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Abstract

Two-dimensional electronic spectroscopy (2D-ES) is a cutting edge experimental method
to probe ultrafast phenomena such as energy transfer, chemical reactions, coherent wave-
packet motion, etc. It is an extension of transient absorption methods which recovers the
signal as a function of the excitation frequency, resolving signals that are overlapped in
traditional techniques, and allowing simultaneous high spectral resolution in excitation
frequency and high temporal resolution of the dynamics. 2D-ES studies of light-harvesting
systems from photosynthetic organisms reported coherent wavepacket motion, attributed
to electronic coherences between different exciton states. Vibrational and vibronic coher-
ences can also be observed with 2D-ES, and it is thus important to study the specific
signatures of each. In this thesis, we present an experimental setup that is well suited to
recover coherent wavepacket motion and employ it to study vibrational coherences in a
zinc-porphyrin monomer. A first experiment is analyzed with the traditional convention
of using only the real part of the complex-valued 2D-ES signal, and interference between
neighboring oscillatory features is revealed, explained and modeled. We also find that
when the full complex-valued signal is analyzed, the most pronounced interference fea-
tures disappear, and in this case an analysis based on double-sided Feynman diagrams
suffices to describe all observations. We then report an experiment with a blue-shifted
laser spectrum, which matches the molecular absorption in a way that is more commonly
found in 2D-ES studies, and observe signatures that closely resemble the features expec-
ted for a purely electronic coherence, which we explain considering the laser spectrum
for all three field-matter interactions. Finally, we demonstrate a 2D-ES experiment with
a red-shifted spectrum which exclusively probes coherences in the ground state, comple-
menting experiments with the blue-shifted spectrum. We argue that a combination of the
two suffices for unambiguous interpretation of coherences in 2D-ES; lifting the need for

an ultrabroadband laser.
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Chapter 1

Introduction

In time resolved spectroscopy non-linear optical signals are used in order to obtain
information about dynamical properties of matter in real time. The advent of ultrashort
laser pulses in the 1980s enabled phenomena in the range of femtoseconds to be studied [1,
2], and significant effort is currently being devoted to the development of attosecond pulses
and techniques to further improve time resolution [3,4]. Time-resolved spectroscopies
have been widely used to study many different phenomena such as energy transfer [5,6],
coherent wavepacket motion [7], the dynamics of solvation [8,9], relaxation [10], chemical
reaction [11] and conformation dynamics [12].

Broadly speaking, non-linear optical techniques can be divided between resonant and
non-resonant, and among the resonant we have fluorescence and absorption based meth-
ods, the latter corresponding all time-resolved experiments reported in this thesis. To
directly access temporal dynamics in absorption techniques, the time delay between at
least a pair of pulses has to be experimentally controlled, and a signal originating from
two different pulses is at least of second-order in the field of the pulses. Because the
second order nonlinear susceptibility vanishes for isotropic media, third-order techniques
are generally used, with the most common being broadband transient absorption (also
referred to as pump probe) [2].

In pump probe experiments, the sample is initially illuminated with a pulse, referred
to as the pump, and after a controlled time interval it is illuminated again with a second
pulse, called the probe, and the spectrum of the probe is acquired after the sample (see
Figure 1.1a). A chopper is placed in the beam path of the pump, so that some probe
pulses will be detected when the chopper blocked the pump, and the remaining probe
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shots will be detected when the pump beam was not blocked by the chopper, and thus
illuminated the sample. This configuration permits the calculation of a differential probe
spectrum of the probe between the pump on and pump off cases for any desired value
of the temporal delay between pump and probe. This differential spectrum contains the
effect of the pump on the probe’s absorption measured at a known time interval between

the pulses; variation of the time delay yields dynamical information.
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Figure 1.1: (a) Pulse sequence in a transient absorption experiment. (b) Pulse sequence in
two-dimensional spectroscopy, where a pair of phase-locked pump pulses is used, to recover the
excitation frequency. See text for details.
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Because pump-probe experiments are absorption methods, dynamics both in the
ground and in electronically excited states can be probed, whereas time resolved fluores-
cence experiments are sensitive to excited state dynamics only [13]. Overlapping signals
due to many different phenomena can pose a challenge in the interpretation of pump-
probe experiments, especially when ultrafast temporal resolution is desired. That happens
because ultrashort pulses are intrinsically broadband in frequency. Hence, a transient ab-
sorption experiment with ultrashort pump and probe pulses can give sub 10 femtosecond
temporal resolution, but the changes in the probe absorption at a given frequency ws
might be due to original absorption at any w; frequency in the broadband pump spec-
trum. If high spectral resolution is desired it is possible to use a narrowband pump pulse.
Such a pulse will necessarily be longer in time however, thus creating a trade-off between
the ability to access ultrafast dynamics and the ability to clearly assign the absorption
frequency responsible for it.

Two dimensional electronic spectroscopy extends transient absorption techniques in
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a way that overcomes this problem [14,15]. In essence, the concept is the following.
As mentioned before, transient absorption experiments are third-order nonlinear optical
measurements, with the system interacting twice with the pump pulse and once with
the probe pulse, with the time interval between pump and probe being experimentally
controlled. The time versus frequency resolution trade-off described above concerns the
time resolution after the pump interaction and the frequency of pump excitation. We
now note that this excitation frequency can in principle be recovered by performing the
experiment with two pump pulses, scanning the time delay between them for each fixed
waiting time relative to the probe (see Figure 1.1b). This time delay between the two
pump pulses is called the coherence time (7), and the third-order signal as a function
of 7 will be modulated by the frequency of the excited transitions. Therefore, if such a
delay is added to a pump probe experiment with broadband pulses, the original excitation
frequency may be retrieved through a Fourier transform of the data over the 7 interval.
The resulting data is a collection of correlation maps between excitation and emission
frequency, one for each value of the delay between pump and probe: S(wy,T,ws). In
Section 2.6 we show that this is the convolution of the system’s response function with the
excitation fields, corresponding therefore to the most information that can be extracted
from a third-order technique.

Multidimensional experiments are commonplace in NMR spectroscopy, having been
first demonstrated in the 1970s [16] and flourishing to the extent that Richard Robert
Ernst was awarded the Nobel Prize in Chemistry in 1991 [17]. NMR spectroscopy relies
on radio frequency pulses with typical frequencies between 60 and 1000 MHz to excite
and probe nuclear spin transitions. These frequencies correspond to optical cycles between
16.67 and 1 nanosecond (wavelengths of 0.3 and 5 meters respectively), which implies that
the excitation frequencies to be recovered are in this range as well. In order to recover
them in the time domain with the principle described above, it is essential that the data
acquisition recovers the temporal oscillation during 7 accurately, which presents different
challenges in the visible and infrared spectral regions than in the radio frequency region.

The critical difference is that the wavelength of visible light lies in the region of 400
to 700 nm, with the corresponding optical cycles in the order of a few femtoseconds.
Consequently, proper acquisition of the excitation frequency requires control of the time

delay between the two pump pulses with an accuracy that is a fraction of this cycle. The
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challenge is that typical vibrations and air currents found in the environment can generate
mechanical displacements of the sub micrometer magnitude in optical components moun-
ted on a table. Such mechanical fluctuations will affect the beam paths and compromise
our ability to accurately retrieve the excitation frequency. This problem is referred to as
phase stability and will be discussed in detail in Section 3.5.

In the face of these challenges, it was only in the late 1990s that two-dimensional
spectroscopy was first demonstrated in the visible (2D-ES) [18] and infrared (2D-IR)
[19] spectral regions. Because the phase stability requirement is less stringent in the
infrared, the development of 2D spectroscopy in this region flourished faster than in the
visible. Also, most applications in the visible require acquisition of maps for many different
population time (7") delays, as in a pump-probe experiment, whereas in the infrared
acquisition of a few population times can be sufficient to reveal important structural
information about proteins, DNA; etc [20]. Thus, the long data acquisition times which
follow from the fine scanning between the pump pulses becomes more of a problem in the
visible.

Over time 2D-ES has become a much more accessible technique, thanks technical de-
velopments by multiple groups [21], but it remains much more challenging than traditional
pump-probe experiments, posing the question of whether implementing it is worthwhile
given real world constraints. In order to address that question we discuss below the

information that can be recovered from 2D-ES experiments.

1.1 What information does two-dimensional spectro-
scopy recover?

Up to now we have described the development of 2D spectroscopy as a means to over-
come the intrinsic ambiguity in terms of excitation frequency in transient absorption
experiments when ultrafast time resolution is desired. However, from our pulse sequence
discussion and Figure 1.1 we concluded that 2D spectroscopy comprises the most com-
plete third-order nonlinear optical technique. That is because a third-order signal results
from three field-matter interactions, and in 2D spectroscopy we use broadband pulses for
all of these interactions and experimentally control the time delay between them, finally

acquiring the spectrally resolved signal, and that is the maximum level of sophistication
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possible. Actually, it can be shown that the signal from other third-order techniques such
as photon echo, transient absorption and hole burning are all two-dimensional cuts or in-
tegrals of parts of the three-dimensional 2D-ES maps [14]. We also argued that 2D maps
are correlation plots between excitation and emission frequencies for a given population
time, which means that overlapping peaks in the emission frequency axis can be separated
if they have different excitation frequencies. This section gives a few concrete examples
of how 2D-ES can be more useful than long established techniques, when applied to real

problems.

Line-broadening mechanisms and spectral diffusion

In lineshape theory it is usual to make a distinction between homogeneous and inhomo-
geneous line broadening, according to the sort of microscopic mechanism that causes it.
2D spectroscopy is the only experimental technique which allows a simultaneous and
direct measurement of both contributions [22].

Homogeneous line broadening originates from a statistical loss of coherence that is
equally experienced by all molecules in the ensemble, such as the line broadening due
to the finite lifetime duration of the excited states, or collisions with the surrounding
bath. Inhomogeneous broadening, on the other hand, is related to differences in the
local environment for different molecules within the ensemble, causing slightly different
frequencies of absorption for each. In linear absorption, inhomogeneous broadening is
characterized by Gaussian lineshapes, while a Lorentzian lineshape is an indication of
homogeneous broadening [23].

Because both contributions are often present, the distinction between the two mech-
anisms in linear absorption is not trivial, whereas absorptive 2D spectra (with 7" close
to zero to avoid dynamical effects) possess different lineshapes in each case [24,25]. In
2D spectroscopy, homogeneous broadening corresponds to a 2D Lorentzian star-shaped
signal, with cuts along both the diagonal and anti-diagonal yielding Lorentzian lineshapes
of the same width [26]. In the inhomogeneous case, the peak will broaden along the di-
agonal, but the photon echo nature of the 2D measurement removes the inhomogeneous
broadening along the anti-diagonal, resulting in an overall elliptical lineshape stretched
along the diagonal [27]. Moreover, the inhomogeneous broadening is given by the diagonal

cut of the 2D map, while the homogeneous broadening is given by the anti-diagonal cut,
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so both are simultaneously recovered [28].
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Figure 1.2: Series of absorptive 2D-ES maps of chlorophyll a monomers in acetone. The graphs
on top show the linear absorption (blue) and the laser (red) spectra. The map at T' = 0.05 ps has
amplitude stretched along the diagonal, marking an inhomogeneously broadened transition. As
T increases, the amplitude gradually becomes rounded, indicating spectral diffusion. Adapted
from reference [29] with permission.

Still within the lineshape discussion one might realize that some part of the inhomo-
geneous line-broadening observed at early times might be lost for longer waiting times, as
each molecule in the ensemble has the chance to probe different local environments and
lose the initial correlation of transition frequencies [30]. This dynamical phenomenon is
called spectral diffusion and its effect on absorptive 2D lineshapes is a gradual change
from an elliptical shape at early times to a circular one at later times, as exemplified in
Figure 1.2 for Chlorophyll a in acetone [29]. The dynamics of 2D lineshapes has been
widely used to study spectral diffusion in the infrared region [27], but has also found

applications in the visible [29,31-33].

Chemical exchange and chemical reactions

2D spectroscopy can also be used to investigate chemical exchange and reactions if
different species are associated with an unique spectral signature. In the case of chemical
exchange, we are discussing a system of multiple inter-converting species in thermody-

namic equilibrium [34]. At early population times a 2D spectrum will have diagonal
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peaks corresponding to each individual species, but as interconversion takes place cross-
peaks between them form on the exchange rate timescale [35], allowing thermodynamic
information to be recovered [36,37].

Furthermore, if a chemical reaction takes place in the excited state and reactants and
products have distinct spectral signatures, time evolution of the cross-peaks between these
frequencies will follow the reaction dynamics. For instance, during this PhD I have studied
a butadiyne-linked zinc-porphyrin dimer for which all angles between the two porphyrin
units are allowed in solution. The lowest electronic transition is a function of this angle,
with planar conformers absorbing at low energies, and perpendicular conformers absorbing
at high energies. This can be seen in the two peaks in the linear absorption spectra on
the top graphs in Figure 1.3 (blue line), where the peak at low wavenumber (13500 cm™1)
corresponds to planar and that at high wavenumber (14950 cm™!) corresponds to twisted

conformers [38].

14 15 14 15 —_
R UL Y. UL R
B ar m =}
2]
01ps 1ps >/ {t10ps =y g ]
< 151 /" 1r 7] S
£ ] 1 ] 2 |
o s
5—’14? Z 1 g <2 =7
=z 0 100 200 300 400 500 600
O 1 1 1 1 /(;‘ : : : : r‘_\ :
7)) T T AL L [ S LR 0 = ]
K%} 50 ps — 100 ps _ 600 ps — % ]
g 151 1T 1T - S5
L @ ° s |,
o qf
14 1r ar b
g |
R AP T 1 ! 1 Eig — Fit| [
T . T 0 100 200 300 400 500 600
Excitation (10 cm’™) Time (ps)

Figure 1.3: Series of absorptive maps for a butadiyne-linked zinc-porphyrin dimer in n-pentane
with 1% of pyridine by volume. The top graphs show the linear absorption (blue) and the laser
(red) spectra. See text for details. Adapted from reference [39] with permission.

The ground state is therefore an equilibrium between different conformers that absorb
light at different energies, which implies in an inhomogeneously broadened transition.
Accordingly, the absorptive 2D-ES spectrum at the early time of 7" = 0.1 ps has amp-
litude stretched along the diagonal, as discussed in the previous Section. However, the
electronic excited state of this molecule strongly favors the planar conformers, with the

perpendicular ones being more than 6 kT higher in energy [38]. Consequently, once a pop-
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ulation of twisted conformers in the excited state is formed (marked by excitation at high
wavenumber in the 2D maps), this energy gradient will drive them towards planarity, and
this planar conformers will emit at low wavenumber. Indeed, the series of 2D-ES maps
in Figure 1.3 shows gradual amplitude growth in the region of high excitation and low
emission wavenumbers (below the diagonal), unambiguously resolving the conformational
planarization reaction in the excited state. The time trace of point A, shown on the right,
shows an increase of amplitude in a 60 ps timescale.

Moreover, in the ground state chemical exchange between both species takes place
as well, forming cross peaks both above and below the diagonal. While below the diag-
onal most of the amplitude is due to the planarization reaction in the excited state, the
region above the diagonal corresponds to signal emission by twisted conformers which
were planar during the initial excitation, which is only allowed to happen in the ground
state (where the energy barrier is within kT). Therefore, the chemical exchange can be
observed background-free in this region, and the time trace B on the lower right hand side
of Figure 1.3 shows that an increase in amplitude is indeed observed in a timescale of 250
ps. Analyzing the 2D-ES maps with a global fit tool we identified the different timescales
of the different processes in this molecule [39)].

In this particular case, due to the slow timescales, a series of narrowband pump and
broadband probe transient absorption measurements could be used instead of 2D-ES,
and we have replicated the study in this way, including solvent viscosity and temperature
studies [40]. 2D-ES still has the advantage of simultaneously giving in one experiment
the result of all different narrowband pump experiments possible within the spectral
range used in the 2D-ES broadband pump. The work on the porphyrin dimer has been
left out of this thesis for purposes of cohesion, but the interested reader is referred to
references [39,40]. Other examples of 2D-ES being used to study reaction dynamics can

be found in references [41-45].

Energy transfer mechanisms

Another phenomenon that can be probed by 2D-ES in a particularly convenient way
is energy transfer between different excited states. Much like chemical exchange and
reactions, energy transfer is observed through the dynamics of cross-peaks connecting

the states between which energy is flowing. This problem is directly relevant to natural



CHAPTER 1. INTRODUCTION 9

photosynthetic systems [46-53] as well as synthetic ones [54-56], and has thus attracted
much attention. In Figure 1.4c (adapted from reference [52]) signatures of energy transfer
in the Fenna-Mathews-Olson complex (the structure and linear absorption of which are

shown in Figures 1.4a,b) can be observed as time elapses from 100 fs to 1 ns.
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Figure 1.4: Adapted with permission from reference [52]. Copyright 2016 American Chemical
Society. (a) Arrangement of bacteriochlorophyll a molecules within the FMO units. (b) Linear
absorption spectrum of the Fenna-Mathews-Olson complex at 77 K with excitonic transitions
represented by vertical bars. (c) Absorptive 2D-ES spectra with dashed lines indicating excitonic
transition energies. All spectra are normalized to their maximum value were recorded in 1:2
aqueous buffer:glycerol mixture at 77 K.

Intramolecular couplings and coherences

The possibility of uncovering electronic couplings was one of the main features that
brought 2D-ES to prominence. Electronic couplings are an intrinsic part of many import-
ant systems and play essential roles in the processes that make these systems relevant in
the first place. In 2D spectroscopy coupled transitions are distinctively marked through
the presence of cross-peaks corresponding to their energies already at zero waiting time.
For instance, molecular aggregates [54], semiconductor quantum wells [57-60], photosyn-
thetic complexes [46] and polymers [61] all have electronic couplings in their excited state
structures. 2D-ES studies helped shed light on their properties, and this type of signals
can be used to unravel the energy level structure of complex systems [62]. Such signatures
reveal coupling in general, and are observed also from electronic transitions coupled to
vibrational modes [63], and intricate analysis can be used to assign the specific nature of
coupled states [64].

Besides the presence of cross-peaks at zero waiting time, if two states are coupled,
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a coherent superposition between them during the waiting time can be prepared by a
broadband laser pulses [27,65,66]. The fact that the system is in a coherent superposition
of states instead of in a population during 7" implies that the corresponding signals will
be modulated by the frequency of this coherence. As a consequence, signals that oscillate
as a function of T" will be found in different positions of the 2D maps. For instance,
studies of coherent superposition of states in semiconductor quantum wells in the liquid
helium temperature range provided insight into quantum mechanics and many body effects

[58-60, 67).

1.2 This thesis

The main theme of this thesis is coherent superpositions in molecular systems, and in
this Section we briefly review the state of affairs in late 2013 (the start of this PhD) with
regard to molecular and biological systems. We begin by emphasizing two points. First,
capturing coherent oscillations as a function of 1" requires fine experimental scanning of
this time interval, which is challenging for a technique that is already scanning the 7
interval with interferometric precision. Second, the oscillations are expected to dephase
with a lifetime similar to that of the states involved. So, coupled excitonic states are
expected to dephase in the sub-100 femtosecond timescale (at room temperature), while
vibrationally coupled electronic transitions may give rise to coherences that live for a few
picoseconds [66].

Nonetheless, one early study on the Fenna-Mathews-Olson light-harvesting complex
at 77 K observed such oscillations in cross-peaks connecting different excitonic levels,
and attributed them to electronic coherences between the corresponding excitons [68].
The paper suggested such long lived coherences could be part of the energy transfer
mechanism, with the consequence that natural photosynthesis would be at least partially
quantum mechanical in its function following light absorption. Although the dephasing
time seemed too slow for electronic coherences, evidence was also presented suggesting
that the protein scaffold protected the coherence generated from dephasing [69].

Further pioneering studies observed the presence of oscillatory signals at room temper-
atures. First, Collini et al. reported them for conjugated polymers [70] in 2009 and later

for light-harvesting proteins of marine algae [71], while Panitchayangkoon et al. observed
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oscillations in a study of the FMO complex [72] in 2010. As more evidence of oscillatory
signals in photosynthetic systems was gathered [73-76], some studies highlighted that
while the presence of oscillations meant that some coherent superposition was prepared
during 7', further evidence was required to differentiate between vibrational and electronic
coherences [63,64,77-79].

In 2011 Turner et al. emphasized the possibility of distinguishing electronic from
vibrational coherences using 2D-ES alone, but lacked theoretical support [80]. In the
same year, Panitchayangkoon et al. argued that the relative phase of the oscillation of
different excitation-emission coordinates could be used to establish the underlying nature
of a coherence, although conclusive theoretical arguments were not presented [81]. Other
studies mentioned the possibility of using relative phases to infer information [77, 82,
83], but no comprehensive experimental study supporting them was presented. In 2012
phase variations of vibrational coherences in a dye were presented, but the data was not
explained and remains unpublished [84].

In 2008 Cheng and Fleming demonstrated theoretically that vibrational and elec-
tronic coherences result in distinct oscillations if rephasing and non-rephasing signals are
considered separately [85]. In 2012, when studies of vibrational coherences in simpler
molecular systems where only vibrational coupling was expected, were published only the
absorptive [86] or the absolute valued [87] 2D-ES spectra were analyzed. In fact, as late
as 2013 an article assigned electronic coherences to oscillations of a single coordinate of
absolute valued 2D-ES maps in a molecular dimer [88], although spectra necessary to rule
out vibrational coherences were not presented, and the paper was criticized in a comment
by Halpin et al. [89]. This series of papers indicates the challenges of studying coherences
in 2D-ES.

In the meantime, theoretical work by multiple groups described the impact of long-
lived coherences on the functionality of light-harvesting systems, deepening interest in
the matter [90-94]. Also, other theoretical studies, recognizing the ubiquity of vibrational
coupling, began to address the problem of mixed vibrational and electronic coupling
(labeled vibronic) [95-99], and Tiwari et al. pointed out that from such mixing a different
coherence pathway results [100]. In 2014 and 2015 two 2D-ES studies on a molecular
dimer were published addressing this issue [101,102], but the data analysis focused on

the oscillation of a single cross-peak, so much information present in the data was not
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assessed. Eventually, in 2015 the Hauer group used multiple polarization schemes in
2D-ES to expand a previous study [103] in a spatially oriented artificial light harvester
to rigorously demonstrate the presence of the oscillatory pathway forecast by Tiwari et
al. [104].

Within this context, a comprehensive study of purely vibrational coherences in 2D-
ES was lacking, and the main focus of this thesis is to provide such a study. The first
critical point necessary is an understanding of the features expected in 2D-ES measure-
ments of vibrationally coupled electronic transitions. In Chapter 2 we provide a review
of third-order perturbative theory which establishes the theoretical framework employed
throughout the thesis.

A second outstanding requirement in performing a comprehensive study of vibrational
coherences in 2D-ES is to build an experimental setup capable of acquiring 2D-ES spectra
for many values of T" with very good signal-to-noise. In Chapter 3 we describe our 2D-ES
setup in detail, discussing the challenging factors of the technique, different approaches
to overcome then and our own approach. The data acquisition and data processing steps
leading to complex-valued 2D-ES spectra are discussed in detail.

The third outstanding matter is to find a molecular system with all the requirements
to test the different aspects of the theory with a minimum of other phenomena that
might create overlapping signals. In Chapter 4 we present such system, a zinc-porphyrin
monomer, and report basic 2D-ES results on it. We then discuss the challenges in data
analysis to study oscillatory signals at multiple coordinates of the 2D-ES maps, eventually
establishing a suitable method for our purposes. We discover in our data an interference
phenomenon between different overlapping third-order coherence pathways, which we are
able to model with standard third-order response function theory.

In Chapter 5 we further refine our analysis by considering the complex-valued 2D-ES
maps, observing that the interference observed in Chapter 4 becomes much less pro-
nounced and that the results closely match theoretical predictions. We use this to gain
further insight into the interference phenomenon discovered in Chapter 4. We then note
that our experiments were performed with laser spectrum profiles that compared to the
sample absorption in a way that is often unattainable in practice, leading us to perform
new 2D-ES experiments with a blue-shifted spectrum which better represents usual exper-

imental conditions for samples with broader absorption spectra than ours. Surprisingly,
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the results with the blue-shifted spectrum drastically deviate from the previous ones,
with key coherence signatures being completely suppressed. Further, the observed results
match the expected signatures for pure electronic coherences.

We then show that these results are explained through careful consideration of the laser
spectrum simultaneously with the contributing pathways. Consequently, under common
excitation conditions, electronic and vibrational coherences can show signatures more sim-
ilar than previously thought. Finally, this newly gained insight about the laser spectrum
effect is explored further to propose a 2D-ES experiment that can be performed to com-
plement experiments in which vibrational and electronic coherences result in the same
signatures. This newly proposed experiment is sensitive only to vibrational coherences
in a background-free region of the excitation-emission plane, and we conclude Chapter 5
demonstrating it. In Chapter 6 we discuss the future work for which this thesis paved the

way.



Chapter 2

Theoretical Framework

This thesis is focused on experimental two-dimensional electronic spectroscopy (2D-ES)
studies of electronic transitions coupled to vibrational modes. In some respects 2D-ES is
the analogue of 2D-NMR in the visible spectral range. The relevant theory behind this
technique is large and well developed, ranging from basic quantum mechanics [105, 106],
electromagnetism [107] and statistical mechanics [108] to more advanced topics within
these fields such as density matrices [109], nonlinear optics [23,110] and lineshape theory
[23, 66], going through to optics [111] and the physics of ultrashort laser pulses [112].
Clearly this Chapter will not be able to include all of this material.

Instead, this Chapter aims to present the aspects of the theory which proved most im-
portant for the interpretation of the experiments performed, which were the double-sided
Feynman diagrams (also known as Liouville-space pathways) cast within the framework
of semi-classical perturbation theory. The experience of the author was that learning
about the double-sided Feynman diagrams was made difficult because different sources
present them in different contexts, with different notation and degrees of rigor. However,
once a clear understanding of the diagrammatic picture is achieved, designing and inter-
preting 2D-ES experiments becomes much simpler. The objective of this Chapter is to
provide future students who will work with 2D-ES with a unified reference that presents
the diagrammatic theory that we perceive as the most convenient for 2D-ES.

The approach chosen is the following. In Section 2.1 we present the basics of quantum
mechanics using the density matrix formalism, which allows us to include statistical en-
sembles in the description of a quantum system. We derive the equations for the expect-

ation values of operators in terms of the density matrix only, as well as the Liouville-von

14
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Neumann equation, which describes the time evolution of the density matrix, thus show-
ing that quantum mechanics can be fully discussed using the density matrix to represent
the system instead of the wavefunction. During the derivation of the Liouville-von Neu-
mann equation we carefully include the presence of a statistical ensemble for the density
matrix, which is tedious but demonstrates that thermodynamic effects can be modeled,
via the addition of a phenomenological term in the equation for pure states.

In Section 2.2 we use the results from Section 2.1 to develop a perturbative expansion
of the density matrix to approach the general problem of calculating the dynamics of a
system under a time dependent Hamiltonian that can be written as a time independent
part plus a time dependent perturbation of much smaller energies. In Section 2.3 we
proceed to specify that the perturbation to the Hamiltonian consists of a time dependent
electric field, and treat the light-matter interaction semi-classically within the point-dipole
approximation. As a result, we obtain an expression which compares directly with the
non-linear optical polarization, which allows us to write the n**-order response function of
a quantum system in terms of the transition dipole moment operators in the interaction
picture and the density matrix.

In Section 2.4 we apply this result step by step to obtain the first-order (linear) re-
sponse function for a two level system. We then proceed to compute the first order po-
larization which results from the interaction with a laser pulse within the semi-impulsive
limit. During this process the basic concepts of the double-sided Feynman diagrams are
elucidated one by one, including their relation to the rotating wave approximation. Fol-
lowing this, we use these new insights to discuss the third-order response function and
polarization in Section 2.5, with the aim of establishing that the diagrammatic approach
is much more convenient than working out all the terms in the equations step by step.

Section 2.6 is then dedicated to making the connection between the third-order double-
sided Feynman diagrams and the signals and parameters from 2D-ES, including a discus-
sion of the phase matching of different third-order signals and the essential differences
between rephasing and non-rephasing pathways. In Section 2.7 we extend the diagram-
matic approach to include systems more complex than a two level system. In particular
we analyse the case of an electronic transition coupled to a nuclear vibrational mode, and
that of a three level system in which two electronic excited states have similar energies.

In this context, we discuss the possibility of observing coherent wavepacket motion in
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2D-ES due to the existence of pathways which include a coherent superposition of states
during the population time, which is one of the main focuses of this thesis, and we make
predictions regarding the the specific signatures of these pathways in 2D-ES experiments.
In Chapter 5 we will experimentally explore the possibility of distinguishing between such
systems.

Finally, we note that the diagrammatic analysis of the third-order signals intrinsically
assumes that all transitions are infinitely sharp, which is never the case in nature. We
then follow the approach by Butkus et al. [78] to include the effect of broad transitions,
especially on coherence pathways, and obtain some predictions about the consequences,
which we test experimentally in Chapter 4.

A description of 2D lineshapes is not included in this Chapter, being placed in the
Appendix instead. This is because the theory by Butkus et al. combined with the
diagrammatic theory suffice to understand the core findings of this thesis. Therefore, we
considered more convenient to describe traditional 2D lineshape theory directly where it
is used, as part of the calculations of 2D-ES spectra for an electronic transition coupled

to a vibrational mode.

2.1 Density matrix

In this work we use two-dimensional electronic spectroscopy (2DES) to study differ-
ent molecular systems. As with any form of spectroscopy, we must choose a theoretical
framework to discuss the experiment and its results in a systematic way and, in principle,
a few different approaches would be possible. Quantum electrodynamics, treating the
electromagnetic radiation quantum-mechanically would clearly be the most rigorous and
consistent option [113]. However, most of the research that is done in the field of nonlin-
ear optics is discussed within the semi-classical framework established by Mukamel [23],
Boyd [110], Bloembergen [114], Shen [115] and others, which unified the description of
most nonlinear optical experiments and basically consists of treating the electromagnetic
field with Maxwell’s equations and the rest of the system quantum-mechanically via a
perturbative approach [23].

Treating the system quantum-mechanically means that its physical state is described
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by a wavefunction |1 (t)), the evolution of which is given by the Schrédinger equation [106]

S = — L H () (). 21)

To set the stage for the discussion, we first stress that the experimental measurements
will always be performed over an ensemble of molecules. The problem which arises is that
this description does not allow for the inclusion of thermal distributions: the statistical
weighting has already been used to account for the fact that a pure quantum state can
be any normalized linear combination of the system’s eigenstates. So, to treat the system
quantum-mechanically and also add a simultaneous thermodynamical description we use
the density matrix formalism [105]. The density matrix of a system described by the

wavefunction |¢(t)) is defined as:

pt) = (1)) ()] (2:2)

If we assume the existence of a complete orthonormal set of eigenstates |n), then we can

write the expansion:

() =D cnlt) |n) . (2.3)

n

Equivalently, we have for the bra:
W)=Y e(t)(nl. (2.4)
Using the last couple of equations we can write the density matrix as:

Pt =D encr, () ) (m] . (2.5)

n,m

Looking at the last equation we recognize that if we want to represent the density operator

as a matrix, its elements are given by:

Prm(t) = ca(1)C, (1) (2.6)

At this point we can define the density matrix of a statistical average of pure quantum

states. By ‘pure quantum state’ we mean any normalized linear combination of eigenkets
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from a complete set. So for instance, in a l/2 spin system, the states |+), |—) and
1/2]4) + v3/2|—) are all pure states. If we want to conceive a description of a statistical
ensemble composed by 30% of the first, 20% of the second and 50% of the third then the
wavefunction:

3 5 (1 V3 5V3 +4

— —+—1= — |- 2.7

A T (2|+>+ = >> o+ @)
is clearly not adequate to describe the system, for it is not normalized and even if we were
to normalize it, it would correspond to a pure state. The same occurs with any linear
combination we could try. It is the density matrix approach that allows us to write the
state of a statistical mixture in an intuitive way, as we will soon prove. So first we define

the density operator of a system composed by a statistical average of N different pure

states [¢7), each corresponding to a probability p’, in such an intuitive way:

Zﬁ 97 ¢ (2.8)

Our goal now is to derive formulas to correctly compute both the expectation value of
any given operator and the time evolution of the system. The expectation value of an
operator A for a statistical mixture of pure states can be computed by first working out
the expectation value for each component of the mixture and then weighting the results
by the probability of each pure state. For any given component [1)7) of the system, we

have:
(Y = | ) ZZ A, (2.9)

where (p”)n, is the nm element of the density matrix of the pure state j. We also stopped
explicitly writing the time dependence for the sake of simplicity: from now on, we will
only write it when emphasis is required. The index j is being used as a superscript to
emphasize that it arises for a different physical reason than the indexes n and m: the
former is related to how many different statistical components form the system, while the
latter are related to the different eigenkets that are being used as a basis for the Hilbert

space. Looking at the last equation we note that the sum over m is merely the matrix
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product of 5/ and A:
Z(W)nmAmn = (MA)nn (2.10)

m

Thus, equation 2.9 becomes:
A\ J .
<A> = (P A (2.11)

But this expectation value accounts only for the system’s j component. To have the
full expectation value, we must sum over all possible values of j weighting each by its

probability p’:

n n

(4) =20 Y (=) ((ZW) A) =Y (pA)un = Tr(pA).  (212)

This last formula allows us to compute the expectation value of any given operator without
refering to the wavefunction, but only to the density matrix and the operator itself.

The other requirement for a full quantum description of a system is a treatment of
its time evolution. In the wavefunction formalism, this is fulfilled using Schrédinger’s
equation (2.1). It is necessary to derive an equivalent equation for the density operator.
For this, we use the matrix representation of the density operator, whose elements are
given by

N
=> pdd, (2.13)

j=1
as can be seen from equations 2.6 and 2.8. To proceed with the derivation of an equation
for the time evolution of the density operator, we note that using the product rule for

derivatives, we know the time derivative of the density operator is given by:

apnm * % 003*
Z c]cn+Zp7(c7—+c7 8t> (2.14)

As previously mentioned, the first term in this equation arises from the fact that we are
dealing with a statistical mixture of pure quantum states. To advance with a rigorous
treatment of this term, statistical mechanical considerations would have to be made and
phenomena such as dephasing and population relaxation would be described. The usual
approach in the nonlinear optics community is to treat this term phenomenologically [27],

and this is what we will do here. As far as the latter terms in equation 2.14 are concerned,
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we can use Schrodinger’s equation to obtain relations for the time derivatives. First, we
note that the n*” component of the vector created by applying the Hamiltonian operator

on the wavefunction is:

(ﬁf |¢>)n =" Humem. (2.15)

Using this last formula to write the n'* component of Schédinger’s equation we have:
3 j
= z Hod], (2.16)

and for its adjoint:

- %Z Hyncl™. (2.17)
l

Thus substituting in equation 2.14 we have:

apnm al dpj al 1% 1 1 j %
el ;E ﬁ;]ﬂ (e Huc) — ¢, Hinq)")
N
dr’ ;
D (@wa Yt

CJm

I
a‘%

(Hnlplm - anHln) . (218)

fﬁ'ﬁm

<
Il
a

Now we note that the term inside the parenthesis corresponds to the matrix elements of
the commutator of H with p. Therefore we have:

apnm o al dp] j Z oA
DT [H’p} wm (2.19)

j=1

which is the quantum mechanical equivalent of the Liouville-von Neumann equation from
classical statistical mechanics and describes the time evolution of a quantum system in
the density matrix formalism.

As previously mentioned, the first term in the right-hand side of equation 2.19 is
related with the thermodynamics of the system, while the quantum mechanical description
is given by the second term. In fact, by performing the same derivation we performed
assuming a pure quantum system (as opposed to a statistical ensemble) one would arrive

at equation 2.19 without the first term in the right-hand side. This can easily be seen by
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noting that for a pure system p = 1 at all times and thus its derivative equals to zero.

So, for a pure system we have:

9 _ 1 [ﬁl,ﬁ] . (2.20)

ot h
Equation 2.20 is the one most commonly called the Liouville-von Neumann equation and
in this work we shall adopt this convention. Equation 2.20 is more useful than equation
2.19 in the sense that a rigorous treatment of the statistics in equation 2.19 is not readily
accessible and also quite difficult. There are two reasons why we opted to present the
more complicated derivation. The first is consistency: if we argue in favor of the density
matrix approach because it allows us to include statistical ensembles, we ought to derive
equations for statistical ensembles. The second is that by deriving equation 2.19 we
showed that all effects arising from statistical dynamics are contained in the first term
(the second is independent of p?). Thus, even if rigorous treatment of the first term is not
accessible, we know that we can model the thermodynamic phenomena via the addition of

a phenomenological term to equation 2.20, which is the most commonly adopted approach.

2.2 Semi-classical perturbation theory

Being in possession of the equations 2.12 and 2.19 to compute expectation values and
the time dependence of the density matrix respectively, now our focus shifts to describing
nonlinear optical experiments with this formalism. For that, we first need to incorporate

the light-matter interaction in the Hamiltonian, for which we write:
H(t) = Hy+ W (t), (2.21)

where we are making the assumption that H, is time independent and that the time
dependent interaction with the optical field can be modeled with the addition of W(t)
Generally speaking the molecular Hamiltonian is very complex, but it is assumed that
a set of eigenfunctions exists and is known, satisfying the time independent Schrodinger
equation Hy |n) = E,|n), and all physically meaningful wavefunctions of this system
can be written as linear combinations of these eigenfunctions. The essential idea behind
perturbation theory is the assumption that the laser intensity is sufficiently weak such

that the eigenstates |n) from the molecular Hamiltonian Hy can still be used as a basis



CHAPTER 2. THEORETICAL FRAMEWORK 22

to describe the wavefunction even when the laser is on. In other words, the time de-
pendent part of the Hamiltonian W(t) can change the coefficients of the eigenstates in
the expansion of the wavefunction as a linear combination of |n), but not the eigenstates
themselves.

To proceed, it is convenient to define the wavefunction in what is referred to as the
interaction picture [27,105,106]. So far we have presented the density matrix starting
from the Schrodinger picture, where the operators are taken to be time independent and
the wavefunction has its dynamics given by Schrodinger’s equation. The other option
commonly used is the Heisenberg picture, where the wavefunctions are time independent
and it is the operators which are a function of time, with the time evolution given by
the Heisenberg equation of motion. The Heisenberg picture is more analogous to classical
mechanics because the momentum, position and other observables are a function of time
— nonetheless both pictures are equivalent [105,106]. We note that the Hamiltonian in
equation 2.21 has one term dependent and one independent of time, and we are concerned
with the regime in which the eigenfunctions of the time independent part Hy can still be

used as a basis. Hence, if the initial condition is:

[£(0)) = > al0) [n) (2.22)

then we would like to obtain ¢, (t) such that:

(1) =" ealt)e™ 7 |n) (2.23)

n

fort > 0. Equation 2.23 is just the wavefunction in the Schrodinger picture, but by writing
the e~ % factor explicitly we have effectively decoupled the trivial time evolution under
the time independent part of the Hamiltonian — this factor remains present even when
W (t) is absent, and the time dependence of ¢, (t) results solely from the presence of the
time dependent part of the Hamiltonian. To see this, we can note that whenever W(t) =0,
then ¢, (t) = ¢,(0) V ¢, and hence time independent. Therefore we see that it makes sense

to define the wavefunction in the interaction picture through:

() = e #t [y (1)) (2.24)
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where the exponential of an operator is defined by its Taylor series expansion (see Chapter
2 of reference [23]) and is merely the time evolution operator for a system with Hamiltonian
Hy. Tt can be shown (see, for example, Section 5.5 of [106]) that [¢;(t)) satisfies the

equation:

d [
S 1n(t) = 2 Wi(t) ln(t)) (2.25)

where we have used the fact that observables (such as W;(¢)) in the interaction picture

are defined as:

Wi(t) = ety (¢)e—nfot, (2.26)

It is clear from equation 2.25 that the evolution of the wavefunction in the interac-
tion picture is determined only by the time-dependent perturbation in the Hamiltonian,
whereas from equation 2.26 we can see that observables in the interaction picture have
their time evolution determined by H, (and it can be shown that they satisfy a Heisenberg-
like equation — see reference [23]). As for the time evolution of the density matrix, it can
be shown that it satisfies:

d L

Spi(t) = =1 Wi, pa(1)] . (2.27)

We can formally integrate this equation from ¢y to ¢ to obtain:

() = puto) — & [ [, )] 225

to

which we can iteratively solve by substituting it into itself, resulting in (see reference [27]):
i i n t Tn T
pr(t) = pr(to) + (——) / dTn/ dTn—l---/ drm
n—=1 h to to to
W), Wi, [Wir), rto)] || (2:20)

Finally, to return to the Schrodinger picture we see from equation 2.24 that we can apply

the time evolution operator of the unperturbed Hamiltonian Ug(t,to) on the left and
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Ul(t, o) on the right of both sides of the previous equation, resulting in [27]:

pt) = p© +Z(——) /dTn/ ATns.. / dn

Uo(t, o) [W,(Tn), [W,(Tn,l), [Wl(ﬁ), ﬁ,(to)] H Tt t). (2.30)

We emphasise that in this equation the perturbation of the Hamiltonian remains in the
interaction picture and therefore contains time evolution operators implicit wherever it
appears. We have also used the notation p(*)(¢) to represent the density matrix of the
system if the perturbation Wl(t) is not present, as it is the first term of a series expansion.

Applying this notation to all other terms we can write for equation 2.30:
i) = 1010+ 37 231)

where p(™(t) is the n'"-order density matrix and it contains n interactions with the per-

turbation W;(t).

2.3 Connection to non-linear optics

Our discussion so far was quite general in the sense that no assumptions were made
about the time-dependent perturbation — the only one was that it is weak enough so that
the eigenstates of the non-perturbed Hamiltonian can still be used as a basis set. Now we
want to consider the case in which the time dependent perturbation is an electromagnetic
wave. If the wavelength is much larger than the size of the quantum system we are
describing and if the intensity is sufficiently low (but not to the point that quantum
treatment of the field becomes necessary), we can apply the dipole approximation, in
which the quantum system is considered a point dipole insofar as its interaction with
the electromagnetic radiation is concerned. Then, if the quantum system’s electric dipole

moment operator is /i and the electric field of the electromagnetic wave is F(t), we have:

W(t) = —aE(t), (2.32)
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where we are ignoring the vectorial character of both the electric field and dipole moment
to simplify the equations, as careful treatment of the spatial components would divert the
attention from the key concepts we want to discuss. Here we remind the reader that the
matrix representation of the dipole operator j;; is such that the diagonal elements have
the contribution of each eigenstate to the system’s permanent dipole moment, whereas the
off-diagonal elements (i # j) are related to the light-induced transition from eigenstate i to
eigenstate j, with |u;;|? being proportional to the oscillator strength of this transition [27].
Substituting equation 2.32 into equation 2.30 we get:

p(t) = pO(t) — g (-%)n /t: dr, /tOTn dr,_q... /tf dn E(1,)E(Th_1)...E(11)

Uo(t, to) [ (), (i1 (7)), - [ (1), pr(to)] -] U (¢, o). (2.33)

In this equation we see that the n'® term of the expansion contains the electric field n
times, which is very similar to the way in which the macroscopic polarization P induced

in a material system by an applied electric field is described in non-linear optics [107]:
P=¢(xVYE+xPEE+Xx®EEE + ... (2.34)

In order to make a connection between equations 2.33 and 2.34 we can use the fact that
the macroscopic polarization is an observable given by the expectation value of the dipole
operator, which we can write by substituting the density matrix from equation 2.33 into

equation 2.9, which gives:
P(t) = Tr(pp(t))

_ <ﬂﬁ<o>(t)>_n§; (_%Y/t:dfn/t:n drn_l.../tj dn E(r2)E(To1)-..E (1)

AU (¢, to) [fur (), [ (Tar), - [t (71), pr(to)] ...]] Ag(tat0)> . (2.35)

If we assume that p;(to) is an equilibrium density matrix which does not evolve under H,
we can make t; — —o0, and note that in this case the interaction picture is the same
as the Schrodinger picture, allowing us to drop the ‘I’ subscript. We can also use the

invariance of the trace under cyclic permutations and note that UJ (¢, to)aUo(t, to) = jis(t).
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Consequentially we can write the n*® term of the sum (which corresponds to the n*®-order

polarization) as:

p(")(t) - _ (_%)n /; dr, /; dr,_1... /: dr E(1,)E(Th-1)...E(T1)

(r() [ (Ta), [ (7o), - [ (1), p(=00)] . ]]) . (2.36)

Further, because we want to consider spectroscopic techniques with multiple pulses (per-
turbations), it is convenient to make a change of variables from absolute time to time

intervals:

’7'1:0
th=m—7

t2 = T3 — T3 (237)

tn:t_Tna

as these time intervals are quantities we can experimentally control in multiple pulse
spectroscopic techniques. To convert equation 2.36 to time intervals we merely substitute
each variable, making sure to calculate the integral extremes and the differentials. For
instance, for the integral in d7,, we compute the new extremes by noting that when 7, = ¢,
then t, = 0; similarly, when 7,, — —oo, then t,, — +o00. Finally, dr,, = —dt,, because
t is not a function of 7,,. We note that the negative sign acquired when converting the
differential is canceled by the minus sign which arises from the change between upper and

lower integration limits. Applying this procedure to all new variables we obtain:

P(”)(t):—(—%) /0 dtn/o dtn_l.../o dt,

E(t —t)E(t —ty —ta1). Bt —ty — ty_1 — ... — t1)
(ir(tn +tn_1+ ... +t1) [ (tno1 + oo + 1), ... [27(0), p(—00)] ...]) . (2.38)
In equation 2.38 it can be seen that the macroscopic n'"-order polarization is just

a convolution of n electric fields (which are the only terms in the integrals that are

a function of ¢) with the term inside the brackets containing the nested commutators,
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which is function of the n time intervals. This is very similar to equation 2.34, which
shows the expansion of the polarization in terms of the susceptibilities. Susceptibilities
are defined in the frequency domain however, and clearly what we have in equation 2.38
are their time domain equivalents, which are called the response functions R™ (t,, ....t;).

We can thus write:

Pt / dt, / dt, 1. / dt,

E(t —t)E(t —ty, —ty1)..E(t —t, —tyq — ... —t;)R™(tn, ... 11), (2.39)

which is the n'"-order nonlinear response function. We note in equations 2.39 and 2.40 that
the n'-order macroscopic signal emitted by the system results from n interactions between
the density matrix and the fields. The transitions induced by the electric fields are taken
into account in the nested commutators, while the temporal information of the electric
field used is accounted for through the convolution integrals. We emphasize that the dipole
operator outside the nested commutators plays a different role than the others, as t,, is
the time interval between the n'® perturbation and ¢, which means that no perturbation
takes place during this interval. Thus, fi(t, + t,—1 + ... + t1) represents the field emission
from the non-equilibrium density matrix which resulted from n previous interactions with
the perturbation. We also point out that causality requires that R™(t,,...,t;) # 0 only
ift; >0V ie{l,..n}, and that all even-order response functions are zero for isotropic

media as a result of symmetry [110].

2.4 Linear response function

Having made the connection between the quantum-mechanical description of a system
and macroscopic observables from non-linear optics using perturbation theory to write the

n'-order response function, we now aim to develop a physical picture for these results.
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To that end, we will discuss the first-order (linear) response function in this Section,
before proceeding to the non-linear third-order response function, which is the basis for
the 2D-ES experiments. To write the linear response we make n = 1 in equation 2.40,

resulting in:

RO (1) =~ (1) [ 0), p(—o0)]) (2.41)

The macroscopic first-order polarization is:

PU(t) = / " abB(t - t)RO(1). (2.42)

Going back to equation 2.41 and expanding the commutator, we obtain:

(2PN . . . . .
RO () = 5 () (0)(—00)) = (ult)p(—o0)u(0))).  (2.43)
As an example, we want to calculate the linear response for a two level system inter-
acting with an optical excitation starting from equation 2.43. The eigenstates of ﬁo are
(9 = (1 0) and (e| = (0 1), with eigenvalues E, and E, respectively. We also assume the

system starts in the ground state, that is:

p=o0) =lg)gl = | | (1 0)= . (2.44)

We also need to write the transition dipole operator in the interaction picture. First, we

remember that in the Schrodinger picture:

0 e
fieo (2.45)

>
I

feg O

To convert it to the interaction picture we can use equation 2.26. That requires evaluating

et for the two level system, which we can compute using [23,106):

etiflot — |g) oot (g| 4 |e) eXiEet (e] . (2.46)
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Carrying out these operations, we obtain:

0 /lege_%(Ee_Eg)t

17(t) = . 2.47
fir(t) uege%(EFEg)t 0 ( )

From this expression we can obtain both fi;(¢;) and ji;(0), which we need for equation
2.43. At this point we have the matrix representation of all the operators on the right-hand

side of equation 2.43, and we start by computing /i;(0)p(—o0):

jr(0)p(=o0) = ju(0)l9)lal = peg e} gl = ). (2.48)
freg O

We can interpret this term in the following way: at time ¢ = 0 the external electric field
perturbs the equilibrium density matrix p(—o0). We remind the reader that the density
matrix is the sum of the unperturbed matrix p(* (the zero order term) with the perturbed
density matrices which we can compute order by order (see equation 2.31), and now we
are in the process of computing the polarization generated by the perturbation up to first
order. Equation 2.48 shows that the first order effect of the external electric field is to
generate an off-diagonal element in the density matrix (a coherent superposition between
excited and ground states). We now can complete the calculation of the first term inside

the trace in equation 2.43:

e . e i EeEan g

(11 (1) fur(0)p(—00)) = (fur(t:)peg l€){gl) = T [~ . N (2.49)
where we have used equation 2.47 to obtain fi;. The interaction between the density
matrix and the second dipole operator in equation 2.49 includes two parts of the light-
matter interaction sequence: the first is the propagation of the non-equilibrium density
matrix generated by the external electric field at ¢ = 0, which takes place during t; —
the time interval after the interaction between the system and the perturbation. During
this time interval the perturbation no longer interacts with the system, so its propagation
in time is determined by the undisturbed Hamiltonian. The second step arises from the

transition dipole operator itself, which takes the coherence generated by the perturbation

in equation 2.48 back to a ground state population, and corresponds to the signal emission.



CHAPTER 2. THEORETICAL FRAMEWORK 30

In equation 2.43 we need the trace of equation 2.49, which is simply pgge*iﬁ(Eng)tl.

To finalize the calculation of the linear response we need to compute the second term

inside the brackets in equation 2.43:

(fir(t1)p(—00)fir(0)) = (p(—o0)iir(0) i (t1))

p,erEE

= (lg) (€l pegitr (t2)) = Tr (2.50)

0 0

At this point, it is interesting to note that the physical interpretation of this term is
the same as that from equations 2.48 and 2.49, with the sole difference being that the
dipole operators are acting on the bra of the density matrix instead of the ket. To clarify,
the term (fi7(¢1)fr(0)p(—00)) describes processes in which the density matrix follows the
pathway |g)(g| — |e){(g| — |g){g|, while the term (p(—o0)pi;(0)fis(t1)) corresponds to
the pathway [g)(g| — |g)(e| — |g)(gl-

Indeed, both terms in equation 2.43 corresponded to the same process for the follow-
ing reasoning. Because both the transition dipole moment and the density matrix are
Hermitian, p(—00)/;(0) = fih(0)p7(—00) = (j11(0)p(—00))!, so these terms are just the
Hermitian adjoint of one another, and thus the underlying physical processes must be the
same. The dipole operator representing the signal emission appears inside the trace, so
due to the trace’s invariance under cyclical permutations it can also be pictured as acting
on the bra (see second equality in equation 2.50), and hence the symmetry between the
two terms in equation 2.43 is complete.

Finally, to conclude the calculation of the linear response we substitute equations 2.50

and 2.49 into equation 2.43:

= %/H’gg <65(E6—Eg)t1 _ G_E(Ee—Eg)h) = %Mgg sin (Wegtl)a (25]_)

E.—E,
n

where we, = . Here it is worth noticing that the term e et corresponds to the
interactions with the ket, while the term e“es!* corresponds to the interactions with the
bra. The linear response is a macroscopic property of the system and although it has been

defined under the framework of semi-classical perturbation theory, it is independent of the
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actual perturbation. It is only when we compute the macroscopic first order polarization
through equation 2.42 that we need to take the actual form of the electric field into
account, which is done via the convolution with the linear response function. In order to
describe the oscillatory external electric field, if w is the field’s angular frequency, we can
write:

2F'(t) cos(wt) = E'(t)(e ™" + ") = E(t) + E*(t). (2.52)

In equation 2.52, E'(t) is the envelope of the electric field, which determines its tem-
poral duration, while the cosine gives the temporal oscillation. We are following the con-
vention that the time-domain electric field is a real function, but it is useful to separate
it into its positive and negative complex exponential components. Also, we have defined
E(t) = E'(t)e”™" because a forward propagating wave is usually written as cos(k - x — wt)
(we note that cos(—k-x+wt) also propagates in the direction of x; a counter propagating
wave has both the spatial and temporal terms with the same sign). Substituting equations

2.52 and 2.51 in equation 2.42 we get:

i 2 00 . . .

PU(t) = % U B'(t —ty)e 070 (memiertt 4 gleatt)dty 4

0
Lt / E/(t . tl)eiw(tftl)(_efiwegh + eiwegt1>dt1:|

0
i1 ' 00 , )
_ % |:€—zwt/ E/(t . tl)(_e—l(weg—w)tl + ez(Weg-i-w)h)dtl + ...
0

e / E'(t —t))(—e iweotelt o ei(W59”)t1)dt1} . (2.53)
0

At resonance, w = w,, and we have:

i, [ o0 .
PW(t;wey) = *;;g {e—“@t/ E'(t —ty)(—1 4 e¥@est)dty + ...
0

.+ e"“egt/ E'(t —t))(—e 2westt 4 1)dt1} : (2.54)
0

We note that we wrote equations 2.53 and 2.54 keeping the term corresponding to
the interaction with the ket on the left and the one corresponding to the interaction with
the bra on the right hand side of the square brackets in all integrals. Also, the first
integral corresponds to an interaction between the system and FE(t), while the second

integral corresponds to an interaction between the system and E*(t). Looking at the first
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Figure 2.1: Liouville-space pathways for the linear response of a two-level system of ground
state |g) and excited state |e). The vertical arrow represents time, and each horizontal line
marks a time in which an interaction between the field and the systems takes place. The
density matrix at each stage is written between two vertical lines, and the electric field of each
interaction is represented by an arrow connecting to the density matrix. Arrows corresponding
to E(t) = E'(t)e!&*=%t point to the right, while those corresponding to E*(t) point to the left.
On the top of each pathway its corresponding term in the first order polarization is written.
The pathways that survive the rotating wave approximation are enclosed in dashed boxes.

integral, we note that the the term e?“est inside the square brackets oscillates rapidly
between positive and negative values as a function of ¢, and therefore the contribution
from this term to the total integral is much smaller than the contribution from the —1
term. FExactly the same reasoning applies for the second integral, and neglecting the
rapidly oscillating terms results in adopting the so called rotating wave approximation.
Interestingly, we also see that the first integral results in a e ™es! polarization and has
its amplitude arising from the term of the response function that interacted with the ket,
while the second integral results in a et™es? polarization and has its amplitude arising
from the interaction between [i(0) and the bra.

So far, we have seen that during the calculation of the first order polarization we
managed to physically interpret the terms in the equation based on specific field-matter
interaction sequences, although doing so is cumbersome with all the explicit equations.
There is a more convenient diagrammatic way to account for these interactions, which
is very useful when we want to assess which field-matter interaction processes generate
signals in spectroscopic experiments, which is shown in Figure 2.1 and described next.

We have seen that from the linear response function alone the processes involved in
the first-order interactions of a two level system with an external oscillatory electric field
are [g)(g| — le){(g] — [9){gl, and [g){g] — [g)({e] — [g){g|. Therefore, if we draw
a vertical axis to represent time, we can draw this sequence of density matrices from
bottom to top. To finalize representing the macroscopic signals generated from this we
just need to incorporate the external field. Regarding this, we have learned that for a

k-x—wt)

density matrix starting in |g)(g| an electric field E(t) = E'(t)e! resonant with the
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transition interacts with the ket, while its complex-conjugate E* interacts with the bra, in
both cases generating an excitation. Thus, we can represent F(t) with an arrow pointing
to the right and E*(t) with an arrow pointing to the left.

The resulting diagrams shown in Figure 2.1 are called Liouville-space pathways or
double-sided Feynman diagrams (and sometimes, informally, Feynman diagrams) and
as an example we will interpret the diagram (a) from Figure 2.1. At time ¢ = 0 the
system, which was initially in equilibrium in the ground state |g)(g|, interacts with the
perturbation E(t) = E'(t)e’®*~*! which is represented by an arrow pointing to the right
and connecting to the density matrix at the ¢ = 0 horizontal line. Because the arrow is
pointing towards the density matrix, it corresponds to an excitation, and in the case of
the two level system we are considering, it has to be from |g) to |e), and it is implicitly
assumed that the external field is resonant with this transition. Because we are looking
at the first-order polarization, all signals will arise from a single interaction between the
system and the external field, and after the specific interaction we described the density
matrix is left in a |e)(g| coherence. The time interval ¢; is defined as the interval between
the first and the second interactions, so because in a first order process there is a single
interaction, it extends to infinity in our case. Therefore, the density matrix will emit the
signal from the |e)(g| coherence it was left in after the interaction, returning to |g)(g|,
and this is represented by a dashed arrow.

The pathway (b) from Figure 2.1 arises from the same term in the response function,
but the interaction is with £E*(t), and we showed in equation 2.54 that the term corres-
ponding to this interaction is negligible in the rotating wave approximation, and in the
diagrammatic picture we just developed this can be observed in an intuitive way. This
double-sided Feynman diagram corresponds to (fi(t1)i(0)p(—o0)) E*, so the transition
dipole operator at ¢t = 0 interacts with the ket of the density matrix (as it is acting on the
left). For the two level system, the only possibility would be to take the density matrix
to |e){(g|, but the conjugate field E* excites bras and de-excites kets. Therefore, because
the initial ket is in the ground state and it cannot be de-excited, no signal is expected
from this diagram, matching with our discussion following equation 2.54 and the rotating
wave approximation.

The pathways (c¢) and (d) are exactly analogous, with the difference being that they

are the adjoints of (a) and (b) respectively, representing exactly the same field-matter
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interactions. Therefore, there is no need to represent pathways (b) and (d), as they cor-
respond to negligible macroscopic signals, and we only need to represent one of pathways
(a) and (c). The convention is that we only draw double-sided Feynman diagrams for
which the signal emission is from the ket, which correspond to transition dipole operator,
and the existence of a complex conjugate is implicit, as both reflect the same physical
processes.

Now that we have related the equations to the diagrammatic representation of the
Liouville-space pathways, we note that the could have written the diagram (a) from Figure
2.1 in a more intuitive way. We start with the following constraints: p(—o0) = |g){g|,
we will consider only resonant pathways (that is, the ones which fulfill the requirements
of the rotating wave approximation), the signal emission must happen from the ket and
leave the system in a population state, and we are considering first-order processes (that
is, a single field will interact with the system). Bearing this in mind, we can draw all
combinations of arrows for the electric field and the density matrix which results from
that interaction, which will finally lead to all possible pathways. For the first interaction,
we see that if it happens from the ket, it requires that it is an arrow pointing to the right
(which excites kets or de-excites bras and has a phase of e!<*=%%)  Excitation of the
ket takes the density matrix to |e)(g|, and the signal emission happens from this state,
accumulating the phase and wavevector from all previous interactions (which is a single
one in this case). This is the pathway (a) in Figure 2.1.

Using these rules it is intuitive not to include the pathways (b) and (d), because
it makes no sense to de-excite the ground state, so the rotating wave approximation is
easily included by only drawing resonant interactions. And finally, we can start drawing
a diagram with the first field interacting with the bra and taking it to the excited state,
as in (c), but then the signal emission happens from the bra, indicating that this is the
complex conjugate of another pathway, and thus needs not be drawn. Although this
picture might not seem particularly useful for the linear response, we note that it brought
a concise representation of the physical process taking place, from which we know the
phase and wavevector of the exciting field and of the emitted signal, and we will see in
the next Section and throughout this thesis how this can be very helpful when considering

higher order experiments.
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2.5 Third-order nonlinear response

Having computed the linear response function for a two level system, we now proceed to
consider the non-linear response functions. For isotropic media, all even-ordered response
functions vanish due to symmetry requirements (if the orientation of the field is reversed,
then the orientation of the induced polarization must also reverse, which does not happen
if the field is multiplied an even number of times) [110]. Therefore, the lowest order non-
linear response function in the electric dipole approximation for isotropic media is R®)

which we will discuss in this Section. We start by substituting n = 3 in equation 2.40:

RO(ts, tg, 1) = — <%Z> (fur(ts +to +t1) [fur(ta + 1), [ (t1), [21(0), p(—00)]]])

= % (fors [fra, [, [foro, p(—00)]]]) (2.55)

where in the second line we use a shorthand notation, dropping the temporal variables and
displaying the functional dependence of the dipole operators with an index corresponding
to the last time interval present. Expanding the commutators and rearranging the terms,

we get:

—00)firofirz fir2firop(—00) fir1 firs
—00 fir forop(—00) firafirs

+
)itroftn + . (2.56)
+

) — (i )
) — (i )
—00) fir1fir2) — (fir2fir1 p(—00)firofirs)
) — {p(—o0)fi )

(=

I3ﬂ[2ﬂ]1ﬂ]0ﬁ( )

>

1oflr flr2fir3

)

where we have written the term corresponding to signal emission from the ket on the
left and those with emission from the bra on the right, so that each line contains one
term and its complex conjugate. We have also used the invariance of the trace under
cyclical permutations to write fi;3 on the right for the terms emitting from the bra. In
the literature the different terms of this equation are frequently labeled R,, but some
authors use a € {1,2,3,4} [23,116], while others use o € {1,2,3,4,5,6} [27] — the latter
being more commonly used in the infrared community to include three level systems,

where excited state absorption pathways are possible. These notations are inconsistent
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with each other — for instance, R3 corresponds to an excited state absorption pathway
in the infrared notation and to a ground state bleach pathway in the visible. Moreover,
although we have so far ignored spatial components, in reality the third-order response
function is a fourth-rank tensor (so that its product with three electric field vectors is a
vector), and therefore a representation of its components would require 4 indexes. Hence
it is confusing to introduce subscripts to refer to parts of the response function, each
of which is still a fourth-ranked tensor, the components of which we are not treating
explicitly. Nonetheless, as we saw in Section 2.4, each term in equation 2.56 corresponds
to a different pathway, so we will introduce the notation in spite of the above mentioned
caveats, hoping this paragraph is enough to clarify potential sources of confusion to the
reader. We follow the convention from references [23,116] to define the terms on the left

of equation 2.56 as:

13ftr0p(—00) fur1 fira)

Do
ot
oo

[\]
at
Ne)
~—  ~— ~—

Ry = <ﬂ (
Ry = (fur3fir1 p(—00)firofira) (
Rs = (fur3fir2p(—00)firofir) (2.
Ry = (jigsfirafiri fliop(—00)) - (

Similarly to the linear response function described in Section 2.4, each of these terms
describes a pathway of the system’s density matrix, which we can read from the order in
which the transition dipole moments act on the density matrix. However, the effect of the
transition dipole operator acting on the density matrix depends only on the eigenstates
of the Hamiltonian and allowed transitions, but the spectroscopic signals we measure
depend on the electric field actually being resonant to these transitions, which is taken
into account in the convolution integral between the response function and the electric

field. From equation 2.39, we have for the third-order polarization:

P®(t) :/ dtg/ dtg/ At E(t — t3)E(t —ts — to)E(t — ts — ty — t) R (t3, 1o, ).
0 0 0

(2.61)

If we assume that the total electric field consists of three laser pulses (the case in the

2D-ES experiments we describe throughout this thesis), we can write:

E(t) — El(t)<€iw1t T efz'wlt) 4 Eg(t)(eimt 4 ef’iUJQt) 4 E3<t)(eiw3t 4 e*iwgt)’ (2.62)



CHAPTER 2. THEORETICAL FRAMEWORK 37

and we see that the product between the electric fields and the third-order response func-
tion contains 6 X 6 X 6 X 4 = 864 terms contributing to the third-order macroscopic po-
larization. Recalling that in Section 2.4 explicitly calculating the linear response function
became cumbersome, and only four terms contributed, we conclude that computing the
third-order response function on those same general terms is not an option. In practice,
we know that we need to consider only the terms that satisfy the rotating wave approx-
imation, and in real life experiments with ultrashort laser pulses we shall see that the
well-defined time order between them and their phase matching conditions will determine
which contributions are ultimately relevant.

If the external electric field consists of three laser pulses in the semi-impulsive limit,

we can write:

Ei(t) = |Ey|6(t) (ei(k1~x—w1t+¢1) + ei(—k1~x+w1t—¢1)) (2.63)
E, (t) = |E2|5(t — tl) (ei(kz'X—WQt+¢2) + ei(—k2~X+w2t—¢2)) (2.64)
Bs(t) = |Es|0(t — t1 — to) (e/koxmwstts) 4 pil~kaxtwsi=da)) (2.65)

In this case we have a definite time order (E; is followed by E,; and then E3) so we
know that the first interaction fi;(0) happened with Ej, the second (jis(t1)) with Es,
and the third (f;(t2 — t1)) with E3. Therefore, time ordering generates a drop from the
6 X6 x6x4=3864terms to 2 X 2 X 2 x 4 =32 in equation 2.61.

The rotating wave approximation further reduces the number of terms. To see how
that is, we consider R, for example, for which we see in equation 2.58 that f[i;g acts
on the equilibrium density matrix from the right (that is, acts on the bra). We take
p(—o0) = |g){(g|, so the only resonant option is for the transition dipole operator to
excite the bra, corresponding to an arrow pointing to the left and leading to |g){e|. We
saw in Section 2.4 that it is the conjugate field that excites the bra, so in this step we
are intuitively including the term e!(-k1*+«1t=¢1) from equation 2.63 and neglecting its
conjugate.

We proceed to the next transition dipole operator fi;;, which acts from the left in
equation 2.58 (therefore, on the ket), interacts with E, and finds the system in |g)(e|.
Thus, the only resonant option is that the ket is excited and the resulting density matrix

is |e)(e|, an excited state population. We saw in Section 2.4 that the non-conjugated
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field excites the ket, so we are selecting for the second pulse the term e’z x—w2t+2) from

equation 2.64.

R, R, R, R,
bttt | |9l [ l9Xgl I lg)gl " laXgl
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Figure 2.2: Liouville-space pathways that survive the rotating wave approximation and generate
significant third-order polarization.

Finally, the third time interval starts when fi;5 interacts with the bra, as it is acting on
the right in equation 2.58. The bra is in the excited state, and because we are considering
a two level system, the only resonant option is to de-excite it back to the ground state
taking the density matrix to |e)(g|. Once more, from Section 2.4 we know that it is the
non-conjugated field that de-excites the bra, so we have selected the term ei(ksx—wst+és)
from equation 2.65. At this point, all three interactions with the external field have taken
place and the density matrix was left in a state for which the signal emission happens
from the ket, returning the system to a |g)(g| ground state population. Hence, through
this process we have seen that one single Liouville-space pathway results from the term
R in the third-order nonlinear response function (equation 2.58), and its diagrammatic
representation can be seen in Figure 2.2. If we apply this same systematic procedure to
the other terms in the response function (equations 2.57, 2.59 and 2.60), we find that for
each a single resonant pathway survives, and they are all shown in Figure 2.2.

Having established the Liouville-space pathways that generate significant third-order
polarization contributions, we will now move on to present the principles of two-dimensional
spectroscopy, which is the focus of this thesis, and later return to the Liouville-space path-

ways in this specific context.

2.6 Principles of 2D spectroscopy

In this section we shall briefly present the basic theory of 2D spectroscopy, which has
already been detailed in the literature [14,116,117]. As briefly discussed in Chapter 1,

2D-ES is a third-order nonlinear optical technique that employs three distinct pulses in
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order to generate a correlation map between excitation and detection frequencies, in much
the same way as multidimensional nuclear magnetic resonance techniques. In the context
of the third-order response function theory laid out in Section 2.5, this means that within
the limits of experimental pulse duration the time intervals are well defined and each

field-matter interaction happens with a different pulse.

=
~
-

Time

Figure 2.3: Pulse sequence of a two-dimensional spectroscopy experiment in the semi-impulsive
limit. The time interval between the first and second pulses is labeled 7 and called the coherence
time, while the one between the second and third pulses is labelled T' and referred to as the
population time. The time interval following the third pulse corresponds to the signal emission,
thus being called emission or detection time, and is represented by t.

The pulse sequence employed in a bidimensional measurement is shown in Figure 2.3,
which we will now discuss in terms of the four double-sided Feynman diagrams from
Figure 2.2. As usual, the representation in Figure 2.3 has time running from left to right,
so that the more to the left a pulse is drawn the earliest it arrived at the sample. In all
of them, the system starts from an equilibrium density matrix in the ground state |g){g|,
and the interaction with the first pulse takes the system to a coherence, marking the
beginning of the first experimental time interval. We name the time interval between the
first and second pulses the coherence time (traditionally labeled 7 instead of ;) because
the system is in a coherence (either |e)(g| or |g){e|). The fact that the system is in a
coherence during 7 implies that a macroscopic polarization is created as the system is
propagated under the undisturbed Hamiltonian, and it is called the free induction decay.

The arrival of the second pulse now brings the density matrix to a population (either
le){e| or |g){g|), so the time evolution during this period corresponds to the population
relaxation, which is usually modeled with one or more exponential decays. Formally

speaking under this level of treatment both |g)(g| and |e)(e| are stationary states and
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the theory predicts no relaxation, so we will ignore it for now. The system will remain
in the population state until the arrival of the third pulse disturbs it again, so the time
interval between the second and third pulses is called the population time, and is labelled
T, instead of ¢; +t5. Finally, for all four pathways in Figure 2.2, the third pulse takes the
system back to a coherence state |e)(g|, from where the density matrix will once again
propagate under the unperturbed Hamiltonian.

The third-order nonlinear response of a system is a complex-valued function of three
time variables and contains all the information a third-order technique can recover from
the system, and the ultimate aim of two-dimensional spectroscopy is to measure it ex-
perimentally. That requires scanning all time variables 7, T and ¢, although in practice
it is often more convenient to use a prism to disperse the emitted signal and detect the
frequency resolved signal in terms of the detection wavenumber 3. As for the coherence
time, it is usually scanned by experimentally controlling the temporal delay between the
first two pulses, which must be done with phase stability within a fraction of the cycle
of the excitation pulses, which is the main challenge in the experimental development of
2D-ES.

The main advantage of achieving this stability is that the data acquired for each T as
a function of 7 and 73 can be Fourier transformed over the first time period, resulting in a
correlation map between 7 and 3. Here 77 is the wavenumber corresponding to the co-
herence induced in the system during the first time interval, that is the wavenumber of the
first arrow in the double-sided Feynman diagrams, which is the excitation wavenumber.
This is of crucial importance, because in traditional one dimensional broadband transient
absorption techniques there is complete ambiguity about the excitation frequency of any
given signal measured at 73, as explained in Chapter 1. In terms of double-sided Feynman
diagrams, the same four diagrams from Figure 2.2 all contribute to the signal (for a two
level system), but there is no well defined time-ordering between the first and second in-
teractions, which happen with the same pump pulse. Therefore, the ability to recover the
excitation wavenumber in 2D-ES represents invaluable progress over the typical transient

absorption experiments.
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Phase matching

The technical details regarding the experimental recovery of the complex-valued third-
order polarization will be laid out in Chapter 3, but the discussion from the previous
paragraph raises a question we have not yet considered: in which direction will the third
order polarization signal be emitted? The answer depends on the spatial geometry of the
excitation pulses, and it can be read from the double-sided Feynman diagrams. Initially we
notice that from equation 2.61 we have that the electric fields are all multiplied together,
so considering they are given by equations 2.63, 2.64 and 2.65 in the semi-impulsive
limit, we can see that the overall phase acquired by the third-order polarization will
be eil(Fkitketlks)xtdri2t03) - Therefore, all contributions from equation 2.61 will have a
specific propagation direction among the +k; 4+ ks 4 k3 possibilities.

To know the direction corresponding to a given Liouville-space pathway all we need to
consider is whether the conjugated or non-conjugated field contributed to each interaction,
remembering that the conjugated field is E(t) = |E;|e” >~ and points to the left
in the diagrammatic representation. Thus, looking at Figure 2.2 we see that the diagrams
for Ry and R, have the second interaction with the conjugated field, while the other two
take place with the non-conjugated field, meaning that for them kg, = ki — ko + ka.
On the other hand, the terms R, and Rj3 interact first with the conjugated field and
then twice with the non-conjugated field, so the propagation direction of their signal is
kg, = —ki + ko + ks.

In practice, a 2D-ES experiment can be designed with many different incoming pulse
geometries, and care must be taken regarding which third order signals will reach the
detector in each case. One of the common geometries is the pump-probe geometry, in
which beams 1 and 2 are collinear, while beam 3 has an angle, which has the advantage
that k; = ks, from which it follows that the signal propagates in the k3 direction for all
pathways from Figure 2.2. Another common geometry is the boxcar geometry, in which
the beams focus on the sample starting from different corners of a square, which is the

geometry we use, and the phase matching will be described in detail in Chapter 3.

Rephasing and non-rephasing

For now we have noticed that the diagrams Ry and R3 always share a common propaga-

tion direction, which is also true for diagrams R; and R,, which raises the question of
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whether something else differs between them. In order to address this question, we will
follow the density matrix along the pathways R; and Rj3 writing the response at each
step. Starting with R;, we refer to equation A.3 and step by step apply the transition
dipole moment operators, propagate the density matrix and finally take the trace. We
note that there is no propagation during 7" because the density matrix is in a population

during this time interval. We have:

0 0 0 0

ifirop T | tfiropin | tiropprfire
0 0 1 0 1e”"WesT () 0 e "WegT
Q 0 t | 0 0 i{fr3firopfiriiirz) Z.efiweg(pﬂ—)‘ (266)
je"WesT () Z'e_ZWeg(t+T) 0
Conversely, for R3 we have:
s FiwegT
LOY s [0 2} - [0 €™ ipppp, (00 ifir pitrofirs
0 0 0 0 0 0 0 jetiwes
Q 0 ‘ | 0 0 s plrofir2) jo—iweq(t=T) (2.67)
jetiwesT 0 Z'e—zweg(t—r) 0

Comparing equations 2.66 and 2.67 we note that the former has a functional depend-
ence on t+ 7, while the latter has a functional dependence on ¢t — 7. This is a consequence
of the fact that in equation 2.66 the initial excitation happens on the ket, and thus the
time propagation during the following time interval is e=®e¢7  while in equation 2.67 the
initial excitation is on the bra, for which the time propagation is e™™e7. To assess the
consequences of this, let us consider that the ensemble of molecules generating the macro-
scopic signal presents inhomogeneous broadening, i.e., different molecules in the ensemble
absorb light at slightly different wavelengths, reflecting the fact that they are experiencing
different environments. If the distribution of transition frequencies due to the inhomo-
geneous broadening can be described by a Gaussian, then the response functions for the

broadened system will be the convolution of this Gaussian with the results from equations
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2.66 and 2.67:
. —(weg—Teg)® (t+7)
Ry — i [ dwege™ 2807 g WealTT (2.68)
. —(Weg—@)2 s (t— )
Ry — 1 | dwege™ 2807 g WeaTT) (2.69)

where Aw? is the width of the Gaussian distribution of frequencies and g, is its average.

Using the convolution theorem, we obtain:

2 2
—iweq (t+T) e %

Ry xie (2.70)

7Aw2(t77')2

Rs o< ie et g2 (2.71)

Here we see that a major difference arises due to the presence of the second exponential,
the argument of which is real. In equation 2.70, as ¢ increases from zero to infinity, the
second exponential monotonically decreases towards zero. However, in equation 2.71, the

argument of the second exponential starts from =2<°7°

at t = 0, and increases to 0 at
t = 7, where it has a maximum, and then decreases as t > 7. Therefore, the macroscopic
polarization has a maximum for ¢ = 7, which is known as a photon echo.

The interpretation of the photon echo is that the first pulse creates a macroscopic
alignment of many individual dipoles forming a |g)(e| coherence. These individual dipoles
are experiencing different environments, so they rapidly dephase following the initial pulse.
The third pulse then interacts with the system to create a |e)(g| coherence, which is
the adjoint of the one present in the first time interval, and therefore has the opposite
temporal evolution to the first. This means that the dephasing of the |e)(g| coherence
during ¢ exactly cancels that of the |g)(e| during 7, such that at ¢ = 7 the individual
dipoles are in phase again, a process which is called rephasing. Therefore, the pathways
Ry and Rj3 are called rephasing pathways, while the pathways R; and R4 are called non-
rephasing pathways, as the signal they generate is analogous to a free-induction decay.
In experimental implementations of 2D-ES they can be measured separately either by
using the different phase matching or the different phase between them, which we will
discuss in Chapter 3. For now, we simply emphasize that complex-valued rephasing and
non-rephasing signals can be experimentally recovered separately.

Up to this point we have laid out the basics of semi-classical perturbation theory
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using the density matrix, developed a diagrammatic approach to systematically obtain
the pathways that generate significant signals in non-linear experiments of any order,
presented the concept of two-dimensional spectroscopy along with some of its advantages
and discussed the difference between rephasing and non-rephasing signals in the third-
order case. The focus of this thesis is on 2D-ES of coupled electronic transitions, and we
study the case of vibrational coupling in detail. Therefore, the remainder of this Chapter
is devoted to discuss 2D-ES of coupled systems using the formalism of the double-sided

Feynman diagrams as described above.

2.7 Coupled systems

In molecular systems it is usually the case that electronic transitions are coupled to
nuclear vibrational modes. As a result, the energy-level structure of a two level system
becomes more complex, as a ladder of vibrationally excited states is coupled to both
the ground and electronic excited states, which are represented in what is known as
the displaced harmonic oscillator model. In that model, the electronic excited state is
pictured as being displaced relative to the ground state as a function of the vibrational
coordinate ¢, and optical excitation is considered to take place preserving the value of
q (see Figure 2.4a). The presence of these extra energy levels adds many more third-
order pathways than the four found in a two level system, and in this section we will
describe them. In Figure 2.4b we also show the energy level structure of a three level
system where the two electronic excited states have similar energies, which is similar to
what arises when excitonic coupling is present between two chromophores [118], a case of
wide interest [46,95,119]. In this Section we will extend the third-order Liouville-space
pathways from Section 2.5 to both cases in Figure 2.4 and discuss the implications in

2D-ES measurements.

2.7.1 Vibrational coupling

In this Section we will use the Liouville-space pathway approach to discuss the most
important third-order signals which arise from broadband laser excitation of an energy
level structure such as that from Figure 2.4a. The energy shift between any two different

neighbouring sub-levels is equal in energy if the nuclear potential is harmonic, and we
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Figure 2.4: (a) Scheme of the energy levels for an electronic transition coupled to a vibrational
mode, along with one possible third-order pathway. (b) Energy level scheme for a three level
system, with two electronic excited states of similar energy, along with one possible third-order
pathway. In this representation of the pathways time runs from left to right, the signal emission
is represented by a dashed arrow and we are not including notation to indicate whether each
interaction happens with the bra or the ket.
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will assume that electronic transitions between any two sub-levels are allowed. For dif-
ferent molecules different transitions between sublevels are favored, but for the examples
studied in this thesis 0-1 transitions dominate. If we assume that the vibration’s energy
is significantly larger than kg7, then most of the population will start from the ground
state |go){go|. Thus, it is reasonable to draw the double-sided Feynman diagrams for a
4-level system (consisting of the two lowest sub-levels in the ground state and the two
lowest in the electronic excited state) and use them as a guide regarding what features
can be expected in 2D signals from this system.

In order to draw all resonant double-sided Feynman diagrams, we first notice that the
starting point still is equation 2.56, with the main difference being that the transition
dipole operators have more transitions available in the four level displaced harmonic
oscillator system than in the two level system from Section 2.5. In this problem of higher
dimensionality, it is more convenient to write the double-sided Feynman diagrams than
to carry out all operations such as in Section 2.4 with 4 x 4 matrices. We will assume
that the laser spectrum is such that transitions between the ground and electronic excited
states are covered among any pair of the lowest sublevels of each, but that the transition
between different sublevels on the same electronic state is not covered. We consider that
the system starts in the ground state |go)(go| and follow the transition dipole operators
in each term of equation 2.56, considering all possible resonant transitions. It helps to

realize that all resonant transitions are still going to be between the two electronic states,
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so effectively all new pathways are going to be similar to the ones from Figure 2.2, but

involving different combinations of sublevels.
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Figure 2.5: Non-rephasing R; pathways for the displaced harmonic oscillator model. During
T the four pathways on the left are in an excited electronic state population, while the four
pathways on the right are in a vibrational coherence in the electronic excited state.
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Figure 2.6: Non-rephasing R4 pathways for the displaced harmonic oscillator model. During
T the four pathways on the left are in an electronic ground state population, while the four
pathways on the right are in a vibrational coherence in the ground state.

We can count how many pathways are expected considering R; from Figure 2.2, for
instance. We note that now the first interaction can correspond to an excitation of the
ket to either |eq) or to |e1), so there are two possibilities. The second interaction happens
with the bra and can take it either to (eg| or to (e1|, resulting in two more possibilities,
while the third interaction will then de-excite the bra to either (go| or to (g;| regardless of
the state in which it is in, giving another pair of possibilities. Finally the signal emission
must happen so that the final density matrix is a population, so only one option exists.
Therefore, we have 23 = 8 pathways corresponding to R;. This logic applies in the same
way for Ry, R3 and Ry, so in total we have 22 x 4 = 32 pathways. By systematically

accounting for all combinations we can draw all pathways, and the results are shown for
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the non-rephasing case in Figures 2.5 (R;) and 2.6 (R,), and for the rephasing case in
Figures 2.7 (Ry) and 2.8 (R3).
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Figure 2.7: Rephasing Ry pathways for the displaced harmonic oscillator model. During T the
four pathways on the left are in an excited electronic state population, while the four pathways
on the right are in a vibrational coherence in the electronic excited state.
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Figure 2.8: Rephasing R3 pathways for the displaced harmonic oscillator model. During T the
four pathways on the left are in an electronic ground state population, while the four pathways
on the right are in a vibrational coherence in the ground state.

Now that we have all the third-order pathways which will generate the macroscopic
signals drawn, we can analyze how their signatures on 2D-ES spectra will appear. To
do that, we start by making a connection between the double-sided Feynman diagrams
and the information we recover experimentally in 2D-ES. The excitation wavenumber 7
recovered in 2D-ES is the wavenumber corresponding to the first arrow in the double-
sided Feynman diagrams. Hence, for each diagram in Figures 2.5-2.8, the excitation
wavenumber is determined by the energy gap between the initial and final states related
to this interaction. The detection or emission wavenumber is similarly determined by

the signal emission dashed arrow in the diagrams. And finally the other experimentally

controlled parameter is the population time 7', and we are able to measure the third-order
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signal as a function of this delay, which will reflect the dynamics of the density matrix
during that period. The wavenumbers corresponding to the second and third arrows are
not directly accessible from the experiment.

In a displaced harmonic oscillator energy level structure for a vibrational mode of
wavenumber 7y, there are three different wavenumbers which can induce transitions
between the ground and electronic excited states of the system. These are 7.,, which
corresponds to the transitions |go) <— |eo) and |g1) <— |e1); ey + o, Which corresponds
to the transitions |go) <— |e1); and finally D., — 09, which corresponds to the transitions
|g1) <— |eo). This allows us to go through all of the diagrams and label them according to
the excitation and emission wavenumbers, hence locating where in the excitation-emission
plane (4, 3) that particular signal will be located.

Now that we know how to read the excitation and emission wavenumbers from the
double-sided Feynman diagrams, the final consideration concerns the last experimental
parameter, the population time 7". In Section 2.5 we saw that during this time period the
density matrix of a two level system is always in a population state, and thus the evolution
observed during this period is population relaxation. For the displaced harmonic oscillator
energy level structure however, the possibility arises that the first and second interactions
with the laser pulses take place at different wavenumbers, hence leaving the density matrix
in a vibrational coherence during 7'. In Figures 2.5-2.8 we have displayed the pathways
so that the ones for which the density matrix is in a population during T (referred to
as population pathways from now on) are shown on the left, while those for which the
density matrix is in a coherence during T' (referred to as coherence pathways from now
on) are shown on the right.

At this point, we need to address the question of how the presence of a coherence
during T affects the signal emitted. If the system is in a coherence during 7T, it will
propagate in time under the unperturbed Hamiltonian H,, which will result in an os-
cillation of frequency corresponding to the energy separation between the two coherent
states. Therefore, as the delay T is experimentally scanned, the macroscopic polarization
generated by these diagrams will oscillate in amplitude, thus creating beatings in 2D-ES
signals at the (71, 73) coordinate defined by the first and last arrows.

Moreover, we notice that there are four coherences to be found in the diagrams from

Figures 2.5-2.8: [g0){(g1], 191){g0|, |€o){e1] and |e1){eg|. Because the density matrix is



CHAPTER 2. THEORETICAL FRAMEWORK 49

Hermitian, |go){g1] = |91)(g0|", and so on. Therefore, if the coherence |go)(g:| modulates

the third-order signal as e™™7 then |g;)(go| will modulate the signal as e~®°T: one
oscillation will take place with a positive and the other with a negative frequency (which
we are representing in wavenumber units).

The difference between a positive and a negative frequency is the phase shift between
real and imaginary parts of the signal, as well as their relative amplitudes. A positive
frequency corresponds to an oscillation of the form et®°? = cos(vyT) +isin(vyT'), while a

—ivoT COS(VOT) —1 Sin(VOT)'

negative frequency corresponds to an oscillation of the form e
Moreover, a signal for which the imaginary part is zero contains an equal mix of positive
and negative frequencies (if f(t) € R, then FT[f(¢)](w) = FT[f(¢)]*(—w)). Because we
can measure both the real and imaginary parts of the third-order signal (see Chapter 3),
if we preserve the complex-valued 2D-ES maps we can differentiate between the coherence
pathways of frequencies with opposite signs, which we explore in Chapter 5.

For now, we will summarize the information from the diagrams in schematic (7, I’3)
maps, which we will build in the following way. First, we will draw rephasing and non-
rephasing maps individually, as we can separate them in the experiment. Every Liouville-
space pathway from Figures 2.5-2.8 will be represented as a geometric symbol, with squares
being used to indicate that the electronic population during 7" is in the excited state,
and triangles representing pathways for which the electronic population is in the ground
state during T'. Black solid symbols represent population pathways, while open symbols
correspond to coherence pathways, with green marking pathways that generate beatings of
positive frequency and red marking pathways that generate beatings of negative frequency.

These geometric symbols are sorted in the (7, 73) plane according to their excitation
and emission wavenumbers, as determined by the first and last arrows in the diagram-
matic representation. Because sometimes multiple diagrams are found at the same (7, 773)
coordinate, the symbols are drawn around this coordinate and inside a black circle, the
centre of which corresponds to the coordinate of all diagrams it encircles. As a result, we
have Figure 2.9.

Before we proceed, we emphasize two aspects from Figure 2.9. The first is the presence
of pathways in what is usually called the stimulated emission region (detection wavenum-
ber at ., — 1), which serves as a reminder that when a vibration is coupled to an

electronic transition, the emission can be red-shifted, leaving the system in a hot ground
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Figure 2.9: Scheme of Liouville-space pathways in rephasing (left) and non-rephasing (right)
2D-ES maps. Each geometric figure marks a pathway, with squares representing an excited
state and triangles representing a ground state population during 7. Black geometric figures
correspond to non-oscillatory pathways, whereas oscillatory ones are marked with open diagrams,
which are red if the corresponding frequency is negative and green if it is positive. The signal
corresponding to each geometric figure is centred in the black circle within which the figure is
contained.

state. Therefore, although signals can be detected at U3 = Uy — 9, no electronic state
exists at that energy. Instead, a sublevel associated with the ground state creates the
energy gap at that wavenumber. Thus, care must be taken when inferring the existence
of a state due to the presence of a 2D-ES signal.

The second aspect is that out of the three oscillatory pathways observed at the stim-
ulated emission region 3 = .y — Iy in rephasing maps, two of them correspond to vi-
brational coherences in the ground state during 7'. So although a tempting hand waving
argument can be made that if a signal is detected in the stimulated emission region, its
population time dynamics must have taken place in the electronic excited state, we have
just shown that coherent beatings in the ground state also generate contributions in this
spectral region. We do note however that the both population pathways with 3 = 7., —
have an excited state population during 7', so it is only for coherent pathways that the
argument breaks down.

Figure 2.9 will be discussed many more times throughout this thesis as the basis of
our experimental results, but for now we move on to discuss another relevant case of

coupling which shows similar signatures in 2D-ES to the ones we just described: the case
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of electronic coupling.

2.7.2 Purely electronic coherences

In this Section we show all Liouville-space pathways for the energy level scheme dis-
played in Figure 2.4b, which is a three level system with two distinct electronic excited
states |e/) and |€”) of similar energy. We are considering this as an abstraction from the
case of molecular aggregates, where dipole-dipole coupling between two chromophores can
lead to excitonic splitting of the excited state into two delocalized exciton states, and the
energetic separation between them depends on the strength of the coupling [118]. This
coupling is typically in the same range of frequencies corresponding to nuclear vibrational
modes [78]. In this specific case of dipole-dipole coupling giving rise to excitonic splitting
of the excited state, a double-exciton state is also formed at twice the energy of the excited
state of a single chromophore, thus differing slightly from the energy level scheme from
Figure 2.4b [95,98,118].

However, the focus of this thesis is on vibrational signatures observed in 2D-ES, and
the essential reason we are including the three level system is because we want to discuss
pathways in which an electronic coherence can be formed during 7', and all that is required
for that is the existence of two different excited states which can be accessed through the
interaction of the same ground state with light. Therefore, it is not relevant here whether
these excited states arose due to dipole-dipole coupling or merely because a molecule
happened to have such an energy level structure in the first place. Thus so we will stick
to this model and note that the extension to the aggregate with dipole-dipole coupling
has been described in the literature [78].

We can draw all double-sided Feynman diagrams for this energy level structure in the
same way as we have done in Section 2.7.1, and the results are shown in Figures 2.10
(rephasing) and 2.11 (non-rephasing). We note that the absence of a sublevel associated
with the ground state substantially reduces the number of pathways (from 32 to 16). That
is because of the three excitation fields, one of them has to cause a de-excitation (with
the second de-excitation being caused by the signal emission), and therefore at this step
of the pathways only one option is possible instead of two, thus halving the total number
of diagrams.

The scheme for the energy level structure analogous to Figure 2.9 is shown in Figure
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Figure 2.10: Rephasing Liouville-space pathways for the energy level scheme in Figure 2.4b.
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Figure 2.11: Non-rephasing Liouville-space pathways for the energy level scheme in Figure 2.4b.

2.12 and there are a few important differences between them. First, it is clear that the
2D signal contributions in the stimulated emission region disappear completely, as would
be expected intuitively.

The most important difference between Figures 2.9 and 2.12 regards the signatures
of coherent superpositions during 7. In the case of vibrational coupling, rephasing and
non-rephasing maps had 8 coherence pathways each, distributed around 5 different (7, 73)
coordinates. When there are no sublevels associated with the ground state, however, only
four oscillatory pathways in total are forecast, with diagonal oscillations being expected
from non-rephasing maps and cross-peak oscillations being expected from rephasing maps.

This observation shows that the presence of oscillatory features in the stimulated
emission region of a sample marks the presence of sublevels associated with the ground
state, therefore indicating a vibrational origin for the coherences. In conclusion their ab-
sence combined with oscillatory diagonal peaks in the non-rephasing maps and oscillatory

cross-peaks in the rephasing maps strongly points towards an electronic origin for the
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Figure 2.12: Scheme of Liouville-space pathways in a rephasing (left) and non-rephasing (right)
2D maps for the energy level structure shown in Figure 2.4b. See caption of Figure 2.9 for
details.

coherences generating those beatings. This result was first established in reference [85]

and used in reference [120].

2.8 Beyond the diagrammatic analysis

In real experiments each transition has a linewidth associated with it, so features in
real 2D-ES maps rarely look as sharp as the schemes above suggest. This has important
consequences. Amid the debate on how to distinguish between electronic and vibrational
coherences, some papers have reported that the phase of the oscillations in 2D-ES maps as
a function of excitation and detection could be used as a criterion [77,82]. For instance,
it was argued that a phase shift of 7 between diagonal and cross peak oscillations in
the FMO complex were evidence of coherent quantum transport effects (and therefore,
electronic coherence) [81]. Other studies on much simpler molecular systems have observed
interesting relationships between the relative phase of oscillations on 2D-ES maps. The
Scholes group has reported in a Thesis [84] what looked like a systematic phase variation
in the 2D-ES response of Cresyl Violet, which has its lowest electronic transition coupled
to a vibration; however no explanation or thorough description of the observations was
shown. Reference [86] also has studied both experimentally and theoretically phase shifts

between different oscillatory signals in the 2D spectra of a phtalocyanine monomer, but
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only shifts of 0 or m were forecast or observed. The main limitation of the approach in
reference [86] is the assumption that the absorption maxima related to the 0 —0 and 0 —1
transitions are clearly determined and sharp, which is very rarely the case in practice.

Our analysis of the third-order response functions and how they appear on 2D-ES
data up to this point has also relied on the assumption of well-defined energy. This was
convenient because it allowed us to develop the diagrammatic approach as a way in which
to systematically obtain the most important third-order signals for a given energy-level
structure, from where we can read the excitation and detection wavenumbers, as well as
see which state the density matrix is in during 7', which determines the dynamics of the
signal as a function of that time.

The theory of 2D-ES lineshapes has been widely discussed in the literature [27,66]. The
main focus of this thesis is on coherence pathways and the oscillatory features as a function
of T they generate in 2D-ES measurements, so we will not discuss 2D lineshape theory in
depth, but only note some key results. Rephasing and non-rephasing third-order signals
present what is called a ‘phase-twisted’ lineshape, which is a mix between absorptive and
dispersive, and arises from the Fourier transform of the coherence time variable of either
a rephasing or a non-rephasing signal, which was first noticed in 2D-NMR [17]. Because
rephasing and non-rephasing signals have the density matrix in coherent superpositions
which are the adjoint of one another, the phase-twist acquired by them is the same with
opposite signals, meaning that the real part of an equally weighted sum of rephasing and
non-rephasing signals R; + Ry + R3 + R4 has a purely absorptive character, while the
imaginary part is purely dispersive [121,122].

For our work, on the coherent oscillations in 2D-ES, our main concern is only to extend
the view from the double-sided Feynman diagrams, which predict oscillations at specific
coordinates, to a view which considers the broadening which inevitably takes place in
real systems. This problem has only been approached in a convenient way by Butkus
et al. in 2012 [78], quite a few years after the pioneering experimental studies which
observed persistent coherent oscillations in light-harvesting systems, and we will follow
their argument below.

The main idea is that if we neglect environment induced relaxation, the third-order

nonlinear response function R(7;,T,73) can be approximated by the sum of all resonant
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Liouville-space pathways experimentally detected:
R(ﬁlvT7ﬁ3) %ZRn(ﬂlaTaﬁ3)7 (272)

where each value of n corresponds to a different resonant pathway. Then, for each pathway,
as given by equations A.3—A.6 we apply the same procedure used for the linear response
function in Section 2.4. If the result for the j™ time interval is labeled G; and called the

propagator for the density matrix, and the signal of each pathway can be written as:
Rn(ﬂlyTa 773) = An // dr dt 6i2ﬂc(l)3t+l~/17—) [:l:G?,(t)GQ(T)Gl (T)](n) s (273)

where the two integrals correspond to the Fourier transforms to represent the response
function in excitation and emission wavenumbers instead of time and A, is a complex

prefactor determined by the transition dipoles. To proceed, we make the ansatz that:
Gj (tj) = e(tj)eiiejtjiwtj, (274)

where t; € {7,T,t}, 0(t) is the Heaviside step-function, -, is a phenomenological dephasing
constants and ¢; is the energy difference between the ket and the bra from the density
matrix for the pathway considered during the first, second or third time intervals (which
can be positive, negative or zero if the density matrix is in a population). In reference [78]
it was noticed that for 7, & v & 3 equation 2.73 can be analytically integrated, giving a
mathematical expression for the contribution of a single double-sided Feynman diagram

€1

as a function of (1,7, 73). Introducing the notation oy + 574 = 51, I3 + 52 = s3 (i,

s; are just wavenumber displacements from the center of that particular peak), the peak

amplitude profile obtained was:

T
Rn(s37 T7 81) - AnL(sh 83)6_7T COS (|62h|/ + (b(Sl? S3)) ) (275)

where L(sq, s3) is the lineshape and ¢(s1, s3) is the phase, which for the rephasing (upper

sign) and non-rephasing(lower sign) signals are given by:

_ VI Esiss +92(s3 F 1)

L(s1,s
N e ICEEE

: (2.76)
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s F 1) > (2.77)

®(s1,83) = sgn(eg) arctan (:F3133 — s

The most interesting feature about this result is that it predicts that each and every
oscillatory Feynman diagram contributing to the 2D-ES signal of a sample will oscillate
with varying phases as one moves away from the center of its contribution in the (7, 73)
plane. The implication is clear: whenever the electronic transitions overlap with one
another in the linear absorption spectrum (which is a very common case), then overlapping
oscillatory contributions from different Feynman diagrams will have different phases and
amplitudes at different (77, 73) coordinates, and interference patterns can be formed in
the oscillatory amplitude of the total signal. A corollary of this observation is that the
maxima of the oscillation amplitude for a given sample may not coincide to what follows
by merely looking at the schematic 2D maps that are built based on the double-sided
Feynman diagrams alone, such as figures 2.9 and 2.12.

In principle this may seem rather discouraging, as every different molecule will have
different levels of overlap between transitions and the oscillatory signatures may be found
at unpredictable points in the 2D maps, with equally an unpredictable phase. On the other
hand, careful analysis of equation 2.77 leads one to realize that the phase of the oscillations
is constant along the diagonal for rephasing signals and constant along the anti-diagonal
for non-rephasing ones (because the arctangent is an odd function). Thus it can be
expected that the 2D-ES oscillations of a sample for which the linear absorption spectrum
shows a vibronic progression with significant overlap between peaks will form interference
maxima and minima aligned with the diagonal for rephasing signals and aligned with the
anti-diagonal for non-rephasing ones. These ideas have been experimentally tested and
will be thoroughly discussed in Chapter 4, with the results being published in reference
[123].

2.9 Summary

In this chapter we presented selected points of the vast theoretical framework that is
important to understand 2D-ES, focusing especially on the most relevant points for the
work described later in this thesis. We started from the formulation of quantum mechanics
representing the system using its density matrix instead of its wavefunction, highlighting

how this allows us to treat incoherent statistical ensembles, which is not feasible with
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the wavefunction approach. We then considered how to treat the time evolution of the
density matrix of a system interacting with a perturbation field, making a connection with
nonlinear optics when the perturbation is an electric field treated classically. In order to
develop the concept of double-sided Feynman diagrams, we calculated in detail the linear
response function of a two level system, showing how the rules for drawing double-sided
Feynman diagrams follow from the equations. This was used to discuss the third-order
response function and the principles of 2D-ES, including the difference between rephasing
and non-rephasing signals. This discussion was then extended to coupled-systems, where
more complex energy level structures are found. We used the diagrammatic approach to
make predictions of 2D-ES signals for the cases of vibrational coupling and for a three-level
system that resembles the case of electronic dipole-dipole coupling. Finally, we discussed
limitations of the diagrammatic approach and presented and extension of it as treated by

Butkus et al. [78], which is extensively used later in this thesis.



Chapter 3

Two-Dimensional Electronic

Spectroscopy

3.1 Historical context

Two-dimensional electronic spectroscopy (2D-ES) was first implemented by the Jonas
group [18] at about the same time as it was first implemented in the infrared (IR) region
[19]; the latter flourished at a faster rate than the former [27]. One of the reasons for the
different rates of scientific development of the technique in the visible and infrared spectral
regions is that the experimental challenges for building a setup that is stable enough to
recover good quality data increases as one employs shorter wavelengths. This is because
a shorter optical cycle duration (1.67 fs at 500 nm, for instance) makes maintenance of
the phase stability more challenging [14]. Over the years a number of different optical
configurations were proposed and proven to be adequate [21], with the current efforts
of some groups leading to setups that operate in the ultraviolet (UV) [124-126] and
terahertz [127-130] spectral regions (although phase stability is not the main challenge in
the latter case). Reviewing the full historical development of 2D-ES is outside the scope
of this thesis, so the present discussion will be restrained to the development of the setup
assembled for this work and its comparison to others [131].

As mentioned above, the biggest experimental challenge for 2D-ES is maintaining

phase stability, but as is also the case with any other spectroscopic method, avoiding

o8
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or removing scattering contributions is another critical point. Light scattering in the
same direction of the signal compromises the signal to noise ratio and can even create
“chost”peaks in 2D maps [27]. These problems have been addressed in a number of
different ways over the years [55,132-135], but no implementation has so far been proved
to possess an overwhelming number of advantages [21].

One of the most common setups for two-dimensional spectroscopy employs the boxcar
geometry, where four parallel propagating beams are focused on the sample with each
starting from a different corner of a square. In this case, the third-order signal arising
from one interaction with each of three of the beams is emitted in the direction of the
fourth beam, which can then be used as a local oscillator for heterodyne detection [132].
Another common way to implement a 2D-ES spectrometer, initially in the IR but now also
in the visible and UV, is based on the pump-probe geometry [124,134]. These schemes
have two major advantages. The first is their intrinsic phase stability, which is achieved
by using a pulse shaper (or birefringent wedges [136]) to generate phase stable collinear
pump pulses, whose relative phase is then known and adjustable. Also, in the pump-probe
geometry the signal’s phase matching direction is the same as the probe, which means
that absorptive spectra can be obtained automatically, without the need to recover the
phase without the need to perform separate measurements or extra signal processing. The
third advantage is that the probe beam can easily be a white light continuum as is usual
in pump probe experiments, whereas in other setups the probe is usually an attenuated
replica of the pump beams, limiting the detection spectral region [137].

On the other hand, exactly because the signal and the probe beam are automatically
phased, this also means that the rephasing and non-rephasing contributions cannot be
easily separated from each other, requiring phase-cycling [138]. Further, there is no simple
way to manipulate each beams’ polarization independently. A fully collinear geometry can
also be employed [139], in which case a strong background and contributions from other
nonlinear optical signals generated in the same direction needs to be subtracted through
phase-cycling, reducing the sensitivity of the apparatus. Nonetheless, experimental de-
velopment is ongoing and new ideas are still being proposed to improve 2D-ES setups in
all geometries [21,27,134,136].

In the following paragraphs we will present the laser system used and the setup built

for the present work.
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3.2 Laser system

The 2D spectrometer assembled for this work is based on a commercial amplified laser
system and a commercial noncollinear parametric amplifier (NOPA). The amplifier con-
sisted of a regenerative Ti:Saphire system (Spectra Physics Spitfire ACE pumped by an
Evolution laser and seeded by MAITALI oscillator) generating 120 fs pulses centered at
800 nm with energy of 500 uJ at a rate of 10 kHz. About 90% of the power was used to
pump the NOPA system (TOPAS White, Light Conversion). After the NOPA the laser
pulses typically have 15 fs pulsewidth and their central wavelength can be tuned from 490
nm to 750 nm. Besides the internal compressor in the NOPA, a second prism compressor
had to be assembled to remove chirp from the pulses. The NOPA output varies with the
wavelength, but a typical power at 550 nm was 350 mW (35 uJ per pulse at 10 kHz).
To avoid nonlinear effects in the sample, a neutral density filter was used to reduce the
power entering the 2D setup to around 4 mW. The pulse to pulse fluctuation of the NOPA

system was typically below 0.5% rms for the central wavelength of the spectrum.

3.3 Two-dimensional spectrometer

In the present work the setup assembled employs the boxcar geometry and is based on an
earlier development which uses only conventional optics reported by Selig et al. [140]. The
boxcars geometry consists of having four mutually parallel beams geometrically disposed
in the corners of a square before being focused onto the sample. This arrangement allows
the detection of the rephasing and nonrephasing signals separately by selecting the phase
matching (see Section 2.6).

The main difference between the approach based on conventional optics and others
is that two beamsplitters are used to generate the four phase coherent beams, which are
then delayed from one another via the synchronous movement of two mechanical delay
stages, as shown in Figure 3.1. An alternative option is to use a diffractive optics element
to generate the four beams [142]. The option of using a noncollinear geometry also creates
further challenges in terms of phase stability, for any vibration on the optical table that
alters the pathlength of one of the beams and not of the others will correspond to a
shift in phase. One of the solutions to achieve phase-locking in this geometry is to add

pulse delays in a pairwise fashion, which effectivelly makes pathlength fluctuations anti-
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Polychromator

*

. 2D Experimental Setup

Figure 3.1: Sketch of the experimental setup assembled where: BS1,2 are beamsplitters; P1,2
are aluminium coated knife-edge right angle prisms; DS1 and PZ1,2 are mechanical and piezo-
electric delay stages respectively; C1,2 are optical choppers; \/2 4+ F'S are half wave plates plus
fused silica windows; ND is a neutral density filter; SM is a spherical mirror; FM is a folding
mirror. The upper right corner illustrates the pulse arrival sequence on the sample as well as
the signal emission and LO position in time relative to pulse c. In the upper left the homemade
polychromator is shown, composed of a mirror, a highly dispersive prism, a lens and the CCD
camera [141].

correlated with one another and lead to compensation of phase jitter [142]. This will be
explained in more detail later.

Figure 3.1 shows a sketch of the experimental apparatus. First the 4 mW input beam is
directed to the setup with two mirrors. Two irises in the entrance of the setup and further
irises along the way are present to support the alignment’s day to day reproducibility.
Both beamsplitters were tailor made through thin film deposition on a 500 pm thick
fused silica window (Vortex Optical Coatings) and have approximately 50% transmission-
reflection from 350 to 950 nm. The first beamsplitter (BS1) creates two phase coherent
beams at different heights separated from one another by about 2.5 cm and the lowest of
them propagating 7 cm above the plane of the table. Here the intention was to keep all
beams as close as possible to the table to reduce the impact of eventual angular oscillations

of the optical mounts on the actual pathlength.
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Figure 3.2: The beam geometry employed in the setup (boxcar) and the choppers.

Further along, the upper beam will be split into what we shall call beams ¢ and LO
(see labels in Figures 3.1 and 3.2), while the lower beam will be split into beams a and b.
Before that, the upper beam is steered towards a pair of delay stages mounted on top of
each other. The lower of them (Newport, UTS100CC), DS1, can move over 100 mm (~600
ps) and has a bidirectional precision of 2 fs, while the upper one (Physik Instrumente,
P-622.ZCD), PZ1, is a piezo mover and can travel over a 250 pm range (~1.5 ps) with
precision of about 0.5 fs. The initial alignment here is such that the position of the delay
stage compensates the extra 2.5 cm travelled by the lower beam after the beamsplitter.

Next both the upper and lower beams will each encounter a beamsplitter (BS2), so
that afterwards 4 phase coherent beams are propagating collinearly and are geometrically
disposed at the corners of a 2.5 cm sided square (Figure 3.2). Beams a and ¢ now go
through a second delay stage (PZ2) similar to PZ1, and its alignment is such that it
makes up for the extra distance travelled by beams b and LO after the beamsplitters
BS2. All beams then pass through an achromatic half wave plate, to allow for separate
control of each beam’s polarization. Finally, all 4 beams hit a spherical mirror (SM) with
focal length of 15 cm, which focuses all of them to a single spatial position. The folding
mirror (FM) in the setup has the single purpose of steering the beams sideways. The two
choppers in the setup represent the biggest novelty in this apparatus and they allow for
a better removal of scattering contributions than earlier setups, so their functioning will
be explained in more detail later.

The sample is positioned at the spherical mirror’s focal point and the transmitted
beams a, b and ¢ are blocked, while the LO is collimated and directed to the homemade

polychromator [141]. The polychromator spatially disperses the LO and signal spectra
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using a highly dispersive flint glass prism. The spectra are then imaged with a 20 cm
focal length lens onto a CCD camera with a single line of pixels, where each laser shot is
independently acquired. Finally, to avoid the LO beam of generating competing signals
as it moves through the sample in the same focal position, it is attenuated by a neutral
density filter and delayed by around 400 fs relative to the other beams by propagating
through a fused silica plate.

The CCD camera employed in this experiment is a line scan camera consisting of
1x1024 pixels (e2v AVIIVA EM1) whose acquisition rate can be adjusted up to 77 kHz.
The camera is trigged by the laser T'TL signal at 10 kHz and then sends a TTL signal to a
voltage acquisition board, which allows the acquisition of the TTL signal of each chopper.
Therefore for each camera acquisition the state of both choppers is also recorded, which
allows the acquisition software to determine whether beams b and ¢ were blocked or not
when each LO pulse was acquired, so that each configuration can be used to recover

different signals, as described in the next Section (3.4).

3.4 Pump-probe measurement and removal of light
scattering

Even though the camera employed allows for shot to shot acquisition at 10 kHz, the
fastest chopper rate was chosen to be 1 kHz instead of the more obvious 5 kHz. This is for
two reasons, the most important being the air turbulence induced within the setup by a
chopper rotating at such a high rate, which perturbs phase stability. The second reason is
that with the sizes of the chopper’s slits and beams which we had, the beams would only
be partially blocked with such a high rotation frequency. Actually, even with the fastest
chopper working at 1 kHz, in which case one bundle of 5 shots should go through and
the next 5 shot bundle should be blocked, it so happens that the initial and final shots
of each bundle have to be discarded due to partial blocking. Therefore once the camera
is triggered to start acquisition, a delay is explicitly added to ignore the first laser shot.
After this delay the camera integrates the signal over the next 300 us so that the middle
3 shots of each 5 shot bundle are acquired, with the integration stopping to avoid the
final partially blocked shot. Careful choice of the choppers slit sizes can avoid the partial
blocking at higher chopping rates, but a way of dealing with the resulting turbulence
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would still be necessary. In our case, covering the choppers would have required major
changes in the setup design, so we opted to keep the lower rate.

Before addressing how the present chopper sequence allows better scattering removal
and fast data acquisition let us briefly discuss the previous approaches to dealing with
scattered light in the boxcar geometry. As previously mentioned, scattering contributions
along the same direction as the LO and signal beams are the major experimental concern.
Scattered light arising from the pump beams is phase coherent with the LO and signal,
thus generating interferometric signals at the detector [132]. Further, the fact that the LO
propagates through the sample with a 400 fs delay relative to the pump beams means that
it too can be contaminated with pump-probe signals, for it acts as a probe for transient
grating signals induced by any of the other beams [138].

While the pump-probe contamination of the LO is entirely avoided in some setups
by having the LO propagate around the sample, that has its own limitations, for the
heterodyne detection works best if the LO beam has been through the sample. That
happens because the transmission of the LO through the sample ensures its envelope and
phase suffer the same distortions as the signal’s, such that in the heterodyne detection
these distortions are not seen as part of the signal [143], which allows samples with much
higher optical densities than the usual 0.3 to be studied.

Some of the procedures proposed to handle the scattering include the use of double
modulation with lock-in detection [135] or shutters [132]. The downside of the lock-
in detection scheme is that it requires lasers with very high repetition rates, and the
shutters scheme significantly slows down the measurements. The design proposed by our
group is an intermediate of those, in the sense that choppers and shutters act similarly,
but choppers can be synchronized with laser pulses and detection electronics, allowing us
to acquire signals from the camera for bundles of 5 laser shots when different beams are
unblocked [131].

The chopper sequence we employed essentially blocks and unblocks beams b (k;) and
¢ (k.) creating the configuration shown in Figure 3.3, where the temporal width of the
laser shots was exaggerated to emphasize the temporal structure of the pulses. Chopper
1 (C1) is synchronized with the laser at 1o of its repetition rate (one cycle for every 1 ms)
and acts on beam b, while chopper 2 (C2) acts on beam ¢ and has a frequency of Yo of

the laser repetition rate (one cycle for every 2 ms). This creates 4 different configurations
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of laser incidence in the sample (labeled A, B, C and D in Figure 3.3) that are repeated
over time: for every pair of blocked/unblocked events of beam b, beam ¢ will be once

blocked (A and B) and once unblocked (C and D).
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Figure 3.3: Scheme showing the different sample illuminations that arise from the chopper
sequence used. Chopper C1 acts on beam b with a frequency of 1 kHz and chopper C2 acts on
beam ¢ with a frequency of 500 Hz.

The CCD camera is synchronized with the laser frequency, which allows us to set its
operation to acquire separately each bundle of laser shots created by the choppers, from
A to D, as shown in Figure 3.3. This allowed us to include in the detection software a
routine to manipulate these contributions. If S,, represents the scattering contributions
and pump-probe signals resulting from beam n € {a,b,c}, and E;o and Eg are the
LO and signal electric fields respectively, the detection software performs the following

computations:

a=A—B=|S,+Sy,+ Ero|* —|S. + Erol?
= |Sy|> + 2Re{S,S;} + 2Re{ Sy E; o}, (3.1)
B=C—-D=1S,+Sy+Se+ Es+ Erol* —|S. + Se + Erol|?
= |Es|* + |Sy|* + 2Re{S,S;} + 2Re{S,Efp} + 2Re{ S, Ei} +...  (3.2)
..+ 2Re{SpE%L} + 2Re{S.ES} + 2Re{SyS:} + 2Re{ EsE} },
B —a=|Es|* + 2Re{S,E%} + 2Re{S,E%} + 2Re{S.EL} + ... (3.3)
..+ 2Re{S,S)} + 2Re{EsE] o}

Ideally our system would actually detect only the last term in equation 3.3, for it

corresponds to the signal being heterodyned by the local oscillator. However the first
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five terms in equation 3.3 are also phase coherent with the LO and will interfere in the
detector. Nonetheless, they bring negligible contributions to the measured signal for the
following reasons.

First, the 3 terms 2Re{S, E§} result from the interference between the signal field
and the part of Rayleigh scattering from beam n that happens to propagate in the signal
direction. Because the signal field is small, this term is also usually small — however, it
can become significant for highly scattering samples. Second, the term 2Re{S,S*} has
no pump probe contribution in the direction of detection: any such contribution would
have the same direction of propagation of either beam b or beam ¢, while we detect in the
direction of the LO beam. Therefore its actual contribution on the CCD is merely the
interference of the Rayleigh scattering contributions of beams b and ¢ in the direction of
the signal, which is also small.

As for the remaining term, it is the homodyne signal, which is usually large enough
to be clearly detected. What has to be mentioned now is that the spectral interferometry
procedure involves applying a Fourier window to the signal’s inverse Fourier transform
over the detection frequency, so that the signal is resolved as a function of the detection
time [132]. After this, the signal will be separated in different contributions according
to the relative time delays between the beams that interfered to generate each. So the
homodyne signal, that interferes with no other beam will appear centered at t = 0 (see
Figure 3.8 in Section 3.6). The heterodyne signal, which is the interference between the
homodyne and the LO beam will appear centered at ¢.0, for it is the interference of the
signal (generated at time zero) and the LO (delayed by tro from time zero).

Beyond allowing the selection of the heterodyne signal from the homodyne, this Fourier
windowing process also contributes to the removal of any light scattering contributions
that are not centered at the relevant delay time. It should be noted though that some of
the small contributions left over in equation 3.3 can have amplitude around ¢ for some
combinations of population and coherence times, so that the windowing procedure is not
the main determinant in removing them: they actually are so small that their presence is
insignificant.

Looking at equation 3.3 it still seems that many scattering contributions are present
and all we did was state they are small. So it is actually important to stress that what

the second chopper allowed us to do was to remove the term 2Re{S,E}} from equation
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3.2. This term contains the pump probe contribution that arises from the interaction of
beams b and LO with the sample, which is not systematically discarded by the windowing
procedure and can be significant for samples with strong transient absorption signals [131].

The other major advantage of the present scheme is that the pump probe and the LO
spectra can be recorded for each population time, along with the 2D spectra, therefore
at the same time and under very similar experimental conditions. To explain how that
is possible, we will repeatedly refer to Figure 3.3 and detail the measurement process for
one given population time. First, the camera acquires the signal corresponding to case
B in the chopper sequence of Figure 3.3. In this case beams b and ¢ are blocked and
the sample is illuminated only with beams a and LO. There may be some pump probe
contamination of the LO arising from beam a, but this is generally be much smaller than
the LO amplitude, so the signal acquired by the camera at this chopper configuration is
essentially the LO spectrum.

After acquiring the LO spectrum, the pump-probe signal is acquired for the given
population time by computing equation 3.1, which subtracts the acquisition when only
beams a and LO are present from the acquisition when beam b is unblocked too. In order
to get the correct population time delay, the stage DS1 needs to be moved in order to
make up for the relative delay between beam ¢ and the LO (which is measured before the
experiment starts). This brings the LO beam to time zero (see inset of Figure 3.1) and
therefore creates a pump-probe signal with beam b as the pump (whose position in time
is the corresponding population time) and the LO as the probe, as can be seen in Figure
3.3.

Once the LO and pump-probe spectra have been recorded, DS1 returns to its previous
position and the 2D data acquisition is performed by scanning the coherence times (Figure
3.4). A typical measurement of one population time consists of scanning 60 coherence
times and averaging over 300 laser shots for each delay, which takes about 1 minutes,

including the collection of the LO and pump-probe spectra.

3.4.1 Delay stages movement sequence

The last section showed that a 2D-ES measurement requires a very intricate set of
motions by the delay stages. The purpose of this section is to explain how that is cor-

rectly accomplished in our experimental design. First, we note that the final result of
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Figure 3.4: Left: typical interferogram measured with the 2DES setup. Right: a horizontal cut
from the interferogram, accounting for the signal acquired in a single coherence time (7 = 0 in
this case).

our measurement is a complex function S®)(w,, T,w,) which contains both absorptive
~ Re{S®(w;, T,w,)} — and dispersive — Im{S® (w;, T,w,)} — information regarding the
material’s third-order response.

As it turns out though, S® (w;, T, w,) is not directly recovered from 2D measurements
with the boxcars geometry. To understand this it is important to note that the pulse
arrival order has an effect on the direction of the different nonlinear signals generated.
Bearing in mind the third order response function considerations from Section 2.5, we
recall that the absorptive 2D lineshape is given by the sum of equally weighted rephasing
and the non-rephasing signals [122]. Therefore, it is important to record both. The third-
order nonlinear response which arises from perturbing the sample with pulses a, b and
¢ (neglecting the weaker LO) will consist of many contributions — 864 to be exact, see
Section 2.5 — and they will propagate in one of the +k, + k; 4+ k. directions.

The main advantage of using the boxcar geometry is that the third-order signals which
follow a first interaction with pulse a, a second with pulse b and a third with pulse ¢ propag-
ate in spacial directions where no other signals are present, which is why it is sometimes
referred to as being ‘background-free’. In Section 2.5 we saw that a consequence of re-
quiring that each interaction happens with a different pulse, assuming the semi-impulsive
limit and the rotating wave approximation, is that the number of contributions to the
third-order polarization was reduced from 864 to 4. Two are rephasing, and propagate in

the k, = —k; + ks + k3 direction, while the other two are non-rephasing and propagate
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in the ky = k; — ky + k3 direction. We emphasize that in these equations the numeric

indexes refer to the time arrival order of the beams in the sample. So here 2 refers to the

second pulse to arrive, regardless whether it is pulse a, b or c.

X

y

Figure 3.5: Representation of the wave vectors in the boxcars geometry with a coordinate system.
The z component is equal for all beams, while the  and y components are equal in module to
each other for all beams. In this scheme the modulus of the x and y components is called p and

the z component was arbitrarily chosen to be 2p.

Our detector is positioned so that it captures only signals travelling in the LO direction
and now we will discuss which contributions are measured, for which we will repeatedly
refer to Figures 3.5, where we sketch the boxcar geometry using a coordinate system, and

3.6, where we show the time ordering of the pulses. From Figure 3.5 we notice that we

can write the wave vector of each pulse as:

(3.4)

Now we are in position to discuss the pulse arrival sequence and which signals are detected

in each case. If the pulse a is the first to arrive followed by b and then ¢ (which is seen in

the right-hand side of Figure 3.6 for the extreme case when pulses b and ¢ overlap, i.e.,



CHAPTER 3. TWO-DIMENSIONAL ELECTRONIC SPECTROSCOPY 70

for population time zero), then k; = k,, ks = k;, and k3 = k.. In this case, by inspection
we can see that there is only one combination of signs in k, = +k; + ko + k3 that is equal

to ko (which is our direction of detection):
_kl + k2 + k3 = _ka + kb + kc = kL07 (35)

which is just the rephasing contribution we discussed in the previous chapter. Therefore,
our experimental setup acquires the rephasing contribution by having the pulse a being

the first to arrive, followed by b and then c.

Non-rephasing W
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Figure 3.6: Pulse arrival time ordering scheme for rephasing and non-rephasing cases.

In this pulse sequence, the non-rephasing signal propagates in the k, — k; + k. =
(—p, —3p,2p) direction which does not correspond to any of the incoming beams. One
option to detect it would be to place a second detector and local oscillator beam in
this direction. However that adds the difficult task of adding an extra local oscillator
and guaranteeing the detectors of the rephasing and non-rephasing signals are equally
calibrated, for an equally weighed sum is required for absorptive signals. Another option
that overcomes this difficulty relies on the time ordering impact on phase matching [121]:

we note that if pulse b is the first to arrive, followed by a and then ¢, then k; = ky,
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k; = k, and k3 = k. and the non-rephasing signal will propagate in the direction:

k; — ks + k3 = ky — k, + k. = kro. (3.6)

Therefore, instead of using a second detector in another direction, we can actually also
have the non-rephasing signal being generated in the same direction as the LO merely by
having pulse b being the first to arrive, followed by a and then c.

Now that it is clear how the rephasing and non-rephasing signals can be acquired,
we can finally address the movement sequence of the delay stages. We take the starting
temporal position of the beams as that where a, b and ¢ are overlapped and the LO
arrives about 350 fs later in the sample, due to the extra material it has traveled through.
In Figure 3.6 both the rephasing (right-hand side) and the non-rephasing (left-hand side)
acquisitions are illustrated, with the LO pulse shown as a dashed Gaussian.

The population time (7") zero is determined by the condition that beam a or b is
overlapped with ¢. This is also taken as the origin for both coherence and detection
timescales (labeled 7 and ¢ respectively). The population time is defined as T' = . — ¢,
where n is the second to arrive between a and b.

The coherence time is defined as 7 = t;, — t,, which is physically intuitive for this is
the variable we would like to scan over, but it can create some confusion for graphical
representations. According to this definition, if ¢, > t, then 7 is positive, the pulse order
is a, b, ¢ (c is always the last of the pulses) and the rephasing signal is being generated
in the LO direction (Figure 3.6, right).

On the other hand, if t, < t, then 7 is negative, the pulse order is b, a, ¢ and the non-
rephasing signal is being generated in the LO direction. Thus in the coherence timescale
the convention of “more negative means earlier”’no longer applies. However it does still
apply for the detection timescale ¢, so in Figure 3.6 the coherence timescales were drawn
as a support, but to evaluate early or late arrival the position on the ¢ scale must be
considered. The result is that left means earlier and right means later.

The first step to start a measurement is setting the population time delay to the desired
value, which is accomplished by moving DS1 and thus altering the relative delay between
the pairs of beams (a, b) and (¢, LO). Once that is set, the scan over coherence times can
be performed by moving the delay stage PZ2, which changes the relative delays between

the pairs of pulses (a, ¢) and (b, LO). As a consequence of this movement, the coherence
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time (delay between a and b) can be scanned, but there is a side effect: the delay between
c and LO is also altered. This could be relevant because the Fourier windowing procedure
that was mentioned above assumes a constant delay between the signal and the LO, and
the third-order signal can only start to be generated after the third pulse (¢) hits the
sample. As it turns out though, the signal emission maximum has its position in time
determined by the coherence time, which can be seen in Figure 3.6, more strikingly for the
rephasing case (see Equations 2.70 and 2.71). For the non-rephasing one has to imagine a
continuation of the signal for negative detection times to figure out where the maximum
amplitude would be. Therefore, by delaying the LO against ¢ we are effectively ensuring
that delay between signal maximum and the LO remains the same over the scan [131].

Consequentially, to obtain the non-rephasing signal (negative coherence times) PZ2
has to be scanned forwards. Pulse b is the first to arrive and the movement changes the
time delay of pulses a and c relative to it. For positive coherence times things get slightly
more complicated. In this case PZ2 is moved backwards, for now we need the time order
to be (a, b, ¢). The problem is that by moving PZ2 backwards pulse ¢ will follow pulse
a and both will arrive at the sample before pulse b, which would alter the desired phase-
matching. Thus, to move pulse b so that it is the second to arrive and correct for the
population time, the delay stage PZ1 has to be moved forwards by the same amount that
PZ2 was moved backwards [140].

It is also interesting to note that this movement sequence of the delay stages naturally
corresponds to a measurement in the rotating frame (see Sections 2.4 and 2.5) [27,134].
That is because of the constant phase shift between the signal and LO (see Figure 3.6)
which is applied simultaneously with the phase shift corresponding to the coherence time
scan. To clarify what we mean by that we have to consider the phase of the signal being

measured. If Ay, = p, — @y and Ap.po = @ — pro, then the signal is proportional to:

I, < Re (e_i(A‘Pab_ASDcLO)e_iw(T_t)R/(7—7 T, t)) = Re (e_i(A¢ab_Wt)ei(A‘PcLO_WT)R/(7—7 T, t)) 7
(3.7)
where R'(7,T,t) is the envelope of the response function. From the discussion above we
saw that by changing the coherence time by 7" = 74+ Ar, this also moves the local oscillator
in the opposing direction: t, = tpo — A7r. Then it follows directly from equation 3.7

that the signal’s phase variation due to the coherence time change is exactly cancelled
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by the corresponding LO delay. This means that in our measurement the signal will not
oscillate close to the optical frequency as a function of the coherence time, because the
phase which is continuously added to LO as we scan 7 cancels that and brings the overall
frequency to zero (thus the rotating wave frame nomenclature), meaning that we only
acquire the envelope of the response function as we scan the coherence time.

There are two major advantages that follow from measuring in the full rotating wave
frame. The first is data acquisition time: if a direct measurement of the response function
is desired, it is necessary to acquire data for at least two coherence time steps for each
cycle of the highest frequency present in the signal. At 600 nm, for instance, the optical
cycle is approximately of 2 fs, thus requiring coherence time steps shorter than 1 fs to
properly recover the signal. In our typical measurements, coherence time steps of 4 or
5 fs were enough, representing a large reduction in data acquisition time. The second
advantage is that acquiring only the envelope of the response function relieves the phase
stability requirement for the setup: instead of keeping the phase stable to a fraction of

the optical cycle one has only to keep it stable to a fraction of the pulse duration (~15

fs).

3.5 Phase stability of the setup

First, let us recall that the signal field’s phase is determined by its corresponding
phase matching, as given by equation 3.7. For instance the rephasing signal in our setup
corresponds to kg = —k, + k; + k. and the heterodyne detected 2DES signal has the
phase:

ASOS = —Pq + Pb + $e — PLo + Psigs (38)

where the heterodyned detected signal has the subscript “s”and the homodyne signal
has its own phase (g, arising from the interaction between the laser pulses and the

sample [144]. The overall phase fluctuation can be written as:
0(Aps) = (00 — 6pa) + (dpc — 0pr0)- (3.9)

And now, to get a full analysis of the total phase fluctuation it is possible to go through
the experimental setup for each beam (Figure 3.1) and keep track of all possible phase
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fluctuations in each optical element in its path. For instance, doing that for beam a we

can write the equation:

0¢pq = 0pps1 + 0onn + 0pBsar + 0ppzatpe + 0psm + 0@rar. (3.10)

Doing that for all other beams one can compute the two terms on the right-hand side of

equation 3.9:

0y — 0q = 0pm2 — 0PPz2+ P2 (3.11)

0pe = 0pro = —0pm2 + 0ppzaip2 (3.12)

from where it can be seen that the contributions are anti-correlated and the net result is
that 6(Ags) = 0. So even though the phase of different beam pairs fluctuates significantly
during even short time intervals, this experimental configuration is such that they cancel
out almost perfectly, allowing the measured signal to have a much more stable phase [142].

It must be stressed that this analysis focused on phase fluctuations induced by optical
elements on the setup, disregarding single beam fluctuations that can be created by strong
air currents in the setup for instance. To minimize this problem the setup is enclosed by
a box to minimize air currents and the optical components are assembled within as small

an area as possible on the bench (30 cm x 50 cm).

3.6 Data processing

In this Section we will describe the multiple steps necessary to generate complex-valued
2D-ES spectra from our experimental setup. For each given value of the population time
T, the raw data we collect consists of three files. The first corresponds to the transient
grating signal of the sample interfering with the local oscillator as a function of the
coherence time 7, which is spectrally resolved in the emission axis 3, and thus contains
the main 2D-ES signal (Figure 3.4 is an example). We shall refer to this type of data as
a spectral interferogram. The other files are used to recover the phase, with the second
containing the pump probe spectrum for the same 7', acquired with beam b acting as the
pump and the LO acting as the probe; and the third file contains the LO spectrum after
it propagated through the sample (both files are obtained as described in Section 3.4).
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Figure 3.7: (a) Transient grating signal from a fused silica window at 7" = 0 fs interfering with
the LO beam, as a function of 7. The LO beam arrived 321.2 fs later than the others on this
day (see text). (b) Same as (a), but for a porphyrin monomer sample at 7" = 70 fs. This is part
of the set of experiments discussed in Section 5.1.

Before starting the measurement, the following two steps are always performed. First
we obtain the relative delay between the local oscillator and the other beams by performing
a transient grating FROG scan of a fused silica window with beam ¢ blocked. Here we
use the delay stages DS1 + PZ1 (see Figure 3.1), which delays beams ¢ and LO against
a and b, and the signal is emitted along the direction of beam c. In order to direct this
signal to the detection system, a flip mirror is introduced into the setup in this step, and
the LO beam is blocked after the window. Secondly, these changes are then reversed and
with the setup back to what was described in Section 3.3 we perform a 2D-ES scan of
the fused silica window at T" = 0 fs, obtaining the three files described in the previous
paragraph. Figure 3.7a shows the window transient grating signal interfering with the
LO beam as a function of 7 for the data presented in Section 5.1, which we will use as a
reference here.

In Figure 3.7b we show the spectral interferogram of a zinc-porphyrin monomer sample
at T = 70 fs recorded after the fused silica data in Figure 3.7a. The details of the
sample are given in Section 4.1 and the local oscillator and linear absorption spectra
for this measurement are shown in Figure 5.1, but they are not essential for the data
processing discussion. The objective is to use the spectral interferograms from Figures
3.7a,b to obtain complex-valued 2D-ES spectra as a function of excitation and emission

wavenumbers (74, 73). We begin by noting that the spectral interferogram Ig;(7,7 =



CHAPTER 3. TWO-DIMENSIONAL ELECTRONIC SPECTROSCOPY 76

70 fs, 73) from Figure 3.7b is computed from equation 3.3 and can be written as:

Isi(1,T = 70,03) =|E(7, T = 70, )
+ ES(T7 T = 70, 173)E]>_:O(~3)6i27rcﬂ3(ts_tLo)

+ EX (7, T = 70, i13) By o () e~ 2res(ts~io), (3.13)

where we have neglected the scattering contributions written in equation 3.3. We recall
that due to the chopping sequence used the intensity of the LO beam has already been
removed from this expression. We now note that each of the terms in equation 3.13 is
centered at a different point along the detection time axis (¢, which is the Fourier pair of
27mcrs): the first term is centered at ¢ = 0, while the second and third terms are centered
at tpo and —tpo respectively. We are interested in recovering (7, T, 73), and in order to
isolate this term we can perform a Fourier transform of the data over the 73 axis. Figure
3.8 shows the absolute value of this Fourier transform for 7 = 0 fs of both the window and
the sample signal at 7' = 70 fs (from Figure 3.7a,b) and all three terms from equation 3.13
can be identified. This is the same windowing procedure mentioned when we discussed

the removal of light-scattering contributions in Section 3.4.
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Figure 3.8: Fourier transform of the interferograms from Figures 3.7a (black) and 3.7b (blue)
at 7 = 0 fs. The desired signal Es(7, T, 3) can be recovered from the peak at positive detection
times (see text).

In order to isolate the 2D-ES signal we apply this Fourier transform along 3 for each

coherence time point, and then apply a rectangular filter in the time domain that selects
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only the the term which contains the desired signal:
Ey(1, T, 3) Ef o ()€™t 710) = | B (7, T, i33) || B0 (73) | 2778t 0) gilds=0L0) - (3.14)

where we have rewritten the signal and conjugated LO fields as a product between their
absolute value and phase. For each value of T" we acquire the intensity of the LO beam
traveling through the sample |FEro(73)|, and from our reference window measurement
(Figure 3.7a and black line in Figure 3.8) we can recover the phase ¢?27¢%s(ts—tLo) gi(¢s=¢ro),
as the delay between the LO beam and the transient grating signal is known [145]. This
still does not perfectly recover the phase for the 2D-ES spectra, because ¢, for the non-
resonant transient grating signal of the window measured in the —k, + k;, + k. direction is
different than ¢, from the sample, which includes rephasing and non-rephasing resonant
signals. Therefore, a direct reference to the sample is required, which is made using the
pump-probe measurement and the projection-slice theorem [146].

In order to prepare the data for that, we first recall that so far we have isolated the
absolute value of the signal |E(7, T, t)| and recovered the 73 dependence of the phase for
each coherence time. Next, we proceed to perform a Fourier transform back from t to
s, yielding Ey(7, T, 73). This signal is a slowly varying function of 7, because the delay
stage movement sequence employed is in the full rotating wave frame (see Section 3.4.1).
Thus, to recover the oscillatory signal as a function of 7, we can multiply the measured
signal by e®77 where ) is the central wavenumber of our laser spectrum. Figure 3.9
shows the real part of the signal obtained from this procedure for the data in Figures 3.7
and 3.8 for 75 = 15435 cm~!. Figure 3.9 makes clear why measuring in the rotating wave
frame is so useful: in our data acquisition we scanned 7 in time steps of 5 fs, but from this
Figure it is clear that when not measuring in the rotating frame sub-femtosecond time
steps would be necessary, requiring greater phase stability and longer acquisition times.

At this stage we have Fq(7,T, 3) with the correct oscillatory behavior as a function of
7, so in order to obtain the desired 2D-ES spectrum, we merely apply a Fourier transform
over 7, yielding E’S(Dl, T, ), with rephasing and non-rephasing spectra being obtained by
applying the Fourier transform to the positive and negative coherence time axes respect-
ively. As mentioned above, the phase of these spectra is not yet correct, and to correct it
we employ a phasing algorithm [14, 140, 146].

The phasing algorithm is based on the projection-slice theorem from Fourier analysis,
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Figure 3.9: Real part of the signal field as a function of 7 for 75 = 15435 cm™! extracted from
Figure 3.8 as described in the text. Positive (negative) values of 7 correspond to the rephasing
(non-rephasing) signal.
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Figure 3.10: Comparison between the integral of the real part of sum of rephasing and non-
rephasing 2D-ES spectra to the pump probe spectrum. The phase of the 2D-ES spectra has
been adjusted to give the best match between them (see text).

which when applied to 2D-ES states that the integral of a properly phased absorptive 2D-
ES spectrum over the excitation axis () is equal to the broadband transient absorption
spectrum (commonly referred to as the pump probe spectrum) [14]. Pump probe spectra
automatically include both rephasing and non-rephasing pathways, and an absorptive
2D-ES lineshape corresponds to an equally weighed sum of rephasing and non-rephasing
spectra [121,122]. Therefore, in order to recover the correct phase of our spectra we
sum rephasing and non-rephasing contributions and multiply them by an overall phase
e!((Ts=ro)2melete) where t, and o, are parameters which can be adjusted by a genetic fitting

algorithm which find the values which correspond to the best match between the pump
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probe and the 2D-ES integral over 7; [132]. An amplitude scaling factor is also used to
properly scale the 2D-ES amplitude to the pump probe. As a result, we finally obtain the
desired complex-valued 2D-ES maps, which are shown in Figure 3.11a (absorptive, the
real part) and 3.11b (dispersive, imaginary part). Now that the correct phase has been
recovered, the complex-valued rephasing and non-rephasing maps can also be plotted
(these are shown in Figures 5.2 and 5.3 in Chapter 5, where they are used).

@) | R | | l

16- 1 - -

- 0.43

r0.14

- -0.14

,(10°cm™)
G

A%

- -0.43

-0.71
14 1{ -
-1.00

14 15 16 14 15 16
= 3 -1 = 3 -1
v, (10°cm™) v, (10°cm™)

Figure 3.11: (a) Absorptive and (b) dispersive 2D-ES maps at T" = 70 fs after the phasing
process is complete. Each map is individually normalized. The sample has negligible signal
below 15000 cm ™!, which can be observed here and in Figure 3.7b. The pulse has bandwidth
in this region however, as Figure 3.7a shows, so the (1, 3) scales were chosen to match those
from Figure 3.7a.

3.7 Summary

In conclusion, the experimental setup described in this Chapter combines many ad-
vantages for the measurement of 2D-ES spectra. The boxcar geometry ensures minimal
background and allows us to independently recover rephasing and non-rephasing spectra.
The optical design ensures phase stability and places the measurement in the rotating
wave frame, which significantly reduces data acquisition times (also helped by the near
shot-to-shot acquisition rate), allowing us to scan many more values of T" in a reasonable
time span. Finally, the two choppers enable us to both better remove scattering contribu-
tions and to acquire the local oscillator and the pump probe spectra quasi simultaneously
with the 2D-ES signal, which helps ensure that the data processing required to recover the
final maps is performed comparing datasets acquired under almost identical conditions.

In the next Chapters we use this setup to perform detailed experiments on vibrational
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wavepacket motion on a porphyrin monomer with very good signal to noise, which allows

us to establish results on coherence pathway signatures in 2D-ES.



Chapter 4

Vibrational Signatures in 2D-ES

This and the following Chapter focus on investigating signatures of vibrational coher-
ences in 2D-ES; which are observed in the form of oscillatory signals at some (7, 73)
points as a function of T, as we described in Section 2.7. Vibrations coupled to elec-
tronic transitions are ubiquitous [147,148] and it is thus important that control studies
benchmarking vibrational signatures in 2D-ES are performed. To this end, we study
a zinc-porphyrin monomer which has its lowest singlet electronic transition strongly

coupled to a vibrational mode at 375 cm™!.

Because excitonic effects can be ruled out,
a monomer molecule consists in an ideal sample to test the predictions based on the
double-sided Feynman diagrams made in Chapter 2. While the zinc-porphyrin monomer
is a simple molecule when compared to systems that have typically been studied with
2D-ES [15,49,55,77,116,149-151], the studies of comparably simple systems reported in
the literature [80, 86, 150] were performed before fast data acquisition with good signal
over noise was available. Besides that, some theoretical developments only arose after
those studies were published, i.e., significant advances in data analysis tools have been
developed since the pioneering experiments, and newer theory — such as that of Section
2.8 —remained untested.

Historically, oscillations in 2D-ES signals have been the subject of a lot of attention
since measurements on the Fenna-Matthews-Olson (FMO) complex showed oscillatory
behaviour with picosecond dephasing times [68]. These were assigned as electronic in
origin (in spite of the expectation that electronic coherences should dephase in much faster

timescales [69]) and interpreted as possibly playing a role in a coherent energy transfer

mechanism in the FMO complex and other light harvesting systems [68,72]. However, later

81
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experimental and theoretical work questioned the assignment of the beating signatures as
arising from a pure electronic coherence [100, 152, 153].

These developments highlight the importance of understanding oscillatory signals in
2D-ES. Essentially, the main reason why interpreting beating signatures in 2D-ES is
difficult is the technique’s great sensitivity to capture different molecular phenomena,
often via oscillations as a function of population time. For instance, the three pulse
sequence used in 2D-ES can create coherences between all allowed transitions that are
resonant with the excitation field, all of which can generate their own oscillatory signals.
This will generally include electronic coherences between different energy levels and — if
the electronic transition is coupled to one or more vibrational modes — also coherences
between the different vibrational sublevels [18]. On top of that, Raman modes of the
solvent may also generate oscillations in 2D-ES maps through non-resonant pathways if
the excitation laser has broader bandwidth than the Raman frequency [154].

In this chapter we report 2D-ES studies of the porphyrin monomer and start discussing
the results on the basis of absorptive spectra. We proceed to analyse coherent oscillations,
for which we focus on rephasing and non-rephasing maps separately. We find that the
results do not match the forecast from the Feynman diagrams alone. However, we note
that previous work by Butkus et al. showed that the phase of coherent oscillations due to
a single Feynman diagram is a function of (7, 73), and when interference between oscilla-
tions from neighboring color peaks is taken into account, experiment and calculations are
shown to match well. We conclude the Chapter by discussing the consequences of these

results; an earlier description of this data was published in reference [123].

4.1 Steady state spectroscopy of the zinc-porphyrin
monomer

The zinc-porphyrin monomer samples were synthesized by the group of Professor Harry
L. Anderson at the University of Oxford as reported in reference [155]. Figure 4.1 shows
the UV-visible linear absorption spectrum of the porphyrin chromophore in toluene with
1% of pyridine to suppress aggregation. As it is typical of porphyrins, it is characterized by
the presence of two distinct bands in the visible: the so called Q and B-bands [156]. The

Q-band corresponds lowest energy transitions which are quasi-forbidden, the maximum
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absorption of which in toluene with 1% of pyridine is observed at 15550 cm ™" (643 nm).
The B band (also called Soret band) is strongly allowed, having an extinction coefficient
more than 6 times larger than the Q band, and here it consists of two peaks in the blue
region of the spectrum. The split observed both in the Q and B bands can be attributed
to the asymmetric substituents (see Figure 4.1), which lower the symmetry from Dy, to
Day,, creating a distinction between the x and y axes [157,158]. Besides these two bands,
a third one can also be seen, a very broad (albeit not very intense) absorption ranging

from around 28000 cm ™! to 34000 cm ™!, which is sometimes called the N band.
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Figure 4.1: Linear absorption of the porphyrin monomer in the visible and near UV. Inset:
structure of the porphyrin monomer and transition dipole moment orientation in the molecular
frame.

There are absolute assignments of the dipole transition directions based on quantum
mechanical calculations [158], polarized absorption experiments in stretched polymer film
[159] and excitation dependence of the fluorescence anisotropy [160]. The least energetic
peak in the B band, here observed at 21980 cm™' (455 nm), has been assigned to the B,
transition, whereas the peak at 22450 cm ™' (445 nm) has been assigned mostly to the B,
transition, although vibronic contributions from B, are overlapping [160].

Our work in this thesis focuses on the Q band, so in Figure 4.2 we show the normalized

linear absorption spectrum of this band alone (blue line), as well as the fluorescence



CHAPTER 4. VIBRATIONAL SIGNATURES IN 2D-ES 84

spectrum with excitation at 625 nm (16000 cm™' — red line). The main absorption peak
at 15550 cm ™! corresponds solely to the (), transition and is accompanied by a vibronic
shoulder which is blue-shifted from the main transition by around 375 ecm™! [161]. The

1

vibrational mode at 375 cm™' corresponds to a zinc-pyrrole breathing motion (vg in the

usual nomenclature) and strongly couples to the electronic transition in metalloporphyrins
[162].

Previous work mistakenly assigned the transition dipole moments of this lower energy
band (7 < 16350 cm™!) as being parallel to the y axis in the molecular reference frame
[160], but a more recent study has reassigned these as being parallel to the z axis [161],
which is consistent with the intuitive picture that m-conjugation between the butadiyne
links along the z axis and the porphyrin extends the spatial localization and lowers the
energy of this transition (see Figure 4.1), as also observed in butadiyne-linked porphyrin

I will thus be referred to

oligomers [157]. This electronic transition at 7 = 15550 cm™
as Q.(0 — 0), while the vibronic shoulder at 15925 cm™' will be labelled Q.(0 — 1),
consistent with reference [160]. That study has shown that the other absorption peak in
the Q-band, centred at around 17000 cm~! (588 nm), has contributions from transition
dipole moments in both x and y directions in the molecular frame, so within that band
there are contributions from @,(0 — 0), as well as vibronic peaks from the (), transition
coupled to higher energetic vibrational modes.

Focusing in the () band, in Figure 4.2 we see that the emission maximum is observed
at 15480 cm ™!, corresponding to a Stokes shift of only 70 cm™ (3 nm in this spectral
region). The monomer is thus a very convenient sample in order to benchmark vibrational
coherences in 2D-ES, as a large Stokes shift would have to be taken into account when
addressing coherence pathways, whereas here it seems safe to assume that the minor shift
observed will not significantly affect coherent wavepacket dynamics in the excited state.
The fluorescence spectrum also shows there are further vibrational modes coupled to the
Q. transition, as indicated by the broad emission band around 14200 cm™! (704 nm),
corresponding approximately to a 1350 cm™! red-shift from the main absorption peak.
It is established that zinc-porphyrins have their main electronic transition coupled to a
vibrational mode in this region [162,163], and a blue-shift of 1350 cm™ from Q,(0 — 0)
results in 7 = 16900 cm ™!, which is roughly the centre of the higher energetic absorption

band, where reference [160] found contribution from both x and y polarizations. Therefore,
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Figure 4.2: Linear absorption (blue) and fluorescence (red) of the porphyrin monomer. The
excitation wavelength was 625 nm (16000 cm™1).

besides consisting of the @, (0 — 0) transition, that band also includes the vibronic peak
from the 1350 cm ™! mode coupled to @, and this will be referred to as Q.(0 —1'), where
the prime indicates a different vibrational mode.

For the 2D-ES measurements the samples were diluted in different solvents with 1%
by volume of pyridine (toluene in this Chapter and n-pentane in the next) to achieve a
maximum optical density of around 0.3 in the spectral region excited by the laser (the @
band in this work), corresponding to a concentration of approximately 80 yM in 1 mm
pathlength cells, and 400 M in 200 pm pathlength cells. The 200 pm pathlength cells
have the advantage that at 5 times higher solute concentration the Raman contributions
from the solvent are minimized, compared to the signals from the sample. Moreover, the
fact that there are 5 times as many molecules in the same focal spot also means that
higher signals can be obtained for the same incident power and sample optical density,
which allowed us to perform the measurements at lower power (usually a factor of 2)
when the short pathlength cells were used. Generally 1 mm pathlength cells were used
for the experiments in this Chapter (performed in 2014) and 200 um cells were used
for the experiments in the next Chapter (performed in 2015 and 2016), although repeat
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experiments included both pathlengths throughout. The only pathlength dependent result
was the relative importance of Raman modes of the solvent compared to vibrational modes
of the samples described above.

The reason to add 1% by volume of pyridine to all samples is to prevent aggregation, as
pyridine coordinates the central zinc of the porphyrin. To confirm that 1% was enough to
suppress aggregation, comparisons to the linear absorption at lower solute concentrations
as well as with more pyridine were made, and no signs of aggregation were observed in
the samples used. Some of the 2D-ES experiments were performed flowing the sample
and the results obtained were usually the same of those in static cells. The exception was
when the solvent was dichloromethane (either with 1% of pyridine or in a 10:10:1 mixture
of dichloromethane, tetrahydrofuran and pyridine), for which the transient grating signal
was observed to drop nearly to zero within one second of illuminating the sample at a 10
kHz repetition rate. This drop in signal was avoided by flowing the sample, in which case
the 2D-ES experiments yielded the same results as for other solvents. Still, none of the
experiments in dichloromethane are further discussed in this thesis, as the origin of this

bleaching and its effect in the data were not established.

4.2 2D-ES experiments on the zinc-porphyrin monomer

In order to study vibrational coherences from the 375 cm™! mode with 2D-ES, we
used the laser spectrum shown in Figure 4.3a, which covers both the @, (0 — 0) and the
(). (0 — 1) transitions. The choice of leaving significant bandwidth on the red side of the
absorption is important because 2D-ES peaks redshifted from the main transition in the
detection axis are expected for this system (see Section 2.7.1). Figure 4.3b shows the
TG-FROG of the corresponding pulses obtained using a fused silica window, which shows
the pulses were close to the Fourier Transform limit. The vertical dashed line in Figure
4.3b corresponds to the maximum frequency as obtained by a fit of the profile to a single
Gaussian for each time step, and shows that the central frequency stays approximately
constant.

In order to recover the real and imaginary parts of our 2D-ES spectra (ultimately
allowing us to obtain absorptive lineshapes) we need to phase the data by comparing

the integral of the 2D-ES signals along the excitation axis to a broadband transient
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Figure 4.3: (a) Linear absorption of the zinc-porphyrin monomer sample (blue line) and normal-
ized laser spectrum used for the 2D-ES measurements described in this chapter. (b) Transient
grating FROG of the pulses used in the experiment obtained using a fused silica window.

absorption measurement recorded under the same conditions, as described in Section 3.6.
For completeness, in Figure 4.4a we show the broadband transient absorption spectrum
obtained using pulse b as the pump and pulse LO as the probe at T" = 120 fs, while Figure
4.4b shows the typical quality of the phasing procedure for this experiment. We note that
on both sides of the main peak there are signs of excited state absorption, which will be

discussed later, along with the 2D-ES data.
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Figure 4.4: (a) Broadband transient absorption at 7" = 120 fs. (b) Comparison between
the broadband transient absorption spectrum and the integral along ;7 of the real part of the
rephasing plus non-rephasing spectra after the phasing process.

The absorptive 2D-ES spectrum at T = 120 fs is shown in Figure 4.5a. At this
relatively early time, the expected absorptive 2D-ES map for one electronic transition
coupled to a single vibration is made up of a six-peak structure, as sketched in Figure
2.9 for rephasing and non-rephasing signals — the absorptive consists of overlaying these
contributions. The expected peak positions in the 2D map form a rectangular lattice

where neighboring points are displaced by 7y = 375 cm™! along 7; or 73, so for this sample
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significant overlap between neighbouring contributions is present, as the corresponding
peak in the linear absorption has a width of around 400 cm~!. To ease comparison with
theory, the central positions of the expected peaks were marked with circles and labelled
from A to F in Figure 4.5a. Considering the displaced harmonic oscillator model, the
peak marked as F consists only of oscillatory contributions, and we chose to display the

map at T' = 120 fs because the off-diagonal oscillations are more pronounced at this time.

14.8 15.2 15.6 16.0 16.4

—— Absorption

i Laser
1E-03
F 24.3 [
22.46
1 Foor B

7 (103 cm™)

148 152 156 160 164
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Figure 4.5: (a) Absorptive 2D-ES spectrum of the zinc-porphyrin chromophore in toluene at
population time 7" = 120 fs. The sample’s linear absorption (blue) and the laser spectrum (red)
are shown in the top and right-side graphs. The signal’s amplitude is shown in colors, divided
in 21 evenly spaced contour lines on a log;, scale. The center of different Feynman diagram
contributions are marked with circles and labelled with letters. (b) Energy level scheme for
the excited state absorption contributions. The black arrows represent the lowest and highest
possible excitation energies in the Q band in this experiment. The orange and red arrows
correspond to the high and low energy edges of the laser spectrum. See text for details.

Comparing the signals from Figure 4.5a and the marked Feynman diagram positions,
we see that there is some agreement (for instance, points A, D and E), but also significant
deviation between the experimental results and the predictions of the displaced harmonic
oscillator model, especially in point B. We point out that color scale plots suffer in their
ability to display contributions of vastly different amplitudes, so in order to avoid the
intense diagonal contribution obscuring smaller contributions, we spaced the colors in
Figure 4.5a using a log,, scale.

The experimental signal is dominated by an intense diagonal peak (C) at i, = 5 =
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15550 ecm™!, the lineshape of which is elongated along the diagonal, showing this is an
inhomogeneously broadened transition. In Figure 4.5a one can also see the presence of the
cross-peaks labelled A, D and E, whereas another local maximum of amplitude is found
between the points E and F. Some structure can also be seen elsewhere, but it is in the
blue shades of the color scale, thus being a factor of 50 smaller than the main amplitude.

However, the most striking disagreement between the predicted peaks and measured
signal is the nearly absent signal amplitude at point B, which should be the center of
a peak with a lineshape similar to that of the diagonal peak at C. From the transient
absorption measurement in Figure 4.4a it can be readily observed that on both sides of
the main peak the signal does not go to zero, but goes through a change of sign, which
can be attributed to excited state absorption (ESA), as no other contribution gives rise to
signatures with opposite sign. The ESA features are broad and are seen on both sides of
the main peak, suggesting that a background of ESA may be overlapping with the signal
throughout the spectral region studied. In absorptive 2D-ES maps we observe the sum of
ground state bleach (GSB), stimulated emission (SE) and excited state absorption at any
given (7, 3) position, so unless the ESA contribution outweighs the others, the resulting
signal will be positive. This means that the possibility that the observed signal is lying
on top of an eventual ESA background is difficult to assess.

In Figure 4.5a the logarithmic color scale used implies that only positive features can
be displayed, while zero and negative amplitudes are all represented in the same darkest
shade of blue. The transient absorption data from Figure 4.4 shows that the signal
amplitude at 73 = 15925 cm ™! is still positive, at around 11% of the maximum value, but

! suggesting that partial cancellation between ESA

it changes sign at 73 = 16100 cm™
and GSB/SE may be hiding the presence of peak B in figure 4.5. In our considerations
of the displaced harmonic oscillator model in Section 2.7.1 we have only included one
electronically excited state, so all signals predicted were of positive sign. That was because
each molecular system has its own higher energy excited states, and the transition dipoles
for the transitions between them and lower lying excited states can vary widely, so that
no useful predictions can be made from generic Liouville-space pathways such as those in
Section 2.7.1. For the particular zinc-porphyrin monomer we are studying here however,

the energetic separation between the very broad N band and the ) band we are studying

happens to be partially resonant with the laser spectrum, thus making ESA from the @



CHAPTER 4. VIBRATIONAL SIGNATURES IN 2D-ES 90

to the N band possible, and it is established that this absorption is strong [160].

In order to discuss the ESA in more detail, in Figure 4.6 we show a series of absorptive
2D-ES spectra from 7" = 110 fs to 7" = 160 fs using a symmetric z scale common for
all plots with the minimum value observed corresponding to the darkest shade of blue
(—0.14 at T' = 160 fs). We observe a spread of negative signals across the (7, 73) plane
around the positive contributions, consistent with the hypothesis of a negative background
being present throughout. Moreover, the negative contributions are more intense in the
region defined by 15500 < 7; < 16250 cm™!. We also note that there are oscillations
in the negative signals as a function of population time, which is expected because of

the vibrational coherences arising from the 375 cm™!

mode, which generate oscillatory
contributions centered in all six positions highlighted in Figure 4.5a. For instance, it can
be seen that at position B (7, = 3 = 15925 cm™!) the signal amplitude is around zero
at 110 fs, but increases to a positive value after 140 fs, indicating that a positive signal

consisting of both oscillatory and non-oscillatory contributions can be there, as forecast

in Figure 2.9.
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Figure 4.6: Series of absorptive 2D-ES spectra of the zinc-porphyrin chromophore in toluene
from T = 110 fs to T' = 160 fs. In order to highlight the negative features, the color scale
range has been chosen between 0.14 and —0.14, which was the minimum observed value in this
population time range.
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ESA pathways have the first two interactions generating a population in the first
electronically excited state, and then the third field induces a coherence between this
and a higher excited state, from where the signal is emitted (Figure 4.5b shows the
energies involved compared to the laser spectrum). Therefore, we can make the following
considerations regarding where ESA signals are expected for this measurement. Along
the excitation axis 7; there can only be ESA signatures at wavenumbers absorbed by the
molecule, so 7; > 15000 cm™!. For the detection axis 773, as the only requirements are that
the emission be allowed and lie within the detection range given by the laser spectrum,
there are no general restrictions. Thus, in order to discuss the experimental observations
we need to consider the () and N bands and the laser spectrum, as indicated in Figure
4.5b. In this Figure the (), B and N bands in the linear absorption are represented, with
dashed lines indicating the approximate beginning and end wavenumber of each, while
the band within is highlighted with a grey background and the main transitions are shown
with black lines. The black arrows on the left indicate an excitation at 7; = 15000 cm ™,
corresponding to the lowest end of the () band absorption, and the arrows on top of them
have lengths corresponding to 14500 cm™! (red) and 16650 cm ™! (orange), corresponding
to the wavenumbers in which the laser spectrum used had 2% of maximum intensity.
Because both extremes of the spectrum lie within the N band after starting from the

lowest ) band absorption, we expect that for 7; = 15000 cm™!

negative contributions
will be present throughout the entire 73 range. Indeed in Figure 4.6 we observe that for
77 < 15000 cm™! the amplitude is very close to zero.

The black arrows on the right of Figure 4.5b represent 7, = 16650 cm ™!, the blue edge
of our laser spectrum, and can be used to apply the same reasoning above to the highest
wavenumber region accessed by our experiments. On top of these arrows the red and
orange arrows again represent the edges of the laser spectrum, showing that for initial
absorption at the highest excitation present in our experiment, the third interaction can
also lead to the N band. Thus, if for both extremes of absorption excitation from the @) to
the NV band is possible for the whole spectral range, we can expect that a background of
negative signals be present throughout the 2D-ES maps for 7; > 15000 cm ™. Finally, we
note that it is for the intermediate value of 7, ~ 15900 cm ™! that the maximum amplitude

of the laser spectrum leads to the maximum absorption in the N band, corroborating the

hypothesis that peak B in Figure 4.5a is not present due to almost perfect cancellation
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Figure 4.7: Series of absorptive 2D-ES spectra of the zinc-porphyrin chromophore in toluene at
selected values of T'. The color scale is symmetric and normalized to the maximum signal at
T =0.05 ps.

Finally, we would like to briefly discuss the spectral evolution observed for the por-
phyrin monomer in toluene. To that end, in Figure 4.7 we show a series of absorptive
2D-ES maps at values of T selected to highlight the changes observed in the spectrum (the
main differences between Figures 4.7 and 4.6 are the color scale and values of T shown).
At T = 50 fs the lineshape is elongated around the diagonal, indicating an inhomogen-
eously broadened transition. We observe that as 71" increases, the lineshape gradually
becomes round, which we assign to solvent-induced spectral diffusion. Although perform-
ing a careful analysis of the spectral diffusion process for this molecule is outside the scope
of this thesis, we note that the timescale of the lineshape change is around 3 picoseconds,
consistent with solvent dynamics timescales of toluene [164]. Furthermore, we observe
that at T"= 0.05 ps the maximum signal lies very close to the diagonal, and it gradually
shifts below the diagonal along 3. This shift of the maximum signal towards lower de-

tection wavenumbers happens within 1 picosecond and is consistent with the Stokes-shift
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observed in the steady-sate fluorescence. Coherent oscillations due to vibrational coupling

are also present and will be discussed in detail in the next Section.

4.3 Interference between oscillatory signatures

Now we move on to study the coherent oscillations over 7" observed in the 2D-ES spectra
of the zinc-porphyrin monomer. As discussed in Section 2.7.1, it is more convenient to
analyse coherent oscillations in rephasing and non-rephasing maps individually, as each
contain only half of the total double-sided Feynman diagrams, resulting in less overlap
and simpler interpretation. That Section culminated with Figure 2.9, which is a scheme
of where the most important pathways are displayed at their corresponding coordinates
in rephasing and non-rephasing 2D-ES maps. Because we will refer to it repeatedly, a
copy of that Figure is shown here for convenience (Figure 4.8). The schemes in Figure 4.8
show that a vibrationally coupled electronic transition results in 2D-ES rephasing spectra
with six peaks (although the one labelled F in Figure 4.5 above is of purely oscillatory
character), while the non-rephasing spectra have only five peaks (with the one missing

being at the position labelled F).
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Figure 4.8: Copy of Figure 2.9. Scheme of Liouville-space pathways in a rephasing (left) and
non-rephasing (right) 2D maps for the energy level structure shown in Figure 2.4b. See caption
of Figure 2.9 for details.

Systematically studying coherent oscillations in 2D-ES spectra can be a difficult task,

not only because of the experimental challenge of acquiring a large number of 2D-ES maps
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for different values of T with good signal to noise, but also because the sheer amount
of data makes the analysis challenging — the datasets discussed in the next Chapter
typically consist of over 5 Gb of data after the phasing procedure. Some groups have
focused their analysis in single points (or small regions around a point) in the (7, 73)
plane [70, 71, 87,88, 101, 165], but that can be deceptive in many ways. One reason
is that, as discussed in Chapter 2, vibrationally and electronically coupled systems are
spectroscopically similar and both give rise to oscillatory contributions, so the presence
of an oscillation in a single (71,73) pair bears no information regarding the physical
nature of the coherence generating it, with even a Raman mode of the solvent being
a potential source of oscillations. Although complementary experiments can be used
to assess potential contributions from vibrational coherences, this is hardly reasonable
justification to ignore the information present in the whole (7, 73) plane and focus only
at a single point. Coherent oscillations appear in patterns, and the presence of a pattern
(or lack thereof) helps establish how reliable the data and conclusions are. Here we shall
start the discussion with series plots of 2D-ES maps and gradually refine our approach
towards a comprehensive analysis, presenting the limitations of different methods.

Our first approach towards analysing the coherent oscillations can be making a series of
plots of both rephasing and non-rephasing contributions for different values of T'. Because
we know the electronic transition we are studying is coupled to a 375 cm™! vibrational
mode, we expect coherent oscillations with a period of 89 fs; so in the top of Figure 4.9
we plot a series of 6 rephasing maps with a 30 fs population time interval. In this Figure
the peak positions predicted from the displaced harmonic oscillator for the 375 cm™!
vibrational coupling are marked by the intersections of the dashed lines. Similarly to
what was observed for the absorptive case (Figure 4.5a), the cross-peaks are not completely
resolved. This happens for the reasons discussed in Section 4.2, with the aggravating factor
of the phase-twisted lineshapes, which extend further in the (7, 73) plane (see Appendix
A). Therefore, the tails of the strongest peak will help obscure smaller oscillatory features.

Careful analysis of the rephasing maps in Figure 4.9 shows that different parts of the
signal are oscillating as a function of T'. Perhaps the clearest is the main diagonal peak
C (7 = 3 = 15550 em™'), which increases until it reaches a maximum at 7 = 150 fs,
after which it decreases and rises again at 240 fs. We note that the value at T" = 240 fs is

smaller than that at 7" = 150 fs, which is expected as population relaxation and dephasing
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Figure 4.9: Rephasing (top) and non-rephasing (bottom) 2D-ES maps from 90 to 240 fs. The
color scale is normalized by the maximum signal: 1.29 at 150 fs (top) and 0.825 at 180 fs
(bottom). The points where the dashed lines cross mark the six expected peak positions.
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are both contributing to signal amplitude decay. Therefore, it is clear that even a movie
of color plots is not an effective way to assess the coherent oscillations, because it is
hard to follow the simultaneous relaxation and oscillation of many different coordinates.
Nonetheless, it is interesting to note that the observed lineshape comes closest to that of
a single electronic transition at 7' = 150 fs, while at T" = 90 fs significant amplitude from
the oscillatory cross-peaks below the diagonal obscures the negative part of the lineshape
in this region. This result shows that these oscillations at different (71, 73) points are not
in phase.

For completeness, we show the corresponding series of non-rephasing 2D-ES maps
at the bottom of Figure 4.9. The non-rephasing lineshapes are intrinsically broader (as
they are derived from a free induction decay signal, whereas the rephasing correspond
to a photon-echo signal), so identification of cross-peaks is more difficult in this case,
and the result we observe resembles the non-rephasing lineshape of a single electronic
transition even more closely [66,166]. As for the oscillatory contributions, most of them
are expected at the corners of the square which is cut by the diagonal line (points A-D),
so that they lie on top the most intense non-oscillatory contributions, contrary to the
rephasing case, where most oscillatory amplitude is found below the diagonal, on top of
smaller backgrounds.

In Figure 4.9 we see that the amplitude is dominated by non-oscillatory signals —
the oscillatory features are small compared to the main amplitude, which dominates all
color plots. Because we are specifically interested in the signatures from vibrational
coherences, we need different ways to visualize the data. The questions we want to
address regard which regions of the (7, 3) plane present oscillatory behavior and what
the phase relationships between them are. In order to address that, we begin by looking
at amplitude traces over T' of individual (71, 73) points where oscillations are expected.
In Figure 4.10 we show the rephasing (a) and non-rephasing (b) maps at 7" = 120 fs, and
(below) the time traces for three selected (74, 73) points. Point 1 corresponds to the cross-
peak labelled F (7 = 15925 cm™!, 3 = 15175 cm™!) in Figure 4.5, where two coherence
Feynman diagrams and no population ones are centred for rephasing signals. We find
that the corresponding trace, displayed in blue in Figure 4.10c, shows an oscillation with
period of around 89 fs.

Still in Figure 4.10c, we consider points 2 and 3 — point 2 corresponds to the lower
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Figure 4.10: Real rephasing (a) and non-rephasing (b) 2D-ES spectra at population time 7' =
120 fs. The squares labelled 1, 2 and 3 mark positions for which the traces over 1" are shown
in (c) — rephasing — and in (d) — non-rephasing. The curves are vertically offset to facilitate
visualization.

diagonal peak at ©; = 3 = 15650 cm ™!, where two rephasing oscillatory pathways are
centered; and point 3 is at 7, = 3 = 15450 cm™!, where no pathways are centered,
and thus any oscillations arise from the broadened lineshapes from nearby pathways.
Accordingly, the trace of point 3 (black line in Figure 4.10c) shows an oscillation of smaller
amplitude than that of 1. The trace of point 2 on the other hand (red line in Figure 4.10c)
shows comparable oscillatory amplitude as that of point 1. It is also interesting to note
that points 2 and 3, both along the diagonal, oscillate in phase, whereas point 1 (which
is connected to point 2 by a line perpendicular to the diagonal) oscillates out of phase
with the previous two. This is in agreement with the prediction from Section 2.8 that
rephasing oscillation lineshapes have constant phase along the diagonal.

In Figure 4.10d we plot the non-rephasing amplitude traces over T for the same points.
There are no non-rephasing oscillatory pathways centered at point 1, so the minor oscil-
latory amplitude can be understood as resulting from the lineshape tails from pathways
centered elsewhere. The same applies to point 3, but this is closer to the main diagonal
peak, where two oscillatory pathways are centered. That the oscillatory amplitude at 3 is

clearer than in 1 reflects this overlap. Finally, point 2 is the center of two non-rephasing
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oscillatory pathways, and accordingly we observe an oscillation of larger amplitude. We
also note that the phase-shift observed among these 3 traces follows the description of
Section 2.8, where the phase of non-rephasing oscillatory lineshapes was predicted to be
constant along the anti-diagonal direction, matching the fact that points 1 and 2 oscillate

in phase with each other, but not in phase with point 3.
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Figure 4.11: Power spectrum of the rephasing trace at (7; = 15925 cm™!, 3 = 15175 cm™!).
The maximum amplitude is found at 7, = 375 cm ™! and is marked with a dashed vertical line.

However, the overall picture of the coherent oscillations remains incomplete. We have
analyzed only three coordinates, while we have forecast pathways contributing at six
coordinates, and even when some of those coordinates were not at the central position
of any pathway (points 1 and 3 for the non-rephasing) we still observed oscillations.
Therefore, it is important to find means to assess oscillatory behavior across the entire
excitation-detection plane. To that end we have developed a program in Labview which
allows us to scan (7, 73) while the corresponding amplitude trace over T is displayed in
real time on the screen, and inspecting the data shows that oscillatory time traces at
375 cm™! can be found in many regions. Scanning the rephasing maps with the software,
for instance, we observe that maximum oscillatory amplitude occurs in the region around
that of cross-peak F (7, = 15925 cm ™!, 73 = 15175 cm™!). Performing a Fourier Transform
of this trace we obtain the power spectrum shown in Figure 4.11. In this Figure, amplitude
at 375 cm™! is found to dominate the oscillation at this coordinate, but no information
is available about the oscillatory amplitude around this coordinate.

In order to fully investigate the amplitude and phase of the oscillations resulting from

the 375 cm™! mode, we can perform a Fourier transform of all population time traces in



CHAPTER 4. VIBRATIONAL SIGNATURES IN 2D-ES 99

the 3D matrix formed by stacking all different population times measured (in our case,
97 2D spectra with population times ranging from 30 fs to 1 ps with time steps of 10 fs),
as originally introduced in references [103,167,168]. This means that the resulting data
will be a function of (7, Iy, I3), where 7y is the wavenumber corresponding to the Fourier
pair of T'. Performing the Fourier Transform of the pure signal, as done in Figure 4.11,
results in large baselines around 7, = 0 because of the non-oscillatory parts of the 2D-ES
signal. To avoid such artefacts, we initially perform a global multi-exponential fit to the
2D maps, and then Fourier transform only the residuals of the fit [169], which contain
the background-free coherent oscillations. The resulting Fourier transformed 3D matrix
will have an amplitude and a phase for every set of excitation, population and detection
wavenumbers (7, 7, 773). This allowed us to build a Labview software in which it is
possible to scan the different population wavenumbers (7%) and observe in real time the
corresponding oscillatory amplitude in the usual excitation-detection plane. We can also
scan the excitation-detection plane and see the corresponding power spectrum (oscillation
amplitude as a function of 7, for the selected (7, 73) pair), thus creating a practical way

to systematically assess different oscillation frequencies present in the data.
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Figure 4.12: Amplitude of the 375 cm ™! oscillation in the real rephasing (a) and non-rephasing
(b) 2D-ES maps.

For this particular experiment, the frequencies that stand out in the Fourier trans-

formed 3D matrix were the 375 cm™! corresponding to the expected vibrational coupling

revealed in the linear absorption spectrum and, at much smaller intensity, the 787 cm™!

Raman mode of toluene, which is the only strong toluene mode within our spectral band-

1

width and can be seen in Figure 4.11. By fixing 7, = 375 cm™ and plotting the amp-

litude distribution of the Fourier transformed 3D matrix as a function of (7, 3) we obtain
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Figures 4.12 (a) and (b) for the rephasing and non-rephasing spectra respectively. Sig-

nificantly in both cases the amplitude of the 375 cm™!

oscillation is distributed along
the (71, 73) in a pattern that does not resemble the 5 oscillatory peaks forecast in Fig-
ure 4.8. However, we do find that most of the rephasing oscillatory amplitude is found
around the region of peaks C, D, E and F (see Figure 4.5 for coordinate labels), while
non-rephasing amplitude lies mostly around the region of peaks A, B, C and D. Both
of these observations are expected from the diagrammatic analysis, suggesting that the
unexpected peak pattern formed might be caused by interference between neighbouring
peaks which partially overlap.

We expect the lineshapes from oscillatory pathways to partially overlap because the
vibronic shoulder overlaps with the main electronic transition in the linear absorption
spectrum (Figure 4.2). To assess the expected effects from this overlap we refer back
to equation 2.77, an expression for the phase of the oscillation corresponding to a single
Feynman diagram originally obtained by Butkus et al. [78]. As discussed previously,
it follows from this equation that the phase of a single rephasing oscillatory pathway
is constant along the diagonal. Therefore, as contributions centred in different (7, 73)
with phases varying along (4, 73) overlap, we expect maxima and minima of oscillatory
amplitude to form parallel to the diagonal, exactly as observed in Figure 4.12a. The
argument for the non-rephasing case is the same, but it applies to the anti-diagonal, and
once more is in agreement with the observations from Figure 4.12b.

To further confirm the interference hypothesis we have plotted the phase of the
375 cm™! oscillation in figure 4.13 (a) and (b), where the amplitude of the oscillation
is indicated with contour lines and the phase at each excitation-detection pair is shown
with a color scale. The expected relationship is found: the rephasing oscillation has its
overall phase constant along the diagonal, with variations of up to 27 found along the
anti-diagonal, while the opposite is observed in the non-rephasing. So even though the
oscillation amplitude in the excitation-detection plane for rephasing and non-rephasing
contributions does not resemble what would be expected from a simplistic Feynman dia-
gram picture including only 0-0 and 0-1 transitions, there is a clear explanation for the
deviations.

In spite of the qualitative agreement, we note that Equation 2.77 was derived ana-

lytically under a set of assumption, and it gives the phase of one single Liouville-space
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Figure 4.13: Amplitude (contour lines) and phase (color scale) of the 375 cm™! oscillation
present in the real rephasing (a) and non-rephasing (b) experimental 2D-ES spectra of the
zinc-porphyrin monomer. Graphs (c¢) and (d) are the same but for calculated 2D-ES data (see
text for details).

pathway. Our experiment detects many and we are making considerations regarding the
overlap effect. To further support that the amplitude and phase of the 375 cm ™! oscilla-
tion can indeed be reliably recovered from our measurements and that their profiles differ
from the Feynman diagrams forecast due to interference between different pathways, we
have implemented simulations of 2D-ES spectra based on a traditional response function
theory, which includes the whole vibrational ladder, is completely independent from the
assumptions used to derive Equation 2.77, has no effects due to finite pulse duration and
pulse overlap and should automatically account for interferences. The approach used to
simulate the 2D-ES signal from the porphyrin monomer is discussed in detail in Appendix
1.

In order to confirm the oscillatory behavior found in the experiment for the 375 cm™1
oscillation, we calculated rephasing and non-rephasing spectra from 7" = 0 to T" = 1000 fs

in time steps of 10 fs and then applied the same analysis used for the experimental data

described above. The calculated results for both amplitude and phase of the 375 cm™!
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oscillation for rephasing and non-rephasing signals are shown in Figures 4.13c,d. Good
agreement is found with the experimentally recovered maps (Figures 4.13a,b), thus valid-

ating the previous discussion.

4.4 Summary

To summarize, we have experimentally investigated coherence signatures in 2D-ES
arising from the coupling of a 375 cm~! vibrational mode to the lowest singlet electronic
transition of a zinc-porphyrin monomer. Comparison of the results with the predictions
from the diagrammatic analysis alone proved unsatisfactory. However, the work of Butkus
et al. [78] led us to both to predict that interference effects take place among overlap-
ping neighboring oscillatory contributions, and to qualitatively describe the rephasing and
non-rephasing interference patterns in the (7, 73) plane. Calculations of 2D-ES spectra
based on a traditional response function theory of a two-level system with a spectral
density based on a multi-mode Brownian oscillator model that automatically takes over-
lapping lineshapes into account were performed, and the results matched well with the
experiment, further confirming the interference hypothesis.

It follows that although considerations on Feynman diagrams are useful, at least for low
frequency coherent oscillations in molecular systems there will always be overlap between
neighboring peaks. Thus, the oscillations observed are a sum of signals arising from
different Feynman diagrams, with the phase of individual contributions being given by
equation 2.77. When there is such overlap between neighboring pathways, the phase and
amplitude of the coherent oscillations will deviate from predictions from diagrammatic
analysis that assumes infinitely sharp transitions. Therefore neither the phase nor the
amplitude of an oscillation are reliable sources of assignment of a particular coupling and

its nature unless more sophisticated analysis is employed which accounts for these effects.



Chapter 5

Laser Spectrum Effects in Coherence

Pathways

In the previous Chapter we discussed the basic 2D-ES results for the zinc-porphyrin
monomer, addressing the issue of analyzing large datasets in order to have a global picture
of coherent oscillations in what are effectively 3D spectra (obtained by finely scanning 7'
and performing a Fourier transform to obtain the results as a functions of 7»). On the
basis of these results and those from Section 2.8 we predicted and detected the presence
of interference between neighbouring oscillatory pathways in 2D-ES. Nonetheless, the
whole analysis was based only on the real part of rephasing and non-rephasing spectra,
following the usual approach in the 2D-ES literature for molecular systems in that period.
However, in 2013 Seibt and Pullerits [167] showed that by analysing the complex-valued
2D-ES spectra information on the frequency sign of any coherent oscillations during 7" can
be recovered and used to isolate ground from excited state vibrational coherences, which
Song et al. demonstrated experimentally in a conjugated polymer film [170] in 2015.

In this Chapter we apply this analysis to both calculated and experimental 2D-ES
spectra of the porphyrin monomer. We then employ it to discuss laser spectrum effects
on coherent oscillations, where we find that under widely used excitation conditions vi-
brational and electronic coherences give rise to the same pattern of oscillatory features in
the (74, 73) plane. The results are readily explained in terms of the Feynman diagrams,
and the understanding of this result allows us to demonstrate how the laser spectrum can
be used to unambiguously separate vibrational from electronic coherences in 2D-ES. The

results were published in reference [171].
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5.1 Ground and excited state vibrational coherences

with 2D-ES

In this Section we apply the same analysis used in Section 4.3 to the full complex-
valued 2D-ES spectra, in order to verify the predictions from Figure 2.9 regarding the
frequency sign and the (7, 73) positions of oscillatory features. To this end, new 2D-ES
measurements of the zinc-porphyrin monomer were performed aiming to acquire data of
even higher quality. The datasets discussed in Chapter 4 were obtained between June and
August of 2014, while the datasets we focus on in this Chapter were obtained between
March and May of 2016, and the 2D-ES setup has been optimized in the meantime.
Most of the measurements in this second set used n-pentane as a solvent, as its Raman
active modes have significantly smaller cross-section than other solvents (toluene, acetone,
dichloromethane, 2-methyltetrahydrofuran, methylcyclohexane) and therefore generates
smaller oscillatory contributions in the 2D-ES data. Also aiming to minimise the coherent
oscillations from the solvent, in this Chapter we make use of 200 pm pathlength cells, so
that the concentration is about 5 times higher than in 1 mm cells, meaning that 5 time
as many molecules are present in the same focal spot.
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Figure 5.1: (a) Linear absorption spectrum of the monomer in n-pentane with 1% by volume
of pyridine. (b) Linear absorption of the monomer normalized by the maximum value in the @
band (blue) and the normalized laser spectrum (red) used in the 2D-ES experiments described
in this Section. Dashed lines mark the absorption and stimulated emission transition energies
that can be present in pathways related to the 375 cm~! vibrational mode.

In Figure 5.1a we show the linear absorption of the porphyrin monomer in n-pentane,
while in Figure 5.1b we zoom in on the () band and compare the normalized linear
absorption with the normalized laser spectrum used in the experiments described in this

Section. The laser spectrum is broader than the one used in the previous Chapter, with
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significant amplitude even below 7 = 14000 cm™! (714 nm), but covers the same region
of the molecular absorption. The molecular absorption in n-pentane with 1% by volume
of pyridine has the same qualitative features as in toluene (shown in Figure 4.2), but we
observe a blue-shift of 100 cm™" in the Q,(0 — 0) transition, with the vibronic signatures
following this shift. Therefore, in this Chapter the @, (0 —0) transition — the gap between
|g0) and |eg) — is at 15650 cm ™!, while the vibronic shoulder associated with the 375 cm™*
mode — gap between |gg) and |e;) — is at 16025 cm™!. Finally, the stimulated emission
from |eg) to |g1) is expected at 15275 cm™!.

We performed 2D-ES experiments with population time steps of 5 fs in the range
30 < T < 1000 fs, so the Nyquist limit for our wavenumber resolution is 75 ~ 3330 cm ™!
in the population time period. In Figures 5.2 and 5.3 we show the real and imaginary
parts of the rephasing and of the non-rephasing spectra at T" = 70 fs — maps at other
populations times were qualitatively similar. All maps closely resemble the calculated
results for a single inhomogeneously broadened electronic transition [66, 166], reinforcing

that our experiment is recovering the imaginary parts correctly. We want to employ the

same analysis from Section 4.3 for the complex-valued spectra.
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Figure 5.2: Real and imaginary rephasing maps for the porphyrin monomer at 7" = 70 fs.

Now we can proceed to use the 196 2D-ES spectra to build the complex-valued 3D
matrix with all of them stacked, in order to assess the oscillation amplitude maps. Before
that, it is desirable to check the quality of the data in the time domain, because the
recovery of positive and negative frequencies relies on the phase-shift between real and

imaginary parts of the signal being adequately measured. To check that, we will look at



CHAPTER 5. LASER SPECTRUM EFFECTS IN COHERENCE PATHWAYS 106

j ' 0.22 ; T ' 0.18

Real o Imaginary o8

0.09 0.08

0.03 0.03

-0.03 -0.03

—~ 16.0 - dbpoee  _16.0 Al 008

A\ -0.16 ~ -0.13

E -0.22 E -0.18
o (&)
o o
o o
o o
= Ao

157 15.5 4 - 157 15.5 - ]
15.0 ' . 15.0 . .
15.0 15.5 16.0 15.0 15.5 16.0
v, (1000 cm™) v, (1000 cm™)

Figure 5.3: Real and imaginary non-rephasing maps for the porphyrin monomer at 7' = 70 fs.

points in the (71, 73) plane where strong oscillations of purely negative or purely positive
frequency are expected due to vibrational coherences from the 375 cm ™! mode, and assess

whether the oscillation presents the correct behavior.
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Figure 5.4: (a) Real (black) and imaginary (red) rephasing traces as a function of T" for 7} =
15725 cm™! and 73 = 15295 cm™'. A factor of 0.05 was subtracted from the imaginary part to
avoid overlap between the graphs. (b) Real (black) and imaginary (red) non-rephasing traces
as a function of T for 7; = 15955 cm™! and 73 = 15918 cm ™!, where only coherences of negative
frequencies at 375 cm ™! are forecast. A factor of 0.035 was subtracted from the imaginary part
to bring the traces closer together. The vertical lines are spaced by 89 fs and the first one is
placed to coincide with the maximum of the real part of the signal.

In Figure 5.4a we show the real (black line) and imaginary (red line) rephasing traces
as a function of T for 7, = 15725 ecm™! and 73 = 15295 cm™!. At this point, which
lies below the diagonal on our plots, the only coherences expected at 375 cm™! have

positive frequency, which corresponds to an oscillation like cos (19T") + isin (1p7") in the
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time domain, where vy > 0. In words, this means that both real and imaginary parts
will have the same amplitude, but the maxima of the imaginary part will be delayed by
5 compared to the real part, which is exactly what we observe in Figure 5.4a.

In Figure 5.4b we show non-rephasing traces for 7; = 15955 cm™! and 3 = 15918 cm ™!,
where only coherences of negative frequencies at 375 cm~! are forecast. Negative frequen-
cies consist of an oscillatory behavior like cos (14T') — isin (14T, implying that both real
and imaginary parts will have the same oscillatory amplitude, but a phase-shift 7 in the
opposite direction to that observed in (a) is expected. Once again, the experimental
results fully match the forecast.
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Figure 5.5: Power spectrum of the fit residuals of the time trace shown in Figure 5.4a. The
signal is dominated by a peak at 7p = +375 cm™!, and no significant amplitude is found at
negative frequencies.

However, 3 phase shifts and oscillatory amplitudes are difficult to fully assess based
on the oscillatory traces alone. In order to further check our experiment’s ability to
separate positive from negative frequencies we use the following procedure. First we
generate the 3D matrix with all population times stacked together, perform the global fit
and take the residuals from it, as in Section 4.3. We can then select 7; = 15725 cm™!
and 75 = 15295 cm~! in the rephasing maps and plot the power spectrum of the Fourier
transform, thus revealing which frequencies are observed in the waiting time response at
those coordinates (which corresponds to the time domain trace from Figure 5.4a). This is
shown in Figure 5.5, where we observe that a strong peak at 7, = +375 cm™! is present,

with no significant amplitude observed at negative frequencies. A smaller peak at around

Uy = +180 em™! is also present. It is known from resonance Raman experiments [162]
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L coupled to

that zinc-porphyrins have a vibrational mode at approximately 150 cm™
the electronic structure, to which we assign this feature. However, only a handful of
oscillation periods at this wavenumber are present within the 1 picosecond window of
our measurement, so in order to fully resolve coherences from this mode longer scans
are required. Because our objective is to study vibrational coherences in 2D-ES, not use

2D-ES to measure accurate Raman spectra of the zinc-porphyrin monomer, oscillatory

features at this range are not considered further.
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Figure 5.6: Power spectrum of fit residuals of the time trace shown in Figure 5.4b. The signal

is dominated by a peak at 7, = —371 cm™!, and the small peak found at 5 = +384 cm™! has

less than 3% of the highest amplitude observed. The small peak at 7, = +180 cm™! is related

to a vibrational mode of the porphyrin molecule which also couples with ... To resolve it well,
a longer scan of T than 1 ps is required.

In Figure 5.6 we plot the power spectrum of the residuals of the non-rephasing trace
from Figure 5.4b and verify that the coherent oscillation observed indeed corresponds

to ip = —375 cm L.

We note from Figure 2.9 that contrary to the rephasing case, for
which plenty of the oscillatory peaks are located at low detection wavenumbers, and thus
have fewer overlapping signals, the non-rephasing oscillations are strongest around the
diagonal, where the largest non-oscillatory signals are also present. Therefore, the non-
rephasing signal-to-noise of oscillatory positions as a function of T is generally worse
than in the rephasing case. We thus attribute the presence of the small peak at v, =
+384 cm~! to inadequate separation between positive and negative frequencies from our
experiment. Still, we emphasize that the peak at positive frequency in Figure 5.6 has

less than 3% of the amplitude observed at the negative frequency, corresponding to a

satisfactory discrimination between positive and negative frequencies.
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Figure 5.7: Rephasing oscillation amplitude maps showing the total oscillatory amplitude at
7y = +375 ecm~! (left) and 7 = —375 cm~! (right) as a function of (i,73). Lines mark the
coordinates ey and Uy & 1, with 7y = 15650 cm™ ! and 7y = 375 cm L.

Finally we move on to display the full oscillatory amplitude at 7, = £375 cm™! at all
(71, 73) points. For that, we employ the procedure used in Section 4.3, that is, initially
we perform a global fit of the now complex-valued 2D-ES rephasing and non-rephasing
spectra, and then apply a Fourier transform to the residuals of the fit at each (7, 73)
point. The fact that we now can separate positive from negative frequencies means that
the red and green symbols from Figure 2.9 will be observed at their correspondingly signed
frequencies, thus no longer overlapping.

In Figure 5.7 we show the rephasing oscillation maps at 7, = +375 cm™! (left) and
Uy = —375 cm™! (right). In both we find good agreement with the prediction from Figure
2.9. At 7, = —375 cm ™! we observe that the amplitude is elongated around the two points
marked by the red squares in Figure 2.9. At 7, = +375 cm™! the oscillatory amplitude is
distributed in four distinct peaks around the corners of a square with side 375 cm ™! with
corners in the positions indicated in Figure 2.9.

The non-rephasing oscillation amplitude maps at 7, = £375 cm ™! are shown in Figure
5.8, and again good agreement with theory is found. At 7, = —375 cm~! we observe the
amplitude in a square shape with two corners of the square corresponding to the diagonal,
as expected from Figure 2.9. At 7, = +375 cm™! we again see amplitude elongated around

the two peak positions forecast at (2, 73) = (15650, 15650) and (7, 73) = (15650, 15275).
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Figure 5.8: Non-rephasing oscillation amplitude maps showing the total oscillatory amplitude
at Uy = +375 cm ™! (left) and s = —375 cm ™! (right) as a function of (71, #3). Lines mark the
coordinates ey and Uy & 1, with gy = 15650 cm™! and 79 = 375 cm L.

Although we are using all information available to isolate pathways, each of the maps
shown in Figures 5.7 and 5.8 contains contributions of two (rephasing negative and non-
rephasing positive) or six (rephasing positive and non-rephasing negative) double-sided
Feynman diagrams, and the displacement between central positions of pathways in the
(71, 3) plane corresponds to multiples of the vibrational mode wavenumber of 375 cm ™.
Because this value is comparable to the transition linewidth, there will still be significant
overlap between neighbouring peaks, and therefore the considerations from Section 4.3
regarding interference also apply. We note however that Figures 5.7 and 5.8 resemble
Figure 2.9 much more closely than what was observed in Section 4.3 (Figure 4.12), when
only the real part of the 2D-ES maps was considered. The most striking difference ob-
served in Figure 4.12 when compared to Figure 4.8 was the presence of clear minima in
the amplitude for both rephasing and non-rephasing cases, whereas in Figures 5.7 and 5.8
no such features are seen. Before we discuss the reason behind this, we note that it is the
same for rephasing and non-rephasing cases, with the only difference being the direction
along which the phase varies. Thus, the discussion below will be exclusively focused on
the non-rephasing case.

In order to understand the origin of the more pronounced interference when only the

real part of the 2D-ES maps is used, we note that at 7, = 3 = 15650 cm ™! there are two
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non-rephasing pathways with oscillatory frequency of opposite sign (and the same goes for
rephasing — see Figure 4.8). From Equation 2.77, these diagrams’ phases will have opposite
sign compared to each other, and both remain constant along the anti-diagonal direction,
varying most along the diagonal. Hence, at central position both start in phase, but while
the phase of one of the diagrams increases towards 7 in one direction of the (71, 3) plane,
the phase of the other diagram decreases towards —% along this same direction. Thus, if
both diagrams have similar oscillatory amplitudes which are gradually going out of phase
as distance from the central position increases, almost perfect cancellation will happen
where they are completely out of phase. Because the phase changes along the diagonal
both towards high and low wavenumbers, two interference minima are expected: one at
higher and one at lower wavenumbers than the central position, exactly as experimentally
observed in Figure 4.12b. For vibrational modes of higher wavenumbers, where no overlap
is present, the expected result if only the real part of the signal is used is that this diagonal
peak will present a sharper lineshape, stretched along the direction of constant phase. This
has been observed by Senlik et al. in rephasing oscillation amplitude maps of monomeric
chlorophyll a in solution, although the origin of the very different lineshape of this peak
was not discussed [172].

We also emphasize that according to Equation 2.77 the phase of individual oscillat-
ory pathways behaves as an arctangent, which implies that it asymptotically approaches
+5. Therefore, exactly two interference minima are expected to result from the diagonal
pathways of opposite frequency, as the phase difference between the two contributions
gradually approaches 7. On the other hand, oscillatory pathways that have all the same
frequency sign will not interfere so strongly. To see that, we first note that if the two
oscillatory pathways of the same frequency are centred at the same (7, 73) point, the
phase of both is expected to vary exactly in the same way as a function of (7, 3), there-
fore not generating interference patterns. The other possibility is that of overlap between
pathways which are each centered at a different (7, 73) coordinates. In this case, there
is no obvious general rule for the phase and amplitude overlap, as it depends on their
relative position and on their dephasing rate.

However, for clear interference minima or maxima to form, it is necessary that oscil-
latory signals of similar amplitude overlap with a phase shift of approximately zero or ,

which is unlikely. The combination of phase and amplitude between different pathways
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in the regions of overlap are expected to be strongly dependent on the system and the
specific vibrational mode considered, which will determine the separation between neigh-
boring contributions. What we observe for the 375 cm™! mode of the porphyrin monomer
in Figures 5.7 and 5.8 is that constructive interference in the region between the central
positions obscures individual peaks. In Figure 5.8, non-rephasing oscillatory amplitude

! shows intense amplitude inside the square whose corners correspond

at 7p, = =375 cm™
to the pathways central position, while outside the square the amplitude decays strongly.
A similar result is observed in Figure 5.7 for 7y = +375 cm ™!, but rephasing lineshapes
are sharper than non-rephasing ones, allowing individual peaks to be identified, although

the interference features still cause their positions to shift from the corners of the square.
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Figure 5.9: Calculated linear absorption of the porphyrin monomer (black line) in toluene using
the same parameters from Section 4.3 apart from the temperature, which was set to 90 Kelvin.
The blue line shows the experimental linear absorption in toluene and 1% of pyridine by volume
for comparison.

It is thus interesting to have the results for a case in which there is no overlap between
peaks. Although overlap for the features at 375 cm™! is unavoidable in our measurements,
we can assess this situation with the calculations we used in Section 4.3 and described in
Appendix A. To do that, we use the same set of parameters employed before, but arbit-
rarily set the temperature to 90 Kelvin, which narrows the transition widths enough for
the peaks associated with the 375 cm~! mode to be fully separated. The calculated linear
absorption in this case is shown in Figure 5.9, and we observe that the narrowing of the
linewidth results in a sharper vibronic progression with well separated peaks. Therefore,

we can calculate oscillation maps corresponding to the 375 cm™! vibrational mode and
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assess how their expected features when there is minimum overlap.
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Figure 5.10: Calculated rephasing oscillation amplitude maps at 90 Kelvin showing the total
oscillatory amplitude at s = +375 cm™! (left) and 7, = —375 cm™! (right) as a function of
(1,73). The color scale is such that the maximum of each map corresponds to the red layer,
but the values displayed are normalized to the maximum value of the positive frequency map.

We have calculated the real and imaginary parts of the 2D-ES rephasing and non-
rephasing signals at 90 K from 30 to 1000 fs in time steps of 10 fs and performed the
same Fourier analysis described above; in Figure 5.10 we show the calculated rephasing

oscillation amplitude maps at +375 cm™!.

At 7y = +375 cm™! we observe four peaks
forming a square, and the two peaks at higher 7; have larger amplitude — in accordance
with the fact that there are two oscillatory pathways centered at those positions, compared
to the single pathway centred at the positions at lower ;. The amplitude observed at
Uy = —375 cm~! also shows the expected two peaks, as well as small signals that are
related to pathways involving higher levels of the vibrational ladder. We note that the
peak at high 73 is more intense, which agrees with the experimental map from Figure 5.7,
where at negative frequency the maximum amplitude is closer to this peak’s position.
The non-rephasing maps are shown in Figure 5.11 and present a similar situation,
with four distinct peaks being observed at 75 = —375 cm™! in the forecast positions,
with small amplitude also being present at higher values of 7, corresponding to an initial

excitation to |es), which is not observed in the experiment. Once again the positions

in which two pathways are centered have more amplitude than those in which a single
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Figure 5.11: Calculated non-rephasing oscillation amplitude maps at 90 Kelvin showing the
total oscillatory amplitude at 7, = +375 cm™! (left) and 7 = —375 cm ™! (right) as a function
of (71,73). The color scale is such that the maximum of each map corresponds to the red layer,
but the values displayed are normalized to the maximum value of the negative frequency map.

pathway is present. At 7 = +375 cm ™!

, apart from the small traces of amplitude at
higher values of 7;, we observe that the amplitude is dominated by two peaks in the
expected positions. This time it is the diagonal peak that shows higher amplitude, which
is also in agreement with the experimental map (Figure 5.8). Thus, the calculations
at 90 K show that the diagrammatic analysis summarized in Figure 4.8 predicts the
most relevant coherence signals observed from vibrational coupling, and that separation
between positive and negative frequencies avoid the most dramatic interference effects.
The experimental results at room temperature agree with this forecast as well, in spite of
significant overlap caused by the broad lineshapes.

Finally, it is interesting to note that the pathways with negative oscillatory frequen-
cies in rephasing and positive frequencies in non-rephasing are all in the electronic excited
state. Therefore, 2D-ES can in principle be used to assign vibrational coherences in the
electronic excited state [170]. Porphyrins have a rather robust structure which does not
change significantly between the ground and electronic excited state, so it is expected that
ground and excited state vibrational coherences have the same frequency. Consequently,

the oscillation maps are similar to Figure 4.8. For molecules that undergo structural

changes in the excited state, the 2D-ES oscillation maps might deviate from those fore-
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cast in Figure 4.8, with the pathways represented by squares potentially being shifted
in frequency or undergoing a different dephasing rate than the pathways represented by
triangles. In fact, the dephasing rates between coherences in the ground and electronic
excited states can be expected to differ even for the zinc-porphyrin monomer, but such
analysis was not performed yet. To our knowledge, there are no studies applying 2D-ES to
recover such information, and our group plans to pursue this further with a more suitable
sample which undergoes significant structural change in the excited state.

In summary, in this section we have added the imaginary part of the spectra to the
analysis of coherent oscillations, which allowed us to further isolate coherence pathways.
The experimental result for the porphyrin monomer matches the theoretical forecast very
well, indicating that we are able to revolve positive from negative frequencies reliably with
our 2D-ES setup. We also observed that interferences between neighboring pathways are
less pronounced when positive and negative frequencies are separated, and showed why
that is the case based on the theory used in Section 4.3. Last, we proposed that in samples
which undergo significant structural change in the electronic excited state the vibrational
coherence signatures from 2D-ES experiments can be used to investigate the dynamics of

such changes.

5.2 Laser Spectrum Effects

Until this point, all theoretical considerations regarding the coherent oscillations in
2D-ES have ignored possible effects from the laser spectrum. We note however that the
excitation spectrum used in the experiments reported above had significant amplitude
at lower wavenumbers than the molecular absorption (see Figure 5.1b). This choice was

1 and

based on our interest in benchmarking the vibrational coherences of the 375 cm™
therefore bandwidth in the spectral region of the stimulated emission was important to
capture pathways that emit at lower energies (see Figure 4.8). For the monomer it was
also convenient not to have much amplitude beyond the vibronic shoulder corresponding
to the 375 cm™! mode in absorption, because the ESA pathways discussed in Section
4.2 are particularly prominent in that region, making the general interpretation of the

2D-ES results more complex. However, most samples of interest with absorption in the

visible region typically have broad absorption bands that cannot be covered with the
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laser spectrum as easily as the porphyrin monomer. Therefore, it is pertinent to ask how
the coherence signatures are affected by the excitation laser spectrum. In the following
we briefly review the studies which considered laser spectrum effects in 2D-ES, and then
present our own results focusing on the effect of the spectrum on coherence pathways.

In their seminal work on 2D-ES, the Jonas group performed calculations of 2D-ES
spectra of a two-level system including solvent interactions through a correlation function
approach, and showed that finite pulse duration had the sole effect of filtering the 2D-ES
lineshape across both 7, and 73 axes [146] for a single population time. Later theoretical
work by the Pullerits group on an electronically coupled dimer model explored the extra
signals which arise during pulse overlap, finding that for 7" larger than the pulse overlap,
the only requirement for the laser spectrum is that is covers the absorption [173]. In
another article, this same group described the effect of weakly-chirped pulses on 2D-ES
spectra, observing that pulse-chirp causes mixing between real and imaginary contribu-
tions, and that positive and negative chirps generate different distortions, but still focusing
on the lineshape of a single population time [174]. We note that all pulses used in this
thesis are much closer to Fourier transform limit than those for which distortions were
observed in that study (see Figure 4.3).

Caram et al. reported absorptive 2D-ES experiments on a cyanine dye with two
different laser spectra, one with and the other without laser bandwidth in the stimu-
lated emission spectral region, and observed the suppression of the peaks with emission
wavenumber no longer covered by the laser as the sole effect [150]. Notwithstanding, that
study did not include a systematic analysis of coherent oscillations due to vibrational
coherences across the entire (1, 3) plane, so the effect of the laser spectrum on coherence
pathways remained unexplored.

Theoretical work by Abramavicius et al. derived expressions using response function
theory which included both pulse overlap and finite-bandwidth effects, using them to
explore two-color 2D-ES pathways [175]. Experimentally, two-color experiments have been
used to select specific coherence pathways using the different spectral composition between
the first and second excitation pulses to ensure that the desired coherent superposition
was prepared during T [172,176].

Recently, Tempelaar et al. used experiments and theoretical modeling to specifically

address the issue of finite bandwidth effects on coherent oscillations in 2D-ES spectra of
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a cyanine dimer, where vibrational and electronic coupling are expected to coexist. They
observed disagreements between experiment and calculations, which they attributed to
the finite bandwidth of the laser spectrum. However, the agreement between experimental
and calculated 2D-ES absorptive spectra even when the laser spectrum is included is poor,
and not enough information was given on how the laser spectrum was incorporated and
tested, which is significant because the 2D-ES results calculated including the pulse shape
had a substantial signal amplitude in spectral regions where there is no laser intensity.
Moreover, the experimental and calculated oscillation amplitude maps contain major
discrepancies between each other, even when the laser spectrum is included, with strong
peaks being present in the calculations but not in the experiment. The mix between
vibrational and electronic coupling is intrinsically more complex than purely vibrational or
purely electronic coupling, and therefore it is also unclear that the theoretical model used
to describe the system was adequate in the first place, especially because no interpretation
of the results in terms of Liouville-space pathways was presented. In spite of these issues,
this paper highlights that a clear understanding of laser spectrum effects in coherent

oscillations in 2D-ES is lacking.
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Figure 5.12: Normalized linear absorption of the porphyrin monomer in n-pentane with 1% of
pyridine by volume (blue) and normalized laser intensity of the 2D-ES experiments described in
this Section (green).

In this situation, a systematic study of the laser spectrum effects on the simplest case
of vibrational coupling can bring important insights in the design and interpretation of
2D-ES experiments on coherences, especially because the laser spectrum used in 2D-ES

experiments often does not have bandwidth on the red side of the absorption, as we had in
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the previous sections (see Figures 4.3a and 5.1b). To that end, we have performed a similar
set of 2D-ES measurements to that in Section 5.1, with the only difference being the laser
spectrum used, which is shown by the green line in Figure 5.12. For completeness, Figure
5.13a shows the transient grating FROG trace on a fused silica window of the pulses
(green line in Figure 5.12) used in the experiment described in this Section. The lowest
absorption peak of the ) band remains fully covered by the laser, but there is negligible
amplitude at the frequency corresponding to the energy gap between |eg) and |g;), which
is red-shifted by 375 cm™! from the main absorption (see Figures 2.4a and 5.12).
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Figure 5.13: (a) Transient grating FROG trace of the pulses used for the 2D-ES experiments
in this Section. (b) Projection of the real part of the 2D-ES spectrum at 7" = 70 fs (red line)
and broadband transient absorption signal at the same population time (black circles). The
oscillations are due to scattering.

In this experiment the laser also excites the absorption peak at 7 ~ 17000 cm™?, so

the resulting 2D-ES maps are more complex, but we can focus on the oscillatory features
at 375 cm~! following the procedure applied in Section 4.3. Before we proceed to analyze
the coherent oscillations, we will present the basic 2D-ES results using this spectrum. As
we have discussed in Section 4.2, significant excited state absorption (ESA) occurs from
the @@ band to the N band, as the energy gaps between the ground state and ) and
between () and the N band are similar [123]. The spectrum used in this section favors
the ESA pathways more than that of Section 5.1, and the broad character of the N band
implies that ESA contributions will be spread throughout the (74, 73) plane. Consequently,
stronger cancellation between positive and negative contributions are expected to reduce
the overall signal amplitude, which is observed in the broadband transient absorption
measurement, which has a much smaller signal amplitude when compared to that of the

previous sections (see Figure 4.4). In practice, the signal was so much smaller that the
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200 pm pathlength cells were particularly important. The broadband transient absorption
signal at 7' = 70 fs is shown in red in Figure 5.13b and the worse signal to noise level
observed follows directly from the near perfect cancellation between positive and negative

features across most of the spectrum.
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Figure 5.14: Real and imaginary rephasing maps for experiment 2 at 17" = 70 fs.
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Figure 5.15: Real and imaginary non-rephasing maps for experiment 2 at 7' = 70 fs.

Due to the strong ESA features across most of the spectrum, the 2D-ES maps are also
no longer easily comparable to simple models. The rephasing and non-rephasing maps
at T' = 70 fs are shown in Figures 5.14 and 5.15, and are now much more difficult to
interpret. Nonetheless, the presence of the extra ESA pathways should not substantially
affect the analysis of the oscillations in the region we are interested in. To understand
why that is the case, it is necessary to note that any oscillatory ESA pathways will involve

a coherence in the excited state during 7T, followed by an interaction leading to a higher
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excited state (the N band, in our case). Because the N band is very broad, the amplitude
of such a pathway will be spread over a broad range in the detection frequency, thus not
generating any sharp feature with comparable amplitude to the other pathways.

The effect that ESA can have on the coherent oscillations we are concerned with relates
to the relative amplitude between excited and ground state coherences. To that end, it is
useful to consider that a certain number of monomer molecules inside the focal spot will
generate a third-order signal. Out of these, a fraction will have gone through a pathway
which is in the ground state during 7T, while the rest will have been in the electronic
excited state during T'. The arrival of the third laser pulse then splits this finite number
of molecules that were in the excited state during 1" between the pathways R; and R,
(from Figures 2.5 and 2.7 respectively) and ESA pathways. If the laser spectrum is more
strongly resonant with the gap between the ) and the N band, this means that a larger
fraction of the molecules that were in the excited state during T" will go through the ESA
pathways, meaning that a smaller fraction will go through the R; and R, pathways. For
the reason discussed in the previous paragraph we expect that the coherent ESA pathways
in our particular sample will not give rise to strong oscillatory signals, so the extra laser
intensity at o > 16300 cm ™! is expected solely to reduce the amplitude of coherence
pathways in the excited state when compared to the ground state ones (represented by

squares in Figure 4.8).
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Figure 5.16: (a) Displaced harmonic oscillator energy level scheme plus an example of a four-
wave mixing pathway with a |g1)(go| coherence during 7T'. Field-matter interactions are ordered
in time from left to right, with the leftmost arrow defining 7;, and the signal emission (dashed
line) defining 3. The red arrow corresponds to an excitation from |g;) to |eg). (b) Example
of an energy level scheme for which electronic coherences can be prepared by broadband laser
excitation. The pathway shown includes a |e”)(¢’| coherence during T'.
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However, the single most important effect expected from the shift in the laser spectrum
from that of Figure 5.1b is related to the missing amplitude to cover the transition between
leg) and |g;), namely 15275 cm ™! for the monomer in n-pentane with 1% of pyridine. The
fact that this frequency is not present in the laser spectrum automatically excludes the

1 so they will not be detected in our experiment.

pathways for which 73 = 15275 cm™
Regarding the excitation axis, no effect can take place, because the lowest absorption
peak in the ) band remains fully covered by the laser, and the initial excitation must
happen at a frequency which the molecule absorbs.

Nonetheless, the four-wave mixing pathways that generate the 2D-ES signals include
two field-matter interactions besides the initial excitation and the signal emission which
define the 7; and 5 axes respectively, and those two intermediate field-matter interactions
must also take place at a frequency contained in the laser spectrum. To our knowledge,
the concept that a coherence signature might be missing because of such filtering in 2D-ES
has only been briefly mentioned by Butkus et al., but the coherences were not the main
focus of that study and a systematic study of the implications was not presented [177].

To illustrate how the laser spectrum can filter out diagrams due to intermediate in-
teractions, we consider a non-rephasing four-wave mixing pathway in Figure 5.16a which
includes a |g1)(go| ground state coherence. The excitation wavenumber is defined by
the leftmost arrow and corresponds to an excitation from |go){go| to |e1)(go|, which is
7, = 16025 cm™! in our case. The detection wavenumber is given by the dashed arrow
and here it represents an emission from |eg){go| to |go) (go|, meaning that 73 = 15650 cm ™.
Therefore both excitation and detection wavenumbers for this pathway are covered by the
laser spectrum (see Figure 5.12). However, there are two other field-matter interactions
between excitation and emission which must also be within the laser spectrum for this
pathway to be observed, and we note that the one represented by the red arrow in Figure
5.16a corresponds to an excitation from |g;)(go| to |eo)(go|- In our case for the 375 cm™!
mode this is at 15275 cm™!, where the laser intensity is negligible. Thus, this pathway
cannot be observed in the set of experiments with the laser spectrum from Figure 5.12,
and there is no particularly intuitive way to fully consider the suppressed pathways besides
explicitly and systematically addressing the frequency of each interaction and whether it

is present in the laser used.

Although analyzing all 32 double-sided Feynman diagrams considering the frequency
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Figure 5.17: Rephasing population Liouville-space pathways for the displaced harmonic oscil-
lator model. On the right hand side of each diagram the wavenumber of each interaction is
explicitly shown and a red box encloses it in case it lies outside the spectral coverage of the laser
from Figure 5.12. In this case, the arrow corresponding to that interaction is also displayed in
red.
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Figure 5.18: Non-rephasing population Liouville-space pathways for the displaced harmonic
oscillator model. See caption of Figure 5.17 for details.

of each of the 128 transitions is not particularly convenient, it is certainly feasible, and here
we present the pathways from Figures 2.5, 2.6, 2.7 and 2.8 once more, now including the
frequency of each interaction. In Figures 5.17 and 5.18 we show all the rephasing and non-
rephasing population pathways respectively. It is interesting to note that the requirement
that the density matrix be in a population during 7' effectively forces the initial two
field-matter interactions to happen at the same frequency, while the requirement that the
signal emission takes the density matrix to a population implies that the third and fourth
interactions also take place at the same frequency. That is easily observed in Figures
5.17 and 5.18, as either all interactions happen at a single frequency, or the pair of first
and second interactions happen at a given frequency, while the pair of third and fourth

interactions happen at another frequency. The transitions which are red-shifted from the
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molecular absorption are enclosed in a red box and have the corresponding arrows drawn

in red to facilitate visualization. One important result that follows from this analysis

is that the only population diagrams which are filtered are those with their emission

wavenumber not covered by the spectrum, as long as ESA is not considered. This is

in full agreement with the conclusion that the laser spectrum acts as a filter on both

excitation and emission axes, as reported in studies which focused on absorptive 2D-ES

maps of systems where ESA was negligible [146, 150, 173].
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However, a very different picture arises when we consider the coherence pathways:

in this case the requirement is that the density matrix is in a coherent superposition of

states during 7', which implies that the first and second field-matter interactions happen at

frequencies different from each other. Therefore, a number of pathways arise which include

multiple combinations of interactions at different frequencies, and some of the pathways

with excitation and emission frequencies within the laser spectrum might be suppressed
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due to an intermediate interaction requiring a frequency not present in the laser spectrum,
as exemplified with the non-rephasing pathway in Figure 5.16a. In Figures 5.19 and 5.20
we show all the rephasing and non-rephasing coherence pathways respectively, once more
highlighting the wavenumber of each interaction. As a consequence of the higher number
of frequencies present in the coherence diagrams, we see that only 6 of the 16 pathways

survive if the 7.y — Iy wavenumber is not present in the laser spectrum.

Rephasing : : Non-rephasing | :
[} | ] [}
[} [} ] |
il Y A Ly R/ i A
o | | I R P '"lA" o
[} | ] [}
> | [ > | [
= =
o | | o | |
B ] Il F= R H |
8 ?;Q ------------ - il o T 8 2>® ____________ - e -
] | ] [}
2 | JAN 3 . A
= l : = : I
(=] [} [} (=} | [}
[N \ \ > | [
___________ - - ——— = - - - L - — — — _—— - - - - - - - - -
| " . | 3 "
E I I Ey : :
[} [} ] |
Veg Veg TV Veg Veg TV
xcitati xcitation
Excitation Excitatio

Figure 5.21: Scheme of Liouville-space pathways in rephasing (left) and non-rephasing (right) 2D
maps if the frequency 7.4 — 7 is not present in the laser spectrum, corresponding to experiment
2. Green and red symbols represent positive and negative frequencies respectively. See caption
of Figure 2.9 for details.

At this point, we are in position to draw a scheme with all pathways that are expec-
ted to contribute to our 2D-ES measurements when the laser spectrum does not cover
the .y — 7 energy gap, which is shown in Figure 5.21. In this Figure the population
pathways are represented by solid black geometric figures, and one can see that the only
difference between the initial forecast from Figure 2.9 is that the pathways with emission
wavenumber no longer covered by the spectrum are suppressed, as discussed above. This
result is not obvious in our data because of the strong ESA contributions present in the
zinc-porphyrin monomer with the laser spectrum used in this Section, which cannot be
conveniently taken into account in the diagrammatic analysis.

Nonetheless, the surprising result here concerns the coherence pathways, where the
shift in the laser spectrum causes much more dramatic changes. The remaining oscillat-

ory pathways in Figure 5.21 are off-diagonal for rephasing and diagonal for non-rephasing,
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matching exactly the positions and frequency signs that would correspond to a purely elec-
tronic coherence (see Figure 2.12), with the main difference being that one of the positions
has two diagrams, while the other has only one (in models for electronic coherence the

same number of pathways in all positions is expected).

(a) Rephasing, positive frequency Real (b) Non-rephasing, negative frequency
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Figure 5.22: (a) Real and imaginary rephasing traces from experiment 2 as a function of T for
71 = 16025 cm™! and 73 = 15650 cm ™!, corresponding to the expected central position of the
double-sided Feynman diagrams with positive 375 cm~! frequency. (b) Real and imaginary non-
rephasing traces from experiment 2 as a function of T for 7; = /3 = 16025 cm ™!, corresponding
to the expected central position of the double-sided Feynman diagrams with negative 375 cm ™!
frequency.

This result can be easily rationalized through comparison between the energy level
structure of a vibrationally coupled electronic transition (Figure 5.16a) to that of two
electronic excited states of similar energy which share a common ground state, which is
shown in Figure 5.16b. The main difference between these energy-level structures is the
absence of a sub-level associated with the ground state in the latter case. Therefore, if
a vibrationally coupled system is studied with a laser spectrum blue-shifted so that the
energy gap between |g;) and |eg) is no longer probed, the two energy level structures
become much more similar. The only difference which remains to be probed is the pos-
sibility of an initial excitation to |e;) followed by a de-excitation to |g;), thus generating
a vibrational coherence in the ground state during T". These pathways are represented by
the triangles in Figure 5.21 and overlap with coherences in the electronic excited state for
both rephasing and non-rephasing.

In order to test if the forecast from Figure 5.21 is correct, our first step is to plot

the real and imaginary rephasing and non-rephasing signal amplitude at points where
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Figure 5.23: Power spectrum of the rephasing signal at 7; = 16025 cm ™! and 3 = 15650 cm ™,
confirming the oscillatory amplitude at % = +375 cm™!.
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Figure 5.24: Power spectrum of the non-rephasing signal at 7y = 3 = 16025 cm ™", confirming

the oscillatory amplitude at 7 = —375 cm ™.

only positive or negative frequency oscillations are expected, which we do in Figure 5.22.
The rephasing trace was chosen at 7; = 16025 cm™! and 75 = 15650 cm™!, which cor-
responds to the expected peak position at positive frequency, and the signal amplitude
indeed shows oscillatory behaviour with the 89 fs period associated with the 375 cm™!
mode, with the real and imaginary parts oscillating with the same amplitude and phase-
shift corresponding to a positive frequency (see Section 5.1). The corresponding power
spectrum at this (74, 3) point is shown in Figure 5.23, and a strong oscillatory amplitude
at 7y = +375 cm~! is found, with no corresponding amplitude at 7, = —375 cm ™.
Similarly, Figure 5.22 shows the non-rephasing trace at 7, = 3 = 16025 cm ™!, which is

also the expected position for maximum amplitude at negative frequency for the 375 cm™1
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mode. Once more, we find that the real and imaginary parts have the same oscillatory
amplitude and phase-shift corresponding to the expected negative frequency. That is
confirmed by the power spectrum of the residuals of this trace, shown in Figure 5.24,
where a peak at 7, = —375cm ™! is observed, with no corresponding amplitude at 7, =

+375 cm 1.
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Figure 5.25: Rephasing oscillation amplitude maps at 75 = +375 cm~! (left) and at 7p =
—375 cm ™! (right).
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Figure 5.26: Non-rephasing oscillation amplitude maps at 7 = +375 cm™! (left) and at 7y =
—375 cm ™! (right).

In Figures 5.25 and 5.26 we show the rephasing and non-rephasing oscillation amp-
litude maps for 75 = +375 cm ™! respectively. Comparing these experimental results to
the forecast from the double-sided Feynman diagrams in Figure 5.21 we find excellent
agreement, with the oscillatory amplitude being observed with the expected frequency
sign and around the forecast (7, 73) coordinates, thus confirming the importance of tak-
ing all field-matter interaction frequencies into account when addressing which coherence

pathways will be detectable in a given 2D-ES experiment.
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An important consequence of this result is that the distinction between purely elec-
tronic and vibrational coherences in 2D-ES requires that the laser spectrum be taken into
account. For the relatively simple case of the porphyrin monomer, simple inspection of the
double-sided Feynman diagrams and the frequency of each interaction sufficed to describe
all qualitative features of the data. Furthermore, we also observe that the oscillatory
amplitude at the positions where two pathways contribute is significantly larger than the
ones where a single pathway contributes.

In the non-rephasing case, for instance, the oscillatory amplitude peak at 75 = —375 cm ™!
and 7; = 3 = 16025 cm ™! contains two pathways (one in the ground and one in the ex-
cited state), while the peak at 7y = +375 cm™! and 7, = 3 = 15650 cm™! contains one
excited state pathway. We observe that the amplitude of the latter peak is over a factor of
4 smaller than the former. That is consistent with the rephasing case, where the effect is
even more pronounced, with the peak at 7, = —375 cm ™! being a factor of approximately

25 times smaller than the peak at 7, = +375 cm™! in Figure 5.25.

(a) Rephasing, (71, 73) = (15650,16025) Real (b) Non-rephasing, (¥, 73) = (15650,15650)
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Figure 5.27: (a) Real (black) and imaginary (red) rephasing traces at (71, 3) = (15650, 16025).
A factor of 0.13 was added to the real part to bring both traces closer together. (b) Real and
imaginary non-rephasing traces at (1, 73) = (15650, 15650). A factor of 0.2 was subtracted from
the imaginary part to avoid overlap with the real part.

Because all three oscillatory pathways include the same transition frequencies (see
the non-suppressed pathways in Figure 5.21), the laser spectrum has the same effect
on all three pathways, and the significantly larger amplitude at 7, = 3 = 16025 cm ™!
can be attributed to the vibrational coherence in the ground state generating a larger
signal. As discussed previously, we expect the strong resonance between the laser spectrum

and the gap between the () and N bands to reduce the amplitude of the excited state

coherence pathways compared to the ground state ones, which is consistent with our
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observations. We note that already in the experiment from Section 5.1 the maximum
oscillatory amplitude observed on the maps which included only excited state pathways
was significantly smaller than that observed in the maps which included both ground
and excited state pathways. However, direct comparison between the results from this
Section and those of Section 5.1 is not possible because of the significant overlap between

neighboring pathways in Section 5.1.
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Figure 5.28: Power spectrum of the residuals of the rephasing signal at (2, 73) = (15650, 16025)
shown in Figure 5.27a.
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Figure 5.29: Power spectrum of the residuals of the non-rephasing signal at (7y,73) =
(15650, 15650) shown in Figure 5.27b.

Still, the large disparity in oscillatory amplitude raises the question of whether the

! and non-rephasing 7, =

smaller amplitudes observed at rephasing 7, = —375 cm™
+375 cm ™! are more than noise. Normalized color maps can be very deceptive, as the
signal to noise as a function of 7" and 75 is hidden. In order to rigorously assess whether
amplitude observed in an oscillation amplitude map indeed corresponds to a peak detec-

ted above noise it is essential to consider the data as a function of T" or 7,. In Figure

5.27a we show the amplitude traces for real and imaginary parts of the rephasing signal
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at (1, 73) = (15650, 16025). Although the signal to noise ratio is not very good, it is still
possible to recognize oscillatory amplitude with period of approximately 89 fs and negat-
ive frequency, suggesting the amplitude peak observed in Figure 5.25 at 7, = —375 cm ™!
really corresponds to the vibrational coherence in the excited state.

The power spectrum of the residuals of the rephasing signal from Figure 5.27a is shown
in Figure 5.28, where the effects of the worse signal to noise ratio can be seen in the form
of many peaks at low frequencies. This worse signal to noise is partially due to the near
perfect cancellation between positive and negative signals due to the high ESA in this
spectral region. Scattering contributions in the broadband transient absorption become
more important because of the small signal (see Figure 5.13b), and as they fluctuate for
different values of T', the phasing procedure can find different local minima. Because the
phasing compares the integral of the real part of the sum of rephasing and non-rephasing
spectra, small shifts in the transient absorption signal due to these noise fluctuations
at different values of T' cause shifts in both 7; and 73 in the 2D-ES. This results in
discontinuities in the signal amplitude of single (77, 73) points as a function of 7', even if
the 2D-ES maps for all T' points show the same qualitative behavior.

In Figure 5.28 we observe a peak at 7, = —390 cm™!

among the noise which cor-
responds to the amplitude seen in the oscillation amplitude map in Figure 5.25. The
15 cm~? shift compared to the vibrational mode can be attributed to the overall higher
noise levels in the data. In spite of the noise, the fact that the oscillatory amplitude at
vy = —375 cm™! forms a well defined peak in Figure 5.25 as a function of (7, 3) around
the forecast coordinates, instead of being scattered around the excitation-detection plane,
supports that we are observing a real signal.

A similar situation emerges for the non-rephasing signal at 7; = 3 = 15650 cm™!
shown in Figure 5.27b, where a weak oscillation of period of approximately 89 fs can be
identified in the real part, not being as evident in the imaginary part. If an oscillation is
present in the real part, but has zero amplitude in the imaginary part, this corresponds
to an equal weight between positive and negative frequencies. In Figure 5.29 we show
the power spectrum of the residuals of this trace, finding that indeed some amplitude

is observed at 7, = —375 em ™!

, although it is clearly outweighed by the amplitude at
Uy = +375 cm ™!, which is the expected one. As in the rephasing case from the previous

paragraph, the amplitude around this point forms a clear peak as around the expected
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position in the (71, 73) plane, which suggests that is is a real signal.

In summary, we have observed that in the two positions for which the coherence
pathways expected are in the electronic excited state there is weak oscillatory amplitude
at the expected frequencies. Although the amplitude is not unquestionably above noise
in both cases, the behaviour of the amplitude as a function of (71, 73) strongly suggests
that both of them correspond to real signatures, which were expected to be weak for this
laser spectrum and sample, due to the strong excited state absorption. Importantly, we
emphasize that our conclusion regarding the filtering effect of the laser spectrum does
not rely on the observation or not of the vibrational coherences in the excited state, but
rather on the suppression of the pathways with coherences in the ground state that have
both excitation and detection wavenumbers where laser intensity is present.

The suppression of pathways due to the laser spectrum can be seen through comparison
of the results from Figures 4.8 and 5.21. In the rephasing case, we see that at positive
frequencies a ground state pathway is forecast at 7y = U3 = 7y, and it is expected to
be suppressed if the laser spectrum has zero intensity at 7., — %. In our experiments,
when the laser spectrum covered this wavenumber we detected all four peaks represented
by the green symbols with amplitudes of the same order of magnitude (see Figure 5.7).
However, when we shifted the spectrum to avoid that wavenumber, Figure 5.25 shows
that at 7, = +375 cm™! a very strong amplitude is observed at (i1, 3) = (Deg + Vo, Ueg),
while no amplitude is observed at 7; = U3 = Ugg.

In the non-rephasing case this effect is even more dramatic, given that all ground state
pathways have negative frequency and have excitation and emission wavenumber within
the spectral range covered by the laser in both experiments. In Figure 5.8 we observe
oscillatory intensity with the same order of magnitude at all four (;,73) coordinates,
where these pathways are expected. If the laser spectrum has no intensity at 7., — 7, the
three pathways centred at the cross peak positions and the pathway centred at 7y = 3 =
Ueq are suppressed, so that the two pathways centred at 7y = 3 = vy + g are the only
ones that remain (see Figure 5.21). This is in complete agreement with the experimental
results in Figure 5.26, where all amplitude observed is a single peak around the expected
position. Thus the filtering of the laser spectrum in the intermediate interaction of four-
wave mixing pathways is established as a general effect, and the difficulty of observing

individual coherences in the electronic excited state follows from the ESA specific to the
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zinc-porphyrin monomer and the laser spectrum used.

Furthermore, we note that the possibility of confusion between and electronic and
vibrational coherence in our experiment where the laser did not include intensity at v.,—
could have been avoided exactly by addressing the disparity of amplitude between the two
rephasing and non-rephasing oscillatory peaks. Because the oscillatory amplitude in the
positions where two coherence pathways (one in the ground state) was substantially more
intense than that found in the positions where only one coherence pathway is present,
that is a strong indication of the vibrational nature of the coherence. That is because in
the case of an electronic coherence, detailed in Figures 2.10, 2.11 and 2.12, the oscillatory
pathways for each of rephasing and non-rephasing signals occur in the same number and
are symmetric, thus are expected to generate oscillatory features of the same amplitude.

In summary, in this Section we investigated 2D-ES signatures of a vibrationally coupled
system when the laser spectrum fails to have significant amplitude red-shifted to the main
absorption. We confirmed results previously reported that non-oscillatory signals are
merely filtered along both excitation and emission axes. On the other hand, for coherent
oscillations we observed major effects on the positions where oscillatory amplitude is
observed, with features within the excitation-emission window defined by the spectrum
disappearing completely. The final result resembled that expected for a purely electronic
coherence very closely. We proceeded to show that all observed features are promptly
explained by considering the wavenumber of all field-matter interactions in the Liouville-
space pathways discussed in Chapter 2. We also considered the effect of ESA on coherences
in the electronic excited state, and discussed how oscillation amplitude maps alone can be
deceptive in terms of data analysis, complementing them with power spectra at relevant

(21, 3) coordinates, so that the signal-to-noise as a function of 7, could be considered.

5.3 Benchmarking ground state coherences

So far this Chapter has described the signatures of vibrational coherences in 2D-ES for
two different laser excitation spectra: that of Section 5.1 has significant amplitude from
Ueg — Up 10 Ueg + 1 for our sample, while that of Section 5.2 has no amplitude at 7., — 7,
but still covered the region from 7., to Uy + 7. This comparison has proved insightful,

but we note that there is yet another possibility that can be explored: the laser spectrum
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can cover both 7., — 7y and 7y, but not g, + 7, which is the focus of this Section.

The first question to address is which double-sided Feynman diagrams will be observed
with this spectrum, which can be done by analysing the diagrams and excluding all that
contain a transition at 7., + 7%. For the population diagrams the same conclusion as
before is found: the pathways with both excitation and detection wavenumber inside
the laser spectrum remain present, as can be seen in Figures 5.17 and 5.18. As for the
coherence diagrams, inspection of Figures 5.19 and 5.20 shows that a single rephasing
and a single non-rehasing pathway remain, both of them with coherences in the ground
state (as vibrational coherences in excited state necessarily require an excitation to |e;),
at Ueg + 1p).

In Figure 5.30 we show a scheme showing the remaining pathways for rephasing and
non-rephasing contributions. Regarding the population pathways, in both cases one
ground state bleach and one stimulated emission pathway overlap in the diagonal, while
a single stimulated emission pathway appears in the off-diagonal region at low emis-
sion wavenumbers. As for the coherence pathways, the non-rephasing one lies in the
U1 = U3 = U, diagonal, thus overlapping with the strongest non-oscillatory signals, while
the rephasing one appears at the more convenient (0y,03) = (Ueg, Vey — Do) cross peak

position, where it overlaps solely with a stimulated emission population pathway.
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Figure 5.30: Scheme of double-sided Feynman diagrams in a rephasing (left) and non-rephasing
(right) 2D maps if the laser spectrum has no amplitude at Ty +19 (see Figure 4.8 for scheme with
all diagrams independently of the laser spectrum). Green and red symbols represent positive
and negative frequencies respectively.
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This experiment can be useful to benchmark the coherences associated with sublevels
in the ground state of a system. It is clear that in principle a spectrum such as that
of Figure 5.1 is the most desirable, as it probes all energy gaps and therefore recovers
more information. However such a spectrum is often unattainable in practice, and in such
cases a combination of this 2D-ES experiment with the red-shifted spectrum with that of
Section 5.2 would provide a complete and unambiguous picture of the coherences.

In order to demonstrate this experiment, we recall that in the linear absorption spec-
trum of the zinc-porphyrin monomer in n-pentane and 1% by volume of pyridine (Figure
5.1), the high energy peak in the @ band centered around 7 = 17000 cm™! (588 nm) has
been demonstrated to contain contributions both in the z and y polarizations in refer-
ence [160]. The y-polarized contribution has been assigned to the Q,(0 — 0) transition,
while the contribution along x is assigned to vibronic peaks associated with the @), band,
predicted at around 7y = 1340 cm™! = 16990 — 15650 cm~!. Because the spectrum we
used in the experiments of Section 5.1 has bandwidth well below 14000 cm™! (1650 cm ™!
below the main absorption), but only up to 16500 cm™! (850 cm™! higher than the main
absorption), the data from that Section is already an example of an experiment where
the spectrum does not cover the vibronic peak corresponding to the 1340 cm~! mode, but
does cover the energy gap corresponding to the |g1) to |eg) (for vibrational modes in the

region defined by 850 cm™! < 75 < 1650 cm ™).

1 L 1 n 1 n 1 n 1 L 1 n 1 n 1 n 1

0.15 -
0.10 -
0.05 -

0.00 -

o05. WWV\WWWW i

T T T T T T T T T T T T T T T T T T
100 200 300 400 500 600 700 800 900 1000
T (fs)

Amplitude (Arb. Units)

Figure 5.31: Non-rephasing real (black line) and imaginary (red line) signal at 7y = 03 =
15650 cm ™! as a function of T. A factor of 0.25 was subtracted from the real part to bring the
traces closer together.

We start by looking at the non-rephasing signal at 7, = 3 = 15650 cm ™!, the amp-
litude of which is displayed as a function of T" in Figure 5.31. The dominant oscillatory
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! and two pathways at this frequency are centered

amplitude is observed at 375 cm™
around this point, one of positive frequency corresponding to a coherence in the excited
state, and one of negative frequency corresponding to a coherence in the ground state (see
Figure 4.8). The presence of both positive and negative frequency amplitude at 375 cm™*
is manifested through the small amplitude of the imaginary part oscillation when com-
pared to the real part, and it has already been discussed in Section 5.1 in Figure 5.8.
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Figure 5.32: Power spectrum of the residuals of the non-rephasing signal at 7y = 3 =
15650 cm~'. The dashed vertical lines mark o, = +375 cm™! and 79 = £1340 cm ™.

Besides the amplitude at 7, = 375 cm™!, it is unclear from the Figure 5.31 which
other frequencies are present. To address that we show the power spectrum of the residuals

I and

of this signal in Figure 5.32, where we observe the amplitude at 7, = £375 cm™
7y ~ —150 cm ™!, as well as significant noise throughout the entire 7, range with amplitude
exceeding 0.15. We expect the observation of vibrational coherences to be generally
challenging for the non-rephasing signal at 7; = /3 = 7, as not only are the oscillatory
features on top of a strong non-oscillatory signal (see Figure 5.30), but also oscillatory
amplitude of all ground state vibrational coherences overlap in this single point if more
than one vibrational mode coupled to the electronic transition is present. Therefore,
when an experiment with the red-shifted spectrum is performed the non-rephasing signal
is always expected to be challenging, and in our case the data is not sufficiently good to
permit clear interpretation.

The coherence pathway for the rephasing maps is more useful for two reasons: firstly,

the non-oscillatory background is of smaller amplitude as it consists of a single stimulated

emission pathway (see Figure 5.30). Secondly, because it is a cross-peak with emission
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wavenumber 7., — g, the only oscillatory frequencies present will be those of wavenumber
around 7, contrary to the non-rephasing case, where all coherent oscillations overlap in
the diagonal. In our previous analysis of the 2D-ES data of this experiment in Section 5.1,
we showed the real and imaginary parts of the rephasing spectra in Figure 5.2, but the
(71, 73) scale was focused around the main signal, and the cross peak region associated
with a vibrational coherence of 7y = 1340 em™ — (1, 73) = (15650, 14310) — was not
included. That was because no obvious amplitude was observed in this coordinate, which
we show in Figure 5.33, where we display the full scale real and imaginary rephasing
signals at T = 125 fs, with the (74, 73) = (15650, 14310) position marked by the dashed
lines.
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Figure 5.33: Rephasing real (a) and imaginary (b) signals with the laser spectrum from Section
5.1. The dashed lines mark the cross peak position where a positive frequency associated with
the vibronic signal at 16990 cm™! from the linear absorption would be expected.

Color maps can be deceptive and all that we can conclude from Figure 5.33 regarding
the (71,73) = (15650, 14310) coordinate is that any amplitude must lie between approx-
imately —0.01 and 0.01, for both the real and imaginary parts (i.e., the white in the color
scale). To investigate whether there is indeed no signal there, we look at the amplitude
of this coordinate as a function of T (Figure 5.34). Here we indeed find persistent oscil-
latory amplitude with positive frequency and period of approximately 25 fs (1340 cm™!
corresponds to 24.89 fs), exactly as forecast. The maximum amplitude of the real part of

the oscillation is roughly of 1.6 x 1073, which corresponds to only 0.47% of the maximum
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rephasing real signal at 7" = 70fs (see Figure 5.2), thus falling in the white region of the
color plot in Figures 5.2 and 5.33.
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Figure 5.34: Real (black) and imaginary (red) rephasing amplitude at 7 = 15650 cm~! and
3 = 14310 cm™!. The amplitude scale is in arbitrary units, but the same as the corresponding
real and imaginary maps in Figures 5.2 and 5.33.

The amplitude profile in Figure 5.34 is modulated, suggesting that other frequencies
besides the 1340 cm™! are present. To verify this, in Figure 5.35 we plot the power
spectrum of the global fit residuals of the time trace from Figure 5.34. At negative values of
5 negligible amplitude is found, while at positive frequencies a peak at 7, = +1340 cm™!
dominates. The smaller peaks in the region defined by 800 cm™ < 7, < 1300 cm™*
correspond to Raman modes of n-pentane [178], although in this experiment we do not
recover them with quantitative precision, partially because of their small amplitude, the
large number of overlapping modes and the fact that we scanned T" only up to 1 picosecond.

Finally, in order to confirm that the oscillation at 7, = +1340 cm ™! corresponds indeed
to the pathway we described in the beginning of this Section, we check that this oscillatory
amplitude forms a peak around (7, 73) = (15650, 14310). For that, in Figure 5.36 we plot
the rephasing oscillation amplitude map at 75 = +1340 cm~! with 15150 cm™! < 7y <
16250 cm ™! and 13700 cm ™! < 73 < 14800 cm ™!, where the amplitude is seen to form a
peak around the correct position.

In summary, in this Section we have demonstrated that the laser spectrum can be

used to perform a 2D-ES experiment that fully probes coherences between sublevels in
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Figure 5.35: Power spectrum for #; = 15650 cm™' and 73 = 14310 cm™', where oscillatory
amplitude at op = +1340 cm™! was expected. The smaller peaks arise from Raman modes of
n-pentane [178].

the ground state. We observed that recovering the non-rephasing signal with sufficient
signal-to-noise to unravel all coherences can be difficult, but that the cross-peak nature of
the coherences in rephasing maps isolates individual coherences in the excitation-emission
plane. This experiment can be performed to complement regular 2D-ES experiments
whenever ambiguity regarding the nature of observed coherent oscillations is found, as

described in Section 5.2.

5.4 Summary

In conclusion, the results obtained in this Chapter deepen our understanding on how to
detect and interpret coherent oscillations in 2D-ES measurements, highlighting the fact
that for complex energy level structures, the laser spectrum plays a crucial and non trivial
role regarding the oscillations detected. In Section 5.1 we have shown that under ideal
conditions (very broad laser spectrum with abundant amplitude towards both high and
low energies) the typically expected coherent signatures are observed. In Section 5.2 we
blue-shifted the spectrum to cover more features at high energies, and we observed that the
missing laser amplitude at low energies suppressed oscillatory features at excitation and
emission wavenumbers within the new spectrum. The results resembled those expected for

a purely electronic coherence. We have then shown how the different amplitude between
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Figure 5.36: Rephasing oscillation amplitude map for 5 = +1340 cm ™!, showing the cross peak
around 77 = g = 15650 cm™! and 73 = Ueg — Vg = 14310 cm ™!, The color scale amplitude has
been multiplied by a factor of 10,

peaks can help assign them to a vibration in case a sufficiently broad spectrum cannot be
obtained. In this process we have also shown how oscillation amplitude maps, although
very useful, can give a false impression of good signal-to-noise as a function of 7" and s,
thus implying that a rigorous analysis include multiple cuts of the 3D dataset. Finally,
we have shown that by the same principle applied to address a blue-shifted spectrum,
we can perform 2D-ES experiments with a very red-shifted spectrum which does not
cover the higher levels of the vibronic progression of a molecule, and that the rephasing
signals from this experiment allow the full benchmarking of coherences associated with
the ground state. Therefore, if a very broad spectrum is unattainable, a combination
of the red-shifted and the blue-shifted spectra, as shown in Sections 5.2 and 5.3, should
allow complete unraveling of the coherences of a molecular system, a feature that can be
particularly useful wherever both vibrational and electronic coupling are present, such as

described in references [100, 101, 104].



Chapter 6

Conclusion

The material presented in the previous chapters does not exhaust the experiments per-
formed during this PhD. Besides the studies of the conformation reaction of the butadiyne-
linked zinc-porphyrin dimer mentioned in Chapter 1 and published in references [39,40],
a significant amount of data has not yet been fully analyzed and published. Below, some
remaining open questions are briefly discussed, followed by a summary and concluding

remarks.

6.1 Future work

Vibrational coherences in absorptive maps

All data analysis of the coherent oscillations in Chapters 4 and 5 has been performed
on rephasing and non-rephasing maps, in order to maximally isolate individual Liouville-
space pathways. However, 2D-ES spectrometers in the pump-probe or in the all collinear
geometry are tailor-made for absorptive maps and do not easily recover rephasing and
non-rephasing contributions (phase-cycling is required for that) [21].

Recently, a report focusing on showing phase variations of oscillations due to vibra-
tional coherences in absorptive 2D-ES maps has been published [179]. In this study it
was observed that the phase is a function of excitation and emission frequencies, but no
explanation or modeling is presented, and it is concluded that the understanding of this
issue is an important open problem. In view of the results presented in this thesis, it
seems plausible that their observations correspond merely to the overall phase change

we explained in Chapter 4, which has no strong obvious pattern due to the overlapping
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presence or multiple rephasing and non-rephasing pathways in absorptive maps, which
are excited in different ways according to the laser spectrum used.

The authors of that study were perhaps unaware of our interference results [123],
and it remains true that we have not yet investigated the oscillatory features of our
data when absorptive maps are used. Considering that absorptive maps are the sum
of rephasing and non-rephasing, a quick look at Figure 2.9 shows that although there
are many overlapping pathways, positive frequencies are found below the diagonal and
negative frequencies are found above it. We can also apply this analysis to the blue-shifted
spectrum, for which case Figure 5.21 predicts the results. Any 2D-ES setup that recovers
absorptive maps can recover dispersive maps too, as both are connected through Kramers-
Kronig relations [23,107], so the analysis including negative frequencies is accessible in
most experiments. Considering how well our data matched all other predictions, it is
rather likely it will match this too, and the description can be valuable to the community;

such an analysis is planned.

Vibrational coherences for intermediate spectra

The results from Chapter 5 have demonstrated the role of the second and third inter-
actions of double-sided Feynman diagrams using two extreme cases: either full spectral
coverage or zero amplitude at 7., — 7%. In practice, it is often the case that some laser
intensity is found at 7.y — 7 in Figure 2.12, and the role of the laser spectrum in this case
becomes much less intuitive. The data we have recorded with such intermediate spectra
show results which are intermediate to both cases, but not in the sense that all missing
peaks simultaneously become more important — one of the reasons being that some path-
ways have one transition at 7,,q, — g, while some have two. Thus, if careful analysis
of coherent oscillations is required in future work, further improving our simulations to
include the laser spectrum would be of great help, and it can be tested against real data
for the porphyrin monomer. Recently, Gellin and Domcke published an alternative way
in which to compute 2D-ES spectra which takes the laser spectrum into account while re-
quiring only one convolution integral instead of three, which can perhaps be incorporated

in our simulations within the convenient Labview environment [180].



CHAPTER 6. CONCLUSION 142

Coherences in porphyrin dimer

Experiments with fine scanning of T" were also performed for a butadiyne-linked por-
phyrin dimer and coherent oscillations were observed at 375 cm™!, 825 cm™! (which was
not present in the monomer data) and 1340 cm™!. In this case the laser spectrum used

1 so the spectrum was

was not broad enough to cover the main absorption £825 cm™
tuned only to the high energy side. The electronic wavefunction is delocalized across
the butadiyne bridge over the two porphyrin rings, so the presence of an oscillation not
observed in the monomer merits careful analysis, as it could point to mixed electronic-
vibrational coupling, in which case further insights about the delocalized electronic struc-
ture of this molecule can be obtained. Unfortunately in that data the strong presence
of the 375 cm™! mode around the diagonal causes ambiguity in this region regarding the
presence or not of oscillations at 825 cm™' and 1340 cm™!.

Calculations by Peeks et al. predict a vibrational mode at around 825 cm™! which
includes displacements in the butadiyne bridge. However, many other modes are also
expected, so reliability of such calculations for a large molecule is not clear [181]. Thus,
future planning of experiments which are adequate to better address the interesting matter
fully exploiting the capabilities of 2D-ES remains to be done. For now, it is clear that
experiments with improved signal to noise and expanded spectral coverage would be
desirable, and data analysis of the oscillations with global fitting tools can also be tested
as a potentially more robust method [182]. Further, the experiment with the red-shifted
spectrum described in Section 5.3 can be used to independently benchmark the ground

state coherences can be used to reveal coherences associated with the ground state only,

and low temperature studies might prove beneficial to reduce dephasing times.

Other open points

The theoretical insights that led us to understand the unexpected interference between
pathways described in Chapter 4 were drawn from the work by Butkus et al. [78], which
approached vibrational and electronic coupling starting from individual pathways. The
equations from which we drew qualitative understanding of our data (equations 2.75, 2.76
and 2.77) are derived for a single Liouville-space pathway assuming a phenomenological
dephasing that is equal among the three time intervals.

The 2D-ES experiment with the laser spectrum not covering the vibronic peak in the
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linear absorption, designed and demonstrated in Section 5.3, can be used to recover the
2D-ES signal of a single rephasing coherence pathway, so that direct comparisons to the
equations from Butkus et al. are possible. If agreement were found, this could be used to
recover the phenomenological dephasing introduced to derive those equations. This opens
the possibility of using the analytic expressions by Butkus et al. [78] to model vibrations
in 2D-ES in a computationally efficient way by using analytic expressions, which can be
useful if vibrational coherences are overlapped with fast dynamics.

So far two datasets in this configuration have been acquired for the porphyrin monomer,
and an early assessment of the results showed vibrational modes at 375 cm™!, 1340 cm ™!
and two not previously described modes at 150 cm™! and 1540 cm™!. The mode at 150

1

cm™ " is present in all our data and had been overlooked due to the lower amplitude com-

1 so it does not become apparent in traces in the

pared to the strong mode at 375 cm™
time domain. The mode at 1540 cm~! had never been within our spectral coverage before.
All these results have been observed in the rephasing maps, where the coherences appear
as cross-peaks. The non-rephasing maps have all coherences overlapping in the diagonal
and are therefore much more difficult to unravel.

Finally, throughout all datasets Raman modes of the solvent are observed. Remarkably
they have amplitude preferentially in the same regions where the solute modes do. This
contradicts the more intuitive notion that non-resonant solvent modes be spread uniformly

in 2D-ES maps. As of yet, we have no understanding as to why this is the case, but a

substantial amount of data is available to further explore the issue.

6.2 Concluding remarks

In this Thesis we presented an in-depth discussion of vibrational coherences in 2D-ES.
We started discussing the basics of semi-classical perturbative theory as a framework to
interpret non-linear optical experiments. We placed the focus specifically in developing
the Liouville-space pathway diagrammatic analysis, which is a convenient way to help
interpret 2D-ES experiments, and presented it making didactic connections to the equa-
tions, phase matching and the rotating wave approximation [27]. We proceeded to discuss
the Liouville-space pathways for vibrationally coupled systems, and then the limitations

that the assumption of infinitely sharp transitions inflicts on the results [78].
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We then presented a description of the 2D-ES spectrometer built in our group between
2013 and 2014. We discussed the experimental design, which has four beams incident
on the sample in the boxcar geometry, is intrinsically phase stable [142] and is solely
based on conventional optics (as opposed to the use of diffractive optics elements, for
example) [140]. Our main contribution to previous developments was the introduction of
two choppers, which brought significant advantages, including the possibility of shot to
shot data acquisition, the ability to measure the broadband transient absorption signal
quasi simultaneously with the 2D-ES signal, and better removal of scattering contributions
[131]. We described these points, the phase stability and the movement of the delay
stages in detail. And finally we discussed the data processing required to convert the
raw heterodyne-detected data to the complex-valued 2D-ES absorptive, rephasing and
non-rephasing maps.

The remainder of the thesis was then concerned with investigating vibrational coher-
ence signatures in 2D-ES. All experiments described were performed on a zinc-porphyrin
monomer which has its first excited state strongly coupled to a vibrational mode at
375 cm~!, with a linear absorption spectrum that is very convenient for our NOPA, al-
lowing us to have laser intensity towards both the high and the low energy sides of the main
electronic transition well in excess of the 375 cm™! vibrational quantum. In Chapter 4
we reported 2D-ES experiments in this sample, and initially presented basic results such
as spectral diffusion, Stokes-shift and excited state absorption. We then discussed the
challenges of performing data analysis on coherent oscillations in 2D-ES measurements,
gradually developing oscillation amplitude and phase maps, which consist of a general
method to address oscillatory behavior across the entire excitation-emission plane.

Applying this method we build a picture of all oscillatory features at 375 cm™! in the
real part of rephasing and non-rephasing maps, which revealed interference between dif-
ferent oscillatory Liouville-space pathways. This phenomenon was qualitatively explained
with the theory from Butkus et al. [78] and modeled with calculations based on standard
third-order response function theory [123]; the implications were discussed.

In Chapter 5 we further refined our studies by performing new experiments, with
finer scanning of 7" and better signal to noise. We also developed the analysis by using
the complex-valued 2D-ES maps, which enable the recovery of the frequency sign of any

oscillation during 7', further discriminating Feynman diagrams. As a result, we observed
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that the interference effect became substantially less pronounced, which we were once
again able to explain through careful analysis of the work by Butkus et al..

We proceeded to note that the laser spectrum used up to that point compares to the
molecular absorption in a way that is not usually attainable for most systems of interest
which absorb in the visible spectral range. We then performed the same experiment
and analysis with a spectrum that more closely resembles typical experimental condi-
tions and found that coherent oscillations within the excitation-emission spectral range
disappear completely. Further, the remaining signatures match exactly those expected
for pure electronic coherences. We showed that the rather counterintuitive results can be
properly understood considering whether all field-matter interactions in the contributing
Liouville-space pathways lie within the laser spectrum, demonstrating that the unexpec-
tedly missing pathways had either the second or third (or both) field-matter interaction
that did not satisfy this condition. Finally, we extended this understanding of the role of
the laser spectrum to propose and demonstrate a 2D-ES experiment that can be used to
benchmark coherences associated with the ground state only. Hence, this new experiment
complements the previous experiment, in which the coherence signatures were ambiguous,
allowing clear determination of the nature of coherences using only 2D-ES.

In summary, our results show that 2D-ES can indeed be used to thoroughly study
coherent couplings as envisioned in its early days. However, the previously unreported
phenomena that arose from our study of vibrational coherences show that 2D-ES can
only reach its full potential through sophisticated data analysis that meticulously and
rigorously considers the many details involved in third-order signals. Further, very high
quality data is required for complex systems. In this sense, 2D-ES is not very differ-
ent to other advanced spectroscopic techniques such as X-ray crystallography or NMR:
while the basic concepts are reasonably simple, very intricate technical knowledge of both

experiment and theory is required to make the most use of it.



Appendix A

Calculations of 2D-ES Spectra

Here we describe the calculation of 2D-ES spectra used in section 4.3. The procedure
employed to calculate the 2D spectra is similar to that reported in references [77,132,150],
being based on third-order perturbation theory and a spectral density described by a
Brownian oscillator model [183]. If we assume the rotating wave approximation then the
response function is reduced to eight different terms: R,,n € {1,2,3,4} and their complex
conjugates. If the excitation pulses are treated as Dirac delta functions, as used in our
calculations, then the third order nonlinear polarization is just proportional to the sum
of all eight response functions, which we need to model. As a first approximation it is
reasonable to model the porphyrin chromophore as an electronic two-level system, with
the coupled vibration modelled with a spectral density C'(w). Given a known temperature
independent spectral density, by means of the cumulant expansion [23] one can obtain

the line shape functions as:

9() = % /Oo dw (1 — cos (wt)) coth <@> Clo) , /OO dw (sin (wt) — wt) Cfu—c;})

oo 2 w? o | o
(A.1)
where = 1/kgr. If the line shape function is known, the linear absorption can be
calculated as:
OABS = |peg|2Re {/00 dteiwes,t—g(t)} : (A.2)

where p., and we, are respectively the transition dipole moment and frequency of the

ground to first electronic state transition. Finally, the third order response functions can
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be calculated as:

Ry = ¢ WegTiwegt g=9(7)=g" (1) =g" ()+9(r+T) 49" (T+1) —g(r+T+t) (A.3)
Ry = eWes™"wegtq=g" (T)+9(T) =g (1) =" (r+T)—g(T+1)+9" (T+T+1) (A.4)
Ry = ewea™weglo=g" (M) 49" (T)=9(t)=g™ (T+T) =g (TH+1)+¢" (T+T+1) (A.5)
Ry = e WegTiwegt g=9(7)=9(T)=g()+9(r+T)+g(T+t)—g(T+T+1) (A.6)

The third-order nonlinear response function in the time domain is given by S® (7, T,t) =
Ry + Ry + R3 + R4, and it can be converted to the usual 2D-ES maps by performing

Fourier transforms on the coherence and detection times:
S (w,, T, wy) = / dT/ AtS® (7, T, t)e™r e, (A.7)

Having this equations, we can approach the modelling problem systematically by first
finding a spectral density C'(w) that adequately describes the linear absorption of our real
sample and then calculate the third-order nonlinear response function. Our treatment of
the spectral density is based on a Brownian oscillator model which allows us to account for
intramolecular vibrations coupled to the electronic transition (underdamped oscillator) as
well as bath fluctuations (overdamped oscillators) [77,150]. This approach accounts for
the Stokes-shift and satisfies the fluctuation-dissipation theorem. To properly model the
porphyrin monomer data we needed to include three overdamped Brownian oscillators:

Colw) =" on A (A.8)

w2+ A%’
where A is the coupling strength (sometimes also referred to as the reorganization energy),
A is the inverse of the fluctuation correlation time and the sum is over the three differ-
ent oscillators we used. The underdamped oscillator used to model the intramolecular

vibration has spectral density given by:

2V 2 wwdy
(w? — wd)? + 27y2w?’

Cy(w) =

(A.9)

where 7 is the damping constant and wy is the oscillator frequency. The parameters used in

order to match the linear absorption of the electronic transition we are studying are listed
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in tables A.1 and A.2. The resulting linear absorption from this model is compared to the
sample’s linear absorption in figure A.1 (a). The quality of the match is adequate up to
16000 cm ™!, after which it breaks down as there is some overlap with the @, band centred
at 17000 cm~!. Although the laser spectrum used for the 2D-ES measurements did have
significant amplitude up to 16500 cm ™ the calculated linear absorption is still adequately
describing the main electronic transition and the first peak of the vibronic progression due
to the 375 cm~! mode, and all predicted peaks in the schematic 2D-ES maps have both
excitation and detection wavenumbers smaller than 16000 cm~!. Therefore we expect this

model to suffice to describe the spectral regions we are interested in.

wo (cm™1)

A (cm™)

v (em™")

380

275

9

Table A.1: Parameters used for the underdamped oscillator.

Afem™) | A (em™t)
Mode 1 | 21 83
Mode 2 | 19 8.3
Mode 3 | 16 0.33

Table A.2: Parameters used for the overdamped oscillators.
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Figure A.1: (a) Calculated (red) and experimental (black) linear absorption spectra for the zinc-
porphyrin monomer. (b) Comparison between the center line slope (CLS) between measured
(black) and calculated (red) data.

The calculated absorptive 2D-ES maps using this model at early population times (30
to 80fs) are shown in figure A.2 and the corresponding experimental spectra are shown
in figure A.3. The very good match between simulation and experiment is apparent,
especially for times longer than 40 fs, when pulse overlap effects are absent. To estimate

whether the overdamped Brownian oscillators used are indeed giving a fair account of
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the system-bath relaxation mechanisms we have plotted the center line slope for both
experimental and simulated data in figure A.1 (b). The center line slope (CLS) is a
quantity used to describe the shape of peaks in 2D maps and it is often used to study
phenomena such as spectral diffusion [33]. To compute the CLS one considers cuts of
the 2D maps parallel to the excitation axis. For each such cut, the 2D signal will have a
maximum, and a curve is drawn in the 2D map that passes through all of those maxima.
This curve is then fitted to a line, the inverse slope of which is called the CLS. Therefore
a peak completely elongated along the diagonal will have CLS of 1, whereas a completely
round peak will have a CLS of 0 [184].

,/2nc (1000 cm’

15.5

180 150 185 160 150 155 160
o,/2rc (1000 cm )

Figure A.2: Simulated absorptive 2D-ES maps from 30 to 80 fs for the two-level electronic
system model coupled with the spectral density described in this section. The red star marks
the position of peak F from figure 4.5a.

By applying this algorithm to both our calculated and experimental 2D-ES maps we
obtained the results shown in figure A.1 (b), where the good agreement between the
relaxation time scales can be seen. The oscillations present in both CLS traces are due
to the 380cm ™! mode and they cannot be fully reproduced by this calculations, which we
attribute to numerical artefacts that arise from the multiple Fourier transforms involved
in the calculations. It is nonetheless interesting to note that the spectral diffusion of the

porphyrin chromophore is captured by this model.
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15.0 15.5 16.0
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Figure A.3: Experimental absorptive 2D-ES maps from 30 to 80 fs for the two-level electronic
system model coupled with the spectral density described in this section. The red star marks
the position of peak F from figure 4.5a.



Bibliography

1]
2]

Ahmed H. Zewail. Laser femtochemistry. Science, 242(4886):1645-1653, 1988.

Ahmed H. Zewail. Femtochemistry: atomic-scale dynamics of the chemical bond.

The Journal of Physical Chemistry A, 104(24):5660-5694, 2000.

Ferenc Krausz and Misha Ivanov. Attosecond physics. Reviews of Modern Physics,

81:163-234, 2009.

Michael Chini, Kun Zhao, and Zenghu Chang. The generation, characterization and
applications of broadband isolated attosecond pulses. Nature Photonics, 8:178-186,
2014.

Rienk van Grondelle, Jan P. Dekker, Tomas Gillbro, and Villy Sundstrom. Energy
transfer and trapping in photosynthesis. Biochimica et Biophysica Acta (BBA) -
Bioenergetics, 1187(1):1-65, 1994.

Villy Sundstrom, Tnu Pullerits, and Rienk van Grondelle. Photosynthetic light-
harvesting: reconciling dynamics and structure of purple bacterial 1h2 reveals func-
tion of photosynthetic unit. The Journal of Physical Chemistry B, 103(13):2327—
2346, 1999.

David M. Jonas, Stephen E. Bradforth, Sean A. Passino, and Graham R. Fleming.
Femtosecond wavepacket spectroscopy: Influence of temperature, wavelength, and

pulse duration. The Journal of Physical Chemistry, 99(9):2594-2608, 1995.

W P de Boeij, M S Pshenichnikov, and D A Wiersma. Ultrafast solvation dynamics
explored by femtosecond photon echo spectroscopies. Annual Review of Physical

Chemistry, 49:99-123, 1998.

151



BIBLIOGRAPHY 152

[9]

[10]

[11]

[12]

[14]

[15]

Ismael A. Heisler and Stephen R. Meech. Low-frequency modes of aqueous alkali hal-
ide solutions: Glimpsing the hydrogen bonding vibration. Science, 327(5967):857—
860, 2010.

C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler. Ul-
trafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science,

301(5640):1698-1702, 2003.

Johannes Knorr, Pandian Sokkar, Sebastian Schott, Paolo Costa, Walter Thiel,
Wolfram Sander, Elsa Sanchez-Garcia, and Patrick Nuernberger. Competitive
solvent-molecule interactions govern primary processes of diphenylcarbene in solvent

mixtures. Nature Communications, 7:3238-3239, 2016.

Jamie Conyard, Kiri Addison, Ismael a. Heisler, Arjen Cnossen, Wesley R. Browne,
Ben L. Feringa, and Stephen R. Meech. Ultrafast dynamics in the power stroke of
a molecular rotary motor. Nature Chemistry, 4(7):547-551, 2012.

Roger F. Loring, Yi Jing Yan, and Shaul Mukamel. Timeresolved fluorescence and
holeburning line shapes of solvated molecules: Longitudinal dielectric relaxation and

vibrational dynamics. The Journal of Chemical Physics, 87(10):5840-5857, 1987.

Jonas D. M. Two-dimensional femtosecond spectroscopy. Annual Review of Physical

Chemistry, 54:425, 2003.

N. S. Ginsberg, Y. C. Cheng, and Graham R. Fleming. Two-dimensional electronic
spectroscopy of molecular aggregates. Accounts of Chemical Research, 42:1352-1363,
2009.

W. P. Aue, E. Bartholdi, and R. R. Ernst. Two-dimensional spectroscopy. applica-

tion to nuclear magnetic resonance. Journal of Chemical Physics, 64(2229), 1976.

R. R. Ernst, G. Bodenhausen, and A. Wokaun. Principles of Nuclear Magnetic

Resonance in One and Two Dimensions. Oxford University Press, Oxford, 1987.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas. Two-
dimensional electronic spectroscopy. Chemical Physics Letters, 297:307, 1998.



BIBLIOGRAPHY 153

[19]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

P. Hamm, M. H. Lim, and R. M. Hochstrasser. Structure of the amide i band
of peptides measured by femtosecond nonlinear-infrared spectroscopy. Journal of

Physical Chemistry B, 102:6123, 1998.

Yung Sam Kim and Robin M. Hochstrasser. Applications of 2d ir spectroscopy to
peptides, proteins, and hydrogen-bond dynamics. The Journal of Physical Chem-
istry B, 113(24):8231-8251, 2009.

Franklin D. Fuller and Jennifer P. Ogilvie. Experimental implementations of two-
dimensional fourier transform electronic spectroscopy. Annual Review of Physical

Chemistry, 66:667-690, 2015.

Andrei Tokmakoff. Two-dimensional line shapes derived from coherent third-order
nonlinear spectroscopy. The Journal of Physical Chemistry A, 104(18):4247-4255,
may 2000.

Shaul Mukamel. Principles of Nonlinear Optical Spectroscopy. Oxford University
Press, New York, Oxford, 1999.

J. D. Hybl, Y. Christophe, and D. M. Jonas. Peak shapes in femtosecond 2d cor-
relation spectroscopy. Chemical Physics, 266:295, 2001.

J. P. Ogilvie and K. J. Kubarich. Multidimensional electronic and vibrational spec-
troscopy: An ultrafast probe of molecular relaxation and reaction dynamics. Ad-

vances in Atomic, Molecular, and Optical Physics, 57, 2009.

Alexandra Nemeth. Ezploring the potential of two-dimensional electronic spectro-

scopy. PhD thesis, University of Vienna, 2010.

Peter Hamm and Martin Zanni. Concepts and Methods of 2D Infrared Spectro-
scopy. Cambridge University Press, Cambridge, New York, Melbourne, Madrid,
Cape Town, Singapore, Sao Paulo, Delhi, Mexico City, 2011.

K. Okumura, A. Tokmakoff, and Y. Tanimura. Two-dimensional line-shape analysis

of photon-echo signal. J. Chem. Phys., 111:492, 1999.

Roberta Moca, Stephen R. Meech, and Ismael A. Heisler. Two-dimensional elec-
tronic spectroscopy of chlorophyll a: Solvent dependent spectral evolution. Journal

of Physical Chemistry B, 119(27):8623-8630, 2015.



BIBLIOGRAPHY 154

[30]

[31]

32]

33]

[35]

[37]

[38]

R. Kubo. A stochastic theory of line-shape and relaxation. In D. Ter Haar, editor,
Fluctuation, Relazation and Resonance in Magnetic Systems, pages 23—68. Oliver

and Boyd, Edinburgh, 1962.

Igor Stiopkin, Tobias Brixner, Mino Yang, and Graham R. Fleming. Heterogen-
eous exciton dynamics revealed by two-dimensional optical spectroscopy. Journal

of Physical Chemistry B, 110(40):20032-20037, 2006.

Kym L Wells, Zhengyang Zhang, Jérémy R Rouxel, and Howe-Siang Tan. Measuring
the spectral diffusion of chlorophyll a using two-dimensional electronic spectroscopy.

The Journal of Physical Chemistry B, 117(8):2294-9, 2013.

Frantisek Sanda, Véaclav Perlik, Craig N. Lincoln, and Jiirgen Hauer. Center line
slope analysis in two-dimensional electronic spectroscopy. The Journal of Physical

Chemistry A, 119(44):10893-10909, 2015.

Kyungwon Kwak, Junrong Zheng, Hu Cang, and M D Fayer. Ultrafast two-
dimensional infrared vibrational echo chemical exchange experiments and theory.

The Journal of Physical Chemistry B, 110(40):19998-20013, 2006.

Jessica M Anna, Carlos R Baiz, Matthew R Ross, Robert Mccanne, and Kevin J
Kubarych. Ultrafast equilibrium and non-equilibrium chemical reaction dynam-

ics probed with multidimensional infrared spectroscopy. International Reviews in

Physical Chemistry, 31(3):367-419, 2012.

Jessica M. Anna, Matthew R. Ross, and Kevin J. Kubarych. Dissecting enthalpic
and entropie barriers to ultrafast equilibrium isomerization of a flexible molecule

using 2dir chemical exchange spectroscopy. Journal of Physical Chemistry A,

113(24):6544-6547, 20009.

Jessica M. Anna and Kevin J. Kubarych. Watching solvent friction impede ultrafast
barrier crossings: A direct test of kramers theory. Journal of Chemical Physics,

133(17), 2010.

Mikael U. Winters, Joakim Karnbratt, Mattias Eng, Craig J. Wilson, Harry L.
Anderson, and Bo Albinsson. Photophysics of a butadiyne-linked porphyrin dimer:



BIBLIOGRAPHY 155

[39]

[40]

[41]

[42]

[44]

[45]

influence of conformational flexibility in the ground and first singlet excited state.

The Journal of Physical Chemistry C, 111(19):7192-7199, 2007.

Franco V. A. Camargo, Harry L. Anderson, Stephen R. Meech, and Ismael A.
Heisler. Time-resolved twisting dynamics in a porphyrin dimer characterized
by two-dimensional electronic spectroscopy. Journal of Physical Chemistry B,

119(46):14660-14667, 2015.

Franco V. A. Camargo, Christopher R. Hall, Harry L. Anderson, Stephen R. Meech,
and Ismael A. Heisler. Time resolved structural dynamics of butadiyne-linked por-

phyrin dimers. Structural Dynamics, 3(2), 2016.

Martin Kullmann, Stefan Ruetzel, Johannes Buback, Patrick Nuernberger, and To-
bias Brixner. Reaction dynamics of a molecular switch unveiled by coherent two-
dimensional electronic spectroscopy. Journal of the American Chemical Society,

133(33):13074-80, aug 2011,

Oliver Bixner, Vladimir Lukes, Tomas Mancal, Jiirgen Hauer, Franz Milota, Michael
Fischer, Igor Pugliesi, Maximilian Bradler, Walther Schmid, Eberhard Riedle, Har-
ald F Kauffmann, and Niklas Christensson. Ultrafast photo-induced charge transfer

unveiled by two-dimensional electronic spectroscopy. The Journal of Chemical Phys-

ics, 136(20):204503, 2012.

Stefan Ruetzel, Martin Kullmann, Johannes Buback, Patrick Nuernberger, and
Tobias Brixner. Tracing the steps of photoinduced chemical reactions in organic
molecules by coherent two-dimensional electronic spectroscopy using triggered ex-

change. Physical Review Letters, 110(14):148305, April 2013.

Stefan Ruetzel, Meike Diekmann, Patrick Nuernberger, Christof Walter, Bernd En-
gels, and Tobias Brixner. Multidimensional spectroscopy of photoreactivity. Pro-

ceedings of the National Academy of Sciences of the United States of America,
111(13):4764-9, 2014.

Patrick Nuernberger, Stefan Ruetzel, and Tobias Brixner. Multidimensional elec-
tronic spectroscopy of photochemical reactions. Angewandte Chemie - International

Edition, 54(39):11368-11386, 2015.



BIBLIOGRAPHY 156

[46]

[47]

[48]

[50]

[52]

[53]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R.
Fleming. Two-dimensional spectroscopy of electronic couplings in photosynthesis.

Nature, 434:625, 2005.

Donatas Zigmantas, Elizabeth L. Read, Tomas Mancal, Tobias Brixner, Alastair T.
Gardiner, Richard J. Cogdell, and Graham R. Fleming. Two-dimensional electronic
spectroscopy of the b800-b820 light-harvesting complex. Proceedings of the National
Academy of Sciences of the United States of America, 103(34):12672-7, 2006.

Gabriela S. Schlau-Cohen, Tessa R. Calhoun, Naomi S. Ginsberg, Elizabeth L.
Read, Matteo Ballottari, Roberto Bassi, Rienk van Grondelle, and Graham R. Flem-
ing. Pathways of energy flow in lhcii from two-dimensional electronic spectroscopy.

Journal of Physical Chemistry B, 113(46):15352-15363, 2009.

J. Dostal, T. Mancal, R. Augulis, F. Vacha, J. Psenc¢ik, and D. Zigmantas. Two-
dimensional spectroscopy reveals ultrafast energy diffusion in chlorosomes. Journal

of the American Chemical Society, 134:11611-11617, 2012.

Evgeny E. Ostroumov, Rachel M. Mulvaney, Richard J. Cogdell, and Gregory D.
Scholes. Broadband 2d electronic spectroscopy reveals a carotenoid dark state in

purple bacteria. Science, 340(6128):52-56, 2013.

Evgeny E Ostroumov, Rachel M Mulvaney, Jessica M Anna, Richard J Cogdell,
and Gregory D Scholes. Energy transfer pathways in light-harvesting complexes of

purple bacteria as revealed by global kinetic analysis of two-dimensional transient

spectra. The Journal of Physical Chemistry B, 117(38):11349-62, 2013.

Erling Thyrhaug, Karel Zidek, Jakub Dostél, David Bina, and Donatas Zigmantas.
Exciton structure and energy transfer in the fenna-matthews-olson complex. The

Journal of Physical Chemistry Letters, 7(9):1653-1660, 2016.

Hong-Guang Duan, Amy L Stevens, Peter Nalbach, Michael Thorwart, Valentyn I.
Prokhorenko, and R. J. Dwayne Miller. Two-dimensional electronic spectroscopy
of light-harvesting complex ii at ambient temperature: A joint experimental and

theoretical study. The Journal of Physical Chemistry B, 119(36):12017-12027, 2015.



BIBLIOGRAPHY 157

[54]

[55]

[56]

[60]

[61]

Alexandra Nemeth, Franz Milota, Jaroslaw Sperling, Darius Abramavicius, Shaul
Mukamel, and Harald F. Kauffmann. Tracing exciton dynamics in molecular nan-

otubes with 2d electronic spectroscopy. Chemical Physics Letters, 469(130), 2009.

Franz Milota, Jaroslaw Sperling, Alexandra Nemeth, Tomas Mancal, and Harald F.
Kauffmann. Two-dimensional electronic spectroscopy of molecular excitons. Ac-

counts of Chemical Research, 42(9, SI):1364-1374, 20009.

Federico Koch, Andreas Steinbacher, Cristina Consani, André Zitzler-Kunkel, Mat-
thias Stolte, Frank Wiirthner, and Tobias Brixner. The role of the dipolar neighbor-
hood on the relaxation dynamics of multichromophoric merocyanines. Phys. Chem.

Chem. Phys., pages 19820-19831, 2016.

C. N. Borca, T. H. Zhang, X. Q. Li, and S. T. Cundiff. Optical two-dimensional four-
ier transform spectroscopy of semiconductors. Chemical Physics Letters, 416:311,

2005.

Katherine W. Stone, Kenan Gundogdu, Daniel B. Turner, Xiaoqin Li, Steven T.
Cundiff, and Keith A. Nelson. Two-quantum 2d ft electronic spectroscopy of biex-
citons in gaas quantum wells. Science, 324(5931):1169-73, may 2009.

Gaél Nardin, Galan Moody, Rohan Singh, Travis M. Autry, Hebin Li, Francois
Morier-Genoud, and Steven T. Cundiff. Coherent excitonic coupling in an asym-

metric double ingaas quantum well arises from many-body effects. Physical Review

Letters, 112(4):046402, 2014.

G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater,
T. Wojtowicz, M. Bayer, and S. T. Cundiff. Coherent coupling of excitons and
trions in a photoexcited cdte/cdmgte quantum well. Physical Review Letters,

112(9):097401, 2014.

Christoph Lambert, Federico Koch, Sebastian F. Volker, Alexander Schmiedel,
Marco Holzapfel, Alexander Humeniuk, Merle I S Rohr, Roland Mitric, and Tobias
Brixner. Energy transfer between squaraine polymer sections: From helix to zigzag
and all the way back. Journal of the American Chemical Society, 137(24):7851-7861,
2015.



BIBLIOGRAPHY 158

[62]

[63]

[68]

[69]

[70]

Tatjana Stoll, Enrico Sgro, Jeremy W. Jarrett, Julien Réhault, Aurelio Oriana, Luca
Sala, Federico Branchi, Giulio Cerullo, and Kenneth L. Knappenberger. Superatom
state-resolved dynamics of the au25(sc8h9)18- cluster from two-dimensional elec-
tronic spectroscopy. Journal of the American Chemical Society, 138(6):1788-1791,
2016.

Alexandra Nemeth, Franz Milota, Tomas Mancal, Vladimir Lukes, Jirgen Hauer,
Harald F. Kauffmann, and Jaroslaw Sperling. Vibrational wave packet induced

oscillations in two-dimensional electronic spectra. i. experiments. The Journal of

Chemical Physics, 132(18):184514, 2010.

Tom&s Mancal, Alexandra Nemeth, Franz Milota, Vladimiir Lukes, Harald F. Kauff-
mann, and Jaroslaw Sperling. Vibrational wave packet induced oscillations in
two-dimensional electronic spectra. ii. theory. The Journal of Chemical Physics,

132(18):184515, 2010.

Minhaeng Cho. Two-Dimensional Optical Spectroscopy. CRC Press, Boca Raton,
London, 2009.

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal. Molecular Excitation

Dynamics and Relazation. Wiley-VCH, Weinheim, 2013.

Jonathan O. Tollerud, Steven T. Cundiff, and Jeffrey A. Davis. Revealing and char-
acterizing dark excitons through coherent multidimensional spectroscopy. Physical

Review Letters, 117(9):097401, 2016.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E.
Blankenship, and G. R. Fleming. Evidence for wavelike energy transfer through

quantum coherence in photosynthetic systems. Nature, 446:782, 2007.

Hohjai Lee, Yuan-Chung Cheng, and Graham R. Fleming. Coherence dynamics in
photosynthesis: Protein protection of excitonic coherence. Science, 316(5830):1462—
1465, 2007.

Elisabetta Collini and Gregory D Scholes. Coherent intrachain energy migration in

a conjugated polymer at room temperature. Science, 323(5912):369-73, jan 20009.



BIBLIOGRAPHY 159

[71]

[72]

73]

[74]

[76]

[77]

78]

Elisabetta Collini, Cathy Y Wong, Krystyna E Wilk, Paul M G Curmi, Paul
Brumer, and Gregory D Scholes. Coherently wired light-harvesting in photosyn-
thetic marine algae at ambient temperature. Nature, 463(7281):644-647, 2010.

Gitt Panitchayangkoon, Dugan Hayes, Kelly A. Fransted, Justin R. Caram, Elad
Harel, Jianzhong Wen, Robert E. Blankenship, and Gregory S. Engel. Long-lived
quantum coherence in photosynthetic complexes at physiological temperature. Pro-
ceedings of the National Academy of Sciences of the United States of America,
107(29):12766-12770, 2010.

Tessa R Calhoun, Naomi S Ginsberg, Gabriela S Schlau-Cohen, Yuan-Chung Cheng,
Matteo Ballottari, Roberto Bassi, and Graham R Fleming. Quantum coherence
enabled determination of the energy landscape in light-harvesting complex ii. The

Journal of Physical Chemistry B, 113(51):16291-5, 20009.

Dugan Hayes, Jianzhong Wen, Gitt Panitchayangkoon, Robert E. Blankenship, and
Gregory S. Engel. Robustness of electronic coherence in the fennamatthewsolson

complex to vibronic and structural modifications. Faraday Discussions, 150:459,

2011.

Justin R. Caram and Gregory S. Engel. Extracting dynamics of excitonic coherences

in congested spectra of photosynthetic light harvesting antenna complexes. Faraday

Discussions, 153:93, 2011.

G H Richards, K E Wilk, P M G Curmi, H M Quiney, and J a Davis. Excited state
coherent dynamics in light-harvesting complexes from photosynthetic marine algae.

Journal of Physics B: Atomic, Molecular and Optical Physics, 45:154015, 2012.

N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F.
Kauffmann. High frequency vibrational modulations in two-dimensional electronic

spectra and their resemblance to electronic coherence signatures. Journal of Physical

Chemistry B, 115:5383-5391, 2011.

Vytautas Butkus, Donatas Zigmantas, Leonas Valkunas, and Darius Abramavicius.

Vibrational vs. electronic coherences in 2d spectrum of molecular systems. Chemical

Physics Letters, 545:40 — 43, 2012.



BIBLIOGRAPHY 160

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

Vytautas Butkus, Leonas Valkunas, and Darius Abramavicius. Molecular
vibrations-induced quantum beats in two-dimensional electronic spectroscopy. The

Journal of Chemical Physics, 137(4):044513, 2012.

Daniel B. Turner, Krystyna E. Wilk, Paul M. G. Curmi, and Gregory D. Scholes.
Comparison of electronic and vibrational coherence measured by two-dimensional

electronic spectroscopy. Journal of Physical Chemistry Letters, 2(15):1904-1911,
2011.

Gitt Panitchayangkoon, Dmitri V. Voronine, Darius Abramavicius, Justin R.
Caram, Nicholas H. C. Lewis, Shaul Mukamel, and Gregory S. Engel. Direct
evidence of quantum transport in photosynthetic light-harvesting complexes. Pro-
ceedings of the National Academy of Sciences of the United States of America,
108(52):20908-20912, 2011.

A. V. Pisliakov, T. Mancal, and G. R. Fleming. Two-dimensional optical three-pulse
photon echo spectroscopy. ii: Signatures of coherent electronic motion and exciton

population transfer in dimer two-dimensional spectra. Journal of Chemical Physics,

124:234505, 2006.

Véclav Perlik, Craig Lincoln, Frantisek Sanda, and Jiirgen Hauer. Distinguishing
electronic and vibronic coherence in 2d spectra by their temperature dependence.

The Journal of Physical Chemistry Letters, 5(3):404-407, 2014.

Rayomond Dinshaw. Spectroscopic investigations of the photophysics of crypto-

phyte light-harvesting. Master’s thesis, University of Toronto, 2012.

Yuan-Chung Cheng and Graham R. Fleming. Coherence quantum beats in
two-dimensional electronic spectroscopy.  Journal of Physical Chemistry A,

112(18):4254-4260, 2008.

Tom&s Mancal, Niklas Christensson, Vladimir Lukes, Franz Milota, Oliver Bixner,
Harald F. Kauffmann, and Jiirgen Hauer. System-dependent signatures of elec-
tronic and vibrational coherences in electronic two-dimensional spectra. Journal of

Physical Chemistry Letters, 3(11):1497-1502, 2012.



BIBLIOGRAPHY 161

[87]

[33]

[89]

[91]

[92]

93]

[94]

Kelly A. Fransted, Justin R. Caram, Dugan Hayes, and Gregory S. Engel. Two-
dimensional electronic spectroscopy of bacteriochlorophyll a in solution: Elucidating
the coherence dynamics of the fenna-matthews-olson complex using its chromophore

as a control. Journal of Chemical Physics, 137(12), 2012.

Dugan Hayes, Graham B. Griffin, and Gregory S. Engel. Engineering coherence
among excited states in synthetic heterodimer systems. Science, 340(6139):1431—
1434, 2013.

Alexei Halpin, Philip J. M. Johnson, and R. J. Dwayne Miller. Comment on “engin-
eering coherence among excited states in synthetic heterodimer systems”. Science,

344(6188):1099-1099, 2014.

Akihito Ishizaki and Graham R. Fleming. Theoretical examination of quantum
coherence in a photosynthetic system at physiological temperature. Proceedings of
the National Academy of Sciences of the United States of America, 106(41):17255—
17260, 2009.

A. W. Chin, S. F. Huelga, and M. B. Plenio. Coherence and decoherence in bio-
logical systems: principles of noise-assisted transport and the origin of long-lived
coherences. Philosophical Transactions of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences, 370(1972):3638-3657, 2012.

Avinash Kolli, Edward J. O’Reilly, Gregory D. Scholes, and Alexandra Olaya-
Castro. The fundamental role of quantized vibrations in coherent light harvesting

by cryptophyte algae. Journal of Chemical Physics, 137(17), 2012.

Konstantin E Dorfman, Dmitri V Voronine, Shaul Mukamel, and Marlan O Scully.
Photosynthetic reaction center as a quantum heat engine. Proceedings of the Na-

tional Academy of Sciences of the United States of America, 110(8):2746-2751, 2012.

Edward J O’Reilly and Alexandra Olaya-Castro. Non-classicality of the molecular
vibrations assisting exciton energy transfer at room temperature. Nature Commu-

nications, 5:3012, 2014.



BIBLIOGRAPHY 162

[95]

[96]

[97]

[98]

[100]

101]

[102]

103]

Sergey Polyutov, Oliver Kiihn, and Tonu Pullerits. Exciton-vibrational coup-
ling in molecular aggregates: Electronic versus vibronic dimer. Chemical Physics,

394(1):21-28, 2012.

Leah 7 Sharp and Dassia Egorova. Towards microscopic assignment of oscillative
signatures in two-dimensional electronic photon-echo signals of vibronic oligomers:

a vibronic dimer model. The Journal of Chemical Physics, 139(14):144304, 2013.

Vytautas Butkus, Donatas Zigmantas, Darius Abramavicius, and Leonas Valkunas.
Distinctive character of electronic and vibrational coherences in disordered molecu-

lar aggregates. Chemical Physics Letters, 587:93 — 98, 2013.

Dassia Egorova. Oscillations in two-dimensional photon-echo signals of excitonic
and vibronic systems: Stick-spectrum analysis and its computational verification.

Journal of Chemical Physics, 140(3):0-12, 2014.

Vytautas Butkus, Leonas Valkunas, and Darius Abramavicius. Vibronic phenomena
and excitonvibrational interference in two-dimensional spectra of molecular aggreg-

ates. The Journal of Chemical Physics, 140(3):034306, 2014.

Vivek Tiwari, William K. Peters, and David M. Jonas. Electronic resonance with
anticorrelated pigment vibrations drives photosynthetic energy transfer outside the
adiabatic framework. Proceedings of the National Academy of Sciences, 110(4):1203—
1208, 2013.

Alexei Halpin, Philip J. M. Johnson, Roel Tempelaar, R. Scott Murphy, Jasper
Knoester, Thomas L. C. Jansen, and R. J. Dwayne Miller. Two-dimensional spec-

troscopy of a molecular dimer unveils the effects of vibronic coupling on exciton

coherences. Nature Chemistry, 6(3):196-201, 2014.

Hong Guang Duan, Peter Nalbach, Valentyn I. Prokhorenko, Shaul Mukamel, and
Michael Thorwart. On the origin of oscillations in two-dimensional spectra of

excitonically-coupled molecular systems. New Journal of Physics, 17(7):1-12, 2015.

Franz Milota, Valentyn I. Prokhorenko, Tom&as Mancal, Hans von Berlepsch, Oliver

Bixner, Harald F. Kauffmann, and Jiirgen Hauer. Vibronic and vibrational co-



BIBLIOGRAPHY 163

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

herences in two-dimensional electronic spectra of supramolecular j-aggregates. The

Journal of Physical Chemistry A, 117(29):6007-6014, 2013.

James Lim, David Palecek, Felipe Caycedo-Soler, Craig N. Lincoln, Javier Prior,
Hans von Berlepsch, Susana F. Huelga, Martin B. Plenio, Donatas Zigmantas, and
Jirgen Hauer. Vibronic origin of long-lived coherence in an artificial molecular light

harvester. Nature Communications, 6, July 2015.

Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloé. Quantum Mechanics,

volume 1. John Wiley & Sons, New York, 1977.

Jun John Sakurai. Modern Quantum Mechanics. Addison-Wesley, Reading MA,
1994.

John David Jackson. Classical Electrodynamics. John Wiley & Sons, New York, 3
edition, 1998.

R. Kubo. Statistical Mechanics: An Advanced Course with Problems and Solutions.
North Holland, Amsterdam, 2 edition, 1998.

Karl Blum. Density Matriz Theory and Applications. Springer, New York, London,
3 edition, 2011.

Robert W. Boyd. Nonlinear Optics. Academic Press, New York, 3 edition, 2008.
Eugene Hecht. Optics. Springer, Reading MA, 4 edition, 2001.

Jean-Claude Diels and Wolfganf Rudolph. Ultrashort Laser Pulse Phenomena: Fun-
damentals, Techniques, and Applications on a Femtosecond Timescale. Academic

Press, San Diego, London, 2 edition, 2006.

David L. Andrews. Physicality of the photon. Journal of Physical Chemistry Letters,
4(22):3878-3884, 2013.

Nicolaas Bloembergen. Nonlinear Optics. World Scientific Publishing Company;,
Singapore, London, 4 edition, 1996.

[115] Yuen-Ron Shen. The Principles of Nonlinear Optics. Wiley-Interscience, New York,

Chichester, 1 edition, 1984.



BIBLIOGRAPHY 164

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Gabriela S. Schlau-Cohen, Akihito Ishizaki, and Graham R. Fleming. Two-
dimensional electronic spectroscopy and photosynthesis: Fundamentals and applic-

ations to photosynthetic light-harvesting. Chemical Physics, 386(1-3):1-22, 2011.

Minhaeng Cho. Coherent two-dimensional optical spectroscopy. Chemical Reviews,

108(4):1331-1418, 2008.

M. Kasha, H. R. Rawls, and M. A. El-Bayoumi. The exciton model in molecular
spectroscopy. Pure and Applied Chemistry, 11:371 — 392, 1965.

Aurélia Chenu and Gregory D. Scholes. Coherence in energy transfer and photo-

synthesis. Annual Review of Physical Chemistry, 66(August):69-96, 2015.

Elsa Cassette, Ryan D. Pensack, Benoit Mahler, and Gregory D. Scholes. Room-
temperature exciton coherence and dephasing in two-dimensional nanostructures.

Nature Communications, 6:6086, 2015.

M. Khalil, N. Demirdéven, and A. Tokmakoff. Coherent 2d ir spectroscopy: molecu-
lar structure and dynamics in solution. Journal of Physical Chemistry A, 107:5258,
2003.

M. Khalil, N. Demirdoven, and A. Tokmakoff. Obtaining absorptive line shapes in
two-dimensional infrared vibrational correlation spectra. Physical Review Letters,

90:047401, 2003.

Franco V. A. Camargo, Harry L. Anderson, Stephen R. Meech, and Ismael A.
Heisler. Full characterization of vibrational coherence in a porphyrin chromophore
by two-dimensional electronic spectroscopy. The Journal of Physical Chemistry A,

119:95-101, 2015.

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle. Two-dimensional fourier transform
spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250720 nm super-
continuum probe. New Journal of Physics, 15(8):085016, 2013.

Cristina Consani, Gerald Aubock, Frank van Mourik, and Majed Chergui. Ultrafast
tryptophan-to-heme electron transfer in myoglobins revealed by uv 2d spectroscopy.

Science, 339(6127):1586-1589, 2013.



BIBLIOGRAPHY 165

[126]

[127)

[128]

[129]

[130]

[131]

[132]

[133]

Valentyn 1. Prokhorenko, Alessandra Picchiotti, Samansa Maneshi, and R. J.
Dwayne Miller. Broadband electronic two-dimensional spectroscopy in the deep uv.
In Kaoru Yamanouchi, Steven Cundiff, Regina de Vivie-Riedle, Makoto Kuwata-
Gonokami, and Louis DiMauro, editors, Ultrafast Phenomena XIX: Proceedings of
the 19th International Conference, Okinawa Convention Center, Okinawa, Japan,

July 7-11, 2014, pages 432-435. Springer International Publishing, Cham, 2015.

W Kuehn, K Reimann, M Woerner, T Elsaesser, and R Hey. Two-dimensional
terahertz correlation spectra of electronic excitations in semiconductor quantum

wells. The Journal of Physical Chemistry B, 115(18):5448-55, 2011.

W. Kuehn, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and U. Schade.
Strong correlation of electronic and lattice excitations in gaas/algaas semiconductor
quantum wells revealed by two-dimensional terahertz spectroscopy. Physical Review

Letters, 107(6):2-6, 2011.

Janne Savolainen, Saima Ahmed, and Peter Hamm. Two-dimensional raman-

thz spectroscopy of water. Proceedings of the National Academy of Sciences,

110(51):20402, 2013.

Carmine Somma, Giulia Folpini, Klaus Reimann, Michael Woerner, and Thomas
Elsaesser. Two-phonon quantum coherences in indium antimonide studied by non-
linear two-dimensional terahertz spectroscopy. Physical Review Letters, 116(17):1-6,

2016.

Ismael A. Heisler, Roberta Moca, Franco V. A. Camargo, and Stephen R. Meech.
Two-dimensional electronic spectroscopy based on conventional optics and fast dual

chopper data acquisition. Review of Scientific Instruments, 85:063103, 2014.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming. Phase-stabilized two-
dimensional electronic spectroscopy. Journal of Chemical Physics, 121:4221, 2004.

T. Zhang, C. N. Borca, X. Li, and S. T. Cundiff. Optical two-dimensional fourier
transform spectroscopy with active interferometric stabilization. Optics Express,

13:7432-7441, 2005.



BIBLIOGRAPHY 166

[134]

[135]

[136]

[137]

138

[139]

[140]

141]

[142]

Sang-Hee Shim and Martin T. Zanni. How to turn your pump-probe instrument
into a multidimensional spectrometer: 2d ir and vis spectroscopies via pulse shaping.

Physical Chemistry Chemical Physics, 11(5):748-761, 2009.

Ramunas Augulis and Donatas Zigmantas. Two-dimensional electronic spectroscopy
with double modulation lock-in detection: enhancement of sensitivity and noise

resistance. Optics Express, 19(14):13126-13133, 2011.

Julien Réhault, Margherita Maiuri, Aurelio Oriana, and Giulio Cerullo. Two-
dimensional electronic spectroscopy with birefringent wedges. Review of Scientific

Instruments, 85(12), 2014,

Patrick E. Tekavec, Jeffrey A. Myers, Kristin L. M. Lewis, and Jennifer P. Ogilvie.
Two-dimensional electronic spectroscopy with a continuum probe. Optics Letters,

34(9):1390-1392, 20009.

Howe Siang Tan. Theory and phase-cycling scheme selection principles of collin-

ear phase coherent multi-dimensional optical spectroscopy. Journal of Chemical

Physics, 129(12), 2008.

Erik M. Grumstrup, Sang-Hee Shim, Matthew A. Montgomery, Niels H. Damrauer,
and Martin T. Zanni. Facile collection of two-dimensional electronic spectra using

femtosecond pulse-shaping technology. Optics Express, 15(25):16681-16689, 2007.

Ulrike Selig, Florian Langhojer, Frank Dimler, Tatjana Loehrig, Christoph
Schwarz, Bjoern Gieseking, and Tobias Brixner. Inherently phase-stable coher-

ent two-dimensional spectroscopy using only conventional optics. Optics Letters,

33(23):2851-2853, 2008.

U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle. Sub-50 fs broadband
absorption spectroscopy with tunable excitation: putting the analysis of ultrafast
molecular dynamics on solid ground. Applied Physics B - Lasers and Optics, 96(2-
3):215-231, 2009.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller. Two-dimensional spectroscopy using
diffractive optics based phased-locked photon echoes. Chemical Physics Letters,
386(1-3):184-189, 2004.



BIBLIOGRAPHY 167

[143)]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

Wei Xiong, David B. Strasfeld, Sang-Hee Shim, and Martin T. Zanni. Automated
2d ir spectrometer mitigates the influence of high optical densities. Vibrational

Spectroscopy, 50(1):136-142, 2009.

E. Vogel, A. Gbureck, and W. Kiefer. Vibrational spectroscopic studies on the dyes
cresyl violet and coumarin 152. Journal of Molecular Structure, 550(SI):177-190,
2000.

Ulrike Seelig. Methods of nonlinear femtosecond spectroscopy in the visible and
ultraviolet regime and their application to coupled multichromophore systems. PhD

thesis, University of Wiirzburg, 2012.

S. M. G. Faeder and D. M. Jonas. Two-dimensional electronic correlation and
relaxation spectra: Theory and model calculations. Journal of Physical Chemistry

A, 103(49):10489-10505, 1999.

G. R. Fleming and M. H. Cho. Chromophore-solvent dynamics. Annual Review of
Physical Chemistry, 47:109-134, 1996.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma. Ultrafast solvation
dynamics explored by femtosecond photon echo spectroscopies. Annual Review of

Physical Chemistry, 49:99-123, 1998.

Yuan-Chung Cheng and Graham R. Fleming. Dynamics of light harvesting in pho-
tosynthesis. Annual Review of Physical Chemistry, 60:241-262, 2009.

J. R. Caram, A. F. Fidler, and G. S. Engel. Excited and ground state vibra-
tional dynamics revealed by two-dimensional electronic spectroscopy. The Journal

of Chemical Physics, 137:024507, 2012.

I. Hwang, U. Seelig, S. S. Y. Chen, P. E. Shaw, T. Brixner, P. L. Burn, and G. D.
Scholes. Photophysics of delocalized excitons in carbazole dendrimers. Journal of

Physical Chemistry A, 117:6270-6278, 2013.

Tonu Pullerits, Donatas Zigmantas, and Villy Sundstrom. Beatings in electronic 2d
spectroscopy suggest another role of vibrations in photosynthetic light harvesting.

Proceedings of the National Academy of Sciences, 110(4):1148-1149, 2013.



BIBLIOGRAPHY 168

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

A. Chenu, N. Christensson, H. F. Kauffmann, and T. Mancal. Enhancement of
vibronic and ground-state vibrational coherences in 2d spectra of photosynthetic

complexes. Scientific Reports, 3:2029, 2013.

Kelly A. Fransted, Justin R. Caram, Dugan Hayes, and Gregory S. Engel. Two-
dimensional electronic spectroscopy of bacteriochlorophyll a in solution: Elucidating
the coherence dynamics of the fenna-matthews-olson complex using its chromophore

as a control. The Journal of Chemical Physics, 137(12):125101, 2012.

Dominik Koszelewski, Agnieszka Nowak-Krol, Mikhail Drobizhev, Craig J. Wilson,
Joy E. Haley, Thomas M. Cooper, Jerzy Romiszewski, Ewa Gorecka, Harry L.
Anderson, Aleksander Rebane, and Daniel T. Gryko. Synthesis and linear and non-
linear optical properties of low-melting m-extended porphyrins. Journal of Materials

Chemistry C, 1:2044-2053, 2013.

Martin Gouterman. Spectra of porphyrins. Journal of Molecular Spectroscopy,

6(1):138-163, 1961.

Harry L. Anderson. Conjugated porphyrin ladders. Inorganic Chemistry, 33(5):972—
981, 1994.

D. Beljonne, G. E. O’Keefe, P. J. Hamer, R. H. Friend, H. L. Anderson, and Brédas.
Investigation of the linear and nonlinear optical response of edge-linked conjugated

zinc porphyrin oligomers by optical spectroscopy and configuration interaction tech-

niques. The Journal of Chemical Physics, 106(23):9439-9460, 1997.

Harry L. Anderson. Supramolecular orientation of conjugated porphyrin oligomers

in stretched polymers. Advanced Materials, 6(11):834-836, 1994.

Mikhail Drobizhev, Yuriy Stepanenko, Yuliya Dzenis, Aliaksandr Karotki,
Aleksander Rebane, Peter N. Taylor, and Harry L. Anderson. Extremely strong
near-ir two-photon absorption in conjugated porphyrin dimers: quantitative de-

scription with three-essential-states model. The Journal of Physical Chemistry B,
109(15):7223-7236, 2005.

Claudia E. Tait, Patrik Neuhaus, Harry L. Anderson, and Christiane R. Timmel.

Triplet state delocalization in a conjugated porphyrin dimer probed by transient



BIBLIOGRAPHY 169

[162]

[163]

[164]

165

[166]

[167]

168

[169]

electron paramagnetic resonance techniques. Journal of the American Chemical

Society, 137(20):66706679, 2015.

Michael Atamian, Robert J. Donohoe, Jonathan S. Lindsey, and David F. Bocian.
Resonance raman spectra and normal-coordinate analysis of reduced porphyrins. 1.
zinc(ii) tetraphenylporphyrin anion. The Journal of Physical Chemistry, 93(6):2236—
2243, 1989.

Baxter Abraham, Jesus Nieto-Pescador, and Lars Gundlach. Ultrafast relaxation
dynamics of photoexcited zinc-porphyrin: Electronic-vibrational coupling. The

Journal of Physical Chemistry Letters, pages 3151-3156, 2016.

E. W. Castner and M. Maroncelli. Solvent dynamics derived from optical kerr effect,
dielectric dispersion, and time-resolved stokes shift measurements: An empirical

comparison. Journal of Molecular Liquids, 77(1-3):1-36, 1998.

Elad Harel and Gregory S Engel. Quantum coherence spectroscopy reveals complex
dynamics in bacterial light- harvesting complex 2 ( 1h2 ). Proceedings of the National
Academy of Sciences, 109(3):706-711, 2011.

Vytautas Butkus, Darius Abramavicius, A. Gelzinis, and Leonas Valkunas. Two-

dimensional optical spectroscopy of molecular aggregates. Lithuanian Journal of

Physics, 50(3):267 — 303, 2010.

Joachim Seibt and Tonu Pullerits. Beating signals in 2d spectroscopy: Electronic
or nuclear coherences? application to a quantum dot model system. The Journal

of Physical Chemistry C, 117(36):18728-18737, 2013.

Daniel B. Turner, Rayomond Dinshaw, Kyung-Koo Lee, Michael S. Belsley,
Krystyna E. Wilk, Paul M. G. Curmi, and Gregory D. Scholes. Quantitative invest-
igations of quantum coherence for a light-harvesting protein at conditions simulating

photosynthesis. Physical Chemistry Chemical Physics, 14:4857-4874, 2012.

Valentyn I. Prokhorenko. Global analysis of multi-dimensional experimental data.

EPA Newsletter, pages 21-23, 2012.



BIBLIOGRAPHY 170

[170] Y. Song, C. Hellmann, N. Stingelin, and G. D. Scholes. The separation of vibrational

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

coherence from ground- and excited-electronic states in p3ht film. The Journal of

Chemical Physics, 142(21):—, 2015.

Franco V A Camargo, Lena Grimmelsmann, Harry L. Anderson, Stephen R. Meech,
and Ismael A. Heisler. Resolving vibrational from electronic coherences in two-
dimensional electronic spectroscopy: The role of the laser spectrum. Physical Review

Letters, 118(17), 2017.

S. Seckin Senlik, Veronica R. Policht, and Jennifer P. Ogilvie. Two-color nonlinear
spectroscopy for the rapid acquisition of coherent dynamics. Journal of Physical

Chemistry Letters, 6(13):2413-2420, 2015.

Par Kjellberg, Ben Bruggemann, and Tonu Pullerits. Two-dimensional electronic

spectroscopy of an excitonically coupled dimer. Physical Review B, 74(2), 2006.

Niklas Christensson, Yuri Avlasevich, Arkady Yartsev, Klaus Miillen, Torbjorn
Pascher, and Tonu Pullerits. Weakly chirped pulses in frequency resolved coherent

spectroscopy. Journal of Chemical Physics, 132(17), 2010.

D. Abramavicius, V. Butkus, J. Bujokas, and L. Valkunas. Manipulation of two-
dimensional spectra of excitonically coupled molecules by narrow-bandwidth laser

pulses. Chemical Physics, 372(1-3):22-32, 2010.

Jonathan O. Tollerud, Christopher R. Hall, and Jeffrey A. Davis. Isolating quantum
coherence using coherent multi-dimensional spectroscopy with spectrally shaped

pulses. Optics Ezxpress, 22(6):6719-33, 2014.

Vytautas Butkus, Andrius Gelzinis, Ramunas Augulis, Andrew Gall, Claudia
Biichel, Bruno Robert, Donatas Zigmantas, Leonas Valkunas, and Darius Abramavi-
cius. Coherence and population dynamics of chlorophyll excitations in fcp complex:
Two-dimensional spectroscopy study. The Journal of Chemical Physics, 142(21),
2015.

C Dale Keefe and Scott Jaspers-Fayer. Infrared optical properties and raman spectra

of n-pentane and n-pentane-d12. Vibrational Spectroscopy, 57(1):72-80, 2011.



BIBLIOGRAPHY 171

[179]

[180]

[181]

[182]

[183]

[184]

Ki Hee Song, Munui Gu, Min Seok Kim, Hyeok Jun Kwon, Hanju Rhee, Hogyu
Han, and Minhaeng Cho. Quantum beats and phase shifts in two-dimensional
electronic spectra of zinc naphthalocyanine monomer and aggregate. Journal of

Physical Chemistry Letters, 6(21):4314-4318, 2015.

Maxim F. Gelin and Wolfgang Domcke. Alternative view of two-dimensional spec-

troscopy. Journal of Chemical Physics, 144(19):0-9, 2016.

Martin D. Peeks, Patrik Neuhaus, and Harry L. Anderson. Experimental and com-
putational evaluation of the barrier to torsional rotation in a butadiyne-linked por-

phyrin dimer. Physical Chemistry Chemical Physics, 18:5264-5274, 2016.

Andrea Volpato, Luca Bolzonello, Elena Meneghin, and Elisabetta Collini. Global
analysis of coherence and population dynamics in 2d electronic spectroscopy. Optics

Ezxpress, 24(21):24773-24785, 2016.

Wim P. de Boeij, Maxim S. Pshenichnikov, and Douwe A. Wiersma. Systembath
correlation function probed by conventional and time-gated stimulated photon echo.

The Journal of Physical Chemistry, 100(29):11806-11823, 1996.

Kyungwon Kwak, Sungnam Park, Ilya J. Finkelstein, and M. D. Fayer. Frequency-
frequency correlation functions and apodization in two-dimensional infrared vibra-
tional echo spectroscopy: A new approach. The Journal of Chemical Physics,

127(12):—, 2007.



