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ABSTRACT 

This thesis employs molecular quantum electrodynamical theory to analyse the interactions 

between light and matter for four main processes. The first to be considered is Raman scattering, 

where the effect of the electrodynamic environment for the centre of spectroscopic interest is 

considered. This is achieved by engaging a retarded dipole-dipole interaction between the centre 

and a neighbouring molecule. Physically, this is explained by a virtual photon between the pair 

of centres. The results predict characteristic new lines on the Raman spectrum, for the species, 

arising from the engagement of selection rules not limited to those of a two-photon process. 

 

The second process, is hyper-Rayleigh scattering, in which a single multipolar coupling is 

considered in place of the more familiar electric dipole. This modification to the theory subverts 

the standard selection rules for a three-photon process, which can allow for second-harmonic 

emission to be generated by a centre of high symmetry, such as a centrosymmetric molecule. 

 

The third process offers another means of subverting the standard selection rules for second-

harmonic generation, namely by incorporating six-wave mixing. First, the general mechanism is 

developed and pertinent results are expressed for the widely-deployed depolarisation ratio. 

Following this, structured light is considered and by utilising orbital angular momentum (OAM) 

conservation arguments, the pair of harmonic photons are found to display quantum 

entanglement. Moreover, the relative magnitudes of the possible emissions are found to 

correspond directly to that of the binomial coefficients. 

 

This thesis concludes with a family of novel structures capable of directly generating OAM light. 

This work exploits symmetry characteristics for a delocalised excitonic structure that can allow 

for a more complex multipolar emission than that of any isolated centres. The phase of the 

exciton is shown to display an azimuthal phase progression, a vortex feature most commonly 

associated with Laguerre-Gaussian light.  

 

  



 iii 

 

PUBLICATIONS 

XVIII. M. D. Williams, D. S. Bradshaw, and D. L. Andrews, “Symmetry analysis of Raman 

scattering mediated by neighboring molecules,” J. Chem. Phys. 145, 184301 (2016).  

XVII. M. D. Williams, D. S. Bradshaw, and D. L. Andrews, “Raman scattering mediated by 

neighboring molecules,” J. Chem. Phys. 144, 174304 (2016). 

XVI. M. D. Williams, D. S. Bradshaw, and D. L. Andrews, “On the emergence of Raman 

signals characterizing multicenter nanoscale interactions,” Proc. SPIE 9884, 98840N 

(2016).  

XV. K.A. Forbes, M. D. Williams and D. L. Andrews, “Quantum theory for the nanoscale 

propagation of light through stacked thin film layers,” Proc. SPIE 9884, 988434 (2016).  

XIV. M. D. Williams, D. S. Bradshaw, and D. L. Andrews, “Quantum issues with structured 

light,” Proc. SPIE 9764, 976407 (2016). 

XIII. J. M. Leeder, D. S. Bradshaw, M. D. Williams, and D. L. Andrews, “Developments in 

the Photonic Theory of Fluorescence,” in Reviews in Fluorescence 2015, C. D. 

Geddes, ed. (Springer International Publishing, 2016), pp. 235. 

XII. M. D. Williams, J. S. Ford, and D. L. Andrews, “Hyper-Rayleigh scattering in 

centrosymmetric systems,” J. Chem. Phys. 143, 124301 (2015). 

XI. R. Liu, D. B. Phillips, F. Li, M. D. Williams, D. L. Andrews, and M. J. Padgett, 

“Discrete emitters as a source of orbital angular momentum,” J. Opt. 17, 045608 

(2015).  [Collaboration & IOP Select] 

X. M. D. Williams, J. S. Ford, and D. L. Andrews, “Mechanisms universally permitting 

hyper-Rayleigh scattering,” Proc. SPIE 9347, 934711 (2015). 

IX. D. L. Andrews, M. D. Williams, D. S. Bradshaw, R. Lui, D. B. Phillips, S. Franke-

Arnold, and M. J. Padgett, “Nanoarrays for the generation of complex optical wave-

forms,” Proc. SPIE 9160, 91601L (2014).  [Collaboration] 



iv 

 

VIII. M. D. Williams, D. S. Bradshaw, and D. L. Andrews, “Principles of vortex light 

generation from electronically excited nanoscale arrays,” Proc. SPIE 9126, 91260F 

(2014). 

VII. M. D. Williams, M. M. Coles, D. S. Bradshaw, and D. L. Andrews, “Direct generation 

of optical vortices,” Phys. Rev. A 89, 033837 (2014). 

VI. M. D. Williams, M. M. Coles, D. S. Bradshaw, and D. L. Andrews, “Optical vortex 

mode generation by nanoarrays with a tailored geometry,” Proc. SPIE 8999, 89990Q 

(2014). 

V. M. M. Coles, M. D. Williams, and D. L. Andrews, “Optical vortices in six-wave 

mixing,” Proc. SPIE 8999, 89990Y (2014). 

IV. M. D. Williams, M. M. Coles, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Optical 

vortex generation from molecular chromophore arrays,” Phys. Rev. Lett. 111, 153603 

(2013). 

III. M. M. Coles, M. D. Williams, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Chiral 

nanoemitter array: A launchpad for optical vortices,” Laser & Photon. Rev. 7, 1088 

(2013).  [Issue front cover] 

II. D. L. Andrews, M. M. Coles, M. D. Williams, and D. S. Bradshaw, “Expanded 

horizons for generating and exploring optical angular momentum in vortex 

structures,” Proc. SPIE 8813, 88130Y (2013). 

I. M. M. Coles, M. D. Williams, and D. L. Andrews, “Second harmonic generation in 

isotropic media: six-wave mixing of optical vortices,” Opt. Express 21, 12783 (2013). 

 

  



 v 

 

ACKNOWLEDGEMENTS 

Firstly, I would like to express my gratitude for the supervision and guidance Prof. David L. 

Andrews has consistently provided me throughout my PhD research; I cannot imagine a better 

mentor to have had throughout this endeavour. 

 

I thank my co-authors and group members for the many fruitful conversations: Dr Matt M. 

Coles, Dr Jack S. Ford, Kayn A. Forbes, Dr Jamie M. Leeder. But most of all to Dr David S. 

Bradshaw for offering your time and insights throughout this research and thesis. 

 

I thank the University of East Anglia for funding this research. 

 

Last but by no means least, I would like to thank my parents. Not just for the care and attention 

you so readily give out. But also for the sacrifices you make to provide the best for us all. 

  



vi 

 

CONTENTS 

ABSTRACT .............................................................................................................................................. II 

PUBLICATIONS ................................................................................................................................... III 

ACKNOWLEDGEMENTS ...................................................................................................................... V 

CONTENTS ............................................................................................................................................ VI 

LIST OF FIGURES ................................................................................................................................. IX 

LIST OF TABLES ................................................................................................................................ XIII 

LIST OF ABBREVIATIONS ................................................................................................................. XV 

LIST OF SYMBOLS ............................................................................................................................. XVI 

FUNDAMENTAL THEORY ................................................................................................................... 1 

1.1 INTRODUCTION .......................................................................................................................................................... 1 

1.2 UNDERLYING THEORY .............................................................................................................................................. 3 

1.3 PERTURBATION THEORY .......................................................................................................................................... 8 

1.4 PROCESSES ................................................................................................................................................................. 11 

1.4A Rayleigh Scattering ............................................................................................................................................. 11 

1.4B Raman scattering ............................................................................................................................................... 15 

1.4C Second-harmonic generation ................................................................................................................................ 17 

1.5 MULTICENTRE INTERACTIONS .............................................................................................................................. 22 

1.6 OPTICAL ANGULAR MOMENTUM ........................................................................................................................... 23 

1.6A Spin angular momentum .................................................................................................................................... 23 

1.6B Orbital angular momentum ................................................................................................................................ 25 

1.6C Poynting vector ................................................................................................................................................... 28 

1.7 TIMELINE OF MILESTONES ..................................................................................................................................... 29 

COMPLEMENT 1A: PARITY CONSIDERATIONS ............................................................................ 34 

COMPLEMENT 1B: MOLECULAR SYMMETRY ............................................................................... 36 

COMPLEMENT 1C: COHERENCE AND WAVE-VECTOR MATCHING ....................................... 38 

COMPLEMENT 1D: ROTATIONAL AVERAGING OF TENSORS ................................................... 41 

GENERAL STRUCTURE ........................................................................................................................................................ 41 

RANK 2 .................................................................................................................................................................................. 42 

RANK 3 .................................................................................................................................................................................. 43 

RANK 4 .................................................................................................................................................................................. 43 

RANK 5 .................................................................................................................................................................................. 44 

RANK 6 .................................................................................................................................................................................. 45 

RANK 7 .................................................................................................................................................................................. 46 

SUCCESSIVE RANKS ............................................................................................................................................................. 49 

COMPLEMENT 1E: FIELD VECTORS ............................................................................................... 50 



 vii 

 
COMPLEMENT 1F: RESONANCE EFFECTS .................................................................................... 53 

COMPLEMENT 1G: BORN-OPPENHEIMER APPROXIMATION ................................................. 55 

COMPLEMENT 1H: LAGUERRE POLYNOMIALS ........................................................................... 57 

MULTICENTRE RAMAN SCATTERING ........................................................................................... 58 

2.1 INTRODUCTION ........................................................................................................................................................ 58 

2.2 GENERAL THEORY ................................................................................................................................................... 60 

2.2A Case I ................................................................................................................................................................ 61 

2.2B Case II ............................................................................................................................................................... 65 

2.2C Case III ............................................................................................................................................................. 66 

2.2D Case IV ............................................................................................................................................................ 68 

2.2E Case V .............................................................................................................................................................. 69 

2.2F Case VI ............................................................................................................................................................ 75 

2.2G Case VII ........................................................................................................................................................... 77 

2.2H Case VIII ......................................................................................................................................................... 81 

2.2I Summary of cases ............................................................................................................................................... 83 

2.3 ROTATIONAL AVERAGE .......................................................................................................................................... 84 

2.4 SYMMETRY ................................................................................................................................................................. 88 

2.5 EXAMPLE SYSTEM: BENZENE ................................................................................................................................. 90 

2.6 PRESSURE DEPENDENCE ......................................................................................................................................... 91 

2.7 DISCUSSION ............................................................................................................................................................... 92 

COMPLEMENT 2A: PRODUCTS OF MATRIX ELEMENTS ............................................................ 94 

COMPLEMENT 2B: COMPLETE SET OF NEWLY RAMAN ACTIVE IRREDUCIBLE 

REPRESENTATIONS ........................................................................................................................... 96 

HYPER-RAYLEIGH SCATTERING .................................................................................................... 100 

3.1 INTRODUCTION ...................................................................................................................................................... 100 

3.2 GENERAL THEORY ................................................................................................................................................. 102 

3.2A Case I .............................................................................................................................................................. 102 

3.2B Case II ............................................................................................................................................................. 104 

3.2C Case III ........................................................................................................................................................... 105 

3.2D Case IV .......................................................................................................................................................... 105 

3.2E Summary of cases ............................................................................................................................................. 106 

3.3 ROTATIONAL AVERAGE ........................................................................................................................................ 106 

3.3A Example .......................................................................................................................................................... 107 

3.4 EXPERIMENTAL APPLICATION ............................................................................................................................. 110 

3.4A Example (continued) ........................................................................................................................................ 111 

3.5 SUMMARISED RESULTS ........................................................................................................................................... 112 

3.6 DISCUSSION ........................................................................................................................................................ 115 

COMPLEMENT 3A: RESULTS TABLE FOR THE ROTATIONAL AVERAGES ............................ 116 

SIX-WAVE SECOND HARMONIC GENERATION WITH STRUCTURED LIGHT...................... 120 



viii 

 
4.1 INTRODUCTION ...................................................................................................................................................... 120 

4.2 GENERAL THEORY ................................................................................................................................................. 121 

4.2A Vacuum formulation........................................................................................................................................ 121 

4.2B Media effects .................................................................................................................................................... 124 

4.3 ROTATIONAL AVERAGE ........................................................................................................................................ 126 

4.4 STRUCTURED LIGHT............................................................................................................................................... 129 

4.5 DISCUSSION ............................................................................................................................................................. 132 

DIRECT GENERATION OF STRUCTURED LIGHT ....................................................................... 133 

5.1 INTRODUCTION ...................................................................................................................................................... 133 

5.2 ARRAY CONFIGURATION ...................................................................................................................................... 134 

5.3 EXCITON HAMILTONIAN AND WAVEFUNCTIONS ............................................................................................ 137 

5.4 STRUCTURE OF THE EXCITONIC ENERGY LEVELS............................................................................................ 140 

5.5 EXCITON PHASE STRUCTURE ............................................................................................................................... 141 

5.6 DISCUSSION ............................................................................................................................................................. 143 

REFERENCES ...................................................................................................................................... 147 

 

  



 ix 

 

LIST OF FIGURES 

Figure 1:  A quantum representation of: (a) a molecule undergoing an electronic transition from a 

ground state 0E  to a virtual excited state 0E ck  before relaxing back to its ground state; 

(b) a radiation transition utilising ladder operators to demote the radiation state to 1m   

and subsequently promoted back to m . ..................................................................................... 3 

Figure 2:  A pair of Feynman diagrams depicting both the photon annihilation and creation events at 

a world line for an optical centre, A . Read from the bottom up: (a) depicts a centre in its 

ground state, 0, annihilating a photon at vertex j , at which time it enters an intermediary 

state, r , before subsequently relaxing and creating a photon at vertex i  and returns the 

centre to its ground state; (b) is the time inverse of the left panel, moreover all matter and 

radiation states are equivalent. .................................................................................................... 12 

Figure 3:  A pair of Feynman diagrams depicting both the photon annihilation and creation events at 

a world line for an optical centre, A . Read from the bottom up: (a) depicts a centre in its 

ground state, 0, annihilating a photon at vertex j , at which time it enters an intermediary 

state, r , before subsequently relaxing and creating a photon at vertex i  and relaxes to a 

different vibrational energy state,  ; (b) is the time inverse of the left panel, moreover all 

matter and radiation states are equivalent. ................................................................................ 16 

Figure 4:  Three Feynman diagram representations for the distinct time-orderings associated with 

second-harmonic generation: (a) the photon annihilation operators j  and k  precede the 

photon creation i ;  (b) the creation event straddles the two annihilation events; (c) the 

creation event precedes both the annihilation events. In all cases the scatterer begins and 

completes the process in its ground state 0 traversing two intermediary states, r  and s . 

Moreover, the emitted photon conveys the energy sum of the two annihilated photons: 

ck ck ck   , in each schematic. ....................................................................................... 18 

Figure 5:  A tabular state sequence diagram depicts all the pathways for SHG, with each row 

representing a state of consecutive photon occupying number, n . Columns denote 

successive system states that each time-ordering progress through. Any pair of radiation 

states linked by a line represent interactions between the molecule and the radiation mode. 

The inclined dashed lines represent a photon creation event, while the declining solid lines 

represent a photon annihilation event. ...................................................................................... 19 

Figure 6:  Poincaré sphere, the two poles representing the two pure eigenstates of spin polarisations. 

Linear superpositions of these will form all other polarisations: the linear modes line up 

around the equator and elliptical the remaining regions are dedicated to elliptical 

polarisations. .................................................................................................................................. 24 



x 

 

Figure 7:  A series of simulations depicting the phase progression of increasing topological charge 

from left-to-right for the first two values for the radial index, explicitly: (a) 1, 0l p  ; (b) 

2, 0l p  ; (c) 3, 0l p  ; (d) 1, 1l p  ; (e) 2, 1l p  ; (f) 3, 1.l p   The phase 

cycles through c2 l  the intensity distribution has been overlaid, where white represents 

zero-intensity in each case. ........................................................................................................... 27 

Figure 8:  Procession in wavefront for an LG beam with 3l   over the course of three wavelengths, 

depicted as three interleaved helices, each representing a surface of constant phase. ....... 29 

Figure 9:  Schematic depiction of a pairwise interaction between two centres in the course of a Raman 

scattering process, with a detector, D , perpendicular to that of the incident beam. ......... 59 

Figure 10: A single representative Feynman diagrams for the time evolution of two molecules A  and 

.B  Prior to the process both centres are in their ground state at a point in time the molecule 

of spectroscopic interest annihilates a photon and transitions to a virtual intermediate state, 

.r  At a subsequent instant, a virtual photon is exchanged between the pair; molecule A  is 

left in a vibrationally excited state, while its neighbour transitions to a virtual state, s , 

before immediately creating the scattered photon and returning to its ground state. ........ 63 

Figure 11: Similarly to Figure 10, this is one of six permutations of time orderings for this case, in 

Feynman diagrammatic representation. The difference here is the sites of the photon 

operators are interchanged. .......................................................................................................... 65 

Figure 12: Another example of one time series for this case in Feynman diagrammatic form. .......... 66 

Figure 13: An example time series, in Feynman diagram form, for the final photon-molecule 

interaction site arrangement. ........................................................................................................ 68 

Figure 14: This is very closely related to the Feynman diagram depicted in Figure 10, except a total of 

two virtual photon exchanges occur between the pair of molecules, making for a total of 

six interactions, distributed as three interactions at each of the molecules.  Two additional 

intermediary states are required to describe this process t  and u . The additional virtual 

photon exchange doubles the number of possible permutations of time-orderings to 

twelve. .............................................................................................................................................. 70 

Figure 15: One of twelve Feynman diagrams to represent the photon operator locations. This is 

comparable in form to that of case II, the additional permutations introduced as a result of 

the second virtual photon. ........................................................................................................... 77 

Figure 16: One example Feynman diagrams comparable in form to that of case III, where both real 

photon operators occur at molecule A , the additional permutations introduced as a result 

of a second virtual photon exchange with molecule B . ......................................................... 78 



 xi 

 

Figure 17: One Feynman diagram to exemplify this mechanism. Both real photon operations occur 

on molecule B , which is coupled to molecule A  by two virtual photons. ........................ 81 

Figure 18: Experimental set-up: (a) parallel plane-polarized light is detected at right angles to the input 

laser; (b) perpendicularly plane-polarized light also detected at right angles. ...................... 84 

Figure 19: Experimental set-up: (a) parallel plane-polarised light is detected at right angles to the input 

laser; (b) perpendicularly plane-polarised light detected also detected at right angles; (c) 

forward scattered circular-polarised light with preserved circularity; (d) forward scattered 

circular-polarised light of reversed circularity. ........................................................................ 110 

Figure 20: An example Feynman diagram for six-wave second-harmonic generation. The photon 

annihilation operators ,k  ,l  ,m  n  precede the photon creation i  and j . At the time of 

the process resolves, the scatterer reaches the state in which it began, the ground state 0, 

subsequent to traversing five intermediary states, ,r  ,s  ,t  u  and v . .............................. 121 

Figure 21: In this tabular state sequence diagram, each row represents a state of consecutive photon 

occupying number, n . Columns denote successive system states. Each vacant column and 

row, which also contains a connector represents an interaction. The solid lines with a 

declination representing a photon annihilation event and the inclined dashed lines represent 

a photon creation event. In the more widely known Feynman diagrams, these correspond 

to nodes, such as those displayed in Figure 4. In the central line of catawampus cells, the 

wavevector of either output mode has been accommodated, with both modes populated 

in the upper set. ........................................................................................................................... 122 

Figure 22: Schematic for the wavevector matching condition, the sum of the wavevectors k for the 

annihilated photons from the input beam is equal to the sum the two harmonic photons 

of wavevectors k  and k  at a conical angle, .  Here, o10   is depicted. ................ 125 

Figure 23: A schematic depiction of the regarded process. From left-to-right, the input beam of 

intercepts a nonlinear isotropic media and a single centre creates two photons of 3l    

(top) and 1l   (bottom). The cone can be envisaged tracing a shaved pencil tip pressed 

against the media, with k  and k  emerging along two diametrically opposed axes. .... 130 

Figure 24: (a) A cross section of magnitude distribution, where the -axisy  is aligned with the input axis. 

It demonstrates the relative magnitude in output of the three permitted pairings of 

topological charges,  ,l l  . (b) A transverse intensity distribution around the input beam 

axis. The (2,2) output has been selected in this case, where red indicates high intensity, 

through to black where there is zero intensity. The calculations have been performed at a 

distance of 100 wavelengths from the conversion material, adopting a source laser of 

wavelength of 800 nm. ............................................................................................................... 131 



xii 

 

Figure 25: An impression of a permissible structure conforming to point group 3C  to support an 

exciton of phase cross-section displayed, which in turn relaxes to produce a helical emission 

of 1l  . ......................................................................................................................................... 134 

Figure 26: Schematic depiction of the array of seven emitters. The emission axis is that of the z-axis 

in the centre of the plane. The angles and dictate the local orientation of each and every 

emitter.  The angle  designates the azimuthal position in the array. Here, 4     

and 2 7  . The circumferential dotted lines serve as visual guides only. .................... 137 

Figure 27: Excitonic irreducible representations and corresponding Davydov energy level splitting of 

for an array of 9C  point group symmetry. The regular nonagon has been displayed to 

emphasise the relative displacement in line splitting. A 2uE U  , 1E 1 532uE U   , 

2E 0 347uE U   , 3E uE U   and 4E 1 879uE U   . The excitation considered is by 

a red-edge laser and the magnitude of splitting has been exaggerated for visibility. ........ 141 

Figure 28: Phase cross-sections perpendicular to the emission axis. From left-to-right and top-to-

bottom, they display: 2n   with no topological charge supported; 5, 1n l  ; 

5, 1n l    with an intensity weighting introduced; 21, 10n l  . Each colour 

represents a different phase, with each diagram displaying a c2l  azimuthal progression. 

For these simulations 4     and hence each of the arrays conform to the respective 

nC  point group. In these plots the radius of the array is 200  , where   is the optical 

wavelength of emission. The simulation cross-section has a length of 20  . ............... 143 

 

  



 xiii 

 

LIST OF TABLES 

Table 1:   A timeline of key contributions that have led to the current field of research. .................. 29 

Table 2:  Selected irreducible weights for an arbitrary Cartesian tensor, T . ....................................... 37 

Table 3:   The field vectors for the exemplary experimental setups. ...................................................... 50 

Table 4:   Field vector products for scattering of plane polarised light detected perpendicular to input, 

with parallel oscillations. ................................................................................................................ 51 

Table 5:   Field vector products for scattering of plane polarised light detected perpendicular to input, 

with perpendicular oscillations. ....................................................................................................... 51 

Table 6:   Field vector products for scattering of forward circularly polarised light, with preserved circularity.

 .......................................................................................................................................................... 52 

Table 7:   Field vector products for scattering of forward circularly polarised light, with reversed circularity.

 .......................................................................................................................................................... 52 

Table 8:   List of molecular response tensors with their corresponding case and world line for 

molecule A , sorted by number of interactions ‘rank’.  The permissible weights for the given 

rank are also displayed. Note, near resonance, linear polarisability tensors   will include 

weight 1 components. .................................................................................................................. 89 

Table 9:   Categorizes the irreps for all novel (neighbour-induced) Raman transitions according to the 

irreducible weights engaged. Columns two – five, are engaged by cases IV, III, V, VI and 

VII, respectively. ........................................................................................................................... 90 

Table 10:   The range of bulk isothermal compressibilities delivered from the six possible pairings of 

zero, one and two virtual photons. ............................................................................................ 92 

Table 11:   The total number of products and number that are uniquely expressible for a given number 

of mechanisms. .............................................................................................................................. 95 

Table 12:   A list of irreps (for each point group) that relate to the spectral lines that may feature on a 

Raman spectrum with neighbour-modified features. Rows which engage the same set of 

cases are assigned an appropriate ‘type’. .................................................................................... 96 

Table 13:   Summary of the results from table 14, for each of the experimental setups in Figure 19(a) 

– (d). .............................................................................................................................................. 113 

Table 14:   Complete results for each of the experimental setups in Figure 2(a) – (d). ....................... 116 



xiv 

 

Table 15:   Relative magnitudes of the intensities for permitted combinations of OAM output for the 

harmonic photons. ...................................................................................................................... 131 

Table 16:   Summary of the allowed topological charge l , for OAM outputs based on arrays of the 

allowed symmetry groups. For the nS  groups,  0 if nm i S  ;  1 if nm i S  . The 

entries in the last row, for the general case, express the necessary conditions incorporating 

a floor function [201]. All point groups that do not exist are greyed out and the ones with 

dashes indicate they exist but do not support any non-zero topological emission. Note, T

and hT also support an emission of a single unit of topological charge, 1l  . ................ 136 

Table 17:   The irreps of the nC  excited states for  3 : 9n  . ............................................................... 139 

 

  



 xv 

 

LIST OF ABBREVIATIONS 

 Abbreviated form Unabbreviated form 

 DR depolarisation ratio 

 E1 electric dipole 

 E2 electric quadrupole 

 En   electric multipole 

 HRS hyper-Rayleigh scattering 

 LG Laguerre-Gaussian 

 M1 magnetic dipole 

 Mn   magnetic multipole 

 MQED molecular quantum electrodynamics 

 OAM orbital angular momentum 

 QED quantum electrodynamics 

 RR reversal ratio 

 SAM spin angular momentum 

 SHG second harmonic generation 

 V-tensor retarded dipole-dipole interaction 

 

  



xvi 

 

LIST OF SYMBOLS 

 Symbol Significance 

 ,l pA  normalisation constant 

 a vector potential 
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1.1 Introduction 1 

 

1 
FUNDAMENTAL THEORY 

1.1 INTRODUCTION 

Life on earth was progenerated by the sun: a mere segment of its vast reservoir of energy was 

the spark and nurturer of life. This energy takes the form of electromagnetic radiation and not 

only shapes the world around us, but also enables us to marvel at the beauty of the natural 

world. The complexity and mysticism of the dynamical system that has been created is a 

projection of the fundamental laws which governs it; unsurprisingly people are fascinated by 

what the nature of light truly is. For something that has been and still is so pivotal to our 

development there is still a substantial portion of uncertainty over our understanding of what 

light is and how much we can reasonably know about it. 

 

Light-matter interaction events are ubiquitous in nature. There are countless quanta of light 

flashing in and out of existence: interacting with our seas, skies and ourselves. By further 

understanding that which is around us we can gain insights to what is pervasive throughout the 

universe. Consider a blink of our eye, taking just a few hundred milliseconds, light is capable of 

traversing a distance comparable to the diameter of Saturn: an order of magnitude larger than 

that of the Earth. Of course, light does not travel so swiftly everywhere, with substances 

impeding its progress. The property that defines the extent that light slows within a material is 

known as the refractive index. This aspect has a complex quantity, the more often considered 

real part of it is the portion relating to the modulation of lights phase velocity; that is the speed 

to which the light can convey information and induces electric field oscillations in the media it 

is traversing. This will be referred to at the tail end of this work. 
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With the light traversing such vast distances in a literal blink of an eye it is hard to know what 

the expected number of quanta of light in a given volume is likely to be. A back of the envelope 

calculation can help with this. The mean number of photons, pm , of a given mode is related to 

the wavelength of light,  , the volume considered, mV , as well as a selection of fundamental 

values: the maximum speed of light, Planck’s and Avogadro’s constant, c , h  and AN , 

respectively. The ensuing relation is 2

p m Am IV hc N . From this, it is possible to discern the 

chances that a quanta of light will encounter a molecule of a given volume. 

 

As a first example, if we consider a day of sunlight, which by definition is a time in which the 

ground irradiance is in excess of 120 Wm-2 [1] and on a peak sunny day can approach tenfold 

that amount. Considering one of the most abundant molecules on the surface, water, it follows 

that one can expect to find 1 quanta of light of an average visible wavelength of about 500 nm 

in about 163 10  molecules, with the upper limit of solar irradiance reducing the order of 

magnitude by one. If we now shift our focus to lasers, they are capable of surpassing daylight 

by some 20-orders of magnitude [2] at such extreme levels one could expect to find thousands 

of quanta of light per molecule. Under such high intensities of light, nonlinear processes become 

increasingly likely to occur and are of particular relevance to chapters 3 and 4 of this work. 

However, such lasers are beyond the remit of commercial laboratory lasers and would generate 

fields that would be comparable to the field strength of the molecules themselves and therefore 

beyond the remit of the perturbation methods introduced in §1.3 [3].  

 

Dimensions and geometry of all constituents engaged in a process must be considered and can 

be collected into three classes of scattering. The most studied class is also the one that is most 

observed in nature: specifically, where the wavelengths of electromagnetic radiation are much 

greater than that of the diameter of the molecule(s) engaged in a given process. For example, 

most molecules will have a diameter in the region of 1 nm, and the spectral composition of light 

observed on earth is heavily weighted to the region of visible light with wavelengths, λ = 380-

760 nm. Many commercial lasers also operate in this region, as well as into the infrared region, 

up to and beyond 1500 nm. In §1.4 we will consider a number of different mechanism to which 

a photon can be scattered under this regime. 
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Light can engage with matter in a vast number of ways, the lowest number of interactions are 

seen in a single-photon absorption and spontaneous emission. The latter is a hallmark of 

quantum electrodynamical (QED) theory, with preceding theoretical treatments incapable of 

capturing this insight. However, the majority of interest to us and indeed the subject of this 

thesis is light which is scattered by matter. To date quantum theory offers the most accurate 

insight into what occurs at a fundamental level and as such that is what is used throughout this 

work. A quantum depiction for light is the only instance to which a photon is a legitimate 

concept. 

 

1.2 UNDERLYING THEORY 

Quantum electrodynamics is a fully covariant theory that is compatible with relativity and 

particularly excels when dealing with particles approaching the universal speed limit, such as 

free electrons. However, when regarding coupling between radiation and modest energy 

perturbations (as is the case in this body of work) a noncovariant formulation can more readily 

be deployed, dubbed molecular quantum electrodynamics (MQED) [3] and still retains the 

retardation features of its parent theory [4]. Moreover, for reasons more extensive than purely 

consistency, all matter engaged by light is also considered in a quantum sense. Hence, molecular 

quantum electrodynamics is reasonably deployed. A key feature is that both the molecular and 

radiation components are regarded on an equal footing. Figure 1 selects one closed dynamical 

process and breaks this down into the matter and radiation transitions. 

 

Figure 1: A quantum representation of: (a) a molecule undergoing an electronic transition 

from a ground state 0E  to a virtual excited state 0E ck  before relaxing back to its 

ground state; (b) a radiation transition utilising ladder operators to demote the radiation 

state to 1m   and subsequently promoted back to m . 

E
0
 

m 

m + 1 

m – 1 

(a) (b) 

E
u
 



4 Fundamental theory 

 

The Hamiltonian under multipolar formalism is composed of three distinct components,  

    rad mat intH H H H
 

      , (1.2.1) 

the radiation field, intrinsic matter component and their associated interactions, respectively. 

The first summations are required to span the full set of normal nonrelativistic Schrödinger 

operators for each optical centre (ξ ) and the second for the corresponding interactions engaged 

in the process. The selected formalism freely permits this interaction to engage with any term 

in the expansion for the interaction Hamiltonian. Notice that none of the terms relate to 

instantaneous intermolecular interactions, which are present in the interaction Hamiltonian for 

semi-classical theory. Under MQED all interactions that are longitudinal in character, with 

respect to intermolecular vector, emerge from a formulation in which only fields transverse to 

the wave vectors are deployed [3].  

 

Mathematically each of the panels in Figure 1 require the respective Hamiltonian to invoke 

operations to change state. Figure 1(a) engages the interaction Hamiltonian and (b) engages the 

radiation vector potential. In each instance, there are a Hermitian conjugate pair of creation and 

annihilation operators: 

       , 1 ,a m m m


  k k k  , (1.2.2) 

       †
, 1 1 ,a m m m


   k k k  , (1.2.3) 

associated with each event. The former operates on eigenstates of radH  with mode occupation 

number  m  and reduces the number of photons in mode  ,k , while the latter increases the 

number of photons in the same mode. The factors present on the right-hand-side ensure correct 

normalisation of the wave function. 

 

The selected solution for Maxwell’s equations are gauge invariant, explicitly there exists a set of 

vector  a  and scalar    potentials that deliver the same electric  e  and magnetic  b  

observable fields under any given Gauge transformation. It is possible to decompose the vector 

potential into a sum of two components which have 0 a  and 0 a , this corresponds 
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to the longitudinal  a  and transverse  a  fields respectively. Here, we select the Coulomb 

gauge, defined by 0 a , under which the static and dynamic interactions can be separated, 

this corresponds to the basis of the separation of particles from the interactions with the 

radiation field. 

 

Now, we can consider the transverse vector potential, summed over all radiation modes  ,k  

and under SI convention this is, 

          †i i

, 0

, e e
2

t a a
c kV

   

 

     
  k r k r

k k k k

k

a r e e  , (1.2.4) 

where V  is the quantisation volume, 
0  is the vacuum electric susceptibility, e is the unit 

polarisation vector for the radiation mode of polarisation   and wavevector k. All polarisation 

vectors are permitted to be complex, in order to accommodate left- and right- handed modes. 

The overbar indicates a complex conjugate. 

 

From the vector potential, the microscopic transverse displacement electric and magnetic field 

operators can be obtained, d  and b , respectively. The former is obtainable by this relation; 

 
 

0

,
( , )

t
t

t




 
 



a r
d r  , (1.2.5) 

which is, 

        †i i0

,

( , ) i e e
2

ck
t a a

V

   



     
  k r k r

k k k k

k

d r e e  . (1.2.6) 

As stated by Maxwell II [5], 0 b  and as such the magnetic field is purely transverse 

 b b , hence we can write; 

    , ,t tb r a r  . (1.2.7) 

Evaluating this, we now have: 

          †i i

, 0

, i e e
2

k
t a a

c V

   

 

    
  k r k r

k k k k

k

b r b b  , (1.2.8) 
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Note that all occurrences of magnetic permeability  0  have been suppressed in favour of c   

and 
0   such that 

2 1

0 0c   . The complex unit vector 
 
kb  is defined as, 

 
   ˆ 
 k kb k e  . (1.2.9) 

Where  , ,e b k  form a right-handed triad of orthogonal vectors. There are a number of 

permissible polarisations of light, of particular interest are spin polarisations, of which there are 

two helicities that of left and right handedness: 

    L 1 ˆ i
2

 ke i j  , (1.2.10) 

    R 1 ˆ i
2

 ke i j  , (1.2.11) 

respectively. This is a property known as spin angular momentum (SAM), with each circularly 

polarised photon capable of conveying  of either handedness per photon, where 2h   is 

the reduced Planck’s constant. Linear polarisations can be cast as linear combinations of these 

spin states. Utilising equation (1.2.9) similar equations can be expressed for the magnetic 

polarisations: 

 
   L i ˆ i

2
  kb i j  , (1.2.12) 

 
   R i ˆ i

2
 kb i j  , (1.2.13) 

See complement 1A for a discussion on the parity transformations of equations (1.2.4), (1.2.6) 

and (1.2.8). 

 

Now we are equipped to unravel the first term in equation (1.2.1); 

    21 2 2 3

rad 0 0

1
d

2
H c     d r b r r  . (1.2.14) 

SCT does not accommodate a term associated with the radiation field and as such is considered 

as a fixed agent. In many cases, this is deemed satisfactory, such as in cases where the field 

strength is sufficiently strong that any influence matter has on it is small. However, there are a 
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few cases that this is not the case. It is the quantised treatment of the radiation field that 

accurately describes the lifting of degeneracy between two of atomic hydrogen’s energy levels 

 2

1 2S  and 2

1 2P , namely the Lamb shift [6]. Two further cases were QED exceeds classical 

techniques is the presence of electron’s magnetic moment [7]; and the occurrence of a force 

between a pair of conducting plates or a plate and a polarisable atom, Casimir effect and Casimir-

Polder force respectively [8, 9]. These effects are better seen by incorporating the field operators 

into equation (1.2.14), which displays the photon annihilation and creation operators directly 

and holds a term that is associated with vacuum fluctuations: 

 
   †

rad

,

1

2
H a a ck

 



 
  

 
 k k

k

 , (1.2.15) 

that arises from the non-commutativity of the two creation and annihilation operators for any 

given radiation mode. The second term that appears in the parentheses of the above equation, 

is the zero-point energy in the electromagnetic field is analogous to that seen in matter. 

 

To complete the definitions of the terms in equation (1.2.1), the full expression for the 

interaction Hamiltonian can be expressed as an expansion [10], the leading contributions are 

from these three terms: 

              1 1

int 0 0 ...i i ij i j i iH d Q d m b                R R R  . (1.2.16) 

Here  i  ,  ijQ  ,  im   are the electric dipole (E1), electric quadrupole (E2) and magnetic 

dipole (M1) operators respectively, associated with a molecule a   located at position R . The 

product of two operators with Latin subscripts is evaluated under the implied Einstein 

summation convention [11]: the product of respective pairs of x , y  and z  components are 

taken and then summed. Explicit expressions for the components of the leading molecular 

multipoles are as follows; 

     
 

i
i

e  
 

    q R  ,  (1.2.17) 

          
 

1 1

2 3
ij ij

i j
Q e        

 

 
 

      
 q R q R q R  , (1.2.18) 
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1

2
i

i

m e    
    

  q R q  . (1.2.19) 

Again, these summations are across all optical centres of charge, e  and position vector,   . 
q  

 

In the majority of instances, the electric dipole transition moments are the greatest contributor 

to the interaction Hamiltonian, however, with increasing intensities the series of corrective 

terms can become significant. As a guide, the first corrections to the electric dipole 

approximation, explicitly the electric quadrupole and magnetic dipole can be expected to be 

smaller than the leading term by a factor equal to the fine structure constant. 

 

For completeness, the final term in equation (1.2.1), 

    2

mat

1

2
e

e

H V
m 



   p  , (1.2.20) 

where e
p is the momentum operator for the charge associated with optical centre   and  V   

is the intramolecular Coulomb potential. 

 

1.3 PERTURBATION THEORY 

We now have a prescribed Hamiltonian H , to deliver the initial state I  for a system at a given 

time 0t ,  equation (1.2.1), an obvious next step is to attempt to find the final state F  of the 

same system at a later time 1t . Unfortunately, due to the inherently delicate nature of quantum 

systems, any attempt to measure a system introduces an interaction and as such alters the system 

states; we must therefore consider alternative theoretical options. The time evolution for any 

quantum system is governed by the time-dependant Schrödinger equation, 

 
 

 i
t

H t
t






Ψ
Ψ  , (1.3.1) 

where  tΨ  is the wavefunction for the system. This method for perturbing the initial state is 

valid so long as the irradiance of the light considered is much less than the Coulombic fields 

within the matter. As a rough guide, the current lasers of 1020 Wm-2 are just reaching the levels 
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of that to which an atomic hydrogens electron experiences in its ground state. As such time-

dependant perturbation theory is applicable to MQED. 

 

First taking the Hamiltonian and separating into the time independent terms and those that may 

hold a time dependence: 

    0H t H H t   , (1.3.2) 

where 0 mat radH H H  .  

  
 

   0i
t

H H t t
t


   



Ψ
Ψ  . (1.3.3) 

Utilising the interaction picture, which permits operators and states to hold a level of time 

dependence we can use a known solution to this equation, 

        
0i

0 e
i

I E t

i

i

t a t  
   . (1.3.4) 

Substituting in, this produces the exact result: 

 
 

 
   
0 0ii

e
F I

E E t
F

i

i

a t
a F H t I

t

  
  


 


  . (1.3.5) 

Here fiF H I H  , 

        
   
0 0i

0

i
0 0 e .d

F It
E E t

F F i FI

i

a t a a H t t
  
       . (1.3.6) 

Importantly, at 0t   the system will be in state I , which is in agreement with what was set up 

at the beginning. Now, if F I  , 

    
   
0 0i

0

i
e .d

F It
E E t

F FIa t H t t
 
      . (1.3.7) 

Matrix element,  FIH t  causes transitions from i  to a continuum of states f , assuming FIH   

is independent of time, 
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0 0i

0 0

e 1
F I

E E t

F FI F I
a t H t

E E

  
   




 . (1.3.8) 

It is of interest to square this expression, 

  

    
   

2

0 02 2

2

0 0

sin 2
4

F I

F FI
F I

E E t
a t H

E E

 
 


 
 

 . (1.3.9) 

A plot of the above equation for a given time, delivers the probability of finding the optical 

centre in a state F , which is proportional to 2t . Probability of a transition to one state F  is 

the sum of all transition probabilities, 

    

    
   

2

0 02 2

2

0 0

sin 2
4

F I

F FI
F I

F I

E E t
P t a t H

E E

 
 

 
 
 

   , (1.3.10) 

If we now integrate over the continuum of states,  

  

    
   

   

2

0 02

0 02

0 0

sin 2
4 .d

F I

F I

FI F
F I

E E t
P t H E E

E E






 
    

 
 
 

  , (1.3.11) 

where F  is the number of final states F , close in energy to the initial state, IE  per unit energy 

interval ck . We are left with a compact expression for the probability of a transition from a 

state I  to F , 

  
22

FI FP t t H


  . (1.3.12) 

Hence, the rate of transition can be expressed as; 

 
22

FI FH


   . (1.3.13) 

This is a rate expression for a single transition FIH  . Similar derivations can be made for 

processes involving any number of interactions. Once obtained, they can be assembled to form 

a general series applicable to any process, called the matrix element: 
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int

int int

,

int int int

, ,

int int int int

, , ,

| |

| | | |

| | | | | |

| | | | | | | |
...

FI

R I F I R

R S I F I S I R

R S T I F I T I S I R

M F H I

F H R R H I

E E

F H S S H R R H I

E E E E

F H T T H S S H R R H I

E E E E E E













 

 
  







 

. (1.3.14) 

Here,  , , ,...R S T  correspond to indeterminable intermediary states in a process, of which all 

possible pathways must be summed over to deliver the overall rate of the process. Each 

interaction event connecting two states engages the interaction Hamiltonian, equation (1.2.16), 

the number of interactions, n , occurring in an instant of time corresponds to the order of a 

given process. This can be fed directly into the expression for rate: 

 
22

FI FM


   , (1.3.15) 

which was originally formulated by Dirac and later dubbed golden rule no.2, by Fermi [12]. 

 

1.4 PROCESSES 

1.4A RAYLEIGH SCATTERING 

To begin, let us expand the example displayed in Figure 1, this is the simplest form of scattering 

event known as Rayleigh scattering. Here an incident photon of wavevector and polarisation is 

scattered into a radiation mode  , k . This is the form of scattering arguably most observed 

and familiar to us and is the one responsible for the azure colour of the sky. Rayleigh scattering 

is a concerted process of single-photon annihilation and creation by an optical centre. With no 

possibility of measurement during the course of such a process, each interaction occurs in an 

indeterminate order, therefore, all possibilities must be included in the summation for the overall 

rate of the process. A commonly deployed diagrammatic method to display all interaction 

permutations are Feynman diagrams [13], whereby you consider the evolution of the 

Hamiltonian system of states with time. 
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Figure 2(a) is representative of looking left-to-right for each panel in Figure 1. Figure 2(b) takes 

a little more consideration, it is indeed equivalent to the time-inverse of Figure 1(a), however in 

(b) the mode will first be promoted a level before returning to the median level. For this process, 

the energy and momentum of the centre are both conserved and therefore it is elastic, .k k  

However, the emergent radiation mode is different to that of incident mode and hence it is not 

a parametric process, k k . 

 

Figure 2: A pair of Feynman diagrams depicting both the photon annihilation and creation 

events at a world line for an optical centre, A . Read from the bottom up: (a) depicts a 

centre in its ground state, 0, annihilating a photon at vertex j , at which time it enters an 

intermediary state, r , before subsequently relaxing and creating a photon at vertex i  and 

returns the centre to its ground state; (b) is the time inverse of the left panel, moreover all 

matter and radiation states are equivalent. 

Before we proceed with the calculation for the rate of Rayleigh scattering, it must be stated that 

the regarded process is assumed to dominate the optical response of the interrogated medium 

with each optical centre distinct, electrically neutral and in their ground state. Selecting the 2n   

instance of equation (1.3.14), with one intermediary state  R , the matrix element that delivers 

the leading contribution to the rate is: 

 
 2

0 | 0| 0 | 0|
1

0 0 0
2

r A r A r A r A
E i j j i

FI i j A A
r r r

c kk n
M e e

V E ck E ck

   



     
         

  . (1.4.1) 

|⟩ 

|0 ⟩ 

|r ⟩ 

|⟩ 

|0 ⟩ 

|r ⟩ 

  

(a) (b) 

|F ⟩ |F ⟩ 

|R ⟩ |R ⟩ 

|I ⟩ |I ⟩ 

|k',η' ⟩ 

|k,η ⟩ |k,η ⟩ 

|k',η' ⟩ 

int|iH

int|iHint| jH

int| jH
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The two terms held in the summation correspond with Figure 2(a) and (b) respectively. The 

shorthand: 0 0

A A A

r rE E E   will be used throughout. Any variable with a prime associated with 

it indicates that it is attributed to a scattered photon. Each numerator denotes invokes a pair of 

electric dipole transitions to modify the state of the optical centre, explicitly, 

 0 | 0| 0 0r A r A A A

i j i jr r     . (1.4.2) 

When present, an electric dipole transition is the most significant contributor in the interaction 

Hamiltonian, equation (1.2.16), as such it is common to restrict the engagement to just this first 

term, this is referred to as the electric dipole approximation. The subscript associated with the 

transition dipole moment refers to the Cartesian laboratory frame. In the denominator 

0 0

A A A

r rE E E   and gives the collective energy of the system at each stage and pivotally this 

holds information relative to those observed and the initiation of the process. A useful relation 

known as the completeness relation is, 

 1R R

r

    . (1.4.3) 

The summation in equation (1.4.1) is defined as the intrinsic molecular polarizability, which is 

unique for each process. In the case of Rayleigh scattering, 

 

0 | 0| 0 | 0|

00|

0 0

r A r A r A r A

i j j iA

ij A A
r r rE ck E ck

   


  
  

         
  , (1.4.4) 

and hence the contracted form of the matrix element can be expressed as, 

 
 2E1 00|

02

A

FI i j ij

c kk n
M e e

V





   . (1.4.5) 

At this juncture, it is necessary to interrogate the system for any intrinsic symmetries that may 

be present in the response tensors. These can arise for a number of reasons and are discussed 

in complement 1B. Using equation (1.3.15), the rate of single-centre solid-phase Rayleigh 

scattering can be cast as, 

 
2 2

00|

2 2

02

A

i j ij F

c kk n
e e

V


 




   . (1.4.6) 
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If we consider non-forward scattering, it is of more interest to consider the distribution of 

emission from the centre over all 4  sr. This can be obtained by using the relation, 

 
 

2

3

d

2
F

k V

c




 
  , (1.4.7) 

to obtain the differential scattering cross section for this process: 

 
3

00| 00|

2 2

0

d
d

16

A A

i j k l ij kl

ckk n
e e e e

V
 

 

      , (1.4.8) 

which is the transition probability per second per unit solid angle d   around k  per unit 

incident photon number flux per unit area. This can be fed into, 

 
d

d
I ck


 


 , (1.4.9) 

This is known as the radiant intensity I  , which is defined by the energy radiated of 

directionality and polarisation of that of the scattered photon, per unit solid angle d   per unit 

time.  

 
4

00| 00|0

2 2

016

A A

i j k l ij kl

NI k
I e e e e 

 


    . (1.4.10) 

where, 

 
2

0

n c k
I

V
  , (1.4.11) 

is the beam irradiance. Also, note the introduction of N  in equation (1.4.10), this is the sum of 

independent scattering rates. Up until that point, the term associated with the phase factor had 

been partitioned and a discussion on how N  arises, appears in complement 1C. This is a crucial 

a step, before considering any molecular motion, termed a rotational average, indicated by 

chevron brackets. Complement 1D discusses this in more detail, but the salient result is equation 

(1D.10), which defines the isotropic rotation tensor for a 4th rank process, 
 4

;ijklI  ,  and can be 

applied to equation (1.4.10). 

 
 

2
2

4 00| 00|

0 ;

04

A A

i j k l ijkl

k
I NI e e e e I    



 
    

 
 . (1.4.12) 
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As an incoherent process the rotational average cannot be carried out on the matrix element, 

and as a result requires a rotational average of twice the order of the process. The final result is 

cast below: 

 

 

  

 

T
2

4

0

2 2

0 2
480

NI k
I

 

  
 

     
 
  

e e

e e e e

e e

4 1 1
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00| 00|

00| 00|

00| 00|

A A

A A

A A

 

 

 

 

 

 

 
 
 
 
 
 

 . (1.4.13) 

The field vector products, displayed in the first tensor, can be evaluated in accordance with 

complement 1E. 

 

Rayleigh scattering requires merely the presence of one incident photon per scattering event 

and therefore its rate has a linear dependence on the intensity of light: the remit of so-called 

linear optics and is the most probable form of non-resonant interaction that can occur in a given 

molecular volume. See complement 1F for relevant information on resonance processes. Next, 

we will consider a second two-photon scattering process. 

 

1.4B RAMAN SCATTERING 

Like Rayleigh scattering, Raman scattering is a two-photon process involving the concurrent 

annihilation and creation of a photon. The difference here is that the molecular state relaxes to 

its ground electronic state, but not of a same vibrational level. In Figure 1, this corresponds to 

the series of levels each of the electronic energy levels are split into. Interrogating this figure, it 

can be seen that there are occupiable levels of a higher and lower energy than that of the ground 

vibrational state. The scattered photon will also differ in energy, ck  , from that of the 

annihilated photon, ck , evidently this can have two variations, where ck ck   and 

ck ck  . In the former instance the optical centre is promoted to a higher vibrational energy 

level than its initial state, this is referred to as Stokes scattering. The latter, in which the optical 

centre is demoted to a lower vibrational energy level than its initial state, this is referred to as 

anti-Stokes scattering. There are alternate forms for Raman scattering involving electric or 

vibrational energy levels, these employ the same framework as introduced here. 
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Raman scattering requires a vibration transition this is the next term in the familiar Born-

Oppenheimer expansion (see complement 1G). As can be expected for a non-leading term of 

an expansion the resulting rate terms are smaller in magnitude than those associated with the 

polarisability itself, as is apparent from the relative weakness of Raman compared to Rayleigh 

scattering. The resemblance to the prior process is echoed in the form the rate expression takes, 

with a few key distinctions. Raman scattering is a nonparametric scattering process, the optical 

centre does not adhere to energy conservation throughout the process and the same is true for 

the radiation. As such, this is also both an inelastic process with regard to the matter and 

incoherent with regard to the radiation. 

 

Figure 3: A pair of Feynman diagrams depicting both the photon annihilation and creation 

events at a world line for an optical centre, A . Read from the bottom up: (a) depicts a 

centre in its ground state, 0, annihilating a photon at vertex j , at which time it enters an 

intermediary state, r , before subsequently relaxing and creating a photon at vertex i  and 

relaxes to a different vibrational energy state,  ; (b) is the time inverse of the left panel, 

moreover all matter and radiation states are equivalent. 

The ensuing matrix element is, 

 
 2E1 0|

02

A

FI i j ij

c kk n
M e e

V





   , (1.4.14) 

where the molecular response is now, 

 

| 0| | 0|

0|

0

r A r A r A r A

i j j iA

ij A A
r r rE ck E ck

 





   


  
  

         
  . (1.4.15) 
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int| jH
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In which, energy conservation has been deployed: 

 0E E ck ck
    , (1.4.16) 

which allows us to cast the full result in a form that depends solely on the magnitude of the 

wavevector, and hence the frequency of the input beam. The result is closely related to that of 

Rayleigh scattering, as can be expected from only a minor change to the molecular state 

progression. This is also seen in the rate for single-centre solid-phase Raman scattering, 
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As can be expected from this, the rotational average of the subsequent radiant intensity for an 

ensemble of molecules takes the same following form, 
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Again, this is another incoherent process, the 4th order rotational average is engaged. The final 

result is cast below: 
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 . (1.4.19) 

So far, in §1.4A and §1.4B, we have considered two-photon processes, next we will consider the 

effect of a second photon simultaneously interacting with the centre. 

 

1.4C SECOND-HARMONIC GENERATION 

By increasing the intensity, and consequently the number of photons simultaneously traversing 

an optically nonlinear medium, mechanisms involving more instantaneous interaction events 

become more noticeable in the output signal. Primarily through the involvement of a second 

photon annihilation, such a process has a nonlinear dependence on the beam intensity and is 

therefore known as a nonlinear optical process.  
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Figure 4: Three Feynman diagram representations for the distinct time-orderings associated 

with second-harmonic generation: (a) the photon annihilation operators j  and k  precede 

the photon creation i ;  (b) the creation event straddles the two annihilation events; (c) the 

creation event precedes both the annihilation events. In all cases the scatterer begins and 

completes the process in its ground state 0 traversing two intermediary states, r  and s . 

Moreover, the emitted photon conveys the energy sum of the two annihilated photons: 

ck ck ck   , in each schematic. 
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For a process returns molecules to their ground state this case accommodates two possibilities 

– the generation of sum-frequency or second-harmonic output.  Both are primarily considered 

to involve E13 mechanisms.  The latter form of interaction, widely employed in condensed 

phase media that support collective, coherent forward scattering of monochromatic light, is 

generally known as second harmonic generation (SHG). In such a case, the total energy and 

momentum for both the molecule and radiation are conserved and as such is a parametric 

process that will be introduced. To begin, the more general case of, 

 2 k k  . (1.4.20) 

For three events, there are six achievable orders. Figure 4 displays three out of the six, each of 

the three displayed have a partner diagram in which the two incident photons are interchanged. 

The reason that they can both be encapsulated in one diagram is that both radiation modes are 

identical and therefore indistinguishable. All time orderings can be collectively represented by 

the state sequence method [14], which is based on the Hasse combinatorial diagram [15]. Figure 

5 displays a tabulated variant on this method, which aids the reader to regard all unique pathways 

connecting the initial to the final state. This can be obvious in processes such as these, however 

it can prove invaluable when considering other, more complex mechanisms, such as the six-

photon considered in chapter 4. 

 

Figure 5: A tabular state sequence diagram depicts all the pathways for SHG, with each row 

representing a state of consecutive photon occupying number, n . Columns denote 

successive system states that each time-ordering progress through. Any pair of radiation 

states linked by a line represent interactions between the molecule and the radiation mode. 

The inclined dashed lines represent a photon creation event, while the declining solid lines 

represent a photon annihilation event. 
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The matrix element for this system is, 
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 , (1.4.21) 

with a hyperpolarisability tensor defined as, 
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 (1.4.22) 

At this juncture, it is worth commenting on the summation. In the previous subsection, it was 

introduced that each electronic energy level is subdivided into a series of vibrational levels. 

These sublevels are all summed over for each and every molecular response tensor. Although, 

this has been largely overlooked, in the case of hyperpolarisability tensors, extensive studies of 

its applications have been carried out [16, 17]. 

 

The second-harmonic generation rate expression takes the following form, 
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    . (1.4.23) 

Equation (1.4.7) incorporating equation (1.4.20) can now be substituted in to deliver the 

differential scattering cross section, 
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As with the previous subsections, we can use (1.4.9) with the wavevector relation, equation 

(1.4.20), to deliver the radiant intensity, 
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At this point, we must first consider the degree of second order coherence, 
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before utilising a modified form of equation (1.4.11), relating to the mean input mode, 
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We are then able to introduce the mean beam irradiance and in turn deliver an expression for 

the radiant intensity of second-harmonic generation in terms of physical observables, 
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This is the single-centre result for solid state materials. In order to obtain a result that is 

applicable to fluid media, we must apply a rotationally average to allow for a range of 

orientations, the coherent form of this result is of particular interest, 
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   , (1.4.29) 

this is the result for coherent scattering. The contraction of the field vectors with the Levi-Civita 

tensor: 0ijk i j ke e e   . This is consistent with experiment and theory, in which randomly 

oriented dipoles are forbidden to produce even order harmonics to all levels of multipole 

approximation [18, 19]. A weak incoherent contribution does persist, which will be discussed in 

chapter 3. 

 

All calculations throughout this work assume a molecule to be in its ground electronic and 

vibrational state for the initial – and often the final – state. Under standard conditions, the 

population of these states will far outweigh those of excited states and as such it is these levels 

in which the processes will invariably involve. Any instance of the ground state can readily be 

exchanged for an excited state and an appropriate transition response tensor found. There are 

results to show that if you first utilise a population inversion stage, to increase the occupancy of 

excited states, before carrying out a nonlinear process, an enhancement can be seen in the output 
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by an order in magnitude, or more [20]. Another method for enhancement is that of 

incorporating resonance effects, which will be discussed in complement 1F. 

 

1.5 MULTICENTRE INTERACTIONS 

All the processes considered in §1.4 only took into consideration the cases where a lone centre 

carried out the entirety of a process. However, it is conceivable that the local environment can 

have an electrodynamic influence on the process. Here, we will consider a nearest neighbouring 

centre, B  coupling with the prior introduced centre of interest A . The possibility of additional 

interactions will be shown to modify the symmetry of the system in which scattering occurs and 

thus allow transitions to occur that were previously thought to be forbidden. This is particularly 

of interest in the case of optical centres of high symmetries, such as centrosymmetric media. In 

such media, it is widely known that for odd-photon numbered processes, the parity of the states 

must be conserved from a process in order for it to be allowed. However, the presence of a 

neighbouring molecule may be capable of reducing the symmetry of a centre, represented as an 

additional interaction linking the evolution of the centrosymmetric centre to that of its 

neighbour. 

 

The method for accommodating an electronic coupling between two centres, and thus elicit 

such an effect as mentioned above, is by accommodating a number of virtual photon exchanges 

between A  and B , thereby entwining the evolution of each centres world-line [21-23]. Virtual 

photons are inherently transverse, unobservable and capable of subverting energy conservation 

for time scales spanned by a process; this is achieved by borrowing the requisite energy from 

the vacuum and returning it before the process completes and does not invalidate the energy-

time uncertainty principle 2E t   . 

 

All terms present in the interaction Hamiltonian, equation (1.2.16), are only capable of operating 

on exactly one molecular and one radiative state. As such a further operator is required to 

mediate the interaction between two molecules: 
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     R  . (1.5.1) 

This is known as the retarded dipole-dipole interaction and in this form, is limited in application 

to E1 transition (V-tensor). It emerges following the sum over all virtual photon wavevectors 

and polarisations. In actuality, the detail for all processes differ, however, it can be proven to be 

the general form applicable to all (E1) permitted processes. The equation above has three 

familiar prefactors: the phase factor (see complement 1B), Coulomb’s constant as well as cubic 

dependence on the inter-centre distance, R . By inspecting the respective distance dependences 

present in each of the terms, it is immediately apparent that as you approach the limit 0kR  , 

the Coulombic term will dominate, this is referred to as the near-zone and often it is useful to 

consider the near-field approximation alone: 
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 R  , (1.5.2) 

Similarly, the far-field limit can also be taken, in which the final term in equation (1.5.1) 

dominates, analogous to that of the inverse square law. However, this work is interested in 

single-centre and nearest neighbour coupling and as such the retarded dipole-dipole coupling is 

cast in near-field approximation. 

 

1.6 OPTICAL ANGULAR MOMENTUM 

1.6A SPIN ANGULAR MOMENTUM 

It has already been mentioned that light has the property of spin polarisation, this is a form of 

optical angular momentum known as spin angular momentum. This is a property that is not 

limited to a collective beam segment, but observable on a single photon level. Each photon is 

in fact capable of conveying not only angular momentum associated with the polarisation, but 

a further component associated with the field distribution [1]. Both components are found in 

the optical angular momentum operator [24], which is often presented as: 

      3

0 , , .dt t  J r e r b r r  , (1.6.1) 
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The integrand encapsulates the vector product of the electric and magnetic fields and can be 

recast as the sum of two angular momentum operators; 

      3

0 , , .dt t S e r a r r  , (1.6.2) 

      3

0 , , .di ie t t L r r r ra  . (1.6.3) 

the SAM and orbital angular momentum (OAM), respectively. From here, it is useful to consider 

the SAM operator as a mode expansion, similar in form to equation (1.2.15): 
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the two operators support the pair of eigenstates for circular polarisation, displayed as equations 

(1.2.10) and (1.2.11). The spin angular momentum operator reduces to: 

 
        † L L † R R

rad a a a a  k k k k

k

S  , (1.6.5) 

which restricts the spin states to either   per photon, the sign indicative of the handedness of 

the circulation.  

 

Figure 6: Poincaré sphere, the two poles representing the two pure eigenstates of spin 

polarisations. Linear superpositions of these will form all other polarisations: the linear 

modes line up around the equator and elliptical the remaining regions are dedicated to 

elliptical polarisations. 
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1.6B ORBITAL ANGULAR MOMENTUM 

Up until now, we have covered two properties associated with each photon, spin and 

wavevector, these are known as degrees of freedom. Next we will consider the OAM of a 

photon, introduced as a second distinct angular momentum quality each photon can 

accommodate, seen in equation (1.6.3). This will be shown to provide new degrees of freedom 

and also display increased variability in the values accessible to these degrees of freedom. 

 

In order to do this, we must first consider the source-free Maxwell equations in paraxial form; 

 2 2i 0u k u
z




  


 , (1.6.6) 

where  2 2 2 2 2x y        is the transverse Laplacian operator acting on a transverse field, 

of amplitude  , ,u x y z . Under this regime all ray angles are assumed to be less than the small 

angle approximation i.e. o12  . Considering the dimensions associated with rays of light, 

paraxial optics often employs cylindrical polar coordinates and so takes the form of; 
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where z is along the propagation axis, r  is the radial displacement in the transverse plane and 

  the azimuthal projection onto the transverse plane. There are several solutions to these 

equations, the most widely studied amplitude distribution is for Laguerre-Gaussian (LG) light; 
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 ,  (1.6.8) 

where, p

l
C  is the normalisation constant for light of topological charge l  and radial index p  

[25],  w z  is the greatest r  for which the field amplitude falls to 2e  of maximal value, the 

penultimate exponential represents the Gouy phase and Rz  is the Rayleigh range. The terms 

have been separated into meaningful segments to aid with simplification. 

 

A Rayleigh range of several metres can be achieved in experimental setups, hence Rz z , this 

then allows us to say   0w z w , which becomes the Gaussian beam-waist, the final pair of 
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exponentials in equation (1.6.8) tend to 1 as their exponents tend to 0. Selecting the radial 

distribution u  to be independent of z , this is now expressible as, 
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 . (1.6.10) 

p

l
L  is the associated Laguerre polynomial solutions of indices l  and p , see complement 1H. 

Multiplying the vector potential by the radial distribution, equations (1.2.4) and (1.6.9) 

respectively, we can now re-express this and the derivative fields for LG modes: 
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At this point, it is worth emphasising that OAM associated with a photon is not limited to a 

single unit of two handedness, but can take any value from the real integer set, l  and 

corresponds to l  per photon.  

 

Each mode is orthogonal subject to the following integral; 

     2 2

, , , 0
0

.dl p l p l p ppf r f r r r A w 


   , (1.6.14) 

where ,l pA  is a normalisation constant, in the case of LG modes it is commonly chosen to be, 

, 1 2l pA   for all combinations of indices l  and p . This orthogonality quality, should permit 

the complete separation of each mode from all others present in a beam. Unfortunately, so far 

incomplete modal orthogonality for different l  values is evident in the results of most 

experiments [26, 27]. Imperfections are also apparent in recent experiments on the 
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multiplication of OAM values [28]. These imperfections could be arising from experimental 

error; however, a fundamental limit of quantum character associated with the photon number 

and phase uncertainty relation [3], may also be a factor. If all modes were achievably separable, 

the impact on data communication technologies would be revolutionary. With such wide-

ranging degrees of freedom, far surpassing that of current binary infrastructure. 

 

 

Figure 7: A series of simulations depicting the phase progression of increasing topological 

charge from left-to-right for the first two values for the radial index, explicitly: (a) 

1, 0l p  ; (b) 2, 0l p  ; (c) 3, 0l p  ; (d) 1, 1l p  ; (e) 2, 1l p  ; (f) 3, 1.l p   

The phase cycles through c2 l  the intensity distribution has been overlaid, where white 

represents zero-intensity in each case.   

 

OAM beams are not limited in application to information communication technology. They 

have proven their worth in optical manipulations, [29-33], where the capacity to exert a far 

greater torque than a regular circularly polarized beam has earned the technique the name 

‘optical spanners (wrench)’ [34-37].  There are also numerous methods utilizing structured light 

in imaging applications and edge contrast enhancement [38], for example. 

(a) (b) (c) 

(d) (e) (f) 
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Here, a set of orthogonal LG solutions for the paraxial source-free Maxwell equations are 

expressed. Hermite-Gaussian are closely related and are formable from LG modes and vice-

versa [39], for a given solution they both form their own special case of Ince-Gaussian modes. 

Many other forms of wavefront modification can be deployed to produce these modes, for 

example by passage through pitch-fork holograms [40, 41], q-plates [42], hyperbolic 

metamaterials [43], spiral phase plates [44]. The most widely deployed by virtue of its dynamic 

control modification are spatial light modulators [45, 46]. In the final chapter, a theoretical 

method for the direct generation of OAM light will be explored. 

 

1.6C POYNTING VECTOR 

It is well known that light has a momentum quality to it, this is most commonly associated with 

radiation pressure, such as the force exerted on an irradiated surface. Initially, the radiation 

pressure was thought to be exerted solely in the direction of propagation, this is shown by 

considering the radiation flux, S , known as the Poynting vector: 

    2 2

0 , ,c t t  d r b rS  , (1.6.15) 

is the microscopic source-free form. Evidently the cross product of two transverse vectors will 

deliver a vector in the wavevector direction. However, light with a nonzero topological charge 

twists the transverse wavefront for the beam, likened to the wobble seen in a spinning plate. 

Now, the cross product of the field vectors, shifts off of the direction of propagation forming 

a corkscrew around the beam axis as it evolves over time: the Poynting vector therefore displays 

an azimuthal component [47]. This is supported by the intensity depicted in Figure 7, where the 

maximal intensities lies just away from the core of the beam and leaves a singular axis down the 

centre. The phase maps seen in that figure circulate as the beam evolves, selecting one colour, 

contours of constant phase can be drawn, as displayed in Figure 8. 
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Figure 8:  Procession in wavefront for an LG beam with 3l   over the course of three 

wavelengths, depicted as three interleaved helices, each representing a surface of constant 

phase. 

 

1.7 TIMELINE OF MILESTONES 

A timeline has been laid out in Table 1, marking the key contributions to the fields that were 

required to carry out this research. Any work that occurred after the first journals were produced 

has been included, in this case, the first entry is Newton. Prior to this there were many wide-

ranging ideas, in particular, the field of optics was largely bifurcated until the recognition of the 

dual wave-particle nature for light was acknowledged at the turn of the 20th century.  

Table 1: A timeline of key contributions that have led to the current field of research. 

Year Contributors Description 

1687 Newton The basis for Newtonian mechanics was produced [48]. 

1811 Lagrange The birth of Lagrangian mechanics: a means of describing a system 

by then energies exchanged within it [49]. 

1820 Oersted  Showed that electric current was capable of deflecting magnets [50]. 

1832 Faraday  Demonstrated that moving magnets generated electric current [51]. 
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1833 Hamilton The inception of Hamiltonian mechanics: a reformulation on 

Lagrangian mechanics, often synonymised with the total energy of a 

system [52]. 

1865 Maxwell  A dynamical theory for electromagnetic fields was assembled, 

following key contributions from Ampere, Coulomb, Faraday, 

Franklin and Planck [5]. 

1884 Poynting  Derived the energy flux density for an electromagnetic field, which is 

now named after him [53]. 

1888 Hertz  Optics became integrated with electromagnetism [54]. 

1901 Lebedev First experimental confirmation of Maxwell’s theory for 

electromagnetism [55]. 

1901 Planck  It was suggested that electromagnetic radiation could take the form 

of discrete packets of energy, in the course of his work on black-body 

radiation [56]. 

1905 Einstein  An explanation for the photoelectric effect was presented, in which 

the concept of discrete units of electromagnetic wave-packets was 

introduced [57]. 

1905 Einstein  In the same year a first attempt at the theory governing relativistic 

effects was produced [58]. 

1909 Einstein  Work on radiation fluctuations was the start of a statistical description 

for photons [59]. 

1909 Taylor  A low intensity form of two the double-slit experiment was 

performed, almost reducing it down to the single photon level [60]. 

1909 Poynting A light beam was first suggested to be capable of conveying angular 

momentum [61]. 

1916 Einstein  Eleven years after the inception of relativity, a theory applicable to 

particles and their interactions was published, known as general 

relativity [11]. 

1918 Noether Several hallmark conservation theories were established, relating to 

momenta and energy [62]. 
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1925 Laporte 

Meggers 

Set out transition parity constraints for particles with an inversion 

symmetry element [63]. 

1926 Lewis  The term “photon” was coined [64]. 

1926 Schrödinger The evolution of states of a system were cast under quantum theory 

[65]. 

1927 Dirac  Dirac equation: reformulated Schrödinger’s wave equation to 

accommodate relativistic effects and in turn predicted the existence 

of antimatter. He was later awarded the Nobel prize in 1933 [66]. 

1930 Oppenheimer Subsequent to Dirac’s contribution, the possible existence of a 

positron was determined [67]. 

1932 Fermi Named the now famous “golden rule no.2” and displayed the 

computability of any light-matter interaction [12]. 

1932 Darwin  Light was suggested to be capable of generating quantities of torque 

in excess of that generated by the single unit attributed to spin [68]. 

1936 Beth Light conveyance of angular momentum was first observed, by a 

circularly polarised beam and its reflection imparting a torque onto a 

half-waveplate [69]. 

1937 Bloch 

Nordsieck 

Limitations of computations in excess of first order perturbation 

theory for light and charged particles demonstrated [70]. 

1939 Weisskopf Independently demonstrated computational limitations, that weren’t 

overcome until developments were made in relativistic QED [71]. 

1946 Gabor  The origin of holographic techniques, a widely deployed method of 

wavefront modification [72]. 

1946 Tomonaga Formulation of relativistic quantum field theory, one of three to earn 

a share in the 1965 Nobel prize in Physics [73]. 

1947 Lamb 

Retherford 

A discrepancy in magnitude of two energy levels  2

1 2S  and 2

1 2P  of 

atomic Hydrogen were detected [6]. 

1947 Bethe Performed the first calculation that accounted for the shift measured 

in atomic Hydrogen [74]. 
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1948 Feynman The inception of quantum electrodynamical is often attributed to this 

work, earning him a share of the 1965 Nobel prize in Physics. He also 

introduced the common diagrammatic scheme to analyse processes 

[13]. 

1948 Schwinger A third researcher to contribute to the inception of quantum 

electrodynamical formulation, which later earned him a share in the 

joint 1965 Nobel prize in Physics [75]. 

1948 Schwinger Applied quantum electrodynamic theory to prove the existence of an 

electrons magnetic moment [6]. 

1948 Casimir 

Polder 

Both the Casimir effect and Casimir-Polder force [8, 9]. 

1949 Dyson Combined the radiation theories of Feynman, Schwinger and 

Tomonaga [76]. 

1959 Power 

Zienau 

Established the nonrelativistic formulation for molecular quantum 

electrodynamics [77]. 

1959 Wigner Application for group theory to explain spectroscopic selection rules 

[78]. 

1960 Maiman The first operational laser pulse was fired [79]. 

1961 Franken, et al. 

Terhune, et al. 

A first two independent experimental demonstrations of a nonlinear 

optical process, second-harmonic generation, were made [80, 81]. 

1963 Glauber  Non-classical statistical explanation of light states [82]. 

1974 Nye 

Berry 

The roots of singular optics can be traced back to here, when the 

theory for three interfering waves resulted in a point of indeterminate 

phase [83]. 

1983 

  -93 

Power 

Thiru. 

A series of papers were released and are widely considered as the 

cornerstone of molecular quantum electrodynamics [84-88]. 

1990 Andrews The incorporation of irreducible Cartesian tensors calculus to 

molecular symmetry characterisation [89]. 

1990 Bazhenov, 

et al. 

Experimental identification of laser light with a singular axis [40]. 
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1992 Allen, et al. Laser light with a Laguerre-Gaussian intensity distribution is found to 

convey a well-defined orbital angular momentum [90]. 

1993 Basisitiy, et al. The first identification of a nonlinear optical process with singular 

beams, a second-harmonic emission [91]. 

1996 Dholakia, et al. An analysis of second-harmonic generation with Laguerre-Gaussian 

light was presented [92]. 

1997 Bouwmeester,  

et al. 

The first experimental evidence for the teleportation of photon states 

[93]. 

2002 Romero, et al. 

 

The complete formulation for singular light was laid out under QED 

theory [94]. 
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COMPLEMENT 1A: PARITY CONSIDERATIONS 

This complement will provide an additional insight into the nature of the vector potential, 

equation (1.2.4) as well as its derivative fields, equations (1.2.6) and (1.2.8). First consideration, 

the vector potential is intrinsically Hermitian. There are two forms of parity transformation, 

both of which are of interest and to be investigated here: space-inversion and time-inversion. 

The former is obtainable by a spatial parity transformation, 
sP , for all of the spatial coordinates, 

resulting in a reversal in sign of r, e and k:  

                  i † i

, 0

e e
2

sP

a a
ckV

   

 

      

   
   
 

k r k r

k k k k

k

a r e e  , (1A.1) 

and thereby produces a reversal in the sign of the overall vector. 

 

With regard to time-inversion, 
tP , this operation reverses the sign of k and takes the complex 

conjugate of all numbers; 

               i † i

, 0

e e
2

tP

a a
ckV

   

 

    

   
  
 

k r k r

k k k k

k

a r e e  . (1A.2) 

Since the sum over the dummy variable k covers all space, it encapsulates the region pertaining 

to k . Furthermore, by deploying the relation 
   

e e
 

  k k , we can discern that the vector 

potential is also of odd parity in time. 

 

The expressions for the derivative fields, like their parent equation, are both Hermitian. The 

methods for obtaining each of the expressions can give away the ensuing parity for each of 

them. Firstly, the displacement field operator, 

                i † i0

,

( ) i e e
2

sP ck
a a

V

   



       

   
   
 

k r k r

k k k k

k

d r e e  , (1A.3) 

            i † i0

,

( ) i e e
2

tP ck
a a

V

   



     

   
  
 

k r k r

k k k k

k

d r e e  , (1A.4) 

has odd spatial and even time parity. 
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The magnetic field operator has the reverse of that:  

                  i † i

, 0

i e e
2

sP k
a a

c V

   

 

      

   
  
 

k r k r

k k k k

k

b r b b  , (1A.5) 

              i † i

, 0

i e e
2

tP k
a a

c V

   

 

    

   
  
 

k r k r

k k k k

k

b r b b  , (1A.6) 

thus, displaying even spatial and odd time parity.  

 

With regard to the higher order multipoles, appearing as equations (1.2.17) – (1.2.19), each 

electric multipole  En  follows the pattern of  1
n

  for spatial parity and all are time-even. 

Although not the subject of this work, the corresponding magnetic multipole  Mn , alternate 

in spatial parity  
1

1
n

 , when compared with the series for  En , again all are time-odd. As 

such, the overall spatial and temporal parity of the interaction Hamiltonian remains even 

throughout. 

 

In the case of LG modes, introduced in §1.6, the temporal parity for both the displacement and 

magnetic field operators, equations (1.7.14) and (1.7.15), remain unchanged. However, in the 

case of the spatial parity, the former becomes  
1

1
l

  and  1
l

  for the latter. Moreover, since 

light without an OAM character is equivalent to saying 0l  , the above results hold. 
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COMPLEMENT 1B: MOLECULAR SYMMETRY 

For the purposes of considering the selection rules engaged by a process, any symmetry 

properties associated with the response tensors must initially be identified. There are two sets 

of symmetries that will be considered here: the first is where two interactions both involve same 

radiation mode and invariably the same photon operator; the second arises where two 

interactions can, to a first approximation, be considered interchangeable. The former set can be 

found by interrogating the response tensors. Two interaction indices (each connecting any pair 

of adjacent states) are said to be symmetric, if they are interchanged and the original tensor is 

regenerated. Moreover, all intermediary states are arbitrarily defined and as such any pair of 

states can be freely interchanged without altering the regarded system. 

 

To pursue the latter form of symmetry, let’s first consider Rayleigh scattering, §1.4A. Here, 

linear polarisabilities are generated from a product of two electronic transition moments 

connecting the same pair of states, this is an exceptional case where index symmetry is 

guaranteed. Now, if we consider Raman scattering, §1.4B, the electronic transition energies 

dominate over any vibrational constituent and to a strong approximation the vibrational 

transition can be neglected; this is analogous to the Placzek treatment for single-centre scattering 

away from resonance. From this we can infer that the interaction indices are therefore 

symmetric, as such this is an example of the latter group of symmetry introduced. 

 

The most expedient method to home in on the symmetry associated with a process is by 

resolving the molecular response tensor into irreducible Cartesian tensors, all of which have 

known symmetry behaviours. Under this method, a response tensor of rank, n , is expressed as 

a sum of irreducible tensors each holding a number of the total parameters, P , expressible for 

the system, 

 
   

0

2 1
n

j

n

j

P N j


   . (1B.1) 

Here, 
 j
nN  is the multiplicity of weight j , whose natural tensors will always have a number of 

parameters equal to 2 1j  , where   0j n  , with transformation properties of a rank j  
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tensor. It follows that 0j   weights transform as a scalar and therefore always transforms under 

the totally symmetric representation of the molecular point group. Moreover, j n  weights 

have the transformation properties of a tensor of rank n  that is symmetric and traceless with 

respect to every pair of indices, and is known as a natural tensor. In all instances  
1

n

nN  . 

 

A selection of tensors, alongside the number of irreducible tensors they can be decomposed 

into, are all displayed in Table 2. The list of tensors is not exhaustive, but covers all of the tensor 

representations considered throughout this work. The rank  n  of the process corresponds to 

the number of Greek subscripts attached to a tensor and in turn correspond to the number of 

photon-molecule interactions engaged in the course of the process. The parentheses denote 

index symmetry across the highlighted indices. This will always represent an increase in the 

symmetry of the system and therefore correspond to less irreducible weights [89].  

Table 2: Selected irreducible weights for an arbitrary Cartesian tensor, T . 

 P  
 0

nN  
 1

nN
 

 2

nN  
 3

nN  
 4

nN  
 5

nN  
 6

nN  

T  3 0 1      

T  9 1 1 1     

 T


 6 1 0 1     

T  27 1 3 2 1    

 T
 

  18 0 2 1 1    

 T
 

 54 2 3 4 2 1   

  T
 

 36 2 1 3 1 1   

  T
 

  90 2 1 4 2 3 1 1 
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COMPLEMENT 1C: COHERENCE AND WAVE-VECTOR MATCHING 

Nonlinear optical effects, by definition, require more than one photon in the vicinity of an 

optical centre at one time. An increased dependence on the intensity of the throughput beam 

then follows. In these nonlinear processes, there are techniques that can be employed to 

maximise the yield of the scattering process. In the case of coherent processes wave-vector 

matching can be deployed. A coherent process is defined as one in which the energy and 

momentum of the radiation states are the same immediately before and following said process. 

Therefore, the collective wavevector(s), k , of the output photon(s) must equal the collective 

wavevector(s), k , of the incident photon(s) engaging in the process. 

 

Let us consider an expression for the rate of a general process, 

  
 

2

i

0 , ,...

2
en

Fi j






  

   
k R

 , (1C.1) 

where n  is representative of an -ordern  process,   is the general response tensor, k  is the 

wave-vector mismatch between the input and output photon(s), R  is the position vector for 

centre  , which is introduced from the phase factor present in the matrix element and 

contributes to the coherence of the process. 

  
 

 
 

 
 

2
i

, ,... , ,... , ,...2

0

2
eF

i j i j i jn

  

  


  


 



 
   

 
 

k R
 . (1C.2) 

The first term in the curly brace will be unique for each constituent centre. It follows that this 

term depends linearly on the number of scatterers N  and is present in all forms of scattering. 

The second term has a relative position dependence for each of the molecules in the exponent, 

and has two broad outcomes, in the first case: 

 0 k  , (1C.3) 

the matrix element is sensitive to the spatial distribution of the molecules in the assembly and 

there will be deconstructive interference amongst the different members of the ensemble. This 
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is non-forward scattering and the first term in equation (1C.2) is the sole contributor. In the 

second case of, 

 0 k  , (1C.4) 

which is position independent and as such all the scattering amplitude interfere constructively, 

this is the remit of forward scattering. Here, the matrix element is in fact proportional to the 

number of scatterers and in turn the rate has a square dependence on the number of 

independent scattering rates, 
2N . 

 

Note, that in equation (1C.2), there is a further way in which the exponent can be reduced to 

zero and that is when all molecules are lined up perpendicular to the wavevector. 

 

In the case of LG modes, in the case of paraxial beams considered, it has been proven both 

theoretically and experimentally that the OAM quality is conserved separately by the radiation 

field [94, 95], equation (1C.1) becomes, 

 
 

N
l 



  


k R

2

i
e  . (1C.5) 

When 0l   k , they both satisfy the conditions for wave-vector and OAM matching for 

both the incident and scattered light and thereby will interfere constructively. Now, considering 

disordered units in particular, the only term with a  -orientational dependence is seen in 

equation (1C.5). Under the matching stated, the rate will become quadratically dependent on 

N . 

 

The depth of the substance investigated requires additional consideration and offers a trade-off. 

The more potential scatterers the light traverses, the greater the probability that the process will 

occur. However, if several processes occur at various depths through the material, coherence 

issues can come into play, this is particularly the case with harmonic signals. The phase velocity 

can differ for different frequencies of light, as such, judicious selection of the frequency and  

 n n    . (1C.6) 
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Of course, the less depth of material the less the chance of a process occurring. But at the lower 

limit of depth, for example a thin film, surface effects can exhibit interesting results of their 

own, where bulk symmetry is affected. An obvious example of this is with a material that 

demonstrates isotropy as a bulk, however, when it is reduced to a single layer, the collective 

symmetry often does not retain the same degree of symmetry. One interesting result that can 

exploit this feature is in the case of odd -orderedn  processes, the prior requirement of parity 

conservation is lifted and enables such processes to be observed [63]. 
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COMPLEMENT 1D: ROTATIONAL AVERAGING OF TENSORS 

GENERAL STRUCTURE 

The rate expressions developed for solid states matter are precise; however, condensed phase 

media require an extra layer of consideration. A crucial stage of determining the rate for such 

phases is accounting for the tumbling motion and thereby the range of orientations a process 

may be carried out. For this, the ergodic theorem can be applied: in a sufficiently large time 

period, the ensemble average will be equivalent to the time average for the system. The 

applicability here is that the time averaged result for the system is valid also for the ensemble of 

randomly oriented optical centres. 

 

To carry out a rotational average, the respective frames of reference and how they are associated 

with each other, must first be considered. For the field vectors, the axial framework for 

conventional space is ideally suited, by convention these adopt the Latin indices, 
pi . However, 

when regarding the molecular response tensor, the evolution in orientation of the molecule must 

be accounted for. With this in mind, it is logical to associate the axial frame with the molecule 

itself, Greek indices are conventionally used to distinguish these, 
q . The two frames of 

reference are connected by the relation, 

  
;p p q q

n

i iT I T   , (1D.1) 

where  , 1, 2,3...p q n .  
;p q

n

iI   takes the cosine of the angle subtending the index where p q   

of the space-fixed frame and molecule-fixed frame.  ,p qi   corresponds to the elements of the 

Euler angle matrix.  
;p q

n

iI   is rotationally invariant and hence can be expressed as a linear 

combination of two isotropic tensors [96-99]. For 3D space, there are two fundamental isotropic 

tensors Kronecker delta ij and Levi-Civita ijk . The parity of n  invokes two different sets of 

linear combinations of these two tensors. Where n  is even, isotropic tensors are formed of 2n  

Kronecker deltas: 
1 2 1

...
n ni i i i 


; and where n  is odd, the isotropic tensor is formed from one Levi-

Civita and  3 2n  Kronecker deltas: 
1 2 3 4 5 1

...
n ni i i i i i i  


.  
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The isotropic tensor can be split as follows, 

 
       

,

n n n n

p pq q

p q

I f m g  , (1D.2) 

where pf  is a rank 1 tensor formed from all permutations for the linear combinations of 

isotropic tensors that acts on the field vectors, pqm  is a rank 2 tensor with number weightings 

for the permutations, finally qg  is the molecular equivalent to pf  acting on the molecular 

response tensor [100]. Tensor pqm  and therefore  
;p q

n

iI   is obtainable from an inversion operation 

of another matrix; 

    
1

n n
m s



 
 

 , (1D.3) 

For brevity of notation the space fixed indices,    1 2 3, , , ... , , , ...i i i i j k  and similarly for the 

molecule-fixed indices   1 2 3, , , ... , , , ...      . 

 

In the introductory chapter, we first consider the rate of a process involving a centre located in 

a rigid structure, such as a lattice. In this complement, we consider how the ensuing rate is 

affected by a centre free to tumble. Evidently, not all setups accommodate a centre that abides 

by these limits of motion. This can occur by two means: either, the centres motion is inhibited; 

or, the centre is incapable of fully reorienting itself in the time segment. Both cases can be 

regarded as two sides of the same coin and shall be discussed here. 

 

To begin, we shall assume that the orientation of the system is energetically favourable. The rate 

of a given process, as the system evolves, will be characterised by a Boltzmann factor and a 

trigonometric function of the intermolecular vector. In general, the leading contribution will be 

that of the static form, with successive orders of weightings modifying this result; the end limit 

will be that of the isotropic form dominating. 
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RANK 2  

For 2n  , there is only one isotropic tensor of rank two, that is the Kronecker delta, therefore, 

  2
3ij ijs     , (1D.4) 

 2
m  would then be 13  and hence, 

  2

;

1

3
ij ijI     . (1D.5) 

RANK 3 

For 3n  , as with 2n  , there is just one isotropic tensor of this rank, the Levi-Civita 

antisymmetric tensor, which delivers, 

  3
6ijk ijks     , (1D.6) 

and it follows that, 

  3

;

1

6
ijk ijkI     . (1D.7) 

RANK 4 

For 4n   there are three linearly independent isomers: 
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 ,  (1D.8) 

which combine to form the following, 

  4

9 3 3

3 9 3

3 3 9
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 , (1D.9) 
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RANK 5 

For 5n   there are ten distinct isomers: 
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A prime has been used in this instance, to signify that this is an overcomplete set that can and 

will be reduced in order to display an irreducible set of linear independent permutations: 
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30
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3 1 1 1 1 0

1 3 1 1 0 1

1 1 3 0 1 1

1 1 0 3 1 1

1 0 1 1 3 1

0 1 1 1 1 3
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RANK 6 

For 6n   there are fifteen distinct isomers that form a linearly independent set: 

 

(6)

;

1

210

ij kl mn

ij km ln

ij kn lm

ik jl mn

ik jm ln

ik jn lm

il jk mn

il jm knijklmn

il jn km

im jk ln

im jl kn

im jn kl

in jk lm

in jl km

in jm kl
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16 5 5 5 2 2 5 2 2 2 2 5 2 2 5

5 16 5 2 5 2 2 2 5 5 2 2 2 5 2

5 5 16 2 2 5 2 5 2 2 5 2 5 2 2

5 2 2 16 5 5 5 2 2 2 5 2 2 5 2

2 5 2 5 16 5 2 5 2 5 2 2 2 2 5

2 2 5 5 5 16 2 2 5 2 2 5 5 2 2

5 2 2 5 2 2 16 5 5 5 2 2 5 2 2

2 2 5 2 5 2 5 16 5 2 5 2 2 2 5

2 5 2 2 2 5 5 5 16 2 2 5 2 5 2

2

     

     

     

     

     

     

     

     

     

5 2 2 5 2 5 2 2 16 5 5 5 2 2

2 2 5 5 2 2 2 5 2 5 16 5 2 5 2

5 2 2 2 2 5 2 2 5 5 5 16 2 2 5

2 2 5 2 2 5 5 2 2 5 2 2 16 5 5

2 5 2 5 2 2 2 2 5 2 5 2 5 16 5

5 2 2 2 5 2 2 5 2 2 2 5 5 5 16
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RANK 7 

For 7n   there are 105 isomers and takes the following form, 

 

T

(7)

;

1

840

...

ijk lm no

ijk ln mo

ijk lo mn

ijl km noijklmno

ijl kn mo

mno il jk
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6 1 1 0 0 ... 0

1 6 1 0 0 ... 0

1 1 6 0 0 ... 0

0 0 0 6 1 ... 0

0 0 0 1 6 ... 1

... ... ... ... ... ... 1

0 0 0 0 1 1 6
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 .  (1D.14) 

The full set of 105 permutations of linear combinations of isotropic tensors that appear in the 

first rank 1 tensor are:  

ijk lm no

ijk ln mo

ijk lo mn

ijl km no

ijl kn mo

ijl ko mn

ijm kl no

ijm kn lo

ijm ko ln

ijn kl mo

ijn km lo

ijn ko lm

ijo kl mn

ijo km ln

ijo kn lm

ikl jm no

ikl jn mo

ikl jo mn

ikm jl no

ikm jn lo

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

T

...

ikm jo ln  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
        

...

ikn jl mo

ikn jm lo

ikn jo lm

iko jl mn

iko jm ln

iko jn lm

ilm jk no

ilm jn ko

ilm jo kn

iln jk mo

iln jm ko

iln jo km

ilo jk mn

ilo jm kn

ilo jn km

imn jk lo

imn jl ko

imn jo kl

imo jk ln

imo jl
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imo jn kl
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ino jk lm

ino jl km

ino jm kl

jkl im no

jkl in mo

jkl io mn

jkm il no

jkm in lo

jkm io ln

jkn il mo

jkn im lo

jkn io lm

jko il mn

jko im ln

jko in lm

jlm ik no

jlm in ko

jlm io kn

jln ik mo

jln im
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jlo ik mn

jlo im kn

jlo in km

jmn ik lo

jmn il ko
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jmo ik ln

jmo il kn
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jno ik lm
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kln ij mo

kln im jo

kln io jm
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The rank 2 tensor in equation (1D.14), follows the repeated 3 3  matrix structure down the 

leading diagonal of the 105 105  matrix. The full set of permutations for the final rank 1 tensor 

are as follows,  
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Similar to the rank 5 case, this is result is overcomplete and it is possible to choose a set of 36 

to form a linearly independent set: 
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;

1

420
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ijk ln mo
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51 28 13 35

28 66 28 3

13 28 51

35 32 1

22 40 16

7 6 15

5 4 7

8 26 20

7 16 7

1 10 7

16 2 20

15 6 7

1 12 15

16 34 16

15 12 1

15 6 7

16 40 22

1 32 35

15 12 1

1 12 15

16 34 16

7 10 1

7 6 15

20 2 16

7 4 5

7 16 7

20 26 8

15 24 9

15 30 15

9 0 9

15 0 15

  

 

 







 

 















 

 

 

 

 

 

 

 

 



 



 







22 7 5

2 40 6 4

1 16 15 7

67 42 11 19

42 62 10 14
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SUCCESSIVE RANKS 

Results for isotropic tensors of higher ranks exist [101] and can be deployed in calculations, but 

due to the complexity, computational techniques are recommended [102]. The results displayed 

in chapter 3, required the use of rank 8 tensors, these results were carried out by a co-author 

Jack S. Ford and are included for completeness, but not covered in detail [103]. 
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COMPLEMENT 1E: FIELD VECTORS 

Throughout this work, all polarisation products will be analysed in one of four commonly 

deployed experimental configurations. The first pair will consider plane polarised light detected 

perpendicular to input, where the electromagnetic field vectors will either be parallel or 

perpendicular to input. The second pair will consider circularly polarised light, detected forward 

of the incident of light and with circularity either preserved or reversed. Incident light of left 

helicity is selected for exemplary purposes. 

Table 3: The field vectors for the exemplary experimental setups. 

 Linear (right-angled) Circular (forwards) 
 input output (' ) input output (' ) 
     L L R 

e  î  î  k̂   
1 ˆ ˆ

2
ii j   

1 ˆ ˆ

2
ii j   

1 ˆ ˆ

2
ii j  

e  î  î  k̂   
1 ˆ ˆ

2
ii j   

1 ˆ ˆ

2
ii j   

1 ˆ ˆ

2
ii j  

b  ĵ  ˆk  î   
1 ˆ ˆ

2
i

i
i j   

1 ˆ ˆ

2
i

i
i j   ˆ ˆ

2

i
ii j  

b  ĵ  ˆk  î   ˆ ˆ

2

i
ii j   ˆ ˆ

2

i
ii j   

1 ˆ ˆ

2
i

i
i j  

 k  k̂  ĵ  ĵ  k̂  k̂  k̂  

 

It is useful to prepare all permutations of product pairings for the field vectors displayed in 

Table 3, see Table 4 – 7. 
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Table 4: Field vector products for scattering of plane polarised light detected perpendicular 

to input, with parallel oscillations. 

  e  e  b  b  k  e  e  b  b  k  

e  1 1 0 0 0 1 1 0 0 0 

e  1 1 0 0 0 1 1 0 0 0 

b  0 0 1 1 0 0 0 0 0 1 

b  0 0 1 1 0 0 0 0 0 1 

k  0 0 0 0 1 0 0 -1 -1 0 

e  1 1 0 0 0 1 1 0 0 0 

e  1 1 0 0 0 1 1 0 0 0 

b  0 0 0 0 -1 0 0 1 1 0 

b  0 0 0 0 -1 0 0 1 1 0 

k  0 0 1 1 0 0 0 0 0 1 

 

 

Table 5: Field vector products for scattering of plane polarised light detected perpendicular 

to input, with perpendicular oscillations. 

  e  e  b  b  k  e  e  b  b  k  

e  1 1 0 0 0 0 0 1 1 0 

e  1 1 0 0 0 0 0 1 1 0 

b  0 0 1 1 0 0 0 0 0 1 

b  0 0 1 1 0 0 0 0 0 1 

k  0 0 0 0 1 1 1 0 0 0 

e  0 0 0 0 1 1 1 0 0 0 

e  0 0 0 0 1 1 1 0 0 0 

b  1 1 0 0 0 0 0 1 1 0 

b  1 1 0 0 0 0 0 1 1 0 

k  0 0 1 1 0 0 0 0 0 1 
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Table 6: Field vector products for scattering of forward circularly polarised light, with preserved 

circularity. 

  e  e  b  b  k  e  e  b  b  k  

e  0 1 0 i 0 0 1 0 i 0 

e  1 0 -i 0 0 1 0 -i 0 0 

b  0 -i 0 1 0 0 -i 0 1 0 

b  i 0 1 0 0 i 0 1 0 0 

k  0 0 0 0 1 0 0 0 0 1 

e  0 1 0 i 0 0 1 0 i 0 

e  1 0 -i 0 0 1 0 -i 0 0 

b  0 -i 0 1 0 0 -i 0 1 0 

b  i 0 1 0 0 i 0 1 0 0 

k  0 0 0 0 1 0 0 0 0 1 

 

 

Table 7: Field vector products for scattering of forward circularly polarised light, with reversed 

circularity. 

  e  e  b  b  k  e  e  b  b  k  

e  0 1 0 i 0 1 0 i 0 0 

e  1 0 -i 0 0 0 1 0 -i 0 

b  0 -i 0 1 0 -i 0 1 0 0 

b  i 0 1 0 0 0 i 0 1 0 

k  0 0 0 0 1 0 0 0 0 1 

e  1 0 -i 0 0 0 1 0 -i 0 

e  0 1 0 i 0 1 0 i 0 0 

b  i 0 1 0 0 0 i 0 1 0 

b  0 -i 0 1 0 -i 0 1 0 0 

k  0 0 0 0 1 0 0 0 0 1 
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COMPLEMENT 1F: RESONANCE EFFECTS 

The theory developed in chapter 1 adequately describes the transition rate of any process. In 

§1.4 we considered a centre engaging in a number of transitions involving its ground state and 

a virtual excited state. However, additional consideration is required if the input photon energy 

approaches that of the gap between two real energy levels, for the centre. Under these 

conditions, an analysis of the denominators associated with the transition energies delivers a 

zero result, which would correspond to an infinitely intense transition. However, this is not 

physical and can be addressed by adopting an appropriate substitution that reflects the lifetime 

of the molecular states, 

 i 2r r rE E    , (1F.1) 

where r  is the decay constant for any molecular state, in this case r . Although it should be 

noted that this is not entirely consistent – by including a damping constant, the energy levels 

are no longer stationary states and therefore correspond to a Hamiltonian that is non-Hermitian. 

This can be incorporated into each energy denominator for any given molecular response 

tensor. 

 
,... 0

1
...

i 2A
r r rE ck 

 
 

  
  , (1F.2) 

this is based on the first term from equation (1.4.1). If, 
0rck E , then a given energy 

denominator will take the form of, 

 
1

i 2rE  
 , (1F.3) 

where E  is a small energy mismatch. The rate of a process is dependent on the square of the 

matrix element, from equation (1.3.15), and as such,  

 
2

2 2 2

1

4rE



 

 
 , (1F.4) 

which is a Lorentzian form, this defines r  for the system, with a linewidth at the half maximum 

of r . Away from resonance, the modification will be negligible when compared to an 
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electronic transition, however as you approach resonance, this term will serve to more realistic 

depict the lineshape for optical response. 

 

Although the corrective term introduced in equation (1F.1) does not arise from the perturbative 

derivation for the system, it does prove to be phenomenological accurate in describing the real 

evolution of the molecular states [104]. This can be shown by substituting it into the time-

dependent Schrödinger equation (1.3.1), which has eigensolutions 0ie H t
 and associated 

eigenstates 
ie .rE t

 Substituting the corrective term, equation (1F.1), in to produce the modified 

eigenstates, seen here as a product of exponentials; 

 
i 2e er rE t t 

 , (1F.5) 

the first exponential represents a phase factor, often associated with the wavefunction, of more 

interest is the second exponential, which represents a real exponential decay, the excited state 

exhibiting a depopulation. Uncertainty in lifetime gives rise to a broadening of the energy level. 

 

At this juncture, it is worth briefly mentioning the two-level approximation. In an effort to 

simplify calculations it is expedient to limit the sum over an infinite number of molecular states 

to choice states that are known to contribute most significantly. At the extreme case, a single 

ground state and excited state may be employed. This is particularly powerful when utilising 

computational models, in which quantum calculations are often amongst the most resource 

intensive. The cases exploiting resonance features are particularly suited for such 

approximations, where the two levels exclusively considered are the ground and resonant levels. 
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COMPLEMENT 1G: BORN-OPPENHEIMER APPROXIMATION 

The majority of this work engages purely electric transitions; however, in processes that engage 

vibrational transitions, such as with Raman scattering, it is necessary to distinguish between the 

nuclear and electronic components. Under the Born-Oppenheimer approximation, the 

molecular states are considered as a product of wavefunctions:    r

r Rq Q  , where the former 

describes the electronic state r  and is dependent on the electronic coordinates q , which is 

implicitly dependant on the nuclear coordinates of a vibrational mode Q , associated with a 

vibrational state R . We can justifiably assume that such a transition leaves the energy associated 

with all other vibrational modes unchanged. 

 

This separation can now be applied to the transition polarizability tensor, equation (1.4.7). Here, 

the initial, intermediate and final states in each term can thus be cast as 0

0 0  , r

r R   and 

0

0   , respectively. Moreover, each transition moment component can now be regarded as 

a Dirac bracket succinctly expressed as 0

0

r r

i i



    . With the associated energy term 

also separable, i.e.
0r r RE E E   ; 

       0 0 0 0

0 00|

, 0 0 0

r r r r

i R R j j R R iA

ij

r R r R r R

Q Q Q Q

E E ck E E ck

 



           


 
  

    
 

  , (1G.1) 

Providing that the input optical frequency is far from resonance, the spacing between electronic 

levels will be much greater than that of vibrational level and hence the following approximation 

is justifiably exploited:  

       0 0 0 0

0 00|

, 0 0

r r r r

i R R j j R R iA

ij

r R r r

Q Q Q Q

E ck E ck

 
           


 
  

  
 

  . (1G.2) 

Since the denominators in equation (1G.2) do not involve vibrational state energies, the 

completeness relation, equation (1.4.2), can be invoked, so that; 

 
       

 00

0 0 0 0

0|

0

0 0

ij

r r r r

i j j iA

ij

r r r

Q

Q Q Q Q

E ck E ck







   
  

 
  

  
  . (1G.3) 
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As a result of the nuclear motions producing little variation in the transition moments, a Taylor 

series expansion can be deployed of the electronic polarisability 00|A

ij   in terms of the vibrational 

coordinate Q  , about the equilibrium position 
0Q  ; 

    
0

0

00

00| 00

0 ...
ijA

ij ij Q

Q

Q Q Q
Q


 


   


 . (1G.4) 

Accordingly, by inserting equation (1G.4) into (1G.3), the leading term of the transition will 

dominate in any instance where the contained Dirac bracket is non-zero and as such the 

polarisability emerges in the approximate form: 

  
0

00

0|

0 0 ...
ijA

ij

Q

Q Q
Q






  


  


 . (1G.5) 

The symmetry associated with the right-hand side of this equation determines the criteria for 

allowing a Raman transition to occur. The elicited irreducible representations correspond with 

the quadratic terms listed in character tables [105]. 
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COMPLEMENT 1H: LAGUERRE POLYNOMIALS 

The main features present, are a product of a Gaussian with an associated Laguerre polynomial, 

the latter being one of the solutions of the following partial differential equation: 

 
 

 
 

 
2

2
1 0

p p

pl l

l

L x L x
x p x l L x

x x

 
    

 
 . (1H.1) 

Note that it is the l  of that appears in equation (1.6.10), signifying that optical vortices of 

opposite topological charge have identical radial distributions; their physical differences arise 

through their phase factors, considered below. 

 

Orthogonality amongst the associated Laguerre polynomials is usually specified with respect to 

those of the same index p .  The form that is relevant for Laguerre-Gaussian beam applications, 

which also introduces a weighting factor, is expressible as follows; 

    
 

0

!

!

x p p p

l l ll

l p
e x L x L x dx

l





 


  . (1H.2) 

More generally [106], it may be noted, for  the following in terms of hypergeometric functions 

is found; 

 

   

   

0

3 2

e .d

1
, 1, 1; 1, 1;1 1

x p p

l lx L x L x x

l p l p
F m p p p n

l l




   






      
               


 

.     (1H.3)
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2 
MULTICENTRE RAMAN SCATTERING 

2.1 INTRODUCTION 

This chapter will build on two preceding sections: §1.4B and §1.5, by considering the effect of 

neighbouring molecules on Raman scattering [107, 108]. In the latter section, it was mentioned 

that a virtual photon exchange between two centres can modify the symmetry of a system, and 

for these purposes, allow a Raman transition to occur where it might not usually be observable. 

The evolution of two (or more) centres can be connected by considering virtual photon 

exchange(s) between the centres concurrent to the Raman scattering event [21-23]. In principle, 

any number of additional interactions can be rigorously accommodated, however, each virtual 

photon interaction will increase the order of perturbation theory required to describe the 

process. This in turn reduces the relative amplitude of contribution. 

 

In §1.4B Raman scattering was introduced as a two-photon process with the 2n   leading 

contributor to the matrix element, as seen in equation (1.3.14), which is fed into the rate of the 

process too. Each virtual photon exchange will add two photon-molecule interactions (one at 

each optical centre) and therefore see a corresponding increase in the order of perturbation 

theory engaged. In this chapter, the leading two contributors to the neighbour mediated Raman 

scattering will be considered. This involves the one or two virtual photon exchange(s) between 

a centre undergoing a Raman transition and a neighbouring centre. All relevant quantum 

interference terms are calculated too. 

 

Figure 9 displays a schematic for this process, with a detector placed perpendicular to the 

incident beam. In such a setup, the resultant Raman spectrum will display the additionally 
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permitted transitions as new vibrational frequencies, in addition to modifying the intensities of 

pre-existing vibrational modes. Despite the higher orders of perturbation theory required to 

accommodate virtual photon interactions, all degrees of coupling to other centres always utilise 

just one photon from the laser mode. As such, multicentre Raman scattering mechanisms in 

this chapter, like the single-centre case, have a linear dependence on the incident laser intensity. 

 

Figure 9: Schematic depiction of a pairwise interaction between two centres in the course 

of a Raman scattering process, with a detector, D , perpendicular to that of the incident 

beam. 

Previous work has incorporated a second centre for the purposes of bimolecular cooperative 

Raman excitation [109]. In such a process, the photon annihilation and creation events are split 

between the two involved centres with a virtual photon coupling the pair. This is one 

configuration of the photon-molecular interactions that has been included in this work, see 

§2.2A. However, the previous work specifically considered the excitation to be split across the 

pair, whereas here the excitation will be localised to the one centre of spectroscopic interest, 

molecule A . As such, the neighbouring molecule B  will always be regarded to enter and leave 

the process in its ground electronic and vibrational state. 
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A few realistic parameters have been chosen to carry out the following analysis. Firstly, both 

centres are considered to be chemically distinct. Secondly, in the course of the process the 

molecular tumbling is treated to be on a much slower time scale than that which the process 

evolves at. As such, the orientation of both centres can be regarded as fixed, at a distance R , 

throughout the process. Moreover, they will be fixed at a distance that satisfies the near-field 

approximation, equation (1.5.2) [21]. In this region, terms with more negative powers of R  will 

be most readily measurable. Lastly, for demonstrative purposes a Stokes transition has been 

assumed throughout, although analogous principles hold for the anti-Stokes counterpart. 

 

2.2 GENERAL THEORY 

All process involving two or more interaction events have more than one pathway to connect 

the initial and final state for a process. In cases like these, where there is coupling between two 

or more centres, there is an additional consideration; not only the temporal order of the 

interactions can be permuted but also the spatial distribution across the centres. The result of 

this is that each centre can have a range in number of interactions to contribute to its molecular 

response. Each molecular response tensor engaged has its own matrix element which 

contributes to the rate of a process. 

 

The superscript attached to each matrix element will identify the location the photon operators 

engage with. All will contain A   and B , to represent the two molecules, the letter that precedes 

the other indicates the site of photon annihilation; a prime will be attached to one of the letters 

to identify the site of the creation event, which may or may not be the same. The number of 

vertical bars appearing in the superscript will correspond to the number of virtual photon 

exchanges present between the pair of molecules. Previously, it was introduced that the 

contribution from both one and two virtual photon exchanges will be included. 

 

In the case of one virtual photon exchange between two centres, there are four unique 

arrangements that the real photon-molecule interactions can occur. Case I, the annihilation at 

molecule A and creation at molecule B, 
|A B

FIM

. Case II, is where the roles of A   and B  in case 
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I are interchanged, i.e. the radiation mode is annihilated at B and created at A , 
|B A

FIM

. Case III, 

is a contribution corresponding to the photon annihilation and creation at A , as with 

conventional Raman, 
|A B

FIM


. Case IV, is where the radiation modes are both annihilated and 

created at molecule B, 
|B A

FIM


. These cases will be covered. 

 

In the case of two virtual photon exchanges between the pair of molecules, there are the same 

arrangement of real photon-molecule interactions as with cases I – IV. These will be assigned 

cases V – VIII, and will be covered in §2.2E-H, respectively. As an example, case V is case I 

with an additional virtual photon exchange. In principle, all occurrences of two virtual photon 

exchanges are indistinguishable and therefore, similarly to §1.4C, one time-ordering can be 

considered for both. Although, as will be demonstrated late, further index symmetry is not 

precluded.  

 

The dipole approximation will be used throughout, to ensure a significant contribution towards 

the process. This in turn enables the deployment of the V-tensor, introduced in §1.5. In 

particular, we are interested in the near-zone form, equation (1.5.2). At the static limit, 0k  , 

this can be treated as an instantaneous interaction between the two molecules, usually depicted 

as a horizontal line connecting the world-lines for the two centres. Consequently, only one 

additional intermediary state is added for the first virtual photon and two thereafter. 

 

2.2A CASE I 

The first case considered is where each molecule will engage in a two-photon process: one real 

and one virtual photon interaction. The real photon events, annihilation and creation, are split 

across molecules A   and B  respectively. Moreover, the single virtual photon exchange between 

the two centres connects the world lines of the two centres and can be regarded as occurring 

within a single instant. As such, the 3n   from equation (1.3.14) is the leading contributor with 

two associated intermediary states r  and s  to be summed over. There are six permutations of 

time-orderings that are possible, see Figure 10 for one example. Each contributes a single term 

to the matrix element for the process, which takes the following form, 
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i is d     k k k   (2.2.1) 

The first term corresponds to the contribution from the time ordering displayed in Figure 10. 

Each of the Dirac brackets above represents the transition between two states of the time series 

shown up the left-hand-side of the Feynman diagram in Figure 10. Each individual component 

is the combination of all states present in that interval. Two out of the three instantaneous 

interactions are real photon transitions, mediated by the interaction Hamiltonian. These can be 

seen in the heart of the Dirac bracket and modify a single radiation and molecular state, with 

the 
2

0


 extracted as a common factor. The third interaction is handled by the static V-tensor, 

which is capable of acting on two molecular states. As discussed in the previous chapter, the 

denominators represent the energy for each intermediate state relative to that contained in the 

entire system at the inception of (or indeed subsequent to) the process. 

 

Next, the Dirac brackets can be evaluated, in conjunction with completeness relation, equation 

(1.4.3), the following can be cast, 
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(2.2.2)

 

the additional prefactor in parentheses is an orientational weighting, introduced by the V-tensor. 

 

Figure 10: A single representative Feynman diagrams for the time evolution of two 

molecules A  and .B  Prior to the process both centres are in their ground state at a point 

in time the molecule of spectroscopic interest annihilates a photon and transitions to a 

virtual intermediate state, .r  At a subsequent instant, a virtual photon is exchanged 

between the pair; molecule A  is left in a vibrationally excited state, while its neighbour 

transitions to a virtual state, s , before immediately creating the scattered photon and 

returning to its ground state. 
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Notice that there are two pairs of equivalent numerators, these can be combined by taking 

common denominators to form four unique contributions. The relation for energy 

conservation, equation (1.4.16), can also be incorporated to simplify the denominators as 

follows, 

 

 
| 0| 0 | 0|

|

2 3
,0 0 0

| 0| 0 | 0|

0

| 0| 0 | 0|

0 0

ˆ ˆ3
8

r A r A s B s B

k j i lA B

FI i j kl k l A B
r s r s

r A r A s B s B

j k l i

A B

r s

r A r A s B s B

k j l i

A B

r s

j

c kk n
M e e R R

R V E ck E ck

E ck E ck

E ck E ck











   


 

   

   




   

       


       


       





| 0| 0 | 0|

0

r A r A s B s B

k i l

A B

r sE ck E ck

   


         

 

, (2.2.3)

 

Here, the summand can be factorised as a product of two summands over r  and s  as follows, 
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  . (2.2.5) 

These are the familiar polarisability tensors, with one associable to each of the molecules 

involved in the process. The parenthesis around the subscript indices represent permutable 

symmetry and always arise in linear polarisability tensors, involving two transition moments 

connecting the same pair of states [110], see complement 1B. The vibrational transition is not a 

sufficient difference to break this form of symmetry. The contracted from of the matrix element 

is now, 

      
| 0| 00|

2 3
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ˆ ˆ3
8
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FI i j kl k l jk il

c kk n
M e e R R

R V

  


 
     . (2.2.6) 

Interestingly, one can factorise out Coulomb’s constant  
1

04


 and the distance dependence 

3R
, to leave a matrix element with identical constant structure and field products as that seen 

in equation (1.4.14). 
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2.2B CASE II 

This case delivers the contribution from the annihilation event on molecule B  and the creation 

event on molecule A , again with a single virtual photon exchanged in the course of the process. 

Visually, it is very comparable to that of the previous case, as can be seen when you compare 

the respective figures.  

 

Figure 11: Similar to Figure 10, this is one of six permutations of time orderings for this 

case, in Feynman diagrammatic representation. The difference here is the sites of the 

photon operators are interchanged. 

The resultant derivation mirrors the visual similarities and has been omitted for that reason, the 

resulting response tensors are as follows: 
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The resultant matrix element is almost identical in form too,  
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2.2C CASE III 

This is the closest comparable contribution to the single-centre Raman scattering. The two real 

photon-molecule events are on the molecule of spectroscopic interest, with the single virtual 

photon the only interaction molecule B  engages in. 

 

Figure 12: Another example of one time series for this case in Feynman diagrammatic form. 

Again, the derivation for this is almost identical to that presented for case I, in §2.2A. However, 

unlike the first two cases, the six permutable orders all have unique numerators and as such it 

is not possible to take a common denominator to reduce the number of terms in the summand 

down to four. It is possible to take the transition moment for molecule B  as a common factor 

for all six terms, 00|B

l , which indicates that this molecule must have a permanent static dipole 

i.e. it must be a polar molecule. With three interactions on molecule A  and two virtual states to 

sum over, the response tensor is displayed as follows, 
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Note, this is not the same as the hyperpolarisability which appears as equation (1.4.22).
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The matrix element is therefore expressible as follow, with a familiar structure, 
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Note, there is no energy exchange between the two molecules, which is consistent with the 

requirement of a polar molecule B; this does not arise in any of the other cases. 

 

At this stage, it is necessary to consider the nature of this hyperpolarisability response tensor. It 

is not possible to directly apply the Born-Oppenheimer treatment as cast in complement 1G. 

However, similar principles still hold by expressing the response tensor as a Taylor series 

expansion with leading contribution, 
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Symmetry in the interaction indices has been indicated, in this instance, analysis of the tensors 

is required to assert this, see complement 1B. Index symmetry will arise if any set of indices can 

be interchanged and in turn the original response tensor is regenerated. If we first identify two 

interactions that involve two similar radiation modes: the two real photon interactions, i  and 

j  in this case. It is known that the states r  and s  are arbitrary and as such it is possible to 

interchange them without altering the regarded system. Following these two interchanges the 

hyperpolarisability tensor takes the following form, 
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. (2.2.13)

 

With foresight of the end result, terms two and four have switched positions with terms three 

and five, respectively. It is known that the inner product of two Dirac brackets, where the bra 

and ket of one are the same as the ket and bra in the other, are identically equal. Under the 
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notation deployed here, on any given transition moment the superscript indices represent the 

molecular states, see equation (1.4.2), it follows that, 

 | |sr A rs A

k k   . (2.2.14) 

As can be seen, this is identical to equation (2.2.10), all apart from the vibrational energies; these 

are known to be negligible when compared to that of the electronic transitions allowing us to 

justifiably disregard them. 

 

2.2D CASE IV 

An interesting quirk of deploying MQED is that it is entirely possible that the molecule of 

spectroscopic interest doesn’t even “interact” with either of the real photons. Explicitly, 

molecule B  both annihilates and creates the real photon with the single virtual photon exchange 

imparting the vibrational transition on molecule A . 

 

Figure 13: An example time series, in Feynman diagram form, for the final photon-

molecule interaction site arrangement. 

The derivation of this matrix element is largely the same as that of the previous case, 
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 (2.2.15) 

There is an immediate visual difference in the denominators. Here, the energy conservation 

relation, equation (1.4.16), is utilised to replace the presence of molecule A , which demands the 

presence of more photon energies. It also results in the inability to find any index symmetry in 

this tensor. The matrix element that seats the above hyperpolarisability tensor is, 

   00|| 0|

2 3
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8
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FI i j kl k l ijk l

kk n c
M e e R R

R V

  


 
    . (2.2.16)

 

Here, the transition dipole moment exhibits the vibrational transition, which will in effect have 

the same selection rules as infrared absorption. The hyperpolarisability tensor here displays 

symmetry characteristics associated with a three-photon process and has an analogous effect to 

that of the electro-optic tensor [111], inducing a vibrational displacement onto its neighbour. 

 

2.2E CASE V 

This is the first case in which we consider a second virtual photon. In this case, molecule A  

annihilates the photon and molecule B  creates the scattered photon, see Figure 14. As such, 

each molecule engages in a three-photon process, with two additional pairs of interactions 

occurring at two separate instants of time. These two events are indistinguishable and as such, 

interchanging them does not contribute an addition time-ordering. In equation (1.3.14), 5n    

term will be the leading contributor with two associated intermediary states r , s , t  and u  to 

be summed over. There are twelve possible permutations of time-orderings and again, each 

contributes one term to the matrix element for the process, as follows, 
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Figure 14: This is very closely related to the Feynman diagram depicted in Figure 10, except 

a total of two virtual photon exchanges occur between the pair of molecules, making for a 

total of six interactions, distributed as three interactions at each of the molecules.  Two 

additional intermediary states are required to describe this process t  and u . The additional 

virtual photon exchange doubles the number of possible permutations of time-orderings 

to twelve. 
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 (2.2.17) 

In all cases, the first term corresponds to the contribution from the time ordering displayed in 

the figure associated with the case. There are now four Dirac brackets to mediate the transition 

between states I , R , S , T  and F , which each hold information on each of the two 

molecules and the radiation field. Two out of the four transitions are mediated by the interaction 

Hamiltonian, seen in the heart of the Dirac bracket and now two are handled by the V-tensor. 

There are now three terms present in the denominator are the energy for each intermediate state 

relative to that contained in the whole dynamical system at the inception of the process. 
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Evaluating all of the Dirac brackets and utilising the completeness relation, equation (1.4.3), the 

following can be cast, 
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 (2.2.18) 

The negative sign is the product of a negative sign from each of the three denominators. For 

the cases involving two virtual photons, it is not possible to factorise the components relating 

to each of the molecules and as such, the molecular response tensor is defined as a 

conglomeration of the pair, such that, 
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. (2.2.19)

 

This is placed in the matrix element as follows, 

    0| ;00|

;2 3 6

0

ˆ ˆ ˆ ˆ3 3
32

A BA B

FI i j kl k l mn m n jkm iln

c kk n
M e e R R R R

R V

  
 

 
      , (2.2.20) 

For the cases involving two or more virtual photons, the square of the Coulomb’s constant 

 
2

04


 as well as a sixth order distance dependence 
6R
 can both be factorised out, to leave 

a matrix element with identical constant structure and field products as that seen in equation 

(1.4.14). 
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Irrespective of whether the molecular responses are separable, the selection rules and symmetry 

arguments can still be applied to each numerator. It is evident that this process involves three 

transition dipole moments for each of the molecules in the course of the process, as such both 

molecules can be said to relate to three-photon selection rules. Take, for example, the transition 

moments relating to molecule A   in the first time-ordering, 

          | | 0|1 s A sr A r A

kkm m jj Q Q Q QC     , (2.2.21) 

the dependence on the vibrational coordinate Q  for a specific mode of vibration has been 

explicitly expressed to emphasise the dependence on three-photon selection rules.  The Born-

Oppenheimer approximation can be extended to this, in which each term must be considered 

individually, so the leading contribution from the above example will produce, 

 
     

 

0

0 0

1 00

1 0
...C

Q

kmj

kmj

C
Q Q Q

Q
C


 


  


 , (2.2.22) 

with similar expressions obtainable for each of the twelve terms. 

 

2.2F CASE VI 

This is the two virtual photon variant on case II. Or, case V with the photon operator sites 

interchanged; that is with the annihilation and creation events on molecule B  and A , 

respectively. Satisfyingly, despite the complexity in the derivation, the result agrees with what 

would be expected of this pathway. The ensuing response tensor again expresses features of 

both the molecules and takes the following form, 



76 Multicentre Raman scattering 

 

 

| | 0| 0 | | 0|

00| ; 0|

, , , 0 0 0 0

| | 0| 0 | | 0|

0 0 0 0

|

u A ut A t A s B sr B r B

i l n k m jB A

jkm;iln A A B B
r s t u u t s r

u A ut A t A s B sr B r B

l i n k m j

A B A B B

u s t s r

u A u

l n

E ck E E ck E ck

E E E E ck E ck











     


     

 


  

             


             





| 0| 0 | | 0|

0 0 0

| | 0| 0 | | 0|

0 0 0 0 0 0

| | 0| 0 | | 0|

0

t A t A s B sr B r B

i k m j

A B A B B

u s t r r

u A ut A t A s B sr B r B

i l n k j m

A B A B A B

u s t s t r

u A ut A t A s B sr B r B

l i n k j m

A B

u s

E E E E E ck

E E ck E E ck E E

E E E

 







   

     

     

            


              


   0 0 0 0

| | 0| 0 | | 0|

0 0

| | 0| 0 | | 0|

0 0 0 0 0

| | 0|

A B A B

t s t r

u A ut A t A s B sr B r B

l n i k m j

A B A B A

u s t r t

u A ut A t A s B sr B r B

i l n j k m

A A B A B

u u s t r

u A ut A t A

l i n k

E ck E E

E E E E E ck

E ck E E E E



  





     

     

   

        


            


            



0 | | 0|

0 0 0 0 0

| | 0| 0 | | 0|

0 0 0

| | 0| 0 | | 0|

0 0 0

s B sr B r B

j m

A B A B A B

u s u r t r

u A ut A t A s B sr B r B

l n i k j m

A B A B A

u s u r t

u A ut A t A s B sr B r B

i l n j k m

B A B

s u s

E E E E ck E E

E E E E ck E ck

E ck E E





 



 

     

     

             


             


      0 0

| | 0| 0 | | 0|

0 0 0 0

| | 0| 0 | | 0|

0 0

.

A B

t r

u A ut A t A s B sr B r B

l i n j k m

B A B A B

s u r t r

u A ut A t A s B sr B r B

l n i j k m

B A B A

s u r t

E E

E ck E E ck E E

E ck E E ck E ck







 

     

     

    


             


 
               

 

(2.2.23) 
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Figure 15: One of twelve Feynman diagrams to represent the photon operator locations. 

This is comparable in form to that of case II, the additional permutations introduced as a 

result of the second virtual photon. 

The very familiar matrix element which contains this response tensor is, 

    00| ; 0|

;2 3 6

0

ˆ ˆ ˆ ˆ3 3
32

B AB A

FI i j kl k l mn m n jkm iln

c kk n
M e e R R R R

R V

  
 

 
      . (2.2.24) 

The only difference in this expression is the interchanging of the superscript attached to the 

conglomerate molecular response tensor  , the primes serving to emphasise the difference in 

tensor structure. 

 

2.2G CASE VII 

This case produces the highest order of photon process to be considered on the molecule of 

spectroscopic interest, a four-photon process. For this, both real photon operations in addition 

to the two virtual photon interactions all occur on molecule A . 

| ⟩ 

|0 ⟩ 
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Figure 16: One example Feynman diagrams comparable in form to that of case III, where 

both real photon operators occur at molecule A , the additional permutations introduced 

as a result of a second virtual photon exchange with molecule B . 

There are the same number of interactions and intermediary states as in the previous two cases. 

The response for each molecule is still inseparable from the other and as such the result is best 

displayed as a conglomerate of both molecules. In principle, it would be possible to factorise 

out the transition moments of molecule B ; however, a remnant of B  would persist in the 

energy denominator and there would be no real benefit. The collective response tensor is 

displayed as, 
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, (2.2.25)

 

which can be found in the matrix element, 

        
0| ;00|

;2 3 6

0

ˆ ˆ ˆ ˆ3 3
32

A B A B

FI i j kl k l mn m n ij km ln

c kk n
M e e R R R R

R V

  
 

 
     . (2.2.26)

 

The response tensor indicates the presence of three pairs of index symmetry, this can be shown 

as follows. Again, we shall try interchanging the indices, i  and j , here the two pairs of virtual 

photon events on each molecule k  and m , as well as l  and n  can be interchanged. Again, the 

intermediary states are arbitrary and as such r  and t  are the most likely candidates for 

symmetry. The result of applying these four operations delivers, 
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. (2.2.27)

 

By comparing the results with the original tensor, terms 1, 5, 8 and 12 have all been kept in the 

same positions. Whereas terms 2, 3, 6, 9 have been swapped with 4, 7, 10 and 11, respectively. 

The result is a tensor where each term position connects with that of the original tensor. To 

best see this, read equation (2.2.27) from right-to-left. Where the identity in equation (2.2.14) 

still holds here. Again, the vibrational excitations   can be disregarded, when compared to the 

relative magnitude of the photon energies and associated electronic transitions.

 

 

In each of the twelve permutations, molecule A  undergoes four photon-molecule interactions 

and corresponds to the four transition moments that appear in the numerator for each term in 



2.2 General theory 81 

 

equation (2.2.25). The aspects of each molecule are not separable, similar to case V, however, 

symmetry arguments can be applied to each term. Take the first term, for example, 

            | | | 0|1 t A ts A sr A r A

i k mikm jj Q QC Q Q Q     . (2.2.28) 

Here, the explicit dependence on the vibrational coordinate Q  for a specific mode of vibration 

has been expressed to emphasise the dependence on four-photon selection rules. Similar 

expressions obtainable for each of the twelve terms. With an equivalent Born-Oppenheimer 

treatment as displayed in equation (2.2.22). 

 

2.2H CASE VIII 

The final case to be considered is where molecule A  interacts with neither the beam or the 

scattered photon, but undergoes a vibrational transition because of a pair of virtual photons 

exchanged with its neighbour. In keeping with the trend set forth, this is case IV with an 

additional virtual photon and case VII with the interaction sites of both molecule A  and B  

interchanged. 

 

Figure 17: One Feynman diagram to exemplify this mechanism. Both real photon 

operations occur on molecule B , which is coupled to molecule A  by two virtual photons. 
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The resultant response tensor is again of similar form to that of the previous case. The 

superscript indices have been interchanged and the primes are present to distinguish this 

response tensor from the last. 
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. (2.2.29)

 

This response tensor also displays index symmetry in the same positions and by the same 

methods of interchangeability. The matrix element, which houses this conglomerate response 

tensor is as follows, 

        
00| ; 0|

;2 3 6

0

ˆ ˆ ˆ ˆ3 3
32

B AB A

FI i j kl k l mn m n ij km ln

c kk n
M e e R R R R

R V

  
 

 
      . (2.2.30) 
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2.2I SUMMARY OF CASES 

Each of the eight cases considered in the preceding subsections represent one pathway that is 

possible for a Raman transition to occur at a molecule. In contrast to the process introduced in 

§1.4, there are now several mechanisms that can contribute to the overall rate of a Raman 

transition occurring for the molecule of spectroscopic interest. This can easily be 

accommodated additively in the square modulus for the rate of a process. First, it is helpful to 

scrutinise each of the matrix elements for common factors. Each of the matrix elements, 

equations (1.4.12), (2.2.6), (2.2.9), (2.2.11), (2.2.16), (2.2.20), (2.2.24), (2.2.26) and (2.2.30), 

display a common factor, which is also seen in single-centre Raman scattering. The method of 

substitutions to obtain the radiant intensity have been exposed in §1.4B, as such the common 

prefactors have already been taken care of. The radiant intensity of the overall process can now 

be cast incorporating modified matrix elements for each of the mechanism, with the appropriate 

common factors removed, as follows, 
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. (2.2.31)

 

Each of the modified matrix elements will retain the prefactors relating to the Coulomb’s 

constant, distance dependence and pairwise orientational parentheses. In addition to the field 

vectors and molecular response tensors, of course. The square modulus produces nine products 

of the modified matrix elements with their complex conjugates and 36 cross terms by utilising 

equation (2A.5), the latter are known as the quantum interference between the matrix elements. 

 

As a final note, there is one additional set of Feynman diagrams that also bares the same order 

of perturbation theory as cases V–VIII, that is two virtual photons, each connected to two 

different centres. These have been neglected, with reasonable cause. Although the same order 

of perturbation would be deployed in both cases, a similar result will be obtained for both. By 

inspecting the matrix element produced following evaluating the two-photon single-centre case, 

an 
6R
 dependence is present. As such, any process occurrence of such an exchange will be 
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hindered in all but the most near-field of cases. As such, two centres present in the immediate 

vicinity of each other is possible, but probabilistically the instances where a third centre will also 

coincide with them is far less likely. 

 

2.3 ROTATIONAL AVERAGE 

In the preceding section, expressions were cast for the amplitude of transition, where the pair 

are fixed in orientation, with respect to each other. The radiant intensity, equation (2.2.31), has 

been cast on the assumption that the pair is also fixed in orientation with the respect to the bulk, 

this is typically associated with solid phase mixtures. Typically, systems where molecules are free 

to tumble are of the most interest, such as the case with condensed phase fluids, which is the 

subject of this section. 

 

To begin, like Raman scattering this is an incoherent process and as such requires an isotropic 

Cartesian tensor equal to twice the number of real photons, which is another fourth rotational-

average, equation (1D.10). As stated in equation (1D.2), this operator is formed of three parts, 

which can be considered in turn. The first relates to the field vectors, which contracts with the 

field vectors to produce the same result as in equation (1.4.13). We can apply the field vector 

products displayed in complement 1E to consider a standard setup of right-angled scattering, 

two conventional polarization schemes can be chosen: the electric field polarisation of the 

scattered light is parallel or perpendicular to the incident light, schematics can be seen in Figure 

18(a) and Figure 18(b), respectively. 

 

Figure 18: Experimental set-up: (a) parallel plane-polarized light is detected at right angles 

to the input laser; (b) perpendicularly plane-polarized light also detected at right angles. 
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By adopting these two polarization schemes, numerical results can be obtained from equation 

(1.4.13) and contracted with the numerical matrix,  4

pqm , in equation (1D.10).  Therefore, the 

parallel configuration produces the expression; 

  
1

1 1 1
15

P  , (2.3.1) 

and the perpendicular equivalent yields: 

  
1

1 4 1
30

  P  . (2.3.2) 

These two configurations are often selected, in turn a ratio can be taken of the two, this quantity 

is known as the depolarization ratio (DR) [112]. Experimentally, this kind of characterisation 

can be automated, many technologies exist to observe the process by rapidly switching between 

polarization states [113]. 

 

These expressions are to be contracted with the molecular response tensors formed out of  4

qg  

seen in equation (1D.10) along with the molecular response tensors  , , , , , ,

, , , ,   from the product of the appropriate matrix elements, to form a new 

complementary tensor now defined as 
wT , to appear in the following final result; 

  
2

2 4

0 3
0 10 0

1 ˆ ˆ3
4 4 q q q q

w
w

w

w q

k
I NI R R

R
   

  

      
      

     
 P T  . (2.3.3) 

Here, rotational average has several key features. The prefactors are those attributed to all two-

real-photon Raman scattering process. The selected polarisation weightings, for example those 

selected to produce equations (2.3.1) and (2.3.2) above form P . 

 

The next series of terms requires a little more consideration. When compared with the single-

centre Raman scattering result, it has been shown above that including virtual photon 

interactions introduces an additional three terms: Coulomb’s constant and an 
3R
 distance 

dependence, each to the power of the number of virtual photons; lastly, a number of parentheses 

equal to the number of virtual photons with orientational factors connected with the molecular 
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response tensors. Hence there are contribution from zero to two virtual photons and when this 

is squared in effect the factors have a power range of zero to four, referred to as w  here. The 

subscript indices on the molecular response tensors have been reassigned a numerological 

system to connect with the complementary parentheses, the last product in equation (2.3.3). In 

the above equation, the column vectors  0 4
T  signify rotational invariants formed from 

products of the Raman and associated transition tensors.  The first of this set comprises the 

three scalar quantities that arise in conventional Raman scattering; 
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The remaining invariants,  1 4
T , each hold a dependence on , 1,...q q w   and , 1,...q q w  , 

  

1 1 1 1

1 1 1 1

1 1 1 1

0| 00| 00| 0|0| 0|

0| 00| 00| 0|0| 0|

1

0| 00| 00| 0|0| 0|

2

A B B AA A

A B B AA A

A B B AA A

  

     

  

     

  

     

     

     

     



       
   

       
         



T

1 1 1 1

1 1 1 1

1 1 1 1

00|0| 0| 00| 0| 0|

00|0| 0| 00| 0| 0|

00|0| 0| 00| 0| 0|

BA A B A A

BA A B A A

BA A B A A

   

     

   

     

   

     

    

     

     

   
   

    
      

 , (2.3.5) 

1 1 2 2 1 1 2 2

1 1 2 2 1 1

1 1 2 2

0| 00| 0| 00| 0| 00| 0| 00|

0| 00| 0| 00| 0| 00|

2

0| 00| 0| 00|

A B A B A B A B

A B A B A B

A B A B

   

       

  

     

 

   

       

     

   

        
 

        
     

T
1 1 2 2

2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1

0| 00| 0| 00|

0| 00| 0| 00| 0| 00|

0| 00| 0| 00| 0| 00| 0| 00|

00|0|

A B A B

A B A B A B

A B A B A B A B

A

 

   

  

     

   

       



 

   

     

       

 

  
  

    
         




2 2 1 2 1 2

1 1 2 2 1 2 1 2

1 1 2 2 1 2 1 2

00| 0| ;00|0| 0|

;

00| 00| 0| ;00|0| 0| 0|

;

00| 00| 0| ;00|0| 0| 0|

;

2

B B A BA A

B B A BA A A

B B A BA A A

 

      

  

        

  

        

   

     

     

    
   

      
       

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

00| ; 0|0|

;

00| ; 0|0|

;

00| ; 0|0|

;

0| 0| ;00|

;

0| 0| ;00|

;

0| 0| ;00|

;

B AA

B AA

B AA

A A B

A A B

A A B



    



    



    

 

    

 

    

 

    

 

 

 

 

 

 

 
 

  
  

 
 

  
 
 

1 2 1 2 1 1 2 2

1 2 1 2 1 1 2 2

1 2 1 2 1

00| ; 0| 0| 00| 0| 00|0|

;

00| ; 0| 0| 00| 0| 00|0|

;

00| ; 0| 0|0|

;

B A A B A BA

B A A B A BA

B A AA

  

        

  

        

 

     

     

     

  

     
 

     
    1 2 2

1 1 2 2 1 1 2 2

1 1 2 2

1 1 2 2

00| 0| 00|

0| 00| 00| 0| 00|0| 0| 00|

0| 00| 00|0|

0| 00| 00|0|

B A B

A B B A BA A B

A B BA

A B BA



  

  

       

 

    

 

   

  

       

    

   

 
 
 
    

     
 

    
    

1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

0| 00|0| 00|

0| 00| 0| 00|0| 00| 0| 00|

0| 00| 0| 00|0| 00| 0| 00|

A BA B

A B A BA B A B

A B A BA B A B



   

  

       

  

       

   

      

       

   
  

     
      





 


1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2

00| 0| 00| 00|0| 0| 00| 0|

00| 0| 00| 00|0| 0| 00| 0|

00| 0| 00|0|

B A B BA A B A

B A B BA A B A

B A BA

  

       

  

       



    

       

       

    

    
 

     
     1 1 2 2

00|0| 00| 0|

,
BA B A 

     

 
 
 
   

 (2.3.6)

 



2.3 Rotational average 87 

 

1 1 2 3 2 3 1 1 2 3 2 3

1 1 2 3 2 3 1 1

1 1 2 3 2 3

0| 00| 0| ;00| 0| 00| 00| ; 0|

; ;

0| 00| 0| ;00| 0| 00|

3 ;

0| 00| 0| ;00|

;

2

A B A B A B B A

A B A B A B

A B A B

   

           

  

       

 

     

     

    

  

      
 

      
   
 

T
1 1 2 3 2 3

2 3 2 3 1 1 2 3 2 3

1 1 2 3 2 3 1 1 2 3 2 3

0| 00| 0| ;00|

;

0| 00|00| ; 0| 0| ;00|

; ;

0| 00| 0| 00|00| ; 0| 0| ;00|

; ;

A B A B

A BB A A B

A B A BB A A B

 

     

 

         

  

           

  

   

     

   
 

   
     
  

1 1 2 3 2 3 1 2 1 2 1 1

1 1 2 3 2 3

1 1 2 3 2 3

0| 00| 00| ; 0| 0| ;00| 0| 00|

; ;

0| 00| 00| ; 0|

;

0| 00| 00| ; 0|

;

A B B A A B A B

A B B A

A B B A

   

           

 

      

 

     

     

   

  

 
  
  
  



      
 

     
   
 

1 1 2 3 2 3

1 2 1 2 1 1 1 1 2 3 2 3

1 2 1 2 1 1 1

0| 00| 00| ; 0|

;

0| ;00| 0| 00| 0| 00| 00| ; 0|

; ;

0| ;00| 0| 00| 0

;

A B B A

A B A B A B B A

A B A B

 

     

   

          

  

      

  

    

   

   
 

     
      1 2 3 2 3

1 2 1 2 1 1 1

1 2 1 2 1 1

1 2 1 2 1 1

| 00| 00| ; 0|

;

0| 00|0| ;00|

;

0| 00|0| ;00|

;

0| 00|0| ;00|

;

A B B A

A BA B

A BA B

A BA B



    

 

      



     



     

 

   

  

  

 
 
 
  
 

   
 

   
   

1 2 3 2 3 1 1 2 3 2 3

1 1 2 3 2 3 1 1 2

1 1 2 3 2 3

0| 00| 00| ; 0| 0| ;00|0| 00|

; ;

0| 00| 00| ; 0| 0| 00|

;

0| 00| 00| ; 0|

;

A B B A A BA B

A B B A A B

A B B A

 

          

  

        

 

     

    

     

  

   
 

    
    

3 2 3

1 1 2 3 2 3

1 1 2 3 2 3

1 1 2 3 2 3

1 1 2 3 2 3

0| ;00|

;

0| ;00|0| 00|

;

00| ; 0|0| 00|

;

00| ; 0|0| 00|

;

00| ; 0|0| 00|

;

A B

A BA B

B AA B

B AA B

B AA B



  



     



      



     



     

  

   

  

  

 
 
 
  

 
 

  
 
 

1 1 2 3 2 3 1 1 2 3 2 3

1 1 2 3 2 3 1 1 2 3 2 3

1 1 2 3 2 3

00| ; 0|0| 00| 0| ;00| 0| 00|

; ;

00| ; 0|0| 00| 0| ;00| 0| 00|

; ;

0| 00| 0| ;00|

;

B AA B A B A B

B AA B A B A B

A B A B

  

           

  

           

 

      

    

     

   

 
 

 
 
  1 1 2 3 2 3

1 2 1 2 3 3 1 1 2

1 2 1 2 3 3

1 2 1 2 3 3

00| ; 0|0| 00|

;

0| ;00| 00| 00|0| 0|

;

0| ;00| 00|0|

;

0| ;00| 00|0|

;

B AA B

A B B BA A

A B BA

A B BA



     

  

         

 

     

 

     

 

     

  

  

 
 
 
 
 

    
 

   
  
 

3 2 3 1 2 1 2 3 3

1 1 2 3 2 3 1 2 1 2 3 3

1 1 2 3 2 3 1 2 1 2

00| ; 0| 00|0| ;00| 0|

; ;

00| 00| ; 0| 00|0| 0| ;00| 0|

; ;

00| 00| ; 0|0| 0|

; ;

B A BA B A

B B A BA A B A

B B AA

  

       

  

           

 

         

  

     

   

 
 

   
  
  3 3

00|;00| 0| BA B A

  

 
 
 
 
 

1 1 2 3 2 3

1 1 2 3 2 3

1 1 2 3 2 3

00| 00| ; 0|0|

;

00| 00| ; 0|0|

;

00| 00| ; 0|0|

;

,

B B AA

B B AA

B B AA



     



     



     

  

  

  

  
 

   
  

 

  (2.3.7)

 

 

1 2 1 2 3 4 3 4 1 2 1 2 3 4 3 4

1 2 1 2 3 4 3 4

1 2 1 2 3 4 3 4

0| ;00| 0| ;00| 00| ; 0| 00| ; 0|

; ; ; ;

0| ;00| 0| ;00|

4 ; ;

0| ;00| 0| ;00|

; ;

A B A B B A B A

A B A B

A B A B

   

               

 

        

 

       

   

  

 

    
 

    
   

T
1 2 1 2 3 4 3 4

1 2 1 2 3 4 3 4 1 2 1 2 3 4 3 4

1 2 1 2 3 4 3 4 1 2 1 2

0| ;00| 0| ;00|

; ;

00| ; 0| 00| ; 0| 0| ;00| 0| ;00|

; ; ; ;

00| ; 0| 00| ; 0| 0|

; ; ;

A B A B

B A B A A B A B

B A B A A

 

       

   

              

  

           

 

  

  

 
 

 
   

1 2 1 2 3 4 3 4 1 2 1 2

1 2 1 2 3 4 3 4

1 2 1 2 3 4 3 4

;00| 0| ;00|

;

00| ; 0| 00| ; 0| 0|

; ; ;

00| ; 0| 00| ; 0|

; ;

00| ; 0| 00| ; 0|

; ;

2

B A B

B A B A A

B A B A

B A B A



 

  

           

 

       

 

       



  

 

 

 
 
 
 
 

   
 

   
  
 

3 4 3 4 1 2 1 2 3 4 3 4

1 2 1 2 3 4 3 4 1 2 1 2

1 2 1 2 3 4 3 4

;00| 00| ; 0| 0| ;00|0| ;00|

; ; ;

0| ;00| 00| ; 0| 0| ;00|

; ; ;

0| ;00| 00| ; 0|

; ;

B B A A BA B

A B B A A B

A B B A

 

           

  

            

 

       

  

   

 

  
 

   
  
 

3 4 3 4

1 2 1 2 3 4 3 4

1 2 1 2 3 4 3 4

1 2 1 2 3 4 3 4

1 2 1 2 3 4

0| ;00|

;

0| ;00|0| ;00|

; ;

0| ;00| 00| ; 0|

; ;

0| ;00| 00| ; 0|

; ;

0| ;00|

; ;

A B

A BA B

A B B A

A B B A

A B



  



       

 

       

 

       



      

 

 

 

 

  
  
  
  

 

 

 

 

1 2 1 2 3 4 3 4 1 2 1 2 3

1 2 1 2 3 4 3 4

3 4 1 2 1 2 3 4 3 4

00| ; 0| 00| ; 0|0| ;00|

; ; ;

00| ; 0|0| ;00|

; ;

00| ; 0| 00| ; 0|0| ;00|

; ;

B A B AA B

B AA B

B A B AA B

 

             



       

 

        

   

 

 

     
   

    
   
   

4 3 4

1 2 1 2 3 4 3 4

1 2 1 2 3 4 3 4

1 2 1 2 3 4 3 4

1 2 1 2 3 4 3 4

00| ; 0|

;

00| ; 0| 00| ; 0|

; ;

00| ; 0| 00| ; 0|

; ;

00| ; 0|0| ;00|

; ;

0| ;00|

; ;

B A

B A B A

B A B A

B AA B

A B



 

 

       

 

       



       



       

 

 

 

 

 
 

  
  
 





1 2 1 2 3 4 3 4

00| ; 0|

00| ; 0|0| ;00|

; ;

.B A

B AA B





        

 
 
 
 

 

 

(2.3.8)

 

The tensor brackets merely encapsulate the linear combinations of vectors produced from each 

matrix element pairing, one for each of the 45. 
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2.4 SYMMETRY 

In this section, we will home in on the symmetry characteristics of each of the molecular 

response tensors derived in §2.2. We are now equipped to identify the number of photon-

molecular interactions present and as such the symmetry rules invoked in each case. Molecule 

A  is the spectroscopic focus and as such the discussion will relate to that, analogous principles 

hold for molecule B . See Table 8, for a summary of each of the cases sorted by the n -photon 

selection rules they engage in. A Feynman diagram displaying all of the interactions on molecule 

A  for each case, as well as the associated response tensor. The final column displays the 

permissible irreducible tensor weights, which builds on principles introduced in complement 

1B.  The superscript on the rank denotes the parity of the interactions; for this work, each 

interaction is assumed to engage an electric dipole transition, and thus each additional 

interaction introduces a change in parity. 

 

The addition of weight 1 for the transition polarisabilities,   , arises from the reduction in 

symmetry introduced in near-resonance conditions, see complement 1F. In such cases, 

additional vibrational lines will be observable in the Raman spectra for a given species.  The 

focus of this work is on off-resonance effects. Under this regime, a number of the cases will 

only be present if single-centre Raman scattering is also permitted, they are cases which involve 

two-photon process (2+) with weights of 0 or 2 present, i.e. cases I, II and VIII. If this was 

allowed, such vibrational amplitudes would likely dominate the spectra. It is of interest to 

consider mechanisms in which new lines are observed of different symmetry. To classify the 

cases of specific interest, Table 9 introduces a category system referred to as ‘type’, into which 

each and every irreducible representation (irrep) will fall, see Table 12 in complement 2B for 

the complete results. 
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Table 8: List of molecular response tensors with their corresponding case and world line 

for molecule A , sorted by number of interactions ‘rank’.  The permissible weights for the 

given rank are also displayed. Note, near resonance, linear polarisability tensors   will 

include weight 1 components. 

Rank Case Diagram Tensor Weights 
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Table 9: Categorizes the irreps for all novel (neighbour-induced) Raman transitions 

according to the irreducible weights engaged. Columns two – five, are engaged by cases 

IV, III, V, VI and VII, respectively. 

 Rank 1- Rank 3- Rank 4+ 

Type (1)a (0123)b (123)c (01234)d 

I ✓ ✓ ✓ ✓ 
II ✓ ✓ ✓  

III ✓   ✓ 
IV  ✓ ✓ ✓ 
V  ✓ ✓  

VI   ✓ ✓ 
VII   ✓  

VIII    ✓ 

 

2.5 EXAMPLE SYSTEM: BENZENE 

At this juncture, an example will be laid out in order to consolidate the principles introduced in 

this chapter. We shall consider an example where the molecule A  undergoing the Raman 

transition is benzene, whose symmetry is consistent with the point group 
6hD . Referring to a 

standard point character table, we can see there are twelve irreps of which three are single-centre 

Raman active  1gA , 1gE   and 2gE , indicated by the quadratic components. Table 12 lists all 

irreps that are not single-centre Raman active, but are allowed because of the theory contained 

within this chapter. The 6hD entry lists all nine remaining irreps, indicating that all are active by 

neighbour coupling. 

 

One can envisage a sample in which the benzene is mixed with low concentrations of an inert 

molecule, such as naphthalene, where the interaction between the pair should allow for the two 

centre interactions laid out in this chapter. The three gerade irreps listed  g2A , 1gB   and 2gB  

would all become allowed by the pathway of case VII.  1uA , 1uB   and 2uE  all become allowed 

by virtue of cases III, V, VI: the complete set of three photon interactions on molecule A . 

Moreover, 
2uA  and 1uE  both engage all of cases III through VI, which are all of the odd ranked 

processes considered. It is noteworthy that naphthalene mixed with low concentrations of 

benzene should also exhibit additional Raman active lines.  Naphthalene, of 2hD  symmetry, 

should then display four additional classes of lines in its Raman vibrational spectra. This example 
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is, of course, given only to exemplify the mechanisms at work and their potential consequences. 

Real systems, subjected to this kind of analysis, will need to take account of relative 

concentrations and avoid any possibility of weak association forces.  

 

By selecting, for example 2gB , which involves a planar deformation vibration, we can obtain a 

specific result for equation (2.3.3): 
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Further inspection of the tensor structures in the above non-zero results indicates that terms 

involving three photon interactions by molecule A , which follow cubic selection rules, will also 

be forbidden.  However, all other terms connected with four photon (‘quartic’) interactions will 

be allowed.  The result is a weak Raman signal with a depolarisation ratio that is not constrained 

to the usual [0, ¾] range associated with non-resonant Raman signals [114]. 

 

2.6 PRESSURE DEPENDENCE 

The mechanisms derived in this chapter exhibit a strong distance dependence, reliant on two 

centres able to experience near field effects of the other centre. Inevitably, there will be a strong 

pressure dependence on the likelihood of this occurring, so it warrants consideration. In order 

to pin down the precise pressure dependence, we must consider the density dependence of the 
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pair correlation function for the fluid, as well as the dependence on molecular separation R  in 

each contributing mechanism. 

 

It is known that the intensity of scattering signals, in the case of compressible species, exhibit a 

pressure dependence related to the bulk isothermal compressibility, TI   . This is a 

development on the principles introduced in §1.1, the less volume a molecule occupies, the 

greater the number of scatterers that can be present in the laser beam. It is natural to assume 

that two-centre scattering should depend quadratically upon the compressibility. The number 

of centres required is indeed a factor, but the level of electrodynamic coupling also plays a role, 

with an additional dependence through the 
3wR

 factor in the 
wT  tensors featured in equation 

(2.3.3). See Table 10 for the nonlinear compressibility dependence of the line intensities. 

Table 10: The range of bulk isothermal compressibilities delivered from the six possible 

pairings of zero, one and two virtual photons. 
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The sharp nonlinearity should make the detection of such lines through pressure-dependent 

studies especially identifiable, for example through log-log plots of intensity against pressure. 

 

2.7 DISCUSSION 

Raman scattering is a widely deployed spectroscopic technique [115-117] with an ever-increasing 

range of applications – including surface-enhanced spectroscopy [118-123], sensing [124-126], 

the detection of environmental pollutants [127, 128] and identification of disease [129]. An 

advantage it has over similarly deployed techniques such as infra-red absorption, is that the 

scattering intensity increases with the fourth power of the scattered frequency, see equation 

(1.4.18) and (2.3.3). Of course, the scattered frequency will be close in frequency to that of the 

incident light, across the whole spectrum of frequencies. In contrast, infra-red absorption 
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intensities are proportional to the respective vibration frequency, which is less beneficial in low 

frequency interrogations, where the low intensities are more difficult to scrutinise. 

 

The theory presented in this chapter offers two distinctive modifications to single-centre Raman 

spectra. Firstly, there will be a change in the intensities of the well-characterised transition 

frequencies invoking two-photon symmetry properties. The second is the appearance of entirely 

new lines in the Raman spectrum, resulting from vibrations that are allowed by different, 

modified selection rules – those associated with three-photon processes, closely associated with 

hyper-Raman [130] scattering, or even four photon interactions. This will be of particular value 

in the identification of molecules of relatively high symmetry that support few or none single-

centre vibrational transitions. 

 

It has been commented that the intensity of the two-centre scattering processes, optimally could 

be within an order of magnitude of that of the more widely known single-centre process, up to 

an order of magnitude. A rough guide for this can utilise the transition polarisability volume, 

which is of comparable dimensions to that of the molecular size. This, in turn, suggests that 

each additional vertex in a pair-interaction time-ordered diagram conveys a correction of the 

order of molecular size divided by the cube of the pair separation. In species of sufficiently high 

densities, it may be possible to obtain new lines of comparable intensities to that of single-centre 

Raman bands. This would increase the possibility of additional centres further altering the 

electrodynamic environment of the interrogated molecule. However, this would not introduce 

additional vibrations into the Raman spectra, beyond those arising from the two-centre 

mechanisms. 
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COMPLEMENT 2A: PRODUCTS OF MATRIX ELEMENTS 

Many processes have a number of possible mechanisms which can contribute to the rate (or 

intensity) of a process, for example, 

 

2

1

n

i

i

I M


    , (3A.1) 

where M  represents a general matrix element and n  is the number of mechanisms contributing 

to the process. Expressing all the matrix elements as a (rank 1) column matrix,  
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2

1,2,... ,1 ...

n

n

n

M

M
G

M

 
 
 
 
 
 

 , (3A.2) 

all the products for the matrix elements can be delivered by, 
TGG , this is referred to as the 

gramian matrix. Mathematically, this can be extracted from the matrix by obtaining the grand 

sum of the gramian by, 

 
T TA GG A  , (3A.3) 

where A  is a column matrix,  

  
 
1,2,... ,1

1
n

n
A   . (3A.4) 

The ensuing number of products to be evaluated can be reduced by exploiting the following 

identity, 

 
2Re

2Re

i j j i i j

j i

M M M M M M

M M

    

   

 
.
 
 (3A.5)

 

The number of total products is immediately apparent for a given number of mechanisms. In 

order to identify the number of unique products, the following relation can be utilised, 

 
 1

2
n

n n
T


  , (3A.6) 
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Table 11 demonstrates the result a process comprising of one, two, three and a general number 

of mechanisms. 

Table 11: The total number of products and number that are uniquely expressible for a 

given number of mechanisms. 

Number of 
mechanisms 

Corresponding 
matrix elements 

Grand sum Total number 
of products 

Number of 
unique products 

1 2

1M
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2 2

1 2M M
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i

i

M



 

2n  nT
 

 

The third column in the table above is the equivalent output to equation (3A.3).  

 

In this chapter, a ninth rank instance is considered. Here, there are 81 total products, which is 

expressible as 45 unique products, nine of which will be products with their own complex 

conjugates. The remaining 36 terms are known as the quantum interference between the 

respective pair of matrix elements. In the subsequent chapter, a fifth rank will be introduced, 

which in turn will be reduced to a fourth. This will result in 16 products, of which ten will be 

unique, five of which will be products with their own complex conjugate. 
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COMPLEMENT 2B: COMPLETE SET OF NEWLY RAMAN ACTIVE IRREDUCIBLE 

REPRESENTATIONS 

This complement holds Table 12, designed to display all point groups that are Raman allowed 

by the additional neighbour interactions contained in chapter 2. 

Table 12: A list of irreps (for each point group) that relate to the spectral lines that may 

feature on a Raman spectrum with neighbour-modified features. Rows which engage the 

same set of cases are assigned an appropriate ‘type’.  

Point group Irrep Rank 1- Rank 3- Rank 4+ Type 

Ci 
uA  1 0123  II 

C6  B   3 34 IV 

S6  
uA  1 0123  II 

uE  1 123  II 

S8 B  1 0123 4 I 

1E  1 123 34 I 

S10 
uA  1 0123  III 

1uE  1 123  II 

2uE   23  V 

C2h 
uA  1 0123  II 

uB  1 123  II 

C3h A  1 0123 34 I 

C4h 
uA  1 0123  II 

uB   23  V 

uE  1 123  II 

C5h 
1E  1 123 4 I 

A  1 0123  II 

2E   23 34 IV 

C6h 
gB    34 VIII 

uA  1 0123  II 

uB   3  V 

1uE  1 123  II 

2uE   23  V 

C3v 
2A   023 134 IV 
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C4v 
2A   02 134 IV 

C5v 
2A   02 13 IV 

C6v 
2A   02 13 IV 

1B   3 34 IV 

2B   3 34 IV 

D3 
2A  1 13 134 I 

D4 
2A  1 13 134 I 

D5 
2A  1 13 13 I 

D6 
2A  1 13 13 I 

1B   3 34 IV 

2B   3 34 IV 

D2h 
uA   023  V 

1uB  1 123  II 

2uB  1 123  II 

3uB  1 123  II 

D3h 
2A   3 13 IV 

1A   02 34 VIII 

2A  1 13 34 I 

D4h 
2gA    134 VIII 

1uA   02  V 

2uA  1 13  II 

1uB   23  V 

2uB   23  V 

uE  1 123  II 

D5h 
2A    13 VIII 

1E  1 123 4 I 

1A   02  V 

2A  1 13  II 

2E   23 34 IV 

D6h 
2gA    13 VIII 

1gB    34 VIII 

2gB    34 VIII 

1uA   02  V 

2uA  1 13  II 

1uB   3  V 

2uB   3  V 
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1uE  1 123  II 

2uE   23  V 

D2d 
2A   23 134 IV 

D3d 
2gA   13 134 IV 

1uA   023  V 

2uA  1 13  II 

uE  1 123  II 

D4d 
2A  1  13 III 

1B   02 4 IV 

2B  1 13 4 I 

1E  1 123 34 I 

D5d 
2gA    13 VIII 

1uA   02  V 

2uA  1 13  II 

1uE  1 123  II 

2uE   23  V 

D6d 
2A    13 VIII 

1B   02  V 

2B  1 13  II 

1E  1 123  II 

3E   3 34 IV 

4E   23 4 IV 

C∞v     02 13 IV 

    3 34 IV 

     4 VIII 

D∞h 
g

    13 VIII 

g    34 VIII 

g    4 VIII 

u

  1 13  II 

u

   02  V 

u   1 123  II 

u    23  V 

u   3  V 

Th 

 

uA   03  V 

uE   2  V 

uT  1 123  II 
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1uA   0  VII 

2uA   3  V 
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1T  1 1 1 I 

2T   3 3 IV 

G   3 34 IV 

Ih 
1gT    1 VIII 

2gT    3 VIII 

gG  
  34 VIII 

uA   0  VII 

1uT  1 1  II 

2uT   3  V 

uG   3  V 

uH   2  V 
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3 
HYPER-RAYLEIGH SCATTERING 

3.1 INTRODUCTION 

This chapter (as well as the subsequent chapter) will develop the process introduced in §1.4C, 

second-harmonic generation. Hyper-Rayleigh scattering (HRS) is the incoherent three-photon 

analogue to SHG, which also comprises of two photon annihilation events and one creation 

event. Previously, all three of these interactions were treated under the electric dipole 

approximation i.e. they were considered to only interact with the leading contributor to the 

interaction Hamiltonian, equation (1.2.16). 

 

However, there are instances in which a series of three electric transition dipole moments are 

not permitted. If we refer to complement 1A, we can see that each electric dipole transition is 

of odd spatial parity. This in turn requires any E1 transition to result in a parity inversion, often 

associated with a flip in sign. Any even number of E1 transitions  
2

1
n

  will deliver an 

equivalent parity to that of the initial state. In contrast, any odd number of E1 transitions, 

 
2 1

1
n

 , will result in a final state of opposite parity to that of the initial state. 

 

If we now consider a system with high symmetry associated with it, a centrosymmetric molecule 

for example. Any process that engages such a centre is required to reach a final state of 

equivalent parity to that of the initial state. Each E1 transition is constrained to result in a parity 

reversal [63]. It follows that any process consisting of an odd number of E1 transitions will 

therefore be forbidden, second-harmonic generation for example. 
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Referring back to the interaction Hamiltonian in equation (1.2.16), we can see there are other 

operators that can be engaged in the course of a transition. In the aforementioned expansion, 

three terms are included: that of the E1, E2 and M1 operators. At this point we shall reaffirm 

the relative contributions of each transition moment. The E1 operation is the leading 

contributor, the E2 and M1 operations are considered the next-most significant contributions 

and are a factor of the fine structure constant smaller, 1 137  . In principle, any number of 

interactions, in a process, can engage with any combination of these three operators, or indeed 

the higher order terms. Cross-referencing these with complement 1A, it can be seen that both 

E2 and M2 transitions are of even spatial parity. This unlocks a pathway to allow processes that 

are conventionally thought of as forbidden. 

 

Returning to a centrosymmetric system, we can assert that a single-photon process involving an 

E2 or M1 transition will be allowed, in contrast to that of an E1 transition. In the case of 

multiphoton processes, for example the three photon SHG: if one or indeed all (but not two) 

of the interactions engage in an even parity transition, such as E2 or M1, the process is allowed. 

As mentioned previously, the leading contributors in these cases will be those that engage the 

fewest number of higher order operators. For our purposes, we shall consider the possibility of 

one of the three interactions engaging in either an E2 or M1 transition, with the remaining two 

engaging the E1 operator [103, 131, 132].  

 

The following analysis will consider four possible mechanisms, all of which will be represented 

by identical Feynman diagrams as those seen for SHG in Figure 4. In case I, the creation 

interaction will engage the M1 operator and the two annihilation events will engage the E1 

operator. The notation for this will be 
2E1 M1 , the prime indicating the transition moment 

associated with emission. For case II, one annihilation event will engage the M1 operator and 

the other an E1 operator, the creation event will also engage an E1 operator. This is denoted by 

E1M1E1 . Case III, is analogous to that of case I, but with an E2 transition taking the place of 

the M1 transition and is represented by 
2E1 E2 . Similarly, case IV is analogous to case II, with 

an E2 transition in place of and is displayed as E1E2E1 . 
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3.2 GENERAL THEORY 

3.2A CASE I 

The first case will consider the HRS mechanism where the creation event engages the M1 

operator, the two annihilation events will engage the E1 operator. There are three interaction 

events in this mechanism and so the result for perturbation theory of the same order, 3n  , 

can be deployed. The three time orderings, all identical to those displayed in Figure 4 contribute 

to the matrix element as follows, 
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    ; , ; , ; , 0; , ; , .i ir mb      k k k k k  (4.2.1) 

The superscript attached to the matrix element identifies the mechanism that it represents, 

2E1 M1  in this case. This chapter is only concerned with single-centre HRS, for brevity of 

notation, molecule lettering, adopted in the previous chapter, will therefore be discarded. There 

are several features of this expression that are like the previously introduced matrix elements: 

two intermediary states ,r s  must be summed over; the pair of energy denominators that 

represent the relative energy of these two states with respect to that of the initial (and final) 

state. There are a couple of minor changes that are the result of considering a magnetic 

transition. The prefactor for this matrix element is 
2

0


, unlike 
3

0


 seen in the three E1 

interaction processes (each contributes a single power). The origin of this difference can be 

traced to the interaction Hamiltonian, the respective operator displayed in the heart of the Dirac 

bracket. By scrutinising the M1 operator, it can be readily seen that the power of vacuum 

permittivity will be restored at the next stage, 
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(4.2.2)

 

The M1 operator differs from the E1 operator by a factor of c1 , this will be held separate with 

foresight of the result. Equation (1.4.20) has also been deployed to simplify the denominators. 

We can now define the molecular response tensor for this mechanism,  

          

0 0 0 0 0 0

, 0 0 0 0 0 0

.
2 2

s sr r s sr r s sr r

i j k j i k j k i

i jk

r s s r s r s r

m m m

E ck E ck E ck E ck E ck E ck

       
    

       
J

  
 (4.2.3) 

Like SHG, HRS engages a first-order hyperpolarisability tensor [110], this is the microscopic 

counterpart to a second-order susceptibility tensor, often considered for bulk media [133, 134]. 

The matrix element can now be cast as, 

 
 

   

2

3
2

E1 M1

0

i
1

2
FI i j k i jk

ck
M n n be e

c V

  
    

 
J  , (4.2.4) 

where the magnitude of the input beam wavevector is preferred, using equation (1.4.20). This 

expression has an identical structure to that seen in equation (1.4.21), with the anticipated 

additional 1c  prefactor. It can be seen that index symmetry has been chosen in this instance, 

where the specific index symmetric part of the tensor is defined by,  

  ( )

1

2
i jk ijk ikj
   J J J  . (4.2.5) 

The index symmetry results in a rotational average of a more concise form. This is beneficial 

when regarding tensors with higher numbers of indices; or indeed, incoherent processes which 

require the rotational average to be applied to the rate (or radiant intensity) for a process. This 

is of course a product of two tensors and as such requires a rotational rank of the combined 

number of indices. 
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The hyperpolarisability is often simplified by considering the principal components that display 

a large magnitude shift in charge for a specific optical transition [135-138]. Push-pull 

chromophores consisting of aromatic structures are often discussed in connection with this 

[139-141]. In such systems, the excited static dipole moment associated with a molecule display 

a large optical nonlinearity, specifically an enhanced second harmonic response [142-150]. These 

methods have been critically analysed in recent years [151-155]. 

 

3.2B CASE II 

This case is the contribution from one of the two annihilation events engaging the M1 operator, 

with the remaining annihilation event, as well as the creation event both engage the E1 operator.  

The Feynman diagrams displayed in Figure 4 accurately describe each of the time-orderings for 

this process, with the ensuing calculation of the matrix element very similar in form to case I. 

The resulting response tensor can be expressed as, 
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 (4.2.6) 

The change seen in the matrix element is that arising from the change in field vectors, 

    

3
2

E1M1E1

0

i
1

2
FI i j k ijk

ck
M n n e b e

c V

  
   

 
J  . (4.2.7) 

This difference undermines the indistinguishability of the two annihilated photons. Each can be 

derived separately of course; however the same result can be achieved more simply by 

interchanging the indices j  with k  in equations (4.2.6) and (4.2.7) above. 
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3.2C CASE III 

This mechanism involves an E2 operator at any one of the photon-molecule interactions. In 

order to do this, we must first obtain the appropriate operator, 

          †i i0

,

i i e e
2

il l i l

ck
Q d k a a

V

   



       
  k r k r

k k k k

k

e e  , (4.2.8) 

where the sign of this equation corresponds to the form of interaction it engages in. In this case, 

we will consider the E2 transition on the creation event, and as such the form with a negative 

sign will be taken. The response tensor can readily be obtained by replacing the appropriate E1 

transition in equation (1.4.22) as follows, 
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The matrix element can also be cast by accommodating the additional prefactor as follow, 
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Again, with foresight of the result, this is segregated from the prefactors in the E13 result. 

 

3.2D CASE IV 

In this case, we shall consider the mechanism where one of the two annihilation events engage 

the E2 operator. The additional annihilation event, along with the creation event will both 

engage the E1 operator. The familiar form of response tensor can be seen as follows, 
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 (4.2.11) 

which is found in an even more familiar matrix element, 
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You can see in this instance the indistinguishability of the two electric field vectors is not 

undermined by the invocation of an E2 transition. 

3.2E SUMMARY OF CASES 

Each of these cases represents one possible mechanism by which a second-harmonic emission 

can be generated. All of these mechanisms will therefore contribute to the radiant intensity of 

HRS. Care has been taken to retain the prefactors of SHG, which are hence treated as common 

factors to all of the matrix elements, equations (4.2.4), (4.2.7), (4.2.10) and (4.2.12). Now, 

equation (1.4.28) can be expanded to accommodate these additional modified matrix elements 

into the square modulus, 

 
 

         
3 2 2

2 24 2
E1 E1 M1 E1 E2E1M1E1 E1E2E10

3 2

02
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g k I
I M M M M M
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          . (4.2.13) 

The relative strength in contribution of the additional matrix elements has already been noted. 

It is of interest to consider the series of matrix elements in occasions where additional insights 

can be delivered, such as systems in which the contribution from the first term is prohibited. If 

we now regard a centrosymmetric system in which 
 3E1

0FIM  ; hence, all five products involving 

the regarded matrix element will not be present. The resulting expansion will correspond to that 

of 4n   in complement 2A, in which the four products allowed by the HRS mechanism and 

six the result of quantum interferences between pairs of matrix elements will all become lead 

contributors to the radiant intensity. 

 

3.3 ROTATIONAL AVERAGE 

So far, the system has been considered fixed in orientation with respect to the bulk. To consider 

a system in which the centres are free to tumble, we shall apply an isotropic average of the 

molecular response tensors, see complement 1D. HRS is an incoherent process and as such the 

rotational average will be made on the product of the matrix elements. It can be seen that there 

is a difference in the number of indices present in cases I and II, when compared with III and 
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IV. The result is different ranks to be deployed between the two pairs of cases and indeed the 

interference term requires a different rank again as follows,  
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Terms one, two, nine and ten correspond to the matrix element products with their own 

complex conjugates, cases I, II, III and IV, respectively. The first pair require a rotational average 

equivalent in rank to that of incoherent E13 scattering, indicated by the superscript attached to 

the isotropic tensor, 6n  . Any product containing an E2 transition increasing the rank by one, 

therefore the final pair engage the isotropic tensor of rank 8n  . Terms three and eight 

represent the quantum interference between cases of the same rank of isotropic average and as 

such engage an average of equivalent rank. It follows that the remaining four products (terms 

four through seven) each contain just one matrix element with one E2 transition and therefore 

engage an isotropic tensor of rank 7n  . The imaginary prefactor present in these terms 

contract with the imaginary component of the magnetic operator, m ,  and as such all four 

terms have the potential to contribute to the harmonic emission. 

 

3.3A EXAMPLE 

Next, we shall evaluate the first term from equation (4.3.1), 
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     J J , (4.3.2) 

at this point the 2c  included in the modified matrix element will be neglected, along with those 

from that form the common factors. Note that all the indices are often referred to as dummy 

indices, each letter can be adopted in each instance, so long as they are consistent throughout 

the calculation. The first stage in evaluating the above equation is to retrieve the appropriate 

(sixth) ranked isotropic average tensor, equation (1D.13). Earlier in this complement it was 

stated in equation (1D.2) that this can be decomposed into three tensors: a pair of rank 1 tensors 

evaluated in conjunction with a rank 2 square matrix, where the order is dependent on the 

number of indices to be permuted, 15 in this case. Each of these three components will be 

regarded separately. 

 

We shall begin by finding the 15 linear combinations of field vectors, 
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(4.3.3) 

Here, the dirac delta selects the appropriate pairings of field vectors, which is displayed on the 

far right of the above equation. Here, there are in fact only six out of the fifteen unique 

combinations of field vectors in this rotational average, to be identified at the next stage. 
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The other rank 1 tensor to be evaluated is the one that will be contracted with the molecular 

response tensor, 
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(4.3.4) 

Similarly to the result for equation (4.3.3), there are six unique arrangements of indices for the 

tensors. It is convenient to combine the respective rows and columns of the two rank 1 tensor 

results above. In turn the square matrix, which applies the appropriate weightings to each of the 

terms can also have the appropriate rows and columns combined to display the result in the 

following form, 
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Here is the rotational average of the first product of matrix elements in equation (4.3.1). Each 

of the parameters are determinable for a given specimen based on the laser input and 

polarisation. The field vector products in complement 1E can be used to evaluate this result for 

experimental setups displayed in Figure 19. In principle, each of the material parameters are 

unique and also determinable, for a set of specific conditions. This should be achievable by 

computational means, but under experimental conditions, it would likely be too sensitive to 

changes in environmental conditions. Having said that, obtaining a collective response does 

seem plausible, delivering a fingerprint for the specimen. 

 

3.4 EXPERIMENTAL APPLICATION 

By considering the four experimental setups displayed in Figure 19, it is possible to obtain a DR 

for the perpendicular and parallel light polarizations. As well as a comparable measurement for 

circular polarizations, known as the reversal ratio (RR) [156]. This relates the relative intensities 

of emission between the reversed and preserved circularities:    *c c c c  . The tables 

displayed in complement 1E are where c  stands for L and the star denotes a reversal in helicity. 

Analogous results can be obtained for where c  represents R. 

 

 

Figure 19: Experimental set-up: (a) parallel plane-polarised light is detected at right angles 

to the input laser; (b) perpendicularly plane-polarised light detected also detected at right 

angles; (c) forward scattered circular-polarised light with preserved circularity; (d) forward 

scattered circular-polarised light of reversed circularity. 
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3.4A EXAMPLE (CONTINUED) 

Returning to our example rotational average, we will now display numerical results for the four 

regimes displayed in Figure 19. Beginning with (a) plane-polarised light detected at right angles 

to the input laser with parallel field vectors,  

  0 0 1 1 0 0 , (4.4.1) 

see Figure 18(a) for a schematic depiction of this. Contracting all the tensors in equation (4.3.5), 

we obtain the following weightings for each of the tensors, 

 
                       

2 4 6 12 2 4
.

210

                       
          J J J J J J J J J J J J

  (4.4.2) 

 

Next, we shall consider (b), where the emergent field vectors are perpendicular to that of the 

input laser, 

  1 1 1 1 1 1  . (4.4.3) 

The subsequent tensor weightings in this setup are, 

 
                       

4 8 2 4 4 8
.

210

                       
         J J J J J J J J J J J J

  (4.4.4) 

 

The next pair of setups are for forward scattered circularly-polarised light and in the case of (c) 

preserved circularity, 

  0 1 0 1 0 0  . (4.4.5) 

The resulting weightings of the molecular response tensors are as follows, 

 
                       

4 20 2 10 4 8
.

210

                       
          J J J J J J J J J J J J

  (4.4.6) 

The final setup (d) is where the circularity is reversed, 
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  0 0 0 1 0 1  . (4.4.7) 

The final result for this rotational average and the fourth and final contraction delivers the tensor 

weightings, 

 
                       

4 8 2 10 4 20
.

210

                       
          J J J J J J J J J J J J

  
  (4.4.8) 

 

All of these weightings are displayed in complement 3A, alongside a full set of results for all of 

the product pairings under each setup. It will be of little surprise that the averages which require 

the evaluation of much higher order tensor cannot be expressed quite so succinctly, hence a 

tabulated format was selected. These higher ranked averages are intricate to carry out and as 

such are seldom deployed [102, 157, 158]. 

 

3.5 SUMMARISED RESULTS 

Continuing the directive towards experimental applications, we shall now entertain 

approximations that can still indicate the relative magnitudes of each term contributing to 

observations of HRS. We shall achieve this by suggesting that all tensors with identical matrix 

element product pairings, irrespective of the indices, will provide a similar contribution to the 

overall intensity of the process. At the end of each set of results there is an additional row which 

corresponds to the same tensor product but discards any indices attached to it. The entries in 

that row represent the summed contribution for all the arrangements of indices for that product 

pairing. This is a shorthand notation for a representative inner tensor product of the two 

respective tensors.  These results are summarised in Table 13Error! Reference source not 

found. below. 
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Table 13: Summary of the results from Table 14, for each of the experimental setups in 

Figure 19(a) – (d). 

Pre-factor Tensor 

product 

(a) (b) (c) (d) 

1 105   J J
 

-2 15 6 6 

1 105  J J
 

0 0 -12 12 

1 105  JJ
 

3 1 6 6 

1 105   K J
 

0 0 6 -28 

1 105  KJ
 

3 -1 6 0 

1 105  K J
 

-3 1 -6 -44 

1 105  KJ
 

0 0 6 0 

1 315   K K
 

5 1 2 2 

1 315  K K
 

0 0 4 4 

1 315  KK
 

5 3 2 2 

 

From this table, it can be seen that not all of the tensor inner products contribute to the radiant 

intensity of all polarisation setups. For example, under the plane polarised there are a handful 

of tensor inner products that do not contribute to the intensity of either sought polarisation 

output. In the case of the circular polarisations, a couple of instances contribute to only one of 

the output helicities: the preserved circularity and not the reversed circularity. 

 

Better still, we can transform this back into expressions, which are of a more familiar form. By 

incorporating the relative magnitudes of the transition moments, we recall that the regarded 

transition moments can be expected to be weaker by a factor in the order of the fine structure 

constant,  . This is compared to the E1 moment of the same transition, where all the 

transitions would be allowed. Now, if we include this assumption into a constant containing the 

common factors for all the mechanisms, we have, 

 
 22 4 2

0
0 3 2

02

g k I
C

c



 
  . (4.5.1) 

Introducing further constants 
2

1C c , 
1

2 iC kc , 2

3C k  we can produce the following 

intensities of radiant emission in given directions:  
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(a) Parallel plane-polarized light detected orthogonal to the input laser: 

 
       0 1 2 33 3 2 9 5 .I C C C C
             

 
JJ J J KJ K J KK K K  (4.5.2) 

(b) Perpendicular plane-polarized light detected orthogonal to the input laser: 

 
       0 1 2 33 15 3 3 .I C C C C
             

 
J J JJ K J KJ KK K K  (4.5.3) 

It can be seen that obtaining the DR from the preceding two equations (4.5.2) and (4.5.3), the 

prefactor 0C  will explicitly cancel.  

 

(c) Forward scattered circular-polarized light with preserved left circularity: 
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(4.5.4)
 

(d) Forward scattered circular-polarized light with reversed (left to right) circularity: 

 

     

 

L R
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(4.5.5)
 

Similar to the DR, the sought RR delivered from equations (4.5.4) and (4.5.5), results in a 

cancellation of the prefactor, 0C . Inspecting the above equations, it can be seen that in a case 

where the molecular response tensors resulting from an E2 transitions dominate over those of 

M1 transitions, the reversal ratio delivers a value of precisely 1. This corresponds to a complete 

reversal of circularity in the forward second-harmonic emission. The corresponding terms in 

each equation (term 3) also display the highest dependence on k   and as such will be most 

noticeable at short wavelengths. 
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3.6 DISCUSSION 

All four of the cases considered in this chapter should contribute to all second-harmonic signals 

where HRS is permitted. Moreover, by deploying DR and RR techniques, it is anticipated that 

a unique fingerprint of all response action for a molecule would enable the characterisation of 

that molecule. The signal strengths will of course be lower than that of second harmonic 

generation engaging in a series of three E1 transitions. It is anticipated that the mechanisms 

considered here will display a comparative reduction by 2 , this equates to a reduction in the 

region of 10-4 to 10-5 smaller than the signals from the more familiar E1 transitions. 

 

These signals can be bolstered or be made more dominant by deploying reasonable experimental 

conditions. The particular application to centrosymmetric systems has been suggested, where 

the E13 contribution will not be present and as such the mechanisms derived in this chapter will 

be the leading contributors. Explicitly, the inclusion of either an E2 or M1 transition subverts 

the standard selection rules [159]. It is worthy of note that a judiciously selected input beam, in 

which the pair of photons concurrently encountering the centre are endowed with a combined 

energy approaching that of a real electronic excited state, such that resonance conditions are 

met, the J  and K  tensor components will be magnified to a comparable level of the β  tensor 

[160]. In a setup exploiting either (or both) techniques, HRS should be a measurable optical 

property of every material. Incoherent second harmonic generation is therefore a unique 

technical application in the optical characterization of minerals [161], and recently has been 

exploited in the analysis of liquid suspensions – in particular with regard to nanoparticles and 

nanorods [162, 163].   
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COMPLEMENT 3A: RESULTS TABLE FOR THE ROTATIONAL AVERAGES 

The results displayed in Table 14, supplement those that appear in the chapter. Here the 

complete results for all the rotational averages, for each of the ten matrix element products, are 

laid out. The four right-most column headings correspond to the experimental setups that 

appear in Figure 19: (a) parallel plane-polarized light detected orthogonal to the input laser; (b) 

perpendicular plane-polarized light detected orthogonal to the input laser; (c) forward scattered 

circular-polarized light of preserved left circularity; (d) forward scattered circular-polarized light 

of reversed (left to right) circularity. The table is partitioned for each of the ten products, with 

the first line for each block displaying the relative weighting arising from the rotational averaging 

and the last row is a sum of all comparable tensor products. A special thank you should be made 

to Jack S. Ford for evaluating the eighth rank isotropic averages required for the matrix element 

products eight through ten in equation (3.2.13). 

Table 14: Complete results for each of the experimental setups in Figure 2(a) – (d). 

Tensor product (a) (b) (c) (d) 

1 210  
 

    

      
 J J

 
-2 4 -4 -4 

      
 J J

 
-4 8 20 -8 

      
 J J

 
6 2 -2 -2 

      
 J J

 
12 4 10 10 

      
 J J

 
-2 4 -4 -4 

      
 J J

 
-4 8 -8 20 

J J 
 

-4 30 12 12 

1 105
 

    

   
J J

 
0 0 4 -4 

   
J J

 
0 0 -10 -4 

   
J J

 
0 0 -10 -4 

   
J J

 
0 0 2 -2 

   
J J

 
0 0 -10 10 

   
J J

 
0 0 2 -2 

   
J J

 
0 0 4 10 

   
J J

 
0 0 2 -2 

   
J J

 
0 0 4 10 

J J  
0 0 -12 12 

1 210
 

    

 J J
 

-1 2 -2 -2 

 J J
 

-1 2 5 -2 

 J J
 

6 -5 5 -2 

 J J
 

-1 2 -2 -2 

 J J
 

-1 -5 5 -2 

 J J
 

-1 2 5 -2 

 J J
 

-1 -5 -2 -2 

 J J
 

6 16 5 5 

 J J
 

-1 -5 5 5 

 J J
 

-1 2 -2 -2 

 J J
 

6 -5 -2 5 

 J J
 

-1 2 -2 5 

 J J
 

-1 2 -2 -2 

 J J
 

-1 2 -2 5 

 J J
 

-1 -5 -2 5 

JJ
 

6 2 12 12 

1 420
 

    

       
 K J

 
0 0 -4 0 

       
 K J

 
0 0 20 0 

       
 K J

 
0 0 2 0 

       
 K J

 
0 0 -10 0 

       
 K J

 
0 0 20 -16 



3.6 Discussion 117 

 

       
 K J

 
0 0 20 -16 

       
 K J

 
0 0 -8 -16 

       
 K J

 
0 0 -20 -8 

       
 K J

 
0 0 4 -4 

       
 K J

 
0 0 0 -4 

       
 K J

 
0 0 0 -8 

       
 K J

 
0 0 0 -8 

       
 K J

 
0 0 0 -8 

       
 K J

 
0 0 0 -8 

       
 K J

 
0 0 0 -4 

       
 K J

 
0 0 0 -4 

       
 K J

 
0 0 0 -4 

       
 K J

 
0 0 0 -5 

       
 K J

 
0 0 0 1 

K J 
 

0 0 24 -112 

1 420
 

    

       
K J

 
4 0 0 0 

       
K J

 
8 0 0 0 

       
K J

 
8 -3 20 0 

       
K J

 
8 18 20 0 

       
K J

 
8 -3 -8 0 

       
K J

 
-8 0 -20 0 

       
K J

 
-4 0 4 0 

       
K J

 
-8 2 0 0 

       
K J

 
-4 -6 0 0 

       
K J

 
0 2 0 0 

 
0 2 0 0 

       
K J

 
0 -12 0 0 

       
K J

 
0 -6 0 0 

       
K J

 
0 2 0 0 

       
K J

 
0 -1 0 0 

       
K J

 
0 6 0 0 

       
K J

 
0 -1 0 0 

       
K J

 
0 2 0 0 

       
K J

 
0 -6 0 0 

       
K J

 
0 0 -4 0 

       
K J

 
0 0 20 0 

       
K J

 
0 0 2 0 

       
K J

 
0 0 -10 0 

K J 
 

12 -4 24 0 

1 420
 

    

    
K J

 
-4 0 0 -6 

    
K J

 
-8 0 0 2 

    
K J

 
-8 2 -10 -10 

    
K J

 
-8 -12 -10 -3 

    
K J

 
-8 2 4 -3 

    
K J

 
8 0 10 -8 

    
K J

 
4 0 -2 -4 

    
K J

 
8 -2 0 -5 

    
K J

 
4 6 0 1 

    
K J

 
0 -2 0 -6 

    
K J

 
0 -2 0 1 

    
K J

 
0 12 0 1 

    
K J

 
0 6 0 0 

    
K J

 
0 -2 0 0 

    
K J

 
0 2 0 -6 

    
K J

 
0 -12 0 1 

    
K J

 
0 2 0 1 

    
K J

 
0 -2 0 0 

    
K J

 
0 6 0 0 

    
K J

 
0 0 4 -6 

    
K J

 
0 0 -10 1 

    
K J

 
0 0 -10 1 

    
K J

 
0 0 -2 0 

    
K J

 
0 0 10 0 

    
K J

 
0 0 -10 -4 

    
K J

 
0 0 -10 -4 

    
K J

 
0 0 4 -4 

    
K J

 
0 0 10 -5 

    
K J

 
0 0 -2 1 

    
K J

 
0 0 0 -4 

    
K J

 
0 0 0 -4 

    
K J

 
0 0 0 -4 

    
K J

 
0 0 0 -4 

    
K J

 
0 0 0 -4 

    
K J

 
0 0 0 -4 

    
K J

 
0 0 0 -10 

    
K J

 
0 0 0 -3 

    
K J

 
0 0 0 -3 

    
K J

 
0 0 0 -4 

    
K J

 
0 0 0 -8 

    
K J

 
0 0 0 -4 

    
K J

 
0 0 0 -8 

    
K J

 
0 0 0 -6 



118 Complement 3A: Results table for the rotational averages 

 

    
K J

 
0 0 0 2 

    
K J

 
0 0 0 -4 

    
K J

 
0 0 0 -4 

    
K J

 
0 0 0 -4 

    
K J

 
0 0 0 -6 

    
K J

 
0 0 0 1 

    
K J

 
0 0 0 1 

    
K J

 
0 0 0 -10 

    
K J

 
0 0 0 -3 

    
K J

 
0 0 0 -3 

    
K J

 
0 0 0 -4 

    
K J

 
0 0 0 -4 

    
K J

 
0 0 0 -4 

K J
 

-12 4 -24 -176 

1 420
 

    

    
K J

 
0 0 -4 0 

    
K J

 
0 0 10 0 

    
K J

 
0 0 10 0 

    
K J

 
0 0 2 0 

    
K J

 
0 0 -10 0 

    
K J

 
0 0 10 0 

    
K J

 
0 0 10 0 

    
K J

 
0 0 -4 0 

    
K J

 
0 0 10 0 

    
K J

 
0 0 10 0 

    
K J

 
0 0 -4 0 

    
K J

 
0 0 -10 0 

    
K J

 
0 0 2 0 

    
K J

 
0 0 -10 0 

    
K J

 
0 0 2 0 

K J
 

0 0 24 0 

1 7560
 

    

   
K K

     
 

  
-16 4 -100 8 

   
K K

     
 

 
-8 20 40 4 

   
K K

     
 

 
-16 4 80 80 

   
K K

     
 

 
64 -52 -104 -104 

   
K K

     
 

 
-16 40 -100 80 

   
K K

     
 

 
-16 40 -100 80 

   
K K

     
 

 
128 -104 440 -208 

   
K K

     
 

 
-8 20 40 4 

        
 K K

 
-16 4 -100 8 

        
 K K

 
-8 20 40 4 

        
 K K

 
-4 -44 2 2 

        
 K K

 
-16 40 80 -100 

        
 K K

 
-8 20 4 40 

   o    
 K K

 
-8 -88 -50 -50 

        
 K K

 
-16 40 -100 80 

        
 K K

 
-8 -52 40 40 

        
 K K

 
32 136 -52 -52 

        
 K K

 
-16 -104 -100 -100 

   v    
 K K

 
-8 -52 40 40 

        
 K K

 
64 272 220 220 

        
 K K

 
-16 -104 -100 -100 

        
 K K

 
-8 20 4 40 

        
 K K

 
-8 20 4 40 

        
 K K

 
64 -52 -104 -104 

        
 K K

 
-16 4 8 -100 

        
 K K

 
-16 40 80 -100 

        
 K K

 
-16 4 80 80 

        
 K K

 
128 -104 -208 440 

        
 K K

 
-16 4 8 -100 

        
 K K

 
-16 40 80 -100 

        
 K K

 
-4 -44 2 2 

        
 K K

 
-8 20 40 4 

        
 K K

 
-8 20 4 40 

        
 K K

 
-16 40 -100 80 

        
 K K

 
-16 40 80 -100 

        
 K K

 
-8 -88 -50 -50 

K K 
 

120 24 48 48 

1 3780
 

    

        
K K

  
0 0 -100 8 

        
K K

 
0 0 40 4 

        
K K

 
0 0 80 80 

        
K K

 
0 0 -104 -104 

        
K K

 
0 0 -100 80 

        
K K

 
0 0 -100 80 

        
K K

 
0 0 440 -208 

        
K K

 
0 0 40 4 

        
K K

 
0 0 -100 8 

        
K K

 
0 0 40 4 

        
K K

 
0 0 2 2 

        
K K

 
0 0 80 -100 

        
K K

 
0 0 4 40 

   o    
K K

 
0 0 -50 -50 



3.6 Discussion 119 

 

        
K K

 
0 0 -100 80 

        
K K

 
0 0 40 40 

        
K K

 
0 0 -52 -52 

        
K K

 
0 0 -100 -100 

   v    
K K

 
0 0 40 40 

        
K K

 
0 0 220 220 

        
K K

 
0 0 -100 -100 

        
K K

 
0 0 4 40 

        
K K

 
0 0 4 40 

        
K K

 
0 0 -104 -104 

        
K K

 
0 0 8 -100 

        
K K

 
0 0 80 -100 

        
K K

 
0 0 80 80 

        
K K

 
0 0 -208 440 

        
K K

 
0 0 8 -100 

        
K K

 
0 0 80 -100 

        
K K

 
0 0 2 2 

        
K K

 
0 0 40 4 

        
K K

 
0 0 4 40 

        
K K

 
0 0 -100 80 

        
K K

 
0 0 80 -100 

        
K K

 
0 0 -50 -50 

K K
 

0 0 48 48 

1 7560
 

    

        
K K

  
-16 12 -100 8 

        
K K

 
-8 -12 40 4 

        
K K

 
-16 12 80 80 

        
K K

 
64 -12 -104 -104 

        
K K

 
-16 -24 -100 80 

        
K K

 
-16 -24 -100 80 

        
K K

 
128 -24 440 -208 

        
K K

 
-8 -12 40 4 

        
K K

 
-16 12 -100 8 

        
K K

 
-8 -12 40 4 

        
K K

 
-4 48 2 2 

        
K K

 
-16 -24 80 -100 

        
K K

 
-8 -12 4 40 

   o    
K K

 
-8 96 -50 -50 

        
K K

 
-16 -24 -100 80 

        
K K

 
-8 -12 40 40 

        
K K

 
32 48 -52 -52 

        
K K

 
-16 -24 -100 -100 

   v    
K K

 
-8 -12 40 40 

        
K K

 
64 96 220 220 

        
K K

 
-16 -24 -100 -100 

        
K K

 
-8 -12 4 40 

        
K K

 
-8 -12 4 40 

        
K K

 
64 -12 -104 -104 

        
K K

 
-16 12 8 -100 

        
K K

 
-16 -24 80 -100 

        
K K

 
-16 12 80 80 

        
K K

 
128 -24 -208 440 

        
K K

 
-16 12 8 -100 

        
K K

 
-16 -24 80 -100 

        
K K

 
-4 48 2 2 

        
K K

 
-8 -12 40 4 

        
K K

 
-8 -12 4 40 

        
K K

 
-16 -24 -100 80 

        
K K

 
-16 -24 80 -100 

        
K K

 
-8 96 -50 -50 

K K
 

120 72 48 48 

 

 
  



120 Six-wave second harmonic generation with structured light 

 

4 
SIX-WAVE SECOND HARMONIC GENERATION WITH STRUCTURED LIGHT 

4.1 INTRODUCTION 

In the previous chapter a series of mechanisms were introduced, by which a second-harmonic 

signal in media of high symmetry, such as centrosymmetric media, could be detected. In this 

chapter, another method of subverting the standard selection rules will be presented [164]. If 

we recall the selection rules prohibiting coherent SHG are governed by the relative parity of the 

initial and final states of a process: explicitly, they must both be equivalent. It was a suggested 

that by adopting a transition that conforms to even spatial parity, in contrast to the commonly 

considered odd inversion arising from an E1 transition, that this would then adhere to the 

requisite parity equivalence. 

 

There is a more immediately apparent method of reaching a final state of the same parity of the 

initial state, that is by identically doubling each photon interaction engaged in the process [165]. 

This results in a six-photon process, where each interaction engages in an odd parity E1 

transition. The six photon-molecule interactions each engage in an odd parity transform, which 

results in an overall even parity process, which will be allowed. By ensuring all the interactions 

engage an E1 operator, we can be confident that a significant harmonic signal strength will be 

achieved. Having said that, the process requires four photons to concurrently arrive at an optical 

centre, which means that this process has a higher degree of nonlinearity than its three-wave 

counterpart. In order to maximise the intensity of second-harmonic emission, the lasers with 

the levels of high irradiance mentioned in the introduction offer the best chance of observing 

processes such as these. 
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4.2 GENERAL THEORY 

4.2A VACUUM FORMULATION 

To begin, we shall consider the general process of six-wave second harmonic generation.  In 

such a process, four photons of radiation mode ,k  are concurrently annihilated at an optical 

centre, each event raises the optical centre to a virtual excited state. In the span of the process, 

the centre relaxes to its ground state, by emitting two photons  , k  and , k , such that, 

 4ck ck ck    . (5.2.1) 

One example time-ordering of this is displayed in Figure 4.  

 

Figure 20: An example Feynman diagram for six-wave second harmonic generation. The 

photon annihilation operators ,k  ,l  ,m  n  precede the photon creation i  and j . At the 

time of the process resolves, the scatterer reaches the state in which it began, the ground 

state 0, subsequent to traversing five intermediary states, ,r  ,s  ,t  u  and v .  
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Generally, any six independent events can be expected to occur in any of 720 forms. However, 

in §1.4C it was introduced that indistinguishability of photon interaction truncates the number 

of unique representations. In this process, we have four photons of identical radiation mode 

annihilated, all engaging the same photon operator; in regard to the annihilation events, 24 time-

orderings will appear identical. Moreover, the two created photons engage the same photon 

operators and as such half of the 30 remaining time-orderings will also appear identical, with 

respect to the photon creation events. The fifteen remaining unique time-orderings can be 

displayed most succinctly in the form of a state sequence method [14], which is based on the 

Hasse combinatorial diagram [15]. Figure 21, displays a modified form of this form of diagram 

in which the Fock states of equal number of photons are displayed in a given row. Each pathway 

from the initial to final state represents one of the fifteen unique time-orderings.  The pathway 

associated with that of Figure 4 is that of the bottom-most path and is highlighted for clarity. 

 

 

Figure 21: In this tabular state sequence diagram, each row represents a state of consecutive 

photon occupying number, n . Columns denote successive system states. Each vacant 

column and row, which also contains a connector represents an interaction. The solid lines 

with a declination representing a photon annihilation event and the inclined dashed lines 

represent a photon creation event. In the more widely known Feynman diagrams, these 

correspond to nodes, such as those displayed in Figure 4. In the central line of catawampus 

cells, the wavevector of either output mode has been accommodated, with both modes 

populated in the upper set. 
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The six photon-molecule interactions will result in a leading contribution from the 6n   term 

in equation (1.3.14), with all fifteen time-orderings contributing unique terms to the matrix 

element. Here is the first time-ordering exemplified in Figure 4, 
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There are five intermediary states all to be summed over: ,r  ,s  ,t  u  and v . The power of the 

prefactor corresponds to the number of E1 operators engaged in the process. For brevity of 

notation, any radiation states that exist in multiples are listed once and a subscript number 

corresponds to the number of such occurrences there are. There are now five energy 

denominators all representing the total energy of the intermediary state relative to that of the 

initial (and final) state, which can be simplified by adopting the relation in equation (1.4.20). The 

complete molecular response tensor can be expressed as follows, 
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The superscript attached to the response tensor identifies this as the fifth order molecular 

susceptibility. The factor of the whole tensor corresponds to the number of indistinguishable 

time-orderings represented by each term. Following this definition, the matrix element can be 

much more simply expressed as, 

       FI i j k l m n ij klmn
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M k k k n n n n e e e e e e
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Hence, we can now write the rate of a transition in a scatterer of fixed orientation as, 
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Note, this is in fact the vacuum formulation for the rate. We will now briefly discuss the affect 

a medium can have on this result. 

 

4.2B MEDIA EFFECTS 

In this subsection, we shall develop the principles introduced in complement 1C and in the 

course of the previous processes. It is well known that different frequencies of light traverse a 

medium at different velocities, you need look no further than a simple prism to demonstrate 

this. The refractive index is, as the name eludes to, an index to relate the velocity light travels 

through a given medium to that it would travel through a vacuum, 
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Importantly, it can be seen that it holds a dependence on the frequency. In the case of second 

harmonic generation, we are considering a pair of photons emitted at twice the frequency, 

( ) 2     of the input beam. Each harmonic photon therefore may have a different refractive 

index n  and n . If this is the case, the wavevector relation in equation (1.4.20) isn’t strictly 

true. This discrepancy in the magnitude of the wavevector associated with the emitted photons 

can be displayed in a diagram such as the one in Figure 22. 

 

Figure 22: Schematic for the wavevector matching condition, the sum of the wavevectors 

k for the annihilated photons from the input beam is equal to the sum the two harmonic 

photons of wavevectors k' and k'' at a conical angle, .  Here, o10   is depicted. 

This is formed under the knowledge that we are considering a parametric process, in which the 

momenta in the system must be conserved. It follows that the wave-vector matching condition 

specific to six-wave coherent SHG is, 

 4   k k k . (5.2.7) 

With this, the refractive indices of all photons can be related with a single dependency on the 

conical emission angle,  , 
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 . (5.2.8) 

As the name suggests each process can deliver any pair of diametrically opposed 
( ) k  such that 

they deviate from k by an equivalent angle  . The desired relation for the refractive indices is 

as follows, 

  2 cosn n n       . (5.2.9) 
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4.3 ROTATIONAL AVERAGE 

Equation (5.2.5) is perfectly suitable for any solid-phase process. At this juncture, we will 

consider the effects of molecular motion in condensed-phase specimens. Consistent with 

previous methods we will perform a rotational average to obtain a result for such species, 
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As a parametric process, equation (5.2.7), the matrix element associated with each centre adds 

constructively to the ensemble; as such, we can perform the rotational average on the contents 

of the square modulus [100], see complement 1C for more details. In contrast to the processes 

considered in the previous two chapters, which required evaluation of the square modulus prior 

to performing the rotational average. The obvious benefit is that a rotational average of the 

same order as that for (three-wave) hyper-Rayleigh scattering can be applied. 

 

It is worth noting that although a condensed-phase system is of interest here and will be seen 

to deliver interesting results. In the case of a solid-phase system, a distributional average should 

still be performed to accommodate the various orientations each centre can assume within the 

material. Of course, bulk isotropy would then be assumed to benefit from the theory deployed 

herein. To begin, we first refer to the sixth rank isotropic tensor, equation (1D.13), and contract 

the field vectors with the full set of fifteen linear combinations of isotropic tensors,  
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It is immediately apparent that with a set of field vectors that has little variation, there are few 

unique combinations of the field vectors. There are in fact just two, which will be displayed at 

the next stage. 

 

Next, we will contract the response tensor with the rank 1 tensor formed of the molecular linear 

combinations, 

 

  
(5 )

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

   

  

  

  

  

  

  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

(5 )

(5 )

(5 )

(5 )

(5 )

(5 )

(5 )

(5 )

(5 )

(5 )

(5 )

(5 )

(5 )

(5 )

(5 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 































 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 





 







 

. (5.3.3)

 

The result is consistent with that of equation (5.3.2), with just two distinct linear combinations 

appearing. Note, the indices associated with any one of the response tensors can be replaced 

with any Greek index that does not already appear; this is consistent with their epithet, dummy 

indices. 

 

The final step is summing the appropriate elements from the weighting tensor to deliver the 

following result [166], 
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The resulting tensor of field vectors both hold a vector product consisting of at least one   .e e  

If we refer to the vector products in complement 1F, we can see that in any setup adopting a 

circular polarised basis would deliver a vanishing result. However, both setups utilising plane 

polarised light, seen in Figure 18(a) and (b), deliver a nonzero result. The polarisation tensor for 

orthogonal detection with parallel field vectors is, 

  1 1  , (5.3.5) 

by substituting this into equation (4.3.4) we obtain, 

      

2
(5) (5)~ 1 8
   

     . (5.3.6) 

For orthogonal detection, where the field vectors are detected perpendicular to input, the 

polarisation tensor becomes, 

  1 0  , (5.3.7) 

and the corresponding quantum amplitude in the rate expression becomes, 

      

2
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(5.3.8)
 

From this setup, we can expect the emergent radiation to be primarily polarised parallel to the 

input, provided the materials have tensor components of comparable magnitude and sign. 

Furthermore, the following expression for DR can be succinctly expressed, 
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The molecular responses displayed in this expression are scalar quantities that are not known. 

However, it is possible to determine the boundary values to which the DR can assume. These 
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are produced in the cases where either response term dominates over the other. It therefore 

follows that, 

 
1

9
4

   . (5.3.10) 

4.4 STRUCTURED LIGHT 

Experimental results from nonlinear optical processes in isotropic materials indicate o12   

[167]. For processes involving structured light, the equations delivered from the paraxial 

approximation are the most widely deployed, see §1.6. This approximation applies the small 

angle approximations to all angles deviating from the propagation axis. The conical emission 

can therefore expect to have an absolute error of less than 2% even at the upper limit conical 

emission angle. 

 

This regime is consistent with the paraxial approximation commonly deployed for OAM light. 

Referring now to §1.6 where the corresponding field vectors are cast we can simply consider 

the matrix element, equation (5.2.4), as a product of the existing terms and the separable radial 

and azimuthal components of the beam, 

          i 44

, , , e
l l l

l p l p l pf f f
          

   

k k k z
r r r  . (5.4.1) 

Here, the absence of a prime relates the function to an input photon, with the single and double 

prime each correspond to one of the two emergent photons. The exponential term is the 

combined phase factor introduced in equation (1C.5). The first collection of functions, defined 

in equation (1.6.10), hold all radial distribution dependence of the respective photons of 

azimuthal and radial indices l  and p , respectively. Both of these indices will also be included 

in the summation, they each represent one additional degree of freedom in the light. It is also 

noteworthy that the index p  is often regarded to be 0, for the purposes of our investigation, 

this is a legitimate assumption. In the cases where 0p   the radial intensity profile is split by 

p  nodes, displayed in Figure 6; this splitting results in successively smaller contributions to the 

intensity profile. The maximum magnitude contribution is what we are concerned with, which 

is delivered by 0p   [168]. Having said that, it is still included purely for generality and 
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completeness of the modal decomposition [169]. Recent work has even indicated that the radial 

index may have more significance than previously thought [170, 171]. 

 

Figure 23: A schematic depiction of the regarded process. From left-to-right, the input 

beam of intercepts a nonlinear isotropic media and a single centre creates two photons of 

3l    (top) and 1l   (bottom). The cone can be envisaged tracing a shaved pencil tip 

pressed against the media, with k  and k  emerging along two diametrically opposed axes. 

We will now consider a system where conservation arguments extend to the OAM parameters. 

Hence, for six-wave SHG we can say,  

 4l l l    . (5.4.2) 

If we first consider an input beam comprising purely of a mode 1l  , it follows that 4.l l    

By selecting l l   we can see that there are three possible pairings for the emergent photons 

 ,l l  :  4,0 ,  3,1  and  2, 2 . Figure 24(a) displays cross sections for the relative magnitudes 

of the three outputs, as produced by equation (5.4.1). As can be seen there is no difference in 

displacement from the input beam axis, i.e. the conical angle is equivalent for each output 

pairing. The uniform transverse cross section of the intensity distribution of the conical 

emission is displayed in Figure 24(b). I would like to thank Matt M. Coles for providing these 

simulations [172]. They were performed in a region well removed from that of the conversion 

material. Experimentally, the closer any measurements are made to the conversion centre, the 

greater the influence of uncertainty in the angle-angular momentum quantum uncertainty [173-

176]. 
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Figure 24: (a) A cross section of magnitude distribution, where the -axisy  is aligned with 

the input axis. It demonstrates the relative magnitude in output of the three permitted 

pairings of topological charges,  ,l l  . (b) A transverse intensity distribution around the 

input beam axis. The (2,2) output has been selected in this case, where red indicates high 

intensity, through to black where there is zero intensity. The calculations have been 

performed at a distance of 100 wavelengths from the conversion material, adopting a 

source laser of wavelength of 800 nm. 

Upon inspecting the relative maximum magnitudes in Figure 24(a), a familiar structure is seen. 

The three permissible OAM pairings of the harmonic photons appear to follow the series for 

the binomial coefficients of order equal to the sum topological charge. If we cast the emergent 

photons as a product of states 4l l
 

 
k k

 and acknowledge the arbitrary distinction between 

l  and l , the product of states can be expressed more simply as, : 4l l  . The relative 

weightings for each product of states are summarised in Table 15. Note that when l l  , there 

are two possible products of states, : :l l l l    , this results in double the contribution to 

the resultant field. 

Table 15: Relative magnitudes of the intensities for permitted combinations of OAM 

output for the harmonic photons. 

Product of 
states 

4 : 0  3 : 1  2 : 2  

Relative 
magnitude 

1 4 3 

 

(a) (b) 
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The Pascalian distribution arising without any combinatorial dependence introduced in the 

establishing of the theory is interesting in itself. Although, of a potentially wider interest may be 

the interdependence of the topological charge for the two photons. By detecting either photon, 

the knowledge of the topological charge of its harmonic pair is instantly known. This is 

indicative of quantum entanglement between the pair of photons, which is a feature of quantum 

mechanics that is of experimentally widespread interest [177-180]. In this regard, parallels to 

parametric down-conversion can be drawn, however, the distribution of harmonic emission is 

unique to six-wave mixing. 

 
 

4.5 DISCUSSION 

The process considered in this chapter combines two far reaching fields: nonlinear and 

structured optics. The intersection of these two fields has been of growing interest in recent 

years [181, 182], most often concerned with four-wave parametric processes [183, 184]. Six-

wave mixing is a useful technique to subvert the selection rules of SHG in materials of high 

symmetry; moreover, by considering the addition of structured light, it can be seen as an up-

conversion counterpart to processes such as parametric down-conversion. Recent methods of 

detection are found to be able to scrutinise OAM modes to near perfect efficiency [26, 185-

187]. These innovations will be particularly valuable as efforts are made to secure the 

conservation laws governing parametric processes. Here, the preferential emission of a specific 

topological charge in the harmonic-emission was observed, which has not been demonstrate in 

any conversion process. 

 

In this chapter and the proceeding chapter methods for second-harmonic emission were 

discussed. One additional method that is commonly deployed to subvert the symmetry rules is 

that of SHG in a static electric field. This adds an additional interaction, which results in the 

requisite even number of interaction events; the additional interaction not imparting any change 

in energy to the system. In principle, a second centre could serve the same purpose, by deploying 

the static V-tensor, equation (1.5.2). This would be an analogous mechanism to that covered in 

§2.2.3. 
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5 
DIRECT GENERATION OF STRUCTURED LIGHT 

5.1 INTRODUCTION 

Since the inception of vortex light, the interest in the field has grown rapidly. The key 

developments seek to perfect the purity and detection of vortex modes. Such advances hold 

promise in data transmissions and novel manipulation techniques. Despite all the developments, 

one limitation has held back the application of such forms of light. Up until recently, the only 

way of creating OAM modes of light has been by deploying optical elements to modify the 

wavefront of a pre-existing beam. This in turn imparts the characteristic helical progression in 

wavefront, which conveys units of topological charge, introduced in §1.6. However, such 

methods are reliant on equipment to not only generate but also transform the light to the desired 

structure. The additional stage of production requires additional parts and this in turn demands 

more space. In the current arena of perpetually slimmer and more compact technologies, there 

is not the capacity for such inefficiencies. 

 

For this reason, the prospect of direct generation of vortex light is particularly pivotal to the 

ongoing success of this field. In particular, with commercial applications in mind. This chapter 

introduces one method theorised to fill this gap [188-190] and at the time of writing, it is the 

only solution to be found in the literature. The proposed mechanism relies on a series of 

chromophores equally spaced on a ring. By orienting them such that they can support a 

delocalised excitation (exciton) across an array with tailored symmetry characteristics, the 

ensuing results indicate that a vortex emission can be produced directly.  
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5.2 ARRAY CONFIGURATION 

There are stringent conditions that must be met to elicit an emission with a non-zero topological 

charge. Due consideration must be taken over the characteristics of the produced light and how 

that can be married by the structure of the emitters. Figure 25 provides an impression of a 

system satisfying these requirements. To begin, we must consider the structure of the desired 

emission, namely the characteristic azimuthal variation in phase it displays. Next, we can 

consider a structure that can manifest this azimuthal 2  progression in phase. It has been 

shown that one lone emitter is not capable of producing such a structure, to any level of 

multipolar structure [191, 192]. The next logical step is to consider a pair of emitters that attempt 

to enforce the desired phase structure by being   out of phase with the other. Although this is 

part way towards the solution, it can be seen that we are not quite there. The phase at the two 

positions is indeed as desired, however, careful consideration must also be taken over the phase 

of the intervening space. Namely the azimuthal progression in phase, with just two emitters 

there is no means to dictate the direction that the phase progression asserts and as such neither 

is favoured and a planar discontinuity in phase bisects the pair of emitters [193].  

 

Figure 25: An impression of a permissible structure conforming to point group 3C  to 

support an exciton of phase cross-section displayed, which in turn relaxes to produce a 

helical emission of 1l  . 
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In contrast, an array consisting of three emitters does not suffer such limitations. Specifying the 

phase at three coordinates not only enforces a phase progression but also a directionality. There 

are in fact two circularities that can be achieved from such an array and these correspond to the 

two handednesses of helicity light can manifest. Importantly, this indicates that each array is not 

limited to a single functionalised emission, but in fact any number of different excitonic 

structures, which will be shown to be dictated by the number of centres in the array. Another 

consideration are the conditions to which each emitter must satisfy. To achieve an excitation 

with directionality, non-spherical emitters are required. For the purposes of this work, we will 

discuss the most familiar option of molecules. However, the theory detailed in this chapter can 

readily be applied to other forms of emitter, such as planar chiral metamaterials [194-198]. 

 

Increasing the number of points with a dictated phase, introduced by an additional emitter each 

time, enables increasingly complex topologies of phase; this will be shown later. Moreover, by 

considering more than three emitters an array can escape the confines of a single planar 

arrangement. However, the planar arrangements offer a uniform increase in maximum 

topological charge supported and are the focus of this work.  

 

The many structural considerations for the array of emitters can be met by a number of the 

symmetry groups in the Schoenflies point group tables [105, 199]. Specifically, we require a 

biaxial degeneracy in the array plane, with no mirror symmetry down the emission axis. The 

reasoning for this is analogous to why an array of two emitters was not capable of supporting 

the directionality in phase progression. Inspecting the tables for these conditions, the following 

symmetry groups prove suitable: ,nC  
h ,nC  ,nS  T  and hT , where n  directly corresponds to 

the number of emitters in the array.  

 

The desired delocalised electronic excitation is generally associated with the doubly degenerate 

irreps, hence it is the radiative decay of the corresponding states that is of interest here [200].  

We must assume that any excitation returns the entire array to its ground state, which conforms 

to its totally symmetric representation. This ensures that the product of the representations for 

the excited state and the radiative dipolar emission both include totally symmetric 
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representations. Table 1 compiles the complete set of members of each family of symmetry 

groups that permit integer values of OAM for an array of up to 12n  . Moreover, it concludes 

with an expression to predict the supported range of OAM values for any given symmetry 

group. 

Table 16: Summary of the allowed topological charge l , for OAM outputs based on arrays 

of the allowed symmetry groups. For the nS  groups,  0 if nm i S  ;  1 if nm i S  . 

The entries in the last row, for the general case, express the necessary conditions 

incorporating a floor function [201]. All point groups that do not exist are greyed out and the 

ones with dashes indicate they exist but do not support any non-zero topological emission. 

Note, T and hT also support an emission of a single unit of topological charge, 1l  . 

   

n  nC   hnC  nS  
1 -   
2 - -  
3 1 1  
4 1 1 1 
5 1, 2 1, 2  
6 1, 2 1, 2 1 
7 1, 2, 3 1, 2, 3  
8 1, 2, 3 1, 2, 3 1, 2, 3 
9 1, 2, 3, 4 1, 2, 3, 4  
10 1, 2, 3, 4 1, 2, 3, 4 1, 2 
11 1, 2, 3, 4, 5 1, 2, 3, 4, 5  
12 1, 2, 3, 4, 5 1, 2, 3, 4, 5 1, 2, 3, 4, 5 

General 
expression 

 

1

2

n
l

 
     

1 2

2 2

m
n

l
  

   
   

 

 

Cross-referencing Table 16 with Figure 25, we can see that a 
3C  is capable of supporting a 

maximum magnitude of topological charge of 1, which agrees with what has been said 

previously. It follows that for an array of such geometry, the supported emissions are that of 

 1,0,1l   . To proceed further we will now consider the set of coordinates that describe a 

general array conforming to one of either of point groups 
nC  or hnC . All systems based on 

these symmetry groups are planar arrangements of the constituent molecules. Each array is 

formed of n  emitters equally dispersed on a ring with Figure 26 displaying one example where 

7n  . 
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Figure 26: Schematic depiction of the array of seven emitters. The emission axis is that of 

the z-axis in the centre of the plane. The angles and dictate the local orientation of 

each and every emitter.  The angle  designates the azimuthal position in the array. Here, 

4     and 2 7  . The circumferential dotted lines serve as visual guides only. 

 

The figure above can be seen to conform to the point group 
7C . From here, it is easy to envisage 

a collection of arrangements consistent with 
7hC  symmetry, which requires a plane of mirror 

symmetry perpendicular to the emission axis. To achieve this 2  . Notice that several 

emitter arrangements would result in 
7vC , namely: 0   and 0 or  . These arrangements 

are undesirable for the aforementioned addition of mirror planes of symmetry along the 

emission axis.  

 

5.3 EXCITON HAMILTONIAN AND WAVEFUNCTIONS 

Now an appropriate set of structures have been determined, let us regard the delocalised 

excitonic state they can support and the associated energies. In such a system, any number of 

emitters can potentially be excited at once; however, for analogous reasons that have been 

mentioned with previous chapters, a single excitation is most probable and will be developed 

further. As such, all other centres will be in their ground state dispersed by a distance such that 

z 

z r 
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the most dominant interaction will be that with each neighbour. This can be modelled by 

utilising the V-tensor, equation (1.5.1), to determine the electrodynamic coupling between 

neighbouring transitions. We will use a modified form here to specify which emitters are 

coupled, 

       , 1 mod , 1 mod
,rs ur r n r r n

V k
 

 RV R  , (5.3.1) 

Here, 
u uk E c  and 

uE  is the energy of an isolated centre in its excited state u . The resulting 

energy of the interaction between two neighbouring centres can be obtained by, 
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(5.3.2)

 

The presence of pairwise coupling across the system indicates that a stationary state is not 

immediately achieved. To discover the stationary state that will be reached, let us consider a 

block diagonalised form of the appropriate Hamiltonian for such an array. The stationary states 

follow, in the form of superpositions of the basis states with normalised coefficients [202]. In 

general, the above system will have a Hamiltonian that may be expressed in matrix form as 

follows: 

     1, mod mod , 1rs u rs r s n r n s
H E U  

 
     , (5.3.3) 

where each element of the n-square matrix relates to a pair of emitters  ,r s  . The contents 

of the curly braces only engage adjacent centres corresponding to off-diagonal positions of the 

matrix as well as connecting the end of the cycle back to that of the first. By diagonalising the 

Hamiltonian,  

 
 

      1, mod mod , 1

0 det

det ,
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u rs r s n r n s

H I

E V



   
 

 

    
 

  
(5.3.4)

 

we can obtain the eigenstates corresponding to the splitting in the excited states (see §5.4). The 

normalised eigenfunction associated with the exciton for a general array consisting of n  centres 

can be cast as follows, 
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  1 ; ;0

1

1 n
r p r u s

p n

r s rn
   



 

 
  

 
   , (5.3.5) 

where p . In this linear combination, ;r u  is a state function corresponding to an emitter 

r  in electronic state u , and  exp 2in n  , which is the difference in phase for each of the 

emitters. Each summand contains one centre is in an electronically excited state u , while the 

others remain in their ground states.  The energy eigenvalues associated with the above exciton 

states are generally expressible in the form;  

   2 2p uE E Ucos pq n   ,  (5.3.6) 

with  1 2 2n q n          and with this index q related to p  in equation (5.3.5) through: 
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| 2

p p n
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p n p n

     
 

     

 .  (5.3.7) 

Table 17, summarises the relationships between the indexes ,p  q  for arrays comprising of three 

to nine emitters. The irreducible representation of the corresponding family of point groups 

,nC  which are associated with each excitonic state are also displayed. In this table, a strong 

correlation can be seen between the permitted l -values and the index q . This is the case for all 

instances, except when p  is even and an antisymmetric representation, B, is present. The 

subsequent section will scrutinise the q  values and each of their associated energies of the 

excitonic states. 

Table 17: The irreps of the nC  excited states for  3 : 9n  . 

n p 1 2 3 4 5 6 7 8 9 

3 
q 1 -1 0       

Irrep E1 E1 A       

4 
q 1 2 -1 0      

Irrep E1 B E1 A      

5 
q 1 2 -2 -1 0     

Irrep E1 E2 E2 E1 A     

6 
q 1 2 3 -2 -1 0    

Irrep E1 E2 B E2 E1 A    

7 
q 1 2 3 -3 -2 -1 0   

Irrep E1 E2 E3 E3 E2 E1 A   

8 
q 1 2 3 4 -3 -2 -1 0  

Irrep E1 E2 E3 B E3 E2 E1 A  

9 
q 1 2 3 4 -4 -3 -2 -1 0 

Irrep E1 E2 E3 E4 E4 E3 E2 E1 A 
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5.4 STRUCTURE OF THE EXCITONIC ENERGY LEVELS 

Each exciton structure has been shown to display different symmetry characteristics, 

represented by E ,q  A (and also B, if present). Each unique form of symmetry for a given array 

will have a corresponding unique energy level, which will manifest as a fine line splitting, centred 

on the frequency of an isolated emitter. If we first consider the simplest case displayed in Table 

17, where an array comprises of 3n   emitters. Substituting the appropriate values for p  and 

q  into equation (5.3.6), we obtain the energies for the three exciton levels: one non-degenerate 

state, which conforms to the totally symmetric representation A, and energy 2uE U ; the other 

two form a doubly degenerate Eq  representation, with energies 
uE U . 

 

In principle, the difference in energies between irreps should enable the preferential selection 

of one symmetry type and thus associated form of emission [202]. The decay of the doubly 

degenerate Eq  excitons should have a characteristic wavelength of emission, relative to the array 

structure and initial excitation level. The degeneracy of the Eq  excitons is a satisfying result, 

which is consistent with expectation for the two handednesses of two vortex emissions of 

equivalent .l  Furthermore, incorporating the desired transition dipole moment vectors, such 

as those displayed in Figure 26, into equation (5.3.2) the sign of U  is readily shown to be 

positive for all 3n  . This is also encouraging, if we refer to Kasha’s rule, which usually is 

applied to vibrational sublevels, we can see there is a preferential emission from the lowest-lying 

energy sublevel, for these purposes this corresponds to the emission of highest l . These 

principles have now been applied to the 9n   case from Table 17 and the resultant energy level 

splitting is displayed in Figure 27. 
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Figure 27: Excitonic irreducible representations and corresponding Davydov energy level 

splitting of for an array of 9C  point group symmetry. The regular nonagon has been 

displayed to emphasise the relative displacement in line splitting. A 2uE U  , 

1E 1 532uE U   , 2E 0 347uE U   , 3E uE U   and 4E 1 879uE U   . The 

excitation considered is by a red-edge laser and the magnitude of splitting has been 

exaggerated for visibility. 

 

5.5 EXCITON PHASE STRUCTURE 

To corroborate the assignment of vortex emission from the specified array structures and irreps, 

an analysis of the phase structure of each excitonic state can be made and so too the radiative 

emission. The electric field  p DRE  from each constituent emitter is given by, 
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where DR signifies the position of the detector with respect to the ring centre. Notably, in this 

equation the phase factor, 
 1r p

n


, corresponds to that of the emitter component in equation 

(5.3.5) and thus delivers the sought progression in phase around the ring.  The phase of the 

emission can be determined by taking the complex argument of the electric field vector, 

     ;arg .i p i D  RER  (5.5.2) 
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The electric field is decomposable into its Cartesian components, which in turn allows us to 

scrutinise the phase of each of the three orthogonal planes. The displayed phase simulations are 

produced by first establishing a series of emitters with vectors representing the respective 

transition moments that conform to a permitted symmetry group. The desired 2 p n  phase 

progression is then imposed on each of the centres. With all that done, the expression for the 

electric field can be called on and a grid produced with the associated phase of each point. Note, 

that due care needs to be taken around the singular axis. The phase simulations display the 

characteristic azimuthally varying phase structure associated with LG light. The spiral structure 

seen here, is describable as a linear superposition of the more commonly seen radially symmetric 

lines of constant phase, for example those seen in Figure 7. 

 

Figure 28 displays a collection of results for the electromagnetic phase variation centred on an 

array conforming to the nC  family of point groups. The first plot (top-left) displays the two-

emitter case, reinforcing the earlier assertion that two emitters can indeed not support a non-

zero topological charge. The next panel (top-right) displays five emitters supporting an excitonic 

phase consistent with 1l  . Moving to the next row (bottom-left) five emitters are displayed 

again, this time with 1l   ; this also has an intensity weighting incorporated, which displays a 

sharp reduction in intensity once the phase spirals through c2  and repeats this cycle outwards. 

The final panel displays the simulation from 21n  , 10l   and demonstrates the more 

complex phase structures that such an array can support. 
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Figure 28: Phase cross-sections perpendicular to the emission axis. From left-to-right and 

top-to-bottom, they display: 2n   with no topological charge supported; 5, 1n l  ; 

5, 1n l    with an intensity weighting introduced; 21, 10n l  . Each colour 

represents a different phase, with each diagram displaying a c2l  azimuthal progression. 

For these simulations 4     and hence each of the arrays conform to the respective 

nC  point group. In these plots the radius of the array is 200  , where   is the optical 

wavelength of emission. The simulation cross-section has a length of 20  . 

 

5.6 DISCUSSION 

In this chapter, a novel mechanism for the direct generation of vortex light is proposed. To 

achieve an emission of this sought character, the symmetry properties of a delocalised excitonic 

state are exploited; which can be of a more complex multipolar form than that which is a single 

emitter is capable of. The phase of the excitonic field is simulated and displays the characteristic 

azimuthally variation, most commonly associated with that of LG light. There are many 

advantages of implementing such a method, which will be discussed. 

 

Here, a series of optical centres dispersed on a surface was considered. This would require the 

manufacture of bespoke arrays to provide pairwise nanoscale coupling [203, 204]. However, 

there may be alternate more amenable means. Arrays of quantum dots may be capable of 

eliciting the desired emission [205], especially following work displaying directional emission 

[206]. The emitters could be formed by deposition techniques [207, 208], such as those utilised 
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in chiral layered structures [209]. Metamaterial structures could be manufactured [210, 211], 

where analogous symmetry principles have been deployed to produce OAM modes [212, 213]. 

Or indeed lithographic techniques to etch such a structure out of a suitable substrate [214-216].  

Lastly, a multi-chromophore array [217, 218] could be capable of supporting an emission of the 

sought character. To ensure their suitability, all electronic transitions in each chromophore 

would have to be optically distinct from the other centres. 

 

The drive for miniaturisation in technology would suggest that this mechanism would be more 

desirable than the current alternatives, particularly in a commercial setting. By incorporating any 

of the above techniques this mechanism would offer a means of generating vortex modes 

benefiting from fewer parts. For example, the most widely deployed method for generation 

OAM modes is that of a spatial light modulator, which are collections of optical elements that 

are about the same size as a portable computer. Compared to rival devices, they benefit from 

the dynamic production of a range of OAM modes by passing light through an appropriate 

hologram for the desired phase structure [187]. It has also been demonstrated that the arrays 

described herein can support a range of topological charges dictated by the number of emitters 

it comprises of. Importantly, the full set of -valuesl  are supported up to and including 

 1 2n     for a given number of emitters. Although this work has not yet been implemented 

experimentally, it has led to several developments utilising spatial light modulators to sample a 

hologram in a fashion analogous to the phase progression in an array [219, 220]. 

 

Each excitonic state will relax to produce a single quanta of light with a corresponding phase 

structure. The production of single structured photon is particularly interesting for data 

transmission applications, where topological charge represents a degree of freedom with a range 

of values much greater than that of binary spin polarisation basis [185, 221-223]. Although, there 

is a quantum uncertainty associated with photon number-phase [224, 225]; moreover, the true 

information conveyable by a photon is recently coming under growing scrutiny [226, 227]. It is 

conceivable that the emission could also be tuneable, with the wavelength of emission unique 

for a given -valuel  for a particular array. This also holds promise in the detection and 

identification of topological charges. Consider an array that has had the energies for each of its 
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OAM modes characterised, the detection of a specific frequency could then be tied to the 

associated mode. 

 

There are many instances, for example the processes introduced in the preceding chapters, 

where higher intensities of light are desired. In principle, multiple arrays could be distributed to 

produce a laser-like emission. If this could be achieved, there would be no reduction in intensity 

that is present in current technologies that exploit optical elements to modify a beam [228]. A 

collection of arrays could conceivably undergo a population inversion, with suitable phase-

matching across the system, which would result in a stimulated emission perpendicular to the 

array plane. Many of the methods previously mentioned could be exploited to manufacture such 

a vortex laser. 
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POSTLUDE 

This thesis has drawn on fundamental molecular quantum electrodynamical theory to tackle 

interactions involving both nonlinear and structured light with matter; in particular, systems 

with high degrees of symmetry. To round off this thesis, we shall consider how each project 

might continue to evolve. 

 

The first novel research project, chapter 2, discussed the modifications to a Raman spectrum, 

for a molecule of interest, resulting from neighbour interactions. The obvious next step was to 

identify the predicted modifications in computed and experimental systems. An ongoing 

collaboration with researchers at the Université Paris-Saclay seeks to achieve this. 

 

The subsequent project, chapter 3, considered a mechanism that subverts conventional 

symmetry laws and accommodates a second harmonic signal to be detected from a 

centrosymmetric system. The ensuing results are in anticipation of sophisticated experiments, 

in which the tensor coefficients could be registered and used to characterise minerals. 

 

The penultimate project, chapter 4, advanced the theory for nonlinear optics and structured 

light, with obvious scope to explore other, more exotic, forms of structured light. The results 

indicate an emission with a preferential topological charge, which could be scrutinised 

experimentally to exploit the entanglement between the emitted photons. 

 

The final project, chapter 5, introduced a method for the direct generation of photons with an 

intrinsic topological charge. This work has attracted significant attention and is a nexus for 

several fields of keen interest, such as quantum informatics. The prospect of direct generation 

holds several advantages over currently employed wavefront modification techniques; 

particularly, with the view to commercialising vortex light technologies, in which miniaturisation 

is paramount. An obvious next step is to investigate the emission from several adjacent arrays. 

Moreover, it would be of particular interest to explore more complex structures, such as a series 

of stacked arrays, which could provide the basis for a vortex laser.   
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