Synthesis of Staggered Triphenylene Twins Linked Through Ferrocene Bridges.

Rhoda Danjuma Beskeni

This thesis is submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy at the University of East Anglia

2016

©This copy of the thesis has been supplied on condition that anyone who consults it, is understood to recognise that its copyright rests with the author and that no quotation from the thesis, nor any information derived therefrom, may be published without the author’s prior written consent.
# Table of contents

---

**Preface**                                                                                                   XVI

**Dedication**                                                                                               XVIII

**Acknowledgements**                                                                                          XIX

**Abbreviations**                                                                                             XX

**Abstract**                                                                                                   XXI

**CHAPTER 1  INTRODUCTION**

1.1: Triphenylene                                                                                              1

1.2: Structure of Triphenylenes                                                                                 1

1.3: Properties of Triphenylene                                                                               2

1.4: Triphenylene Derivatives as Liquid Crystals                                                             2

1.5: History of Liquid Crystals                                                                               3

1.6: Discotic Liquid Crystal Phases.  
   1.6.1: Nematic Phase                                                                                         4
   1.6.1.1: Nematic Discotic                                                                                   7
   1.6.1.2: Nematic Columnar Mesophase                                                                         9
   1.6.1.3: Nematic Lateral Mesophase                                                                          9
   1.6.2: Columnar Phases                                                                                      10

1.6.3: Smectic Phase                                                                                           12

1.6.4: Cubic Phase                                                                                            13

1.6.5: Applications of Discotic Liquid Crystals                                                             13

1.7: Synthesis of Triphenylene Core                                                                            14
1.7.1: Oxidative Cyclisation/ Photocyclisation (Type 1 Synthesis) ----------- 15
1.7.2.1: Palladium Catalysed Coupling (Type 2 Synthesis) ------------------ 16
1.7.2.2: Diels- Alder Reactions ------------------------------------------ 16
1.7.2.3: Oxidative Cyclization ------------------------------------------- 17
1.7.3: Diels-Alder Reaction (Type 3 Synthesis) --------------------------- 18
1.7.4: Diels-Alder Reactions/Photocyclization (Type 4 Synthesis) -------- 18
1.7.4.1: Diels-Alder Reaction ------------------------------------------- 18
1.7.4.2: Photocyclisation Reaction ---------------------------------------- 19
1.7.5: Oxidative Trimerisation (Type 5 Synthesis) ------------------------ 19
1.7.6: Catalyzed and Photochemical Cyclisation (Type 6 Synthesis) ------ 20
1.7.6.1: Catalyzed Cyclisation ------------------------------------------ 20
1.7.6.2: Photocyclization Reaction --------------------------------------- 21
1.8: Triphenylene Substitution ------------------------------------------- 21
1.8.1: Symmetrical and Unsymmetrical Triphenylene Cores --------------- 21
1.9: Synthesis of Alkoxytriphenylenes ---------------------------------- 23
1.9.1: Hexaalkoxy Triphenylenes (HATs) --------------------------------- 23
1.9.2: Hydroxyl (alkoxy) Triphenylenes --------------------------------- 24
1.10: Reaction of Ferrocene with Triphenylene -------------------------- 27
1. 10.1: Monosubstitution of Ferrocenes ------------------------------- 28
1.10. 2: Electrophilic Reaction of Ferrocene ----------------------------- 28
1.10.3: Disubstituted Ferrocenes -------------------------------------- 30
1.10.4: Synthesis of Ferrocenyl Triphenylene --------------------------- 31
1.11: Synthesis and Properties of Twinned Triphenylenes (Dimers) ------- 33
1.11.1: Triphenylene Acetylene Dimer ........................................... 39
1.11.2: Synthesis of Twinned Triphenylene Ester ............................... 44
1.12: Application of Triphenylene ........................................................................ 45
  1.12.1: Optical Compensation Films for LCDs ........................................ 45
  1.12.2: Organic Light Emitting Diodes .................................................. 46
  1.12.3: Gas Sensor ............................................................................. 47
  1.12.4: One-dimensional Energy Migration ........................................... 48
  1.12.5: Organic Field-Effect Transistors .............................................. 48
  1.12.6: Photovoltaic Solar Cell ............................................................. 49
1.13: Aims and Objectives .............................................................................. 50

CHAPTER 2 RESULTS AND DISCUSSION

2.1: Synthesis of Triphenylene Staggered Triphenylene Twins Linked Through
  Ferrocene Bridge ................................................................................. 52
  2.1.1: Previous work ......................................................................... 53
  2.1.2: Sonogashira Coupling Reaction ................................................ 53
  2.2: A New Synthesis of Triphenylene Precursors .................................... 54
    2.2.1: Suzuki Reaction for the Preparation of Terphenyl, the Key Intermediate 55
    2.2.2: Mechanism of Suzuki Coupling Reaction .................................... 56
    2.2.3: Synthesis of Tetramethoxy-triphenylene ..................................... 57
    2.2.4: Synthesis of Tetramethoxyterphenyl and Optimisation .................... 60
2.3: Synthesis of 3, 6-dibromo-2, 7, 10, 11-tetramethoxy Triphenylene 64

2.3.1: Oxidative Cyclisation of Terphenyl 65

2.4: Synthesis of 3,6-dibromo-2,7,10,11-tetramethoxy triphenylene 66

2.4.1: Attempted Synthesis of Ferrocenyl (Methoxy) Triphenylene 68

2.5: Conversion of methoxy-triphenylene to hexyloxy-triphenylene
(Demethylation and Alkylation) 68

2.5.1: Demethylation of dibromotetramethoxy triphenylene 69

2.5.2: Mechanism of demethylation with BBr₃ 70

2.5.3: Alkylation reaction of hydroxyltriphenylene to
hexyloxy triphenylene 71

2.5.3.1: New route for the Synthesis of Alkoxy-triphenylene (Scheme 33) 71

2.5.3.2: Comparison of the two routes (normal and new) to Synthesise of
Alkoxy-substituted dibromo-triphenylene 71

2.6: Synthesis of Ferrocenyl triphenylenes from hexyloxy triphenylene 74

2.7: Attempted Synthesis of Ferrocenyl Twin Triphenylene from Triphenylene
diacetylene compound 77

2.8: Synthesis of mono-hydroxy-penta-hexyloxytriphenylene key precursor
to the target compound 78

2.9: Synthesis of Ethynyl-3, 6, 7, 10, 11-pentakis (hexyloxy) triphenylene 82

2.9.1: Synthesis of 3, 6, 7, 10, 11-pentakis (hexyloxy) triphenylend-2-yl
Trifluoromethanesulfonate 82

2.9.2: Synthesis of 2-methyl-4-(3, 6, 7, 10, 11-pentakis (hexyloxy)
triphenylend-2-yl) but-3-yn-2-ol 84

2.9.3: Synthesis of Ethynyl-3, 6, 7, 10, 11-pentakis (hexyloxy)
triphenylene 86
2.10: Attempted Synthesis of Ferrocenyl-acetylene Twin Triphenylene

2.11: Attempted Synthesis of monoacetylene Ferrocenyl triphenylene Dimer using Ferrocene Acetylene

2.12 Synthesis of Twin Triphenylene Ester

2.12.1 Proposed Mechanism of DCC /DMAP

2.12.2: Synthesis of Ferrocenyl Triphenylene Ester

2.12.3 Synthesis of Benzoyl Ester Twins

2.12.3.1. Synthesis of bis(3, 6, 7, 10, 11-pentakis(hexyloxy)triphenylen-2-yl) Isophthalate

2.12.3.2. Synthesis of bis(3, 6, 7, 10, 11-pentakis(hexyloxy)triphenylen-2-yl) Phthalate

2.12.3.3. Synthesis of bis(3, 6, 7, 10, 11-pentakis(hexyloxy)triphenylen-2-yl) Terephthalate

2.12.4. Synthesis of Triphenylene Benzoate

2.12.5. N-Acyl Ureas (byproduct) from Isophthalate and Terephthalate

2.13. Conclusion

CHAPTER 3 EXPERIMENTAL

3.1. General methods and Instruments

3.2. Reagents and solvents

3.3. Synthesis of Triphenylene core 2, 7-dibromo-3, 6, 10, 11-tetrakis(methoxy) triphenylene

3.3.1. Synthesis of 1, 2-dibromo-4, 5-dimethoxybenzene

3.3.2. Synthesis of 4-methoxyphenylboronic acid

3.3.3. Synthesis of tetramethoxyterphenyl

3.3.3.1. Dimethoxybiphenyl

3.3.4. Synthesis of 2, 3, 7, 10-tetramethoxytriphenylene
3.3.5. Synthesis of 2, 7-dibromo-3, 6, 10, 11-tetramethoxytriphenylene 119

3. 4. Synthesis of Triphenylene core 2, 11-dibromo-3, 6, 7,

10–tetramethoxytriphenylene 120

3.4.1. Synthesis of 3-methoxyphenylboronic acid 120

3. 4.2. Synthesis of Terphenyl 121

3. 4. 3. Synthesis of Tetramethoxy triphenylene 122

3.4. 4. Synthesis of 3, 6-dibromo-2, 7, 10, 11-tetramethoxy triphenylene 123

3.5 Attempted Synthesis of 3, 6-diferrocenyl-2, 7, 10, 11-tetramethoxy Triphenylene 124

3.6 Conversion of 3, 6-dibromo-2, 7, 10, 11-tetramethoxy-triphenylene
to 3, 6-dibromo-2, 7, 10-hexyloxytriphenylene 125

3.6.1 Demethylation of 3, 6-dibromo-2, 7, 10, 11-tetramethoxy-triphenylene 125

3.6.2. Alkylation 3, 6-Dibromo-2, 7, 10, 11-tetrahexyloxytetraol triphenylene 125

3.6.2.1. Synthesis of 3, 6-Dibromo-2, 7, 10, 11-tetrahexyloxytriphenylene 126

3.7. Synthesis of Ferrocenyl Triphenylene 126

3.8 Synthesis of Ferrocenyl Triphenylene from diacetylene Triphenylene 127

3.8.1 Synthesis of 4, 4'-(2, 7, 10, 11-tetrakis (hexyloxy) triphenylene-3, 6-diylbis(2-methylbut-3-yn-2-ol) 127

3.8.2. Synthesis of 3, 6-diethynyl-2, 7, 10, 11-tetrakis (hexyloxy) triphenylene 128

3.8.3. Synthesis of 2, 3, 6, 11-tetrakis (hexyloxy) - 7, 10

bis(Ferrocenylethynyl)triphenylene 129

3.9. Synthesis of monohydroxy-penta(hexyloxy)-triphenylene and Derivatives 130

3.9. 1. Synthesis of 1, 2- dihexyloxybenzene 130

3.9. 2. Synthesis of 3, 6, 7, 10, 11-pentakis (hexyloxy) triphenylene-2-ol (MHT) 131
3.9.3. Synthesis of 3, 6, 7, 10, 11-pentakis (hexyloxy) triphenylen-2-yl trifluoromethanesulfonate

3.10. Synthesis of Ferrocenyl monoacetylene triphenylene from monoacetylene

3.10.1 Synthesis of 2-Methyl-4-(3, 6, 7, 10, 11-pentakis (hexyloxy) triphenylen-2-yl) but-3-yn-2-ol

3.10.2 Synthesis of Ethynyl-3, 6, 7, 10, 11-pentakis (hexyloxy) triphenylene

3.10.3 Synthesis of 2, 3, 6, 7, 10-pentakis (hexyloxy)-11-(Ferrocenylethynyl) triphenylene (dimer)

3.10.4 Synthesis of 2, 3, 6, 7, 10-pentakis (hexyloxy)-11-(Ferrocenylethynyl) triphenylene

3.11. Synthesis of Twin Triphenylene Ester

3.11.1. Synthesis of Ferrocenyl Ester

3.11.1.1 Synthesis of bis(3, 6, 7, 10, 11-pentakis (hexyloxy) triphenylen-2-yl) Ferrocenylate

3.11.2. Synthesis of Benzoyl Ester

3.11.2.1 Synthesis of bis(3, 6, 7, 10, 11-pentakis (hexyloxy) triphenylen-2-yl) isophthalate

3.11.2.2 Synthesis of bis(3, 6, 7, 10, 11-pentakis (hexyloxy) triphenylen-2-yl) phthalate

3.11.2.3 Synthesis of bis(3, 6, 7, 10, 11-pentakis (hexyloxy) triphenylen-2-yl) terephthalate

3.12. Synthesis of Triphenylene benzoate

3.13. N-Acyl Urea (byproduct) from Isophthalate

3.14. N-Acyl Urea (byproduct) from Terephthalate

References
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.24</td>
<td>Discotic Dimer with Ester Linkage</td>
<td>38</td>
</tr>
<tr>
<td>1.25</td>
<td>Star-like Liquid Crystals with Central Triphenylene cores</td>
<td>39</td>
</tr>
<tr>
<td>1.26</td>
<td>Diacetylene Bridge Triphenylene Dimer</td>
<td>40</td>
</tr>
<tr>
<td>1.27</td>
<td>Acetylene linked Triphenylene Dimer</td>
<td>41</td>
</tr>
<tr>
<td>1.28</td>
<td>Triphenylene Dimer Linked through diazo Link</td>
<td>43</td>
</tr>
<tr>
<td>1.29</td>
<td>Example of TP based DLC Patented by Fuji Photo Film Company</td>
<td>46</td>
</tr>
<tr>
<td>1.30</td>
<td>Triphenylene Derivatives use, in OLED Devices</td>
<td>47</td>
</tr>
<tr>
<td>1.31</td>
<td>Structure of thiophene based π-extended Triphenylene for OFET Fabrication</td>
<td>48</td>
</tr>
<tr>
<td>1.32</td>
<td>Structure of dithiol-triphenylene ligand, structure of ZnO</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Nanoparticle modified with Triphenylene Ligands</td>
<td></td>
</tr>
<tr>
<td>1.33</td>
<td>Triphenylene dimers</td>
<td>50</td>
</tr>
<tr>
<td>1.34</td>
<td>Some synthetic twinned triphenylenes</td>
<td>51</td>
</tr>
<tr>
<td>2.1</td>
<td>Triphenylene Linking sites and Ferrocenyl Triphenylene Twin</td>
<td>52</td>
</tr>
<tr>
<td>2.2</td>
<td>Sonogashira Coupling Mechanism</td>
<td>54</td>
</tr>
<tr>
<td>2.3</td>
<td>Mechanism of Suzuki Coupling Reaction</td>
<td>56</td>
</tr>
<tr>
<td>2.4</td>
<td>$^1$HNMR of Dimethoxybiphenyl in CDCl$_3$</td>
<td>58</td>
</tr>
<tr>
<td>2.5</td>
<td>$^1$H NMR of dibromotetramethoxy triphenylene 61 in CDCl$_3$</td>
<td>59</td>
</tr>
<tr>
<td>2.6</td>
<td>$^1$HNMR of boronic acid 62 in CDCl$_3$</td>
<td>62</td>
</tr>
<tr>
<td>2.7</td>
<td>$^1$H NMR of tetramethoxyterphenyl 63 in CDCl$_3$</td>
<td>63</td>
</tr>
<tr>
<td>2.8</td>
<td>$^1$H NMR of dibromotetramethoxy triphenylene 65 in CDCl$_3$</td>
<td>67</td>
</tr>
<tr>
<td>2.9</td>
<td>HRMS (ESI) of Triphenylene 65</td>
<td>67</td>
</tr>
<tr>
<td>2.10</td>
<td>$^1$HNMR of Ferrocenyl Triphenylene in CDCl$_3$</td>
<td>75</td>
</tr>
<tr>
<td>2.11</td>
<td>HRMS (ESI) of Ferrocenyl Triphenylene 69</td>
<td>75</td>
</tr>
<tr>
<td>2.12</td>
<td>Uv-vis of the Ferrocenyl Triphenylene 69</td>
<td>76</td>
</tr>
<tr>
<td>2.13</td>
<td>$^1$HNMR of MHT 25 in CDCl$_3$</td>
<td>81</td>
</tr>
</tbody>
</table>
Figure 2.14: MALDI-TOF MS of MHT 25

Figure 2.15: $^1$H NMR of Triphenylene Triflate 75 in CDCl$_3$

Figure 2.16: Maldi-TOF MS of Triphenylene Triflate 75

Figure 2.17: $^1$H NMR of Monosubstituted Triphenylene 76 in CDCl$_3$

Figure 2.18: MALDI-TOF MS of Monosubstituted Triphenylene 76

Figure 2.19: $^1$H NMR of Monoacetylene Triphenylene 77 in CDCl$_3$

Figure 2.20: $^1$HNMR of Monoacetylene Dimer 79 in CDCl$_3$

Figure 2.21: MALDI-TOF MS Monoacetylene Dimer of 79

Figure 2.22: HRMS (ESI) of Monoacetylene Dimer 79

Figure 2.23: $^1$H NMR of Monoacetylene Ferrocenyl Triphenylene 78 in CDCl$_3$

Figure 2.24: MALDI-TOF MS of Monoacetylene Ferrocenyl Triphenylene 78

Figure 2.25: MALDI-TOF MS of the Ferrocene Acetylene Dimer 80

Figure 2.26: $^1$H NMR of Ferrocenyl Triphenylene Ester 84 in CDCl$_3$

Figure 2.27: MALDI-TOF MS of Ferrocenyl Triphenylene Ester 84

Figure 2.28: $^1$H NMR of Isophthalate twin triphenylene 86 in CDCl$_3$

Figure 2.29: MALDI-TOF MS of pure Isophthalate Twin Triphenylene 86

Figure 2.30: $^1$H NMR of Phthalate Twin Triphenylene 89 in CDCl$_3$

Figure 2.31: MALDI-TOF MS of Phthalate Twin Triphenylene 89

Figure 2.32: $^1$H NMR of Terephthalate Twin Triphenylene 91 in CDCl$_3$

Figure 2.33. MALDI-TOF MS of Terephthalate twin triphenylene 91

Figure 2.34: MALDI-TOF MS of $N$-acyl urea 87 of isophthalate 86

Figure 2.35. MALDI-TOF MS of $N$-acyl urea 92 in crude of terephthalate 91
Figure 2.36: $^1$H NMR of N-acyl Urea 87 of Isophthalate 86----------------------------- 107

Figure 2.37: MALDI-TOF MS for N-acyl Urea 87 of Isophthalate 86---------------------- 107

Figure 2.38. NMR spectrum of the product before adding Benzoic acid (Scheme 56) 110

Figure 2.39: $^1$H NMR of triphenylene benzoate 94 in CDCl$_3$--------------------------- 111

Figure 2.40. MALDI-TOF MS for triphenylene benzoate 94------------------------------- 111
TABLES

Table 2.1: Optimisation of the Synthesis of Terphenyl 63----------------------------- 61

Table 2.2: Demethylation of dibromotetramethoxy triphenylene 67----------------- 69

Table 2.3: Attempted synthesis of Ferrocenyl diacetylene triphenylene 73------- 78

Table 2.4: Synthesis of Monohydroxytriphenylene (MHT) 25------------------------ 79

Table 2.5: Optimisation of condition for the synthesis of Monoacetyl-Tp 76------- 84

Table 2.6: Cu and Cu free reaction attempted for synthesis of Ferrocenylacetylene-
TP 80-------------------------------------------------------------------------- 88

Table 2.7: Optimisation of the synthesis of Ferrocenylacetylene-TP-------------- 91

Table 2.8: Optimisation of the synthesis of Ferrocenyl Triphenylene Ester 84------ 95

Table 2.9: Optimisation of the synthesis of Isophthalate twin triphenylene 86------ 98

Table 2.10: Optimisation of the synthesis of Phthalate twin triphenylene 89------ 100

Table 2.11: Optimisation of the synthesis of terphthalate twin triphenylene 91---- 103

Table 2.12: Control experiment for the terephthalate reaction-------------------- 109
SCHEMES

Schemes 1: Synthesis of Triphenylene Dimer----------------------------------------------- 8

Scheme 2: Synthesis of Unsymmetrical Triphenylene--------------------------------------- 15

Scheme 3: Synthesis of Symmetrical Triphenylene------------------------------------------ 15

Scheme 4: Palladium-Catalysed Synthesis of Unsymmetrical Triphenylene from Biphenyl----------------------------------------------- 16

Scheme 5: Diels-Alder Synthesis of a Triphenylene Derivative--------------------------- 17

Scheme 6: Oxidative Coupling of Triphenylene from Biphenyl------------------------------- 18

Scheme 7: Synthesis of Triphenylene via Diels-Alder------------------------------------ 18

Scheme 8: Synthesis of Benzotrifenylene by Diels- Alder Reaction------------------------ 19

Scheme 9: Synthesis of Triphenylene via Photocyclisation of Phenanthrene---------------- 19

Scheme 10: Oxidative Trimerization of Benzene ------------------------------------------ 20

Scheme 11: Synthesis of Triphenylene by Acid Catalysed Reaction------------------------- 20

Scheme 12: Photocyclization of Stilbene to Triphenylene---------------------------------- 21

Scheme 13: Synthesis of Unsymmetrical Substituted Triphenylene--------------------------- 22

Scheme 14: Synthesis of Symmetrical triphenylene with Electrophilic Substitution-------------------------- 22

Scheme 15: Synthesis of unsymmetrical Alkoxy-triphenylene by Alkylation---------------- 26

Scheme 16: Synthesis of Monohydroxytriphenylene (MHT)----------------------------------- 26

Scheme 17: Significant reactions of ferrocene with electrophiles as well as other reagents.----------------------------------- 29

Scheme 18: Reaction and Mechanism of Acylation of Ferrocene with Acetic Anhydride-------------------------- 30

Scheme 19: Electrophiles of 1, 2 disubstituted Ferrocene Product------------------------- 31

Scheme 20: Synthesis of Ferrocenycarboxy-triphenylene and Tetrathiafulvalencarboxy-triphenylene----------------------------------- 32
Scheme 21: Synthesis TTF-Fluorocarboxyl-TP and Ferrocenyl-TP using Fluoro derivatives

Scheme 22: Synthesis of Dehydroannulene-twinned Triphenylenes
Linked through 3, 6 position

Scheme 23: Synthesis of Thiophene -bridged Twin

Scheme 24: Synthesis of Expanded Thiaporphyrin-like Twins

Scheme 25: Synthetic route for Producing a Symmetrical Dimer

Scheme 26: Synthesis of π- Cu complexes during the Sonogashira Reaction

Scheme 27: Synthesis of π- Cu complexes using cuprous acetylide by Sonogashira reaction

Scheme 28: Copper-free Sonogashira Coupling of Aryl Iodides with Terminal Acetylenes

Scheme 29: Synthetic route of Ester dimers

Scheme 30: Synthesis of Thiophene Acetylene Dimer

Scheme 31: Summary of Sonogashira Reaction

Scheme 32: First Suzuki Coupling Reaction

Scheme 33: Synthesis of Triphenylene Core

Scheme 34: Synthesis of Terphenyl

Scheme 35: Synthesis of Triphenylene Core

Scheme 36: Mechanism of Oxidative Cyclisation of Terphenyl

Scheme 37: Synthesis of Dibromotetramethoxy Triphenylene

Scheme 38: Conversion of Methoxy-triphenylene to Hexyloxy-triphenylene

Scheme 39: Quenching Reaction of Borontribromide using ethanol

Scheme 40: Demethylation Reaction Mechanism of BBr₃

Scheme 41: Normal route to Synthesise of Alkox-substituted dibromo-triphenylene
Scheme 42: New route to Synthesise of Alkoxy-substituted
dibromo-triphenylene------------------------------------------ 73

Scheme 43: Synthesis of Ferrocenyl Triphenylene 69----------------------------- 74

Scheme 44: Synthesis of Ferrocenyl Diacetylene Triphenylene------------------ 77

Scheme 45: Synthesis of Monohydroxytriphenylene (MHT) 25---------------------- 79

Scheme 46: Synthesis of Monoacetylene Triphenylene 75------------------------ 82

Scheme 47: Deprotection Mechanism of 76---------------------------------------- 86

Scheme 48: Sonogashira Coupling Reaction of 75 with Dibromoferrocene--------- 87

Scheme 49. Synthesis of monoacetylene Ferrocenyl Triphenylene--------------- 90

Scheme 50: General reaction of Steglich esterification------------------------- 93

Scheme 51: Reaction mechanism of Steglich esterification----------------------- 93

Scheme 52: Synthesis of Ferrocenyl Triphenylene Ester 82---------------------- 94

Scheme 53: Synthesis of Isophthalate Twin Triphenylene 84--------------------- 97

Scheme 54: Synthesis of Phthalate Twin Triphenylene 87------------------------ 100

Scheme 55: Synthesis of Terephthalate Twin Triphenylene 89 at 30°C------------- 102

Scheme 56: Synthesis of Terephthalate Twin Triphenylene 89
at Room Temperature---------------------------------------------------------- 108
PREFACE

The research described within this thesis is, to the best of my knowledge, original and my own work, except where due reference has been made.
DEDICATION

This thesis is dedicated to my

Late parents

Late Sunday Kromkyes & late Rifkatu

Sunday Kromkyes (RIP)

&

My Children

Jacob Beskeni, Happy Beskeni

& Peace Beskeni
ACKNOWLEDGEMENTS

I am very grateful to my thesis supervisor Prof Andy Cammidge for his valuable and inspiring guidance throughout my research work. There are no adequate words to explain his interest, patience, kind advice, sustained encouragement, constant help and thought provoking discussions that I had with him during this time. It was a great experience to work with him and I learn so many things from him as a committed scientist and as a human being. His encouragement is to be a good researcher and I have learned from his humbleness. It has been a great pleasure and I really enjoyed working with him.

I would also like to express my gratitude to my second supervisor Dr Chris Richards for his commitment.

I also appreciate the kind gesture and financial assistance offered to me by the school of Chemistry, Dean of students, UEA development and student Union at the time of my hardship during this work. I most appreciate Dr Racheal Mcshane UEA medical doctor for her medical care and advice.

I take this opportunity to give special thanks to Dr Alejandro Díaz Moscoso, Dr Isabelle Chambrier, Dr Teresa Quirós, Dr Sonia Remiro, Dr Paulina Glowacka and Dr Tahani for their support at the period of this work.

I would like to specially appreciate my lab mates Shazia and Lucas for their valuable help, support and friendship at the time of this work. Also, Xiao, Ahad, Faezah, Aziz and Fakreah for their friendship at the period of this work. My other lab colleagues Dr Ateya Allah, Dr Rebecca, Dr Daniel, Dr Nuha, Nora, Harry, Daniel, Jacob and other organic chemistry department colleagues Dr Maria Paz, Dr Sean Bew, Dr Stephenson Richard, Dr Yohan, Dr Ross, Dr Francesca, Dr Jose, Lisa and Nawaf for their help and encouragement. Sarah Delf you are not left behind, I appreciate your encouragement and smiles you put on my face daily (RIP).

I wish to express my gratefulness to Francis Oreyeju for his valuable commitment before and at the time of my course. Also, my friend Dr Duguryil Zipporah for her help and encouragement. Dr Ozoji Bennedita for her encouragement and lovely care to my children in my absence.

My deep gratitude to my beloved siblings, especially, Mr and Mrs Joseph Kromkyes, Friday Kromkyes, Esther Emmanuel and Alice Caleb and family, my aunts and Uncles. Also, my younger sister Nanbam who took care of my children in my absence.

My sincere thanks goes to Mr D. A. Beskeni for his endurable patience at the time of these studies and my beloved children Jacob Beskeni, Happy Beskeni and Peace Beskeni for their kind patience and support to each other in my absence.

My special thanks goes to Prophet and Mrs Isa Elbuba for their valuable spiritual support and encouragement at the period of this work.

Finally, I thank TETFUND Nigeria for their sponsorship and Federal College of Education Pankshin for giving me the opportunity for this study.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>aq</td>
<td>Aqueous</td>
</tr>
<tr>
<td>ar</td>
<td>Aryl</td>
</tr>
<tr>
<td>Atm</td>
<td>Atmosphere</td>
</tr>
<tr>
<td>b.p</td>
<td>Boiling Point</td>
</tr>
<tr>
<td>Bu</td>
<td>Butyl</td>
</tr>
<tr>
<td>Col</td>
<td>Columnar</td>
</tr>
<tr>
<td>Conc.</td>
<td>Concentrated</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>δ</td>
<td>Chemical Shift In Parts Per Million (Ppm)</td>
</tr>
<tr>
<td>DDQ</td>
<td>2, 3-Dichloro-5, 6-Dicyano-1,4-Benzquinone</td>
</tr>
<tr>
<td>DL</td>
<td>Discotic Lamellar</td>
</tr>
<tr>
<td>DLC</td>
<td>Discotic Liquid Crystal</td>
</tr>
<tr>
<td>DIPEA</td>
<td>N, N-Diisopropylethylamine</td>
</tr>
<tr>
<td>DMF</td>
<td>N, N-Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulphoxide</td>
</tr>
<tr>
<td>eq.</td>
<td>Equivalent</td>
</tr>
<tr>
<td>FET</td>
<td>Field Effect Transistor</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>HATs</td>
<td>Hexaalkoxy-triphenylenes</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest Occupied Molecular Orbital</td>
</tr>
<tr>
<td>I</td>
<td>Isotropic Liquid</td>
</tr>
<tr>
<td>IR</td>
<td>Infra-red</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>LC</td>
<td>Liquid Crystal</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest Unoccupied Molecule Orbital</td>
</tr>
<tr>
<td>M</td>
<td>Multiplet</td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>Matrix-assisted laser desorption/ionisation-time-of-flight</td>
</tr>
<tr>
<td>MHT</td>
<td>Monohydroxytriphenylene</td>
</tr>
<tr>
<td>MOF</td>
<td>Metal-Organic Framework</td>
</tr>
<tr>
<td>mol</td>
<td>Mole</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimole</td>
</tr>
<tr>
<td>m.p.</td>
<td>Melting Point</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass to Charge Ratio</td>
</tr>
<tr>
<td>Nc</td>
<td>Nematic Columnar</td>
</tr>
<tr>
<td>Nd</td>
<td>Nematic Discotic</td>
</tr>
<tr>
<td>Ni</td>
<td>Nematic Lateral</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>OFET</td>
<td>Organic Field Effect Transistor</td>
</tr>
<tr>
<td>OLED</td>
<td>Organic Light Emitting Diode</td>
</tr>
<tr>
<td>PAH</td>
<td>Polycyclic Aromatic Hydrocarbon</td>
</tr>
<tr>
<td>PE</td>
<td>Petroleum Ether</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts Per Million</td>
</tr>
<tr>
<td>Psi</td>
<td>Pound Per Square Inch</td>
</tr>
<tr>
<td>rt</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>s</td>
<td>Singlet</td>
</tr>
<tr>
<td>t</td>
<td>Triplet</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethylamine</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic Acid</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>TNP</td>
<td>Trinitrophenol</td>
</tr>
<tr>
<td>Tp</td>
<td>Triphenylene</td>
</tr>
<tr>
<td>UV/Vis</td>
<td>Ultraviolet/Visible Spectroscopy</td>
</tr>
</tbody>
</table>
Abstract
The main target of this research was to investigate strategies for linking triphenylene discogens via staggered, ferrocene links. The thesis begins with a general introduction to liquid crystals and triphenylenes. The results of this research are then described. In the first part, a new and improved synthesis of dibromotriphenylene intermediates is described. The new procedure allows convenient access to the material without extensive chromatography. Attempts to couple dibromotriphenylenes with ferrocene derivatives is then discussed using ferrocene boronic acid and via acetylene links (Sonagashira couplings). Unfortunately, the required twinned structures were not observed, but a number of new monomeric derivatives (Ferrocenyl triphenylenes) were isolated. The reactions of ethynyl triphenylenes were complicated by efficient and competing homocoupling.

The remainder of the thesis describes a changed strategy whereby triphenylenes were linked via ester bridges. The molecular geometry was varied by linking monohydroxytriphenylene through 1,1'- ferrocene dicarboxylic acid plus three isomeric phthalic acids. The mesophase behaviour of the new materials is described.
CHAPTER 1   INTRODUCTION

1.1 Triphenylene

Triphenylene is a flat, polycyclic aromatic hydrocarbon (PAH) which consists of four fused benzene rings. Triphenylene can be isolated from coal tar. However, since it is a trimer of benzene, it may also be generated synthetically using benzene chemistry. Schultz was the first to discover the triphenylene (1) compound, which was initially isolated from pyrolytic benzene products.\(^1\)

1.2 Structure of Triphenylenes 1

Triphenylene has the molecular formula of C\(_{18}\)H\(_{12}\). One molecule of triphenylene has delocalized 18-\(\pi\)-electron systems, based on a planar structure. The structure is composed only of full benzene rings, which are interconnected by single carbon–carbon bonds. It is possible to draw the three benzene as the three outer rings. The central ring is formed by one face of each and the three carbon–carbon single bonds. Triphenylene has much greater resonance stability than its isomers: chrysene, benzo[a] anthracene, benzo [c] phenanthrene, and tetracene. It is therefore considerably more difficult to hydrogenate to the saturated hydrocarbons. Triphenylene has twelve possible sites for substitution. The peripheral sites 2, 3, 6, 7, 10 and 11 are most commonly derivatised.

![Figure 1.1: Structure of Triphenylene 1 and numbering system.](image)

Figure 1.1: Structure of Triphenylene 1 and numbering system.
1.3 Properties of Triphenylene

Triphenylene compounds have a variety of properties which make them interesting subjects for investigation. One of the main reasons that triphenylene compounds are so widely studied is their ability to form liquid crystalline mesophases. Triphenylene derivatives are also thermally and chemically stable. Their one-dimensional charge transfer is of particular interest, along with the energy migration, which makes them potentially useful in optics and electronics. Triphenylene crystals are colourless and needle-like and it gives off UV irradiation in the form of a bluish-purple fluorescence.

Triphenylene derivatives have been studied more widely than any other types of discotic liquid crystals. Many derivatives form stable columnar mesophases which demonstrate anisotropic conduction. Triphenylenes have unique spectroscopic and geometric features and this frequently found structural motif is useful in a variety of contexts. There is considerable documentation in the literature for the use of triphenylenes as building blocks in discotic liquid crystals in both supramolecular and solid-state chemistry. In addition, triphenylenes have applications as fluorescent labels and as components of functional polymers.

1.4 Triphenylene as Liquid Crystals

Various molecules form liquid crystal phases. A common characteristic they share is that they are anisotropic. They may have different shapes in their molecular axis and, in some instances, they have different solubility properties. The interaction between these anisotropic molecules facilitates orientation and sometimes, positional order in what is otherwise a fluid phase.
Figure 1.2: Classification of liquid crystals

Liquid crystals are classified as thermotropic (temperature dependent) and lyotropic (concentration dependent). Thermotropic liquid crystals are materials that can be both high molar masses (polymers) and low molar masses. The high molar mass materials include main chain polymers. These chains align in one direction, or alternatively, they may have a comb-like structure with side chains hanging from the polymer. Materials with a low molar mass can be rod-like molecules (calamitic liquid crystals that typically show nematic and/or smectic phases), and disc-like molecules (with nematic and/or columnar phases).  

1.5 History of Liquid Crystals
The phenomena of liquid crystals was first discovered by Frederich Reinitzer, an Austrian botanist, in 1888. The classification Scheme for liquid crystals (Figure 1.2) was produced in 1922 by G.Friedel, a French scientist. The most significant liquid crystals so far, from a
technological and commercial viewpoint (4-alkyl and 4-alkoxy-4’-cyanobiphenyl) were discovered by Gray and coworkers in 1973.\textsuperscript{6}

In 1978, it was first demonstrated that triphenylene derivatives could form mesophases,\textsuperscript{5} immediately following Chandrasekhar’s 1977 discovery that disc-shaped molecules could form liquid crystals.\textsuperscript{7} Chandrasekhar synthesised a number of benzene-hexa-n-alkanoates (Figure 1.3). Their liquid crystalline properties could be observed, by optical, thermal and x-ray studies.

\textbf{Figure 1.3:} Structure of benzene-hexa-n-alkanoate, where R= n-C_4H_9 to n-C_9H_{19}

\section*{1.6 Discotic Liquid Crystal Phases.}
Discotic liquid crystals (DLCs) have attracted much research interest since they were discovered. Triphenylene 1 based discotic mesogens have been a particular focus of attention within this field.\textsuperscript{2} DLCs are a unique type of matter, consisting of disc-shaped molecules which are capable of self-organization.\textsuperscript{3,9} The essential feature is their supramolecular columnar architecture, which makes them models for charge migration in organized systems. A large number of different cores have been shown to form discotic mesophases. These include truxene, hexabenzocoronene, phthalocyanine, triphenylene, naphthalene, perylene anthracene and porphyrin, (Figure 1.4).
Figure 1.4: Cores that can exhibit DLC mesophases (when substituted).

Many liquid crystals (DLCs) formed by disc-shaped molecules are thermotropic. This means that the liquid crystals form as a function of temperature. Two basic types of discotic mesophases, columnar and nematic, are generally recognized.\(^\text{10}\)
Figure 1.5: Discotic liquid crystal showing columnar and nematic phases

As a result of observing many DLC mesophases, these have been further classified according to the arrangement of their molecules and the level of order they contain\(^\text{11}\). The types that have been noted are columnar, nematic, smectic and cubic. Further subcategorization have been made. Columnar mesophases are by far the most frequently seen of the discotic mesophases. The nematic mesophase is the second most common, while cubic and smectic mesophases are much rarer.

### 1.6.1 Nematic Phase

It is possible to subdivide discotic nematic phases into four types. These are a. discotic nematic (\(N_D\)), b. chiral nematic (\(N_D^*\)), c. Columnar nematic (\(N_{\text{col}}\)), and d. nematic lateral (\(N_l\)).\(^\text{6}\)

Figure 1.6: Types of nematic phase
1.6.1.1 Nematic Discotic

Nematic discotic liquid crystals lack order. The mesogens are arranged in a parallel formation, which, although it has orientational order, has no long-range positional order. The short axis of the molecules defines the director, as shown in Figure 1.7.

**Figure 1.7:** Arrangement of molecules in nematic discotic mesophase

The ability of triphenylene-2, 3, 6, 7, 10, 11-hexyl hexakis (4-n-alkoxybenzoates) (Figure 1.8) to form nematic discotic mesophases was first described in 1981.\(^\text{12}\)

![Structure of triphenylene-2, 3, 6, 7, 10, 11-hexyl hexakis(4-n-alkoxybenzoate)](structure.png)

**Figure 1.8:** Structure of triphenylene-2, 3, 6, 7, 10, 11-hexyl hexakis(4-n-alkoxybenzoate)

Work on the triphenylene-hexabenoate series of compounds, which followed the 1981 discovery, has demonstrated that if ortho-methyl groups are introduced to the ester linkage, the columnar mesophase formation is suppressed. As a result, it is only N\(_D\) mesophases, which are observed (Figure 1.8).\(^\text{13}\) Methyl groups meta to the ester link group also suppress the columnar mesophase. In addition, they show the hexagonal disordered columnar
mesophase. In those cases where the methyl groups point towards the triphenylene core, the phenyl rings are forced out of the triphenylene core’s plane due to the steric interactions. As a result, those face to face interactions which encourage columnar phases are decreased. Thus, only nematic discotic phases are seen.

![Diagram](image)

**Figure 1.9:** Effect of the methyl position on mesophase behaviour

Designing discotic mesogens to form nematic discotic phases is difficult. Few nematic discotic phases have therefore been reported. Following the work on the triphenylene-hexabenoate series, attention has shifted to the synthesis of triphenylene dimers. In order to form nematic discotic phases, the π-π interactions must be diminished. Kumar demonstrated, in 2002, that joining two triphenylene units using a rigid conjugated spacer produced nematic material (Scheme 1).

![Scheme 1](image)

**Scheme 1:** Synthesis of triphenylene dimer showing nematic mesophases
The dimers were linked by a diacetylene bridge and exhibited nematic mesophases over a wide range of temperatures. It is noteworthy that in the monomers only ordered columnar mesophases were observed.

### 1.6.1.2 Nematic Columnar Mesophase
The nematic columnar mesophase (N$_{C}$) is induced by the charge-transfer interactions. These occur between a donor molecule and an acceptor. The molecules are stacked in columns, which have short-range orientational order. However, these assembled columns do not form a 2D lattice because their side chains differ in length.

![Figure 1.10: Arrangement of molecules in the NC phase.](image)

### 1.6.1.3 Nematic Lateral Mesophase
A new type of discotic mesophase was discovered in 2001. This was the nematic lateral (N$_{L}$) phase. It was demonstrated this N$_{L}$ mesophase forms as a result of a charge-transfer complex between an electron acceptor and an electron donor. The molecules are arranged into disc-shaped superstructure with the nematic pattern (Figure 1.11).
1.6.2 Columnar Phases

Researchers have been aware of columnar mesophases ever since 1977, when it was first demonstrated that disc-shape molecules could form liquid crystal phases.\(^8\) The mesogens are stacked one on top of the other to form columns. This occurs because of the large \(\pi-\pi\) interactions between the aromatic cores. It is for this reason that the majority of discotic liquid crystals are columnar. These columns form part of a larger 2D lattice. A number of symmetries are known, some of which are illustrated in Figure 1.12.

**Figure 1.11:** Arrangement of molecules in the \(N_L\) phase.
Figure 1.12: Symmetries of columnar DLC 2D lattices within the columns.
The mesogens can be in a regularly ordered pattern or disordered.

**Figure 1.13:** Ordering of mesogens within columnar phase various of triphenylene

Triphenylene derivatives have been shown to form columnar mesophases. Some examples are illustrated in Figure 1.14.

**Figure 1.14:** Triphenylene derivatives showing columnar mesophases

### 1.6.3 Smectic Phase

As previously mentioned, the smectic mesophase is seldom seen in discotic mesogens. Nevertheless, a smectic mesophase may be observed when the number of peripheral side chains is reduced or if these side chains are unevenly distributed. The smectic phase has also been called the discotic lamellar phase, denoted D_{L}
**Figure 1.15:** Arrangement of molecules in the D\textsubscript{L} phase.

### 1.6.4 Cubic Phase

The cubic phase is seldom observed in discotic mesogens and has only been documented as forming from phthalocyanine derivatives. However, *lyotropic* liquid crystals, which form as a function solvent, often exhibit a cubic phase\textsuperscript{16} The structure is formed from linked, branched columns, which create the cubic lattice.

### 1.6.5 General applications of discotic liquid crystals.

Discotic liquid crystals have many applications and are among the materials used in organic electronics. Conjugated liquid crystals (LCs) are now forming the new generation of organic semiconductors because of their ‘order and dynamics’ characteristics. Their order, in particular, is an important parameter directing the performance of organic semiconductors in devices. The low, discrete molecular mass of liquid crystals allows chemical structures to be synthesised, which are not only free from defects, but can also have higher levels of purity than the majority of conjugated polymers. The unique features of DLCs include their molecular properties, their supramolecular order, their processing into thin films, and their device performance. In addition, the charge transport properties of discotic materials and their optical properties are also advantageous in view of their potential applications in photovoltaic cells or LEDs. This is because, in such applications, it is useful to have the absorption coefficients over a large range of wavelengths. This can be successfully achieved by enlargement of the aromatic core of PAH.
1.7 Synthesis of Triphenylene Core

The core of a liquid crystal is its most fundamental structural feature. This core is the rigid unit built from ring units, which are linked together. It is often defined as including any linking groups and any lateral substituents, which are joined to the rings. Perez and co-workers have summarized the practical synthesis of triphenylene so far, by categorizing it into six distinct kinds. Triphenylene is synthesized by preparing and isolating it from terphenyl using oxidative cyclisation/photocyclization (Type 1), from biphenyls using palladium catalyzed coupling/oxidative cyclisation (Type 2), from naphthyls using Diels-Alder cycloaddition (Type 3), from phenanthryls using the Diels-Alder reactions/photocyclization (Type 4), three benzene rings using oxidative trimerization (Type 5) and one (substituted) benzene ring using photochemical cyclisation (Type 6) (Figure 1.16).

**Figure 1.16:** Different routes of triphenylene synthesis
1.7.1 Oxidative Cyclisation/Photocyclisation (Type 1 Synthesis)

The most important stage in type 1 syntheses is the cyclisation of an ortho-terphenyl. Examples of this being used in the synthesis of triphenylenes have been documented. Terphenyls are most often synthesised by the use of palladium-catalysed cross coupling reactions. Both symmetrically and unsymmetrically substituted triphenylenes can be produced using this form of synthesis. Oxidative cyclisation was originally developed for the synthesis of phenols. However, it is currently a classic step in the formation of biaryl bonds. Numerous different oxidizing agents have been used in this coupling reaction, for example K$_3$Fe(CN)$_6$, VOCl$_3$, Ti(OCOCF$_3$)$_4$, MoCl$_5$, VOF$_3$, and FeCl$_3$ (Scheme 2).

**Scheme 2:** Synthesis of unsymmetrical triphenylene.  
Photocyclisation is also used in type 1 syntheses. If the terphenyl is irradiated with UV light, using iodine as oxidant and propylene oxide (PO) as an acid scavenger, the yield from the cyclisation of terphenyl to triphenylene can be improved (Scheme 3).

**Scheme 3:** Synthesis of symmetrical triphenylene.
1.7.2.1 Palladium Catalysed Coupling (Type 2 Synthesis)

The step, which characterizes type 2 syntheses, is the formation of triphenylene from a biphenyl. There are three possible ways in which this can be achieved: palladium-catalysed coupling, Diels-Alder cycloaddition and oxidative cyclisation. In Scheme 3 unsymmetrically substituted triphenylenes are synthesised by means of a double Suzuki coupling reaction between the diboronic acid and dibromide compound. This is an efficient method of generating unsymmetrically substituted triphenylenes. Numerous different alkyl/aryl-group have been found to work using this synthesis.

Scheme 4: Palladium-catalysed synthesis of unsymmetrical triphenylene from biphenyl.\textsuperscript{19}

1.7.2.2 Diels- Alder Reactions

An interesting synthesis of triphenylene \textit{via} intermolecular Diels-Alder reaction was published in 1996.\textsuperscript{20} A double Diels-Alder reaction was used, after which re-aromatization with DDQ produced the required compound which contained two triphenylene units (Scheme 4).\textsuperscript{21}
Scheme 5: Diels-Alder Synthesis of a triphenylene derivative.

1.7.2.3 Oxidative Cyclization

Oxidative cyclisation follows the same conditions as in type 1, many different oxidants can be utilised, and an example is shown in Scheme 5. The paper by Boden et al. shows that this route tolerates substituents in the sterically hindered α-position, which were previously difficult to obtain. 22
Scheme 6: Oxidative coupling of triphenylene from biphenyl.\(^{22}\)

1.7.3 Diel-Alder Reaction (Type 3 Synthesis)
Type 3 methods focus on the synthesis of triphenylene from a naphthalene core. Most syntheses through this route go via a Diels-Alder reaction.

When Naphthalene 5 reacts with phenyllithium, an \textit{in situ} tetradehyronaphthalene 6 is produced. When this reacts with furan, it generates biadduct triphenylene 7. This then undergoes deoxygenation by being treated with Pd/C and Mg. TFA is then added to produce triphenylene 1, (Scheme 6).

Scheme 7: Synthesis of triphenylene 1 via Diels-Alder.
1.7.4 Diels-Alder reactions/Photocyclization (Type 4 Synthesis)

In type 4 synthesis, the last ring on the triphenylene is produced by the Diels-Alder reaction and photocyclisation, using a phenathrene derivative.

1.7.4.1 Diels-Alder reaction.

The phenanthrene diene has exocyclic double bond. This reacts with benzyne as dienophile to form endoxide 9. Treating this with Fe\(_2\) (CO)\(_9\) deoxygenates it to benzo triphenylene 10, as shown in Scheme 7.\(^\text{23}\)

![Scheme 8: Synthesis of benzotriphenylene by Diels-Alder reaction.](image)

1.7.4.2 Photocyclisation reaction.

The required product 12, can be produced by means of a photocyclisation reaction using phenathrene derivative 11. This then undergoes dehydroxylation, as shown in Scheme 8.

![Scheme 9: Synthesis of triphenylene via photocyclisation of phenanthrene.](image)

1.7.5 Oxidative Trimerisation (Type 5 Synthesis)

Since the early work of Mannich, the most commonly used method of synthesizing triphenylene has been the oxidative trimerization of benzene.\(^\text{17}\)

Following the discovery of triphenylene as liquid crystal, most of the focus has been on the
synthesis of hexaalkoxytriphenylenes. A widely used procedure, since 1960, has been the oxidative trimerisation of catechol derivatives and chloranil or FeCl₃ in sulphuric acid. Bushby and co-workers¹⁹ have optimised the experimental conditions for the trimerisation process using FeCl₃. Other oxidizing agents such as MoCl₅ and VoCl₃ can be used for this reaction, under the same conditions. This has been carried out by lowering the concentration of the H₂SO₄ (Scheme 9). Methanol was added at the start of workup as a reducing agent. This produced a high yield of hexasubstituted alkoxy-triphenylenes. Other substituents ranged from hydroxyl, crown ether to chiral moieties.

![Scheme 10: Oxidative trimerization of benzene (substituents are needed)](image)

1.7.6 Catalyzed and Photochemical Cyclisation (Type 6 Synthesis)

1.7.6.1 Catalyzed Cyclisation

Some examples of triphenylene synthesis using one pot formation of the peripheral rings has since been documented. This is a method, which is often used to synthesise compounds that are not easily synthesised using the standard methods.

The starting material 13 underwent acid catalysed cyclisation. Dehydrogenation using palladium on carbon, generated product 15 (Scheme 11).²⁵

![Scheme 11: Synthesis of triphenylene by acid catalysed reaction.](image)
1.7.6.2 Photocyclization Reaction

Photocyclisation has been used to synthesize tribenzotriphenylene 17 from stilbene 16 (Scheme 12). \(^{24}\)

![Scheme 12: Photocyclization of stilbene to triphenylene.](image)

1.8 Triphenylene Substitution

1.8.1 Symmetrical and Unsymmetrical Triphenylene Core

Research studies reveals that the sites for attachment of triphenylenes to give discotic liquid crystals are usually the 2, 3, 6, 7, 10 and 11 positions.

![Figure 1. 17: Peripheral attachments sites of triphenylene](image)

Attached on these sites are most often flexible alkoxy chains (-OR), that reduce the melting points and allow liquid crystal phases formation. \(^{17}\)

The alkoxy chains are also responsible for stabilising the molecular orientations needed for liquid crystals phase generation. The presence of polar groups do not necessarily reduce the melting points, but can stabilise the molecular orientation. Additionally, their physical properties are also strongly dependent upon the choice of terminal unit.
To maintain a disc-like structure, the central core is usually symmetrical and the substituents are present in numbers that are appropriate for the central core; also having all the peripheral units as identical helps to maintain the overall discotic architecture of the structure. For unsymmetrical compounds with different peripheral chains, the reduction in symmetry causes a reduction in melting point as the unsymmetrical nature of the molecular structure means that the unsymmetrical compound is no longer truly disc-like and this is the reason why the stability of the hexagonal mesophase is much reduced. In some cases, the less ordered columnar phase is exhibited. 5

### Scheme 13: Synthesis of Unsymmetrical Substituted Triphenylene

R₁ = OCH₃, R₂ = OC₆H₁₃, R₃ = OC₁₀H₂₁
X = Br, I, M = B(OH)₂

### Scheme 14: Synthesis of unsymmetrical triphenylene with electrophilic Substitution

R = C₆H₁₃, E = Br

### 1.9 Synthesis of Alkoxytriphenylenes
1.9.1 Hexaalkoxy-triphenylenes (HATs);

Hexaalkoxy triphenylenes (HATs) are the most synthesised triphenylenes and their mesogenic properties are studied. HATs has the advantage of having been extensively studied and structurally characterised, which makes it an ideal model system for the study of the unification of polymer and self-assembly properties of the HATS.\textsuperscript{26}

![Hexaalkoxy triphenylene structure](image)

\[ R = C_{10}H_{21}, C_{6}H_{13} \text{ or } C_{5}H_{11} \]

**Figure 1.18:** Hexaalkoxy triphenylenes (HATs)

Several methods are being employed to synthesise hexaalkoxytriphenylenes. HATs can be substituted at \( \alpha \)-position, which support mesophase formation.

The tetrahexyloxytriphenylenes dibromide are often use as the intermediate for the synthesis of many triphenylenes discotics liquid crystals.\textsuperscript{27}

![Tetra (hexyloxy) triphenylene dibromide structure](image)

\[ R = C_{6}H_{13} \]

**Figure 1.19:** Tetra (hexyloxy) triphenylene dibromide
Most common method for synthesis of triphenylenes derivative is by trimerisation of dialkoxy and biphenyl routes using electron rich precursors, yielding hexa-substituted derivatives (hexa-alkoxytriphenylenes). Triphenylene cores with low degree of substitution like trialkoxytriphenylenes cannot be synthesised using this method, but pentaalkoxy derivative could be prepared using the method but at a very low yield. Triphenylenes with less than six alkoxy groups are the most useful intermediates to prepare derivatives with new substituents; this is effectively done these days by ‘Terphenyl route’.5 (Scheme 1).

1.9.2 Hydroxyl (alkoxy) Triphenylenes.

The most common hydroxyl HATs synthesised are the monohydroxytriphenylenes (MHTs). The hydroxy-functionalised triphenylenes are very valuable precursors for the synthesis of dimers, oligomers, polymers, network, mixed tails, lower and higher degree substituted derivatives. There are other possibilities for the preparation of alkoxyhydroxytriphenylenes. Seven different types have been prepared through selective and non-selective chemical method.6

![Diagram of hydroxyl-alkoxy-triphenylene structures](image)

Figure 1.20: Types of hydroxyl-alkoxy-triphenylene.6
The seven alkoxy-hydroxytriphenylenes that have been prepared using selective and non-selective chemical methods as represented with molecular structures above are monohydroxy-pentaalkoxy-TP 18, 2,3-dihydroxy-6,7,10,11-tetraalkoxy-TP 19, 2,6-dihydroxy-3,7,10,11-tetraalkoxy-TP 20, 2,7-dihydroxy-3,6,10,11-tetraalkoxy-TP 21, 2,11-dihydroxy-36, 10,11-tetraalkoxy-TP 22, 2,6, 10-trihydroxy-3,7,11-tetraalkoxy-TP 23 and 2,7,10-trihydroxy-3,6,11-tetraalkoxy-TP 24. These hydroxy-functionalised triphenylenes can be achieved in different ways. The earliest one is the monohydroxypentaalkoxy-Tp synthesised by partial alkylation of hexaacetoxy-TP to monoacetylpenta-alkoxy-TP in low yield, which can be hydrolysed to monohydroxy-pentaalkoxy-TP.

Another important method is the non-selective cleavage of one of the alkoxy groups of the hexaalkoxytriphenylene. A selective cleavage of the methyl ether of monomethoxyalkoxy-TP prepared by biphenyl route with diphenylphosphide give the monohydroxytriphenylene at high yield; the disadvantage of this method is the low yield of biphenyl starting materials synthesised by Ullman coupling reaction. Synthesis of MHT by the direct coupling tetraalkoxybiphenyl and alkoxyphenols has also been reported.

The summary of the different methods of synthesis of MHT reported by researchers is summarized as below in Scheme 16.
Scheme 16: Synthesis of Monohydroxytriphenylene (MHT).\textsuperscript{28}

The synthesised monomethoxy-TP, Monohydroxy-TP and Pentaalkoxy_TP are not liquid crystalline. However, bromination of the pentaalkoxy-TP gives a liquid crystal derivative.\textsuperscript{28}
1.10 Reaction of Ferrocene with Triphenylene

Ferrocene, which has the formula Fe (C₅H₅)₂, is a kind of organometallic compound known as a prototypical metallocene. Structurally, ferrocene has a central metal atom with two cyclopentadienyl rings bound to it on opposite sides. It is therefore amongst those organometallic compounds, which are known as “sandwich compounds”. Ferrocene is unique in terms of structure, as well as its stability, both chemically and thermally. In addition, its sandwich structure, which is a three-dimensional aromatic system, gives it the potential for immediate use in a number of organic reactions.

Ferrocene was discovered in 1950 and, over the next 20-30 years, rapid progress was made in researching its chemistry. Research into ferrocene studied the many possible applications of this compound and its derivatives, such as in pharmaceuticals, and as additives for oils and motor fuels. It has also been used in fine organic synthesis, as a catalyst, as well as in and polymeric materials. ²⁹

![Figure 1.21: Structure of ferrocene](image)

The central metal atom in ferrocene is symmetrically bound to all five of the carbon atoms of each ring, and this is the compound’s main, significant characteristic. However, the structure cannot accurately be described using the terminology of classical valency bonding because the metal is linked to each ring by means of just a single covalent bond. This type of bonding requires the availability of a d-orbital of the metal. Transition metals fulfil this condition, and it has now been demonstrated that all of them have the capacity to yield cyclopentadienyl derivatives. ³⁰
1.10. 1 Monosubstitution of Ferrocenes

If ferrocene is used as a terminal group, its large 3D structure produces a steric effect, which does not allow easy molecular packing. In the liquid crystalline phase, there is therefore a perceptible anisotropy of the intermolecular interactions. This problem can be avoided in calamitic systems if extra benzene rings are added to enlarge the core (which is a rigid fragment) of the rod-shaped molecule. However, this results in a considerable rise in the transition temperature of the phase.

In calamitic systems, if mesomorphism is to occur when the ferrocene moiety is present, the molecular core must have a minimum of three aromatic rings. Where fewer benzene rings have been used, either no liquid-crystalline phase has been produced at all, or the result has been a smectic B phase with a high level of order, equivalent to plastic crystals. Structures which have a trans-cyclohexane moiety, rather than benzene rings, are an exception, as are fused polycyclic moieties and some new compounds in which the two benzene rings, which form the rod-like fragment, are separated from the ferrocene moiety by a long hydrocarbon chain. Another group of compounds is mostly made up of those ferrocene derivatives which have a cholesteryl group as their rigid core.

These cholesteryl group-containing mesomorphic compounds differ structurally from the majority of liquid crystals, which have characteristic traits in the molecule’s rigid part. In liquid crystals made from monosubstituted ferrocenes, the properties they exhibit depend on a number of factors: the number of benzene rings, the length of the terminal group’s hydrocarbon chain, the lateral substituents present in the aromatic system and the kind of linking groups found in the rigid molecular core.

1.10. 2. Electrophilic Reaction of Ferrocene

Substituted derivatives can be produced from ferrocene because it goes through numerous reactions, which are typical of aromatic compounds.
Scheme 17: Significant reactions of ferrocene with electrophiles as well as other reagents. 

A further example is the Friedel-Crafts acylation of ferrocene, an undergraduate experiment. This uses acetic anhydride with a catalytic quantity of phosphoric acid and yields acetylferrocene Scheme 18.

Aluminium trichloride is often used as a catalyst for acylations. However, in this case it generates the disubstituted: 1,1'-diacetylferrocene. Phosphoric acid, which is milder, is therefore preferable as a catalyst, producing the acylium ion electrophile by means of protonation. Acetic acid is then lost.
In order to compensate for the unwanted effects of the large ferrocene moiety, it is possible to use 1,3-disubstituted ferrocene substitutions, since the substituents, being in the same plane, make a rigid rod. These compounds exhibit other structural characteristics, such as planar symmetry. In addition, they have the potential to generate mesophases with chiralities as a result of the ferrocene moiety. However, in these cases, the enantiomers have to be separated, which is not easy. Thus new synthetic routes are being developed to achieve ferrocene derivatives of chiral smectic phases, which are planar, unsymmetrical substituted and have ferroelectric characteristics. 1,2-substituted derivatives are therefore most commonly used. Numerous methodologies for the synthesis of 1,2-disubstituted ferrocenes have been developed. Ortho-directing groups are used in most of these methods. For instance, $N,N$-dimethylaminomethylferrocene and chloroferrocene can both be ortho-deprotonated using n-butyllithium. It is then possible to react these lithiated intermediates with electrophiles to yield 1, 2-disubstituted products.
Scheme 19: Electrophiles of 1, 2 disubstituted ferrocene product

1.10.4 Synthesis of Ferrocenyl Triphenylene

The chemistry of both ferrocene and triphenylene derivatives are a fascinating area for study, because these kinds of compounds have supramolecular formulations whose functionalised derivatives have the potential to generate a thermotropic discotic liquid crystal phase with high 1D conducting properties.

Work on producing Ferrocenyl triphenylene from monohydroxytriphenylene has been published by Cooke et al.\textsuperscript{38} The triphenylene building blocks 26 were prepared from monohydroxy-triphenylene derivative 25. This involved a $\text{K}_2\text{CO}_3$ induced reaction using 6-bromohexan-1-ol. A good yield of triphenylenes 29 and 30 was produced using a DCC/DMAP esterification of compound with DCM at a temperature of 25 °C (Scheme 17). Replacing the methoxy (OCH\textsubscript{3}) on 25a with a hexyl (OC\textsubscript{6}H\textsubscript{13}) chain 25b gave a higher yield of hexahydroxy-triphenylene derivative 26.
Scheme 20: Synthesis of Ferrocenycarboxy-triphenylene 29 and Tetrathiafulvalenylcarboxy-triphenylene 30

Similar reactions were undertaken using 25a with either 27 or 28 in DCM or THF. Only N-acyl ureas 31 and 32 were produced from these reactions. N-Acyl ureas are side products, which are known to form when carboxyl groups are activated with DCC. The alcohol 26 in both of the DCM or THF solvents has low solubility. It would appear that this encourages the O-acyl urea, which is produced in the initial reaction of the carboxy- derivatives with DCC, to reform as the N-acyl urea derivative.
Scheme 21: Synthesis TTF-fluorocarboxyl-TP and Ferrocenyl-TP using Fluoro derivatives.

The use of fluorocarbonyl-TTF 33 and fluorocarbonyl-ferrocene 34 was investigated as an alternative to the DCC/DMAP esterification procedures, in order to avoid the high yields of by-products. These had already been demonstrated to be useful, effective reagents for the preparation of carboxylic esters. Derivatives 33 and 34 were found to be particularly effective reagents when preparing 35 and 36. This concurred with the researchers’ earlier work.

High yields of the required esters can be produced by adding DMAP to the reaction mixture. The results achieved by Cooke et al demonstrate that using just DMAP as a catalyst and pyridine as a base can encourage the formation of the desired compound. However, rather than producing carboxylics, the derivatives formed are fluoro acyl compounds.

1.11 Synthesis and Properties of Twinned Triphenylenes (Dimers)

If two identical mesogen units with appropriate spacers are bound together, dimers can be produced. While the linking units can be either rigid or flexible, the flexible types are most frequently used. Dimers are the smallest oligomers and, due to their restricted molecular movement, exhibit physical characteristics which differ from those of conventional monomeric liquid crystals with low molar masses.
A new principle has been recognized for the design of discotic nematic liquid crystals. New types of discotic liquid crystal called “triphenylene twins” have been designed and synthesised. These have a mesogenic core consisting of two triphenylenes, which are covalently linked using a rigid spacer. These triphenylene twins are classified according to the length of their Beta-substituted chains (i.e R₂ and R₃) and their peripheral alkoxy or branched aliphatic chains (R₁ and R₄). Twinned macrocyclic structures with links at the 3, 6 positions have recently been made possible by improvements in synthesis techniques. It has also been demonstrated that if triphenylene discogens are twinned using rigid linkers, nematic mesogen formation can occur, as opposed to the more commonly produced columnar mesophase.

Figure 1.21: Some synthetic twinned triphenylenes.
Scheme 22: Synthesis of dehydroannulene-twinned triphenylenes linked through 3, 6 position.\(^7\)

Scheme 23: Synthesis of thiophene-bridged twin.\(^3\)
Scheme 24: Synthesis of expanded thiaporphyrin-like twins. 27

Recent times have seen considerable progress in monofunctionalised triphenylene synthesis. As a result, various triphenylene based discotic dimers, oligomers and polymers have been produced. The easiest method for preparing a dimer is to attach two monomers using flexible spacers. Dimer chemistry includes a complex molecule, since a calamitic molecule is used to link the two triphenylene units. 6

Figure 1.22: Dimer Ringsdof et al’s synthesis of a linked triphenylene. 6
More liquid crystalline materials can be prepared by using a mesogenic azobiphenyl moieties instead of azobenzene. The resulting materials melt at 72°C to produce an extremely viscous mesophase which clears at 120°C.32

Figure 1.23: Discotic dimer with an azobiphenyl moiety.42

The most frequently prepared triphenylene dimers have two identical triphenylene moieties which are linked by means of a spacer. This spacer often consists of poly-methylene chains. However, esters or amide linkages are sometimes used at the centre of the spacer in the terminal positions. Illustrated below is one of the five triphenylene twins designed by Kumar and co-workers.

Scheme 25: Synthetic route for producing a symmetrical dimer.42
An unsymmetrical twin, in which a short methoxy chain was used to replace one of the long alkoxyl peripheral chains, was reported by Boden et al. In this case, preparation of the starting material is by means of a phenyl-biphenyl coupling between tetrakox bibhenyl and 2-methoxy phenol. In 1990, structures with liquid crystal properties were reported by Krag et al, using ester rather than ether linkages.

![Discotic dimer with ester linkage.](image)

**Figure 1.24: Discotic dimer with ester linkage.**

It has also been shown that two major factors to consider, when molecular self-assembly of the triphenylene twin is required, are rigid spacer length and beta substitution. Triphenylene twin which exhibit polymorphism, including the nematic phase have also been produced. Furthermore, research into the effects of linkages and functional groups has produced monomers which are joined by an alkyl chain, by means of either an ester linkage on one side or an ether linkage on the other. Discotic dimers and trimers have been designed and produced with triphenylene electron donor moieties and anthraquinone electron acceptor moieties, with different functional groups. These have various nematic and columnar mesophases which are stable at room temperature. It has been found that molecular assembly is affected by both the functional group at the core and the terminal linking group. Moreover, it has been demonstrated that the non-branched peripheral chains, which are common in DLCs can generate the nematic phase at room temperature. Columnar mesophases with star-like liquid crystals (Figure 1.29) are seen in cases where the discotic structure consists of a triphenylene core and six peripheral triphenylene units, this
The mesomorphic tendency of the compounds is increased if the core is larger than benzene. Most discotic materials exhibit columnar phases, sometimes with a nematic phase ($N_D$) as well.\textsuperscript{43}

1.11.1 Triphenylene acetylene dimer

Compounds whose peripheral moieties are joined to the central, disc-like core using acetylene links, have the exceptional qualities of low melting points and the ability to exhibit just a nematic phase without a columnar phase. Steric interaction between aryl rings can be prevented by introducing acetylene linkages. This also permits the rings to twist at 90° to each other. Furthermore, acetylene links are highly
polarizable. This is because the molecules are face to face as they come together to form columns. Since they repel one another, they slide sideways, thus avoiding the columnar phase and forming a nematic phase.\textsuperscript{43}

Triphenylene dimers, where a rigid $\pi$-conjugated diacetylene spacer was used to link two identical triphenylene units, were synthesised by Kumar et al. Preparation of these dimers, which exhibited discotic nematic mesophases over a wide range of temperatures, causes dimerization of the triphenylene derivatives using a free monoacetylene group.\textsuperscript{6}

\begin{center}
\textbf{Figure 1.26:} Diacetylene Bridge Triphenylene Dimer
\end{center}

A number of diads joined by acetylene units were synthesised in 2009. These dimers were shown to form more stable, more ordered columnar mesophases than their equivalent monomers. Furthermore, their semi conductive properties were enhanced.\textsuperscript{44} It was also discovered that the high symmetry of 36 improved the $\pi$-$\pi$ interaction between the triphenylene cores. In addition, the formation of ordered columnar mesophases was enhanced.
The most effective reaction method for coupling acetylenes with aryl and vinyl halides is Sonogashira coupling. This method has been used to synthesize numerous products, including polymers, pharmaceuticals and functionalised materials. Deb et al. conducted Sonogashira coupling of ethynyl ferrocene and oxazoliny
bromobenzene. This experiment used a Pd catalyst with Cul. The result was a yield of both Cul and CuBr bound complexes Scheme 25. This suggests that the chiral ethynyl ferrocene ligand has a strong tendency to form Cu (I) complexes. Thus, π- complexes can be generated by more than one pathway.

![Scheme 25: Synthesis of π- Cu complexes during the Sonogashira reaction](image)

Investigation of the potential for isolating complexes which have similar ligands was undertaken. Cuprous Ferrocene acetylide was prepared. This was then reacted with oxazolinyl iodobenzene Scheme 26. Reaction conditions similar to those shown in Scheme 25 were used. The reaction took place, although the coloured compound, which was produced, was not sufficiently stable for isolation.

![Scheme 26: Synthesis of π- Cu complexes during the Sonogashira reaction](image)

It is possible that the ferrocene unit is responsible for this effect. The Cu (I) centre might be protected by its steric bulkiness, thus providing a level of stability, which cannot be achieved using a phenyl group. This issue affects acetylene coupling when derivatives other than acetylene bonds coupled to themselves are used. Thus a dimer is the result, rather than the formation of the expected product.

Numerous Sonogashira reactions were conducted without using copper salts. This avoids the copper mediated oxidative homocoupling of acetylene, making it possible to perform Sonogashira reactions under aerobic conditions. Many such reactions have proven successful.
Liang et al have developed a mild protocol for the copper-free Sonogashira coupling of aryl iodides with terminal acetylenes. This is conducted in water under aerobic conditions. The process is carried out at room temperature and uses 1 mol % PdCl₂ in the presence of pyrrolidine. Good or excellent yields have resulted.⁴⁶

**Scheme 28**: Copper-free Sonogashira coupling of aryl iodides with terminal acetylenes.

Click chemistry has recently been used to produce a triphenylene diad. The triphenylene units are linked using a triazole. ⁴⁷ Two diads were synthesized. One of these was linked using a -CH₂-unit. The other was joined by means of a phenyl group. The intention was that the formation of columnar mesophases would be enhanced by the addition of an aromatic group.

**Figure 1.28**: Triphenylene dimer linked through diazole link.

Analysis of the diads, however, revealed that it was only the -CH₂- linked dimer which exhibited mesophase behaviour. It was suggested that the reason for this was, as Kumar had stated, that the flexibility provided by the spacer was reduced by the extra aromatic ring’s rigidity. Thus, the stacking of the triphenylene cores is made more difficult.⁴⁸
1.11.2 Synthesis of twinned triphenylene ester

Ester or amide linkages have also been used, either in the centre of the spacer or in the terminal positions.  

Synthesis of compound 26 was undertaken using the route illustrated in Scheme 19. This involved a potassium carbonate mediated esterification of monohydroxytriphenylene 25 with 6-bromohexanol-1 in ethylmethyl ketone. The required intermediate was thus produced.  

Scheme 29: Synthetic route of Ester dimers.
Esterification of hydroxyl functionalized triphenylene 26 was used to generate the ester dimers using benzene dicarboxylic acids. Ester dimer 51 was obtained using isophthalic acid, 53 with terphthalic acid and 55 with phthalic acid. This was carried out in the presence of N, N' - dicyclohexylcarbidimide (DCC). The solvent used was a catalytic quantity of 4-dimethylaminopyridine (DMAP) in dry dicloromethane.25

1.12 Application of Triphenylene
Triphenylene derivatives have many applications as listed below, many are due to the liquid crystalline properties of the compounds synthesised.

1.12.1 Optical Compensation Films for LCDs
Liquid crystal display (LCD) devices have been dominated by calamitic LCs.49 Mixture of twisted nematic and super twisted nematic displays were used, however there were a number of problems associated with these types of displays. In 1995 Fuji Photo Film Company filed a patent for a thin film comprising of a triphenylene-based discotic liquid crystal with diacetylene groups in the side chain.50
**Figure 1.29:** Example of TP based DLC patented by Fuji Photo Film Company

This negative birefringence optical compensation film was used to overcome the issues of the narrow viewing angle of the compounds utilised in the LCDs. A single discotic compensation film has also been found to reduce the cost of LCDs, lower the operating voltage and colour-shift, and raise the contrast ratio.\(^5\)

### 1.12.2 Organic Light Emitting Diodes.

Conjugated bridged triphenylene derivatives show electroluminescent properties. These compounds could be used as the emissive layer in organic light-emitting diodes (OLEDs). OLEDs are devices that utilise a layer of organic material sandwiched between two electrodes, one a transparent anode and the other a metallic cathode.\(^5\) These have two main benefits over liquid crystal displays (LCD), first they do not require a backlight so are much thinner and lighter, and secondly they can be viewed from a range of angles. Researchers showed that their triphenylene derivatives could be used in single and double layer displays.
Figure 1.30: Triphenylene derivatives use in OLED devices.

To create the organic layer, thermal evaporation is used; this process means that the thickness of the layer can be controlled under vacuum conditions. The energy difference between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) determines the colour of the photon, this is therefore controlled by the extent of the \( \pi \)-conjugation in the molecule.

1.12.3 Gas Sensors

Devices used in the sensing of volatile gases were found to have a significant problem, their sensitivity to water vapour; in humid conditions, the signals from the volatile materials were unable to be detected. A solution for this was found by Clements et al. when they tested triphenylene systems. These TP systems were highly sensitive to the presence of volatile substances, including non-polar molecules such as alkane hydrocarbons, and also alcohols, esters and aromatics. However, they showed no sensitivity to the presence of water vapour, making them ideal candidates for gas sensors.

More recently, a triphenylene-tricarboxylate system has been incorporated into a metal-organic framework (MOF) which displayed highly selective absorption of gaseous CO\(_2\) over CH\(_4\) and N\(_2\). The TP-MOF could also selectively absorb the nitro explosive 2,4,6-trinitrophenol (TNP), giving the structure potential applications in the monitoring of TNP.
1.12. 4 One-dimensional Energy Migration

Columnar liquid crystals have been reported as one-dimensional systems for electronic excitation transport since 1987. The discotic mesogens stack in columns that act as molecular wires, allowing for conduction through the cores, with the peripheral chains insulating the columns. Triphenylene derivatives have been extensively studied for these properties.

1.12.5 Organic Field-Effect Transistors

The first organic field-effect transistor (OFET) was designed using poly-thiophene as the active semiconducting material. The OFET had two major advantages, the cost of materials and manufacturing were reduced and the device became more environmentally friendly. The compounds synthesised are thiophene-based π-extended triphenylenes (Figure 1.36). They were shown to have good film forming properties, a high degree of crystallinity and lower optical bandgap energies.

![Structure of triphenylene](image)

**Figure 1.31:** Structure of thiophene based π-extended triphenylene for OFET fabrication.
1.12.6 Photovoltaic Solar Cell

Triphenylene moieties have also been utilised in photovoltaic solar cells. Chen et al. modified zinc oxide nanoparticles to introduce dithiol-functionalised triphenylene ligands (Figure 1.37). They found that the modified nanoparticles enhanced the charge separation and transfer efficiency.

Figure 1.32: Structure of dithiol-triphenylene ligand, structure of ZnO Nanoparticle modified with triphenylene ligands.
1.13 Aims and objectives

The aim of this research is to explore approaches to the synthesis of triphenylene mesogens that are linked through staggered ferrocene bridges. This type of molecular architecture for discogens is new and intriguing and follows the group’s recent discoveries concerning flat, twinned systems.

A general observation is that linking two triphenylene units through an appropriate length, rigid spacer will give distinctive architecture that can yield rare Nematic mesophases. More conventional, flexible spacers give columnar phases. The spacer could be a polymethylene chain but in some cases, there could be an ester or amide linkage in the middle of the spacer or at the terminal positions.

The triphenylene derivatives used for discotic liquid crystals are often 2, 3, 6, 7, 10 and 11 substituted (Figure 1.1). The target compounds in this research will be linked to one or two of this substituted position/s (Figure 1.33)

Figure 1.33: Triphenylene dimers
Our initial aim was to use a 3,6-dibromotriphenylene discogen as a common intermediate for the synthesis of staggered twins. A new synthesis of this important precursor was therefore planned to be initially investigated. Two different approaches were originally planned, direct linking and via acetylene units using Suzuki and Sonagashira couplings as key steps. Model compounds (monomers and more flexible dyads) were planned to be prepared for comparison.

However, previous work in our group has shown that twinning triphenylene discogens through rigid linkers gives rise to nematic mesophase formation compared to the formation of columnar mesophases that are normally observed. Some twinned triphenylenes synthesised from our group are as in Figure 1.34.

![Figure 1.34: Some synthetic twinned triphenylenes.](image-url)
CHAPTER 2 RESULTS AND DISCUSSION

2.1 Synthesis of Staggered Triphenylene Twins Linked Through Ferrocene Bridge.

Our research work focuses on the synthesis of new twinned triphenylenes. The two triphenylenes are staggered with respect to each other. This architecture is new, and intriguing. The simple twinned triphenylene is the recent focus. The general observation is that linking two discotic triphenylene units through an appropriately lengthed, rigid spacer can yield nematic materials, an important observation. Interestingly, our group have successively synthesised some discotic liquid crystals showing nematic phase. This research therefore initially focuses on the synthesis of twinned triphenylene with staggered ferrocene bridge because the product may have unusual liquid crystal properties because the bridging mode gives a unique architecture. Triphenylene linking position for discotic liquid crystals is 2, 3, 6, 7, 10 and 11 (Figure 2.1). We are therefore interested in the link and properties of the staggered ferrocene unit because the molecule or shape is unique. The target triphenylene twin will be linked by two ferrocenes, linking at position 3 and 6 of the triphenylene, other peripheral units (–OR where R is C₆H₁₃) will occupy the remaining positions. The gap between positions 2 and 3 is smaller than the gap between position 3 and 6 in triphenylene Figure 2.1.

Figure 2.1 Triphenylene linking sites and Ferrocenyl triphenylene twin.
2.1.1 Previous work


This thiophene triphenylene twin 39 is one of the twinned triphenylenes synthesised from our group. The thiophene unit is used because it allows communication throughout the two triphenylene cores forming the twin and the strain in the structure is less due to its matching bond angles. The synthetic route is as seen in Scheme 26. The thiophene unit was added by Sonogashira coupling, and the common method for coupling alkynes / acetylene linking group to form acetylene derivatives. The diiodo thiophene was used in excess; further coupling using 43 and more acetylene triphenylene 42 gave the resulting product 39.

2.1.2 Sonogashira Coupling Reaction

The reaction occurs by palladium-catalysed cross-coupling between a terminal sp-hybridised carbon of an alkyne with an sp² carbon of an organohalide (or triflates) is commonly termed as a Sonogashira coupling (Scheme 27).

Scheme 31: Summary of Sonogashira reaction

The Sonogashira reaction takes place through two independent catalytic cycles (palladium cycle and copper cycle) Figure (2.2). The palladium cycle (cycle A) starts with the catalytically active species Pd⁰L₂. The first step in the catalytic cycle is initiated by oxidative addition of the organohalide to form a Pd(II) complex. The complex is then transformed into a [Pd(II)L₂] after transmetalation with a copper acetylide that is generated in the copper cycle. The complex
undergoes reductive elimination, after cis/trans- isomerisation, to the final alkyne, regenerating the catalyst \([\text{Pd}^0\text{L}_2]\). The base (organic or inorganic) is assumed to assist the copper acetylide formation with the help of a \(\pi\)-alkyne copper complex, which would make the alkyne terminal proton more acidic\(^{59,60}\)

![Sonogashira coupling mechanism](image_url)

**Figure 2.2** Sonogashira coupling mechanism\(^{61}\)

### 2.2 A new Synthesis of Triphenylene Precursors

The early stages of our project concerned the development of improved synthesis of important unsymmetrically substituted triphenylene intermediates. As previously discussed, there are many types of synthetic process used for the synthesis of triphenylenes, most of the ways used are classified into six types by Perez and coworkers.\(^{17}\) The six types (1-6) are characterised by preparation and isolation of terphenyl (type1), biphenyl (type2) naphthyl (type 3), phenanthryl (type 4), three units benzene ring (type 5) and one benzene ring (type 6) respectively as key intermediates. These synthetic routes are all important but what we considered is the availability of the starting materials and reagents and also the yield of the
product. The most commonly used routes are the trimerisation of dialkoxy-benzene and biphenyl route using electron rich precursor to yield hexaalkoxy substituted triphenylenes, oxidative trimerisation of benzene in type 5 and cyclisation of ortho terphenyl in type 1 to synthesise symmetrical and unsymmetrical tryphenylenes. The most commonly synthesised triphenylenes are the alkoxy symmetrical and unsymmetrical substituted triphenylenes. Different literature shows that the synthesis of mono and disubstituted symmetrical and unsymmetrical triphenylenes, and the triphenylenes cores are possible, from terphenyl using some of these available routes as discussed by Perez and co-workers (type 1 route) examples, shown in Scheme 1 and 2 using oxidative cyclisation and photocyclisation.

2.2.1 Suzuki Reaction for the Preparation of Terphenyl, the key Intermediate

Suzuki-Miyaura coupling is said to represent one of the most widely used methods in organic synthesis. Suzuki coupling is the palladium-catalysed cross coupling between organoboronic acid and halides. The first Suzuki coupling reaction (Scheme 28).  

\[
\text{Scheme 32: First Suzuki coupling reaction.}^{63}
\]

Recent catalyst and methods developments have broadened the possible applications enormously; that the scope of the reaction pattern is not strictly on aryls, but it includes alkyls, alkenyls and alkenyls. Other borane compounds are also used such as organoboranes, potassium trifluoroborates, organoboranes or boronate esters instead of boronic acid. With these developments, we still consider the availability of the materials. Triflate (pseudohalides) are also used as coupling patners.  

Also, that the boronic acid must be activated, for example with base, that makes it different from Stille coupling (palladium catalysed cross coupling between an organotin or alkenyl, arylhalide or triflate).
In the Suzuki coupling reaction the metal/ligand systems that facilitate the cross coupling with different electrophiles have been the most extensively studied ranges from Pd\(^0\), Pd/C, Pd/Al\(_2\)O\(_3\), Pd\(_2\)dba\(_3\) or Pd(II)[PdCl\(_2\), Pd(OAc)\(_2\)] in the absence of ligands to very elaborate catalyst/ligand system has been applied, it is also said that recently the successful use of air stable catalyst has been reported to improve the catalyst turnover, to achieve the coupling with less reactive electrophiles or to permit coupling with hindered substrate.\(^{65}\)

2.2.2 Mechanism of Suzuki coupling reaction

![Mechanism of Suzuki coupling reaction](image)

**Figure 2.3** Mechanism of Suzuki coupling reaction. \(^{63}\)
2.2.3 Synthesis Tetramethoxy Triphenylene 60

Scheme 33: Synthesis of the Triphenylene core 61

Compound 56 was synthesised according to the procedure described by Fanta.\textsuperscript{58} Veratrole was brominated in dichloromethane at 0°C using bromine. After workup, the residue was recrystallized from isopropanol giving needle-like colourless crystals in 90% yield. Compound 57 was prepared by forming the Grignard reagent from 4-bromoanisole using Magnesium turnings and a crystal of iodine in dry THF. The cooled Grignard reagent was then added gently to mixture of dry THF and trimethylborate cooled at -78°C. The mixture was allowed to warm up overnight at room temperature. The mixture was worked up and recrystallised from hot water slowly. The product obtained was off white solid.

The two precursors 56 and 57 were coupled by a double Suzuki-Miyaura reaction. Compound 56, 4-methoxyphenyl boronic acid 57, palladium (II)dichloride (PdCl\textsubscript{2}), triphenylphosphine (PPh\textsubscript{3}) and sodium carbonate (Na\textsubscript{2}CO\textsubscript{3}) were reacted under standard conditions using toluene, ethanol, water (3:3:1) solvent mixture under Nitrogen atmosphere. The reaction was monitored by TLC and NMR of aliquots, and after 3 days, some bromide starting materials remained. More boronic acid and catalyst were added, and reflux continued for 5 more days. However, the reaction was still not complete. It was
stopped and worked up and separated by column chromatography eluting with 7:3 DCM/PE to give 58 as a colourless solid in yield of 75%. Dimethoxybiphenyl 59 was formed as a by-product in the reaction because of adding excess boronic acid to the reaction mixture. This by-product, proved to elute to the same level with the starting material, complicating the analysis of the reaction. $^1$H NMR of dimethoxybiphenyl 59 in CDCl$_3$ is as shown in Figure 2.4.

Figure 2.4: $^1$H NMR of dimethoxybiphenyl 59 in CDCl$_3$

Terphenyl 58 was stirred in DCM and nitromethane (CH$_3$NO$_2$) and FeCl$_3$ was added slowly over 2 h and further stirred for 2 h. The desired product was obtained by this oxidative cyclisation of 58 as seen in Scheme 33 is obtained as a colourless solid 60 in 52% yield by slow recrystallisation in DCM/MeOH.

Compound 60 was stirred in dichloromethane, cooled at 0°C and Bromine added dropwise and stirred for 2h. The solid obtained was purified by column chromatography (eluting 7:3 DCM: Pet ether) and the solid obtained was recrystallized from DCM and isopropanol giving colourless solid 61 in 61% yield.
Figure 2.5 $^1$H NMR of dibromotetramethoxy triphenylene 61 in CDCl$_3$.

Figure 2.5 shows the $^1$H NMR spectrum of triphenylene 61. As seen on the NMR spectrum, three resonances are present, each of the singlets are related to two aromatic protons. Triphenylene 61 has two bromines having leading to a classic isotopic pattern as seen on the mass spectrum. Triphenylenes with 4-6 long alkoxy chains are known to have columnar liquid crystal phases. Research findings shows that, to get triphenylene discotics, at least four C-atoms are required for the peripheral units. We reasoned that a convenient synthesis of the tetramethoxy intermediate could provide (after hydrolysis) a useful, common tetrahydroxy triphenylene intermediate that could be alkylated or acylated to modify the liquid crystal properties of the final twin material.

Surprisingly our group observed mesogenic behaviour in this triphenylene 61. On heating, a mesophase is formed at 188°C. The mesophase has a moderate range; it forms the isotropic liquid at 267°C. On cooling, a columnar hexagonal mesophase texture was observed with optical polarising microscopy. These findings show that triphenylene with just methoxy (-OCH$_3$) chains can also form a discotic liquid crystal phase.$^{67}$
2.2.4 Synthesis of Tetramethoxyterphenyl 62 and Optimisation

Terphenyls are most often synthesised among the famous routes by the use of palladium-catalysed cross coupling reactions as mentioned. Both symmetrically and unsymmetrically substituted triphenylenes can be produced using this form of synthesis. This is the most often route used in our group, and a version was used to synthesise terphenyl (Scheme 34).

Scheme 34: Synthesis of Terphenyl 63

The starting materials 56 and 62 were prepared for the synthesis of triphenylene in our lab, although they are also commercially available. Compound 56 was synthesised according to the procedure described by Fanta. Veratrole was brominated in dichloromethane at 0°C using bromine. After workup, the residue was recrystallized from isopropanol giving needle-like colourless crystals in 90% yield.

Compound 62 was prepared by forming the Grignard reagent from 3-bromoanisole using Magnesium turnings and a crystal of iodine in dry THF. The cooled Grignard reagent was then added gently to mixture of dry THF and trimethylborate cooled at -78°C. The mixture was allowed to warm up overnight at room temperature. Workup and recrystallization from water (a slow process) gave the product as an off-white solid.
Attempts were then made to couple the two precursors through a double Suzuki-Miyaura reaction. We therefore experienced some difficulties in this reaction. However, at the end we were able to get a suitable condition that gave us high yield within a short reaction time. The summary of the result of the different reactions is summarised in Table 2.1 as entries 1 to 5.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Solvents</th>
<th>time</th>
<th>base</th>
<th>%yield 63</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PdCl₂</td>
<td>Tol/EtOH/H₂O 3:3:1</td>
<td>336 h</td>
<td>Na₂CO₃</td>
<td>15%</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>PdCl₂</td>
<td>DME</td>
<td>240 h</td>
<td>Ba(OH)₂</td>
<td>52%</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>PdCl₂</td>
<td>DME</td>
<td>168 h</td>
<td>CsF</td>
<td>42%</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>PdCl₂(dppf)</td>
<td>DME</td>
<td>168 h</td>
<td>CsF</td>
<td>59%</td>
<td>77, 79</td>
</tr>
<tr>
<td>5</td>
<td>PdCl₂(PPh₃)₂</td>
<td>Toluene</td>
<td>13 h</td>
<td>K₂CO₃</td>
<td>96%</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 2.1: Optimisation of the Synthesis of Terphenyl 63.

In all cases, the solid 63 was recrystallized from EtOH and DCM, and no column chromatography is involved in the isolation. This is a convenient method for the synthesis of terphenyl, particularly because it avoids chromatographic separation.
In the first experiment, compound 56, 3-methoxyboronic acid, palladium (II)dichloride (PdCl$_2$), triphenylphosphine (PPh$_3$) and sodium carbonate (Na$_2$CO$_3$) were reacted under standard conditions using toluene, ethanol, water (3:3:1) solvent mixture under nitrogen atmosphere. After 4 days, there was no evidence for product formation (NMR of an aliquot). More boronic acid and catalyst were added, and reflux continued for 3 more days. However, the reaction was still not complete. It was stopped and the solvent exchanged for DME and heated under reflux (total days for the reaction 10 days). Starting material was still present in the mixture, which was worked up and separated to give a low yield of terphenyl (15%).

![Figure 2.6: $^1$HNMR of boronic acid 62 in CDCl$_3$.](image-url)
Subsequent experiments were therefore performed in attempts to improve the transformation.

In one experiment compound 56, 3-methoxyphenylboronic acid, PdCl₂, PPh₃ and Barium hydroxide (Ba(OH)₂) were stirred with DME solvent. Analysis of the reaction after refluxing for 7 days again showed remaining starting material. More of 3-methoxyphenylboronic acid PdCl₂, PPh₃ was added to the mixture and stirring continued for another 3 days. An improved yield of terphenyl was obtained (off-white crystals, 52%) alongside a significant quantity of 4, 4-dimethoxybiphenyl side product.

Subsequent coupling employed caesium fluoride in DME solvent (7 days, 42 %), caesium fluoride in DME solvent under nitrogen (PdCl₂(dppf), 7 days, 59 %). However, the best outcome employed K₂CO₃ in toluene where reflux for 13 h have a 96% yield using (PdCl₂(PPh₃)₂).
2.3. Synthesis of Tetramethoxytriphenylene 64

![Scheme 35: Synthesis of triphenylene core 64](image)

Terphenyl 63 was stirred in DCM and nitromethane (CH$_3$NO$_2$). FeCl$_3$ was added slowly within 2 h and further stirred for 2 h. The desired product 64 was obtained by oxidative cyclisation of 63, following the procedure of Artal and co-workers. This process involves the repeated cycles of electron removals, C-C bond formation and deprotection. MeOH was used for quenching the excess FeCl$_3$, from the procedure developed by Klaus Bechgaard. Nitromethane (CH$_3$NO$_2$) was added to increase the solubility of the FeCl$_3$. The FeCl$_3$ in DCM is a very satisfactory oxidant, the FeCl$_3$ –DCM/ MeOH workup protocol provides the best route to a wide range of systems.

The resulting product was obtained without any further purification, except washing several times with methanol and drying under vacuum. The low solubility of the product initially caused problems for isolation, but this protocol proved effective.
2.3.1: Oxidative Cyclisation of Terphenyl

Oxidative coupling of aromatic or heterocyclic compounds provides a method for creating aryl-aryl bonds which is sometimes cheaper, quicker and easier than the palladium based routes. An insight from electrochemical studies of oxidative aryl coupling given by Boner and co-workers that there is the need for a full sufficiency of oxidant, in the mechanism apart repeated cycles of electron removals, C-C bond formation and deprotection; the product from each of the cycles has a more extended conjugated system that its precursor, however the electron removal steps gets quicker with every cycle while the radical-cation intermediates become less reactive and the C-C bond forming reaction becomes slower. This process continue cycle to cycle, building larger and larger oligomers until a stable radical cation is formed. (Scheme 36)

Scheme 36: Mechanism of Oxidative Cyclisation of Terphenyl

It is advised that it is best to use excess oxidant to convert all of the substrate through to this ultimate cation; if less oxidant is used a complex mixture will be formed. It is also important to use a solvent that is not nucleophilic because the product is a radical cation/di-cation that uses radical cation intermediates, for this reason the presence of water or other nucleophilic substance gives mixture of phenols and quinones. The work up procedure should involve one or two electron reduction because the use of water in the work up leads to mixture of addition product as mentioned.
2.4. Synthesis of 3,6-dibromo-2,7,10,11-tetramethoxy triphenylene

2,3,7,10-Tetramethoxytriphenylene 64 was stirred in dichloromethane, cooled at 0°C and bromine added drop wise and stirred for 2 h. The resulting compound was seen as a precipitate, washed with sodium thiosulphate, filtered and washed several times with ethanol and dried, giving a solid in 93% yield. This is a good yield, collected as a precipitate from the reacting mixture; there was no further workup required apart from refluxing for 24 h in DCM for further purification. Pure solid 65 was obtained (Scheme 37).

Scheme 37: Synthesis of Dibromotetramethoxy Triphenylene 65
Figure 2.8: $^1$H NMR of dibromotetramethoxy triphenylene 65 in CDCl$_3$.

Figure 2.9: HRMS (ESI) of triphenylene 65
No clear melting point was observed as the compound decomposed on heating at 90°C. The unfortunate situation with this compound is its high melting point, the isomer 61 was found to be a liquid crystal but this compound 65 is not.

2.4.1 Attempted Synthesis of Ferrocenyl (methoxy) Triphenylene 66

As a model reaction, the synthesis of Ferrocenyl triphenylene 66 was attempted using compound 65 and ferrocene boronic acid. We deduced that its non-reactivity was due to its poor solubility, because for any reaction to occur, the reacting compound must dissolve. The compound is not in the solution for reaction to occur. Neither the MALDI-TOF MS nor the NMR spectrum showed the presence of the expected compound. Instead, the boronic acid is consumed through side reactions.

2.5 Conversion of Methoxy-triphenylene to Hexyloxy-triphenylene (Demethylation and Alkylation)

At this stage of the work we realised that the long (hexyl) chains needed to be installed before the coupling to ferrocene. However, with a simple synthesis of the methyl derivative already developed, we explored its use as a precursor to other, longer chain derivatives. The product 65 proved still very useful because it was effectively converted to long chain alkoxytriphenylene by demethylation 65 and alkylation of 67 (Scheme 37). The desired product formed was the known hexyloxy-triphenylene 68.
Scheme 38: Conversion of Methoxy-triphenylene 65 to Hexyloxy-triphenylene 68

2.5.1 Demethylation of Dibromotetramethoxy Triphenylene 65

3,6-dibromo-2,7,10,11-tetramethoxy triphenylene 65, hydrobromic acid and acetic acid in ratio (1:1) were stirred and refluxed for 48 h but gave no product. Another reaction was set up with BBr$_3$ in dichloromethane and initially stirred at -80°C. The reaction was allowed to stir and warmed up overnight to room temperature. It was quenched slowly with ethanol and evaporated without further purification; a grey solid 67 was obtained.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Reagent</th>
<th>temp</th>
<th>time</th>
<th>% yield of 67</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCM</td>
<td>HBr, Acetic acid 1:1</td>
<td>rt</td>
<td>96 h</td>
<td>----</td>
<td>68, 82, 84,</td>
</tr>
<tr>
<td>2</td>
<td>DCM</td>
<td>BBr$_3$</td>
<td>-80°C</td>
<td>22 h</td>
<td>96%</td>
<td>68, 71, 83</td>
</tr>
</tbody>
</table>

Table 2.2- Demethylation of dibromotetramethoxy triphenylene 67
The reaction was allowed to stir and warmed up overnight to room temperature. It was quenched slowly with ethanol and evaporated without further purification; a grey solid was obtained. The mixture was quenched with ethanol immediately, to remove excess BBr₃ that will form HBr₃ and boric acid that can interfere with the product (Scheme 39).

\[3C_2H_5OH + BBr_3 \rightarrow B(OC_2H_5)_3 + 3HBr\]

Scheme 39: Quenching Reaction Borontribromide using Ethanol.

The mixture did not go through rigorous isolation because compound 67 is air sensitive which may result to phenolic coupling/radical oxidative process forming polymer.

Also, BBr₃ is best known for its ability to cause selective cleavage of aryl methyl ethers in the presence of other functional groups in the molecules. It has been reported by Paliakov and co-worker that using BBr₃ a methoxy group can be demethylated selectively. ⁷¹

Compound 67 was effectively synthesised by the use of BBr₃ instead of using the common acetic acid/HBr reaction, although there are some setbacks enumerated on the demethylation reaction by Lee and Kee ⁷² as harsh reaction conditions, long reaction times, difficulty in manipulation, use of the exotic reagents and low reaction yields. BBr₃ is the classical reagent for the de-alkylation of methyl aryl ethers. The mechanism goes through with the formation of complex between the boron centre and the ether oxygen then elimination of alkyl bromide to give dibromo organo borane. The dibromo organoborane then become hydrolysed given alcohol/phenol, boric acid and hydrogen bromide.

2.5.2 Mechanism of Demethylation with BBr₃

Scheme 40: Demethylation Reaction Mechanism of BBr₃
2.5.3. Alkylation Reaction of Hydroxyltriphenylene to Hexyloxy Triphenylene.

2.5.3.1 New route for the Synthesis of Alkoxy-Triphenylene.

Compound 68 is formed by alkylation reaction of 67. The preparation of this compound was necessary using this route because compound 65 was found unsuitable for further reaction due to its low solubility. Since the reaction was not possible, the compound 65 was dealkylated to convert it into the suitable and common long-chain (hexyl chain) often used for the synthesis of triphenylene derivatives used for liquid crystals.

2.5.3.2: Comparison of the two Routes (Normal and New) to Synthesise of Alkoxy-Substituted Dibromo-Triphenylene 68.

By the normal route (Scheme 41) 68 is synthesised by the procedure developed from our group in 2001 by Cammidge and Gopee. Catechol and 1-bromohexane were stirred in ethanol and allowed to reflux to yield the diether and subsequent bromination yielded 1,2-dibromo-4,5-bishexyloxybenzene. The 3-bromophenol undergoes alkylation with bromohexane under same conditions as above yielding bromohexyloxybenzene. Both compounds were purified by distillation. The boronic acid was synthesised by reacting the bromide compound with magnesium turnings forming a Grignard reagent which was reacted with trimethylborate. Suzuki coupling reaction was carried out between 1,2-dibromo-4,5-bishexyloxybenzene and bromohexyloxybenzene yielding terphenyl the main precursor. FeCl₃ was used to induce ring closure of the terphenyl giving the corresponding triphenylene and further bromination of the triphenylene gave 3,6-dibromo-2,7,10,11-tetrakis(hexyloxy)triphenylene at lower yield. In the second route (Scheme 42) 68 is synthesised as described and discussed in Schemes 34, 35, 37 and 38.

Comparing these two routes, the Scheme 42 route that started from shorter alkoxy triphenylene derivative (tetramethoxy triphenylene) starting materials saves time and no column chromatography is required. The product yield is high. This method appears more convenient to the common method in Scheme 41 because of the advantages mentioned.
Scheme 41: Normal Route to Synthesise of Alkoxy-substituted Dibromo-triphenylene 68
Scheme 42: New Route to Synthesise of Alkoxy-substituted Dibromo-triphenylene 68
2.6: Synthesis of Ferrocenyl Triphenylenes from Hexyloxy Triphenylene

Compound 69 was synthesised by Suzuki coupling of 68 with ferroceneboronic acid (Scheme 37). The starting material compound 68, excess ferrocene monoboronic acid, triphenylphosphine (12% mol) and K₂CO₃ were stirred in degassed toluene for 20 mins. Bis(triphenylphosphine)palladium(II)dichloride (3% mol) was added and the reaction was allowed to reflux under N₂ atmosphere for 1 hour. The resulting Solid after work up was recrystalised from DCM: ethanol (2: 3) given orange product of 56% yield: MALDI MS: m/z 996.86 (M+H)+; HRMS; calculated For C₆₂H₇₇Fe₂O₄ 997.4519 found: 997.4516 (Isotope pattern Figure 2.11). The resulting product compound 69 was formed as a result of addition of excess ferrocenedicarboxylic acid. The resulting product 69 is a new compound formed with excess of ferrocenedicarboxylic and it was characterised with the result as seen in Figure 2.10 and 2.11.

Scheme 43: Synthesis of Ferrocenyl Triphenylene 69.
**Figure 2.10** $^1$HNMR of Ferrocenyl Triphenylene in CDCl$_3$.

**Figure 2.11:** HRMS (ESI) of Ferrocenyl triphenylene 68
The proton NMR spectrum of compound 69 Figure 2.10 corresponds to the desired structure. The aromatic region has three singlets at chemical shifts $\delta$ of 8.75, 7.92 and 7.79 having two protons each. The alkoxy protons attached to the aromatic ring are found at the middle near to the ferrocene protons. The alkoxy proton is represented as two triplets at 4.28 and 4.30 with four protons each (8H). The three other peaks are of ferrocene, 2 peaks on the Cp ring on position j and k (2H each x 2 Cp rings) found at 5.02 and one peak on g (5H each x 2 Cp ring) found at 4.14. The protons at the aliphatic region correspond to the number of protons (8H, 8H, 16H and 12H respectively) found on the remaining 5-Hexyl long chain after the first ($-OCH_2- $) (Figure 2.10). The reaction was effective and the resulting product 69 is a new compound. Compound 69. Compound 69 melts at 202°C and decomposed. Unfortunately, 69 did not show mesogenic behaviour.

The synthesis of this model compound was not straightforward and, in practice, required a large excess of ferrocene boronic acid. Unfortunately this means that it will be impossible to use a related synthetic strategy to form our required “staggered twin” efficiently. For this reason, the twin was not attempted.

Compound 69 was obtained as an orange solid for this reason the UV/Vis spectrum was also measured. Peak detection for the compound was at 217 nm and 291 nm (Figure 2.12)

**Figure 2.12:** Uv-Vis of the Ferrocenyl triphenylene 69.
2.7 Attempted synthesis of Ferrocenyl triphenylene 73 from triphenylene diacetylene compound 71.

Scheme 44: Synthesis of Ferrocenyl diacetylene triphenylene 73

Our strategy was therefore changed to select a twinning reaction that could potentially be more efficient for this reason acetylene bridges were chosen. Reaction from 68 to the diacetylene triphenylene 71 proceeded smoothly. A trial test was carried out using excess dibromoferrocene on the diacetylene triphenylene to prepare Ferrocenyl diacetylene monotriphenylene 72 as seen in entries 1-2 of Table 2.3 but the product formed is the triphenylene diacetylene dimer 37, furthermore, other experiments were carried out by adding excess of the diacetylene triphenylene derivative to the reacting mixture dropwise by syringe pump at rate 5 ml per hour to prepare Ferrocenyl diacetylene triphenylene twin derivative 73 (entries 3-7), instead a dimer 37 was formed.

However, reaction with dibromoferrocene gave no expected product, the acetylene coupled to the acetylene of another triphenylene forming dimer in all cases. Despite many attempts under high-dilution conditions, dimer formation (homocoupling) was always observed.
<table>
<thead>
<tr>
<th>Entry</th>
<th>SM DAcTP (eq)</th>
<th>Reagents</th>
<th>Catalyst</th>
<th>Solvent/base</th>
<th>Reaction time</th>
<th>% yield of 73</th>
<th>% yield of 37 (Dimer)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FcBr₂ (eq)</td>
<td>CuI (eq)</td>
<td>PdCl₂(PPh₃)₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0.2</td>
<td>0.05</td>
<td>1: 2</td>
<td>4 days</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>0.3</td>
<td>0.10</td>
<td>1: 2</td>
<td>4 days</td>
<td>0</td>
<td>15.5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
<td>0.3</td>
<td>0.10</td>
<td>1: 2</td>
<td>5 days</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4</td>
<td>0.3</td>
<td>0.10</td>
<td>1: 2</td>
<td>5 days</td>
<td>0</td>
<td>14.7</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>4</td>
<td>0.3</td>
<td>0.10</td>
<td>1: 2</td>
<td>7 days</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2</td>
<td>0.3</td>
<td>0.10</td>
<td>1: 2</td>
<td>8 days</td>
<td>0</td>
<td>15.9</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>2</td>
<td>0.3</td>
<td>0.20</td>
<td>1: 2</td>
<td>8 days</td>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>

DAcTP- diacetylene triphenylene derivative  
FcBr₂- dibromoferrocene

Table 2.3 Attempted synthesis of Ferrocenyl diacetylene triphenylene 73

2.8 Synthesis of mono-hydroxy-penta-hexyloxytriphenylene (MHT) key precursor to the target compound.

The synthesis of the initial target compound through a disubstituted triphenylene was therefore not successful; for this reason, we moved focus to a route to twin formation using monosubstituted triphenylene derivative monohydroxy-triphenylene (MHT) 25. MHT is a useful intermediate for many structural designs. The active hydroxyl group is a useful point of attachment to form other triphenylene derivatives.

The synthesis of this compound has many routes already developed by other researchers but we used the route developed in part from our group (Scheme 45).³⁰
Scheme 45: Synthesis of MHT 25.

3,6,7,10,11-Pentakis(hexyloxy)triphenylen-2-ol 25 was synthesised by two-step procedure used by Cammidge group.\textsuperscript{30} 1,2-Dihexyloxybenzene (DHB) 74, CH$_3$NO$_2$, FeCl$_3$ and TFA were stirred in dry DCM at 0°C for 90 mins. The DHB was synthesised from our lab by alkylation of catechol. The addition of CH$_3$NO$_2$ was to improve the solubility of the FeCl$_3$ used, the reaction took less time than expected and gave high yield. The TFA was used as catalyst to speed up the reaction. FeCl$_3$ is a weak Lewis acid and oxidant responsible for the oxidative cyclisation of 74 forming the MHT.

<table>
<thead>
<tr>
<th>Entry</th>
<th>SM</th>
<th>Solvent</th>
<th>Reagent</th>
<th>Reaction time</th>
<th>% yield</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DHB</td>
<td>CH$_2$Cl$_2$</td>
<td>FeCl$_3$(3eq)FeCl$_3$(2eq)</td>
<td>48 h</td>
<td>20 %</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>DHB</td>
<td>CH$_2$Cl$_2$</td>
<td>FeCl$_3$(3eq)FeCl$_3$(2eq)H$_2$SO$_4$</td>
<td>28h</td>
<td>32%</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>DHB</td>
<td>CH$_2$Cl$_2$</td>
<td>FeCl$_3$,CH$_3$NO$_2$,H$_2$SO$_4$</td>
<td>4 h</td>
<td>46 %</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>DHB</td>
<td>CH$_2$Cl$_2$</td>
<td>FeCl$_3$,CH$_3$NO$_2$,TFA</td>
<td>1.5 h</td>
<td>66.6%</td>
<td>-----</td>
</tr>
<tr>
<td>5</td>
<td>(-OC$<em>6$H$</em>{13}$)$_6$ TP (by product)</td>
<td>CH$_2$Cl$_2$</td>
<td>BBr$_3$</td>
<td>10min</td>
<td>60%</td>
<td>-----</td>
</tr>
</tbody>
</table>

Table 2.4 Synthesis of Monohydroxytriphenylene (MHT) 25.
The difficulty experienced in the experimental procedure used in our lab was the formation of the desired product alongside the symmetrical HAT6; the symmetrical product is the higher yield from the reaction. Fortunately, later we are able to convert the symmetrical to the desired product 25 by reacting with BBr3 for 10 mins. Typically, when the reaction is left longer it will result in more unwanted products. Also the purification stage is laborious because column chromatography was using 1:80 EtOAC / PE and the MHT solid obtained is always in low yield/recovery. The time used to get the desired product was long and required much solvent during chromatography, although the addition of CH3NO2 and TFA helps to some extent. However, the condition for the reaction could be improved in future to rectify these problems.

This key product 25 was synthesised and used as pure compound for the synthesis of other triphenylene monosubstituted derivatives. The NMR spectrum of 25 shows that the aromatic region has 6 protons represented with 5 visible peaks, then the peak with chemical shift 7.83 has 4 protons (4 singlets fused together like triplets but it is not, because of the size of the peaks), The -OH- proton is seen at 5.90 (*) the –OCH2- proton of the hexyloxy long chain is multiplet (e) with 10H, the remaining proton (f, g, h, i, j) of the hexyloxy long chain has 10H, 10H, 20H and 15H as multiplet each and mass spectrometry is m/z 744.76 (Figure 2.13)
Figure 2.13: $^1$HNMR of MHT 25 in CDCl$_3$.

Figure 2.14: MALDI-TOF MS of MHT 25
The result above clearly shows how pure the compound is and it represents the correct structure. It was a compound with good properties for the reaction. The method used as in Scheme 39, to synthesise 25 is an effective way to synthesise unsymmetrically substituted triphenylene. Compound 25 is an important triphenylene derivative that can be widely used to synthesise many mesogenic and other derivatives that can be used to link or twin structures because of their versatility.

2.9 Synthesis of Ethynyl-3,6,7,10,11-pentakis(hexyloxy)triphenylene 75

Triphenylene 77 derivative was synthesised from MHT 25 (Scheme 46).

Scheme 46: Synthesis of Monoacetylene triphenylene 77

2.9.1: Synthesis of 3,6,7,10,11-pentakis(hexyloxy)triphenylen-2-yl trifluoromethanesulfonate 75

3,6,7,10,11-Pentakis(hexyloxy)triphenylen-2-ol 25 was treated with trifluoromethanesulphonic acid anhydride in dry and pyridine. Workup gave the triflate product as a solid after recrystallization in DCM: ethanol (2:1), with 98% yield. The proton NMR and MALDI-TOF MS spectrum as shown below represent the compound (Figure 2.15 and 2.16 respectively).
**Figure 2.15** $^1$H NMR of triphenylene triflate 75 in CDCl$_3$.

**Figure 2.16**: Maldi-TOF MS of triphenylene triflate 75
2.9.2. Synthesis of 2-methyl-4-(3,6,7,10,11-pentakis(hexyloxy)triphenylene-2-yl)but-3-yn-2-ol 76

For the Sonagashira coupling, initial reaction under standard conditions gave low yields (presumably due to competing homocoupling of the acetylene). Reactions were performed as shown in Table 2.5, normal Sonogashira coupling conditions with Cu were used in entries 1 and 2 but gave low yields. Entry 3 did not give any yield, maybe because of the solvent (water) used. The suitable condition is entry 4 that gave high yield of 74 using pyrrolidine base under copper free Sonogashira coupling. Compound 75, PPh₃, PdCl₂(PPh₃)₂, pyrrolidine and TEA (2:3) were stirred under argon. Excess 2-methyl-but-3-yn-2-ol was added dropwise into the mixture, and it was allowed to reflux for 15 h. After workup, a solid was obtained which was recrystallised in DCM/EtOH, giving a pale yellow solid 76 in 89% yield.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Reagent</th>
<th>Solvent</th>
<th>Reaction time</th>
<th>% yield of 76</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PdCl₂(PPh₃)₂</td>
<td>TEA, Cul</td>
<td>TEA</td>
<td>168 h</td>
<td>25 %</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>PdCl₂(PPh₃)₂</td>
<td>TEA, Cul</td>
<td>TEA</td>
<td>72 h</td>
<td>47 %</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>PdCl₂</td>
<td>Pyrrolidine (Cu free)</td>
<td>H₂O</td>
<td>24 h</td>
<td>0 %</td>
<td>89, 90</td>
</tr>
<tr>
<td>4</td>
<td>PdCl₂(PPh₃)₂</td>
<td>Pyrrolidine (Cu free)</td>
<td>TEA</td>
<td>15 h</td>
<td>89 %</td>
<td>87  88</td>
</tr>
</tbody>
</table>

Table 2.5 Optimisation of condition for the synthesis of Monoacetyol-Tp 76

We selected 2-hydroxyprop-2-yl reagent was preferable to TMS-acetylene for the synthesis of 76 because it is cheaper and, importantly, much less volatile. Among the various experiment carried out as shown in entries 1-4 in Table 2.5, Copper-free conditions with appropriate base instead of water proved best, as seen in entry 4 having the highest yield.
Figure 2.17 $^1$H NMR of monosubstituted triphenylene 76 in CDCl$_3$.

Figure 2.18. MALDI-TOF MS of monosubstituted triphenylene 76.

$^1$H NMR spectroscopy as shown in fig 2.14 shows a singlet peak designated with (*) at 1.72 ppm is related to the two methyl groups protons (6H) represented as (g). Figure 2.17 reveals the mass peak as provided by MALDI-TOF MS, this gives true representation of the product 76.
2.9.3. Synthesis of Ethynyl-3,6,7,10,11-pentakis(hexyloxy)triphenylene 77

Compound 77 was synthesised by deprotecting of 2-methyl-4-(3,6,7,10,11-pentakis-(hexyloxy)triphenylen-2-yl)but-3-yn-2-ol 76 using sodium hydride (60% dispersion in oil) stirred in dry toluene. The crude product (a yellowish oil) was then recrystallised in DCM/EtOH giving a pale yellow solid in 97% yield. This reaction mechanism is shown in Scheme 47.

Scheme 47: Deprotection mechanism of 76

The \(^1\)H NMR spectrum of 77 is shown in Figure 2.19. The peak at 3.39 ppm is the ethyne proton resonance seen as label g on the structure and the isopropyl protons seen in Figure 2.17 for 76 are no longer seen.

Figure 2.19 \(^1\)H NMR of Monoacetylene Triphenylene 77 in CDCl\(_3\).
2.10 Attempted synthesis of Ferrocenyl Acetylene Twin Triphenylene 80

Scheme 48: Sonogashira coupling reaction of 77 with dibromoferrocene

1,1’-Dibromoferrocene was stirred in a mixture of freshly distilled TFA and THF under nitrogen atmosphere at room temperature and was CuI added. A THF solution of acetylene 77 was then added slowly by syringe pump over 5 h, and then heated at 50°C for 48 h. The triphenylene starting material was consumed. After workup, the crude solid was separated by column chromatography with (ethylacetate/hexane 1:9). The resulting compound was yellow solid. Analysis of compound revealed the following data: MALDI-TOF MS: m/z 1505.46 (M^+, 100%). This sample was reanalysed by MALDI-TOF MS, in positive-reflectron mode with DCTB matrix. Expected ions for the newly proposed formula were not also observed. The sample appears to give a mixture of minor components of very low intensity, and one major component m/z 1504, does not provide evidence of containing either Fe or Br elements. However, if two of the bulky alkyne groups are joined together, without the ferrocene unit, you get the formula C_{100}H_{142}O_{10}, which provides a good M^{++} match for the major species. For C_{100}H_{142}O_{10} 1504.10: found 1504.10 as seen on the isotope pattern (Figure 2.22). We conclude, therefore, that unfortunately this reaction yields only the dimer even with different conditions applied as seen in Table 2.6.
<table>
<thead>
<tr>
<th>Entry</th>
<th>SM</th>
<th>Reagents</th>
<th>Catalyst</th>
<th>Solvent/base</th>
<th>Reaction time</th>
<th>% yield of 79 (Dimer)</th>
<th>% yield of 80</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MAcTp</td>
<td>FCBr₂, Cul</td>
<td>PdCl₂(PPh₃)₂</td>
<td>THF: TEA</td>
<td>24h</td>
<td>47</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>MAcTp</td>
<td>FCBr₂ (Cu free)</td>
<td>PdCl₂(PPh₃)₂</td>
<td>Pyridine/ pyrolidine</td>
<td>5hr</td>
<td>80</td>
<td>0</td>
<td>87</td>
</tr>
</tbody>
</table>

**Table 2.6:** Cu and Cu free reaction attempted for synthesis of Ferrocenylacetylene-TP 80

**Figure 2.20.** $^1$HNMR of monoacetylene dimer 79 in CDCl₃
Figure 2.21. MALDI-TOF MS monoacetylene dimer 79.

Figure 2.22. HRMS (ESI) of monoacetylene dimer 79.
2.11 Attempted Synthesis of Monoacetyleneferrocenyl Triphenylene 78 using Ferrocene acetylene 81.

The synthesis of 78 was not possible using the procedure in Scheme 49, so another procedure was attempted using ethynylferrocene 81. PdCl$_2$(PPh$_3$)$_2$, Cul and dry TEA were all stirred under nitrogen atmosphere at 50°C and 81 was added slowly with syringe pump at 1 ml/h over 10 h. Solid obtained was recrystallized in DCM / EtOH. Resulting amorphous solid 78 was orange of low yield of 4%. No liquid crystal phases were observed on heating. The proton NMR data was also not clear (Figure 2.20) but such observations are common for ferrocene derivatives. In the MALDI-TOF MS: $m/z$ C$_{60}$H$_{81}$FeO$_5$ (M$^+$, 100%) 937.57. The MALDI-TOF MS result confirms the presence of the product (Figure 2.24). The main product, in high yield, in this synthesis was the ferrocene acetylene dimer 82. MALDI-TOF MS of this product is shown in Figure 2.25.
However, the reaction attempted using triflate-Tp 75 under Cu and Cu free condition dimerization still occur with the acetylene precursor 81 used (Table 2.7). This seems to be the problem of using acetylene precursor for the synthesis of the acetylene triphenylene derivatives, same dimerization occur in the first attempt (Scheme 49).

<table>
<thead>
<tr>
<th>Entry</th>
<th>SM</th>
<th>Reagents</th>
<th>Catalyst</th>
<th>Solvent/base</th>
<th>Reaction time</th>
<th>% yield of 78</th>
<th>% yield of 82 (dimer)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TrifTp</td>
<td>FcMAc, Cul</td>
<td>PdCl₂(PPh₃)₂</td>
<td>TEA (excess)</td>
<td>5 h</td>
<td>4</td>
<td>82</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>TrifTp</td>
<td>FcMAc (Cu free)</td>
<td>PdCl₂(PPh₃)₂</td>
<td>TEA, K₂CO₃</td>
<td>28 h</td>
<td>0</td>
<td>75</td>
<td>91</td>
</tr>
</tbody>
</table>

**TrifTp**- Triphenylene triflate 75; **FMAcTp**- Ferrocene-monoacetylene 81.

**Table 2.7**: Optimisation of the synthesis of Ferrocenylacetylene-TP

**Figure 2.23**: ¹H NMR of monoacetylene Ferrocenyl triphenylene 78 in CDCl₃
Figure 2.24: MALDI-TOF MS of monoacetylene Ferrocenyl triphenylene 78.

Figure 2.25: MALDI-TOF MS of the ferrocene acetylene Dimer 82.

The inefficiency of this general coupling strategy using ferrocenes meant that it was unlikely to give a satisfactory result if extended to the twin. Alternative twins were therefore designed.
2.12 Synthesis of twinned triphenylene esters

The esterification reaction using DCC and catalysed by DMAP is known as Steglich esterification. The amount of DMAP required is around 10 mol % in conjunction with at least one equivalent of of DCC when carboxylic acid is used directly.\textsuperscript{78}

2.12.1 Proposed mechanism of DCC /DMAP

It is said that DMAP is used as an acyl transfer reagent in the Steglich esterification. The alcohol is less nucleophilic than DMAP. The reaction between an alcohol and N-acyl isourea intermediate generated from carboxylic acid and DCC is slow, but is fast with the presence of DMAP. The mechanism (Figure 2.26.2) shows the reaction between a general carboxylic acid, DCC/DMAP and a general alcohol.

\[
\begin{array}{c}
\text{R-C-OH} + \text{R}_1\text{-OH} & \xrightarrow{\text{DCC/DMAP}} & \text{R-C-O-R}_1 \\
\end{array}
\]

**Scheme 50:** General reaction of Steglich esterification

![Scheme 50](image)

**Scheme 51:** Reaction mechanism of Steglich esterification.\textsuperscript{98}
The same mechanism (Scheme 51) applies to the reaction in this section using monohydroxytriphenylene (MHT) and the different dicarboxylic acids in the presence DCC/DMAP for the preparation of the twin triphenylene esters.

2.12.2: Synthesis of Ferrocenyl Triphenylene Ester 84

The esterification reaction of MHT 25 with the ferrocenedicarboxylic acid is catalysed by DMAP and uses DCC (Scheme 52).

Scheme 52: Synthesis of Ferrocenyl triphenylene ester 84

Compound 25 (MHT), 1,1’-ferrocenedicarboxylic acid 83, N,N’-dicyclohexylcarbodiimide (DCC), 4-(dimethylamino)pyridine (DMAP) were stirred in dry DCM for 48 h. After work-up the crude product was separated by column chromatography and recrystallised from EtOH/DCM to give an orange solid in 41% yield. Different conditions were used to improve the yield as seen in Table 2.8 entries 1 to 6, entries 5 and 6 are the most convenient conditions for the synthesis of 84.
Table 2.8: Optimisation of the synthesis of Ferrocenyl Triphenylene Ester 84

Ferrocene dicarboxylic acid proved to be an effective reagent for the preparation of Ferrocenyl triphenylene ester 84. MALDI-TOF MS: m/z, calculated for $\text{C}_{108}\text{H}_{151}\text{FeO}_{14} (\text{M+H})$ 1729.05 found 1729.05 (Figure 2.27). Proton and carbon NMR was not clear (Figure 2.26) but the product was identified by MALDI-TOF MS. Further purification of the product by recrystallization and chromatography has so far proved unsuccessful.
The poor solubility of the ferrocene dicarboxylic acid reagent seems to be an issue affecting the reaction. Equal amount of the MHT was isolated as a product because excess of the MHT was used for the twinning and much was left unconverted. Most DCC/DMAP reactions occur
with just stirring at room temperature but the desired product did not form at room temperature but at 30°C.

2.12.3 Synthesis of Benzoyl Ester twins

2.12.3.1 Synthesis of bis(3,6,7,10,11-pentakis(hexyloxy)triphenylen-2-yl)isophthalate 86

Scheme 53: Synthesis of Isophthalate twin triphenylene 86

Compound 25, benzene-1,3-dicarboxylic acid 85 N,N’-dicyclohexylcarbodiimide (DCC) 4-(dimethylamino)pyridine (DMAP) were stirred in DCM at 30°C for 72 h. The isolated crude solid was columned and recrystallised in EtOH/DCM. Resulting off-white solid 86 was obtained in 29% yield alongside with a by-product that was characterised as 87 with higher yield of 52%. Different conditions were applied for the synthesis to for better yield, however the result is as shown in Table 2.9 with entry 4 as the best yield and higher yield of the undesired byproduct.
<table>
<thead>
<tr>
<th>Entry</th>
<th>SM</th>
<th>Reagents</th>
<th>Catalyst</th>
<th>Solv.</th>
<th>temp (°C)</th>
<th>time (h)</th>
<th>% yield of 86</th>
<th>% yield of 87</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MHT (eq)</td>
<td>Isophthalic acid (eq)</td>
<td>DCC (eq)</td>
<td>DMAP (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>0.05</td>
<td>DCM</td>
<td>rt</td>
<td>72</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.4</td>
<td>2</td>
<td>0.05</td>
<td>DCM</td>
<td>25</td>
<td>48</td>
<td>18</td>
<td>46%</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.4</td>
<td>4</td>
<td>0.10</td>
<td>DCM</td>
<td>30</td>
<td>48</td>
<td>20</td>
<td>50%</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.4</td>
<td>4</td>
<td>0.20</td>
<td>DCM</td>
<td>30</td>
<td>48</td>
<td>28.6</td>
<td>52%</td>
</tr>
</tbody>
</table>

**Table 2.9** Optimisation of the synthesis of Isophthalate twin triphenylene 86

The NMR result as shown in Figure 2.28 represent the compound. MALDI-TOF MS: \( m/z \) calculated for 86 C\(_{104}H_{147}O_{14}\) (M+H)\(^+\) 1620.07 found 1620.38 (Figure 2.29). Preliminary evaluation of the thermal behaviour revealed the solid appears to convert from an amorphous material to a mesophase at around 155 °C. On cooling, a mesophase appears at 150 °C with a texture characteristic of a columnar hexagonal phase. The mesophase cools to form a glass, and crystallisation did not occur even at room temperature overnight.
Figure 2.28. $^1$H NMR of Isophthalate twin triphenylene 86 in CDCl$_3$

Figure 2.29. MALDI-TOF MS of pure Isophthalate twin triphenylene 86.
2.12.3.2 Synthesis of bis(3,6,7,10,11-pentakis(hexyloxy)triphenylene-2-yl)phthalate 89

![Chemical structure](image.png)

Scheme 54: Synthesis of phthalate twin triphenylene 89

Isomeric triphenylene twin 89 was prepared using same conditions for 86 but using phthalic instead of Isophthalic acid. The solid obtained was colourless and in 41% yield. The following reaction was carried out (Table 2.10), results shows that entry 3 is most favourable condition for the synthesis of 89.

<table>
<thead>
<tr>
<th>Entry</th>
<th>SM</th>
<th>Reagents</th>
<th>Catalyst</th>
<th>Solv.</th>
<th>temp (0°C)</th>
<th>time (h)</th>
<th>% yield of ester 89</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MHT (eq)</td>
<td>Phthalic acid (eq)</td>
<td>DCC (eq)</td>
<td>DMAP (%)</td>
<td>DCM</td>
<td>rt</td>
<td>72</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>0.05</td>
<td>DCM</td>
<td>rt</td>
<td>72</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.4</td>
<td>2</td>
<td>0.05</td>
<td>DCM</td>
<td>30</td>
<td>72</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.4</td>
<td>4</td>
<td>0.10</td>
<td>DCM</td>
<td>30</td>
<td>72</td>
<td>40.8</td>
</tr>
</tbody>
</table>

Table 2.10: Optimisation of the synthesis of Phthalate twin triphenylene 89.
The NMR of the solid **89** is as expected. The proton on the phthalic acid is **e** and **f** and both are doublet doublet (2H each), the remaining four peaks at the aromatic region are for the triphenylene with (2H each) (Figure 2.30). The MALDI-TOF MS: \(m/z\) C_{104}H_{146}O_{14} 1619.45 (M⁺, 100%) for the expected compound (Figure 2.31). Solid **89** melts directly to the isotropic liquid at 80°C much lower than the isophthalate isomer.

**Figure 2.30:** \(^1\)H NMR of phthalate twin triphenylene **89** in CDCl$_3$. 
Figure 2.31: MALDI-TOF MS of phthalate twin triphenylene 89.

2.12.3.3. Synthesis of bis(3,6,7,10,11-pentakis(hexyloxy)triphenylen-2-yl)terephthalate 91

Scheme 55: Synthesis of Terephthalate twin triphenylene 91

The terephthalate isomer was similarly synthesised. Resulting solid 91 was colourless and in 35% yield; also alongside was the by-product 92, obtained as white (0.18g, 42%). Different
reaction was done to optimise the condition for 91 Table 2.11, entries 4 and 5 is the best for the synthesis of 89, the increase in temperature do not affect the yield in the entries 4 and 5

<table>
<thead>
<tr>
<th>Entry</th>
<th>SM</th>
<th>Reagents</th>
<th>Catalyst</th>
<th>Solv.</th>
<th>temp (°C)</th>
<th>time (h)</th>
<th>% yield of ester 91</th>
<th>% yield of Urea 92</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>0.05</td>
<td>DCM</td>
<td>72</td>
<td>0</td>
<td>-</td>
<td>10, 28, 92</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.4</td>
<td>2</td>
<td>0.05</td>
<td>DCM</td>
<td>48</td>
<td>12</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.4</td>
<td>4</td>
<td>0.10</td>
<td>DCM</td>
<td>72</td>
<td>20</td>
<td>33</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.4</td>
<td>4</td>
<td>0.20</td>
<td>DCM</td>
<td>48</td>
<td>34.6</td>
<td>42</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.4</td>
<td>4</td>
<td>0.20</td>
<td>DCM</td>
<td>72</td>
<td>35.3</td>
<td>42.3</td>
<td>-</td>
</tr>
</tbody>
</table>

**Table 2.11:** Optimisation of the synthesis of terphthalate twin triphenylene 91.

The NMR represented for 91 (g) peak is singlet (4H) from the bridging benzene ring. The proton h, l, j and k (2H each) of the aromatic region are clearly seen (Figure 2.32). MALDI-TOF MS: \(m/z\) C\(_{104}\)H\(_{146}\)O\(_{14}\) 1619.68 (M\(^+\), 100%) for Compound 91 is as shown in Figure 2.33 and the by-product 92, MALDI TOF MS: \(m/z\) C\(_{69}\)H\(_{98}\)N\(_{2}\)O\(_{9}\) 1098.84 (M\(^+\), 100%)

The compound melts directly to an isotropic liquid at 175°C. On cooling, however, a classic nematic texture is seen in part of the sample which overall appears to be a mixture of two immiscible materials. The sample was dissolved from the slide and examined by NMR spectroscopy. No evidence for decomposition was found. Further investigations on this
material are needed to understand the origin of the observations (likely a solvent residue impurity) and to finalise the mesophase behaviour.

Figure 2.32: $^1$H NMR of Terephthalate twin triphenylene 91 in CDCl$_3$

Figure 2.33. MALDI-TOF MS of Terephthalate twin triphenylene 91.
2.12.4. N-Acyl Ureas (byproduct) from Isophthalate 86 and Terephthalate 91

High yield of the side products (N-acyl ureas) occurred during the activation of carboxylic groups with DCC in the reaction of the isophthalate 86 and terphthalate 91 mixture respectively.

**Figure 2.34**: MALDI-TOF MS of N-acyl urea 87 of isophthalate 86

**Figure 2.35**: MALDI-TOF MS of N-acyl urea 92 in crude of terephthalate 91
The reaction of isophthalate 86 and terephthalate 91 respectively yielded the byproducts 87 and 92 (Scheme 53 and 55) also as seen on the MALDI-TOF MS (Figure 2.34 and 2.35). The NMR spectrum of 87, aromatic region has nine peaks three peaks (h1/h2 (doublet), j and l (triplet) with 1H each) of which are from the benzoic acid ring and the remaining six (6 singlets of 1H each) are from the triphenylene benzene ring, the proton peak of (−OCH₂) of the hexyloxy long chain is a multiplet with 10H, the remain proton on the longchain is found at the aliphatic region as (multiplets with 10H, 10H, 20H and 15H respectively) and the cyclohexane chain k and l has 2 singlet with 10H each as seen on the NMR spectrum and MALDI-TOF MS is as shown below Figure 2.36 and 2.37 respectively. The melting point was 90°C; however, this compound does not show liquid crystal phase it melted completely at 90°C. Interestingly, this compound yield is more than the main product. The product is to be re-analysed for future research.

The NMR and MALDI-TOF MS data confirms the structure of the by-product 87 as seen in Figure 2.36 and 2.37. N-acyl urea 92 in crude of terephthalate 91 was identified with MALDI-TOF MS as seen in Figure 2.35.
Figure 2.36. $^1$H NMR of N-acyl urea 87 of Isophthalate 86 in CDCl$_3$

Figure 2.37. MALDI-TOF MS for N-acyl urea 87 of Isophthalate.
2.12.5 Synthesis of triphenylene benzoate

Scheme 56: Attempted synthesis of Terephthalate twin triphenylene 91 at room temperature.

In our early investigations of these esterification reactions, a number of problems were encountered. Specifically the reactions did not proceed at room temperature and we suspected the issue was the phthalic acids themselves. A control experiment was therefore performed. 3,6,7,10,11-Pentakis(hexyloxy)triphenylene-2-ol 25, benzene-1,4-dicarboxylic acid 90, (N,N'-dicyclohexylcarbodiimide (DCC), 4-(dimethylamino)pyridine (DMAP) were stirred in dry DCM at room temperature for 72 h. The reaction did not give the expected product 91. Other reactions were performed as seen in entries 2-4 varying the amount of DCC and DMAP, however there was no difference in the yield of the product. More DCC and benzoic acid were added to the above mixture (Scheme 56) and it was further stirred for 1 h. Work up and recrystallisation gave 94 as a colourless solid in 86% yield as seen in entry 4 Table 2.12
<table>
<thead>
<tr>
<th>Entry</th>
<th>SM</th>
<th>Reagents</th>
<th>Cat.</th>
<th>Solv.</th>
<th>temp (0°C)</th>
<th>time</th>
<th>% yield</th>
<th>% yield</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MHT (eq)</td>
<td>Tere-</td>
<td>Benzoic</td>
<td>DCC (eq)</td>
<td>DMAP (%)</td>
<td></td>
<td></td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>phthal-</td>
<td>acid</td>
<td>1</td>
<td>0.05</td>
<td>rt</td>
<td>72 h</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.4</td>
<td>phthal-</td>
<td>acid</td>
<td>2</td>
<td>0.10</td>
<td>rt</td>
<td>48 h</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.4</td>
<td>phthal-</td>
<td>acid</td>
<td>4</td>
<td>0.20</td>
<td>rt</td>
<td>48 h</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.4</td>
<td>phthal-</td>
<td>acid</td>
<td>2</td>
<td>0.20</td>
<td>rt</td>
<td>1 h</td>
<td>86</td>
</tr>
</tbody>
</table>

**Table 2.12**: Control experiment for the terephthalate reaction.

The NMR spectrum Figure 2.38 clearly shows the starting material MHT 25 see Figure 2.13. No new product is observed. To confirm if it is the insolubility of the dibenzoic acid 90, a compound with good solubility (benzoic acid 91) was added and new product was formed.
The MALDI-TOF MS: $m/z$ calculated for $C_{55}H_{77}O_7$ (M+H)$^+$ 849.57 found 849.36.

The NMR and MALDI-TOF MS of New product triphenylene benzoate 94 clearly confirms the formation of new product (Figure 2.39 and 2.40). Further analysis of 94 shows it is a liquid crystal (from 120 °C) with characteristic hexagonal columnar phase and it shows a transition at temperature 168°C into the isotropic liquid.
Figure 2.39: $^1$H NMR of triphenylene benzoate 94 in CDCl$_3$

Figure 2.40. MALDI-TOF MS for triphenylene benzoate 94.
2.13 Conclusion:

This research aimed at the synthesis of twinned triphenylenes with staggered bridges because the products may have unusual liquid crystal properties because the bridging mode gives a unique architecture. In the work, a new synthesis was optimised for important unsymmetrically substituted triphenylene intermediates. The synthesis of the staggered ferrocene-triphenylene twins was not successful owing to the inefficiency of the coupling steps.

The synthesis of the model Ferrocenyl-triphenylene 69 from the hexyloxytriphenylene 68 through direct linking with excess Ferroceneboronic acid was successful. The Ferrocenyl triphenylene 69 is a new compound, but it is not a liquid crystal. An attempt was made to synthesise the twin through a diacetylene precursor. The synthesis of the triphenylene diacetylene 71 was successful but the Ferrocenyl-acetylene triphenylene was not formed in the subsequent cross-coupling reaction, instead acetylene dimer was formed (Scheme 40).

Another route was devised to give different twins from mono-hydroxy-triphenylene (MHT) 25. The synthesis of the MHT and the monoacetylene triphenylene derivative was successful but to synthesise the model monoferrocenyl triphenylene and the twin compound was not successful, instead dimer was formed (Scheme 44). Another attempt was done using ferrocene acetylene but still the Ferrocenyl acetylene triphenylene did not form but 4% of the monoferrocenyl acetylene 78 was realised. There was high yield of the ferrocene dimer 82 obtained. The acetylene links do not seem to be suitable for the twin linking. Nevertheless, twinned Ferrocenyl ester 84 (Scheme 46) and other benzoyl twin triphenylene esters Isophthalate ester 86, Phthalate ester 89 and Terephthalate ester 91 were synthesised. Triphenylene benzoate 94 was synthesised in a model reaction at room temperature (Scheme 50), and is a liquid crystal. Also, high yield of byproduct 87 and 92 was realised during the synthesis of 86 and 91 (Scheme 47 and 49). Further analysis needs to be carried out to confirm the detailed liquid crystal properties for compound 84, 86 and 91 because they appear promising.
CHAPTER 3 EXPERIMENTAL

3.1 General methods and Instruments

Compounds synthesised were characterised by 500 MHz $^1$H NMR and 126 MHz for $^{13}$C on a Bruker Avance III 500 MHz spectrometer. The signals were reported in ppm with $^1$H signals referenced to the residual proton of deuterated chloroform (CDCl$_3$) at 7.26 ppm; $^{13}$C signals were referenced to the solvent signal at 77.16 ppm.

High Resolution Mass Spectrometry (HRMS) analysis was carried out at the EPSRC National mass spectrometry service centre Swansea University. MALDI-mass spectrometry was performed by direct sample disposition on Shimadzu Axima-CFR Instrument.

UV-Vis spectra were recorded on Perkin-Elmer UV-VIS spectrometer LAMBDA XLS.

Infrared (IR) spectra were recorded on a Perkin-Elmer spectrum fourier transform Interferometer, FT-IR Spectrometer UATR two to check the IR machine name again. The prominent peaks on the IR spectrum are the only ones reported.

Thin layer Chromatography (TLC) was carried out on Merck Silica Gel 60 F$_{254}$ aluminium backed sheets, Compounds were observed under UV light at 254nm or 366nm.

Column chromatography was performed using Silica gel Davisil LC 60A 40-63 micron of 70-230 mesh (Grace GM BH& Co) at room temperature applying low air pressure.

Melting points were recorded using Reichert thermovar microscope with thermopar based temperature control and Kofler hot stage melting point apparatus with a digiton model 2751-K display.

Transition temperatures were observed by optical polarising microscope with TMS 92 thermal analyser and Linkham THM 600 cell.

3.2 Reagents and solvents

All reagents and solvents used were obtained commercially and used without purification unless stated. Solvents used in most reactions were dry solvents, dried with their respective drying agents and distilled under nitrogen or argon gas. Dichloromethane (DCM) was dried in calcium hydride (CaH$_2$), tetrahydrofuran (THF) with sodium and benzophenone, toluene with calcium chloride (CaCl$_2$) and triethylamine (TEA) with calcium hydride. Petroleum ether used
was 40-60°C boiling point range. Diethylether, acetone, ethylacetate, hexane, ethanol, methanol used were not dry. Solvents used were all solvent grades. Water used was distilled and the drying agent used to dry organic layer after extraction is anhydrous Magnesium sulphate (MgSO₄). Organic extracts were evaporated on a rotary evaporator.

### 3.3 Synthesis of Triphenylene core 2,7-dibromo-3,6,10,11-tetrakis(methoxy)triphenylene

#### 3.3.1 Synthesis of 1,2-dibromo-4,5-dimethoxybenzene 56

![Chemical structure](image)

According to the procedure of Fanta, veratrole (30.0 g, 0.217 mol) was stirred in dichloromethane (70 ml) at 0°C. Bromine (76.3 g, 0.478 mol) was added dropwise while stirring for 2 h. The mixture was further allowed to stir 1 h at room temperature. The reaction mixture was washed with sodium thiosulphate brine and water. The aqueous layer was extracted with DCM (3x100 ml). The organic extract was dried with magnesium sulphate (MgSO₄) and the solvent was evaporated. The residue was recrystallized from Isopropanol giving a needle-like colourless crystals 56 (58 g, 90%).

Mp 90°C (lit. 90-92°C); IR (thin film, cm⁻¹) 3012, 2841, 2931, 1682, 1585, 1495; \(^1\)H-NMR (CDCl₃, TMS 500 MHz): δ 7.06(s, 2H) 3.85(s, 6H) ppm; \(^13\)C-NMR (CDCl₃, 126 MHz): δ 149.10, 116.0, 114.9, 56.4 ppm. MS (MALDI): m/z calculated for C₈H₉Br₂O₂ (M+H)^+: 295.89 found 295.10. The data is consistent with values in lit.⁷⁵
3.3.2. Synthesis of 4-methoxyphenylboronic acid 57

![Chemical structure of 4-methoxyphenylboronic acid]

Magnesium turnings (1.92 g, 0.079 mol) and a few crystals of iodine were stirred and heated together under a stream of nitrogen for 10 minutes. Dry THF (100 ml) was added to the mixture, followed by 1,2-dibromoethane and the resulting mixture was stirred for 10 min. 4-bromoanisole (10.0 g, 0.054 mol) was then added to the mixture and it was refluxed. After 1 h the mixture was allowed to cool to room temperature. The cooled mixture was then added gently to trimethyl borate (11.1 g, 0.107 mol) in dry THF (100 ml) at -78°C. The mixture was allowed to warm up overnight to room temperature. 2M HCl (100 ml) was added until the precipitate dissolved. The mixture was extracted with diethylether (3x100 ml) and the organic layer was dried with MgSO₄. The organic layer was evaporated and the solid was washed thoroughly with petroleum ether. The solid was recrystallized from hot water giving the product as colourless crystals 57 (5.6 g, 68%).

Mp (no melting point it degrades on heating): IR (thin film, cm⁻¹) 3194, 2261, 1352, 1193, 882, 705. ¹H-NMR (CD₃OD, TMS, 500 MHz); δ 7.64 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 8.5 Hz, 2H), 4.86 (s, 2H), 3.79 (s, 3H) ppm. ¹³C-NMR (CD₃OD, 126 MHz); δ 153.2, 136.8, 114.3, 99.6, 55.6 ppm. MS (MALDI): m/z calculated for C₇H₉BO₃ (M⁺, 100%): 152.06 found 152.10. The data is consistent with values in lit.⁴⁸
3.3.3. Synthesis of 4,4',4'',5'-tetramethoxy-1,1':2',1''-terphenyl 58

According to the procedure used by Cammidge and Gopee,\textsuperscript{18} 1,2-Dibromo-4,5-dimethoxybenzene 56 (2.47 g, 8.330 mmol), 4-methoxyphenylboronic acid 57 (18.7 g, 90.9 mmol), palladium (II)chloride (0.10 g, 0.533 mmol), triphenylphosphine (0.28 g, 1.052 mmol) and sodium carbonate (3.60 g, 0.031 mmol) were stirred in a mixture of toluene, ethanol and water (3:3:1). The resulting mixture was then refluxed under nitrogen and monitored with TLC until completion for 192 h. 2M HCl and water (200 ml) was added then extracted with DCM (3x150 ml). The organic layer was evaporated and the brown oily compound obtained was slowly recrystallized in dichloromethane and ethanol (1:1). It was further purified by column chromatography eluting with DCM and petroleum ether (7:3) giving the product as colourless solid 58 (2.2 g, 75%).

\text{Mp 146}\textdegree\textsuperscript{C}; (lit. 144 \textdegree\textsuperscript{C})\textsuperscript{67} \text{IR (thin film, cm}^{-1})\text{, 3059, 3001, 2886, 2838, 1607, 1496, 1233; \textsuperscript{1}H-NMR (CDCl}_3\text{, TMS, 500 MHz): \delta 7.05 (d, J = 8.5 Hz, 4H), 6.89 (s, 2H), 6.77 (d, J = 8.5 Hz, 4H), 3.92 (s, 6H), 3.77 (s, 6H) ppm; \textsuperscript{13}C-NMR (CDCl}_3\text{, 126 MHz): \delta 158.2, 148.1, 134.2, 132.7, 131.1, 113.8, 113.5, 56.2, 55.3 ppm. MS (MALDI): m/z 350.4 (M\textsuperscript{+}, 100%). HRMS, (ESI) [C\textsubscript{22}H\textsubscript{21}O\textsubscript{4}] [M+H\textsuperscript{+}]: Calculated: 349.1434; Found: 349.1431. The data are consistent with the values in lit\textsuperscript{67}. 
### 3.3.3.1 Dimethoxybiphenyl (terphenyl byproduct) 59

![Dimethoxybiphenyl](image)

The organic layer of 58 was evaporated and the brown oily compound obtained was slowly recrystallized in dichloromethane and ethanol (1:1). It was further purified by column chromatography eluting with DCM and petroleum ether (7:3) giving the product 58 as colourless solid (2.2 g, 75%) and by product 59 of 20% yield.

**IR (thin film, cm⁻¹)** 3039, 2884, 2838, 1603, 1492, 1274, 1241. **¹H-NMR (CDCl₃, TMS, 500 MHz):** 7.46-7.50 (m, 4H), 6.94-6.98 (m, 4H), 3.85 (s, 6H) ppm. **¹³C-NMR (CDCl₃, 126 MHz):** 158.6, 133.4, 127.6, 114.1, 155.2 ppm.

### 3.3.4. Synthesis of 2, 3, 7, 10-tetramethoxytriphenylene 60

![2, 3, 7, 10-tetramethoxytriphenylene](image)

Cyclisation of compound 58 was achieved using Artal et al. procedure. 68

Tetramethoxyterphenyl 58 (1.92 g, 0.006 mol) was stirred in dichloromethane (70 ml) and nitromethane (4 ml) at room temperature. Iron(III) chloride (2.72 g, 0.016 mol) was added in portions over 2 h and was further stirred for 2 h, cold methanol was then added slowly and stirring the mixture, the mixture was washed several times with water and the aqueous layer was further extracted with DCM (3x150 ml). The organic layer was dried in MgSO₄ and was evaporated. The solid
obtained was slowly recrystallized from dichloromethane and methanol (2:1), without column chromatography and a colourless solid 60 was obtained (0.99 g, 52%).

Mp 170°C (lit.175°C)\(^{67}\); IR (thin film, cm\(^{-1}\)) 2884, 2830, 1739, 1593, 1417, 1202; \(^1\)H-NMR (CDCl\(_3\), TMS, 500 MHz): \(\delta\) 8.42 (d, \(J = 9.0\) Hz, 2H), 7.97 (d, \(J = 2.5\) Hz, 2H), 7.89 (s, 2H), 7.30 (dd, \(J = 9.0\) Hz, 2.5, 2H), 4.11 (s, 6H), 4.03 (s, 6H) ppm; \(^{13}\)C-NMR (CDCl\(_3\), 126 MHz) 158.2, 148.9, 130.3, 125.9, 124.6, 124.2, 123.3, 106.2, 104.3, 56.1, 55.7 ppm. MS (MALDI): \(m/z\) calculated for C\(_{22}\)H\(_{20}\)O\(_4\) (M\(^+\), 100%): 348.14 found 348.10. The data are consistent with the values in lit\(^{67}\).

**3.3.5. Synthesis of 2,7-dibromo-3,6,10,11-tetramethoxytriphenylene 61\(^{67}\)**

\begin{center}
\includegraphics[width=0.5\textwidth]{2,7-dibromo-3,6,10,11-tetramethoxytriphenylene.png}
\end{center}

According to the procedure of Cammidge and Gopee\(^{48}\) 2,3,7,10-tetramethoxytriphenylene 60 (0.50 g, 1.44 mmol) was stirred in dichloromethane (20 ml) and cooled at 0°C. Bromine (0.507 g, 3.17 mmol) was added dropwise and the mixture was stirred. The reaction was monitored by TLC to completion. The mixture was washed with sodium metabisulfite (20%) and was extracted with dichloromethane (3x150 ml). The organic layer was dried with MgSO\(_4\) and solvent was evaporated. The crude product was purified by column chromatography eluting with dichloromethane and petroleum ether (7:3) and the solid obtained was recrystallized from dichloromethane and isopropanol (1:1) to give pure product 61 as a colourless solid (0.44 g, 61%).

IR (thin film, cm\(^{-1}\)) 2995, 2884, 1587, 1458, 1408, 1241, 1206; \(^1\)H-NMR (CDCl\(_3\), TMS, 500 MHz): \(\delta\) 8.61 (s, 2H), 7.85 (s, 2H), 7.75 (s, 2H), 4.15 (s, 6H), 4.13 (s, 6H) ppm; \(^{13}\)C-NMR (CDCl\(_3\), 126 MHz) 154.1, 149.3, 128.7, 128.0, 122.1, 113.2, 104.5, 103.8, 56.5, 56.2 ppm. MS (MALDI): \(m/z\)
calculated for \( \text{C}_{22}\text{H}_{18}\text{Br}_{2}\text{O}_{4} (\text{M}^+, 100\%) \): 505.96 found 505.96. The data are consistent with the values in lit\(^7^3\)

3.4 **Synthesis of triphenylene core 2,11-dibromo-3,6,7,10-tetramethoxytriphenylene.**

3.4.1. Synthesis of 3-methoxyphenylboronic acid 62\(^9^4\)

![3-methoxyphenylboronic acid](image)

Magnesium turnings (5.85 g, 0.241 mol) and a few crystals of iodine were stirred and heated together under a stream of nitrogen for 10 mins. Dry THF (150 ml) was added to the mixture, followed by 1,2-dibromoethane and the mixture was stirred for 10 mins. 3-Bromoanisole (30.0 g, 0.160 mol) was then added to the mixture which was refluxed for 1 hour and allowed to cool. The cold mixture was then added slowly to trimethyl borate (33.3 g, 0.321 mol) in cold dry THF (200 ml). The mixture was allowed to warm overnight to room temperature. 2M HCl (150 ml) was added until the precipitate dissolved, the mixture was extracted with diethylether (3x100 ml) and the organic layer was dried with MgSO\(_4\). The organic layer was evaporated and the solid was washed thoroughly with petroleum ether. The solid was recrystallized from hot water giving the product 62 as colourless crystals (18.4 g, 75%).

Mp (no melting point it degrades on heating); IR (thin film, cm\(^{-1}\)) 3194, 2261, 1352, 1193, 882, 705; \(^1\)H-NMR (500 MHz, TMS, CD\(_3\)OD) \( \delta \) 7.27 (t, \( J = 7.5 \text{ Hz}, 1\text{H} \)), 7.15 (d, \( J = 7.5 \text{ Hz}, 1\text{H} \)), 7.11 (d, \( J=2.5, 1\text{H} \)), 6.94 (dd, \( J = 7.5, 2.5 \text{ Hz}, 1\text{H} \)), 3.78 (s, 3H) ppm; \(^{13}\)C-NMR (CD\(_3\)OD, 126 MHz) 160.5, 129.7, 127.3, 119.7, 117.2, 55.5 ppm. MS (MALDI): \( m/z \) calculated for \( \text{C}_{7}\text{H}_{9}\text{BO}_{3} (\text{M}^+, 100\%) \): 151.07 found 151.90. The data are consistent with values in lit.\(^9^4\)
3.4.2. Synthesis of 3,3′',4′,5′-tetramethoxy-1,1':2',1''-terphenyl 63

[Chemical structure image]

1,2-Dibromo-4,5-dimethoxybenzene 56 (0.500 g, 1.69 mmol), 3-methoxyphenylboronic acid 62(1.28 g, 8.45 mmol), triphenylphosphine (0.160 g, 0.608 mmol) and potassium carbonate (1.17 g, 8.45 mmol) were stirred in toluene then bis(triphenylphosphine)palladium(II) chloride (0.0827 g, 0.101 mmol) was added to the mixture and refluxed under nitrogen atmosphere. The reaction was monitored by TLC and NMR. The reaction was completed after 24 h and water was added and was extracted with DCM (3x100 ml). The organic layer was dried with MgSO₄ and evaporated. The solid was recrystallized in DCM and ethanol (6:4), giving the product 63 as a light brown solid (0.55 g, 92%).

Mp 133°C; IR (thin film, cm⁻¹) 3002, 2952, 2842, 2157, 1575, 1519, 1485; ¹H-NMR (CDCl₃, TMS, 500MHz): δ 7.14 (t, J = 8.0 Hz, 2H), 6.95 (s, 2H), 6.77 (dd, J = 8.0, 2.5 Hz, 2H), 6.74 (dd, J= 8.0, 2.5 Hz, 2H), 94 (s, 6H), 3.63 (s, 6H) ppm. ¹³C-NMR (CDCl₃, 126 MHz) 159.5, 148.6, 143.2, 133.3, 129.3, 122.7, 115.8, 113.9, 112.7, 56.5, 55.5 ppm. MS (MALDI): m/z calculated for C₂₂H₂₂O₄ (M⁺, 100%): 350.15 found 350.20.
3.4.3. Synthesis of tetramethoxytriphenylene 64

Terphenyl 63 (4.00 g, 11.4 mmol) was stirred in dichloromethane (70 ml) and nitromethane (2 ml) at room temperature. Iron(III) chloride (7.55 g, 45.7 mmol) was added slowly over 2 h and further stirred for 2 h. The reaction was monitored with TLC until completion. Solids in the Mixture were filtered off and washed several times with methanol and dried under vacuo. Resulting solid 64 was colourless (3.87 g, 98%).

Mp 206°C; IR (thin film, cm\(^{-1}\)) 2832, 2157, 1609, 1545, 1518, 1498, 1241, 1203; \(^1\)H-NMR (CDCl\(_3\), TMS, 500MHz) \(\delta\) 8.48 (d, \(J = 9.0\) Hz, 2H), 7.88(s, 2H), 7.87 (d, \(J = 2.5\) Hz, 2H), 7.23 (dd, \(J = 9.0, 2.5\) Hz, 2H), 4.12 (s, 6H), 4.02 (s, 6H) ppm. \(^{13}\)C-NMR (CDCl\(_3\), 126 MHz) 158.5, 149.8, 130.3, 129.0, 124.9, 121.2 114.6, 106.5, 105.1, 56.4, 56.1 ppm. MS (MALDI): \(m/z\) calculated for \(\text{C}_{22}\text{H}_{20}\text{O}_4\) (M\(^+\), 100%): 348.14 found 348.20.
3.4.4. Synthesis of 3,6-dibromo-2,7,10,11-tetramethoxytriphenylene 65

Tetramethoxytriphenylene 64 (0.504 g, 1.44 mmol) was stirred in dichloromethane (30 ml) and cooled at 0°C. Bromine (0.505 g, 3.17 mmol) was added drop wise and stirred 2 h. The mixture was washed with sodium metabisulfite (20%). The resulting compound was seen as precipitate and was filtered and washed several times with ethanol and dried. Resulting compound 65 was off white solid (0.69 g, 93%).

Mp >300°C (decomp); IR (thin film, cm⁻¹) 2935, 2834, 1740, 1602, 1537, 1507, 1489, 1472, 1263, 1258, 1202; ¹H-NMR (CDCl₃, TMS, 500 MHz) δ 8.61 (s, 2H), 7.85 (s, 2H), 7.75 (s, 2H), 4.15 (s, 6H), 4.13 (s, 6H) ppm. ¹³C-NMR (CDCl₃, 126 MHz) 154.0, 150.0, 129.2, 127.6, 124.0, 123.1, 112.6, 107.3, 105.4, 56.1, 55.1 ppm: MS (MALDI): m/z calculated For C₂₂H₁₉Br₂O₄ (M+H)⁺: HRMS 506.9615 found: 506.9626 (Isotope pattern Figure 2.8).
3.4.5 Attempted Synthesis of 3,6-Diferrocenyl-2,7,10,11-tetramethoxy triphenylene 66

![Diagram of the compound](image)

3,6-Dibromo-2,7,10,11-tetramethoxytriphenylene 65 (0.27 g, 0.530 mmol), ferrocene monoboronic (0.61 g, 2.65 mmol), 12% mol triphenylphosphine (0.050 g, 0.191 mmol) and K$_2$CO$_3$ (0.37 g, 2.65 mmol) stirred in degassed toluene for 20 minutes then 3% mol bis(triphenylphosphine)palladium(II)dichloride (0.022 g, 0.0318 mmol) was added. The reaction was allowed to reflux under N$_2$ atmosphere for 72 h. After work up, TLC and NMR analysis showed no evidence for formation of the desired product 66 the compound is not in the solution for reaction to occur because it was noted that the starting materials did not dissolve in the toluene solvent. However, other solvents were also tried but no evidence for the formation of the product.
3.6 Conversion of 3,6-Dibromo-2,7,10,11-tetramethoxy-triphenylene 65 into 3,6-Dibromo-2,7,10,11-hexyloxytriphenylene

3.6.1. Demethylation of 3,6-dibromo-2,7,10,11-tetramethoxytriphenylene 65

3,6-Dibromo-2,7,10,11-tetramethoxytriphenylene 65 (4.00 g, 7.94 mmol) was stirred in dichloromethane (30 ml) at -80°C and borontribromide (11.9 g, 0.05 mmol) was added to the mixture slowly. Reaction was allowed to stir and warmed up overnight to room temperature. Reaction was stopped after 20 h and placed in ice, ethanol was added to mixture dropwise and then evaporated to dryness in vacuo. The titled compound 67 (white solid) 3.42 g, 96%, was used without further purification.

Mp (No melting point it degrades) IR (thin film, cm⁻¹) 3368, 1610, 1420; ¹H-NMR (500 MHz, TMS, d₆-acetone) δ 8.70 (s, 2H), 8.16 (s, 2H), 8.02 (s, 2H) ppm; ¹³C-NMR (CDCl₃, 126 MHz) 153.5, 147.5, 130.7, 128.2, 124.0, 123.4, 110.8, 109.5, 109.4 ppm. MS (MALDI): m/z calculated for C₁₈H₁₀Br₂O₄ (M⁺, 100%) 449.90 found 449.90.
3.6.2. Alkylation 3,6-Dibromo-2,7,10,11-tetrahexyloxytetraol triphenylene 67

3.6.2.1. Synthesis of 3,6-Dibromo-2,7,10,11-tetrahexyloxytriphenylene 68

3,6-Dibromo-2,7,10,11-tetrahexyloxytetraol triphenylene 67 (2.23 g, 5.00 mmol) was stirred in degased ethanol (30 ml), bromohexane (4.95 g, 0.03 mol) and K$_2$CO$_3$ (4.15 g, 0.03 mol). Mixture was refluxed under nitrogen atmosphere for 24 h. Filtered and solvent evaporated. Dilute H$_2$SO$_4$ was added to neutralise the remaining K$_2$CO$_3$. Mixture was extracted with dichloromethane (3x100 ml). The organic layer was dried with MgSO$_4$ and evaporated. The solid obtained was recrystallized in dichloromethane: ethanol (2:1) to give the title compound 68 as a colourless solid (3.70 g, 94%).

IR (thin film, cm$^{-1}$) 2925, 2857, 1598, 1468, 1423, 1387, 1248, 1177. $^1$H-NMR (CDCl$_3$, TMS, 500 MHz) $\delta$ 8.33 (s, 2H), 7.75 (s, 2H), 7.59 (s, 2H), 4.25 (t, $J$ = 6.7 Hz, 8H), 4.20 (t, $J$ = 6.7, 8H), 1.90-2.00 (m, 8H), 1.56-1.66 (m, 16H), 1.35-1.47(m, 8H), 0.94 (t, $J$ = 6.7 Hz, 12H) ppm; $^{13}$C-NMR (CDCl$_3$, 126 MHz) 154.0, 150.1, 129.2, 127.6, 124.0, 123.1, 112.6, 107.3, 105.4, 69.7, 69.5, 31.9, 29.5, 26.0, 22.8, 14.2 ppm. MS (MALDI): $m/z$ calculated for C$_{42}$H$_{58}$Br$_2$O$_4$ (M$^+$, 100%): 786.73 found 786.40. The data are consistent with values in lit$^{48}$
3.7 Synthesis of Ferrocenyl triphenylene 69

3,6-Dibromo-2,7,10,11-tetrahexyloxytriphenylene 68 (0.500 g, 0.64 mmol), ferrocene monoboronic acid (1.17 g, 5.10 mmol), 12% mol triphenylphosphine (0.120 g, 0.46 mmol) and K$_2$CO$_3$ (0.71 g, 5.10 mmol) were stirred in degassed toluene for 20 mins. Bis (triphenylphosphine)palladium(II) chloride (0.054 g, 0.076 mmol) 3% was added and the reaction was allowed to refluxed under N$_2$ atmosphere for 1 hour. Reaction was stopped, washed with sodium hydroxide and the mixture extracted with dichloromethane (3x100ml). The organic layer was dried with MgSO$_4$ and then evaporated. The resulting solid was recrystallised from DCM: ethanol (2: 3) to give orange product 69 (0.40 g, 56%).

Mp 202$^\circ$C; IR (thin film, cm$^{-1}$) 3089, 2938, 2884, 2930, 2857, 1725, 1425, 1260, 1173; $^1$H-NMR (CDCl$_3$, TMS, 500 MHz) δ 8.75 (s, 2H), 7.92 (s, 2H), 7.79 (s, 2H), 5.00-5.04 (m, 4H), 4.38-4.42 (m, 4H), 4.28(t, J=7.0 Hz, 4H), 4.30 (t, , J=7.0 Hz, 4H ), 2.05 (q, J=7.0 Hz, 4H), 1.97(q, J=7.0 Hz, 4H), 1.67(q, J=7.0 Hz, 4H), 1.61(q, J=7.0Hz, 4H), 1.35-1.52(m, 16H), 0.98(t, J=7.0Hz, 6H), 0.95(t, J=7.0, 6H) ppm; $^{13}$C-NMR (CDCl$_3$, 126 MHz) δ 155.7, 149.9, 128.4, 127.8, 123.8, 123.2, 108.1, 104.6, 83.6, 77.2, 70.2, 70.0, 69.4, 69.0, 68.9, 32.1, 29.9, 26. 26.3, 23.1, 14.5 ppm. HRMS: m/z calculated For C$_{62}$H$_{77}$Fe$_2$O$_4$ (M+H)$^+$: 997.4519 found: 997.4516 (Isotope pattern Figure 2.11)
3.8 Attempted Synthesis of Ferrocenyli triphenylene from diacetylene triphenylene

3.8.1 Synthesis of 4,4’-(2,7,10,11-tetrakis(hexyloxy)triphenylene-3,6-diylbis(2-methylbut-3-yn-2-ol) 70

3,6-Dibromo-2,7,10,11-tetrahexyloxy triphenylene 68 (0.900 g, 1.15 mmol) was stirred in dry toluene with copper(I) iodide (0.284 g, 0.15 mmol) and triphenylphosphine (0.072 g, 0.28 mmol) was added. The mixture was stirred in dry triethylamine (30 ml) under nitrogen atmosphere for 10 mins, then bis(triphenylphosphine)palladium(II) chloride (0.05 g, 0.69 mmol) was added and refluxed for 15 mins. Heat was then removed from the reaction and 2-methyl-but-3-yn-2-ol (0.482 g, 5.74 mmol) was added dropwise using dropping funnel. Mixture was then returned on heat and left to reflux under nitrogen atmosphere for 48 h. Reaction was stopped and mixture was cooled to room temperature. Water was added and extracted with dichloromethane, the organic layer was dried with magnesium sulphate and evaporated under vacuo. The brown solid obtained was recrystallized from DCM: Petroleum ether (2:1), giving a yellow solid 70 (0.56 g, 93%).

Cryst 189, Colh, 90 Iso (°C); IR (thin film, cm⁻¹) 3367, 2980, 2931, 2903, 2846, 2227, 1610, 1499, 1431; ¹H-NMR (CDCl₃, TMS, 500 MHz) δ 8.43 (s, 2H), 7.73 (s, 2H), 7.60 (s, 2H), 4.16 (m, 8H), 2.25 (s, 2H), 1.91-1.96 (m, 8H), 1.71 (s, 12H) 1.58-1.66 (m, 8H), 1.34-1.45 (m, 16H), 0.92-0.96
(m, 12H) ppm. $^{13}$C-NMR (CDCl$_3$, 126 MHz) $\delta$ 158.0, 150.1, 130.0, 128.7, 124.8, 122.6, 112.7, 107.7, 104.5, 98.8, 76.9, 69.8, 69.1, 31.8, 31.6, 29.5, 26.0, 25.8, 22.8, 14.2 ppm. MS (MALDI): $m/z$ calculated for C$_{52}$H$_{72}$O$_6$ (M$^+$, 100%): 793.14 found 792.50. The data is consistent with the literature values.\(^{48}\)

3.8.2 Synthesis of 3,6-diethynyl-2,7,10,11-tetrakis (hexyloxy) triphenylene \(71\)\(^{48}\)

\(\text{\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure}
\caption{\textit{71}}
\end{figure}\)}

4,4'-(2,7,10,11-Tetrakis (hexyloxy) triphenylene-3,6-diylbis(2-methylbut-3-yn-2-ol) \(70\) (1.00 g, 1.26 mmol) was stirred in dry toluene under nitrogen atmosphere. Sodium hydride (60% dispersion in oil) (0.234 g, 6.31 mmol) was added in portions and the mixture was heated at reflux for 2 h. The mixture was poured into ice-cold distilled water and the organic layer was extracted with dichloromethane (3x50 ml), dried with MgSO$_4$ and evaporated in vacuo leaving a dark brown oily substance, which was recrystalised in DCM and ethanol. The resulting solid \(71\) was pale orange colour (0.82 g, 92%).

Mp 140°C, lit 140°C\(^{52}\); IR (thin film, cm$^{-1}$) 3315, 3291, 2877, 2106, 1608, 1539, 1499, 1431; \(^1\)H-NMR (500 MHz, CDCl$_3$) $\delta$ 8.54 (s, 2H), 7.80 (s, 2H), 7.68 (s, 2H), 4.25 (m, 8H), 3.37 (s, 2H), 1.91-2.01 (m, 8H), 1.55-1.64 (m, 16H), 1.35-1.46 (m, 16H), 0.92-0.97 (m, 12H) ppm. \(^{13}\)C-NMR (126 MHz, CDCl$_3$) $\delta$ 158.6, 150.4, 130.7, 129.7, 124.9, 122.9, 112.1, 107.9, 104.9, 81.8, 80.8, 69.6, 69.2, 32.1, 31.9, 29.8, 29.6, 26.2, 25.9, 23.0, 22.8, 14.4 ppm. MS (MALDI): $m/z$ calculated for C$_{46}$H$_{60}$O$_4$ (M$^+$, 100%): 676.98 found 676.50. The data is consistent with the literature values.\(^{48}\)
A mixture of 1,1'-dibromoferrocene (0.30 g, 0.89 mmol), copper (I) iodide (0.004 g, 0.021 mmol) and bis(triphenylphosphine)palladium(II)chloride (0.012 g, 0.014 mmol) stirred and refluxed in TEA (10 ml)/THF (5 ml) under nitrogen atmosphere for 15 mins. 3,6-Diethynyl-2,7,10,11-tetrakis(hexyloxy)triphenylene 71 (0.100 g, 0.148x10^-4 mol) dissolved in THF (5 ml) and was added slowly with syringe pump 5ml/h to the mixture and allowed to reflux for 72 h. Reaction was stopped and organic layer extracted with dichloromethane (3x100 ml) dried with MgSO₄ and evaporated in vacuo, resulting yellowish crude solid of was columned in DCM: PE (1: 9). Resulting solid 37 was obtained as pale yellow (0.030, 16%) instead of 72. Furthermore, a mixture of 1,1'-dibromoferrocene (0.10 g, 0.30 mmol), Copper (I) iodide (0.05 g, 0.27 mmol) and bis(triphenylphosphine)palladium(II)dichloride (0.06 g, 0.09 mmol) stirred and refluxed in TEA (20 ml)/ THF (10 ml) under nitrogen atmosphere for 20 mins. 3, 6-Diethynyl- 2, 7,10,11-tetrakis(hexyloxy)triphenylene 71 (0.600 g, 0.89 mol) dissolved in THF (30 ml) and was added slowly with syringe pump to the mixture and allowed to reflux for 48 h. Resulting solid 37 was obtained as yellow (0.045, 16%).

3.8.3 Attempted Synthesis of 2,3,6,11-tetrakis (hexyloxy)-7,10 bis(ferrocenylethynyl)triphenylene 72
Mp 280°C (decomposed); IR (thin film, cm⁻¹) 2948, 2922, 2853, 2184, 2125, 1416, 1387, 1369; 
¹H-NMR (500 MHz, CDCl₃) δ  9.32 (s, 4H), 7.81 (s, 4H), 7.67 (s, 4H), 4.28 (t, J=6.4 Hz, 8H), 4.24 (t, J=6.4 Hz, 8H), 1.99-1.89 (m, 16H), 1.60-1.56 (m, 16H), 1.45-1.40 (m, 32H), 0.99-0.93 (m, 24H) ppm; UV-Vis (DCM) max (log ε) 336 (4.71), 355 (4.55), 375 (4.77), 400 (4.29), 424(4.54); MS (MALDI): m/z calculated for C₉₂H₁₁₆O₈ (M⁺ + 100%): 1349.93 found 1349.86 The data is consistent with the literature values.⁴⁸

3.9. Synthesis of monohydroxypenta(hexyloxy)triphenylene and derivatives

3.9. 1. Synthesis of 1,2-dihexyloxybenzene ⁷⁴²²

[Chemical structure image]

1,2-dihexyloxybenzene (DHB) ⁷⁴ was synthesised according to conditions used by Cammidge group.²² Pyrocatechol (20 g, 0.18 mol), 1-bromohexane (89.4 g, 0.54 mol) and potassium carbonate (74.6 g, 0.54 mol) were stirred in ethanol (300 ml) at 80°C for 2 days. The mixture was allowed to cool to room temperature, filtered, washed with distilled water and extracted with dichloromethane (3x50 ml). The organic layer was evaporated in vacuo giving orange oily compound, which was distilled. The pure product was collected at 185°C as a colourless oil (48.7 g, 97 %).

IR (thin film) 2931, 2860, 1591 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ  6.91 (s, 4H), 4.02 (t, J = 7.0 Hz, 4H), 1.79-1.88 (m, 4H), 1.47-1.55 (m, 4H), 1.32-1.42 (m, 8H), 0.91-0.97 (m, 6H) ppm; ¹³C-NMR (126 MHz, CDCl₃) δ 149.4, 121.2, 114.2, 69.4, 31.7, 29.5, 26.0, 22.7, 14.2 ppm. MS (MALDI): m/z calculated for C₁₈H₃₀O₂ (M⁺, 100%): 278.22 found 278.44.
3.9.2. Synthesis of 3,6,7,10,11- pentakis(hexyloxy)triphenylen-2-ol 25

3,6,7,10,11- Pentakis(hexyloxy)triphenylen-2-ol 25 was synthesised by a two-step procedure used at Cammidge group.\textsuperscript{30} 1,2-Dihexyloxybenzene 74 (10.0 g, 0.036 mol) was stirred in dry dichloromethane (200 ml) and nitromethane (1ml) added then stirred for 10 mins at 0\textdegree C. First portion of FeCl\(_3\) (17.5 g, 0.108 mol) was added slowly and trifluoroacetic acid (TFA) (0.5 ml) was added to the mixture and stirred for further 45 minutes and the second portion of FeCl\(_3\) was added. The mixture was stirred at 0\textdegree C for a further 45 minutes. Methanol (100 ml) and water (200ml) were added to stop the reaction, organic layer was extracted with DCM (3x50 ml), dried with MgSO\(_4\) and evaporated in vacuo. The resulting solid was purified by column chromatography eluting with ethyl acetate and hexane (5: 95). To obtain the product as a grey solid 25 (8.90g, 67%).

Mp 70\textdegree C; IR (thin film, cm\(^{-1}\)) 3555, 2924, 2856, 1618, 1514, 1437, 1257, 1168; \(^1\)H- NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.96 (s, 1H), 7.81 – 7.84 (m, 4H), 7.77 (s, 1H), 5.91 (s, 1H), 4.17 – 4.32 (m, 10H), 1.99 – 1.88 (m, 10H), 1.51 – 1.64 (m, 10H), 1.31-1.48(m, 20H), 0.98-0.88(m, 15H) ppm. \(^{13}\)C-NMR (126 MHz, CDCl\(_3\)) \(\delta\) 149.0, 148.7, 145.7, 145.2, 123.8, 123.4, 107.6, 106.4, 104.3, 69.8, 69.5, 69.0, 31.7, 29.6, 29.4, 25.9, 22.5, 14.2 ppm. MS (MALDI): \(m/z\) Calculated for C\(_{48}\)H\(_{72}\)O\(_6\) (M\(^+\), 100%): 744.53 found 744.46. The data are consistent with the literature values \textsuperscript{30}
**3.9.3. Synthesis of 3,6,7,10,11-pentakis(hexyloxy)triphenylene-2-yl trifluoromethanesulfonate 75**

3,6,7,10,11-pentakis(hexyloxy)triphenylene-2-ol 25 (1.50 g, 0.002 mol) and stirred in dry dichloromethane (50 ml) and was warmed for 10 mins, cooled and pyridine (0.79 g, 0.010 mol) was added at -20°C under nitrogen atmosphere. Trifluoromethanesulphonic acid anhydride (4.54 g, 0.016 mol) was added slowly to the mixture over 45 mins. The mixture was allowed to continue stirring and warmed at room temperature overnight. Dilute (2M) hydrochloric acid (100 ml) was added and the organic layer was extracted with dichloromethane (3x20 ml) and dried with magnesium sulphate and then evaporated in vacuo. Solid obtained was recrystallized in DCM: ethanol (2:1), resulting pure product 75 was a colourless solid (1.72 g, 98%).

Mp 172°C; IR (thin film, cm⁻¹) 2962, 2876, 1618, 1518, 1436, 1398, 1206, 1102; 1H-NMR (500 MHz, CDCl₃) δ 8.20 (s, 1H), 7.89 (s, 1H), 7.85 – 7.78 (m, 3H), 7.72 (s, 1H), 4.31 – 4.18 (m, 10H), 1.89 – 2.02 (m, 10H), 1.56 – 1.65 (m, 10H), 1.47 – 1.33 (m, 20H), 0.89-0.98 (m, 15H) ppm.

13C-NMR (126 MHz, CDCl₃) δ 150.8, 149.9, 149.4, 138.7, 129.9, 125.6, 123.9, 123.3, 122.7, 117.1(q, J = 10), 108.5, 107.6, 107.1, 69.7, 31.9 29.7, 25.9, 22.9, 14.5 ppm. MS (MALDI): m/z calculated for C₄₉H₂₇F₃O₈S (M+H)⁺; 877.49; found 877.92. The data are consistent with the literature values of 30.
3.10. Synthesis of ferrocenyl triphenylene from triphenylene monoacetylene

3.10.1. Synthesis of 2-Methyl-4-(3,6,7,10,11-pentakis(hexyloxy)triphenylene-2-yl)but-3-yn-2-ol 76

A mixture of 3,6,7,10,11-pentakis(hexyloxy)triphenylene-2-yl trifluoromethanesulfonate 75 (0.400 g, 4.56x10⁻⁴ mol), bis(triphenylphosphine)palladium(II)chloride (0.016 g, 2.28x10⁻⁵ mol), pyrrolidine and triethylamine (TEA) (0.4 /0.6) respectively was stirred for 10 mins under argon atmosphere. Triethylamine (4 ml) was added to 2-methyl-but-3-yn-2-ol (0.192 g, 2.28x10⁻³ mol), then dropped slowly by dropping pipette into the mixture. The reaction was allowed to reflux for 15 h, washed with water and extracted with dichloromethane (3x10 ml). The organic layer was dried with magnesium sulphate and evaporated in vacuo. Solid obtained was recrystallised in dichloromethane: ethanol. The resulting solid 76 obtained was pale yellow (0.32 g, 89%).

Mp 151°C; IR (thin film, cm⁻¹) 3243, 2962, 2933, 2876, 29, 1618, 1518, 1436; ¹H- NMR (500 MHz, CDCl₃) δ 8.47 (s, 1H), 7.88 (s, 1H), 7.86 (s, 1H), 7.81 (s, 1H), 7.75 (s, 1H), 4.20-4.27 (m, 10H), 1.89 – 2.00 (m, 10H), 1.72 (s, 6H), 1.52-1.67 (m, 10H), 1.34-1.48 (m, 20H), 0.92-0.96 (m 15H) ppm. ¹³C- NMR (126 MHz, CDCl₃): δ = 157.9, 150.4, 130.6, 128.7, 125.6, 123.7, 123.2, 112.1, 108.3, 107.7, 106.7, 104.7, 98.2, 70.1, 69.6, 66.2, 32.0, 31.8, 29.7, 26.1, 22.9, 14.3 ppm. MS (MALDI): m/z calculated for C₅₃H₇₉O₆ (M+H)⁺; 811.59; found 811.20.
3.10. 2. Synthesis of Ethynyl-3,6,7,10,11-pentakis(hexyloxy)triphenylene 77

2-methyl-4-(3,6,7,10,11-pentakis(hexyloxy)triphenyl-en-2-yl)but-3-yn-2-ol 76 (0.140 g, 1.73 x 10^-4 mol) and sodium hydride (60% dispersion in oil) (0.025 g, 1.04 x 10^-3 mol) were stirred in dry toluene for 2 h. Mixture was poured onto ice cold water and extracted with dichloromethane (3 x 20 ml), evaporated in vacuo. The resulting compound was yellow oil. Crystallization from cold ethanol gave pale yellow solid 77 (0.13 g, 97%).

Mp 150°C; IR (thin film, cm^-1) 3316, 2951, 2922, 2850, 2105, 1612, 1512, 1479, 1433; ^1H- NMR (500 MHz, CDCl_3) δ 8.56 (s, 1H), 7.88 (s, 1H), 7.82 (s, 1H), 7.81 (s, 1H), 7.79 (s, 1H), 4.21 – 4.31 (m, 10H), 3.42 (s, 1H), 1.91-2.01 (m, 10H), 1.52 – 1.67 (m, 10H), 1.35 – 1.50 (m, 20H), 0.93-0.97 (m, 15H) ppm. ^13C- NMR (126 MHz, CDCl_3) δ 158.6, 148.8, 129.7, 124.8, 112.5, 112.1, 107.9, 104.9, 81.8, 80.8, 69.9, 69.7, 32.1, 31.3, 29.7, 29.6, 26.2, 23.0, 14.4 ppm. MS (MALDI): m/z calculated for C_{50}H_{73}O_5 (M+H)^+; 753.55 found 753.12.
3.10.3. Attempted Synthesis of 2,3,6,7,10-pentakis(hexyloxy)-11-(ferrocenylythynyl)-triphenylene 80.

1,1’-Dibromoferrocene (0.204 g, 5.97x 10⁻⁴ mol) and bis(triphenylphosphine) palladium(II) chloride (0.007 g, 9.95x10⁻⁶ mol) were stirred in a mixture of freshly distilled triethylamine (5 ml) and THF (3 ml) under nitrogen atmosphere at room temperature for 30 mins, Copper(I)iodide (0.005 g, 2.83x10⁻⁵ mol) was then added. THF (2 ml) was also added to 2-ethynyl-3,6,7,10,11-pentakis(hexyloxy)triphenylene 77 (0.150 g, 1.99x10⁻⁴ mol) which was then added slowly by syringe pump to the mixture, then heated at 50°C for 48 h. Organic layer was extracted with dichloromethane (3x 15 ml), evaporated to dryness in vacuo. The crude solid was columned with (ethylacetate/Hexane 1:9) isolating only 79 as yellow solid (0.076g, 47%). No yield for the desired Compound 80.

Mp 120°C; IR (thin film, cm⁻¹) 2955, 2926, 2857, 1736, 1608, 1517, 1467, 1430, 1260. ¹H- NMR (500 MHz, CDCl₃) δ 8.65 (s, 2H), 7.89 (s, 2H), 7.87 (s, 2H), 7.81 (s, 2H), 7.79 (s, 2H), 4.20-4.33 (m, 20H), 1.90-2.04 (m, 20H), 1.34-1.47 (m, 40H), 0.85-0.99 (m, 30) ppm. MS (MALDI): m/z 1504.10 (M⁺, 100); HRMS; calculated For C₁₀₀H₁₄₂O₁₀: found 1504.23 (Isotope pattern Figure 2.19).
3.10. 4. Synthesis of 2,3,6,7,10-pentakis(hexyloxy)-11-(ferrocenylethynyl)triphenylene 78.

Ethynylferrocene (0.144 g, 0.686 mmol), 3,6,7,10,11-pentakis(hexyloxy)triphenylene-2-yl trifluoromethanesulfonate 75 (0.318 g, 0.342 mmol), bis(triphenylphosphine)palladium(II) chloride (0.024 g, 0.034 mmol) and copper(I) oxide (0.072 g, 0.376 mmol) were all mixed in a two necked flask with dry triethylamine (40 ml) and stirred under nitrogen atmosphere at 50°C after which dilute hydrochloric acid was added and the mixture was extracted with (3x20 ml), dried with MgSO\(_4\) and evaporated to dryness in vacuo. Solid obtained was recrystallized in DCM/EtOH giving 78 as an orange solid (0.013 g, 4%) and dimer 82.

Mp 152°C; IR (thin film, cm\(^{-1}\)) 2955, 2929, 2858, 1737, 1615, 1516, 1468, 1435, 1391, 1263.

MS (MALDI); m/z calculated for C\(_{60}\)H\(_{81}\)FeO\(_5\) (M +H)\(^{+}\) 937.57; found 937.57.
3.11 Synthesis of twin triphenylene ester

3.11.1 Synthesis of ferroceny1 ester

3.11.1.1 Synthesis of bis(3,6,7,10,11-pentakis(hexyloxy)triphenylen-2-yl)ferrocenylate 84

3,6,7,10,11-Pentakis(hexyloxy)triphenylen-2-ol 25 (0.500 g, 6.71x10^{-4} mol), 1, 1’-ferrocenedicarboxylic acid (0.075 g, 2.68x10^{-4} mol), N,N'-dicyclohexyl carbodiimide (DCC) (0.278 g, 1.342x10^{-3} mol), 4-(dimethylamino)pyridine (DMAP)(0.004 g, 3.35x10^{-5} mol) were stirred in dry DCM (50 ml) at 25°C for 48 h. The mixture was filtered, washed with dilute 2M HCl (20 ml x 2), washed with dilute sodium hydroxide and finally washed with distilled water and extracted with DCM (3x50ml), dried with MgSO₄ and evaporated to dryness in vacuo. The crude solid was purified by column chromatography eluting with ethylacetate/hexane (1:20) and recrystalised in ethanol and DCM giving orange solid 84 (0.19 g, 41%).

Mp 125°C; IR (thin film, cm⁻¹) 2929, 2856, 1727, 1705, 1616, 1514, 1453, 1431, 1259.
MS (MALDI): m/z calculated for C₁₀₈H₁₅₁FeO₁₄ (M+H)⁺; 1729.05; found 1729.05.
3.11.2 Synthesis of benzoyl ester

3.11.2.1 Synthesis of bis(3,6,10,11-pentakis(hexyloxy)triphenyl-2-yl)isophthalate 86

3,6,7,10,11-pentakis(hexyloxy)triphenyl-2-ol 25 (0.500 g, 6.71x10⁻⁴ mol), benzene-1,3-dicarboxylic acid (0.046 g, 2.74x10⁻⁴ mol). \(N,N'-\)dicyclohexylcarbodiimide (DCC) (0.420 g, 2.04x10⁻³ mol) 4-(dimethylamino)pyridine (DMAP) (0.016 g, 1.31x10⁻⁴ mol) were stirred in dry DCM (50ml) at 30°C for 72 h. The mixture was filtered, washed with dilute 2M HCl (20 ml x 2), washed with dilute sodium hydroxide and finally washed with distilled water and extracted with DCM (3x50ml), dried with MgSO₄ and evaporated to dryness in vacuo. The crude solid was purified by column chromatography eluting with ethylacetate/hexane (1: 20) and recrystalised in ethanol and DCM isolating the product as light purple solid 86 (0.13 g, 29%).

Mp 176°C; IR (thin film, cm⁻¹) 2954, 2858, 2928, 1741, 1616, 1511, 1432, 1240, 1225; \(^1\)H- NMR (500 MHz, CDCl₃) δ 9.16(s, 1H), 8.51 ( dd, \(J = 7.7, 1.5 \) Hz, 2H), 8.18 (s, 2H), 7.87 (s, 2H), 7.82 (s, 2H), 7.77 (s, 2H), 7.76 (s, 2H), 7.74 (s, 2H), 7.69 (t, \(J = 7.7, 1H\)), , 4.10-4.20 (m, 20H), 1.80-1.92 (m, 16H), 1.69-1.76 (m, 4H), 1.25-1.41 (m, 20H), 1.12-1.24 (m, 10H) 0.70-0.92 (m, 30H) ppm. \(^{13}\)C-NMR (126 MHz); δ 164.2, 149.8, 148.9, 139.9, 128.2, 124.7, 123.5, 123.3, 123.2, 116.8, 108.0, 107.0, 106.4, 69.9, 69.8, 69.2, 69.0, 31.7, 31.5, 29.6, 29.0, 25.8, 22.7, 22.6, 22.3, 14.1 ppm. MS (MALDI): \(m/z\) calculated for C₁₀₄H₁₄₆O₁₄ (M⁺, 100%): 1620.07 found 1620.38
3.11.2.2. Synthesis of bis(3,6,7,10,11-pentakis(hexyloxy)triphenylen-2-yl)phthalate 89

3,6,7,10,11-Pentakis(hexyloxy)triphenylen-2-ol 25 (0.530 g, 7.11x10⁻⁴ mol), benzene-1,2-dicarboxylic acid (0.046 g, 2.74x10⁻⁴ mol), N,N'-dicyclohexylcarbodiimide (DCC) (0.280 g, 1.36x10⁻³ mol), 4-(dimethylamino)pyridine (DMAP) (0.004 g, 3.36x10⁻⁵ mol) were stirred in dry DCM (50 ml) at 30°C for 72 h. The mixture was filtered, washed with dilute 2M HCl (20 ml x 2), washed with dilute sodium hydroxide and finally washed with distilled water and extracted with DCM (3x50 ml), dried with MgSO₄ and evaporated to dryness in vacuo. The crude product was loaded onto a silica column and eluted with a 1:20 mixture of ethylacetate/hexane. The solid was recrystallized from dichloromethane and ethanol giving the desired product 89 (0.18g, 41%).

Mp 82°C; IR (thin film, cm⁻¹) 2929, 2858, 1738, 1616, 1509, 1432, 1259; ¹H- NMR (500 MHz, CDCl₃) δ 8.24 (s, 1H), 8.08 (dd, J = 6.0, 3.5Hz, 2H), 7.85 (s, 1H), 7.85 (s, 1H), 7.80 (s, 1H), 7.72 (s, 1H), 7.68 (dd, J = 6.0, 3.5 Hz, 2H), 7.66 (s, 1H), 4.09-4.22 (m, 16H), 4.01 (t, J = 6.5, 4H) 1.81-1.92 (m, 10H), 1.71-1.81 (m, 10H), 1.51-1.60 (m, 20H), 1.08-1.30 (m, 20H), 0.89-1.05 (m, 20H), 0.76-0.88 (m, 30H) ppm. ¹³C-NMR (126 MHz); δ 166.0, 150.0, 149.8, 139.9, 132.2, 131.7, 129.9, 128.4, 125.0, 123.7, 123.5, 123.0, 117.2, 108.1, 107.8, 69.6, 68.5, 31.9, 29.6, 25.8, 22.7, 14.2 ppm. MS (MALDI): m/z Calculated for C₁₀₄H₁₄₆O₁₄ (M⁺, 100%): 1620.07 found 1619.45.
3.11.2.3 Synthesis of bis(3,6,7,10,11-pentakis(hexyloxy)triphenylen-2-yl)terephthalate 91

3,6,7,10,11-Pentakis(hexyloxy)triphenylen-2-ol 25 (0.530 g, 7.11x10^{-4} mol), benzene-1,4-dicarboxylic acid (0.046 g, 2.74x10^{-4} mol), N,N’-dicyclohexylcarbodiimide (DCC) (0.280 g, 1.36x10^{-3} mol) 4-(dimethylamino)pyridine (DMAP) (0.0041 g, 3.36x10^{-5} mol) were stirred in dry DCM (50 ml) at 30°C for 72 h. The mixture was filtered, washed with dilute 2M HCl (20 ml x 2), washed with dilute sodium hydroxide and finally washed with distilled water and extracted with DCM (3x50ml), dried with MgSO₄ and evaporated to dryness in vacuo. The crude solid was purified by column chromatography eluting with ethylacetate/hexane (1: 20) the solid 91 was obtained as off white (0.15g, 35%).

Mp 175°C; IR (thin film, cm⁻¹) 2918, 2850, 1731, 1515, 1435, 1261; ¹H- NMR (500 MHz, CDCl₃) δ 8.46 (s, 4H), 8.24 (s, 2H), 7.92 (s, 2H), 7.88 (s, 2H), 7.82 (s, 2H), 7.79 (s, 4H), 4.19- 4.28 (m, 20H), 1.99- 1.89 (m, 16H), 1.76 - 1.84 (m, 4H), 1.52- 1.65 (m, 20H), 1.35- 1.48 (m, 40H), 0.87 - 0.98 (m, 30H) ppm.¹³C- NMR (126 MHz); δ 164.5, 149.8, 149.5, 148.9, 140.0, 133.8, 130.3, 128.4, 124.9, 123.4, 123.1, 116.9, 108.2, 106.5, 69.4, 69.2, 31.9, 29.6, 25.8, , 22.8, 14.1 ppm. MS (MALDI): m/z calculated for C₁₀₄H₁₄₆O₁₄ (M⁺, 100%): 1620.07 found 1619.68.
3.12. N-Acyl Urea 87 (byproduct) of Isophthalate 86

3,6,7,10,11-Pentakis(hexyloxy)triphenyl-2-ol 25 (0.500 g, 6.71x10^{-4} mol), benzene-1,3-dicarboxylic acid (0.046 g, 2.74x10^{-4} mol), N,N’-dicyclohexyl carbodiimide (DCC) (0.420 g, 2.04x10^{-3} mol) 4-(dimethylamino)pyridine (DMAP) (0.016 g, 1.31x10^{-4} mol) were stirred in dry DCM (50ml) at 30°C for 72 h. The mixture was filtered, washed with dilute 2M HCl (20 ml x 2), washed with dilute sodium hydroxide and finally washed with distilled water and extracted with DCM (3x50ml), dried with MgSO₄ and evaporated to dryness in vacuo. The crude solid was purified by column chromatography eluting with ethylacetate/hexane (1: 20) isolating the product as light purple solid 86 (0.13 g, 29%) and the by-product 87 was obtained as white solid (0.22 g, 51%).

Mp 95°C; IR (thin film, cm⁻¹) 2930, 2857, 1738, 1651, 1514, 1437, 1258. ¹H-NMR (500 MHz, CDCl₃) δ 8.48 (s, 1H), 8.37 (d, J=8.0, 1H), 8.20 (s, 1H), 7.92 (s, 1H), 7.88 (s, 1H), 7.84 (s, 1H), 7.79 (s, 1H), 7.60 (t, J = 8.0 Hz, 1H), 4.15 – 4.27 (m, 10H), 1.85 – 2.00 (m, 10H), 1.48 – 1.66 (m, 20H), 1.33 – 1.47 (m, 20H), 1.20– 1.31 (m, 10H), 0.88 – 0.98 (m, 12H), 0.81 – 0.86 (m, 3H) ppm. ¹³C-NMR (126 MHz, CDCl₃) δ 174.5, 164.3, 154.1, 149.5, 149.1, 149.0, 140.0, 137.7, 132.4, 132.0, 130.2, 129.0, 128.8, 128.3, 123.6, 123.1, 116.9, 108.2, 107.5, 107.1, 106.6, 106.5, 70.1, 69.9, 69.7, 69.7, 58.0, 49.9, 31.8, 29.6, 26.4, 26.0, 22.8, 22.7, 14.2, 14.1 ppm. MS (MALDI): m/z C₆₉H₉₉N₂O₉ (M+ H)⁺: 1099.74 found 1099.55
3.13. \textit{N}-Acyl Urea 92 (byproduct) of Terephthalate 91

![Structure of 92]

3,6,7,10,11-Pentakis(hexyloxy)triphenyl-2-ol 25 (0.500 g, 6.71x10^{-4} mol), benzene-1,4-dicarboxylic acid (0.046 g, 2.74x10^{-4} mol), \textit{N},\textit{N}'-dicyclohexyl carbodiimide (DCC) (0.420 g, 2.04x10^{-3} mol) 4-(Dimethylamino) pyridine (DMAP) (0.016 g, 1.31x10^{-4} mol) were stirred in dry DCM (50 ml) at 30°C for 72 h. The mixture was filtered, washed with dilute 2M HCl (20 ml x 2), washed with dilute sodium hydroxide and finally washed with distilled water and extracted with DCM (3x50 ml), dried with MgSO$_4$ and evaporated to dryness in vacuo. The crude solid mixture was purified by chromatography eluting with ethyl acetate/hexane (1:20) and the by-product solid 92 was obtained as white solid (0.18 g, 42%). MS (MALDI): $m/z$ C$_{69}$H$_{98}$N$_2$O$_9$ (M$^+$, 100%): 1098.73 found 1098.84.

3,6,7,10,11-Pentakis(hexyloxy)triphenyl-2-ol 25 (0.100 g, 0.134 mmol), benzene-1,2-dicarboxylic acid (0.022 g, 0.134 mmol), N,N'-dicyclohexylcarbodiimide (DCC) (0.05 g, 0.242 mmol) 4-(dimethylamino)pyridine (DMAP) (0.002 g, 0.013 mol) were stirred in dry DCM (50 ml) at 30°C for 72 h. Benzoic acid 93 (0.033 g, 0.268 mmol) was added and the mixture was further stirred for 1 h. The mixture was filtered, washed with dilute 2M HCl (20 ml x 2), washed with dilute sodium hydroxide and finally washed with distilled water and extracted with DCM (3x50 ml), dried with MgSO₄ and evaporated to dryness in vacuo, then recrystallised from DCM/ EtOH and the resulting solid 94 was white (0.098 g, 86%)

Cryst 168, Colh 120 Iso (°C); IR (thin film, cm⁻¹) 3298, 2955, 2930, 2857, 1733, 1618, 1516, 1435, 1259. ¹H- NMR (500 MHz, CDCl₃); δ 8.23 (d, J = 7.5, 2H), 8.12 (s, 1H), 7.83 (s, 1H), 7.83 (s, 1H), 7.80 (s, 1H), 7.75 (s, 1H), 7.74 (s, 1H), 7.71 (s, 1H) 7.59 (t, J = 7.5 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H) 4.09-4.20 (m, 10H), 1.80-1.92 (m, 8H), 1.65-1.74 (m, 2H), 1.42-1.56 (m, 10H), 1.21-1.38 (m, 20H), 0.79 – 0.90 (m, 22H), 0.73 (t, J = 7.0 Hz, 3H) ppm. ¹³C- NMR (126 MHz); δ 165.3, 150.0, 149.0, 140.3, 133.6, 130.4, 129.8, 128.7, 128.2, 124.8, 123.4, 117.0, 108.2, 107.5, 106.6, 69.3, 68.7, 31.8, 29.6, 25.7, 22.8, 14.2 ppm: MS (MALDI): m/z calculated for C₅₅H₇₇O₇ (M+H)⁺: 849.57 found 849.36.
REFERENCES:
(6) Kumar, S., Chemistry of discotic liquid crystals: from monomers to polymers. CRC press: 2016. USA.


(64) Molander, G. A.; Bialatto, B. J. Org. Chem. 2003, 68, 4302-4314;
(65) Artal, M. C.; Toyne, K. J.; Goodby, J.; Barberá, W. J.; Photinos, D. J. J. Mater. Chem.,
2001, 11, 2801-2807.
(69) Boden, N.; Bushby, R. J.; Cammidge, A. N.; Jesudason, M. V. Liq. Cryst. 1993, 15, 851-
858.
(82) Piatelli, M.; Fattorusso, E.; Nicolllllllaus, R. A.; Magno, S. Tetrahedron Lett. 1965, 21, 3229-
3236.


