
Multi-dimensional filtering: Reducing the

dimension through rotation∗

Julia Docampo-Sánchez† Jennifer K. Ryan†

Mahsa Mirzargar‡ Robert M. Kirby§

May 4, 2017

Abstract

Over the past few decades there has been a strong effort towards the
development of Smoothness-Increasing Accuracy-Conserving (SIAC) fil-
ters for Discontinuous Galerkin (DG) methods, designed to increase the
smoothness and improve the convergence rate of the DG solution through
this post-processor. These advantages can be exploited during flow vi-
sualization, for example by applying the SIAC filter to the DG data be-
fore streamline computations [Steffan et al., IEEE-TVCG 14(3): 680-692].
However, introducing these filters in engineering applications can be chal-
lenging since a tensor product filter grows in support size as the field
dimension increases, becoming computationally expensive. As an alter-
native, [Walfisch et al., JOMP 38(2);164-184] proposed a univariate filter
implemented along the streamline curves. Until now, this technique re-
mained a numerical experiment. In this paper we introduce the line SIAC
filter and explore how the orientation, structure and filter size affect the or-
der of accuracy and global errors. We present theoretical error estimates
showing how line filtering preserves the properties of traditional tensor
product filtering, including smoothness and improvement in the conver-
gence rate. Furthermore, numerical experiments are included, exhibiting
how these filters achieve the same accuracy at significantly lower compu-
tational costs, becoming an attractive tool for the scientific visualization
community.

Discontinuous Galerkin, post-processing, SIAC filtering, accuracy enhance-
ment, error reduction

65M60

∗Submitted to the editors May 4, 2017. The first and second authors are sponsored in part
by the Air Force Office of Scientific Research (AFOSR), Computational Mathematics Program
(Program Manager: Dr. Jean-Luc Cambier), under grant number FA8655-13-1-3017.
†School of Mathematics, University of East Anglia, Norwich NR4 7TJ, United Kingdom

(J.Docampo@uea.ac.uk, jennifer.ryan@uea.ac.uk).
‡Department of Computer Science, University of Miami, Coral Gables, FL 33124, USA.

(mirzargar@cs.miami.edu).
§School of Computing, University of Utah, Salt Lake City, UT 84112, USA.

(kirby@sci.utah.edu).

1

1 Introduction

This paper presents a new computationally efficient filtering technique em-
ployed to improve the quality of multi-dimensional numerical solutions obtained
through Discontinuous Galerkin (DG) methods. We do this using a new ap-
proach to Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering, which
we call Line SIAC (LSIAC) filtering. SIAC Filters [22] are a post-processing
technique designed to accelerate the convergence rate and increase the smooth-
ness of DG solutions. Traditional applications of SIAC filters require a tensor
product construction. Here, we theoretically and computationally demonstrate
that using an appropriate rotation of the one-dimensional SIAC filter, we can
preserve the properties of the original post-processor. In fact, our computa-
tional results show that in addition to smoothness recovery, the new solution is
generally more accurate than the original DG solution. Additionally, the theory
provides guidelines on choosing the appropriate rotation, which is linked to the
underlying divided-difference estimates based on the DG mesh.

Using a one-dimensional idea for multi-dimensional data makes SIAC an
attractive tool for the visualization community. Flow visualization through
particle tracking methods such as streamlines and streaklines is a common tech-
nique used to provide insight into fluid dynamics. Among the many techniques
used for Computational Fluid Dynamics, DG methods are one family of nu-
merical schemes that allow for generating data for flow visualization. They are
robust, high order methods which can handle complicated geometries as well
as effectively solve solutions containing shocks [6]. DG schemes, like Finite El-
ement (FEM) and Finite Volume (FVM) Methods, use a variational form to
solve Partial Differential Equations (PDEs). However, unlike FEM that require
global continuity, a DG solution is continuous only inside the elements. The
solution across the element interface is controlled through a numerical flux that
is only weakly continuous; as a result, the error exhibits high frequency oscil-
lations. Hence, visualizing DG solutions can be challenging. The numerical
solution has low levels of continuity and most visualization techniques assume
smooth field conditions. In order to increase the levels of continuity, typically a
post-processor is implemented.

There has been ongoing work on the application of SIAC filters for DG
solutions to improve the flow conditions where streamlines are subsequently
computed. The authors of [7] implemented the traditional multidimensional
filter obtained as a tensor product of univariate filters along each Cartesian
axis. This configuration, a natural extension of the one dimensional case, allows
for proving error estimates both for uniform and nonuniform cases [5]. However,
the foundations for proving superconvergence assume only smooth initial data
and link the filter directly to the underlying mesh, restricting the choices on
the area of the domain from which information is extracted. We hypothesize
that changing the direction in which information is filtered can improve the
results. Therefore, we considered rotated filters: SIAC filters that are no longer
Cartesian coordinate aligned and have variable orientation. This idea comes
from a visualization perspective, questioning if orienting the filter with the flow
direction and changing the support size plays a role in improving the quality of
the filtered solution.

Making a filter viable for flow visualization comes with computational chal-
lenges because it requires robustness, relatively low computational intensity,

2

and short simulation times. In [28], a numerical experiment on streamline vi-
sualization was performed. In order to save computational costs and avoid
using a 2D filter, the authors applied a type of one dimensional filter along the
streamline curves. However, the theoretical and numerical investigation into the
effectiveness of these filters on typical test problems was not carried out. Here
we perform this investigation on Line SIAC Filters and show that this new
approach is a computationally efficient technique for post-processing multidi-
mensional fields that uses only one dimension. This family of filters transforms
the 2D integral of the convolution into a line integral. Hence, from a computa-
tional point of view, the advantages are immediate. Furthermore, we prove that
it is possible to extract superconvergence for such filters and present numerical
results supporting the theory. The results of the line filter are compared to the
original 2D Cartesian coordinate aligned SIAC filter.

The results in this paper combine previous investigations in SIAC Filtering.
SIAC filters have traditionally been used to reduce the error oscillations and
recover smoothness in the solution and its derivatives [11, 13, 15, 16, 21, 23, 25].
The filters were originally designed for accuracy enhancement of FEMs [2, 18]
and later applied to DG [5]. The post-processor extracts the hidden “supercon-
vergence” of these methods; for linear hyperbolic problems, the filtered solution
is of order 2k+1, where k denotes the polynomial space degree used for the DG
approximation which is order k+1 convergent. Hence, in addition to increasing
the smoothness, for smooth initial data and linear problems, the filtered solution
is generally more accurate than the DG solution.

We will begin by briefly reviewing the DG method and the original post-
processor. In Section 3 we provide details on how to rotate the filter and reduce
the dimension for multi-dimensional filtering. We additionally provide theoreti-
cal error estimates for linear hyperbolic equations. In Section 4 numerical exper-
iments showing smoothness recovery and accuracy enhancement are provided
and a discussion of the computational benefits of this type of post-processing
are provided in Section 5. Our conclusions are formulated in Section 6 to close
this article.

2 Background

The theory of SIAC filtering for DG methods relies on the divided differences
of the numerical solution. Using a piecewise polynomial basis of degree k, the
numerical solution is typically of order k + 1 under the L2 norm in both the
approximation and divided differences for linear hyperbolic equations. However,
DG solutions have “hidden” superconvergence. In [5] it was proven that the
DG approximation has 2k + 1 convergence in the negative-order norm for the
approximation and the divided differences. SIAC filters exploit this fact and
can achieve 2k + 1 order in the L2 norm for the actual solution. In order to
understand how we can extract superconvergence, we will begin by introducing
the DG scheme and the theoretical error estimates.

2.1 The DG Scheme and its Divided Differences

The first DG method was developed to solve the neutron transport equation in
1973 by Reed an Hill [20]. Today, these methods extend to many types of PDEs.

3

Examples are solving non-linear combined problems such as the incompressible
and compressible Navier-Stokes equations [1, 9].

In this paper, we concentrate on linear hyperbolic conservation laws and use
the advection equation as the model problem. DG schemes for such problems
have been studied in depth by [4, 6] and here we only address the basic idea of
the scheme. Consider the linear hyperbolic problem:

ut +

d∑
i=1

Aiuxi +A0u = 0, (x, t) ∈ Ω× [0, T]

u(x, 0) = u0,

(1)

where Ai, i = 1 . . . , d are linear, x = (x1, x2, . . . , xd) and u represents the
advection of the conserved quantity.

The first step of the DG method is to choose a suitable tessellation T (Ω) =∑
e of the domain Ω and a piece-wise polynomial approximation space:

V kh =
{
v ∈ L2(Ω) : v ∈ Pk(e), ∀e ∈ T (Ω)

}
.

Then, the DG solution is obtained using the variational form of Equation (1).
It is the unique function uh ∈ V kh satisfying∫
e

(uh)tvdx−
d∑
i=1

(∫
e

Aiuh(x, t)vxidx

)
+

∫
e

A0uhvdx+

d∑
i=1

∫
∂e

Âiuh ·nvdS = 0

(2)

for all v ∈ V kh and for every element of the tessellation. The term Âiuh refers
to the numerical flux, the function enforcing weak continuity across the element
interfaces, which is typically taken to be the upwind flux.

Theorem 2.1 ([5]) Let u be the exact solution and uh the DG approximation to
the Initial Value Problem (1) with periodic boundary conditions. For a uniform
mesh, we obtain the following error estimates:

‖∂αh (u− uh)‖0,Ω ≤ Ch
k+1 (3)

in the L2-norm and in the negative order norm:

‖∂αh (u− uh)‖−(k+1),Ω ≤ Ch
2k+1, (4)

where

‖u‖−`,Ω = sup
φ∈C∞0 (Ω)

(u, φ)Ω

‖φ‖`,Ω
, ‖φ‖`,Ω =

∑
|α|≤`

‖Dαu||2Ω

 1
2

and ` > 0.

Here k denotes the polynomial order used for the DG approximation, and α =
(α1, α2, . . . , αd) a multi-index. It is also necessary to introduce ∂αh , the (scaled)
divided difference:

∂αh = ∂α1

h,1∂
α2

h,2 · · · ∂
αd
h,d, ∂h,jf(x) =

1

h
(f(x + ejh/2)− f(x− ejh/2)), (5)

∂
αj
h,jf = ∂h,j(∂

αj−1
h,j f), αj > 1, j = 1, . . . , d, (6)

4

where ej is the standard basis vector in the jth direction. For the purposes of
this article, we take d = 2.

Finally, we introduce the Lemma that allows us to switch between the L2

and the negative-order norms.

Lemma 1 (Bramble and Schatz [2]) Let Ω0 ⊂⊂ Ω1 ⊂⊂ Ω, Ω bounded do-
main in Rd and s be an arbitrary but fixed nonnegative integer. Then, for
u ∈ Hs(Ω1), there is a constant C such that

||u||0,Ω0 ≤ C
∑
|α|≤s

‖Dαu‖−s,Ω1
. (7)

In the next section, we will see that the B-Spline kernel transforms the differen-
tial operator Dα into a divided differences operator. This allows the use of the
negative order estimate of Theorem 2.1 for the filtered solution, giving 2k + 1
accuracy in the L2 norm [5].

2.2 SIAC Filters

Before introducing the filter rotation, we briefly review the original post-processor
from which it derives. For a much more detailed description on the properties
and implementation of SIAC filters, we refer the reader to [14, 15, 17, 22].

Let k be the maximum polynomial degree used for the DG approximation.
The post-processor is a continuous convolution:

u?h(x, T) =

∫ ∞
−∞

K
(2k+1,k+1)
H (x− y)uh(y, T) dy, x ∈ Ω (8)

where uh denotes the DG solution at final time and the kernel is a linear com-
bination of central B-Splines:

K(2k+1,k+1)(η) =

k∑
γ=−k

cγψ
(k+1)(η − γ). (9)

Here, γ denotes the B-Splines centres. The kernel subindex H in equation (8)
acts as a scaling factor, i.e., KH(x−y) = 1

HK
(
x−y
H

)
. To give an idea of the filter

size, for uniform meshes, the usual scaling choice is H = h, where h denotes the
element size. The superindexes (2k+ 1, k+ 1) indicate the number of B-Splines
used to build the kernel (2k + 1) and the spline order (k + 1). Basis Splines
(B-Splines) are local functions providing maximum approximation order with
minimum support. The central B-Splines are a particular case which are com-
putationally very attractive since they can be calculated using the recurrence
formula

ψ(1)(x) = χ[−1/2,1/2)(x), (10)

ψ(k+1)(x) = ψ(k) ? ψ(1)(x) (11)

=
1

k

((
k + 1

2
+ x

)
ψ(k)

(
x+

1

2

)
+

(
k + 1

2
− x
)
ψ(k)

(
x− 1

2

))
.

(12)

5

−2 −1 0 1 2

0

1

ψ(1)

ψ(2)

ψ(3)

−2 −1 0 1 2
−0.2

0

1.2

0 1 2 3 4
−3

0

3

ψ(2)

K(3,2)

Figure 1: B-Splines (left) and the symmetric (centre) and one-sided RS [24]
(right) kernels.

Moreover, these splines have the following property for the derivatives:

dαψ(k+1) = ∂αh=1ψ
(k+1−α), ∂αh = αth divided difference. (13)

We will not give further details on these spline functions and suggest [8] and [26]
for a complete description. Finally, the kernel coefficients, cγ , dictate each of the
B-Spline weights and are determined by imposing the polynomial reproduction
property

K(2k+1,k+1) ? xp = xp, p = 0, . . . , 2k. (14)

The kernel presented in equation (9) is symmetric in the sense that the support
is centred around the post-processing point and it expands equally in every di-
rection. There are alternative kernel versions, giving rise to one-sided [24] and
position dependent [11, 27] SIAC filters, and more recently, the non-uniform
knot based PSIAC filters [19]. These kernels include a shifting parameter in
the B-Splines, translating the support towards one direction. In Figure 1 we
show the B-Spline functions together with a symmetric and one-sided kernel to
illustrate the difference. These alternative versions attempt to address issues
related to domain boundaries and near-shock regions. Since beyond the com-
putational domain there is no information, near the boundaries the symmetric
kernel can not be implemented. Instead, it is replaced by a boundary filter,
allowing post-processing points by pushing the support towards the interior of
the domain. Furthermore, for solutions containing shocks, taking information
near the shock may produce an undesirable smooth region. However, in this
paper we will not tackle these problems and concentrate only on the symmetric
filter, assuming periodic conditions and linear hyperbolic problems.

Theorem 2.2 (Cockburn, Luskin, Shu, and Süli [5]) Under the same con-

ditions in Theorem 2.1 and if Ω0 + 2supp
(
K

(2k+1,k+1)
h

)
⊂⊂ Ω1 ⊂ Ω, then for

H = h (h mesh size):∥∥∥u−K(2k+1,k+1)
h ? uh

∥∥∥
0,Ω0

≤ Ch2k+1. (15)

Here we sketch the proof in order to illustrate the important components for
proving the same properties for the rotated filter.∥∥∥u−K(2k+1,k+1)

h ? uh

∥∥∥
0,Ω0

≤
∥∥∥u−K(2k+1,k+1)

h ? u
∥∥∥

0,Ω0︸ ︷︷ ︸
Ξ1

+
∥∥∥K(2k+1,k+1)

h ? (u− uh)
∥∥∥

0,Ω0︸ ︷︷ ︸
Ξ2

.

6

The term Ξ1 is bounded using property (14), polynomial reproduction. The
second term relies on property (13), the ability to switch the derivative to a
divided difference. For multiple dimensions, this relies on α = (α1, α2, . . . , αd)
and therefore contains a multi-dimensional derivative.

Remark 2.1 The polynomial reproduction property implies that convolving the
exact solution with the filter produces an error of order O(h2k+1), with 2k being
maximum polynomial degree of reproduction. This is controlled by the number
of B-Splines used during kernel construction.

Remark 2.2 The divided differences play a key role for bounding the error
component corresponding to the filtered DG approximation. The 2k+1 accuracy
is achieved by virtue of Theorem 2.1 using the B-Spline derivative property given
in equation (13).

3 Line SIAC Filters

Before introducing Smoothness-Increasing Accuracy-Conserving Line Filters, we
introduce the coordinate rotation necessary for these filters in the context of
the two-dimensional Cartesian axis aligned filter. We then show how the theory
automatically translates to this one-dimensional kernel for multi-dimensional
data.

3.1 Rotating the Kernel support

The post-processor aligned with the
Cartesian axis is built as a tensor product of univariate kernels:

u?(x, y) =

∫ ∞
−∞

∫ ∞
−∞

K
(2k+1,k+1)
Hx

(x− x)K
(2k+1,k+1)
Hy

(y − y)uh(x, y) dx dy. (16)

For uniform meshes, provided the kernel scaling is of the form H = m ·h, where
m ∈ Z+ and h is the mesh size, it is possible to show 2k+ 1 accuracy. However,
as soon as the mesh uniformity assumption drops, finding a suitable scaling
becomes complicated. A detailed theoretical discussion on the kernel scaling
and nonuniform meshes can be found in [10, Ch. 4] and see [7] for a numerical
study.

The idea of allowing kernel rotations that change the support orientation
comes from practical applications of SIAC filters. In terms of robustness, for-
mulation (16) is restrictive in the sense that there is only one possible choice
for the kernel support: a box aligned with the cartesian axis. If one wants to
implement the post-processor during flow visualization, it is reasonable to ask
whether keeping the kernel aligned with the mesh is more relevant than align-
ing the kernel with the flow direction. This argument does not contradict any
of the previous work on SIAC filtering, since the aim of post-processing was
extracting superconvergence. We wish to highlight that ensuring superconver-
gence does not necessarily imply ensuring error minimization. This fact can be
observed in the numerical results presented in Section 4.

The rotated filter consists of rewriting the convolution in a new basis B2 :={
~kx, ~ky

}
, given the kernel direction vectors ~kx = (cos θ, sin θ) and ~ky = (cos θ+

7

π/2, sin θ + π/2) = (− sin θ, cos θ), determined by the rotation angle θ. Iden-
tifying B1 := {e1 = (1, 0), e2 = (0, 1)} with the Cartesian basis and using the
change-of-basis matrices:

PB2←B1
=

(
cos θ − sin θ

sin θ cos θ

)
and PB1←B2

=

(
cos θ sin θ

− sin θ cos θ

)
(17)

we can exchange the coordinates of a point from each reference system:

X = (x1, x2)B1
= PB1←B2

·X ′ ⇔ X ′ = (x′1, x
′
2)B2

= PB2←B1
·X.

The filtering convolution is defined in the new coordinate system:

u?(x, y) =

∫ ∞
−∞

∫ ∞
−∞

K
(2k+1,k+1)
Hx′

(x− x′)K(2k+1,k+1)
Hy′

(y − y′)uh(x′, y′)dx′dy′

(18)

and each (symmetric) kernel is defined using (9).

Remark 3.1 This definition is consistent with the original post-processor. This
can be seen using zero rotation. which is the particular case when x = x′ (y =
y′).

3.2 Reducing the dimension through line filtering

In Theorem 2.2 we highlighted the important role played by the divided differ-
ences for proving superconvergence of the filtered solution; the proof relies on
the ability of the kernel to transfer the derivatives to the DG approximation as
divided differences and then apply Theorem 2.1. With an axis aligned kernel, a
tensor product construction,

K
(2k+1,k+1)
H (x, y) = K

(2k+1,k+1)
Hx

(x)⊗K(2k+1,k+1)
Hy

(y),

is necessary in order to compute the multi-dimensional derivatives:

DαK
(2k+1,k+1)
H (x, y) =

dα1

dx
K

(2k+1,k+1)
Hx

(x)
dα2

dy
K

(2k+1,k+1)
Hy

(y), α1 + α2 = α.

On the other hand, rotating the kernel produces a great advantage since a single
kernel direction allows for differentiation in terms of the original basis under all
variables. For example, consider the rotated kernel direction kx in equation (18)
and assume that θ ∈ (0, π/2):

K
(2k+1,k+1)
Hx′

(x′) = K̃
(2k+1,k+1)
Hx′

(x, y), since x′ = (cos θ − sin θ)

(
x

y

)
. (19)

Exploiting this fact we can avoid tensor products and reduce the filter dimension,
transforming the convolution into a line integral whilst preserving the 2D SIAC
properties. Therefore, we only need to show that the kernel derivatives can still
be expressed as a combination of divided differences in the x and y directions
and then the same error estimates will hold.

We would like to emphasize that the idea of univariate SIAC filters for multi-
dimensional domains was first introduced in [28]. They showed the potential of

8

this technique with an empirical study on streamlines, implementing a one-sided
filter along the curve using arc-length parametrization. Here we mathematically
develop that idea and define Line SIAC filters: the family of rotated SIAC fil-
ters with support expanding only along a segment inside the 2D domain. We
will define the line kernel together with the B-Splines and formalise this lower
dimension filtering approach presenting theoretical error estimates. We con-
clude this section with supporting numerical results showing both smoothness
recovery and superconvergence.

Definition 3.1 (Line SIAC kernels) Let Γ ⊂ R2 be the line parametrized by
the arc length

Γ(t) = t(cos θ, sin θ) t ∈ R, θ fixed, (20)

and its inverse map
Γ−1(x, y) = x cos θ + y sin θ. (21)

Then the B-Spline along the Γ line is defined by:

ψ̃
(k+1)
θ (x, y) =

{
ψ(k+1)

(
Γ−1(x, y)

)
if (x, y) ∈ Γ(t)

0 otherwise,
(22)

and has compact support

supp ψ̃
(k+1)
θ = (t cos θ, t sin θ), t ∈

[
−k + 1

2
,
k + 1

2

]
. (23)

R
supp ψ(k+1)(t)

Ω ⊂ R2

supp ψ(k+1)(t)

supp ψ̃
(k+1)
θ (x, y)

Γ(t)

Figure 2: Illustration of an univariate B-Spline support along a line in R2.

The Line SIAC kernel is constructed as a linear combination of these
(scaled) B-Splines and the symmetric version, originally introduced in [2, 5],
has the following formula:

K
(2k+1,k+1)
Γ,H (t) =

k∑
γ=−k

cγψ
(k+1)
H (t− γ), ψ

(k+1)
H (t− γ) =

1

H
ψ(k+1)

(
t

H
− γ
)

(24)

in arc length coordinates, or alternatively by:

K
(2k+1,k+1)
Γ,H (x, y) =

k∑
γ=−k

cγψ̃
(k+1)
θ,H

(
Γ−1 (x− γ cos θ, y − γ sin θ)

)
(25)

in the Cartesian system.

9

The 2D convolution for the Line SIAC filter is given by:

u?(x, y) =
1

H

∫
Γ

KΓ,H

(
t

H

)
uh(Γ(t))dt, (26)

where we have used that Γ(t) = t(cos θ, sin θ) + (x, y) and ||Γ′(t)|| = 1. In order
to characterize the derivatives of such B-Splines we introduce a particular type
of divided differences.

Definition 3.2 (Directional Divided Difference) Consider the direction given
by the vector ~u = (ux, uy). Then the scaled directional divided difference with
respect to ~u is defined by

∂~u,Hf(x, y) =
1

H

(
f

(
x+

H

2
ux, y +

H

2
uy

)
− f

(
x− H

2
ux, y −

H

2
uy

))
.

(27)
The α-directional divided difference is then given by

∂α~u,Hf(x, y) = ∂~u,H

(
∂α−1
~u,H

f(x, y)
)
, α > 1. (28)

Lemma 2 For a B-Spline satisfying Definition 3.1, the (scaled) directional di-
vided differences along the line Γ are equal to the (scaled) divided differences of
the univariate B-Spline along the arc parameter, ie,

∂αuθ,H ψ̃
(k+1−α)
θ,H (x, y) = ∂αHψ

(k+1−α)
H (t), uθ = (cos θ, sin θ). (29)

Start with the first order divided difference, i.e., α = 1.

∂uθ,H ψ̃
(k)
θ,H(x, y) =

ψ̃
(k)
θ,H

(
x+ H

2 cos θ, y + H
2 sin θ

)
H

−
ψ̃

(k)
θ,H

(
x− H

2 cos θ, y − H
2 sin θ

)
H

.

Examining the first term:

ψ̃
(k)
θ,H

(
x+ H

2 cos θ, y + H
2 sin θ

)
H

=
ψ

(k)
H

(
Γ−1

(
x+ H

2 cos θ, y + H
2 sin θ

))
H

=
ψ

(k)
H

(
t+ H

2

)
H

.

Hence,

∂uθ,H ψ̃
(k)
θ,H(x, y) =

ψ
(k)
H

(
t+ H

2

)
H

−
ψ

(k)
H

(
t− H

2

)
H

= ∂Hψ
(k)(t).

Using induction, the higher order divided differences in equation (29) can be
obtained.

Lemma 3 The α−derivative of the B-Spline from Definition 3.1 can be ex-
pressed as a sum of α-directional divided differences using the basis vectors:

uθx = (cos θ, 0), uθy = (0, sin θ)

10

through the formula

Dαψ̃
(k+1)
θ,H (x, y)

= cosα1 θ sinα2 θ

α∑
m=0

(
α

m

)
∂α−m
uθx,H

∂muθy,H ψ̃
(k+1−α)

θ,H

(
x− m

2
H cos θ, y +

α−m
2

H sin θ

)
,

where α1 + α2 = α.

Let ` = k + 1, differentiating a B-Spline of order ` gives

Dαψ̃
(`)
θ,H(x, y) = cosα1 θ sinα2 θ

(
dαψ(`)(t)

dtα

)
= cosα1 θ sinα2 θ

(
∂αHψ

(`−α)
H (t)

)
.

Then use Lemma 2 to obtain:

Dαψ̃
(`)
θ,H(x, y) = cosα1 θ sinα2 θ

(
∂αuθ,H ψ̃

(`−α)
θ,H (x, y)

)
.

In order to show that

∂αuθ,H ψ̃
(`−α)
θ,H (x, y) =

α∑
m=0

(
α

m

)
∂α−m
uθx,H

∂muθy,H ψ̃
(`−α)
θ,H (x−m

2
H cos θ, y+

α−m
2

H sin θ),

we use induction. Consider α = 1 (`− α = (k + 1)− 1 = k):

∂uθ,H ψ̃
(k)
θ,H(x, y) =

1

H
ψ̃

(k)
θ,H

(
x+

H

2
cos θ, y +

H

2
sin θ

)
− 1

H
ψ̃

(k)
θ,H

(
x− H

2
cos θ, y − H

2
sin θ

)
.

Adding and subtracting the term

1

H
ψ̃

(k)
θ,H

(
x− H

2
cos θ, y +

H

2
sin θ

)
gives:

∂uθ,H ψ̃
(k)
θ,H(x, y) = ∂uθx,H ψ̃

(k)
θ,H

(
x, y +

H

2
sin θ

)
+ ∂uθy,H ψ̃

(k)
θ,H

(
x− H

2
cos θ, y

)
.

For the general case, we write:

∂αuθ,H ψ̃
(`−α)
θ,H (x, y) =∂uθ,H

(
∂α−1
uθ,H

ψ̃
(`−α)
θ,H (x, y)

)
and the formula can be shown by induction using a similar proof to the binomial
theorem. This proof is shown in the appendix.

Remark 3.2 Lemma 3 shows that the B-Spline derivatives can be computed as
a sum of directional divided differences along the standard basis vectors.

We now introduce our main Theorem that allows us to give error estimates for
Line SIAC filters.

11

Theorem 3.1 Let u be the exact solution to Problem (1) with d = 2 and pe-
riodic boundary conditions. Let uh be the DG approximation over a uniform
mesh and denote by hx and hy the mesh size. Consider the Line SIAC fil-

ter K
(2k+1,k+1)
Γ,H along Γ(t) = t(cos θ, sin θ), θ fixed. If θ = arctan

(
hy
hx

)
and

H = hx cos θ + hy sin θ, then:∥∥∥u−K(2k+1,k+1)
Γ,H ? uh

∥∥∥
0,Ω0

≤ Ch2k+1. (30)

The proof of this Theorem is done in a similar way to that of Theorem 2.2.
Begin by splitting the error:∥∥∥u−K(2k+1,k+1)

Γ,H
? uh

∥∥∥
0,Ω0

≤
∥∥∥u−K(2k+1,k+1)

Γ,H
? u
∥∥∥

0,Ω0︸ ︷︷ ︸
Ξ1

+
∥∥∥K(2k+1,k+1)

Γ,H
? (u− uh)

∥∥∥
0,Ω0︸ ︷︷ ︸

Ξ2

.

The line filter preserves the polynomial reproduction property:

K
(2k+1,k+1)
Γ,H ? tp = tp, p = 0, . . . , 2k. (31)

Therefore, the first term is bounded similar to the first term in Theorem 2.2.
For the second term, we need to show that the directional divided differences
allow us to write an expression similar to

Dα
(
K

(2k+1,k+1)
H ? (u− uh)

)
= K

(2k+1,k+1−α)
H ? ∂αH(u− uh)

in order to obtain a bound of the form of:

Θ2 ≤ C1C2

∑
|α|≤k+1

‖∂αh (u− uh)‖−k+1,Ω1
. (32)

Denote the error by e = u− uh and let ` = k + 1. Notice that since the kernel
is a linear combination of B-Splines, it is sufficient to study one B-Spline alone.
We know that

Dαψ̃
(`)
θ,H ? e = cosα1 θ sinα2 θ · ψ̃(`−α)

θ,H ? ∂αuθ,He, α1 + α2 = α.

Let A = cosα1 θ sinα2 θ. Lemma 3 allows us to write

Dαψ̃
(`−α)
θ,H ? e = A · ψ̃(`)

θ,H ?

α∑
m=0

(
α

m

)
∂α−m
uθx,H

∂muθy,He(x−
m

2
H cos θ, y +

α−m
2

H sin θ),

where uθx = (cos θ, 0) and uθy = (0, sin θ). The pair{
H = hx cos θ + hy sin θ, θ = arctan

(
hy
hx

)}
implies that the kernel scaling is equivalent to

H =
hx

cos θ
and H =

hy
sin θ

.

12

This allows us to write the directional divided differences of the error function
in the standard basis B1 = {e1, e2} using the mesh size:

∂uxθ ,He(x, y) =
1

H

(
e

(
x+

H

2
cos θ, y

)
− e

(
x− H

2
cos θ, y

))
=

1

H

(
e

(
x+

hx
2

)
− e

(
x− hx

2
, y

))
= cos θ · ∂e1,hx

e(x, y).

Analogously: ∂uyθ ,He(x, y) = sin θ · ∂e2,hy
e(x, y). Hence,

Dαψ̃
(`)
θ,H ? e = A cos θ sin θ · ψ̃(`−α)

θ,H ?

α∑
m=0

(
α

m

)
∂α−me1,hx

∂me2,hy
e(x− m

2
hx, y +

α−m
2

hy)

giving:

Θ2 ≤ C1C2C(θ)
∑

|α|≤k+1

∥∥∥∥∥
α∑

m=0

(
α

m

)
∂α−me1,hx

∂me2,hy
e

∥∥∥∥∥
−(k+1),Ω1

(` = k + 1).

(33)

The rest of the proof follows from Theorem 2.2.

Remark 3.3 When a B-Spline is differentiated, as a consequence of the chain
rule, a cos θ or sin θ term appears. As a result, the constant term in equation
(33) now includes the multiplying factor

A cos θ sin θ = cosα1+1 θ sinα2+1 θ

which is always less than or equal to one (and decreasing with every power) since
the rotation angle is defined by arctan(hy/hx). This means that the constant
in front of equation (30) can actually be reduced. In the numerical experiments
presented in the following section, we show cases where the line filter outperforms
the 2D axis aligned filter.

Remark 3.4 Theorem 3.1 holds for θ = arctan
(
hy
hx

)
and its flip, θ′ = θ+π/2.

For any other orientation, we can no longer choose the scaling appropriately in
order to ensure superconvergence and smoothness recovery.

4 Numerical Results

The numerical experiments were done for the 2D advection equation:{
ut + ux + uy = 0, (x, y) ∈ [0, 2π]2, t ∈ [0, T]

u0(x, y) = u(x, 0)
(34)

with final time T = 2. The unfiltered solution was obtained using a DG scheme
with an upwind flux over an uniform mesh. Two initial conditions were chosen:

1. u0(x, y) = sin(x+ y).

2. u0(x, y) = sinx · cos y.

In the following, we discuss the various aspects of filtering: smoothness and
accuracy enhancement, including error reduction.

13

4.1 Recovering Smoothness

Here we discuss the potential of the line filter to recover smoothness. Since we
are post-processing along a single direction, one can expect that it is only along
that line where the filtered solution gains smoothness. The plot in Figure 3 show
different error profiles corresponding to horizontal, vertical and diagonal cuts
of the domain. We remind the reader that the kernel scaling H is calculated
through the formula H = µh, where h is the DG mesh size. Notice that the
θ = 3π/4 and θ = π/4 rotations use the value µ =

√
2. This corresponds to

the theoretical scaling H = h(cos(θ) + sin(θ)) =
√

2h. We observe that for
the Cartesian axis aligned kernel (θ = 0), the filter gains smoothness along the
filtering direction only. On the other hand, allowing a π/4 or 3π/4 rotation
produces a smooth profile in all three directions. This is because the rotated
filter includes both the x−, y− as well as mixed derivatives necessary for the
theory to remain valid.

4.2 Accuracy enhancement

We now study the global error and convergence of the line filters. This study
compares the line filtered solution with the DG solution. Whenever possible, we
also include results obtained from filtering with the original tensor product filter
aligned with the Cartesian axis. Due to a lack of computational resources, with
the available machines we were forced to stop at 40 × 40 elements. However,
since the numerical studies include three polynomial degrees, this suffices to
give insight into the filter behaviour relative to each other. Table 1 shows
the global L2 errors and convergence rates for the 2D advection equation with
initial condition u0(x, y) = sin(x+y) using two different orientations of the Line
SIAC filter (θ = π/4 and θ = 3π/4) as well as the traditional axis aligned 2D
filter. The 3π/4 reduces the errors significantly over the unfiltered solution, even
compared to the results from post-processing using a 2D Cartesian coordinate
aligned kernel. Observing the order of accuracy, we see that the π/4 orientation
has a faster convergence rate than the unfiltered solution and the errors are
reduced over the DG solution. However, the errors are not as reduced as for
the 3π/4 orientation. The contour line plots in Figure 4 of the pointwise error
profile show that there is a clear error reduction compared to the unfiltered
solution.

We conclude this numerical section studying the rotations for line filters
alone to show the importance of the orientation for superconvergence extraction.
For this, we considered the advection equation with initial condition u(x, y) =
sinx · cos y and applied three line filters with rotations θ = 0, π/4 and 3π/4.
Figure 5 shows the contour line error plots of the DG solution before and after
filtering with the three line filters. Furthermore, Table 2 shows the L2 errors
and orders before and after line filtering. Observe that for the zero rotation,
the filter is unable to raise the convergence rate, and remains the same as for
the unfiltered solution. This is because the filtering is only done along the
x−axis and therefore the derivatives in the y−direction are not included which
invalidates the theory. On the other hand, we see that for rotation angles of
θ 6= nπ, nπ/2, n ∈ N the convergence rate is indeed raised. It is important to
note that although the unrotated filter stays at k+ 1 accuracy, the global error
is lower than the one for the unfiltered solution. However, this difference is not

14

as remarkable as the error reduction for the rotated filter. For the choice of
θ = π/4, 3π/4 we see clear error reduction, which is even more considerable
when the mesh is refined or the polynomial degree of the approximation is
increased. Furthermore, note that in Figure 5, the rotation θ = 3π/4 produces
different error contours. We speculate that this rotation emphasizes the zeros
of the sine function.

4.3 Challenges for Nonlinear Problems

The theoretical error estimates for SIAC filtering rely on the underlying proofs
for the divided differences of DG solutions, which limited the study presented
in this paper to linear hyperbolic equations. Recently, for one-dimensional non
linear scalar hyperbolic problems, [12] proved that the SIAC filter obtains at
least 3

2k + 1 order in the L2 norm when using an uniform mesh. Unfortu-
nately, the authors noted that the proofs do not have a natural extension to
multidimensional problems. The numerical results presented here demonstrate
how the filter performance is sensitive to changes in the kernel rotation and
scaling. Extending the results to nonlinear equations is the subject of ongoing
investigations, which includes considering alternative techniques for choosing
the appropriate parameter scaling.

5 A note on computation

Finally, we would like to turn our attention to the computational challenges
arising from the implementation of the SIAC filters. We will discuss the main
filtering operations in terms of computational complexity and simulation times,
highlighting the many advantages that line filtering has over the traditional 2D
filtering.

Although the kernel has compact support and the convolution reduces to a
small domain region, this integral contains several discontinuities. Hence, the
total integral is computed as a sum of integrable regions. One of the most chal-
lenging and intense computations is to actually find and sort all these regions,
delimited by the mesh element boundaries and the kernel breaks; the natural
discontinuous structure of DG produces a solution that is integrable only inside
the elements. In Algorithm ??, we show how to implement the Line SIAC filter.
Furthermore, since the kernel is built as a linear combination of B-Splines, there
is only k− 1 smoothness for each spline. More details on the computational as-
pects of the convolution and the impact on the error can be found in [14]. The
integral of the filtering convolution was calculated using Gauss quadratures. For
the 2D Cartesian axis aligned filter, the integral along each of the quadrilateral
regions was computed as a tensor product of univariate quadratures along each
direction. This technique is exact for polynomial integrands provided sufficient
quadrature points are used.

Note 5.1 The theoretical error estimates for the line filter require defining B-

Splines along the line Γ using ψ̃
(`)
θ (x, y), i.e., as a function of two variables.

This allows us to write the spline derivatives (divided differences) in terms of
the Cartesian basis. However, in practise, the line kernel is implemented in
arc-length coordinates (see equation (24)) and the convolution is computed using
equation (26) applying one-dimensional quadrature rules.

15

In Figure 6 we show the total number of integral regions required to post-process
one point using the tensor product filter aligned with the Cartesian axis and the
3π/4-line filter. Table 3 and Table 4 summarize the number of operations and
elapsed times required to post-process a single point using the same computer
for both filters.

Notice that, both computational times and costs are notoriously reduced
using a line filter. Line filters use one dimensional quadrature rules and the
total number of integrals and quadrature sums match. On the other hand,
the number of sums using 2D filters is increased by a factor of n2, where n
denotes the total number of integrals. The computational times shown in Table
4 not only show clear benefits for the line filter but also indicate a slower time
increase as we raise the number and order of B-Splines. This represents a great
advantage, as one important limiting factor on the applications of 2D SIAC
filters is the long computational times of higher degree filters.

1: Input DG approximation
2: k ← DG polynomial degree
3: Build KΓ(k, θ,H)
4: N ← get number of kernel breaks
5: for b = 0 : N − 1 do
6: kv(b)← kernel break coordinates
7: ID(b)← find element to which kv(b) belongs
8: end for
9: Integral = 0

10: for b = 0 : N − 2 do
11: if ID(b) == ID(b+ 1) then
12: Integral + = evaluate convolution between (kv(b), kv(b+ 1))
13: else
14: while ID(b) ! = ID(b+ 1) do
15: s = segment(kv(b), kv(b+ 1))
16: do
17: e← ID(b)→ get element edge
18: while s ∩ e == ∅
19: p← find intersection point(s, e)
20: Integral + = evaluate convolution between (kv(b), p)
21: kv(b)← p;
22: ID(b)← find adjacent element of kv(b)
23: end while
24: if kv(b) ! = kv(b+ 1) then
25: Integral + = evaluate convolution between (kv(b), kv(b+ 1))
26: end if
27: end if
28: end for

6 Conclusions and Future Work

In this article, we have introduced the line SIAC Filter as a means of post-
processing multi-dimensional data using a one-dimensional support. Introduc-
ing a rotation allows a more robust definition of the post-processor whilst con-
serving the properties defining these filters. By rotating the filter support, we

16

have a better understanding of the relation between the filter, the underly-
ing mesh and numerical scheme. The lower dimensional filtering technique has
promising applications in fluid flow visualization of DG solutions. It has all the
advantages of the original 2D Cartesian aligned filter while being more com-
putationally efficient. We have developed theoretical error estimates showing
how we can achieve similar results to the 2D Cartesian coordinate aligned SIAC
filter. Numerical investigations demonstrate that the line SIAC filters provide
more error reduction capability. The low computational costs associated to these
filters makes them a very attractive tool for the scientific community. In the fu-
ture we hope to apply line filters to flow visualization such as during streamline
computations.

Acknowledgements

The numerical data to which the filters were applied was generated through
the Nektar++ software [3]. The first author would like to give special thanks
to Chris Cantwell and David Moxey for all their help when adapting the Nek-
tar++ code as well to Mike Kirby and the SCI Institute (University of Utah)
for providing access to the school supercomputers during her visit. The first
and second authors are sponsored in part by the Air Force Office of Scientific
Research (AFOSR), Computational Mathematics Program (Program Manager:
Dr. Jean-Luc Cambier), under grant number FA8655-13-1-3017.

A Completing the proof in Lemma 3

We will show that the formula:

∂αuθf(x, y) =

α∑
m=0

(
α

m

)
∂α−m
uθx

∂muθyf

(
x− m

2
cos θ, y +

α−m
2

sin θ

)
holds for any smooth function f and α > 1. The first order divided difference
(α = 1) was proven in Lemma 3.

Assume now that the formula holds for:

∂α−1
uθ

f(x, y) =

α−1∑
m=0

(
α− 1

m

)
∂α−1−m
uθx

∂muθyf

(
x− m

2
cos θ, y +

α− 1−m
2

sin θ

)
.

Then,

∂αuθf(x, y) = ∂uθ
(
∂α−1
uθ

f(x, y)
)

=

α−1∑
m=0

(
α− 1

m

)
∂uθ

(
∂α−1−m
uθx

∂muθyf

(
x− m

2
cos θ, y +

α− 1−m
2

sin θ

))
.

We know that

∂uθf (x, y) = ∂uθxf

(
x, y +

1

2
sin θ

)
+ ∂uθyf

(
x− 1

2
cos θ, y

)
.

17

Then,

∂αuθf(x, y) = (a) + (b),

(a) =

α−1∑
m=0

(
α− 1

m

)
∂α−m
uθx

∂muθyf

(
x− m

2
cos θ, y +

α−m
2

sin θ

)

(b) =

α−1∑
m=0

(
α− 1

m

)
∂
α−(m+1)

uθx
∂m+1
uθy

f

(
x− m+ 1

2
cos θ, y +

α− (m+ 1)

2
sin θ

)
.

Write the first term as:

(a) =

(
α− 1

0

)
∂αuθxf

(
x, y +

α

2
sin θ

)
+

α−1∑
m=1

(
α− 1

m

)
∂α−m
uθx

∂muθyf

(
x− m

2
cos θ, y +

α−m
2

sin θ

)
.

For the term (b), we change m→ m+ 1,

(b) =

α−1∑
m=1

(
α− 1

m− 1

)
∂α−m
uθx

∂muθyf

(
x− m

2
H cos θ, y +

α−m
2

H sin θ

)

+

(
α− 1

α− 1

)
∂αuθyf

(
x− α

2
cos θ, y

)
.

Putting these two term together gives:

(a) + (b) =

α−1∑
m=1

(
α− 1

m

)
+

(
α− 1

m− 1

)
︸ ︷︷ ︸

=

(
α

m

)
∂α−m
uθx

∂muθyf

(
x− m

2
cos θ, y +

α−m
2

sin θ)

)

+

(
α− 1

0

)
︸ ︷︷ ︸

=

(
α

0

)
∂αuθxf

(
x, y +

α

2
H sin θ

)
+

(
α− 1

α− 1

)
︸ ︷︷ ︸

=

(
α

α

)
∂αuθy

(
x− α

2
H cos θ, y

)
,

which gives the formula

∂αuθf(x, y) =

α∑
m=0

(
α

m

)
∂α−m
uθx

∂muθyf

(
x− m

2
cos θ, y +

α−m
2

sin θ

)
.

References

[1] Arnold, Douglas N. and Brezzi, Franco and Cockburn, Bernardo and
Marini, L. Donatella. Unified Analysis of Discontinuous Galerkin Meth-
ods for Elliptic Problems. SIAM J. Numer. Anal., 39(5):1749–1779, May
2001.

18

[2] Bramble, J. H. and Schatz, A. H. Higher Order Local Accuracy by Av-
eraging in the Finite Element Method. Mathematics of Computation,
31(137):pp. 94–111, 1977.

[3] Cantwell, C.D. and Moxey, D. and Comerford, A. and Bolis, A. and Rocco,
G. and Mengaldo, G. and De Grazia, D. and Yakovlev, S. and Lombard,
J.-E. and Ekelschot, D. and Jordi, B. and Xu, H. and Mohamied, Y. and
Eskilsson, C. and Nelson, B. and Vos, P. and Biotto, C. and Kirby, R.M. and
Sherwin, S.J. Nektar++: an Open-Source Spectral/ Element Framework.
Computer Physics Communications, 192:205 – 219, 2015.

[4] Cockburn, Bernardo. An Introduction to the Discontinuous Galerkin
Method for Convection-Dominated Problems, pages 151–268. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1998.

[5] Cockburn, Bernardo and Luskin, Mitchell and Shu, Chi-Wang and Süli,
Endre. Enhanced Accuracy by Post-Processing for Finite Element Methods
for Hyperbolic Equations. Math. Comput., 72(242):577–606, April 2003.

[6] Cockburn, Bernardo and Shu, Chi-Wang. Runge-Kutta Discontinuous
Galerkin Methods for Convection-Dominated Problems. Journal of Sci-
entific Computing, 16(3):173–261, 2001.

[7] Curtis, Sean and Kirby, Robert M. and Ryan, Jennifer K. and Shu, Chi-
Wang. Postprocessing for the Discontinuous Galerkin Method over Nonuni-
form Meshes. SIAM Journal on Scientific Computing, 30(1):272–289, 2008.

[8] De Boor, Carl. A Practical Guide to Splines. Number v. 27 in Applied
Mathematical Sciences. Springer-Verlag, 1978.

[9] Kirby, Robert M. and Karniadakis, George Em. Selecting the Numerical
Flux in Discontinuous Galerkin Methods for Diffusion Problems. Journal
of Scientific Computing, 22(1):385–411, 2005.

[10] Li, Xiaozhou. Smoothness-Increasing Accuracy-Conserving Filters for Dis-
continuous Galerkin Methods: Challenging the Assumptions of Symmetry
and Uniformity. PhD Thesis in Applied Mathematics, Delft University of
Technology, Numerical Analysis Department, The Netherlands, 2015. ISBN
9789461868007.

[11] Li, Xiaozhou and Ryan, Jennifer K. and Kirby, Robert M. and Vuik, C.
Smoothness-Increasing Accuracy-Conserving (SIAC) Filters for Derivative
Approximations of Discontinuous Galerkin (DG) Solutions over Nonuni-
form Meshes and near Boundaries. Journal of Computational and Applied
Mathematics, 294:275 – 296, 2016.

[12] Meng, Xiong and Ryan, Jennifer K. Discontinuous Galerkin Methods for
Nonlinear Scalar Hyperbolic Conservation Laws: Divided Difference Esti-
mates and Accuracy Enhancement. Numerische Mathematik, pages 1–47,
2016.

[13] Mirzaee, Hanieh and King, James and Ryan, Jennifer K. and Kirby, Robert
M. Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous
Galerkin Solutions over Unstructured Triangular Meshes. SIAM Journal
on Scientific Computing, 35(1):A212–A230, 2013.

19

[14] Mirzaee, Hanieh and Ryan, Jennifer K. and Kirby, Robert M. Quantifi-
cation of Errors Introduced in the Numerical Approximation and Imple-
mentation of Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering
of Discontinuous Galerkin (DG) Fields. Journal of Scientific Computing,
45(1):447–470, 2010.

[15] Mirzaee, Hanieh and Ryan, Jennifer K. and Kirby, Robert M. Efficient Im-
plementation of Smoothness-Increasing Accuracy-Conserving (SIAC) Fil-
ters for Discontinuous Galerkin Solutions. Journal of Scientific Computing,
52(1):85–112, 7 2012.

[16] Mirzaee, Hanieh and Ryan, Jennifer K. and Kirby, Robert M. Smoothness-
Increasing Accuracy-Conserving (SIAC) Filters for Discontinuous Galerkin
Solutions: Application to Structured Tetrahedral Meshes. Journal of Sci-
entific Computing, 58(3):690–704, 2014.

[17] Mirzargar, Mahsa and Ryan, Jennifer K. and Kirby, Robert M.
Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering and Quasi-
Interpolation: A Unified View. Journal of Scientific Computing, 67(1):237–
261, 2016.

[18] Mock, Michael S. and Lax, Peter D. The Computation of Discontinuous
Solutions of Linear Hyperbolic Equations. Communications on Pure and
Applied Mathematics, 31(4):2423–430, 1978.

[19] Nguyen, Dang-Manh and Peters, Jörg. Nonuniform Discontinuous Galerkin
Filters via Shift and Scale. SIAM Journal on Numerical Analysis,
54(3):1401–1422, 2016.

[20] Reed, WH and Hill, TR. Triangular Mesh Methods for the Neutron Trans-
port Equation. Technical Report LA-UR-73-479, Los Alamos Scientific
Lab., N. M.(USA), 1973.

[21] Ryan, Jennifer K. Local Derivative Post-Processing: Challenges for a Non-
Uniform Mesh. Technical Report 10-18, Delft University of Technology,
Delft, Netherlands, 2010.

[22] Ryan, Jennifer K. Exploiting Superconvergence through Smoothness-
Increasing Accuracy-Conserving (SIAC) Filtering, pages 87–102. Springer
International Publishing, Cham, 2015.

[23] Ryan, Jennifer K. and Cockburn, Bernardo. Local Derivative Post-
Processing for the Discontinuous Galerkin Method. Journal of Compu-
tational Physics, 228(23):8642–8664, 2009.

[24] Ryan, Jennifer K. and Shu, Chi-Wang. On a One-Sided Post-Processing
Technique for the Discontinuous Galerkin Methods. Methods and Applica-
tions of Analysis, 10(2):295–308, 06 2003.

[25] Ryan, Jennifer K. and Shu, Chi-Wang and Atkins, Harold. Extension of
a Postprocessing Technique for the Discontinuous Galerkin Method for
Hyperbolic Equations with Application to an Aeroacoustic Problem. SIAM
Journal on Scientific Computing, 26(3):821–843, 2005.

20

[26] Schumaker, Larry. Spline Functions: Basic Theory. Cambridge University
Press, Cambridge, 3 edition, 008 2007.

[27] van Slingerland, Paulien and Ryan, Jennifer K and Vuik, C. Position-
Dependent Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering
for Improving Discontinuous Galerkin Solutions. SIAM Journal on Scien-
tific Computing, 33(2):802–825, 2011.

[28] Walfisch, David and Ryan, Jennifer K. and Kirby, Robert M. and Haimes,
Robert. One-Sided Smoothness-Increasing Accuracy-Conserving Filtering
for Enhanced Streamline Integration through Discontinuous Fields. Journal
of Scientific Computing, 38(2):164–184, 2009.

21

Unfiltered Applying SIAC Line Filters

θ = 0, µ = 1 θ = π
4
, µ =

√
2 θ = 3π

4
, µ =

√
2

Horizontal Cut

-8

-4

-2

π π π π

 N=20
 N=40
 N=80

Vertical Cut

-8

-4

-2

π π π π

 N=20
 N=40
 N=80

Diagonal Cut

-8

-4

-2

π π π π

 N=20
 N=40
 N=80

Figure 3: Point-wise error profile slices along the x-axis (horziontal), y-axis (vertical) and the diagonal directions when applying three
different Line Filters on the DG solution to Problem (34) with initial condition u0(x, y) = sinx cos y and using P2 polynomials.

22

Table 1: L2 errors and convergence rates before and after filtering the DG
solution to Problem (34) with u0(x, y) = sin(x+ y) using the original 2D filter
and two line filters. h denotes the DG mesh size.

Unfiltered 2D Filtering Line Filtering
θ = 0, H = h H = µh θ = π/4 θ = 3π/4

N L2-Error Order L2-Error Order µ L2-Error Order L2-Error Order
P1

20 9.7e-03 - 1.6e-03 -
1 2.3e-03 - 2.e-03 -√
2 2.7e-03 - 1.5e-03 -

40 2.4e-03 2.02 2.0e-04 3.05
1 3.7e-04 2.62 3.6e-04 2.42√
2 2.6e-04 3.33 1.9e-04 2.98

80 5.9e-04 2.01 - -
1 7.9e-05 2.22 8.1e-05 2.17√
2 2.8e-05 3.21 2.4e-05 2.99

P2

20 2.4e-04 - 6.1e-06 -
1 2.8e-05 - 1.5e-05 -√
2 1.4e-04 - 1.5e-06 -

40 2.9e-05 3.01 1.2e-07 5.71
1 2.0e-06 3.83 1.8e-06 3.02√
2 2.3e-06 5.91 4.7e-08 4.99

80 1.5e-05 3.01 - -
1 2.2e-07 3.34 2.3e-07 3.01√
2 3.7e-08 5.95 1.5e-09 5.00

P3

20 4.5e-06 - 1.4-e-07 -
1 1.1e-06 - 7.1e-08 -√
2 1.6e-05 - 7.7e-10 -

40 8.3e-07 4.01 5.6e-10 7.96
1 6.8e-09 7.31 4.4e-09 4.02√
2 6.9e-08 7.87 6.9e-12 6.79

80 5.2e-08 4.00 - -
1 2.8e-10 6.00 7.8e-11 5.81√
2 2.7e-10 7.97 2.9e-14 7.90

Unfiltered TPF LF LF
θ = 0, µ = 1 θ = π

4
, µ =

√
2 θ = 3π

4
, µ =

√
2

P1

P2

P3

Figure 4: Contour line error plots (log) before and after filtering the DG solution
to Problem (34) with u0(x, y) = sin(x + y) over a N = 40 × 40 uniform mesh
using a Tensor Product Filter (TPF) and two Line Filters (LFs).

23

Unfiltered LF LF LF
θ = 0, µ = 1 θ = π

4
, µ =

√
2 θ = 3π

4
, µ =

√
2

P1

P2

P3

Figure 5: Contour line error plots (log) before and after filtering the DG solution
to Problem (34) with u0(x, y) = sinx · cos y over a N = 40 × 40 uniform mesh
applying three different Line Filters (LFs).

Table 2: L2 errors and convergence rates before and after filtering the DG
solution to Problem (34) with u0(x, y) = sinx · cos y using three different line
filters. h denotes the mesh size.

Unfiltered Line Filtering
H = µh θ = 0 θ = π/4 θ = 3π/4

N L2-Error Order µ L2-Error Order L2-Error Order L2-Error Order
P1

20 5.2e-03 -
1 3.7e-03 - 1.2e-03 - 1.0e-03 -√
2 3.7e-03 - 1.3e-03 - 9.7e-04 -

40 1.3e-03 2.02
1 9.1e-04 2.03 2.0e-04 2.57 2.0e-04 2.41√
2 9.1e-04 2.04 1.3e-04 3.33 1.0e-04 3.23

80 3.2e-04 2.01
1 2.2e-04 2.01 4.3e-05 2.19 4.4e-05 2.15√
2 2.2e-04 2.01 1.4e-05 3.21 1.2e-05 3.08

P2

20 1.3e-04 -
1 9.0e-05 - 1.4-e05 - 1.2e-05 -√
2 9.1e-05 - 6.8e-05 - 6.7e-05 -

40 1.6e-05 3.01
1 1.1e-05 3.01 1.0e-06 3.80 9.8e-07 3.61√
2 1.1e-05 3.02 1.1e-06 5.91 1.1e-06 5.92

80 2.0e-06 3.00
1 1.4e-06 3.00 1.2e-07 3.12 1.2e-07 3.03√
2 1.4e-06 3.00 1.8e-08 5.95 1.8e-08 5.98

P3

20 2.4e-06 -
1 1.7e-06 - 5.4e-07 - 5.4e-07 -√
2 1.9e-06 - 8.1-e06 - 8.1e-06 -

40 1.5e-07 4.01
1 1.1e-07 4.01 3.5e-09 7.28 3.2e-09 7.40√
2 1.1e-07 4.13 3.4e-08 7.87 3.4e-08 7.87

80 9.5e-09 4.00
1 6.7e-09 4.00 1.4e-10 4.59 1.4e-10 4.48√
2 6.7e-09 4.00 1.4e-10 7.97 1.4e-10 7.97

24

Figure 6: Total integrable subregions when post-processing a particular point
with a Tensor Product Filter aligned with the Cartesian axis (left) and a rotated
Line filter (right) over an uniform squared mesh.

Table 3: Summary of the number of operations required to compute the filtering
convolution corresponding to the filters from Figure 6.

Filter Type Intersection Scans Integrals Quadrature Sums

2D No Rotation 64 63 3969
Line Filter 4 12 12

Table 4: Computational times (seconds) taken by each filter from Figure 6 to
post-process the same point.

No. of Splines and degree Tensor Product Filter Line Filter
3, 1 0.42 0.03
5, 2 1.48 0.06
7, 3 3.8 0.1

25

