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Abstract 

Municipal wastewater (WW), if not properly remediated, poses a threat to the environment and 

human health by carrying significant loads of nutrients and pathogens. These contaminants 

pollute rivers, lakes and natural reservoirs where they cause eutrophication and pathogen-

mediated diseases. However, the high nutrient content of WW makes it an ideal environment for 

remediation with microalgae that require high nutrient concentrations for growth and are not 

susceptible to toxins and pathogens. Given that an appropriate algal strain is used for 

remediation, the incurred biomass can be refined for the production of biofuel. Four microalgal 

species (Chlamydomonas reinhardtii, Chlorella sp., Parachlorella kessleri-I and 

Nannochloropsis gaditana) were screened for efficient phycoremediation of municipal WW and 

potential use for biodiesel production. Among the four strains tested, P. kessleri-I showed the 

highest growth rate and biomass production in 100% WW. It efficiently removed all major 

nutrients with a removal rate of up to 98% for phosphate after ten days of growth in 100% 
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municipal WW collected from Delhi. The growth of P. kessleri-I in WW resulted in a 50% 

increase of biomass and a 115% increase of lipid content in comparison to growth in control 

media. The FAME and fuel properties of lipids isolated from cells grown in WW complied with 

international standards. The present study provides evidence that the green alga P. kessleri-I 

effectively remediates municipal WW and can be used to produce biodiesel. 

Keywords 

microalgae, wastewater management, biodiesel, nutrient removal efficiency, bioremediation of 

polluted water. 

Abbreviations 

WW Wastewater 

TIC - Total inorganic carbon 

TOC - Total organic carbon 

COD - Chemical oxygen demand 

BOD - Biochemical oxygen demand 

DW - Distilled water 

TC - Total carbon 

ASW - Artificial Sea water 
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1. Introduction 

The global freshwater reservoir is about 3% of the total water present on earth but only 

0.5% of it is available in liquid form.1 Wastewater (WW) generally is classified into different 

categories like municipal, agricultural and industrial WW. Every year, there is plenty of 

municipal WW generated. It is estimated that human societies produce about 3 billion tons of 

domestic WW every year2 and ~4400 million cubic meters of it only in Delhi3 because of the 

growing population and modernized lifestyle in this fast expanding city. Moreover, a leakage of 

WW in pristine natural water resources such as lakes, rivers and groundwater decreases the 

availability of drinking water.4 An increasing global human population especially in developing 

countries such as India demands innovative and affordable solutions to tackle the ever increasing 

threat of water pollution. Using microalgae for WW remediation might be an effective and 

affordable approach especially for developing countries as physical and chemical remediation 

approaches are costly, and if toxic substances are being used for remediation, this expose an 

additional threat to the environment.5,6 

The major composition of municipal WW is sewage and it comprises majorly pathogens 

(e.g. bacteria, viruses, and parasitic worms) and non-pathogenic bacteria and a mixture of natural 

organic and inorganic materials as well as diverse man-made compounds including toxins.7 

Carbohydrates, fats, proteins, amino acids, and volatile acids can make up to three-quarters of 

organic carbon in sewage.8 Phycoremediation with microalgae represents a promising approach 

as it can be efficient if appropriate algal strains are being used. For many microalgae, WW 

contains essential nutrients for their growth such as nitrogen, phosphorus and organic 

compounds (e.g. carbohydrate, amino acids and vitamins).9 . In contrast to other organism, 
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microalgae are unique, having ability to grow mixotrophically and utilizing organic/inorganic 

carbon substrate to produce biomass and an efficient low-cost bioremediation treatment for 

wastewater along with biomass production. Algal utilization on secondary and tertiary treatment 

processes might provide unique and elegant solution on the removing of substances originated 

from various sources and microalgal mitigation of nutrients originated from municipal 

wastewater has shown great applicability towards biomass production that can be used as a 

biofuel feedstock. However, not all microalgae are able to tolerate WW environment which toxic 

due to multiple factors that depends on the source of waste and the type of wastewater.10 Thus, 

screening for suitable algal strains is a prerequisite for algal based phycoremediaton of WW. The 

selection of strains most likely will be dependent on the chemical and biological composition of 

the WW. 

The use of WW to produce algal biofuel at a commercial scale was proposed by Oswald 

and Golueke11. However, so far, only a few microalgae strains were tested for WW treatment and 

subsequent biofuel production. The most common strains were Chlorella vulgaris,12 Chlorella 

pyrenoidosa,13-15 Chlamydomonas polypyrenoideum,16 Scendesmus obliquous17 and 

Botryococcus braunii.18 Seawater microalgae species have also been used to treat WW despite 

their salinity requirements.19 Growth of microalgae in WW has been studied under various 

physiochemical conditions such as light, temperature, pH, CO2 concentration, and nutrients, but 

the use of WW for the production of algal-based biofuel has not been explored extensively yet. 

20, 21 Thus, the scope of this study was to identify an algal strain that efficiently remediates 

municipal WW and can be used for biofuel production. 22,10,15 
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WW for this study was obtained from sewage draining into the Neela Hauz Lake, New 

Delhi. A civil litigation was filed at the Delhi High Court to remediate this sewage based on a 

public initiative complaining about the pollution of Neela Hauz Lake. Despite promises in Court, 

there seems little hope for the restoration of Delhi‟s water body. This lake is the main source of 

drinking water in the area and one of the largest natural water bodies of South Delhi. We think 

that phycoremediation of sewage polluting Neela Hauz Lake is an efficient and cost effective 

approach to improve its water quality. Therefore, in present study, a comparative evaluation of 

four microalgae was undertaken in term of growth, and identified the green alga P. kessleri-I as 

being most appropriate for efficient nutrient removal, biomass production and synthesis of 

FAMEs that comply with international standards for biodiesel production.  

2. Materials and Methods 

2.1 Microalgae strain and growth condition 

Axenic cultures of four microalgal strains (Chlamydomonas renhadtii, Chlorella sp. 

Parachlorella kessleri-I, Nanochloropsis gaditana) were obtained from Chlamydomonas 

Genetics Centre, Duke University (USA), Indian Agricultural Research Institute (India), Indian 

Institute of Technology Madras (India) and National Centre For Marine Algae (USA), 

respectively. These strains were maintained on respective medium in 250 ml Erlenmeyer flasks 

(100 mL of culture) at 25 ± 1°C at a ligh-dark cycle of 16/8 hours under white LED light with an 

irradiance of 5000 lux. The cultures were continuously shaken on an orbital shaker at 150 rpm. 

The Tris/Acetate/Phosphate (TAP) and ASW medium were used for fresh water and marine 

water microalgal strains, respectively.23,24 Microalgal strains were grown at varying 
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concentrations of WW, adjusted by the addition of distilled water (DW), i.e. 

(25%WW+75%DW), (50%WW+50%DW), (75%WW+25%DW) and (100%WW). Each 

microalga was grown in their respective medium (TAP/ASW) as a control. For testing their 

ability to accumulate biomass and for the analysis of FAMEs, the selected strains were grown in 

1L flasks under conditions mentioned above.  

2.2 Estimation of specific growth rate and doubling time 

The specific growth rate (μ) and cell doubling time were estimated based on the optical density 

at 750nm25 using the following equation, 

μ= ln(N1/N2)/ t1-t2 

where, N1and N2 stand for the optical density at 750 nm of the culture suspension at the 

beginning (t1) and end (t2) of the selected time intervals. 

Doubling time = ln (2)/μ   (See Table S1). 

2.3 Wastewater collection, filtration and storage  

Wastewater was collected in bulk from the Neela Hauze Lake situated between 28.528950° N 

latitude and 77.170910° E longitude, New Delhi. Sedimentation and filtration through 0.2µm 

filters (Corning® bottle-top vacuum filters) removed solid particles. After filtration, wastewater 

was stored at 4°C in the dark until needed for the experiments. 

2.4 Nutrient removal analysis of wastewater 

The nutrient removal capacity were  analysed on beginning (0 day) and end (10 day) of the 

experiment by measuring physico-chemical parameters such as total nitrogen, total phosphate, 

COD, BOD, TOC, TIC, iron magnesium, alkalinity and hardness. These parameters were studied 

following standard methods reported by the American Public Health Association (APHA).26 On 
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beginning of the experiment, wastewater was filtered using 0.2µm filters (Corning® bottle-top 

vacuum filters) and filtrates were analysed for physic-chemical parameter.  On end of the 

experiment (10th), algal biomass was harvested by centrifugation at 3000 rpm for 15 min at 4oC 

as reported,27  and remaining wastewater (supernatant) was filtered using 0.2µm filters. Then, 

filtrates were subjected to physico-chemical analysis.  

The percentage removal of nutrients was calculated using the following equation: 

% nutrient removal efficiency = [(Co – CF)/ Co] × 100 

where, Co and CF stand for initial concentration on beginning of the experiment (0 day) and final 

concentration on end of experiment (10 day), respectively. 

2.5 Measurment of photosynthetic quantum yield of PSII (Fv/Fm)  

Chlorophyll (Chl) fluorescence measurements were conducted to determine the combined effect 

of nutrients present in wastewater on the photosynthetic quantum yield of P. kesseleri-I using a 

Dual-PAM 100 Chlorophyll Fluorometer (Heinz Walz, Germany). For Chl fluorescence 

induction analyses, cell suspensions of P. kesseleri-I were adjusted to a yield of 2.5 μgChl mL−1. 

After 15 min incubation in the dark to completely oxidise PSII, an actinic flash of 100µs was 

used to induce maximum Chl fluorescence. Fv/Fm (maximum quantum yield of photosynthesis) 

was calculated according to the following equation: 

Fv/Fm=(Fm-Fo)/Fm 

Where, Fm is maximum fluorescence, and Fo is minimum fluorescence resulting in the variable 

fluorescence Fv. 

2.6 Biomass harvesting and dry weight measurement 
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Microalgae cultures were harvest with a Sorvall RC6 Plus centrifuge (Thermofisher Scientific, 

Waltham, MA) at 4500 rpm for 10min and the harvested biomass was dried at 60°C until it 

reached to constant weight according to Rai et al.28 

2.7 Lipid analysis 

2.7.1 Visualization of cellular lipids by Nile Red 

Intracellular lipid bodies were visualized via Nile Red (9-diethylamino-5H-benzo[a]-

phenoxazine-5-one) staining.29,30 Briefly, 1 ml of the the algal culture was centrifuged at 12,000 

rpm for 10 min. The pellet was re-suspended in 1 ml of 20% DMSO and vortexed for 1min at 

room temperature. Cells were centrifuged at 12,000 rpm for 5 min. The pellet was suspended in 

1 ml of water and vortexed before adding Nile Red (5 μl of 1 mgml
-1 in DMSO) and incubated 

for 5 min in the dark at room temperature. Stained cells were visualized under a fluorescent 

microscope (Nikon TE2000-U) using UV light with excitation and emission at 485 nm and 552 

nm, respectively. 

2.7.2 Gravimetric analysis of total lipids 

Extraction of lipids was done following protocol by Bligh and Dyer31 with some modifications. 

To a 10 ml glass vial containing a known amount of algal biomass, 2 mL methanol, 0.9mL water 

and 1 mL chloroform were added and kept for 24 h at room temperature. The mixture was 

vortexed for 2 min. and 1 mL of chloroform was added. This mixture was then shaken 

vigorously for 1 min; 0.9 mL of distilled water was added, and the mixture was agitated in a 

vortex again for 2 min. The different layers were separated by centrifugation for 10 min at 2000 

rpm. The lower layer was filtered through Whatman No. 1 filter paper into a previously weighed 

clean vial (W1). Evaporation was carried out in a water bath, and the residue was dried at 80◦C 
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for 30 min. The weight of the vial was recorded (W2). The lipid content was calculated by 

subtracting W1 from W2. 

2.8 FTIR spectrometry  

Fourier Transform Infra-Red (FTIR) Spectrometer of PerkinElmer was used to analyze the 

extracted algal oil samples. The FTIR spectrophotometer was equipped with a Universal 

Attenuated total reflectance (UATR) single reflection diamond accessory to clear differences in 

regions of the spectrum corresponding to alkene functional groups. The FTIR spectra were 

recorded over a range of wave number from 4000 to 750 cm-1. Each sample was analysed in 

triplicate by using instrument specific software. 

2.9 Fatty acid analysis of transesterified lipids 

Fatty acids were analyzed using the method of Ichihara et al.32 Briefly, 10 mg of lipid was 

dissolved in 2 ml of hexane and 200 μl of 2 M methanolic KOH (used as a catalyst). The mixture 

was vortexed for 5 min followed by brief centrifugation. The upper hexane layer was collected 

for FAME analysis. Quantification of FAME was carried out using gas chromatography (Agilent 

GC) equipped with Omega Wax 250 column (30 m×0.25 mm×0.25 μm) and flame ionization 

detector (FID). The operating conditions were as follows: split ratio 1:10, injection volume 1 μL, 

nitrogen carrier gas with constant linear velocity 33.9 cm/s, H2at 40 ml/min, air at 400 ml/min, 

makeup gas (nitrogen) at 30 ml/min; injector temperature of 270°C, detector temperature of 

280°C, oven temperature started at 140°C for 5 min and increased at the rate of 4°C/min to 

240°C, and hold time of 20 min at 240°C. Methylheptadecanoate was used as the internal 

standard. 

3.0 Estimation of biodiesel fuel properties 
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Predictive equations based on fatty acid composition were used for the calculation of critical 

biodiesel properties. Saponification and iodine values were determined according to the 

method.33 Higher heating values of biodiesels were calculated according to Ayhan Demirbas 

model.34 Cetane number, kinematic viscosity and density of biodiesel were calculated from the 

FAMEs composition according to the protocol.35 

3.1 Statistical analysis 

Data were analyzed using statistical analysis software (OriginPro). All data represent the mean 

(± standard deviation, SD) of three independent experiments and each experiment was performed 

in triplicate. Student‟s t tests were performed to distinguish significantly different results (P < 

0.05). 

4. Results 

4.1 Growth analysis of microalgae in WW 

Among the four microalgae strains tested, P. kessleri-1 showed the highest growth rate in 100% 

WW (µ = 0.49/day and a doubling time of 1.42 days (Figure 1 and Table S1). The growth of P. 

kessleri-1 was lowest in the 25%WW+75%DW with a specific growth rate (µ) of 0.38/day and a 

doubling time of 1.83 days (Figure 1 and Table S1). P. kessleri-I showed higher growth rates in 

100% WW compared to control ASW (Figure 1 and Table S1). Growth rates and the biomass 

yield of the other three strains (Chlamydomonas reinhardtii, Chlorella sp., Nannochloropsis 

gaditana) were significantly lower (Figure 1). Consequently, P. kessleri-1 was selected for all 

subsequent physiological studies conducted in 100% WW to test its suitability for 

phycoremediation and the production of biodiesel.  

4.2 Removal of nutrients from WW 
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Nutrient composition of WW is shown in Table 1. The nutrient removal efficiency (Figure 2), 

was calculated at the end of the growth experiments (10th day).Total nitrogen, phosphate, 

ammonical nitrogen, magnesium, and iron concentration were reduced by 81% and 98%,89%, 

84% and 63% respectively. The COD, BOD, TOC, and TIC were reduced by 69%, 68%, 48% 

and 69% respectively. The alkalinity and hardness of WW were reduced by 68% and 47% 

respectively (Figure 2).The initial pH of WW on day 0 was 7.2, which, however, increased to 9.8 

at day 10 due to photosynthetic activity of the microalgae.  

4.3 Comparison of photosynthetic quantum yield (Fv/Fm) in WW and ASW 

The photosynthetic quantum yield of P. kessleri-I in WW was measured in the mid-exponential 

growth phase (day 5) as well as at the end of the growth experiments (day 10). The maximum 

quantum yield of PSII was measured in control (ASW) and WW.  P. kessleri-I had Fv/Fm values 

of 0.66 in ASW (control) and 0.79 in WW in the mid-exponential growth phase (Figure 3). 

However, Fv/Fm slightly decreased in the stationary growth phase in both, ASW (0.63) and WW 

(0.74) (Figure 3). 

4.4 Biomass and lipid yield 

The total biomass and lipid content was determined by dry weight (DCW) after harvesting one-

liter cultures of P. kessleri-I using 100% WW and control (ASW) medium as shown in Table 2. 

The dry weight was higher (309 mgL-1) in WW compared to ASW medium (205 mgL-1), which 

represents an increase of ca. 50% in WW. Similarly, the total lipid yield was higher (96.4 mgL-1) 

in WW compared to control medium (44.9 mgL-1), reflecting a significant increase of lipid 

production (115%) in WW. Specifically, the neutral lipid content seems to have increased in 

cells grown in WW according to Nile Red staining (Figure 4). 
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4.5 Lipid analysis by FTIR  

An FTIR spectrum of algal oils was obtained using a PerkinElmer Spectrum 400 FTIR/FT-NIR 

spectrometer. FTIR spectroscopy can be used to obtain physiological fingerprints to study the 

structure and chemical bonding of the algal oil, primarily though to identify functional groups. 

The transmittance (%T) spectra of P. kessleri-I oil from WW and ASW grown biomass was 

compared with soyabean oil as standard.36 The FTIR transmittance spectra in the range 3000-

1000 reveal six prominent peaks. These peaks were present in the following ranges: 2900- 2800 

cm-1, 1700-1400 cm-1and 1200 cm-1-900 cm-1 (Figure S1). 

4.6 Analysis of FAME and fuel properties for biodiesel production 

After transesterification of the algal oil, FAME composition was studied using GC-MS (Table 

3). P. kessleri-1 grown in WW showed a higher content of C18:1, oleic acid (28%) in 

comparison to cells grown in ASW medium (6%) (Table 3), whereas the opposite was the case 

for linolenic acid content (WW grown cells: 11%; ASW grown cells: 29%). The properties of 

biodiesel such as density, saponification value, iodine value, cetane number, higher heating value 

and viscosity were determined and compared with international standards (EN, ASTM) as 

summarized in Table 4. The density, viscosity, and iodine values were found being within the 

range specified by biodiesel standards for FAMEs derived from algal cells grown in WW and 

ASW medium. However, the cetane number of biodiesel obtained from cells grown in ASW was 

marginally lower than the EN and ASTM standards from cells grown in WW (Table 4). Thus, 

cells grown in WW did not only produce higher biomass but were also producing FAMEs 

compliant with international biodiesel standards.  

5. Discussion 
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The concept of phycoremediation is not new, but the major obstacle lies in finding a suitable 

algal species that can produces higher biomass for subsequent applications such as the 

production of biodiesel. Previous studies have shown that both freshwater and marine algae are 

suitable for phycoremediation of different types of WW such as municipal, industrial and 

agricultural.37 In present study, therefore, four species of oleaginous microalgae were 

investigated in term of growth using different concentrations of WW from Neela Hauz Lake near 

New Delhi. Our comparative analysis revealed that P. kessleri-I was most capable of growing in 

100% WW. This is in agreement with Osundeko et al.38 who observed that P. kessleri has high 

tolerance to the wastewater environment. Further, the sewage water that drains in the lake is rich 

in inorganic and organic nutrients, which according to our data, are effectively utilised by P. 

kessleri-I (Table 1). Regarding the efficiency of nutrient removal, P. kessleri-I showed a 

remarkable absorption capacity for removing total nitrogen and phosphorus by 81% and 98% 

respectively (Figure 2). Similarly, Renuka et al.39 studied four microalgal strains (Calothrix sp., 

Lyngbya sp., Ulothrix sp and Chlorella sp.) for phytoremediation of sewage and found that 

Chlorella sp. has maximum nutrient removal efficiency of 78% and 91% for NO3-N and PO4-P, 

respectively. These nutrients are needed for the synthesis of biomolecule such as amino, nucleic 

acids and ATP.40 Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) are 

important indicators to estimate organic pollutants in WW. In our experiment, both BOD and 

COD were reduced by more than 60% (Figure 2). Previously, Chlorella sp. was reported to 

efficiently reduce BOD and COD by about 50%.41 According to Silambarasan et al.,42 

Pithophora sp. seems also relatively efficient in removing nutrients from WW, and COD and 

BOD was decreased by 61.65% and 64.67%, respectively. However, Pithophora sp. grew in 
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dairy effluent and not municipal WW. Other abundant constituents in many different types of 

WW are TOC (sugar, alcohol, and petroleum products) and TIC (dissolved carbon dioxide, 

bicarbonate, and carbonate). P. kessleri-I was able to reduce TIC and TOC by 68% and 48%, 

respectively (Figure 2). Similar reduction rates for total carbon (56.9%) and COD (57.7%) were 

observed for Scenedesmus obliquus, but based on growth in brewery effluent.43 Thus, P. kessleri-

I seems to be potential candidate to treat municipal WW and the  reason for that might been high 

algal growth rate and efficient photosynthetic activity (Fv/Fm) as compared to control.  

The higher concentrations of these nutrients in WW most likely caused a significantly increased 

biomass yield in stationary phase at the end of the experiment (day 10). However, an overall 

decrease in Fv/Fm in the stationary growth phase seems to have been caused by nutrient 

limitation even in the WW cultures. This potentially has caused the increase in lipid production. 

However, the lipid content of cell from WW in stationary phase was still higher than in cells 

from control growth medium even though nutrient stress was more severe in the latter cultures 

according to lower Fv/Fm. Potentially, the avaibility of organics and/or nutrients in WW was the 

reason for higher lipid production in these cultures. Along with the rise of total lipids, especially 

neutral lipids were more accumulated in WW cultures based on Nile Red staining.  

The FTIR spectra of the lipids revealed the existence of important functional groups such as 

those involved in stretching, bending and double bond absorption. Overall though, there were no 

significant differences between absorption peaks from WW and ASW lipid samples. However, 

there were slight variations using soyabean oil as a standard. The asymmetric and symmetric 

vibrational modes of methylene groups showed peaks at 2929 and 2850 cm-1, respectively. The 
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peak was attributed to t(C=O) stretching of ester at 1735 cm-1and 1300 cm-1from lipids and fatty 

acids. The stretching vibrations produce a sharp peak in the 1200–900 cm-1 region associated 

with t(C–O–C) stretching of polysaccharides. The bands were assigned to distinct molecular 

groups by biochemical standards and published studies as described by Stehfest et al.44 and 

Laurens et al.45  

The FAME analysis of P. kessleri-I grown in WW and control media revealed that palmitic acid 

methyl ester (26%, C16:0) and Oleic acid methyl ester (28%, C18:1) were produced in higher 

concentrations in algal cells from WW (Table 3). According to Knothe,46 fatty acids with chain 

lengths ranging from C16 to C18 should be high in potential feedstock for suitable biodiesel 

production. In order to compromise between cold flow and oxidative stability, Hu et al.47 

suggested that FAME with high percentage of monounsaturation (C16-C18) is most desirable. 

Thus, WW induced the production of significant more oleic acid methyl ester (C18:1) biodiesel. 

Similar observation was reported in Desmodesmus sp. S1 by Mar et al.48 Besides, FAMEs with 

higher concentrations of palmitate and oleate indicate good biodiesel properties such as quality 

ignition, higher oxidative stability and lubricity.49,50,47  

Physical properties important to assess the suitability for biodiesel production were analyzed by 

FAME composition as shown in Table 4. Properties like density, viscosity, high heating value 

and saponification values were not significantly different between ASW and WW grown algae 

and complied to international standards (EN and ASTM standard). Furthermore, it was found 

that iodine concentrations were lower in P. kessleri-I when grown in WW (104g I2/100g) as 

compared to cells grown in ASW medium (134 g I2/100 g) due to a decrease in unsaturation.51 

According to the EN standard, the maximum limit of 120 g Iodine/100 g is acceptable for 
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commercial fuel quality. The Cetane Number (CN) is an essential parameter to determine the 

ignition quality of fuel. Generally, CN value should be high for better ignition of the fuel and 

vice versa.52,51 Also CN was higher in P. kessleri-I (51) from WW compared to cells grown in 

control medium (44). According to international standards, CN numbers should be as follows: 

ASTM (≥47) and EN 14214 (≥51). Consequently, biodiesel produced from P. kessleri-I grown in 

WW has the appropriate combination of saturated and monounsaturated fatty acids.  

6. Conclusion 

With this study, we have shown that P. kessleri-I is a suitable algal species to remediate 

municpal WW as it grows quickly in polluted waters without dilution and produces a significant 

amount of biomass. Due to its ability to synthesise and accumulate a lot of lipids in WW, it holds 

great potential not only for being an efficient alga for phycoremediation but also for the 

production of biodiesel. Thus, our approach would reduce the production costs of algal-based 

biofuel to improve it‟s competitiveness and at the same time help to remediate municipal WW. 
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Table 1: Chemical composition of WW before growing the algal strain. 

Parameter Concentration (mgL
-1

) 

Total Nitrogen 7.4 ± 0.042 

Total Phosphorous  3.7 ± 0.033 

Iron 0.3 ± 0.004 

Magnesium 18 ± 0.235 

Ammonical Nitrogen 5 ± 0.186 

Chemical Oxygen Demand (COD)  84 ± 2.309 

Biological Oxygen Demand (BOD) 21 ±  1.155 

Total Organic Carbon (TOC) 64 ±  1.201 

Total Inorganic Carbon (TIC) 54 ± 0.843 

Alkalinity 190 ± 1.121 

Hardness 243 ± 2.032 

Data is an average value of three experiments ± S.D (n=3). 
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Table 2: Comparative biomass and total lipid yield in Parachlorella kessleri-I grown in WW vs 

ASW medium on the 10th day. 

Growth Medium Biomass yield (mg L-1) Lipid yield (mg L-1) 

WW 308.5 ± 9.1* 96.4 ± 6.2*  

ASW  205.0 ± 9.8 44.9 ± 7.0 

Data is an average values of three experiments ± S.D (n=3). Differences between WW and ASW 

were analyzed by Student's t test. Asterisks indicate statistically significant differences compared 

the WW with ASW at *P < 0.05. 
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Table 3: Major changes in the FAME of Parachlorella kessleri-I, grown in WW vs ASW 

medium on the 10th day of culture. 

FAME (Carbon chain length) Relative FAME composition (%) 

 ASW WW 

Palmitic acid methyl ester (C16:0)  26 ± 1.46  26 ± 2.69 

Oleic acid methyl ester (C18:1)  6 ± 0.31    28 ± 0.49* 

Linoleic acid methyl ester (C18:2)  11 ± 0.80   14 ± 2.17 

Linolenic acid methyl ester (C18:3)  29 ± 1.12    11 ± 0.46* 

Data is an average values of three experiments ± SD (n=3). Differences between WW and ASW 

were analyzed by Student's t test. Asterisks indicate statistically significant differences compared 

the WW with ASW at  

*P < 0.05. 
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Table 4: Comparison of FAME (biodiesel) properties of Parachlorella kessleri-I, grown in WW 

vs ASW medium using  international standards. 

Physical properties ASW WW EN 14214:2008  ASTM D6751 

Density (g.cm
-3

) 0.881 0.877 0.860-0.900 0.875-0.900 

Saponification value ( mg 

KOH.g
-1

) 
196 196 ─  ─  

Iodine value(g I2.100 g-1) 134 104 <120 ─ 

Cetane number 44 51 ≥51 ≥47 

Higher Heating 

value(MJ.Kg
-1

) 
39 40 ─  >35 

Viscosity (mm
2

.s
-1

) 3.8 4.1 3.5-5.0 1.9-6.0 

Data is an average value of three experiments. 
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Figure 1 Growth study of microalgae in WW. (a) Chlamydomonas reinhardtii, (b) Chlorella sp. 

(c) Nannochloropsis gaditana and (d) Parachlorella kessleri-I. Data is an average value of three 

experiments ± S.D. 
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Figure 2. Percentage removal of nutrients from the WW by an oleaginous marine alga, 

Parachlorella kessleri-I.  
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Figure 3. The maximum quantum yield of PSII (Fv/Fm) of Parachlorella kessleri-I under ASW 

and WW media. Differences between WW and ASW were analyzed by Student's t test. Asterisks 

indicate statistically significant differences compared the WW with ASW at *P < 0.05. 
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Figure 4. Nile red fluorescence study of Parachlorella kessleri-I cells grown in WW and ASW 

(control medium) for 10 days. Algal cells with lipid droplets in golden yellow colour in ASM 

medium (a) vs WW (b). Cultures were viewed at 600×using a fluorescence microscope at 485 

nm excitation and 552 nm emission filters showing the lipid globules. Scale bars = 10 µm.   

 


