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Hervé Crès† Tobias Markeprand‡ Mich Tvede§

Abstract

For incomplete financial markets jumps in both prices and consumption can be unavoid-
able. We consider pure-exchange economies with infinite horizon, discrete time, uncer-
tainty with a continuum of possible shocks at every date. The evolution of shocks fol-
lows a Markov process and fundamentals depend continuously on shocks. It is shown:
(1) equilibria exist; (2) for effectively complete financial markets asset prices depend
continuously on shocks; and, (3) for incomplete financial markets there is an open set
of economies U such that for every equilibrium of every economy in U , asset prices
at every date depend discontinuously on the shock at that date.

Keywords financial markets · general equilibrium · jumps in asset prices

JEL-classification D52 · D53 · E32 · G11 · G12

∗The authors wish to thank an anonymous referee for constructive suggestions and M. Pascoa as well as
participants in GEdays in York for interesting comments.
†New York University in Abu Dhabi, PO Box 129188 Abu Dhabi, United Arab Emirates, email:

herve.cres@nyu.edu
‡DREAM, Amaliegade 44, 1256 Copenhagen K, Denmark, email: tma@dreammodel.dk
§Newcastle University, 5 Barrack Road, Newcastle upon Tyne, NE1 4SE, United Kingdom; e-mail:

mich.tvede@ncl.ac.uk.

1



1 Introduction

Consider an economy with uncertainty. Suppose fundamentals of the economy depend con-
tinuously on the state of the world, while asset prices depend discontinuously on the state
of the world, or in other words asset prices jump. Then markets amplify uncertainty in the
sense that on top of the uncertainty about fundamentals there is uncertainty about whether
asset prices jump or not. The present paper shows that the amplification of uncertainty can
be unavoidable by providing a general equilibrium explanation of jumps in asset prices.

The study of jumps in asset returns has a long history in finance. Indeed, the conse-
quences of jumps have been considered since Merton (1976). Empirically jumps have re-
ceived some attention in recent years as can be seen in Andersen, Benzoni & Lund (2002),
Christoffersen, Jacobs & Ornthanalai (2011) and Eraker, Johannes & Polson (2003). Esti-
mates in these articles range from 1-2 to 8-9 jumps per year and jumps accounting for from
8-15 to 12-15 percent of the total variance for the S&P 500.

The theoretical literature on jumps in asset prices is limited. A couple of contributions
use partial equilibrium models. In Balduzzi, Foresi & Hait (1997) consider a model with
a mix of utility maximizing investors and buy-and-hold investors. Buy-and-hold investors
trade only in case prices hit lower or upper barriers, perhaps because of transaction costs. It
is shown that, if all buy-and-hold investors have identical barriers, then prices jump in case
prices hit the barriers. Lim, Martin & Teo (1998) consider a partial disequilibrium model
with continuous time. Price movements depend on the difference between demand and
supply. Some suppliers use portfolio-insurance hedging strategies, which result in supply
being downward sloping for low prices. Therefore there can be multiple equilibria and the
movement of prices depend on the views of agents. It is shown that in case agents switch
views asset prices jump.

A couple of contributions study jumps in asset prices in general equilibrium models
with infinitely lived consumers. Bansal & Shaliastovich (2009) consider pure-exchange
economies with discrete time, uncertainty and incomplete information. There is a repre-
sentative agent, who can buy new information. It is shown that prices jump in case the
representative agent buys new information. Calvet & Fisher (2008) consider pure-exchange
economies with infinite horizon, continuous time and uncertainty. Asset returns follow geo-
metric Brownian motions with jumps in drift and volatility parameters. For these processes
asset returns depend continuously on time, but asset prices depend discontinuously on time:
jumps in the drift parameter result in jumps in the expected discounted dividends of assets;
and, jumps in the volatility parameter result in jumps in the expected discounted utility of
dividends of assets so asset prices jump.

An issue related to jumps is volatility. Price volatility is studied in Calvet (2001) and
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Citanna & Schmedders (2005). The set of possible shocks at every date is finite and the
evolution of shocks follows a general Markov process. The basic idea is that incomplete
financial markets prevent consumption smoothing, so prices are more volatile with incom-
plete financial markets than with complete financial markets. Consumption volatility for
pure-exchange economies with discrete time, uncertainty and incomplete financial markets
is considered in Beker & Chattopadhyay (2010) where dynamic properties of equilibria are
studied. For a large class of economies with one good and two consumers it is shown that in
any equilibrium either consumption of one of the consumers is eventually zero or consump-
tion of both consumers is arbitrarily close to zero at infinitely many dates.

Other papers have studied incomplete financial markets and asset prices in pure-exchange
economies with infinite horizon, discrete time, uncertainty and incomplete financial markets.
In Telmer (1993) and Lucas (1994) endowments of consumers are hit by transitory idiosyn-
cratic shocks. In both papers it is found that consumers are able to smooth consumption by
accumulating assets. In Constantinides & Duffie (1996) endowments of consumers are hit
by persistent idiosyncratic shocks. It is shown that for all stochastic processes for aggregate
income and asset prices, the process for aggregate income can be split into processes for
individual incomes such that the processes for asset prices are equilibrium processes. The
result is obtained for no-trade equilibria. However discontinuities in fundamentals are nec-
essary for discontinuities in assets prices at no-trade equilibria. Therefore economies for
which asset prices jump are not included in the analysis. In Heaton & Lucas (1996) en-
dowments of consumers are hit by both idiosyncratic and aggregate shocks and consumers
face transaction costs. It is found that for large transaction costs consumers are not able to
smooth income.

In the present paper we study the existence of jumps in assets prices in general equi-
librium economies where jumps are generated by the interaction of real markets and in-
complete financial markets. We consider pure-exchange economies with infinite horizon,
discrete time, uncertainty with a continuum of possible shocks at every date and incomplete
financial markets. The evolution of shocks follows a general Markov process. We show: (1)
equilibria exist; (2) if financial markets are effectively complete, so equilibrium allocations
are Pareto optimal, then prices depend continuously on shocks, and; (3) if financial markets
are incomplete, then there is an open set of economies U such that for every equilibrium of
every economy in U and almost all histories of shocks, prices at every date depend discon-
tinuously on the shock at that date. Hence jumps in prices can be unavoidable.

To the best of our knowledge, the only other paper on existence of equilibrium for
economies with infinite horizon, discrete time, uncertainty with a continuum of possible
shocks at every date and incomplete financial markets is Araujo, Monteiro & Pascoa (1996)
(AMP). The major differences in terms of assumptions are: (1) in AMP the probability dis-
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tribution on the set of possible shocks at every date is the Lebesgue measure making the
probability distribution independent of the history of shocks, here the probability distribu-
tion on the set of possible shocks at date t depends on the shock at date t−1; (2) in AMP
fundamentals at date t depend on the history of shocks up to and including date t, here fun-
damentals at date t depend on the shock at date t; and, (3) in AMP consumption sets are
non-negative orthants and utility functions are continuous, here consumption sets are posi-
tive orthants and utility functions are twice differentiable functions tending to minus infinity
as consumption converges to the boundary of the consumption set. The two first differences
(1) and (2) more or less cancel out. However the third difference (3) is important. Indeed
a strong form of discounting is needed to get existence of equilibrium in AMP (see Theo-
rem 4.1 in AMP). No such assumption is needed in the present paper because of (3) (see
Theorem 1 below).

Continuity of prices is studied in Chichilnisky & Zhou (1998) and Covarrubias (2010).
Pure-exchange economies with one date and uncertainty are considered. The set of possible
shocks is a compact subset of some Euclidean space and fundamentals depend continuously
on shocks. It is shown that prices depend continuously on shocks in Walrasian equilibria.
Optimality of equilibrium allocations for economies with infinite horizon, uncertainty with
a finite number of possible shocks and incomplete financial markets is studied in Kubler
& Schmedders (2003). It is shown that if an equilibrium allocation is Pareto optimal, then
equilibrium prices and allocations at every date only depend on the shock at that date, and
that generically equilibrium allocations are not Pareto optimal. Multiplicity of equilibria
is studied in Mas-Colell (1991). Pure-exchange economies with two dates and uncertainty
with a continuum of possible shocks at the second date are considered. It is shown that if
financial market are incomplete, then some economies have a continuum of equilibria and
that in these equilibria prices of goods at the second date depend discontinuously on shocks
even though fundamentals depend continuously on shocks.

The present paper is organized as follows: in Section 2 the set-up is introduced and
the assumptions are stated; in Section 3 results on existence of equilibrium and results on
economies without and with jumps in prices are stated and established; and, Section 4 con-
tains some final remarks.

2 The model

Below we introduce our set-up, state the consumer problem and state our assumptions.
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Set-up

Consider a pure exchange economy with infinite horizon and uncertainty. There is an infinite
number of dates t ∈ N0 = {0,1,2, . . .}. The set of possible shocks at every date is S = [0,1]
with st ∈ S and the shock at the first date is s0 ∈ S. The evolution of shocks as time passes is
described by a bounded and measurable time independent transition density π : S×S→R++

with
∫

π(st+1,st)dst+1 = 1 for almost all st . Let st = (st , . . . ,s1) denote the history of shocks
up to and including date t and let St denote the set of possible histories of shocks up to and
including date t.

There are finite numbers of goods ` with h∈ {1, . . . , `}, consumers m with i∈ {1, . . . ,m}
and short-lived real assets n with j ∈ {1, . . . ,n}. Consumers have identical consumption sets
X =R`

++ and discount factors ρ ∈]0,1[. Consumers are described by their time independent
endowments ωi : S→ X , state utility functions ui : X→R and lower bounds on short sales of
assets δi ∈Rn

++. Assets are described by their time independent dividends a j : S→R`
+\{0}.

An economy is a list of consumers and a list of assets E = ((ωi,ui,δi),(a j)).
Prices of goods and assets are normalized such that they sum to one. Let 4 = {v ∈

R`+n
+ |∑k vk = 1} be the set of normalized prices. A price system is a collection of maps

(p,q) = (pt ,qt) where (pt ,qt) : St → 4 for all t. A consumption bundle is a collection
of maps xi = (xt

i) with xt
i : St → X for all t. An allocation x = (xi) is a list of individual

consumption bundles. A portfolio is a collection of maps θi = (θ t
i ) with θ t

i : St →−{δi}+
Rn
+ for all t. A consumption plan is a pair of collections of maps (xi,θi).

Financial markets are incomplete for two reasons. First the set of assets is finite and the
set of shocks is infinite. Second there are bounds on short sales.

Consumers

At date t for a history of shocks st let θ
t−1
i (st−1) ∈ −{δi}+Rn

+ be the portfolio from date
t−1 and (pt(st),qt(st)) ∈ 4 the prices. Then at date t for a history of shocks st the budget
constraint of consumer i is

pt(st)·(xt
i(s

t)−ωi(st))+∑
j

q j
t (s

t)θ
t j
i (st) ≤ ∑

j
pt(st)·a j(st)θ

t−1 j
i (st−1).

Assume ui is continuous, xi is measurable and there exists a compact set C ⊂ X such that
xt

i(s
t) ∈C for all t and almost all st . Then the expected utility of consumer i is

Ui(xi) = ui(x0
i )+ρ

∫
ui(x1

i (s
1))π(s1,s0)ds1

+ρ2
∫

ui(x2
i (s

2))π(s2,s1)π(s1,s0)ds2 + . . .

+ρ t
∫

ui(xt
i(s

t))π(st ,st−1) . . .π(s1,s0)dst + . . .
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The problem of consumer i is to choose a consumption plan that maximizes expected utility
subject to the budget constraints.

Assumptions

The consumers are assumed to satisfy the following assumptions

(A.1) ωi ∈C(S,R`
++).

(A.2) ui ∈C2(X ,R) with Dui(xi) ∈ R`
++ and vT D2ui(xi)v < 0 for all xi and v 6= 0.

(A.3) limxik→xi ui(xik) =−∞ where xik ∈ X for all k and xi ∈ ∂X .

(A.2) states that the utility function is twice differentiable, smoothly strongly monotonic and
smoothly strictly concave. (A.3) implies consumption is bounded away from the boundary
of the consumption set. The assets are assumed to satisfy the following assumption

(A.4) a j ∈C(S,R`
+\{0}).

The transition density is assumed to satisfy the following assumption

(A.5) π ∈C(S×S,R++).

(A.1), (A.4) and (A.5) imply fundamentals depend continuously on shocks.
In order to define a topology on the set of economies satisfying (A1)–(A.5), topologies

on endowments, utility functions, assets and transition densities have to be defined. The
sets of endowments, assets and transition densities are endowed with the maximum norm
topologies. The set of utility functions is endowed with the Whitney C2-topology. Finally
the set of economies E = ((ωi,ui,δi),(a j)) is endowed with the product topology.

3 Equilibria

Below we state and establish results on existence of equilibrium and jumps in prices.

Existence of equilibrium

In equilibrium consumers maximize their expected utilities subject to their budget con-
straints and markets for goods as well as assets clear.

Definition 1 A financial market equilibrium is a price system and a list of individual
consumption plans ((p̄, q̄),(x̄, θ̄)) such that

• For all i, (x̄i, θ̄i) is a solution to the problem of consumer i given (p̄, q̄).

• For all t and almost all st , ∑i x̄t
i(s

t) = ∑i ωi(st) and ∑i θ̄ t
i (s

t) = 0.
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Assume portfolio returns are covered by initial endowments for every consumer, all
states and all possible portfolios, then there is an equilibrium. The assumption that all
possible portfolio returns are covered by initial endowments is very strong. However an
example in Mas-Colell & Zame (1996) shows that the assumption is necessary for existence
of financial market equilibrium for economies with non-atomic state spaces.

Theorem 1 For an economy E suppose that for all i and almost all s, ωi(s)−∑ j a j(s)δ
j

i ∈
X. Then there is a financial market equilibrium ((p̄, q̄),(x̄, θ̄)).

Proof: First it has to be shown there exists a compact set C ⊂ X such that if ((p̄, q̄),(x̄, θ̄))
is a financial market equilibrium, then x̄t

i(s
t) ∈ C for all i and t and almost all st . Second

it is shown how uncertainty and fundamentals in the present paper can be transformed into
uncertainty and fundamentals in AMP. Third the proof of Theorem 4.1 in AMP is applied
and it is shown how that an a strong form of discounting used in AMP is not needed because
equilibrium consumption is in a compact set C.

First: Let cU ∈ X be defined by ch
U = maxs∈S ∑i ωh

i (s) for all h. Then x̄th
i (s

t)≤ ch
U for all i, t

and h and almost all st . Let αi = mins ui(ωi(s)−∑h a j(s)δ
j

i ) and βi = mins ui(ωi(s)). Then
for all t and almost all st the expected utility from date t and forward is less than or equal
to ui(x̄t

i(s
t))+ρui(cU)+ρ2ui(cU)+ . . . and larger than or equal to αi +ρβi +ρ2βi + . . . .

Therefore there exists cL ∈ X such that x̄th
i (s

t)≥ ch
L for all i, t and h and almost all st because

limsupxik→xi
ui(xik) =−∞ where xik ∈ X and xi ∈ ∂X according to (A.3). Let C⊂ X defined

by
C =

{
c ∈ X | ∀h : ch ∈ [ch

L,c
h
U ]
}

then x̄t
i(s

t) ∈C for all i and t and almost all st .

Second: The economy is transformed into an artificial economy by changing the probability
measure on the set of shocks as well as the endowments and the dividends at every date.
Suppose the probability measure on the set of shocks at every date is the Lebesgue measure
independently of the history of shocks up to that date. Let φ : S×S→ S be a map from shocks
at date t and t−1 to artificial shocks at date t defined by φ(st ,st−1) = Prob(s≤ st |st−1) so

φ(st ,st−1) =
∫

s≤st

π(s,st−1)ds

Then φ(·,st−1) : S→ S is continuous, strongly monotone and bijective. Let ψ : S2→ S be
defined by ψ(σt ,st−1) = st if and only if σt = φ(st ,st−1), so ψ(·,st−1) is the inverse of
φ(·,st−1). Therefore ψ(·,st−1) is continuous, strongly monotone and bijective.

A history of shocks in the original economy st is transformed into a history of shocks in
the artificial economy σ t(st) as follows: σ1 = φ(s1,s0), σ2 = φ(s2,s1) and so on. Similarly
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a history of shocks of the artificial economy σ t is transformed into a history of shocks in
the original economy st(σ t) as follows: s1 = ψ(σ1,s0), s2 = ψ(σ2,s1) = ψ(σ2,ψ(σ1,s0))

and so on. Let the endowments in the artificial economy et
i : St → R`

+ at date t be defined
by e0

i = ωi(σ0) and et
i(σ

t) = ωi(st(σ
t)) for all i and t ≥ 1. Let the dividends in the artificial

economy dt
j : St → R`

+ at date t be defined by dt
j(σ

t) = a j(st(σ
t)) for all j and t.

Third: The proof of Theorem 4.1 in AMP can be applied to the artificial economy with the
Lebesgue measure on the set of shocks at every date t ≥ 1, ei = (et

i) as endowments for
consumer i and d j = (dt

j) as dividends for asset j, E A = ((ei,ui,δi),(d j)). In the first part of
the proof in AMP economies are approximated by economies with finitely many dates and
finitely many possible shocks per date. For every N ∈ N a truncated artificial economy E A

N

with N + 1 dates and N possible shocks per date is defined. For Sn
N = [(n−1)/N,n/N[ for

n ∈ {1, . . . ,N−1} and Sn
N = [(n−1)/N,n/N] for n = N the set of possible shocks at every

date is {1, . . . ,N} with νNt ∈ {1, . . . ,N} and ν t
N ∈ {1, . . . ,N}t . For SN(ν

t
N) = Sn1

N × . . .×Snt
N

let endowments eNi = (et
Ni) and dividends d jN = (dt

jN) be defined by

et
Ni(ν

t
N) = Nt

∫
SN(ν

t
N)

et
i(σ

t)dσ
t

dt
Ni(ν

t
N) = Nt

∫
SN(ν

t
N)

dt
j(σ

t)dσ
t .

For every N the artificial economy with N+1 dates and N possible shocks per date has an
equilibrium ((p̄N , q̄N),(x̄N , θ̄N)) according to Radner (1972).

According to Lemma 5.1 in AMP for every i and N there exist Lagrange multipliers
(Λt

Ni) such that

(ui(x0
Ni)−ui(x̄0

Ni))+ . . .+
ρN

NN ∑
νN

N

(ui(xN
Ni(ν

N
N ))−ui(x̄N

Ni(ν
N
N )))

≤ Λ0
Ni p̄N0·(x0

Ni−x̄0
Ni)+ . . .+∑

νN
N

Λ
N
Ni(ν

N
N )p̄NN(ν

N
N )·(xN

Ni(ν
N
N )−x̄N

Ni(ν
N
N ))

+Λ0
Ni ∑

j
q̄ j

N0(θ
0 j
Ni−θ̄

0 j
Ni )+ . . .

+ ∑
ν

N−1
N

Λ
N−1
Ni (νN−1

N )∑
j

q̄ j
NN−1(ν

N−1
N )(θ N−1

Ni (νN−1
N )−θ̄

N−1
Ni (νN−1

N ))

−∑
ν1

N

Λ
1
Ni(ν

1
N)∑

j
p̄N1·d1

N j(ν
1
N)(θ

1
Ni(ν

1
N)−θ̄

1
Ni(ν

1
N))− . . .

−∑
νN

N

Λ
N
Ni(ν

N
N )∑

j
p̄NN(ν

N
N )·dN

jN(ν
N
N )(θ

N−1 j
Ni (νN

N )−θ̄
N−1 j
Ni (νN

N )).
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According to Lemma 5.2 in AMP the Lagrange multipliers satisfy that for every i, N and t

ρ t

Nt (ui(xt
Ni(ν

t
N))−ui(x̄t

Ni(ν
t
N))) ≤ Λ

t
Ni(ν

t
N)p̄Nt(ν

t
N)·(xt

Ni(ν
t
N)−x̄t

Ni(ν
t
N)).

Therefore the Lagrange multipliers are defined by

ρ t

Nt Dui(x̄t
Ni(ν

t
N)) = Λ

t
Ni(ν

t
N)p̄Nt(ν

t
N).

In Lemma 5.3 in AMP a strong form of discounting is used to show that for the map λ t
Ni :

St → R+ defined by λ t
Ni(s

t) = NtΛt
Ni(ν

t
N) for st ∈ St

N(ν
t
N) the sequence of maps (λ t

Ni) is
uniformly bounded in N for all i. Below another proof is provided. In the proof it is used
that x̄t

Ni ∈C for every i, N and t, but the strong form of discounting used in AMP is not used.
For every t ≤ N−1 consider the following problem for consumer i

max
(zi,ψ

j
i )

ρ t

Nt ui(x̄t
Ni(ν

t
N)+zi)+

ρ t+1

Nt+1 ∑
νNt+1

ui(x̄t+1
Ni (ν t+1

N )+dt+1
N j ψ

j
i )

s.t.

{
p̄Nt(ν

t
N)·zi + q̄ j

Nt(ν
t
N)ψ

j
i = 0

ψ
j

i ≥ −δ
j

i − θ̄
t j
Ni(ν

t
N).

The solution is zi = 0 and ψ
j

i = 0 for all i because ((p̄N , q̄N),(x̄N , θ̄N)) is an equilibrium.
For every j there is an i such that θ̄

j
Ni(ν

t
N) > −δ

j
i because ∑i θ̄

j
Ni(ν

t
N) = 0 and δ

j
i > 0. For

every j let i( j) denote an i with θ̄
j

Ni(ν
t
N)>−δ

j
i . The first-order conditions for the problem

for consumer i( j) at zi( j) = 0 and ψ
j

i( j) = 0 are

ρ t

Nt Dui( j)(x̄t
Ni( j)(ν

t
N))−µi( j) p̄Nt(ν

t
N) = 0

−µi( j)q̄
j
Nt(ν

t
N)+

ρ t+1

Nt+1 ∑
νNt+1

Dui( j)(x̄
t+1
Ni( j)(ν

t+1
N ))·dN j(ν

t
N) = 0.

Let 1` be the vector in R` with every coordinate equal to one. Then

q̄ j
Nt(ν

t
N) =

ρ

N

∑νNt+1 Dui( j)(x̄
t+1
Ni( j)(ν

t+1
N ))·dN j(ν

t
N)

Dui( j)(x̄t
Ni( j)(ν

t
N))·1`

p̄Nt(ν
t
N)·1`

Since p̄Nt(ν
t
N)·1`+ q̄Nt(ν

t
N)·1n = 1,

p̄Nt(ν
t
N)·1` =

1

1+∑
j

ρ

N

∑νNt+1 Dui( j)(x̄
t+1
Ni( j)(ν

t+1
N ))·dN j(ν

t
N)

Dui( j)(x̄t
Ni( j)(ν

t
N))·1`

.
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so
1

1+ρ
maxi,c∈C, j,s Dui(c)·a j(s)

mini,c∈C Dui(c)·1`

≤ p̄t
N ·1` ≤

1

1+ρ
mini,c∈C, j,s Dui(c)·a j(s)

maxi,c∈C Dui(c)·1`
Since

Nt
ΛNi(ν

t
N) =

ρ tDui(x̄t
Ni(ν

t
N))·1`

p̄t
N(ν

t
N)·1`

,

and
min
i,c∈C

Dui(c)·1` ≤ Dui(x̄t
Ni(ν

t
N))·1` ≤ max

i,c∈C
Dui(c)·1`

the sequence (λ t
Ni) is uniformly bounded in N for every i.

The rest of the proof follows the last part of the proof of Theorem 4.1 in AMP. An
equilibrium for the artificial economy is obtained as a limit of the sequence of equilibria for
the sequence of truncated artificial economies. Uniform boundedness of the sequences (λ t

Ni)

is used to show that the limit of the sequences of solutions to the problems of the consumers
in the truncated artificial economies are solutions to the problems of the consumers in the
artificial economy. Q.E.D.

Remark: Theorem 4.1 in AMP on existence of equilibrium rests on the assumption that there
is ε > 0 such that

min
s

(
ω

h
i (s)−∑ ja

h
j(s)δ

j
i

)
> ε

for all i and h and
ρ

(
ε+∑iδ

j
i

)
max

s
ah

j(s) < ε

for all j and h. The first part is equivalent to the assumption in Theorem 1 while the second
part puts an upper bound on the discount factor. In the present paper the second part of the
assumption is not used because of (A.2) and (A.3).

Continuous financial market equilibria

An allocation is Pareto optimal provided there is no other allocation for which no consumer
is worse off and at least one consumer is better off.

Definition 2 A Pareto optimal allocation is an allocation x̃ for which there is no other
allocation x with

• ∑i xt
i(s

t)≤ ∑i ωi(st) for all t and almost all st .

•Ui(xi)≥Ui(x̃i) for all i with “ > ” for at least one i.

In order for jumps to matter for consumers, prices and consumption plans have to be
measurable discontinuous.
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Definition 3 A bounded and measurable map f : S→ R is (measurable) continuous pro-
vided there is a continuous map g ∈C(S,R) such that∫

| f (s)−g(s)|ds = 0.

Otherwise it is (measurable) discontinuous.

Remark: A map is measurable continuous provided it can be made continuous by changing
it on a set of measure zero. Indeed the map f : S→ [0,1] defined by

f (s) =

{
0 for s rational

1 otherwise

is measurable continuous, because the set of rationals has measure zero, so
∫
| f (s)−1|ds =

0. Therefore random samples from continuous and measurable continuous maps (sa, f (sa))

and (sa,g(sa)) cannot be distinguished.

Remark: A map is measurable discontinuous provided it has a jump. Indeed the map f :
S→ [0,1] defined by

h(s) =


0 for s ∈ [0,

1
2
]

1 for s ∈]1
2
,1]

is measurable discontinuous. For the sequence of maps (gn) with gn : S→ [0,1] defined by

gn(s) =



0 for s ∈ [0,
1
2
− 1

n+1
[

n+1
2

s− n−1
4

for s ∈ [
1
2
− 1

n+1
,
1
2
+

1
n+1

]

1 for s ∈]1
2
+

1
n+1

,1]

limn→∞

∫
|h(s)− gn(s)| = 0 because

∫
|h(s)− gn(s)|ds = 1/(2(n+1)). Therefore random

samples from measurable discontinuous maps (sa,h(sa)) and continuous maps (sa,gn(sa))

can be very hard to distinguish. However from a mathematical point of view it is easier to
study measurable discontinuous maps than continuous maps with very steep slopes.

For incomplete financial markets there is no reason to expect equilibrium prices and
consumption plans to depend continuously on shocks. However equilibrium prices and con-
sumption bundles are time independent and depend continuously on shocks provided the
equilibrium allocation is Pareto optimal. Equilibrium portfolios need not depend continu-
ously on shocks in case dividends of assets are collinear.
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Theorem 2 For an economy E let ((p̄, q̄),(x̄, θ̄)) be a financial market equilibrium. Sup-
pose x̄ is Pareto optimal. Then (p̄t , q̄t) : St →4 and x̄t : St → Xm are continuous for all t.
Indeed there are continuous functions (p,q) : S→4 and x : S→ Xm such that

(p̄t(st), q̄(st)) = (p(st),q(st))

x̄t(st) = x(st)

for all t and almost all st .

Proof: For every r ∈ R`
++, c̄ ∈ Xm with ∑i ci ≤ r and λ ∈ Rm

++ the set{
c ∈ Xm|∑

i
ci ≤ r and ∑

i
λiui(ci)≥∑

i
λiui(c̄i)

}

is compact because for all i, ui is continuous according to (A.2) and limxik→xi ui(xik) = −∞

according to (A.3). Therefore for every s ∈ S and λ ∈ Rm
++ there exists a unique solution to

the following problem
max

c ∑
i

λiui(ci)

s.t. ∑
i

ci ≤∑
i

ωi(s)

because ui is continuous and strictly concave according to (A.2). Let c : S×Rm
++→ Xm be

the solution to the problem. Then c : S×Rm
++ → Xm is continuous according to Berge’s

maximum theorem.
For every λ ∈ Rm

++ consider the planner problem

max
xt ∑

i
λiUi(xt

i(s
t))

s.t. ∑
i

xt
i(s

t)≤∑
i

ωi(st) for all t and almost st

Then the allocation c(λ ) is a solution to the planner problem if and only if ct(st ,λ )= c(st ,λ )

for all t and almost all st . Next it is shown that x with Ui(xi) = −∞ for some i is neither a
solution to the planner problem nor Pareto optimal.

Let ωL ∈ X be defined by ωh
L = (1/m)mins∈S ∑i ωh

i (s). For x if Ui(x) =−∞ for some i,
then x is not a solution to the planner problem for any λ ∈Rm

++ because ui(ωL)+ρui(ωL)+

ρ2ui(ωL)+ . . . > −∞ for all i. For x if Ui(xi) = −∞ for all i, then x is not Pareto optimal
because ui(ωL)+ρui(ωL)+ρ2ui(ωL)+ . . . >−∞ for all i. For x if Ui(xi) =−∞ for some i
and Ui′(xi′)>−∞ for some i′, then x is not Pareto optimal because x′ defined by x′i = (1/m)xi

and x′i′ = xi′+(1/m)xi for all i′ 6= i makes all consumers i′ with Ui′(xi′)> ∞ better off and no
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consumer worse off. Next it is shown that x is Pareto optimal if and only if xt
i(s

t) = ci(st , λ̄ )

for all t and i and almost all st .
Suppose x is not Pareto optimal. Then there exists another allocation x′ such that

Ui(x′i) ≥ Ui(xi) for all i with at least one strict inequality. Therefore x is not a solution
the planner problem for any λ ∈ Rm

++. Hence if x is a solution to the planner problem, then
x is Pareto optimal. Suppose x is not a solution to the planner problem for any λ ∈ Rm

++.
Then ∑i λiUi(ci(λ ))> ∑i λiUi(xi) for all λ ∈ Rm

++. Let µ : Rm
++→ R++ be defined by

µ(λ ) =
1
m ∑

i
λi(Ui(ci(λ ))−Ui(xi)).

Then µ : Rm
++→R++ is continuous. For S m−1

++ = {λ ∈Rm
++|‖λ‖= 1} let Γ : S m−1

++ →Rm

be defined by Γi(λ ) =Ui(ci(λ ))−Ui(xi)−µ(λ ), then: Γ is continuous; there exists α ∈ R
such that Γi(λ )≤ α for all i and λ ; λ ·Γ(λ ) = 0 for all λ ; and, limλk→λ ‖Γ(λk)‖= ∞ for all
λ ∈ ∂S m−1

++ . Therefore there exists λ̄ ∈S m−1
++ such that Γ(λ̄ ) = 0 so Ui(ci(λ̄ ))>Ui(xi) for

all i so x is not Pareto optimal. Hence if x is Pareto optimal, then x is a solution to the planner
problem for some λ ∈S m

++. All in all, x is Pareto optimal if and only if xt
i(s

t) = ci(st , λ̄ )

for all t and i and almost all st so there exists λ ∈S m−1
++ such that x̄t(st) = c(st ,λ ) for all t

and almost all st .
Let f : S→ R`

++ and g : S→ Rn
++ be defined by

f (s) = Dui(ci(s,λ ))

g j(s) = ρ

∫
Dui(ci(s′,λ ))·a j(s′)π(s′,s)ds′.

Then (p̄, q̄) satisfies

p̄t(st) =
1

∑h f h(st)+∑ j g j(st)
f (st)

q̄t(st) =
1

∑h f h(st)+∑ j g j(st)
g(st)

for all t and almost all st . Therefore p̄ and q̄ are continuous. Q.E.D.

Remark: In Elul (1999) financial markets are denoted effectively complete provided equi-
librium allocations are Pareto optimal. According to Theorem 2 if financial markets are
effectively complete, then consumers are able to smooth consumption across shocks such
that jumps are eliminated.

Recurrent discontinuous financial market equilibria

For an equilibrium, there are recurrent jumps provided that for all dates and histories of
shocks st−1, prices and consumption bundles at date t depend discontinuously on the shock

13



st .

Definition 4 A recurrent discontinuous financial market equilibrium is a financial mar-
ket equilibrium ((p̄, q̄),(x̄, θ̄)) such that for all t and almost all st−1,

(p̄t , q̄t , x̄t)(·,st−1) : S→4×Xm

is discontinuous.

Suppose a financial market equilibrium is recurrent discontinuous. Then for a fixed
history of shocks st−1 the relation between the shock st at date t and prices and consumption
bundles at date t can be as illustrated below in Figure 1.

st

(pt ,qt ,xt)(st ,st−1)

1

r

b
-

6

Figure 1: jumps in prices and consumption bundles

There is an open set of economies such that for all equilibria of all economies in that set, all
endogenous variables are recurrent discontinuous even though fundamentals depend contin-
uously on shocks.

Theorem 3 There is an open set of economies U , such that every financial market equilib-
rium ((p̄, q̄),(x̄, θ̄)) for every economy E in U is recurrently discontinuous.

Proof: Suppose (ei,ui), where ei ∈ X for all i, is a pure-exchange economy with ` goods and
m consumers and at least two regular Walrasian equilibria. See Ghiglino & Tvede (1997)
for details on how to construct such an economy. Let c and c′ be two different equilibrium
allocations associated with two different regular equilibria of (ei,ui).

For all i let ωi : S→ X be defined by

ωi(s) =


(1−2s)ci +(2s)ei for s ∈ [0,

1
2
]

(2−2s)ei +(2s−1)c′i for s ∈]1
2
,1].
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Then the pure-exchange economy (ωi(s),ui) has a unique regular Walrasian equilibrium for
s ∈ {0,1}, because endowments are Pareto optimal for s ∈ {0,1}, and at least two regular
Walrasian equilibria for s = 1/2. Let W : [0,1]→4 be the Walras correspondence. Then
there is no continuous selection from the Walras correspondence. Moreover there exists a
neighborhood N of (ωi,ui) such that if (ω ′i ,u

′
i) ∈N , then there is no continuous selection

from the Walras correspondence for (ω ′i ,u
′
i).

Suppose the discount factor ρ , the number of assets n, the dividends of the assets (a j)

and the lower bounds on short sales (δi) are arbitrary and fixed such that mins ωh
i (s)−

∑ j ah
j(s)δ

j
i > 0 for all i and h. Consider a family of economies E τ = (X ,ρ,(ωi,ui),(aτ

j))

parametrized by τ ∈ [0,1] and defined by aτ
j = τa j for all τ ∈ [0,1]. According to Theorem

1 the economy E τ has a financial market equilibrium for every τ .
For every pair of consumers i and i′, date t, asset j and τ and almost all histories of

shocks st the vectors Dui(x̄τt
i (st)) and Dui′(x̄τt

i′ (s
t)) are collinear. For an arbitrary i, all t and

τ and almost all st let f τ
t : St → R`

++ be defined by

f τ
t (s

t) = Dui(x̄τt
i (st)).

For all t, j and τ and almost all st , there exists an i such that θ̄
τ j
i (st)>−δ

j
i because δ

j
i > 0

for all i and ∑i θ̄
τ j
i (st) = 0 for all t and almost all st . For all j, t and τ , any i with θ̄

τt j
i (st)>

−δ
j

i and almost all st let gτ j
t : St → Rn

++ be defined by

gτ j
t (st) = ρ

∫
Dui(x̄τt+1

i (st+1))·aτ
j(s

t+1)π(st+1,st)dst+1.

Then for all t and almost all st

p̄τ
t (s

t) =
1

∑h f τ j
t (st)+∑ j gτk

t (st)
f τ
t (s

t)

q̄τ j
t (st) =

1

∑h f τ j
t (st)+∑ j gτ j

t (st)
gτ j

t (st)

for all j.
According to the proof of Theorem 1 there exists cL,cU ∈X such that if ((p̄τ , q̄τ),(x̄τ , θ̄ τ))

is a financial market equilibrium for E τ , then x̄τt
i (st) ∈C for all i, t and τ ∈ [0, τ̄] and almost

all st . Therefore asset prices converge uniformly to zero as τ converges to zero

lim
τ→0

ess supst sup
t, j

q̄τ j
t (st) = 0.

Moreover θ̄
τt j
i (st) ∈ [−δ

j
i ,1+∑i′ 6=i δ

j
i′ ] for all i, t and j and almost all st because θ̄

τt j
i (st)≥

−δ
j

i for all i, t and j and almost all st and ∑i θ̄
τt j
i (st) = 0 for all t and j and almost all st .

15



Hence the real dividends and prices of portfolios converge uniformly to zero as τ converges
to zero

limτ→0 ess supst supi,t ∑ j aτ
j(st)θ̄

τt j
i (st) = 0

limτ→0 ess supst supi,t ∑ j q̄τ j
t (st)θ̄

τt j
i (st) = 0.

For all t and almost all st consider a family of pure-exchange economies with income
transfers parametrized by st

E τ

tst−1(st) =
(

ωi(st)+∑ ja
τ
j(st)θ̄

τt−1 j
i (st−1),ui,−∑ jq̄

τ j
t (st)θ̄

τt j
i (st)

)
,

where ωi(st)+∑ j aτ
j(st)θ̄

τt−1 j
i (st−1) is the endowment of consumer i and−∑ j q̄τ j

t (st)θ̄
τt j
i (st)

is the income transfer received by consumer i. The equilibrium correspondence W τ

tst−1 : S→
R`
+ is defined by v∈W τ

tst−1(st) if and only if ∑h vh = 1−∑ j q̄τ j
t (st) and there exists (ci) such

that ci is a solution to

max
c

ui(c)

s.t. v·c≤ v·
(

ωi(st)+∑ j aτ
j(st)θ̄

τt−1 j
i (st−1)

)
−∑ j q̄τ j

t (st)θ̄
τt j
i (st)

for all i and ∑i ci = ∑i ωi(st). Therefore p̄τ
t (s

t) ∈W τ

tst−1(st) for all t and τ and almost all st .
There exists τ̄ ∈]0,1] such that for all τ ∈]0, τ̄[ there is no continuous selection from Eτ

tst−1

for all t and almost all st−1 because there is no continuous selection from W . Q.E.D.

Remark: In the proof of Theorem 3: first pure-exchange economies without financial mar-
kets are constructed such that all endogenous variables are recurrent discontinuous; and,
second financial markets, where assets have small dividends, are added so the lower bounds
on short sales ensures that all endogenous variables are recurrent discontinuous. In the ap-
pendix we present an example of a pure-exchange economy with financial markets and finite
time horizon where all endogenous variables are discontinuous and lower bounds on short
sales are not binding.

Theorem 3 implies that if financial markets are incomplete, then jumps in both prices
and consumption bundles can be unavoidable. In the proof of Theorem 3, it is important
how endowments depend on shocks, but not how dividends depend on shocks. Therefore
we argue that jumps are generated by the interaction of real and financial markets.

4 Final remarks

In the present paper we have provided a possible explanation of jumps in asset prices.
Whether there are jumps or not depends on whether markets are incomplete or not. Indeed,
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for effectively complete financial markets there are no jumps and for incomplete financial
markets jumps can be unavoidable.

The proofs of Theorems 1-3 reveal that it is straightforward to extend the analysis to
include long-lived assets and shock dependent state utility functions. It would be nice to
extend the analysis to economies with continuous time. However, such an extension is
not straightforward because even existence of equilibrium for economies with incomplete
financial markets and continuous time is a territory about which little is known.

Appendix: economies with finite time horizon

Set-up

Consider a pure exchange economy with finite horizon and uncertainty. There is a finite
number of dates t ∈ {0, . . . ,T}. The set of possible shocks at every date is S = [0,1] with
st ∈ S and the shock at the first date is s0 ∈ S. The evolution of shocks as time passes is
described by a bounded and measurable time independent transition density π : S×S→R++.

There are finite numbers of goods ` with h∈ {1, . . . , `}, consumers m with i∈ {1, . . . ,m}
and real assets n with j ∈ {1, . . . ,n}. Consumers have identical consumption sets X =

(R`
++)

T+1. Consumers are described by their endowments ωi = (ω t
i ) with ω t

i : St → R`
++,

state utility functions ui : X→R and lower bounds on short sales of assets δi ∈Rn
++. Assets

are described by their dividends a j = (at
j) with at

j : St → R`
+ for all t. An economy is a list

of consumers and a list of assets E Finite = ((ωi,ui,δi),(a j)).

Discontinuous financial market equilibria

Theorem 4 There exists an economy such that if ((p̄, q̄),(x̄, θ̄)) is a financial market equi-
librium, then q̄ is discontinuous in sT .

Proof: Consider an economy with three dates T = 2, one good in each date ` = 1, two
consumers m= 2 and one asset n= 1. The dividend of the asset is supposed to be one unit of
the good at the last date and otherwise before the last date. Endowments and asset dividends
are assumed to depend on the shock s at the second date t = 1 and to be independent of the
shock at the third date t = 2. The probability distribution on the set of shocks at date t = 1
is the Lebesgue measure π(s) = 1 for all s.

Endowments at date t = 0 are supposed to be identical ω0
2 = ω0

1 and endowments at the
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last two dates are supposed to be reverse in the sense that

ω1
2 (s) = ω2

1 (1−s)

ω2
2 (s) = ω1

1 (1−s).

Similarly, utility functions are supposed to be identical for the first date and reverse for the
last two dates such that

u2(x0,α,β ) = u1(x0,β ,α)

for all positive real numbers x0,α,β > 0. Denote by E (s;(c0
i )) = (ei(s),vi(·;c0

i )) the sub-
economy with consumers i∈{1,2}, utility functions vi(·;c0

i ) :R2
++→R defined by vi(x1

i ,x
2
i ;c0

i )≡
ui(c0

i ,x
1
i ,x

2
i ) and endowments ei(s) ∈ R2.

For c0
i let fi(·;c0

i ) = ( f 1
i (·;c0

i ), f 2
i (·;c0

i )) : R2
++×R++→R2

++ denote the demand func-
tion for the consumer i of the sub-economy E (s;(c0

i )), so fi(p, p·ei(s);c0
i ) solves the prob-

lem
max
(x1,x2)

vi(x1,x2;ci)

s.t. p·(x−ei(s))≤ 0.

Then (s, p) ∈ S×R2
++ is an equilibrium for the sub-economy E (s;(c0

i )i) if and only if

f1(p, p·e1(s);c0
1)+ f2(p, p·e2(s);c0

2) = e1(s)+ e2(s).

Clearly (s, p1, p2) is an equilibrium for E (s;(c0
i )) if and only if (1−s, p2, p1) is an equilib-

rium for E (1−s;(d0
i )), where d0

1 = c0
2 and d0

2 = c0
1.

For equilibrium prices normalized such that the sum equals one let W : S→ S×R2
++ be

the Walras correspondence for the economies (E (s;(c0
i ))) with c0

i = ω0
i for both i, so

W (s) = { (s, p1, p2) | (s, p1, p2) is an equilibrium for E (s;(ω0
i ))}.

Suppose that the graph of W is S-shaped as shown in Figure 2 and let r : S → R2
++ be

a selection from W such that r1(s) is the lowest equilibrium price for s < 1/2, r1(s) =
(1/2,1/2) for s = 1/2 and r1(s) is the highest equilibrium price for s > 1/2. In order to
construct a financial market equilibrium: let the allocation x̄ be defined by x̄0

i = ω0
i , and

x̄t
i(s) = f t

i (r(s),r(s)·ei(s);ω0
i ) for both i and t ∈ {1,2}; let the portfolio θ̄ be defined by

θ̄ 0
i = 0 and

θ̄
1
i (s) =

r1(s)
r2(s)

(
ω

1
i (s)− f 1

i (r(s),r(s)·ei(s);ω
0
i )
)
= f 2

i (r(s),r(s)·ei(s);ω
0
i )−ω

2
i (s);

let the price system (p̄, q̄) be defined by p̄0 = p̄1(s) = p̄2(s) = 1 for all s, q̄1(s) = r2(s)/r1(s)
for all s and q̄0 > 0 such that∫ (

−q̄0
∂ui(x̄i(s))

∂x0
i

+q̄1(s)
∂ui(x̄i(s))

∂x1
i

)
ds = 0.
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Figure 2: The Walras correspondence W and the selection r.

Then ((p̄, q̄),(x̄, θ̄)) is a financial market equilibrium and the asset price at date 1 is discon-
tinuous at s = 1/2.

Since q1(s)θ 0
i = (x1

i (s)−ω1
i (s))+ q1(s)(x2

i (s)−ω2
i (s)) for both i and almost all s, the

portfolio θ̄ 0
1 of consumer 1 at date 0 satisfies θ 1

0 ∈ [δ L,δU ] for δ L =− infs(ω
1
1 (s)/q1(s)+ω2

1 (s))
and δU = infs(ω

1
1 (s)/q1(s)+ω2

1 (s)). Assume ω1
1 (s),ω

2
1 (s)< ε for s∈{0,1} and the marginal

rates of substitution at the Pareto optimal allocations in the sub-economies for s ∈ {0,1} are
bounded away from zero and infinity. Then limε→0 δ L = limε→0 δU = 0. Moreover there
is ε̄ > 0 such that if ε ≤ ε̄ , then the set of equilibria for the collection of sub-economies is
S-shaped for all feasible date 0 portfolios. Therefore q̄ is discontinuous in s. Q.E.D.

Remark: The proof of Theorem 4 reveals that any measurable selection r : S→ R2
++ such

that r1(s) = 1−r1(1−s) and r2(s) = 1−r2(1−s) is part of a financial market equilibrium.
Therefore as shown in Mas-Colell (1991) there is a continuum of financial market equilibria.

Remark: An crucial difference between the examples in Mas-Colell (1991) and in the proof
of Theorem 4 is the number of dates. In Mas-Colell (1991) there are two dates and there is a
single asset traded at the first date. Hence the asset price at the first date is unaffected by the
shock at the second date so jumps in asset prices are impossible. In the proof of Theorem 4
there are three dates and a single asset traded at the two first dates. Thus the asset price on
the second date is affected by the shock at that date making jumps in asset prices possible.
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