Antagonistically pleiotropic allele increases lifespan and late-life reproduction at the cost of early-life reproduction and individual fitness

Maklakov, Alexei A. ORCID: https://orcid.org/0000-0002-5809-1203, Carlsson, Hanne, Denbaum, Philip, Lind, Martin I., Mautz, Brian, Hinas, Andrea and Immler, Simone (2017) Antagonistically pleiotropic allele increases lifespan and late-life reproduction at the cost of early-life reproduction and individual fitness. Proceedings of the Royal Society B: Biological Sciences, 284 (1856). ISSN 0962-8452

[thumbnail of Accepted manuscript]
Preview
PDF (Accepted manuscript) - Accepted Version
Download (568kB) | Preview

Abstract

Evolutionary theory of ageing maintains that increased allocation to early-life reproduction results in reduced somatic maintenance, which is predicted to compromise longevity and late-life reproduction. This prediction has been challenged by the discovery of long-lived mutants with no loss of fecundity. The first such long-lived mutant was found in the nematode worm Caenorhabditis elegans. Specifically, partial-loss-of-function mutation in the age-1 gene, involved in the nutrient-sensing insulin/insulin-like growth factor (IIS) signalling pathway, confers longevity, as well as increased resistance to pathogens and to temperature stress without appreciable fitness detriment. Here we show that the long-lived age-1(hx546) mutant has reduced fecundity and offspring production in early-life but increased fecundity, hatching success and offspring production in late-life compared to wild-type worms under standard conditions. However, reduced early-life performance of long-lived mutant animals was not fully compensated by improved performance in late-life and resulted in reduced individual fitness. These results suggest that the age-1(hx546) allele has opposing effects on early-life versus late-life fitness in accordance with antagonistic pleiotropy and disposable soma theories of ageing. These findings support the theoretical conjecture that experimental studies based on standing genetic variation underestimate the importance of antagonistic pleiotropy in the evolution of ageing.

Item Type: Article
Uncontrolled Keywords: ageing,senescence,evolutionary genetics,life-history trade-off
Faculty \ School: Faculty of Science > School of Biological Sciences
UEA Research Groups: Faculty of Science > Research Groups > Organisms and the Environment
Depositing User: Pure Connector
Date Deposited: 08 Jun 2017 05:07
Last Modified: 13 May 2023 00:08
URI: https://ueaeprints.uea.ac.uk/id/eprint/63699
DOI: 10.1098/rspb.2017.0376

Actions (login required)

View Item View Item