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Abstract 

 

Executive function (EF) plays a foundational role in development. A brain-based 

model of EF development is probed for the experiences that strengthen EF in the 

dimensional change card sort (DCCS) task in which children sort cards by one rule and 

then are asked to switch to another. Three-year-olds perseverate on the first rule, failing 

the task, whereas 4-year-olds pass. Three predictions of the model are tested to help 3-

year-olds (N=54) pass. Experiment 1 shows that experience with shapes and the label 

‘shape’ helps children. Experiment 2 shows that experience with colors – without a label 

- helps children. Experiment 3 shows that experience with colors induces dimensional 

attention. The implications of this work for early intervention are discussed.   
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Empirical Tests of a Brain-Based Model of Executive Function Development 

The emergence of executive function (EF) abilities during early childhood plays a 

foundational role in development. EF refers to a set of neurocognitive processes involved 

in goal-directed behavior (Blair & Raver, 2015; Carlson, Zelazo, & Faja, 2013; Müller & 

Kerns, 2015; Zelazo, 2015) that includes working memory, inhibitory control, and 

cognitive flexibility (Miyake et al., 2000; see also, Brydges, Fox, Reid, & Anderson, 

2014; Wiebe et al., 2011). Having strong EF abilities helps children meet the demands 

placed on them in the home (e.g., following rules) and classroom (e.g., sitting still) and 

predicts outcomes across a wide array of contexts (Carlson et al., 2013; Müller & Kerns, 

2015). For example, good EF abilities are associated with good academic performance 

(Blair & Razza, 2007), good social abilities (Clark, Prior, & Kinsella, 2002), and the 

rapid acquisition of new concepts (Bascandziev, Powell, Harris, & Carey, 2016). Having 

poor EF abilities during early childhood can cascade into negative long-term outcomes. 

In fact, children with poor EF abilities are more likely to develop into adults with low 

socioeconomic status, have poor health, and become involved in criminal activity 

(Moffitt et al., 2011). Thus, there is a need for interventions that strengthen EF abilities 

during early childhood.  

The key to successful EF interventions is transfer across contexts. Unfortunately, 

transfer beyond the training context has been a barrier for many cognitive intervention 

efforts (for reviews, see Melby-Lervag & Hulme, 2013; Shipstead et al., 2012). For 

example, Redick et al. (2013) found that intensive working memory training in adults led 

to improvements in the practiced tasks but no transfer to other measures of cognition 

(e.g., working memory capacity). Intervention efforts during early childhood have also 
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yielded mixed results. For example, Blakely and Carroll (2015) showed that working 

memory training in 4-year-old children improved performance on non-trained working 

memory tasks, although this training did not impact performance on inhibitory control or 

cognitive flexibility tasks (for a similar result, see Thorell et al., 2011).  

At present, we have a limited understanding as to why some training experiences 

promote transfer to non-trained tasks and others do not. This is certainly an empirical 

issue as researchers probe different training regimes to see which ones promote transfer. 

But it is also a theoretical issue. Simmering and Perone (2013) proposed that advances in 

theory might offer new insights into how experience impacts cognition across contexts. 

In this spirit, Perone et al. (2015) used a theoretical model of EF development that 

specifies the processes by which experience is carried across contexts as a guide to 

enhance children’s performance in the Dimensional Change Card Sort (DCCS) task.  

The DCCS task is a canonical probe of early EF (Zelazo, 2006). The task is 

shown at the top of Figure 1, featuring a set of two-dimensional objects called “buggles.” 

In the standard version of the DCCS task, children are asked to sort objects by one 

dimension (e.g., shape) during a pre-switch phase before switching to the other 

dimension (e.g., color) in the post-switch phase. Typically, 4-year-old children readily 

switch the dimension by which they sort and are said to pass the task. Three-year-old 

children, by contrast, perseverate on the pre-switch dimension and are said to fail the 

task.  

The literature is populated with studies aiming to enhance children’s performance 

in the DCCS task. For example, some studies have simplified the standard version of the 

task so that selective attention to one dimension is not required (e.g., Brace, Morton, & 
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Munakata, 2006; Brooks, Hanaur, Padowska, & Rosman, 2003). Other studies have 

explicitly trained children to attend to the bidimensionality of the cards (Mack, 2007; 

Ramscar, Dye, Gustafson, & Klein, 2013), asked children to name the relevant dimension 

when they incorrectly sort cards (Espinet, Anderson, & Zelazo, 2013; see also, Kloo & 

Perner, 2003), or give children feedback on their sorting decisions (van Bers, Visser, & 

Raijmakers, 2015). All of these studies have shed important light on how aspects of the 

DCCS task can be manipulated to help young children think flexibly, but they have not 

tackled the challenge of transfer across contexts.  

Perone et al. (2015) used a Dynamic Neural Field (DNF) model of EF proposed 

by Buss and Spencer (2014) to construct a set of specific experiences in a memory game 

that were predicted to promote transfer to the DCCS task. Results were consistent with 

model predictions: children trained in a memory game context showed enhanced EF in 

the standard DCCS task. This was the first demonstration that experiences outside the 

DCCS task context can effectively impact EF in the task. The work presented here builds 

on these efforts to better understand the mechanisms by which experience acquired in a 

training context impacts EF in the DCCS task. In the next section, we provide an 

overview of the DNF model. We then review Perone et al. (2015) which sets the stage for 

the three novel tests of model predictions we examined in the present study. 

Dynamic Neural Field Model 

DNF models belong to a class of neural process models. These models consist of 

cortical fields (neural fields) with populations of neurons tuned to continuous dimensions 

(e.g., color). The basic dynamics within a neural field are as follows. A stimulus excites 

neurons selectively tuned to its value along a dimension and local excitatory / lateral 
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inhibitory connections within the neural field create a localized “peak” of activation. 

These peaks are real-time neuronal decisions about the feature values present (e.g., the 

specific color). Peaks, in turn, drive the formation of memory traces, which prime future 

decision-making. For instance, the presentation of a blue stimulus might excite neurons 

selectively tuned to this hue value. This will create a localized peak of activation in a 

color field associated with actively encoding the color blue. The peak will leave a 

memory trace that can then facilitate the formation of a 'blue' peak at a future point in 

time leading to, for instance, faster reaction times for blue items.  

DNF models typically couple multiple cortical fields together to create neural 

architectures that instantiate the cognitive and neural processes hypothesized to underlie 

performance in particular tasks. Buss and Spencer’s (2014) DNF model consists of 

reciprocally connected frontal and posterior systems. There is substantive evidence that 

strong co-activity in frontal and posterior brain regions (e.g., dorsolateral prefrontal 

cortex and parietal cortex) is associated with developmental change in EF from 

adolescence to adulthood (e.g., Crone et al., 2006; Scherf, Sweeny, & Luna, 2006; 

Wendelken et al., 2012), which may result from increasing interregional connectivity 

(e.g., Edin et al., 2007; Fair et al., 2007). Little is known about the dynamics of these 

brain regions in EF during early childhood, a period when EF is rapidly changing 

(Carlson, 2005; Müller & Kerns, 2015). The DNF model is beginning to fill this gap. The 

model simulates children’s performance in the DCCS task and has provided a theoretical 

account of performance across 14 variants of the task, as well as generated novel neural 

(Buss & Spencer, 2017) and behavioral (Buss & Spencer, 2014; Perone et al., 2015) 

predictions.  
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Figure 2 shows the DNF model. The posterior system encodes objects as colors 

and shapes bound to their spatial locations. Specifically, the posterior system has a spatial 

working memory (SWM) field, shown at the top, which encodes the presence of stimuli 

at their spatial locations. SWM is coupled to a color working memory (WMC) and shape 

working memory (WMS) field, shown below SWM. These fields represent ‘what’ is 

‘where’. The posterior system is responsible for encoding and sorting objects to the left 

or right. For example, Figure 2 shows hot spots (peaks) in the color and shape WM fields 

indicating that a short, green buggle is about to be sorted to the left location. Each time 

the shape and color WM fields form a peak, they leave memory traces in layers MTS and 

MTC, respectively. The memory traces strengthen the response of the WM fields to 

previously sorted objects at the location they were sorted to. This biases the model to 

continue sorting the way it has in the past. These memory traces are a key source of 3-

year-old children’s perseveration in the DCCS task.  

The frontal system consists of nodes tuned to the labels ‘color’ and ‘shape.’ These 

nodes respond to the experimenter’s instruction to ‘sort by shape’ or ‘sort by color’ and 

compete in a winner-take-all fashion. The winner implements a form of dimensional 

attention in the posterior system by selectively boosting the responsivity of the associated 

WM field. The shape and color nodes also have associated memory trace layers, MTi_shape 

and MTi_color , that strengthen their response to previously presented labels. 

How does the DNF model perform the DCCS task? The model is instructed to 

sort by a dimension, for example, ‘sort by shape’ during the pre-switch phase. This 

activates the shape node, which in turn boosts the shape WM field. At the moment 

captured in Figure 2, the model has been presented with a card depicting a short, green 
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buggle, and it has formed a peak at the left location in the shape and color WM fields. 

This leads the model to sort the object to the left location where the short buggles match. 

Like children, the model sorts six cards during the pre-switch phase. In this example, this 

leads to the accumulation of strong memory traces for sorting short buggles to the left 

and tall buggles to the right. 

When the post-switch phase begins, the model is instructed to sort by color. This 

selectively activates the color node in the frontal system, which, in turn, boosts the color 

WM field in the posterior system. When the strength of the connection weights between 

the frontal and posterior systems are relatively weak, this top-down signal to engage the 

color dimension is not very strong, and it cannot overcome the strong memory traces in 

the posterior system for sorting by shape. The model perseverates on the pre-switch 

dimension, shape in this example, like 3-year-old children. When the strength of the 

connections between the frontal and posterior systems are relatively strong, the top-down 

signal can overcome the strong memory traces for sorting by shape, and the model sorts 

correctly, like 4-year-old children (for additional details, see Buss & Spencer, 2014; 

Perone et al., 2015). Thus, the strength of connections between the frontal and posterior 

systems in the DNF model is a key source of developmental change in children’s 

performance in the DCCS task. Perone et al. (2015) probed the specific experiences that 

might strengthen how strongly these systems interact and, in turn, children’s EF. We 

provide a brief review of this work next.  

Targeting frontal-posterior connectivity: Review of Perone et al. (2015) 

The bi-directional connectivity of the frontal and posterior systems in the DNF 

model allows for two influences on performance in the DCCS task: (1) top-down 
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influence from the labels can bias activation in the WM fields, and (2) activation in the 

WM fields can exert a bottom-up influence on the label nodes, such as when strong 

activity in the color WM field in the posterior system boosts the color node. Perone et al. 

(2015) gave the DNF model experiences that targeted both influences to strengthen the 

interactivity between the two systems. They provided the posterior system with 

experience in the form of memory traces for five colors, and they boosted the color node 

via repeatedly presenting the label ‘color’. This experience increased the strength with 

which the frontal and posterior systems associated with the color dimension interacted, 

enabling the model to strongly engage the color dimension during the post-switch phase 

of the DCCS task. Consequently, the model overcame the memory traces associated with 

sorting by shape during the pre-switch phase, and the model passed the DCCS task.  

The memory traces associated with the five colors raise the baseline activity level 

of the units within the color working memory field in the posterior system, and the 

memory traces associated with the label ‘color’ raise the baseline activity of the color 

node in the frontal system. In doing so, the memory traces move local activation closer to 

the threshold at which peaks form, allowing sub-threshold activation in the frontal and 

posterior systems to have more of an impact on each other. In this way, memory traces 

increase the effective strength with which the frontal and posterior systems project to 

each other. We refer to this as effective connectivity. This differs from the strength of the 

connection weights between the frontal and posterior systems. These connection weights 

are multiplied by the current activation to collectively determines how strongly activation 

in one system (e.g., frontal) influences activity in the other system (e.g., posterior). The 

strength of these connection weights are what Buss and Spencer (2014) proposed increase 
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over development (see above), and are thus held constant in the present work. 

To test the prediction of the DNF model, Perone et al. asked 3-year-old children 

to play a memory game in which they searched for matching pairs of the same colors 

presented to the model (colors 1, 6, 10, 13, & 18; see Figure 3). Children also heard the 

label ‘color’ repeatedly as they searched for matches. Children then participated in the 

DCCS task and were asked to sort by shape in the pre-switch phase and color in the post-

switch phase. Three-year-old children, like the model, passed the DCCS task.  

Interestingly, Perone et al. (2015) found that children failed to switch from color 

to shape after playing a memory game with shapes (shapes 3, 8, 12, 15, & 20; see Figure 

3). Why does experience with color but not shape transfer to the DCCS task? Perone et 

al. proposed that the buggle shapes used in the experiment were less distinct because the 

shapes were minor variations of a single category (i.e., circle). To test this, they 

constructed a simplified memory game model and simulated learning about colors and 

shapes that were more or less discriminable (i.e., closer or farther along the represented 

dimension). When the features were close together, they interfered with one another, 

leading to less robust decisions (peaks) and weaker memory traces. When these weaker 

memory traces were carried forward into the DCCS model, the model failed to switch 

from color to shape.  

Perone et al. demonstrated that the DNF model is a useful tool to probe how 

specific experiences influence transfer in the DCCS task. Here, we build on this work, 

using the same simulation approach to generate and test three novel predictions of the 

DNF model. The first prediction is that experience with more distinct shapes in a memory 

game will transfer to the DCCS task, helping 3-year-old children succeed. The second 
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prediction is that extensive bottom-up experience is sufficient to generate transfer to the 

DCCS task, even without an associated label. The third prediction is that the similarity of 

the features between the memory game and the DCCS task is not critical--as long as 

strong memories are created in the memory game, even very dissimilar colors are 

sufficient to induce transfer.  

Experiment 1 

Experiment 1 tested the novel prediction of the DNF model that extra experience 

learning about more distinctive shapes than those used by Perone et al. (2015) will help 

3-year-old children flexibly switch from sorting by color to sorting by shape in the DCCS 

task. The simulation method used to generate this prediction is described next, followed 

by the empirical test. 

Simulations 

The simulation method involved the same two-step process described in Perone et 

al. (2015). The first step was to probe the memory game model used by Perone et al. to 

examine what experiences would yield strong memories. Figure 4A shows the memory 

game model. The model consists of a one-dimensional WM field (WMS) with neurons 

selectively tuned to shape and an associated memory trace layer (MTS_1D). At the top are 

the five close shapes (shapes 3, 8, 12, 15, and 20; see Figure 3) that children in Perone et 

al. were exposed to. The model was presented with the five shapes in a random order 

across a series of 60 exposure trials, which mimics the memory game that children play 

in which they repeatedly flip over cards, look at a shape, and seek a match (see Method). 

Batches of 50 simulations were conducted to provide a robust estimate of learning. At the 

moment captured in 4A, the model has a localized peak associated with remembering 
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shape 3. The broad inhibitory trough surrounding the peak effectively “knocks out” 

nearby items (e.g., shapes 8, 12, and 15) that were previously in WM. Over the course of 

learning, this interference leads to relatively weak memory traces associated with the five 

shapes (see bottom panel in 4A).  

Can we strengthen the memories for the shapes by spreading them out, thereby 

reducing interference? We tested this possibility by exposing the model to shapes 1, 3, 

12, 20 and 23 (see Figure 3). We probed the memory game model after playing the 

memory game with these more distinct shapes once (60 exposures) and twice (120 

exposures) to explore whether extra exposure would lead to increasingly robust memories 

for the shapes. The results are shown in Figure 4B. At the moment captured, the model is 

being exposed to shape 3. Notice that the model is also maintaining shape 20 in WM. 

This happens because the WM peaks associated with shapes 3 and 20 are relatively far 

apart, which reduces the likelihood that the inhibitory troughs associated with one WM 

peak will “knock out” the other. Maintaining multiple items in WM helped the model 

form strong memory traces. The memory traces were stronger when the memory game 

was played twice (red line) than once (black line).  

The simulations of the memory game set up the second step in our simulation 

method. Here, we imported the memory traces from the 'memory game' simulations into 

Buss and Spencer’s (2014) DNF model, effectively asking whether this prior experience 

would impact DCCS performance. The memory traces were imported as ridges of input 

across the spatial dimension, generalizing the experience with the five distinct shapes 

across all locations. The memory trace layer associated with the shape node (MTi_shape) in 

the frontal system was also initialized with a memory for the label ‘shape’ to capture 
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experience with the label ‘shape’ during the memory game that children play (see 

Method). The model was situated in the DCCS task and instructed to sort by color during 

the pre-switch phase and by shape during the post-switch phase. Batches of 100 

simulations were run to provide an estimate of the model’s overall performance in the 

presence of simulation-to-simulation variation. 

Figure 5 shows the simulation results. The rate at which the DNF model passed 

the DCCS task when given robust experience with distinct shapes and the label ‘shape’ 

was greater than when the model performed under the standard conditions (compare 

Distinct Shapes to Standard in 5A). The memory game experience strengthened the 

effective frontal-posterior connectivity associated with the shape dimension. In particular, 

the strength of the effective connection from the frontal to posterior system (see Distinct 

Shapes in 5B) and back from the posterior system to the frontal system (see Distinct 

Shapes in 5C) was stronger for shape (red bars) than for color (blue bars). The effective 

connectivity associated with the shape dimension was much greater than under the 

standard conditions (see Standard in 5B-C). This enabled the DNF model to strongly 

engage the shape dimension during the post-switch phase and overcome the strong 

memory traces associated with sorting by color during the pre-switch phase. Note that the 

measures of effective connectivity from the frontal-to-posterior system shown in Figure 5 

were the mean strengths of the projections from the color and shape nodes to the color 

and shape working memory fields, respectively, across the pre- and post-switch phases of 

the DCCS task. The reverse projections were used as the measure of effective 

connectivity from the posterior-to-frontal system. Additional simulation details and 

model parameters can be found in the Appendix. 
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Empirical Test 

 The DNF model predicts that a shape memory game with distinct shapes played 

twice will help 3-year-old children switch from sorting by color to sorting by shape in the 

DCCS task. Below, we describe the empirical test of this prediction. Note that, if 

successful, this would extend the findings from Perone et al. (2015), showing that 

experience in a memory game can influence DCCS performance regardless of whether 

children search for memory matches based on color or shape. 

Method  

Participants. Eighteen 3-year-old children (M = 43.4 months, range 39-47 

months, 8 females) participated in Experiment 1. In all experiments reported here, 

children were recruited from birth records and local childcare facilities. Children were 

predominately Caucasian and from middle class families, and received a small prize for 

their participation. The performance of the participants in the present investigation will 

be compared to 18 participants from Perone et al. (2015) who performed the DCCS task 

under the standard conditions alone. Those children were also drawn from the same 

community as the children in the present investigation, and were predominately 

Caucasian, from middle class families, and of similar age to children in all experiments 

reported here (M = 41.20 months, range 37–47 months, 10 girls). For all experiments, 

data was collected between September 2011 and October 2015. 

Stimuli. The stimuli were “buggles” and are shown in Figure 3 (Perone & 

Spencer, 2014). Buggles consist of a value along a continuous color (hue) and shape 

(aspect-ratio) dimension. For example, buggle s5c5 is an object with the fifth shape on 

the shape dimension (s5) and fifth color on the color dimension (c5). The color 
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dimension consists of 36 equidistant colors sampled from a 360 continuous color space 

(CIE*Lab, 1976). The shape dimension is composed of 23 equidistant steps defined by a 

proportional change in height and width, holding total area constant. Note that we 

stretched the shape dimension relative to Perone et al. (2015) from 18 steps to 23 steps to 

test the novel prediction of the DNF model. This involved adding 2 metric steps to the 

short (left) side of the dimension and 3 metric steps to the tall (right) side of the 

dimension. We relabeled the shapes such that shapes 3 and 8 were shapes 1 and 6 in 

Perone et al. The shapes used in the shape memory game were the same as the shapes that 

were presented to the DNF model (shapes 1, 3, 12, 20, and 23). All shapes shared the 

same color (color 10). 

 We counterbalanced the use of two sets of cards for the DCCS task that involved 

the same color and shape values as the DNF model. The target and response cards are 

highlighted in Figure 3. The first set used buggles s7c5 and s16c14 as target cards and 

s7c14 and s16c5 as response cards. The second set used s7c14 and s16c5 as target cards 

and s7c5 and s16c14 as response cards. Children sorted the response cards into wooden 

trays.  

 Design and Procedure. Children first participated in the memory game. The 

experimenter and child sat at a table with the memory game cards spread out face up and 

within reaching distance of the child. The experimenter familiarized the child with each 

matching pair of cards by saying, “Look! These buggles are the same shape!” The 

experimenter then flipped over all the cards and scrambled them. The experimenter 

showed the child how to play the game by turning over two non-matching cards and said, 

“These two aren’t the same shape.” The experimenter flipped the cards back over so they 
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were face down and the child and experimenter took turns looking for matches. If the pair 

matched, the cards were removed from the game. If the pair was not a match, the 

experimenter said, “These aren’t the same shape” and flipped the cards back over. Each 

child was required to make four out of the five matches during the game. To ensure this, 

the experimenter selected non-matching pairs for the majority of the task. After the five 

matches were found, the memory game was repeated one more time. Immediately 

following the second memory game, the experimenter administered the DCCS task. 

The DCCS task followed Zelazo’s (2006) protocol. All children were asked to 

sort by color during the pre-switch phase and shape during the post-switch phase. The 

experimenter began by introducing the target cards and stated the pre-switch rule to sort 

by color (i.e., “We’re going to play the color game. In the color game, all of the blue 

buggles go here and all of the green buggles go here.”). The experimenter demonstrated 

how to sort by the pre-switch dimension and ensured that the child could do the same. 

Children were asked to sort the six cards by color. If the child sorted incorrectly, the 

experimenter restated the sorting rule. After the pre-switch phase, the post-switch phase 

began. The experimenter told the child the post-switch rule to sort by shape but did not 

demonstrate how to sort by the post-switch dimension. Children were asked to sort six 

cards by the new rule during the post-switch phase. As in the pre-switch phase, the 

experimenter restated the sorting rule if the child sorted incorrectly.  

Results. Figure 5A shows the results (see green bar, Distinct Shapes). To be 

included in the analyses, children were required to sort 5 of 6 cards correctly during the 

pre-switch phase (Zelazo, 2006). All children met this criterion. In order to pass the 

DCCS task, children were required to correctly sort at least five cards in the post-switch 
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phase of the task. Thirteen of 18 (72.2%) children passed (binomial, p <.05). Perone et al. 

(2015) found that 7 of 18 (38.9%) children passed under the standard, no memory game, 

conditions (shown in 5A for comparison). This is a good baseline comparison of 

children’s performance because those children sorted cards using the same stimuli used 

here. A chi-square analysis showed that significantly more children in Experiment 1 

passed than under the standard conditions from Perone et al., χ2 (1, N = 36) = 4.05, p = 

.0442. Three-year-old children successfully switched from sorting by color to sorting by 

shape in the DCCS task after playing a memory game with distinct shapes, much like 4-

year-old children perform under the standard conditions. This contrasts with data from a 

second set of 3-year-old children from Perone et al. (2015) who played a memory game 

with close shapes prior to the DCCS task. Only 8 of 18 (44.4%) of those children 

successfully switched from sorting by color to sorting by shape.  

Discussion. The results of Experiment 1 are consistent with the prediction of the 

DNF model that exposure to distinct shapes induces flexible switching from color to 

shape in 3-year-old children. This explicitly tested Perone et al.’s (2015) hypothesis that 

the buggle shapes are represented in a more compressed space relative to the colors. 

Simulations of the memory game model indicate that learning about close (similar) 

shapes results in interference and ultimately weak memory traces for those shapes. 

Spreading the shapes out helps reduce this interference, leading to strong memories for 

the distinctive shapes after playing the memory game. This, in turn, strengthened the 

effective frontal-posterior connectivity associated with the shape dimension in the DNF 

model and enabled it to strongly engage the shape dimension during the post-switch 

phase of the DCCS task. Other studies have also shown that similar values on a 
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dimension can create interference in children’s performance in the DCCS task. For 

example, Fisher (2011) found that 3-year-old children failed to switch from sorting by a 

dimension with distinct features (e.g., flower and star) to a dimension with similar 

features (e.g., pink and red). Children passed when switching from a dimension with 

similar features to a dimension with distinct features (for simulations of these effects, see 

Buss & Spencer, 2014).  

Experiment 2 tests whether the bottom-up influence of features alone, without 

labels, is sufficient to enhance children’s performance in the DCCS task. Experiment 3 

tests whether the memory game transfers to the DCCS task at the level of dimensions or 

if it is limited to values that are similar to values experienced in the memory game. These 

tests are conducted using only the color dimension in the memory game because the color 

dimension is much larger than the shape dimension. This makes it more amenable to 

strong tests of the theoretical predictions of the DNF model.  

Experiment 2 

Perone et al. (2015) found that providing children experience with buggles 

sampled from the color dimension and the label ‘color’ during the memory game helped 

children switch from sorting by shape to sorting by color in the DCCS task. Here we 

asked whether experience with the colors alone provided to the posterior system – 

without experience with the label ‘color’ provided to the frontal system – was sufficient 

to strengthen the effective frontal-posterior connectivity associated with the color 

dimension and facilitate performance in the DCCS task.  

Model Simulations 
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The DNF model was provided experience with five colors (colors 1, 6, 10, 13, & 

18; see Figure 3) in the form of memory traces as was done in Perone et al. (2015) and 

Experiment 1 for shapes. The key manipulation was that the frontal system was not 

initialized with a memory for the ‘color’ label.  

Figure 5 shows the simulation results. The DNF model passed the DCCS task at 

rates greater than when it performed under the standard conditions (compare Color No 

Label to Standard in 5A). Bottom-up experience with colors increased the strength of the 

effective frontal-posterior connectivity for the color dimension. In particular, the strength 

of effective connectivity from the frontal to posterior system (see Color No Label in 5B) 

and back from the posterior system to the frontal system (see Color No Label in 5C) was 

stronger for color (blue bars) than for shape (red bars). This enabled the DNF model to 

strongly engage the color dimension during the post-switch phase and overcome the 

strong memory traces associated with sorting by shape during the pre-switch phase. 

Importantly, the DNF model sorted correctly during the pre-switch phase when asked to 

sort by shape under the standard conditions and after experience with colors from the 

color memory game. Thus, the memory game did not impact the model’s pre-switch 

performance. Moreover, the strength of memory traces associated with sorting by shape 

during the pre-switch phase was similar under the standard condition and after experience 

with colors from the color memory game. Thus, the model’s improved performance in 

the post-switch phase after experience with colors was not attributable to the formation of 

a weaker bias in the pre-switch phase. 

Empirical Test 
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 The role of labels in children’s performance in the DCCS task is relatively 

unexplored. There is some evidence that familiar labels can negatively impact children’s 

performance in the task. In particular, Yerys and Munakata (2006) proposed that the 

familiarity of the labels typically used in the DCCS task helps generate strong memories 

during the pre-switch phase and, consequently, perseveration on the pre-switch 

dimension during the post-switch trials. Indeed, they found that younger children passed 

the DCCS task when less informative labels were provided, such as ‘sorting game’ 

instead of the familiar ‘shape’ and ‘color.’ The model simulations fit with the idea that 

dimensional labels can generate strong memories. The model suggests that this is due to 

dynamic interactions between the frontal and posterior systems. In particular, the strong 

memories associated with color from the memory game in the posterior system send 

strong activity to the ‘color’ node in the frontal system, which leads the ‘color’ node to 

send strong activity back. This primes the model to engage the color dimension more 

strongly than the shape dimension in the post-switch phase. 

 Method 

 Participants. Twenty-five 3-year-old children (M = 42.5 months, range 36-46 

months, 13 females) participated in Experiment 2. Two children were excluded for failing 

the pre-switch phase and five children were excluded due to experimenter error.  

 Stimuli, Design, and Procedure. The stimuli, design, and procedure were identical 

to Perone et al. (2015) except that children did not hear the dimensional label ‘color’ 

during the color memory game. Instead, the experimenter simply said, “Look! These are 

the same” when familiarizing children to the pairs of cards and “These aren’t the same” 

when no match was found. The colors used in the memory game were 1, 6, 10, 13, and 18 
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and all shared shape 12 (see Figure 3). Children were asked to sort by shape in the pre-

switch phase and by color in the post-switch phase during the DCCS task. All other 

procedural details were identical to Experiment 1. Note in particular, that the DCCS task 

followed the standard procedure, including the use of the words “color” and “shape” to 

refer to the dimensions.  

 Results. Figure 5A shows the results (see green bar, Color No Label). When 

children played the color memory game without the label ‘color’, 14 out of 18 (77.8%) 

children passed the DCCS task (binomial, p <.05). As in Experiment 1, we compared 

children’s performance here to 3-year-old children’s performance under the standard 

conditions from Perone et al. (2015). Only 7 out of 18 (39.8%) children in that study 

passed the DCCS task under the standard conditions, which a chi-square test revealed 

was significantly fewer than in Experiment 2, χ2 (1, N=36) = 5.60, p = .018. As in Perone 

et al., children passed the DCCS task after playing the color memory game. These results 

indicate that experience with the post-switch dimension alone is sufficient to help 

children think flexibly in the DCCS task.  

 Discussion. The results of Experiment 2 are consistent with the DNF model 

prediction that the color memory game without the dimensional label ‘color’ facilitates 

children’s performance in the DCCS task. The simulation results showed that this is 

attributable to the interactivity of the frontal and posterior systems – the dynamic back-

and-forth between the ‘color’ node in the frontal system and the color WM field in the 

posterior system strengthens the effective connectivity associated with the color 

dimension. This raises the intriguing possibility that one can enter the frontal-posterior 

loop in a bottom-up fashion for the purposes of early EF interventions. However, it is 
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unclear whether this bottom-up experience is enhancing attention that is anchored to a 

limited range of the dimension or at the level of the entire dimension, which would make 

the experience a more powerful transfer tool. We explore this issue in Experiment 3.  

Experiment 3 

In all of the examples of the memory game here and in Perone et al. (2015), the 

features used in the memory game were chosen to be similar to those presented in the 

DCCS task. This raises a critical question: does the memory game transfer to the DCCS 

task at the dimensional level or is transfer limited to a range of features along a 

dimension? We test this possibility in a dissimilar color memory game. If the color 

memory game transfers to the DCCS task at the dimensional level, we should expect 

children to pass the DCCS even when they sort response cards with colors that are 

dissimilar to those present in the memory game. We explicitly tested this possibility in 

the DNF model by simulating its performance with one set of colors in the DCCS task 

(blues and greens) after being provided experience with very different colors (reds and 

oranges).  

Simulations 

The simulation method was identical to Experiment 2 with one exception. The 

memory trace layer associated with the color WM field was initialized with colors 19, 24, 

28, 31, and 36 (see Figure 3). Note that these colors have the same range and distribution 

of colors as the color memory game from Experiment 2 but are sampled from a different 

section of the color dimension than those sorted in the DCCS task. 

Figure 5 shows the simulation results. The DNF model passed the DCCS task at 

rates greater than when the model performs under the standard conditions (compare 
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Standard to Dissimilar Colors/No Label in 5A). Experience with colors that were 

dissimilar to those used in the DCCS task still facilitated the model’s flexible rule use. 

The reason is that the color memories provided to the posterior system selectively 

strengthen the connection from the color WM field to the ‘color’ node in the frontal 

system (see Dissimilar Colors/No Label in 5B) which, in turn, selectively boosts the 

entire color WM field in the posterior system (see Dissimilar Colors/No Label in 5C). 

This enabled the DNF model to strongly engage the dimension during the post-switch 

phase and overcome the strong memory traces associated with sorting by shape during 

the pre-switch phase.  

Empirical Test 

The dissimilar color simulations suggest that prior experiences with the post-

switch dimension can boost performance in the DCCS even if the values experienced are 

very different from those used in the DCCS. The DNF model prediction is consistent 

with an early study on dimensional attention by Tighe and Tighe (1969). They asked 

children in the first grade to play a game in which they judged whether different sized 

cylinders matched an exemplary cylinder (e.g., sizes 4, 5, and 7 inches). This experience 

helped the children represent relations in a transposition task completed later with very 

different sized cylinders (e.g., sizes 10 and 15 inches). We describe our empirical test of 

the model’s prediction below.  

 Method 

 Participants. Twenty-eight 3-year-old children (M = 43 months, range 38-47 

months, 13 females) participated in this experiment. One child was excluded from the 

analyses for fussiness, five children failed the pre-switch phase, and four children were 
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excluded due to experimenter error. Children and parents were recruited and 

compensated in the same manner as Experiments 1 and 2. 

 Stimuli, Design, and Procedure. The stimuli, design, and procedure were identical 

to Experiment 2 except that the colors used during the dissimilar color memory game 

were selected from the other side of the color dimension (reds and oranges) relative to the 

colors used in the DCCS task (blues and greens). The colors used were, however, the 

same as were presented to the DNF model and had the same distribution as in Experiment 

2. The colors were 19, 24, 28, 31, and 36 (see Figure 3) and shared shape 12.  

Results. Children’s performance in the DCCS is shown in Figure 5A (see green 

bars, Dissimilar No Label). After playing the dissimilar color memory game, 14 out of 18 

(77.8%) passed the DCCS task (binomial, p < .05). As in Experiments 1 and 2, we 

compared children’s performance here with 3-year-old children’s performance from 

Perone et al. (2015). Only 7 out of 18 (39.8%) children there passed the DCCS task under 

the standard conditions using the same stimuli used here, which a chi-square test revealed 

was significantly fewer than in Experiment 3, χ2 (1, N=36) = 5.60, p = .018. These results 

indicate that experience with colors in the memory game context transfers at the 

dimensional level to the DCCS task.  

Discussion. Previous variants of the color memory game left open the question of 

how experience over the color dimension influences attention across contexts. The results 

of Experiment 3 indicate that the color memory game induces dimensional attention 

rather than attention to a more localized region of the color dimension. Our findings are 

consistent with recent work by Perry and Samuelson (2013; see also Perry 2013) who 

demonstrated that dimensional attention can be trained across task contexts. Perry and 



                                                                    Empirical tests of a brain-based model, 25 

Samuelson classified children as either dimensional or holistic attenders in a triad 

classification task with stimuli that varied along size and brightness dimensions. After 

classification, children learned to sort stimuli into categories based on one of the 

dimensions. After training, children participated in a post-test triad task. Some of the 

children who were initially holistic attenders now attended dimensionally. These results 

parallel our findings as they demonstrate that experience with dimensions can be a 

powerful tool to shift attention, even across task contexts.  

General Discussion 

The demand for cognitive interventions across the lifespan is increasing. A central 

challenge facing such intervention efforts is the transfer problem: often, cognitive 

training does not generalize beyond the training context (for a review, see Shipstead et 

al., 2012). Buss and Spencer’s (2014) DNF model has shown promise in tackling the 

transfer challenge. The model simulates children’s performance in a canonical probe of 

early EF, the DCCS task. Developmental change in EF in the model is due to 

increasingly strong connection weights between the frontal and posterior systems. We 

have targeted this connectivity as an avenue to enhance 3-year-old children’s 

performance in the DCCS task under conditions in which they typically perform poorly. 

For instance, we provided children experience with color in a memory game context and 

showed that this helped them flexibly switch attention to color in the DCCS task. In the 

DNF model, this experience strengthens the effective frontal-posterior connectivity 

associated with color and enables the model to more strongly engage and, consequently, 

switch attention to color in the DCCS task. The link between strengthening effective 

frontal-posterior connectivity and improved EF here is consistent with previous cognitive 
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training intervention efforts with older adults. For example, Anguera et al (2013) found 

that multi-tasking training led to increased frontal-posterior connectivity (coherence) in 

the theta (4-8 Hz) frequency band, a range of neural oscillations associated with EF. The 

degree to which connectivity increased was associated with improved performance on 

measures of attention.  

One question of great importance is whether the laboratory-based interventions 

showcased here provide a window into the mechanisms that drive developmental change 

in EF. Answering this question is important not only for advancing our theoretical 

understanding of EF development, but also for the practical aspects of developing 

effective early EF interventions. The experience in the memory game increases the 

effective frontal-posterior connectivity associated with a dimension. An open question is 

whether or not experience over a dimension drives EF development via incremental 

strengthening of effective frontal-posterior connectivity or whether the connection 

weights between the frontal and posterior systems must also change. Perone and Spencer 

(2014; see also Perone & Spencer, 2013) provided some evidence that the accumulation 

of real-time experience with features across a dimension over a long time scale can create 

developmental change in neurocognitive (e.g., working memory) and behavioral (e.g., 

gaze) dynamics. This is similar to prior work in early word learning. In particular, Smith 

and Samuelson and their colleagues have shown that providing children experience with 

categories organized by similarity in shape can induce dimensional attention to shape 

when learning new names, facilitating vocabulary development (Samuelson, 2002; Smith, 

Jones, Landau, Gershkoff-Stowe and Samuelson, 2002). Similarly, providing repeated 

experience with objects and labels to Buss and Spencer’s (2014) DNF model should 
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strengthen the effective frontal-posterior connectivity associated with many dimensions. 

This, in turn, should enable the model to more strongly engage those dimensions to 

selectively control attention in tasks such as the DCCS. Note that this is an empirically 

testable hypothesis. For instance, 3-year-old children could be trained along multiple 

dimensions for several months after which they should show an increased ability to 

switch attention in variants of the DCCS that involve those dimensions relative to non-

trained controls. Such empirical inquires will help us resolve questions about the 

underlying mechanisms at work in EF development. 

Buss and Spencer’s (2014) DNF model has shed light on EF development, but 

how far can a computational model take us? The DNF model has captured children’s 

performance across an unprecedented number of conditions of the DCCS task (see Buss 

& Spencer, 2014). Explaining existing data is only one aspect of theory, however. The 

gold standard for theory is the capacity to generate novel predictions. The DNF model is 

doing a good job on this front as well, as illustrated here at the behavioral level (see also 

Buss & Spencer, 2014; Perone et al., 2015) and by Buss and Spencer (2017) at the neural 

level. This previous research exemplifies a strong theory-experiment dialogue. For 

example, Perone et al. (2015) observed that the shape memory game played with similar 

shapes did not help children switch attention to shape in the DCCS task. This prompted 

the authors to test whether the high similarity of their shapes might lead to interference 

during learning in the shape memory game. This, in turn, led to the novel prediction, 

tested here, that playing the shape memory game twice with more distinct shapes should 

help children form strong memories and facilitate switching attention to shape in the 

DCCS task.  
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Furthermore, the predictions tested here and in Perone et al (2015) are unique to 

the DNF model. Consider Morton and Munakata’s (2002) connectionist model of early 

EF development, which has also provided an account of children’s performance in the 

DCCS task. That model consists of nodes associated with features sampled from a 

dimension (e.g., blue, star, red, circle) and nodes for each label. The model forms a strong 

latent (long-term) memory for the features and labels used during the pre-switch phase. 

This strong latent memory leads a 3-year-old version of the model to perseverate during 

the post-switch phase because it overpowers a weaker active (working memory) 

representation for the features and labels used during the post-switch phase. The DNF 

model’s account of children’s performance in the DCCS task is similar. However, a 

unique feature of the DNF model is that its experience with features is distributed over a 

continuous dimension. Consequently, experience with some features – as in the memory 

game - can impact how it makes decisions about other features that it has not been 

exposed to previously – as in the DCCS task. The connectionist model, by contrast, 

processes information at the featural -- not the dimensional -- level. Thus, it is unclear 

how experience with one set of features might impact its performance with another set of 

features (for additional model comparisons, see Buss & Spencer, 2014).    

This feature of the DNF model has also yielded novel insights into how values 

sampled from a dimension can impact children’s performance in the DCCS task. For 

example, Fisher (2011) showed that children’s performance in the DCCS task is affected 

by the details of the dimensions they are asked to sort by.  In particular, whether or not 

children can flexibly switch attention to a dimension depends on the values sampled from 

the post-switch dimension. If those values are relatively distinct, children pass; if those 
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values are highly similar, children fail. Buss and Spencer (2014) showed in the DNF 

model that failing during the post-switch phase when values are highly similar results 

from competition in the post-switch neural field as it tries to form peaks at very similar 

locations, such as a peak for a pink item and a peak for a red item. This interference in 

the post-switch dimension, in turn, leads the model to fall back on its bias to sort by the 

pre-switch dimension. A different type of interference was reported by Perone et al. 

(2015). In that report, the memory game model had difficulty maintaining WM peaks for 

highly similar shapes because they were represented by nearby locations in the neural 

field. Interference in the close memory game led to the formation of weaker memory 

traces for the close shapes. When these weak shape memory traces were carried forward 

to the DCCS task, they were too weak to help the model strongly engage the shape 

dimension in the post-switch phase of the DCCS task. Thus, the model suggests that 

failure during the post-switch phase of Fisher’s task resulted from the challenge of 

making decisions about metrically similar shapes in the context of competing biases 

toward color, whereas failure in the memory game task results from an inability to 

engage the post-switch dimension because of weak memory traces.  

The present investigation also raises questions about the role of dimensional 

labels in EF. There is some evidence that labels play an important role in dimensional 

attention. For example, Yerys and Munakata (2006) showed that children’s experience 

with labels in the lab builds on their developmental history with those labels. For 

instance, they showed that children flexibly switch rules in the DCCS task when less 

typical or no labels are provided to them during the pre-switch phase of the DCCS task. 

Very little is known about developmental change in how children learn about 
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dimensional labels and labels for values along a dimension. There is some research 

showing substantial development in children’s mapping between color labels and color 

boundaries between 3 and 5 years of age (Saji et al., 2015; Wagner, Dobkins, & Barner, 

2013). For example, with age there is less overlap between the color values (e.g., reds and 

oranges) referred to by a single label (e.g., ‘orange’). Color and shape labels may be 

experienced very differently in children’s daily life. For instance, color may more often 

be referred to both as a dimension (e.g., “What color is this?”) and as a value (e.g., “See 

the blue one!”) than shape. Little is known about how children map shape labels to 

shapes during development. One recent study has shed some light on this issue. Verdine 

et al. (2016) found that toddlers are poor at correctly identifying non-canonical variants 

of a shape in a forced-choice task context when given a label (e.g., “Find the triangle”), 

an ability that improves by the preschool years (see also Satlow & Newcombe, 1998).  

An understanding of how children perceive, experience, use, and remember 

feature and dimensional labels can further constrain and help develop the DNF model. 

Dimensional labels in particular play a critical role in Buss and Spencer’s (2014) DNF 

model because the frontal system uses the labels to send a top-down signal to the 

posterior system to selectively engage processing of a specific dimension. Important 

questions remain about whether the connection strengths between the frontal and 

posterior systems might differ across dimensions and how those strengths might change 

over development. For instance, the strengths of the frontal-to-posterior connection for 

shape and color might be different depending on children’s developmental history with 

those dimensions and labels. This, in turn, is likely to influence how the label impacts 

performance in an experimental context (e.g., Yerys & Munakata, 2006).  
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Limitations and Conclusions 

 The present report is an important step in establishing a theory-experiment 

dialogue to understand the role of frontal and posterior systems in EF development, but 

there are some limitations. One limitation is that the children in our control condition – 

the standard DCCS task – did not participate in a task prior to the DCCS task that 

engaged them in the same way as the memory game. It is noteworthy that Perone et al. 

(2015) observed that children who participated in the close shape memory game did not 

pass the DCCS task, which indicates that actively engaging in an activity prior to the 

DCCS task is insufficient to help them pass. Another limitation is that our sample size 

was relatively small and will need to increase as we begin to use the DNF model to scale 

toward early EF intervention. For this, we will also need to utilize a randomized control 

design. However, our sample size has proven reliable across a number of experiments 

and comparable to the size per condition in other studies using the DCCS task (e.g., 

Müller, Zelazo, Lurye, & Liebermann, 2008).  

 There are some important pragmatic implications of our work.  For instance, what 

approach to training EF in children is the best way forward? Many EF training studies 

have implemented a top-down approach. For example, Espinet, Anderson, and Zelazo 

(2013) used a form of reflection training in the DCCS task in which 3- to 4-year-old 

children were asked to pause and think about the rule prior to sorting a card (see also Van 

Bers et al., 2015). This improved children’s performance in the task. Other studies have 

more explicitly trained EF processes. For example, Blakey and Carrol (2015) trained 4-

year-old children’s working memory by asking them to practice working memory tasks 

(six boxes and one-back tasks), which was associated with improved performance in 
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another working memory task (backwards span). Our approach differs from both the top-

down and EF process training approaches. We are pursuing a bottom-up oriented 

approach that targets the effective neuronal connectivity that underlies rule use. We are 

doing this by providing relevant experience that increases this effective connectivity. This 

is guided by a theoretical model that posits that using a rule requires the strong and 

reliable engagement of neural populations involved in representing the relevant 

information at hand, such as color or shape. To date, this has proven a promising route 

because experience in one context (the memory game) helps children flexibly use rules in 

another (the DCCS task).  

 The critical pragmatic issue at stake is whether or not this type of training has 

anything to do with EF in the real world where, ultimately, we would like to strengthen it. 

For instance, EF is important for school readiness (Mann, Hund, Hesson-McInnis, & 

Roman, in press) - does our theory-experiment approach hold any promise for helping 

children prepare to enter school? It might. Providing children experience that helps them 

engage the appropriate rule in the appropriate context is critical for successfully adapting 

to kindergarten. Children must, for instance, remember that they should walk quietly in 

the hallway and sit still during reading time. These rules are, in fact, often cued by 

symbols in elementary schools, such as a red sign to walk slowly or sit still. To get from 

here to there, a number of steps need to be taken. For example, we need to probe whether 

the type of training used here is lasting, and if it is not, what is required for it to last. We 

need to probe whether the type of training used here can strengthen other EFs, such as 

working memory or inhibitory control, that frontal-posterior connectivity is also 

associated with in adults (e.g., Hwang, Velanova, & Luna, 2010; Scherf et al., 2006). 
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And we need to probe whether a bottom-up approach can help children use rules in real 

world contexts, such as the classroom. 

In conclusion, the present report is an important step in establishing a theory-

experiment dialogue to understand the role of frontal-posterior connectivity in early EF 

development. In particular, we used the DNF model to probe the utility of targeting 

effective frontal-posterior connectivity to strengthen EF. Our simulation and empirical 

results indicate that this is a promising route to promote transfer across task contexts. For 

instance, we showed that strengthening the effective connectivity associated with the 

color dimension from the memory game induces dimensional attention in the DCCS task. 

Inducing dimensional attention might be a powerful intervention tool because behavioral 

decisions are freed from being so strongly anchored to a specific range of experiences. 

This may, in turn, enable children to more flexibility adapt to new contexts. The present 

report indicates that pushing the theory-experiment dialogue further can provide a firm 

base to build upon for early EF interventions. 
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Figure Captions 

 

Figure 1. The dimensional change card sort (DCCS) task is shown. Children are asked to 

sort a series of response cards that match each target card by one dimension using a rule 

(e.g., sort by shape) before switching to a new rule (e.g., sort by shape). Four-year-old 

children are quite good at this, but 3-year-old children are not. 

 

Figure 2. The dynamic neural field (DNF) model is shown. The schematic highlights the 

model architecture and how the model performs the DCCS task. The model consists of 

coupled frontal and posterior systems. The posterior system represents ‘what’ is ‘where’ 

in color and shape working memory fields (e.g., green circles at the left). The posterior 

system is responsible for generating behavioral decisions to sort cards to the left or right 

based on the shape or color dimension. The posterior system is biased to sort by one 

dimension based on two influences. One influence is a top down signal from the frontal 

system. For example, the shape node in the frontal system is selectively activated when 

the model is instructed to “sort by shape.” This elevates the activity of the shape working 

memory field, biasing the model to sort objects by their shape (e.g., to the left location, 

where the buggles match in shape). Another influence is the memory traces the model 

acquires from sorting by one dimension. For example, the model leaves memory traces 

for the behavioral decision to sort by shape which biases it to sort by shape at a future 

point in time. This is a key influence in the model’s account of 3-year-old children’s 

perseveration on the pre-switch rule in the DCCS task.  
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Figure 3. The buggle stimulus set is shown. Buggles consist of one value from 

continuous color (hue) and a continuous shape (aspect ratio) dimensions. The buggles 

surrounded by circles and squares show the stimuli used as target and response cards in 

the DCCS task. The remaining color and shape values shown highlight the stimuli used 

across Experiments 1-3.  

 

Figure 4. The memory game model from Perone et al. (2015) is shown. The figure 

highlights the shape memory game for close (A) and more distinct (B) shapes. The model 

consists of a shape working memory field (top) and associated memory trace layer 

(bottom). Panel A shows a snapshot of the model learning about a collection of highly 

similar shapes. The working memory field is remembering shape 3, which interferes with 

working memory for highly similar shapes (e.g., 8 and 12). This leads to the 

accumulation of relatively weak memory traces. Panel B shows a snapshot of the model 

learning about a collection of more distinct shapes. The working memory field is 

remembering shape 3 which is sufficiently different from nearby shapes (e.g., 20) that it 

can simultaneously maintain multiple items (i.e., reduced interference relative to close 

shapes). This led to strong memory traces when the memory game was played twice (red 

lines) relative to only once (black lines).  

 

Figure 5. The figure shows children’s and the model’s performance in the DCCS task (A) 

as well as the strength of effective frontal-to-posterior (B) and effective posterior-to-

frontal (C) connectivity across all conditions. Children’s and the model’s performance 

under the standard condition was poor (left side of A), which improved after playing a 
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memory game with distinct shapes, colors with no ‘color’ label, or colors dissimilar to 

those used in the DCCS task. These improvements were attributable to stronger effective 

connectivity with the dimension children and the model were exposed to in the memory 

game. For example, after playing the memory game with distinct shapes the effective 

frontal-to-posterior (B) and effective posterior-to-frontal (C) connectivity were stronger 

for the shape dimension than under the standard condition (compare bars under Standard 

and Distinct Shapes). This stronger connectivity enabled the model to more strongly 

engage the post-switch dimension (shape in this example) and sort correctly in the DCCS 

task. 
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