-
speech frames using the alignment transcriptions provided for
each dataset prior to the ESTOI function.

4.1. Analysis with GRID dataset

These tests use the GRID dataset to compare the performance of
our proposed perceptual loss functions using audio-only, visual-
only and audio-visual system. Experiments are performed in
babble and factory noise at SNRs of -5dB, 0dB and +5dB,
with LC set to be 5 dB lower than the selected SNR as this was
found to give best performance in initial tests and conforms to
that described in [20, 21]. Tables 2 and 3 show the classifica-
tion accuracy, HIT-FA and ESTOI performance across babble



and factory noise respectively for audio, visual and audio-visual
systems using the CE, HF and CHF loss functions.

Table 2: Classification accuracy (in %), HIT-FA (in %) and ES-
TOI scores for the GRID dataset in babble noise at -5 dB, 0 dB
and +5dB.

] SNR \ Feat \ Loss \ Acc \ HIT-FA (FA) \ ESTOI \

CE | 89.7 | 66.7 (4.6) 46.9

A HF 84.8 | 68.0 (14.5) 42.6

CHF | 88.3 | 71.7 (9.5) 46.1

CE | 871 | 63.0 (7.8) 46.2

5dB v HF 84.6 | 70.1 (15.8) 44.2
CHF | 85.5 | 68.7 (13.5) 45.9

CE | 91.0 | 734 (5.2) 53.7

AV HF 86.5 | 74.3 (14.2) 48.3

CHF | 89.4 | 78.0 (10.2) 52.0

unprocessed audio 20.3

CE | 91.8 | 747 (4.1) 62.4

A HF 88.7 | 77.4 (11.2) 60.3

CHF | 90.6 | 79.5 (8.7) 62.8

CE | 871 | 627 (7.6) 53.1

0dB A% HF 84.5 | 69.7 (15.7) 53.1
CHF | 85.4 | 68.3 (13.5) 53.9

CE | 921 | 76.7 (4.5) 64.8

AV HF 88.7 | 78.6 (11.9) 62.0

CHF | 90.8 | 81.1 (9.0) 64.8

unprocessed audio 33.9

CE | 926 | 77.6 (4.0) 72.2

A HF 90.1 81.0 (10.3) 72.6

CHF | 914 | 82.6 (8.5) 74.1

CE | 871 | 629 (7.8) 59.7

+5dB v HF 84.7 | 69.6 (15.4) 62.5
CHF | 85.3 | 68.7 (13.9) 62.9

CE | 926 | 782 (4.2) 72.6

AV HF 89.4 | 80.9 (11.4) 72.4

CHF | 91.5 | 82.8 (8.5) 74.5

unprocessed audio 49.8

Firstly, comparing the performance of audio-only, visual-
only and audio-visual systems across all noise types and SNRs,
we find that all systems provide large gains in intelligibility over
unprocessed audio. When combining audio and visual informa-
tion into a bimodal system highest performance is found across
all measures for all noise types and SNRs. Highest gains in
performance over audio-only is found at low SNRs, where the
visual information complements best the degraded audio. Gains
of 8.3 and 5.8 in HIT-FA rate and gains of 6.8 and 5.9 for ES-
TOI over audio-only at -5 dB for babble and factory noise re-
spectively are achieved, producing an overall improvement of
33.4 and 30.6 in intelligibility over the unprocessed audio. At
high SNRs, the benefit gained from combining audio and visual
information over audio-only is reduced as the audio features are
less degraded by noise which allowing the DNN to more effec-
tively map to the target masks in these less challenging condi-
tions.

For visual-only systems, classification accuracy and HIT-
FA rate provides a consistent score across all SNRs for each
noise type. This is due to the visual feature being unaffected
by noise type or SNR corrupting the audio stream, and the per-
formance is provided by how well the DNN can map the input
visual features to the target mask. The only difference between
noise type and SNR configurations are the configuration depen-
dant target masks. The increase in intelligibility with increasing

Table 3: Classification accuracy (in %), HIT-FA (in %) and ES-
TOI scores for the GRID dataset in factory noise at -5 dB, 0 dB
and +5dB.

] SNR \ Feat \ Loss \ Acc \ HIT-FA (FA) \ ESTOI ‘

CE | 92.8 | 69.1 (2.7) 44.8

A HF 89.4 | 74.1 (9.4) 40.9

CHF | 91.1 | 75.7 (7.2) 43.8

CE | 90.2 | 64.4 (5.5) 44.1

5dB v HF 87.3 | 73.9 (12.5) 43.0
CHF | 88.6 | 71.9 (9.9) 45.0

CE [ 935 | 75.0 (3.3) 50.7

AV HF 89.9 | 79.1 (10.0) 46.3

CHF | 91.9 | 81.5 (7.5) 50.6

unprocessed audio 20.1

CE | 944 | 76.9 (2.5) 58.7

A HF 91.3 | 79.9 (8.0) 57.2

CHF | 929 | 83.2 (6.4) 60.1

CE | 90.2 | 64.7 (5.5) 50.4

0dB A% HF 87.5 | 74.0 (12.2) 51.7
CHF | 88.6 | 72.2 (10.0) 52.3

CE | 945 | 786 (2.7) 60.7

AV HF 91.2 81.9 (8.7) 58.9

CHF | 929 | 84.8 (6.9) 62.3

unprocessed audio 33.5

CE | 95.1 | 80.3 (2.4) 66.9

A HF 92.1 | 83.9 (7.9 68.1

CHF | 93.6 | 86.6 (6.2) 70.6

CE [ 903 | 644 (5.4) 55.7

+5dB v HF 87.4 | 74.4 (12.4) 60.3
CHF | 88.5 | 72.3 (10.2) 59.8

CE | 95.0 | 81.1 (2.6) 67.8

AV HF 91.6 | 83.9 (8.5) 68.6

CHF | 93.3 | 87.0 (6.8) 71.2

unprocessed audio 49.9

SNR through ESTOI is due solely to the less corrupted noisy
mixtures at higher SNR.

Comparing now the effect of the loss functions with respect
to classification accuracy, the CE loss function gives highest
accuracy across all SNRs and noise types and across all config-
urations. This is expected as the CE loss function is targeted
to maximise accuracy. The hybrid CHF loss function has accu-
racy almost as high as CE and exceeds that of HF which is not
designed to maximise classification accuracy.

Considering now the HIT-FA rate, the HF loss function now
outperforms the CE loss function as it is designed to maximise
HIT-FAs. However, the hybrid CHF loss function gives even
higher HIT-FAs across all SNRs and noise types for systems
containing audio information, while the visual-only system con-
sistently has highest HIT-FA rate with the HF loss function. In
terms of HITs, the CHF and HF loss functions perform sim-
ilarly, but their main difference is that the CHF loss function
generates fewer FAs compared to the HF loss function. Low-
est HITs and FAs are found with the CE loss function due to it
favouring Os over 1s in the mask, which is caused by the bias
towards the larger of S and R. The CHF loss function is able
to remove this bias and provides a balance between increasing
HITs without increasing as many FAs.

Comparing now the intelligibility as measured by ESTOI,
the CE loss function outperforms the HF loss function at lower
SNRs while the HF loss function is better at the higher 5dB
SNR for all systems, and is better above 0 dB for visual-only



systems. Even though the HF loss function outperforms CE
with regards to the HIT-FA rate across all configurations, the
large number of FAs introduced by the HF loss function re-
duces the intelligibility to be lower than CE at low SNRs. This
shows that even a large increase in HITs does not compensate
for a large increase in FAs, which are more detrimental to in-
telligibility at low SNR than at high SNR. Considering now the
performance of the hybrid CHF loss function, this outperforms
both CE and HF at SNRs above -5dB and is slightly worse
than CE at -5dB. The CHF loss function had higher HIT-FA
rate over CE across all SNR for all systems, confirming that
increasing the HIT-FA rate does increase intelligibility, but the
number of FAs introduced affects the resulting intelligibility.
Reducing FAs at low SNRs is critical whereas a higher HIT rate
is more important at high SNRs.

Overall, with intelligibility being the main focus, all sys-
tems provide large gains in ESTOI over unprocessed audio, with
the bimodal audio-visual system outperforming both audio-only
and visual-only across all configurations. With regards to loss
functions, if the SNR is very low, CE is the loss function of
choice, however at all other SNRs, CHF is the best performing
loss function. CHF also provides a strong balance between both
classification accuracy and the HIT-FA rate.

4.2. Analysis with RM-3000 dataset

From the experiments in Section 4.1, loss functions CE and
CHF are selected for further analysis in the larger vocabulary
tests which use the RM-3000 dataset. Experiments are per-
formed in babble noise at SNRs of -5 dB, 0 dB and +5 dB, with
LC set to 5 dB lower than the select SNR. Table 4 shows objec-
tive performance across all system configurations.

Table 4: Classification accuracy (in %), HIT-FA (in %) and ES-
TOI scores for the RM-3000 dataset in babble noise at -5 dB,
0dB and +5dB.

] SNR \ Feat \ Loss \ Acc \ HIT-FA (FA) \ ESTOI ‘

CE | 903 | 712 (4.8) | 46.9

CHF | 888 | 76.2 (10.6) | 46.5

v | CE [847 [ 585 (95) | 3838

-5dB CHF | 82.6 | 65.7 (17.8) | 40.0
)

)

A

AV CE 90.7 | 73.6 (5.3 50.5
CHF | 89.1 | 78.0 (10.9 50.5
unprocessed audio 22.0
CE 91.7 | 76.2 (4.6) 59.6

CHF | 90.5 | 80.4 (9.2) 60.5

CE 84.7 | 582 (9.4) 44.5

0dB CHF | 82.8 | 65.5 (17.2) 48.0
(4.7)

(9.6)

AV CE 91.8 | 77.1 61.3
CHF | 90.6 | 81.2 . 62.2
unprocessed audio 35.4

A CE | 924 | 789 (4.5) 68.8

CHF | 91.3 | 82.7 (8.8) 70.8

v CE | 84.7 | 585 (9.5) 50.1

+5dB CHF | 82.6 | 65.7 (17.6) 56.2
AV CE | 924 | 788 (4.5) 69.1

CHF | 91.3 | 82.9 (9.0) 71.5

unprocessed audio 50.7

As with the experiments with GRID (Section 4.1) supple-
menting audio with visual information provides best perfor-
mance across all measures for all SNRs, confirming that com-
bining audio and visual features provides a robust complimen-
tary feature set. Largest gains were found at low SNRs, at -5 dB

a gain of 3.6 in ESTOI was achieved over audio-only, provid-
ing an overall gain of 28.5 over unprocessed. The performance
benefit of audio-visual over audio-only is less using the RM-
3000 dataset compared to the GRID dataset, due to the overall
decrease in performance of the visual features shown through
visual-only experiments. This is due to the larger variability
associated with the RM-3000 dataset compared to the GRID
dataset making it more challenging for the DNN to distinguish
the similar mouth shapes associated within the visual feature.

Similar to GRID, large gains in intelligibility over the un-
processed audio were found with both loss functions. When the
SNR is very low, the CE loss function is best, and at all other
SNRs the hybrid CHF loss function outperforms CE.

5. Conclusions

This work has examined the effect on intelligibility of includ-
ing visual information in binary mask estimation for speech en-
hancement. It was found that all systems provide large gains
in intelligibility over unprocessed, with largest gains found at
lower SNRs. Combining both audio and visual modalities into
a single bimodal audio-visual system provides largest gains
across all noise types, SNRs and datasets, confirming that com-
bining audio and visual features provides a robust complimen-
tary feature set.

This work has also proposed two new perceptually moti-
vated loss function for DNN-based mask estimation inspired by
the HIT-FA rate which is known to correlate closely to speech
intelligibility. A hybrid cross-entropy HIT-FA loss function
(CHF) was proposed to reduce the bias found within binary
cross-entropy by adjusting the ratio between 1s and Os inspired
by HIT-FA. Application of the proposed loss functions was eval-
uated on a small vocabulary (GRID) and large vocabulary (RM-
3000) dataset. Evaluations using classification accuracy, HIT-
FA rate and ESTOI reveal that the proposed loss functions pro-
vide performance gains in HIT-FA and ESTOI over the stan-
dard binary cross-entropy loss function, with peak performance
found with our hybrid loss function (CHF) across both datasets.
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