Tibialis anterior stretch reflex in early stance is suppressed by repetitive transcranial magnetic stimulation

Zuur, Abraham T, Christensen, Mark S, Sinkjaer, Thomas, Grey, Michael J ORCID: https://orcid.org/0000-0002-3216-3272 and Nielsen, Jens Bo (2009) Tibialis anterior stretch reflex in early stance is suppressed by repetitive transcranial magnetic stimulation. The Journal of Physiology, 587 (8). pp. 1669-1676. ISSN 0022-3751

Full text not available from this repository. (Request a copy)

Abstract

A rapid plantar flexion perturbation in the early stance phase of walking elicits a large stretch reflex in tibialis anterior (TA). In this study we use repetitive transcranial magnetic stimulation (rTMS) to test if this response is mediated through a transcortical pathway. TA stretch reflexes were elicited in the early stance phase of the step cycle during treadmill walking. Twenty minutes of 1 Hz rTMS at 115% resting motor threshold (MT(r)) significantly decreased (P < 0.05) the magnitude of the later component of the reflex at a latency of approximately 100 ms up to 25 min after the rTMS. Control experiments in which stretch reflexes were elicited during sitting showed no effect on the spinally mediated short and medium latency stretch reflexes (SLR and MLR) while the long latency stretch reflex (LLR) and the motor-evoked potential (MEP) showed a significant decrease 10 min after 115% MT(r) rTMS. This study demonstrates that 1 Hz rTMS applied to the leg area of the motor cortex can suppress the long latency TA stretch reflex during sitting and in the stance phase of walking. These results are in line with the hypothesis that the later component of the TA stretch reflex in the stance phase of walking is mediated by a transcortical pathway. An alternative explanation for the observed results is that the reflex is mediated by subcortical structures that are affected by the rTMS. This study also shows that rTMS may be used to study the neural control of walking.

Item Type: Article
Faculty \ School: Faculty of Medicine and Health Sciences > School of Health Sciences
UEA Research Groups: Faculty of Medicine and Health Sciences > Research Groups > Rehabilitation
Related URLs:
Depositing User: Pure Connector
Date Deposited: 27 Jun 2017 05:06
Last Modified: 13 May 2023 00:09
URI: https://ueaeprints.uea.ac.uk/id/eprint/63863
DOI: 10.1113/jphysiol.2009.169367

Actions (login required)

View Item View Item