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‘’I am dying by inches, from not having any body to talk to about insects...’’  

 Charles Darwin, Letters. A Selection (1825–1859) 

 

 

 

Sharing similar passion to Darwin, I am delighted to be part of the endeavours to 

understand the ecology of insect-plant-microbe interactions, encapsulated in this 

photograph of female Macrosteles quadrilineatus settling on phytoplasma-

infected Arabidopsis thaliana plant. 
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Abstract 

Phytoplasmas are insect-transmitted plant pathogenic bacteria that 

dramatically alter plant development. Phytoplasma virulence protein (effector) 

SAP54 mediates degradation of host MADS-box transcription factors (MTFs) via 

26S proteasome shuttle protein RAD23 to abolish normal flower development 

and produce leaf-like flowers (phyllody). Phyllodies are common symptoms in 

phytoplasma-infected plants worldwide. Why do phytoplasmas degrade MTFs 

and induce phyllody? Are changes in host plant morphology adaptive and benefit 

phytoplasma spread? Because phytoplasmas rely on their insect (leafhopper) 

vectors for transmission from plant to plant, I hypothesized that the vegetative 

tissues of the leaf-like flowers render plants more attractive to the insect vectors 

that will aid phytoplasma dispersal in nature.  

I discovered that the induction of phyllody is genetically linked with 

enhanced insect egg-laying preference on the infected plants that exhibit the leaf-

like flower phenotype. However, SAP54 enhances insect colonisation of plants 

independently from floral transition and the changes in plant morphology. 

Interestingly, male leafhoppers are required for the preference of females to lay 

eggs on SAP54 plants. Moreover, SAP54 suppresses insect induced plant 

responses in sex-specific manner by selectively downregulating male-induced 

defence and secondary metabolism pathways. Furthermore, I identified four 

MTFs that are expressed in plant leaves and play important roles in egg-laying 

preferences by leafhoppers and demonstrate sex-specific regulation by SAP54. 

Taken together, phytoplasma effector SAP54 enhances insect vector 

colonisation of plants by suppression of insect-induced plant responses 

independent of developmental changes. This is likely to occur by targeting MTFs 

– a conserved regulators of both plant development as well as plant defence 

against herbivorous insects. In addition to developmental changes, degradation 

of MTFs by SAP54 may result in modulation of male-induced plant responses to 

attract female insects for egg-laying and aid phytoplasma spread in nature.  
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PAMP – pathogen associated molecular patterns 
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Useful definitions 

Epiphenomenon - a secondary phenomenon that occurs in parallel to a primary 

phenomenon; a side-effect of a process (trait) that has been selected for its 

primary cause by natural selection.  

Effector – usually a protein or another molecule (e.g., RNA) that is produced by 

one organism (e.g., a pathogen) and delivered into another organism to target 

specific host processes; in the context of host-pathogen interactions, these are 

also known as virulence factors which promote pathogen invasion and replication 

(virulence) into the host.  

Fitness – the reproductive success of an organism (Darwinian fitness); in context 

of a plant pathogen, it refers to the ability to replicate in the host and success of 

transmission to an alternative host. 

Ecological niche – as defined by Charles Elton and Eugene Odum, is the totality 

of resources used by an organism in a given habitat; the niche concept, therefore, 

includes all activities and biotic (trophic) interactions a species has while 

obtaining and using the resources needed to survive and reproduce. Ecological 

niche of a plant pathogen would include all vector and plant species that the 

pathogen utilises over a gradient of environmental parameters.  

Fundamental niche – species ecological niche in absence of competitors for the 

same resources or interactions that limit species access to the potentially usable 

resources. Plant pathogens may have the capacity to infect a greater range of 

plant species (fundamental niche) than its actual or realised niche because of 

limited dispersal by vectors or other environmental factors. 

Realised niche – the actual utilised ecological niche in presence of competitors 

for the same resources or interactions that confines species to use a limited 

amount of theoretically utilizable resources. 

Population dynamics – changes in the number of individuals in a population as a 

result of birth (or multiplication), death, immigration and emigration.  

Epidemiology – the study of causes and drivers of changes in population 

dynamics of infected (diseased) organisms.  
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‘’Complexity is the prodigy of the world. Simplicity is the sensation of the universe. 

Behind complexity, there is always simplicity to be revealed. Inside simplicity, 

there is always complexity to be discovered.’’  

Gang Yu (2004), ‘’Algorithm Design and Implementations’’ 

 

 

Chapter 1 

Introduction on How Plant Pathogenic Bacteria Hitch a Ride 

 

 

 

Part of this chapter is published in: 

Orlovskis Z, Canale MC, Thole V, Pecher P, Lopes JRS, Hogenhout SA (2015), 

Insect-borne plant pathogenic bacteria: Getting a ride goes beyond physical 

contact. Current Opinion in Insect Science 9, 16–23. See Appendix A 

Z. Orlovskis (2016) ‘’Complex observation. Simple Depiction.’’ 
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1.1. Getting a ride goes beyond physical contact 

1.1.1. Overview 

Because plants are often limited in their abilities to move long distances, it 

is essential that plant pathogens possess strategies that allow them to move from 

plant to plant. In contrast to plants, plant-feeding arthropods frequently move long 

distances. Insects are abundant and have evolved a diverse range of plant 

feeding and colonization strategies that enable pathogens to adapt in various 

ways to utilize these herbivores as vectors for their transmission. Some 

pathogens use feeding wounds made by chewing insects (e.g. beetles) to enter 

plant tissues for further colonization. Other pathogens invade the vascular tissues 

for subsequent systemic spread within the plant and are transmitted by piercing-

sucking insect vectors (for example, insects in order Hemiptera), which penetrate 

their stylets and feed in the phloem and xylem.  

Many pathogens use arthropods for transmission. For example, 

arthropods transmit the majority of plant viruses: a single insect species can 

transmit over a 100 different plant viruses. In contrast, relatively few viruses use 

other vectors for transmission, for example, fungal pathogens and nematodes 

(Campbell, 1996; Brown and MacFarlane, 2001). Even for plant pathogens that 

use other dispersal strategies, such as water drops, arthropods may nonetheless 

aid their spread in nature as passive or facultative carriers.  

Strategies of virus transmission by arthropods have been extensively 

reviewed previously (Hogenhout et al., 2008a; Blanc et al., 2011). The goal of the 

introduction of this PhD thesis is to provide an overview of the contribution of 

insects in the transmission of bacterial pathogens. To this end, I will highlight for 

which bacterial pathogens insect vectors have been identified and then review 

several alternative strategies used by these pathogens to establish a physical 

association with insect vectors. Then I will discuss recent evidence suggesting 

that the transmission goes beyond a physical association with the insect and 

involves active modulation of plant processes by the bacterial pathogens to 

promote insect herbivore attraction, colonization and bacterial transmission.  

After this general introduction, I will focus on phytoplasma as a specific 

example of insect-transmitted plant pathogenic bacteria and will discuss their 

associations with plant and insect hosts and how these bacteria may have 

adapted to facilitate their spread in nature by their insect vectors. 
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1.1.2. Insect transmission of phytopathogenic bacteria evolved multiple 

times. 

Insect association with plant-parasitising bacteria appears to have evolved 

multiple times independently (Figure 1.1A). For some bacteria insects are only 

one of several ways to be carried to other plants. For example, diverse strains of 

Ralstonia (formerly Pseudomonas) solanacearum, which cause potato brown rot, 

bacterial wilt of tomato, tobacco, eggplant and ornamentals, and Moko disease 

in banana (Meng, 2013), are dispersed by several routes including water drops 

and insects that visit infected plants, e.g., bees (Trigona corvine [Hymenoptera: 

Aphidae]), wasps (Polybia spp. [Hymenoptera: Vespidae]) and flies (Drosophila 

spp. [Diptera: Drosophilidae]) (Figure 1.1A,B) (Agrios, 2004). Similarly, the 

bacterial ooze of Erwinia amylovora, which causes fire blight of pears, apples and 

other rosaceous plants, is distributed by rain as well as via many flying and 

crawling insects (Nadarasah and Stavrinides, 2011). 

Many other bacteria utilize insects as primary vectors and form symbiotic 

relationships with them. For example, Pectobacterium carotovorum (formerly 

Erwinia carotovora pv. carotovora), which initiates soft rot in different types of 

fleshy plant organs, has acquired multiple alternative insect vectors: Delia platura 

(seed corn maggot [Diptera: Anthomyiidae]), D. florilega (bean seed maggot), 

Drosophila busckii [Diptera: Drosophilidae] in potato, D. radicium (cabbage 

maggot) in Brassicaceae, D. antiqua (onion black fly), Tritoxa flexa (seedcorn 

maggot [Diptera: Otitidae]), Eumerus strigatus (onion bulb fly [Diptera: 

Syrphidae]) in onion and Macronoctua onusta (iris borer [Lepidoptera: 

Noctuidae]) in iris (Figure 1.1A,B) (Agrios, 2004; Nadarasah and Stavrinides, 

2011). Another example is Erwinia tracheiphila, the causal agent of cucurbit 

bacterial wilt, that is transmitted by Acalymma vittatum (striped cucumber beetle 

[Coleoptera: Chrysomelidae]) and Diabroctica undecimpunctata (spotted 

cucumber beetle) (Figure 1.1A,B) as well as other insects that cause wounds, 

such as grasshoppers (Latin, 1995; Nadarasah and Stavrinides, 2011). E. 

tracheiphila is known to overwinter in its two beetle vectors. Likewise, Pantoea 

(formerly Erwinia) stewartii, the causative agent of Stewart’s wilt and leaf blight 

of maize, depends predominantly on its vectors Chaetocnema pulicaria (corn flea 

beetle [Coleoptera: Chrysomelidae]) and Chaetocnema denticulate (toothed corn 

flea beetle) for dissemination, and uses beetles as a secondary host for 

overwintering inside the insect body (Elliott, 1940).  
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Figure 1.1. Relations between insects and plant pathogenic bacteria. (A) 

Phylogenetic relationship of a range of different bacteria. The Maximum Likelihood 

phylogenetic tree is based on 16S rRNA gene sequences. Plant pathogenic bacteria are 

indicated in green and numbers highlighted in orange point to their insect vectors 

illustrated in panel B. The GenBank accession numbers are available in materials and 
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methods. (B) Simplified model of phylogenetic relation of a selection of insects based on 

the current literature with ▼and ▲indicating insect groups comprised predominantly of 

phloem feeders and xylem feeders, respectively. (C) Examples of disease symptoms 

caused by various bacterial phytopathogens with illustration of their representative insect 

vectors: Top section, from left to right: Diaphorina citri, Macugonalia leucomelas, 

Macrosteles quadrilineatus and Dalbulus maidis. Bottom section, from left to right: HLB-

affected leaf, showing the characteristic blotchy mottle and vein corking (indicated by 

arrow); CVC-affected leaf, with bright interveinal chlorotic yellow spots (indicated by 

arrow); leaf-like flower (phyllody) caused by phytoplasma (left) in comparison to a healthy 

flower (right) and phytoplasma infected maize exhibiting leaf reddening. Figure published 

in Orlovskis et al. (2015). 

 

Most phloem-inhabiting bacteria solely depend on insects for transmission 

to the plant host. ‘Candidatus Liberibacter asiaticus’, ‘Ca. L. africanus’ and ‘Ca. 

L. americanus’, the likely causative agents of citrus greening disease 

(Huanglongbing), are transmitted by psyllids, including Diaphorina citri (Asian 

citrus psyllid [Hemiptera: Liviidae]) and Trioza erytreae (African citrus psyllid 

[Hemiptera: Triozidae]) (Figure 1.1B,C). A relative, ‘Ca. L. solanacearum’, the 

causative agent of zebra chip disease in potatoes, stunting and chlorosis in 

solanaceous species and foliage discoloration in carrot, is also transmitted by 

psyllids, such as Bactericera cockerelli (potato psyllid [Hemiptera: Psyllidae]) in 

Solanaceae, and B. trigonica and Trioza apicalis (carrot psyllid [Hemiptera: 

Triozidae]) in Apiaceae (Munyaneza et al., 2010; Nadarasah and Stavrinides, 

2011). 

An example of an obligate insect-borne xylem-inhabiting bacterium is 

Xylella fastidiosa, which causes Pierce’s disease of grapevine, citrus variegated 

chlorosis (Figure 1.1C), alfalfa dwarf disease, phony peach disease and leaf 

scorch diseases in almond and various other host species (Hopkins and Purcell, 

2002). The bacterium is transmitted by an entirely different group of hemipteran 

insects, including the xylem-feeding sharpshooter leafhoppers [Hemiptera: 

Cicadellidae: Cicadellinae], e.g. Graphocephala atropunctata, Draeculacephala 

minerva, Xyphon (=Carneocephala) fulgida, Homalodisca vitripennis and 

spittlebugs [Hemiptera: Cercopidae] (Figure 1.1A,B) (Janse and Obradovic, 

2010; Nadarasah and Stavrinides, 2011). 
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Bacteria from a different clade within the Gram-negative proteobacteria, 

the phloem-restricted ‘Ca. Arsenophonus phytopathogenicus’ and ‘Ca. 

Phlomobacter fragariae’, which are sugar beet and strawberry pathogens, 

respectively, are also transmitted by phloem-feeding insects, although from a 

different group of insects within the Hemiptera, the planthoppers Pentastiridius 

leporinus [Hemiptera: Cixiidae] and Cixius wagneri [Hemiptera:Cixiidae], 

respectively (Danet et al., 2003; Bressan et al., 2011; Bressan, 2014).  

Moreover, the more distantly related phytoplasma and spiroplasma plant 

pathogens of the class Mollicutes, which are cell wall-less obligate parasites and 

evolved from Gram-positive bacteria, are also phloem inhabitants and are 

transmitted by phloem-feeding piercing and sucking insects (Figure 1.1). The 

bacteria occur worldwide and induce leaf yellowing, stunting, decline and death 

in a broad range of plant species and phytoplasmas also modulate key processes 

in plant development through inducing, for example, shoot and root proliferation 

and greening of flowers (Hogenhout et al., 2008; Gasparich, 2010). 

Phytoplasmas are transmitted by various hemipteran insect species, including 

leafhoppers [Hemiptera: Cicadellidae], planthoppers [Hemiptera: Fulgoroidea] 

and psyllids [Hemiptera: Psyllidae], whereas spiroplasmas have only leafhoppers 

as vectors.  

Thus, plant pathogenic bacteria have adapted to employ the feeding 

mechanisms from a diverse range of insect species for transmission to plants, 

and insect transmission has evolved multiple times, particularly for phloem-

inhabiting bacteria.  
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1.1.3. Plant pathogenic bacteria physically connect with insect guts or 

whole bodies.  

At least three different strategies are known for bacterial plant pathogen 

transmission by insect vectors (Figure 1.2).  

 

 

Figure 1.2. Schematic illustrations of insect transmission of phytopathogenic 

bacteria. (A) Pantoea stewartii (red flagellated structures) are associated with the 

alimentary tract (foregut, midgut and hindgut), including the crop and Malpighian tubules 

(mt) of the beetle vectors. Transmission may occur by deposition of infective feces (frass) 

or regurgitate on leaf surfaces where feeding takes place; once introduced into feeding 

wounds, P. stewartii spreads through intercellular spaces and xylem vessels. (B) 

Phytoplasmas, spiroplasmas and liberibacters are transmitted in a persistent-

propagative manner. After acquisition during phloem sap ingestion in infected plants, 

these bacteria (red dots) invade the midgut tissue and multiply or accumulate in various 

internal organs of the vector, including filter chamber, visceral muscles, Malpighian 

tubules and the salivary gland, from where they are inoculated via saliva in the phloem 

of healthy plants. (C) Xylella fastidiosa has a non-circulative propagative relationship with 

sharpshooter vectors. After acquisition during xylem sap ingestion, the bacterial cells 

(red rods) attach to the foregut cuticle, especially in the precibarium, where they multiply 

and form biofilm (detailed in the box); detached bacterial cells are hypothetically 

inoculated via egestion in the xylem vessels of healthy plants. Longitudinal section of 

leaf: epidermis (ep), parenchyma (pr), phloem sieve element (ph) and xylem vessel (xl). 

Insect structures: foregut (fg), midgut, hindgut, filterchamber (fc), crop (cr), salivary gland 

(sg), Malpighian tubules (mt), esophagus (es), cibarium (cb), precibarium (pc), 

precibarial valve (pv). Frass (fr). Figure published in Orlovskis et al. (2015). 

 

Many insect-transmitted bacterial pathogens appear to associate with the 

digestive tract of their vectors where they persist for several days or weeks, 
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possibly overwintering in the insects (Garcia-Salazar et al., 2000; Basset et al., 

2003; Ammar et al., 2014). Transmission is thought to occur by regurgitates on 

feeding wounds and deposition of infective feces (frass) (Mitchell and Hanks, 

2009; Shapiro et al., 2014) (Figure 1.2A). For some of these bacteria virulence 

factors associated with insect transmission have been identified. P. carotovorum 

requires at least two genes for infection of Drosophila, including Erwinia virulence 

factor (Evf), which improves bacterial survival in the guts of flies (Basset et al., 

2003; Quevillon-Cheruel et al., 2009). In addition to the Hrc-Hrp Type III Secretion 

System (T3SS), which is essential for maize pathogenesis (Coplin et al., 1992), 

P. stewartii possesses a second T3SS, the Pantoea secretion island 2 (PSI2), 

which is involved in insect colonization and persistence of the bacterium in the 

vector (Correa et al., 2012; Ammar et al., 2014).  

Phloem-inhabiting bacterial pathogens, such as Ca. Liberibacter spp., 

phytoplasmas and spiroplasmas, are transmitted in a propagative persistent 

manner. After ingestion, these bacteria invade the vector midgut and adjacent 

muscle cells, from where they reach the hemolymph and systemically colonize 

other insect organs, including the Malpighian tubules and salivary glands, at 

which point the insect vectors become competent to inoculate the bacteria into 

plants (Figure 1.2B) (Kwon et al., 1999; Ozbek et al., 2003; Ammar et al., 2011; 

Sengoda et al., 2014). The time between acquisition and inoculation is known as 

the latency period and can take days to months, depending on the interplay 

between the pathogen and the life-cycle of insect vector. In the case of ‘Ca. P. 

pronorum’ and its vector, Cacopsylla pruni, there is a remarkable decrease in 

transmission efficiency during an eight-month long winter latency period when the 

insect vector is on its overwintering host. C. pruni become efficient vector by 

spring time when the insect migrates to the primary host plant (Prunus spp.) 

(Thebaud et al., 2009).  

The adaptation of bacteria to plant phloem and various insect tissues is 

associated with a dramatic change in expression of bacterial genes, including 

virulence factors (Toruño et al., 2010; MacLean et al., 2011; Oshima et al., 2011; 

Yan et al., 2013). As well, several membrane proteins that are involved in 

adherence of bacteria to insect cells have been identified, including the Antigenic 

membrane protein (Amp) of phytoplasma (Suzuki et al., 2006) and adhesion-

related proteins of Spiroplasma citri (ScARPs) (Beven et al., 2012). 
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In contrast to bacteria that invade insects discussed above, the xylem-

inhabiting X. fastidiosa is foregut-borne and non-circulative in its vectors (Figure 

1.2C). After acquisition, the bacterial cells attach to the cuticle in the cibarium and 

precibarium where they multiply and form a biofilm. X. fastidiosa cells are 

detached from this site and inoculated into plants by egestion (Almeida and 

Purcell, 2006; Backus and Morgan, 2011). The pathogen’s ability to attach and 

colonize both the plant and the vector is dependent on a quorum-sensing 

mechanism involving a diffusible signaling factor (DFS) that is sensed by 

components of the regulation of pathogenicity factors (rfp) cluster (Newman et 

al., 2004; Almeida et al., 2012; Baccari et al., 2014). Early adhesion and retention 

in the insect involve the afimbrial proteins HxfA and HxfB and the fimbrial protein 

FimA (Killiny and Almeida, 2014). The X. fastidiosa extracellular polysaccharides 

(EPS) also plays a role in insect transmission (Killiny et al., 2013).  

Thus, bacteria associate with insect vectors physically by invading the 

insect intestines or whole bodies or by attaching to the cuticle in the insect foregut. 

Moreover, this association occurs at a molecular level. This requires adaptation 

of bacterial pathogens to the anatomy, physiology and life cycle of their insect 

vectors, showing that the interactions between plant bacteria and their insect 

vectors go beyond physical contact. 

 

1.1.4. Bacteria modulate plant processes to the benefit of insect vectors 

The finding that bacteria dramatically change gene expression and 

produce specific virulence factors for insect invasion is suggestive of extensive 

co-evolution between insects and bacteria. The association with insects appears 

mostly beneficial for the bacteria. However, the benefit for the insects should be 

considered too. Indeed, P. carotovorum induces rotting of fruit, which facilitates 

the life cycle of fruit flies (Basset et al., 2003). Recent findings indicate that 

bacterial pathogens use various strategies to promote attraction and colonization 

of their insect vectors (Figure 1.3). 
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Figure 1.3. Insect-vectored bacterial parasites modulate plant cellular and 

physiological processes to alter plant phenotypes and enhance insect vector 

colonisation and pathogen dissemination in nature. During plant-pathogen 

interactions, bacteria secrete extracellular virulence factors that can modulate various 

cellular and physiological processes in the host plant. Phytoplasma secreted effector 

proteins interact and destabilize conserved transcriptional regulators that have 

pleiotropic roles in plant development and defense responses. Liberibacter may also 

secrete putative effectors that target certain plant genes and interfere with plant 

processes. Xyllela fastidiosa produces virulence factors that mediate bacterial spread 

through xylem and regulate biofilm formation. The outcome of plant-pathogen 

interactions at cellular level is the change of certain aspects of plant phenotype, including 

the development of disease symptoms. Insect responses to changes in plant phenotype 

can further play a significant role in plant-insect interactions and benefit pathogen 

transmission in nature. Modulation of the composition of organic volatile emissions and 

induction of foliar yellowing are implicated in attraction of insect vectors to infected plants. 

Suppression of plant defenses against herbivores facilitates insect feeding and egg 

laying, thus enhancing likelihood for pathogen acquisition. However, deceptive attraction 

to sub-optimal infected hosts or disruption of phloem and xylem flow by the bacterial 

parasite can promote insect dispersal and subsequent pathogen dissemination. Solid 

lines indicate direct effects. Dashed lanes signify putative effects or suggested roles of 

bacteria-induced plant phenotypes in plant-insect interactions. Pointed arrows indicate 

generation or modulation of an effect, block arrows signify complete or partial 

abolishment of an effect. Abbreviations: MTFs – MADS-domain transcription factors, 
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TCPs – TEOSINTE BRANCHED1, CYCLOIDEA and PCF transcription regulators, SAP 

– Secreted Aster Yellows Witches Broom Phytoplasma protein. Figure published in 

Orlovskis et al. (2015). 

 

Pathogens promote insect attraction to infected host plants by altering the 

visual or olfactory cues that insects use to locate a suitable host plant. For 

example, ‘Ca. Phytoplasma mali’ increases production of the sesquiterpene β-

caryophyllene that makes infected plants more attractive to its psyllid vector C. 

picta (Mayer et al., 2008a,b). Similarly, ‘Ca. Liberibacter’ induces changes in the 

complex blend of citrus organic volatile compounds to make plants more 

attractive for their psyllid vectors (Mann et al., 2012; Mas et al., 2014). ‘Ca. L. 

asiaticus’ induces the production of methyl-salicylate that may mimic a psyllid-

derived pheromone (Mann et al., 2012). The characteristic yellowing symptoms 

in ‘Ca. L. asiaticus’-infected plants are associated with perturbations in phloem 

sugar loading, starch accumulation and phloem blockage (Kim et al., 2009; Koh 

et al., 2012; Martinelli et al., 2013), and modulation of foliar coloration may play 

a role in insect vector attraction (Figure 1.3).  

Once the insect vector is attracted to an infected plant, plant parasitic 

bacteria may use various mechanisms to enhance insect feeding and egg laying 

thus promoting pathogen acquisition. Changes in solute transport in phloem or 

xylem, alteration of plant nutritional quality, or suppression of herbivore-induced 

defense responses can affect insect feeding behavior. Phytoplasma-secreted 

effector proteins are known to destabilize conserved transcriptional regulators, 

leading to changes in both plant development and defense against herbivores. 

‘Ca. P. asteris’ strain Witches’ Broom protein SAP11 directly interacts with 

TEOSINTE BRANCHED1 (TCP) transcription factors and suppresses jasmonic 

acid (JA) production and salicylic acid-mediated defence responses, increasing 

the fecundity of aster leafhopper Macrosteles quadrilineatus, the insect vector of 

phytoplasma (Sugio et al., 2011a, 2014; Lu et al., 2014). Virulence factor, 

TENGU, was shown to affect plant development and regulation of auxin-

dependent genes (Hoshi et al., 2009). Another phytoplasma effector SAP54 is 

known to directly destabilize plant MADS-box transcription factors, thus 

abolishing normal floral development as well as enhancing leafhopper 

colonization (MacLean et al., 2011, 2014).  
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Asymptomatic plants at early stage of X. fastidiosa infection favor insect 

attraction and pathogen acquisition but late infection symptoms enhance insect 

dispersal and pathogen dissemination (Marucci et al., 2005). When reached 

certain density, Xylella quorum-sensing mechanisms can induce biofilm 

formation in response to certain host extracellular polysaccharides (Killiny and 

Almeida, 2009; Killiny et al., 2013). Biofilm formation leads to xylem blockage, 

corking of veins and water stress symptoms, which may favor rejection of 

symptomatic plants by sharpshooter vectors of X. fastidiosa.  

In summary, there is indirect and direct evidence that bacterial pathogens 

modulate plant processes to promote attraction and plant colonization by insect 

vectors.  

 

1.2. Global occurrence of phytoplasmas and their interaction with plant 

and insect hosts 

 

1.2.1. Overview 

Plant pathogenic bacteria possess various virulence factors (effectors) 

that modulate microbial recognition and induced plant defences (reviewed in 

Boller and He, 2009). Insect-transmitted plant pathogenic bacteria also possess 

virulence factors for the establishment of physical interactions with their arthropod 

vectors and possibly for modulation of plant pathways involved in insect attraction 

and defence responses to insect vectors (Orlovskis et al., 2015). Furthermore, 

vector-borne plant pathogens may carry virulence factors that have direct effects 

on the insect vector, such as alterations of (feeding) behaviour and rerouting of 

vesicle trafficking pathways to facilitate pathogen migration through the insect 

vector and transmission to plants. 

Phytoplasmas are globally widespread plant pathogens and require 

insects for their transmission from plant to plant. Different sets of effector genes 

are upregulated in phytoplasmas that are in the insect vectors versus those in the 

plant hosts (MacLean et al., 2011). Currently, the functions of a few phytoplasma 

effectors have been characterised and these effectors were shown to alter plant 

development and promote insect vector colonization (Sugio et al., 2011b). 

Research on these effectors have provided unique insights into how pathogens 

‘’manipulate’’ their host as ‘’puppets’’. Phytoplasma-plant-insect interactions 
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provides a unique model system for further translational research to better 

understand of how plant pathogens and insect herbivores co-evolve and find the 

Achilles’ heels of both bacterial pathogens and insect vectors for informing future 

disease management strategies. In the next sections of this introduction, I will 

provide a more detailed overview of what is known about phytoplasmas and their 

ability to modulate plant processes and insect-plant interactions that may be 

fundamental for their spread in nature. 

 

1.2.2. Phytoplasmas are wall-less plant pathogens 

Phytoplasmas survive only in their plant or insect hosts and cannot be 

cultured on artificial media in vitro. Within plants, phytoplasmas are limited to the 

sieve elements of phloem – tissue that transports the products of photosynthesis 

from mature leaves to other parts of the plant for growth or storage (Figure 1.4). 

Phytoplasmas are small bacteria of approximately 500 nm in diameter. They are 

usually spherical but may also flask-like or tubular shapes. Unlike most other 

bacteria, they lack rigid cell wall, envelope or secondary membrane. Instead, 

phytoplasmas possess a single unit membrane (Lee et al., 2000). Doi et al. (1967) 

observed that the ultrastructure of phytoplasmas resembles another group of 

pathogenic bacteria - animal and human mycoplasmas. Similarly to 

mycoplasmas, phytoplasma growth is constrained by tetracycline (Shikata et al., 

1969), an antibiotic that targets bacterial ribosomes and inhibit protein synthesis. 

Because of the lack of outer cell wall, phytoplasmas are insensitive to antibiotics 

that inhibit cell wall synthesis. The strength and rigidity of cell membranes in many 

wall-less bacteria may be achieved by higher membrane sterol contents, making 

them more similar to the membranes of eukaryotic cells (Barton, 2005).  
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Figure 1.4. Transmission electron micrograph of Aster Yellows phytoplasma 

Witches’ Broom in an immature sieve element (se1) of an aster plant. Phytoplasma 

(arrow-head) are distributed throughout the cytoplasm and around a degenerated 

nucleus (n) of an immature sieve element. In mature sieve elements nuclei degenerate 

and disappear entirely. Bacteria migrate to adjacent sieve elements by passing through 

the pores (arrow) in sieve plates (sp). Phytoplasmas are not found in companion cells 

(cc). Asterisks indicate flask-shaped phytoplasmas during cell division. After budding-off 

the mother cell, phytoplasma increase in size and take round shape (black arrowhead). 

Scale bar 1µm. Image taken from Hogenhout et al. (2008b). 

 

1.2.3. Early classification of phytoplasmas  

Before the second half of the 20th century many yellowing diseases and 

witches’ broom symptoms in plants were believed to be caused by plant viruses 

instead of bacteria. However, in 1967, Doi et al. published a paper describing the 

agents observed in symptomatic plants as bacteria resembling the human and 

animal-pathogenic mycoplasmas, naming them ‘’mycoplasma-like-organisms’’ 

(MLOs) (Doi et al. 1967; Lee et al., 2000). However, this nomenclature lacked a 

precise taxonomic definition. The term MLOs did not distinguish between the 

different physiological and structural properties of mycoplasma-like plant 

pathogens. For example, the causal agent of corn stunt disease is a motile, 

helical, filamentous mycoplasma-like-organism (Davis et al., 1972; Daniels, 

1979) which is structurally distinct from the sphere-shaped bacterial agent of 

aster yellows disease.  

In order to demonstrate that a specific microorganism is the causal agent 

of a particular disease, Robert Koch (1887) postulated that disease-causing 

organism must be cultivated in pure culture outside the host-organism, inoculated 
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into healthy susceptible host, and isolated again from these hosts. Because 

phytoplasmas cannot grow in artificial media outside host-organisms, Koch’s 

postulates cannot be fulfilled. These principles were important for differentiating 

and assigning species status to various MLOs. For example, the causal agent of 

corn stunt (now known as Spiroplasma kunkelii) can be cultured in cell-free media 

and transmitted to healthy maize plants by leafhoppers that were injected with in 

vitro culture of the pathogen (Chen and Granados, 1970). Inability to obtain pure 

phytoplasma cultures in laboratory hindered the identification and systematics of 

MLOs until the development of molecular classification methods. 

 

1.2.4. Phytoplasmas belong to the class Mollicutes 

Phylogenies inferred from 16S rRNA gene sequences suggest that 

phytoplasmas have diverged from Acholeplasma spp. within the class Mollicutes 

(Gundersen et al., 1994). Other previously described MLOs were found to belong 

to the class Mollicutes and form four major paraphyletic groups: Hominis, 

Pneumoniae, Spiroplasma and Anaeroplasma, the latter containing 

Acholeplasma and Phytoplasma (Weisburg et al., 1989). Phytoplasmas and 

spiroplasmas are the only groups of plant pathogenic bacteria in the class 

Mollicutes. However, plant pathogenic lifestyle is not unique to the Mollicutes, 

and has evolved independently in several groups of bacteria (Figure 1.1).  

 

1.2.5. Phytoplasmas require plants and insects for survival and 

dissemination 

Phytoplasmas infect and replicate in organisms that belong to two different 

kingdoms – plants and animals (insects). Their survival and dissemination 

depends on successful invasion and cycling between the two hosts (Figure 1.5). 

Phytoplasmas are transmitted from plant to plant by certain families of sap-

feeding insects – leafhoppers (Cicadellidae), planthoppers (Fulgoridae) and 

psyllids (Psyllidae), with leafhoppers being the most common group of vectors 

(Lee et al., 2000). Leafhoppers are flying insects that belong to the order 

Hemiptera, suborder Auchenorrhyncha. Hemipteran insects develop from egg to 

adult stage via incomplete (hemimetabolous) metamorphosis. The possession of 

piercing-sucking mouthparts makes hemipteran insects excellent vectors of 

bacterial and viral plant pathogens. Stylets projecting from the insect proboscis 
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are well-adapted to penetrate plant tissue via apoplast (extracellular space of 

plant tissues), to puncture sieve elements of phloem or xylem tissue and to suck 

sugar-rich phloem sap or ‘’drink’’ from the xylem. As a result of such feeding 

behaviour these insects often acquire plant bacteria, including phytoplasmas, 

from infected plants and transmit them to a different host. Leafhoppers are 

excellent flyers and frequently migrate long distances, thereby facilitating 

dispersal of the plant pathogens.  

 

 

Figure 1.5. Phytoplasmas are transmitted from plant to plant by insect vectors. (A) 

Phloem-feeding insects acquire phytoplasma from infected plants during sustained 

phloem feeding phase. (B) Latent period is the time required for phytoplasma to replicate 

and systemically spread throughout the insect body. Systemic invasion of aster 

leafhopper Macrosteles quadrilineatus by Aster Yellows phytoplasma strain Witches’ 

Broom takes approximately 10 days. (C) Phytoplasma are injected into healthy 

susceptible plants together with insect saliva during plant probing. Insect stylets can 

reach phloem tissue and inoculate the plants with phytoplasma. (D)  Phytoplasma 

replicates in phloem and is transported to other parts of plant following phloem 

movement from source to sink organs. Image taken from Sugio et al. (2011). 
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1.2.6. Aster Yellows phytoplasmas have a broad host-plant range  

Molecular classification has resulted in the identification of more than a 

dozen different phytoplasma groups and subgroups. In spite of difficulties 

assigning genus and species status to phytoplasmas in the past, the 

Phytoplasma Working Team of the International Research Project for 

Comparative Mycoplasmology (IRPCM) proposed the name ‘’Candidatus 

Phytoplasma’’ to establish a formal classification based on molecular 

identification (Bertaccini, 2007). Designation ‘Candidatus’ (L. Candidatus, a 

candidate) is given to a bacterium that is well characterised but cannot be 

maintained in a Bacteriology Culture Collection. A novel ‘Candidatus 

Phytoplasma’ species is described if its 16S rRNA gene sequence has >2.5% 

dissimilarity to that of any previously described ‘Candidatus Phytoplasma’ 

species. ‘Candidatus’ is usually abbreviated to ‘Ca.’ .There are now at least 28 

formally described ‘Ca. Phytoplasma’ species. Further classification of 

phytoplasma strains is based on restriction fragment length polymorphism 

analysis of 16S and 23S rRNA genes, the 16S/23S intergenic spacer region or 

ribosomal proteins (rp) (Lee et al., 2000; Hogenhout et al., 2008b). Alternative 

methods to infer phytoplasma phylogeny are based on coding sequences of 

prokaryotic elongation factor Tu (tuf) or secretion system genes (e.g., secA) 

(Makarova et al., 2012; Hodgetts et al., 2016) but these are largely congruent 

with the 16Sr-based phylogenies.  

Aster yellows group (16SrI) is currently the largest described phytoplasma 

group and has a worldwide distribution (Lee et al., 2004). ‘Candidatus 

Phytoplasma asteris’ includes all known subgroups within 16SrI group and can 

infect about 200 different plant species, including many crops (Figure 1.6). The 

16SrI-A, 16SrI-B, 16SrI-C phytoplasmas have broad host-plant ranges and wide 

geographic distributions. These phytoplasmas are mainly transmitted by the 

polyphagous leafhoppers Macrosteles spp., Euscelis spp., Scaphytopius and 

Aphrodes spp. (Lee et al., 2004). However, subgroup 16SrI-B (rp-L) also includes 

maize bushy stunt phytoplasma (MBSP), which only infects maize and is 

transmitted by a maize-specialist leafhopper Dalbulus maidis. Similarly, a 16SrI-

D phytoplasma infects only two species of paulownia trees (Paulownia taiwaniana 

and Paulownia tomentosa) in East-Asia. 
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Figure 1.6. Aster yellows group phytoplasmas are generalists and infect diverse 

families of plant hosts. ‘Candidatus Phytoplasma asteris’ encompass all described 

subgroups of Aster Yellows (16SrI) group that share >97.5% similarity in 16SrRNA gene 

sequence. Additional biological and genetic criteria, such as the sequence variation of 

ribosomal protein (rp) is used to distinguish between various subgroups. Aster Yellows 

group phytoplasmas infect wide range of monocot and dicot herbaceous and woody 

plants. Adopted from Lee et al. (2004). 

 

1.2.7. Phytoplasmas are economically important plant pathogens 

Phytoplasmas cause disease in several hundred different plant species, 

including ornamental plants, food crops (cereals, vegetables, fruit trees), shrubs 

and trees worldwide (Lee et al., 2000) (Figure 1.7). Phytoplasmas infect both 

herbaceous dicot and monocot crops. ‘Ca. P. mali’, ‘Ca. P. pyri’, ‘Ca. P. pronorum’ 

cause considerable yield losses of stone fruit trees, including peach, cherry, 

plums, apricots as well as pears and apples (Seemüller and Schneider, 2004). 

‘Ca. P. aurantifolia’ and ‘Ca. P. trifoli’ are disease agents of several legume 

diseases such as sesame and soybean phyllody or peanut witches’ broom, 

inflicting considerable yield losses in Turkey, India, Myanmar and China (Lee et 

al., 2000). Phytoplasmas are important pathogens of grasses (Poaceae) (Rosete 

and Jones, 2010). Rice (Oryza sativa) in Asia is affected by two phytoplasma 

disease agents causing rice yellow dwarf (RYD, ‘Ca. Phytoplasma oryzae’) and 

rice orange leaf (ROL). ‘Ca. Phytoplasma oryzae’ is responsible for yield losses 

of sorghum (Sorghum spp.) in the tropics and subtropics, especially Africa. 
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Phytoplasmas cause serious problems in sugarcane productions in Brazil and 

India, the largest sugarcane producing countries, where the crop is mostly used 

for biofuel production. Phytoplasmas can also infect gymnosperms, for example, 

pine trees in Spain, Germany and Lithuania (Valiunas et al., 2015; Schneider and 

Torres, 2016) and juniper in Poland (Krawczyk et al., 2016). 

Although many phytoplasmas are detrimental to most plants, infection with 

these organisms has been practiced to increase the market value of commercially 

grown poinsettias (Euphorbia pulcherrima) (Bertaccini, 2007). Single or mixed 

infections with various phytoplasmas increase bushiness and branching of these 

ornamental plants making them more attractive to consumers. 

 

Figure 1.7. Phytoplasmas are economically important pathogens in agricultural 

regions worldwide. The occurrence of most important disease-causing phytoplasmas 

taken from (Foissac and Wilson, 2010). 

 

1.2.8. Plant-phytoplasma-insect interactions play a key role in disease 

origin and spread 

The epidemiology of phytoplasma diseases in agricultural systems 

depends on the population structure of the host plants (monoculture vs. 

policulture crop), availability of alternative host plants (weedy plants outside the 

boundaries of a crop field) as well as host-plant fidelity and abundance of the 

insect vectors. The following examples demonstrate the agricultural relevance 
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and importance to understand plant-microbe-insect interactions at population 

level as well as the effects of changing climate and pest management practices 

on these pathosystems.  

Lethal yellowing disease (caused by ‘Ca. Phytoplasma palmae’) of 

coconuts (Cocos nucifera) is a good illustration for how current crop cultivation 

methods affect pathogen spread in the field. Monocultures of homogeneously 

distributed coconut palms are prone to rapid spread of disease from a point 

source of infection to surrounding genotypically identical plants. Distance of 

spread of new infections increases with time. Current control methods rely on 

removal of coconut trees around the symptomatic plants to slow the spread of 

infection. Nevertheless, sacrificing fractions of the standing crop involves a high 

yield cost itself. Moreover, during the incubation period (period post infection and 

prior to symptom development) phytoplasmas can be transmitted as far as 100 

km from the initial (primary) point of disease origin. Becase coconut trees are only 

removed in the near vicinity of symptomatic plants, establishment of new disease 

foci create sources of secondary infection (Bonnot et al., 2010). 

Phytoplamas can decrease the efficiency of some cultural pest control 

practices. The Push-Pull Technology has been very successful at managing 

insect pests and parasitic weeds in Africa (Pickett et al., 2014). This method relies 

on intercrops that emit allelochemicals to deter pests or attract natural enemies 

and use of trap-plants that attract pest species away from the main crop. Napier 

grass (Penniseum purpureum) is an abundant trap-plant and also the main fodder 

plant in Eastern Africa. Koji et al. (2012) reported recent trend in the spread of 

the agent of Napier stunt disease in areas where the Push-Pull Technology is 

applied. The disease is caused by Napier grass stunt phytoplasma (NGSP; ‘Ca. 

Phytoplasma oryzae’), vectored by a leafhopper Maiestas banda and several 

other planthopper species. They found that rainfall is a strong determinant of 

insect abundance in this leafhopper and planthopper vector complex. 

Considering the importance of insects as phytoplasma vectors,  changing global 

and regional climate may have an effect on disease incidence and severity in P. 

purpureum. 

Range expansion of insect vectors and availability of phytoplasma 

reservoirs in herbaceous weedy plants are important factors for pathogen spread 

to new geographical regions. Bois noir (BN) of grapevine (Vitis sp.) is the most 

widespread grapevine yellows disease in European and Mediterranean viticulture 
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regions. The causal agent of this disease, ‘Ca. Phytoplasma solani’ (16 SrXII), 

has two isolates, tuf-a and tuf-b, the former is associated with its wild host stinging 

nettle (Urtica dioica) and the latter with field bindweed (Convolvulus arvensis). 

The host switch of planthopper Hyalesthes obsoletus from C. arvensis to U. dioica 

resulted in acquisition of tuf-a phytoplasma. This led to emergence of tuf-a BN in 

vineyards of France and Germany where the disease had not been recorded 

before (Maixner, 2010). Molecular studies of population history and host-plant 

association (Johannesen et al., 2012; Imo et al., 2013) suggest that the 

introduction of tuf-a phytoplasma to vinefields was driven by vector host shifts 

and subsequent sympatric diversification. The spread of BN disease from 

Southern to Northern Germany was a result of range expansion of the vector. 

Mean ambient temperature can mediate latitudinal expansion of the geographical 

range of insect-vectors (Bale et al., 2002). This might expose insects to new host 

plants species and facilitate acquisition of new disease-causing agents through 

host switch initiating new disease cycles. It would be very difficult to predict the 

behaviour of such open epidemiological systems (i.e., where pathogen and 

vectors have multiple alternative hosts) under different global change scenarios. 

Flavescence dorée (FD, ‘Ca. Phytoplasma vitis’) is another grapevine yellows 

disease agent. Grapevine is the only host for this phytoplasma and its leafhopper 

vector Scaphoideus titanus making this phytoplasma-insect-plant interaction a 

closed epidemiological system compared to BN (Constable, 2010). Pest 

management practices can be more effective for closed systems where vector 

population growths depend on single host plant species as opposed to open 

systems where vectors reproduce and overwinter in wild plant refugia (which 

often also serve as reservoirs of the disease agents) surrounding the crop fields. 

 

1.2.9. Phytoplasmas adapt to their plant-host and insect vector 

Phytoplasma fitness depends on the success of the pathogen at the key 

stages of its life-cycle, as follows: 1) phytoplasmas have to be acquired by insect 

vectors from infected plants; 2) phytoplasmas have to propagate within plant-

hosts and insect-vectors; 3) phytoplasmas have to be inoculated into healthy 

plants by insects to ensure continuous generations of the pathogen. Because 

phytoplasmas transmission depend on their plant hosts and insect vectors and 

interactions between insects and plants, phytoplasma fitness is likely to 
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dramatically increase in cases where (a) phytoplasmas do not kill their plant hosts 

and insect vectors too early and (b) phytoplasmas evolved mechanisms to 

modulate plant and insect processes to promote phytoplasma colonization and 

spread. I will discuss each of them separately.  

Phytoplasmas infect and replicate in both insects and plants. Their survival 

and dissemination depends on successful invasion and cycling between these 

two hosts. Therefore, phytoplasmas have to adapt their own biology to maximise 

the success of colonisation, replication and cycling between host plants and 

insect vectors. During phloem-feeding insects acquire phytoplasma from infected 

plants (Figure 1.8A). Phytoplasmas attach to cell membrane of microvilli of insect 

guts and enter gut walls (Figure 1.8B). Phytoplasmas may possess similar tip 

structures found in spiroplasma and mycoplasma to attach to the apical 

plasmalemma (Hogenhout and Loria, 2008) and possess specific membrane 

proteins in order to be recognised and internalised by insect gut wall (Fletcher et 

al., 1998). Indeed, antigenic membrane proteins (AMPs) of ‘Ca. Phytoplasma 

asteris’, onion yellows strain M (OY-M) and chrysanthemum yellows phytoplasma 

(CYP), interact with cytoskeletal proteins actin and myosin as well as ATP 

synthase in smooth visceral muscles surrounding the insect intestine (Suzuki et 

al., 2006; Ishii et al., 2009; Galetto et al., 2011). These studies demonstrate that 

AMP-cytoskeletal complexes were formed only in insect species that are known 

to transmit OY-M and CYP, suggesting that bacterial AMPs have evolved to 

interact with specific insect proteins, determining vector specificity. Evidence that 

phytoplasmas adapt to their insect vectors was demonstrated by another 

experiment in which OY-M was transferred from plant to plant by either grafting 

or insect transmissions. The phytoplasma line propagated by grafting lost the 

ability to be insect transmitted and this was associated with lack of part of the 

promoter region upstream of an open reading frame (named ORF3), encoding a 

putative transmembrane protein, in the grafted versus the insect-transmitted OY-

M.  (Ishii et al., 2009). Thus, phytoplasma proteins involved in insect vector 

transmission appear subject to strong selection.  

Upon replicating in the mid-gut epithelial cells, phytoplasmas enter the 

insect hemocoel and circulate to other tissue via the insect haemolymph (Figure 

1.8C), finally reaching the salivary glands (Figure 1.8D) (Hogenhout et al., 2008). 

Phytoplasmas probably interact with proteins of the salivary gland to colonize 

cells and be transported to the salivary duct from where phytoplasmas enter host 
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plants via the saliva of the insect vector (Figure 1.8E). The way phytoplasmas 

colonize both hosts (insect and plant hosts) is similar to that of many insect-

vectored human/animal pathogens, including the malaria parasite Plasmodium 

falciparum (Lin et al., 2016).  

 

Figure 1.8. Phytoplasmas have to adapt to plant-host and insect-vectors to 

continue their life-cycle. A. Phytoplasma enters insect gut as a result of phloem 

feeding. Electron photograph shows AY-WB phytoplasma in the midgut epithelial cell of 

M. quadrilineatus (bl – basal lamina; mv – microvilli; pm – plasma membrane; scale bar 

1 µm). B. Phytoplasmas are believed to share adaptations similar to that found in 

spiroplasmas: bacteria are internalised into plasmalemma or gut surrounding smooth 

muscles where it replicates. C. During latent period phytoplasma cross the gut barrier to 

enter the hemocoel and spread throughout insect body. Systemic infection of M. 

quadrilineatus takes around 10 days. D. Phytoplasma has to be internalised into salivary 

duct from hemocoel as shown in this schematic representation of such adaptation in 

spiroplasmas. E. Phytoplasma is injected into the phloem of healthy plant during insect 

feeding. Within 10 days post infection phytoplasma spreads throughout plant phloem 

and induces first disease symptoms such as stunting and increased rosette branching. 

Figure adapted from Fletcher et al. (1998) and Sugio et al. (2011). 
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In plants, phytoplasmas are phloem-limited and colonize the sieve 

elements. In situ bio-imaging studies demonstrate that mature anucleate sieve 

tubes contain much higher density of bacterial cells than companion cells or 

phloem parenchyma cells (Christensen et al., 2004). Within sieve tubes 

phytoplasmas exhibit various morphologies, including spherical, budding 

(probably while dividing) (Figure 1.4) or amoeboid shapes. Phytoplasmas move 

to other sieve cells by passing through pores in the sieve plates (Hogenhout et 

al., 2008). The systemic spread of phytoplasmas throughout the plant mirrors that 

of transport of nutrients to sink tissues, which includes rapidly growing organs, 

such as new shoots and roots that require sugars for growth (Bertaccini, 2007). 

Phytoplasma titer (bacterial cell density within phloem) is used as a proxy 

measure of the degree of infection and is often correlated with the level of visual 

disease symptoms of plants (Christensen et al., 2004).  

 

1.2.10. Phytoplasmas modulate their plant host and plant-insect 

interactions 

Phytoplasma infections induce diverse disease symptoms in plants (Lee 

et al., 2000), including: witches’ broom (proliferation of auxiliary shoots); 

virescence (greening and loss of flower pigmentation); reddening or yellowing of 

photosynthetic tissue; stunting (decrease in flower and leaf size, shortened 

internodes); phyllody (development of leaf-like structures instead of outer floral 

whorls); sterility of flowers (abnormal gynoecium development); indeterminate 

growth of floral meristem; elongation of internodes; slender shoot formation 

(bolting); and formation of fibrous secondary roots. In addition, phytoplasma 

alters plant hormone and secondary metabolite biosynthesis (Sugio et al., 2011a; 

Lu et al., 2014; Tan et al., 2016). Thus, phytoplasmas appear to interfere with 

regulation of plant growth, development and physiology. Such effects on the plant 

host may be potentially beneficial to phytoplasma or its insect vectors (Figure 

1.9). For example, downregulation of jasmonic acid synthesis in plants increases 

the fecundity of leafhopper vector of phytoplasma (Sugio et al., 2011). Some of 

the alterations observed in infected plants are caused by phytoplasma effectors, 

and these will be further discussed in the next sections.  
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Figure 1.9. Phytoplasmas modulate plant development and physiology which have 

known or may have potential effects on plant-phytoplasma and plant-insect 

interactions. Several phytoplasma-altered plant phenotypes are described in the 

literature. In addition to the known effects on plant biology, there may be other potential 

effects on plant immunity or nutritional quality are not yet investigated in phytoplasma 

infected plants. However, such effects have been reported in other plant pathogens. 

Together, modifications of plant biology may have numerous potential roles in plant-

phytoplasma or plant-insect interactions.  

 

1.2.11 Phytoplasma secretes effectors that move outside phloem 

Many Gram-negative plant pathogenic bacteria (Pseudomonas, 

Xanthomonas, Ralstonia, Erwinia) rely on specialised needle structure (named 

pili), produced by the Type-III secretion system, for the delivery of effector 

molecules into the host cell (Cunnac et al., 2009). In contrast, phytoplasma 

genomes lack genes present in the Type-III or Type-IV secretory systems 

(Hogenhout et al., 2008). Unlike the pathogens above, phytoplasmas appear to 

rely predominantly on Sec-dependent secretion system (via SecA, SecE and 

SecY) for translocation of proteins (including the majority of candidate effectors) 

across the phytoplasma membrane into host cytoplasm (Kakizawa et al., 2004). 

Phytoplasma genomes also encode YidC (Bai et al., 2006) that function in 
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integration of proteins into bacterial membranes (Hennon et al., 2015). Secreted 

proteins often possess a N’-terminal signal peptide sequence of about 20 amino 

acids long that is recognized by the Sec-dependent secretion system and cleaved 

off during translocation across the membrane of the protein. Signal peptide 

sequences are conserved among diverse organisms and often consist of specific 

sequence of hydrophobic, polar and acidic/basic amino acids that can be 

searched for with prediction software, such as SignalP (Nielsen et al., 1997; 

Bendtsen et al., 2004). SignalP identified in about 75 proteins with signal peptides 

in all predicted proteins of the AY-WB genome. 19 of these had one or more 

predicted transmembrane regions, whereas 56 did not (Bai et al., 2009). These 

56 proteins are likely to be secreted to the extracellular environment of the 

phytoplasmas and were named secreted AY-WB proteins (SAPs) (Bai et al., 

2009).  

Phytoplasma localisation has been demonstrated to be limited to the 

phloem tissues of infected plants via various microscopical methods such as 

fluorescence in situ hybridisation (Bulgari et al., 2011) or immunolabelling of anti-

AMP (phytoplasma membrane protein) (Hoshi et al., 2009; Arachida et al., 2008). 

Work by Arashida et al. (2008) has shown phytoplasma localisation in the phloem 

of infected flowers from hydrangea plants. Similarly, when Arabisdopsis 

vegetative leaves are infected with phytoplasma using infected leafhoppers, 

phytoplasma can be visualised in the phloem of flowers (Hoshi et al., 2009), 

suggesting systemic movement of phytoplasma via phloem. A common method 

of insect-free phytoplasma propagation in greenhouse is grafting an infected 

scion onto a healthy rootstock. The lateral branches developing from the original 

rootstock later show the characteristic symptoms of phytoplasma infection and 

are PCR-positive for phytoplasma of the infected scion (Hodgetts et al., 2013). 

Moreover, phytoplasmas can be transferred from plant to plant via parasitic plant 

Cuscuta spp. (dodder), which forms vascular connections between the infected 

donor and healthy recipient plant hosts. Similar to grafting experiments, the 

parasitized recipient plant develops the characteristic disease symptoms and is 

PCR-positive for the phytoplasma strain from the infected donor plant (Přibylová 

& Spak, 2013). Together, these experiments suggest systemic movement of 

phytoplasmas via plant phloem.   

While phytoplasma is limited to the phloem, secreted phytoplasma effector 

proteins have been also visualised in other tissue types than phloem alone. For 
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example, OY secreted protein TENGU was labelled with TENGU-specific 

antibody in parenchyma cells, shoot apical meristems and axillary buds of OY-

infected plants (Hoshi et al., 2009). AY-WB effector SAP11 has a nuclear 

localisation signal (NLS) required for targeting cell nuclei (Bai et al., 2009). Since 

phloem sieve elements are anucleate, the presence of NLS suggested potential 

transport and fuction of SAP11 beyond plant phloem. In support of this 

hypothesis, SAP11 was visualised in nuclei of mesophyl cells and trichomes of 

AY-WB-infected plants (Bai et al., 2009). Although lacking a characteristic NLS, 

TENGU also targets cell nuclei (Hoshi et al., 2009). Expression of AY-WB effector 

SAP54 under companion cell-specific AtSUC2 promoter produced leaf-like flower 

phenotype characteristic of infected plants and that of SAP54 overexpression 

lines with Cauliflower mosaic virus 35S promoter (MacLean et al., 2011). 

Furthermore, SAP54 was co-immunoprecipitated with GFP-tagged flower-

specific MADS-box transcription factors (MTFs) from plants that were inoculated 

by phytoplasma prior to flowering (MacLean et al., 2014). This indicates that 

phytoplasma effectors have moved from the phloem of leaves where 

phytoplasma was initially inoculated by insects to floral organs where SAP54 

targets plant proteins in floral meristms. Since the SAP54-interacting MTFs are 

expressed in floral organs rather than phloem tissue (Urbanus et al., 2009), this 

strongly suggests SAP54 movement and unloading post-phloem. 

Experiments with various size GFP-fusion proteins expressed under 

companion cell specific AtSUC2 promoter support a model of a non-specific 

systemic movement of small molecules via phloem and unloading to sink tissues 

such as roots or reproductive organs (Stadler et al., 2005ab; Imlau et al., 2009). 

The relatively small size of phytoplasma secreted proteins such as TENGU (<5 

kDa), SAP11 (9 kDa) or SAP54 (11 kDa) compared to GFP (~27 kDa) and the 

size exclusion limit of plant plasmodesmata (Stadler et al., 2005b) may explain 

the cell-to-cell movement of phytoplasma secreted proteins. SAPs (candidate 

effectors) may pass systemically in the phloem through tangential sieve plates 

delineating sieve tubes and through lateral plasmodesmata that connect sieve 

elements with companion cells and parenchyma to travel to distant sink tissues 

such as the shoot apical meristem (Figure 1.10) (Sugio et al., 2011b). As a result 

of such potential effector movement, phytoplasma effectors can be expected to 

act in the same tissue that may be exposed to subsequent feeding or egg-laying 

by the leafhopper vectors. Additionally, any effect of effectors like SAP11 and 
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SAP54 on tissue identity and development may also occur prior to insect 

colonisation. 

 

Figure 1.10. Overview of potential systemic movement of phytoplasmas and 

effectors in the plant and effector unloading from the phloem. SEL=size exclusion 

limit of cell connections. Image taken from Sugio et al., 2011b.  

  

1.2.12. Phytoplasma effectors alter plant development and resistance to 

insects 

One functionally characterized effector is SAP11, which was shown to 

interfere with various aspects of plant development as well as modulate plant-

insect interactions (Sugio et al., 2011a). SAP11 has a nuclear localisation signal 

(NLS), allowing to enter plant cell nucleus (Bai et al., 2009), where the effector 

interacts with and destabilises TCP (TEOSINTE BRANCHED (TB1), 

CYCLOIDEA (CYC), PROLIFERATING CELL FACTORS 1 AND 2 (PCF)) 

transcription factors (Sugio et al., 2011a, 2014). TCPs play important roles in 

regulating plant circadian clock, hormone pathways, mitochondrial biogenesis as 

well as cell differentiation and proliferation; these processes are key in 

gametophyte development, seed germination and patterning of vegetative and 

reproductive organs (Manassero et al., 2013). Based on structural domains, 

TCPs are divided into two classes (Martin-Trillo & Cubas, 2010, Manassero et 

al., 2013). SAP11 appears to destabilise all class II TCP transcription factors, 
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including CINCINNATA (CIN) and CYC/TB1 clades of TCPs (Figure 1.11). In 

addition, Sugio and colleagues demonstrated that SAP11 down-regulates 

jasmonate (JA) production in plants, resulting in enhanced fecundity of aster 

leafhopper Macrosteles quadrilineatus, the principal vector of AY-WB 

phytoplasma. When eggs hatch, early instar leafhopper nymphs remain and feed 

on the plant and will acquire phytoplasmas and transmit these bacteria to other 

plants when they become adults. Thus, SAP11-mediated modulation of plant 

processes leads to an increase in the number of phytoplasma-carrier vectors 

thereby promoting phytoplasma spread. 

Destabilisation of CYC-TCPs like BRC1 and 1 results in organ proliferation 

(Figure 1.11) which may benefit phytoplasmas by generating more phloem sink 

tissue for phytoplasma replication and, additionally attracting insect vectors 

(Figure 1.9). However, whether alteration of plant morphology such as organ 

proliferation or development of crinkled leaves are actually beneficial for 

phytoplasma spread in nature remains to be tested empirically. 

TENGU is a candidate effector produced by Onion Yellows (OY) 

phytoplasma and associated with Witches’ broom and dwarfism in Arabidopsis 

(Hoshi et al., 2009). TENGU inhibits auxin-related pathways. Although the 

interference with auxin responses may be a direct function of TENGU 

(independent of shoot proliferation), auxin signalling might be affected indirectly 

as a result of altered development of plant vegetative organs. By targeting TCP-

regulated developmental processes AY-WB SAP11 might interfere with auxin 

pathways, too. Plant targets of TENGU have not yet been identified (Hoshi et al., 

2009). Similar to SAP11, TENGU was found to be localised in plant cell beyond 

the sieve elements of the phloem, but unlike SAP11 lacks an NLS for localization 

to the nucleus. Hoshi and colleagues also suggested that the Witch’s broom 

phenotype might augment insect-vector attraction to infected plants, thus 

increasing phytoplasma acquisition. 
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Figure 1.11. Downstream effects of the SAP11-mediated destabilization of plant 

TCP transcription factors. SAP11 secreted by AY-WB phytoplasma enters plant cell 

nuclei (upper left) and destabilizes the class II CIN-TCPs and CYC/TB1, but not the class 

I TCPs. CIN-TCP destabilization leads to crinkled leaves and siliques and TB1/CYC 

(BRC1 and BRC2 in A. thaliana) to increase in stem proliferations. CIN-TCPs are known 

to regulate JA production via LOX2 (lipoxygenase 2) and leafhoppers lay more eggs on 

plants with decreased LOX2 expression and JA production, SAP11 transgenic lines and 

AY-WB-infected plants (Sugio et al., 2011a).  
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Another AY-WB effector protein, SAP54, was found to modulate flower 

development (MacLean et al., 2011). SAP54 induces virescence (greening of 

petals), phyllody (leaf-like flowers with trichomes) and indeterminate growth of 

inflorescence meristem in A. thaliana mirroring the phyllody symptoms of AY-WB-

infected plants. Phyllodies can be observed in diverse plant species infected with 

distantly related phytoplasmas. Several studies found altered regulation of 

MADS-box transcription factors (MTFs) in phytoplasma-infected plants that are 

impaired in flower development (reviewed in Sugio et al., 2011b). In a yeast two-

hybrid screen, SAP54 was found to interact with several MTFs, which have roles 

in floral transition and development of plant reproductive organs (Figure 1.12) 

(MacLean et al., 2014). Subsequently, it was shown that SAP54 recruits MTFs to 

plant 26S proteasome for degradation in RAD23-dependent manner (MacLean, 

2014). Effectors of other bacterial pathogens were also shown to degrade targets 

via the 26S proteasome, albeit this does not involve RAD23. For example, 

degradation of A. thaliana immunity associated protein AtMIN7 by Pseudomonas 

syringae effector HopM1 depends on plant proteasome activity (Nomura et al., 

2006). This indicates that plant protein targeting to proteasome for degradation 

may be a common mechanism of altering plant protein function by pathogen 

effectors.  

An exhilarating scientific question is the question how degradation of 

MTFs, key regulators of flowering, would benefit phytoplasma or phytoplasma-

vectoring insects? Hence, are SAP54-induced changes in plants adaptive and 

increase phytoplasma fitness? Phyllody, virescence and indeterminate growth 

may increase the amount of young vegetative tissue (phloem sinks) for 

phytoplasma replication or serve as visual cue for location of infected plants by 

insect vectors, thus enhancing phytoplasma acquisition (Figure 1.9). These 

possibilities remain to be tested empirically. 
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Figure 1.12. Phytoplasma effectors alter gene regulation during floral development 

in host plants. Transition from vegetative to floral meristems is regulated by AP1, LFY 

and cofactor SEP3. These genes also activate organ identity genes that give rise to 

sepals, petals, stamens according to ABC model. Floral meristem identity is maintained 

by activity of WUS. In order to terminate floral meristem growth, WUS expression is 

suppressed by organ identity genes like AG via activity of KNU. Stolbur, Onion Yellows 

(OY) and Italian clover phyllody (ICPh) phytoplasmas modify the relative quantity (up- or 

down-regulation) or time (misregulation) of expression of the genes involved in various 

stages of flower development. Adopted from (Sugio et al., 2011b). 
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1.2.13. Parasite effectors promote virulence and suppress plant immunity  

Different groups of plant pathogenic microorganisms possess virulence 

factors – proteins or small non-protein molecules, known as effectors. The 

function of these effector molecules is primarily modulation or suppression of 

innate plant immune responses to evade recognition by plants and ensure 

successful colonisation and reproduction in the host (Boller and He, 2009; Dodds 

and Rathjen, 2010). Interestingly, bacteria, fungi or root nematodes are also 

associated with morphological changes in plant tissues, and potential effectors 

from these organisms are implicated in the modulation of plant development 

(Evangelisti et al., 2014; Le Fevre et al., 2014). Nevertheless, in many cases the 

fitness benefits of microbe-induced morphological changes in plants have not yet 

been empirically tested. 

Suppression of plant defences allows successful invasion and utilisation 

of host resources. When microbial pathogens invade plant tissue, plants 

encounter conserved microbe- or pathogen-associated molecular patterns 

(MAMPs or PAMPs), such as fungal chitin or bacterial flagellin, on the surface of 

an invading pathogen. These molecules can be recognised by specific pattern 

recognition receptors (PRRs) at plant cell membrane. Detection of these 

extracellular molecular patterns by plant receptors elicits plant immune response, 

known as PAMP-triggered immunity or PTI (Couto and Zipfel, 2016). PTI leads 

to a set of immediate plant responses, including Ca2+ influxes into cells, 

production of reactive oxygen species, callose deposition and activation of genes 

involved in plant defences. Plant pathogens deliver effector proteins in the host 

cell to suppress PAMP-triggered signalling events and PTI responses, leading to 

effector-triggered susceptibility (ETS). However, an effector molecule that 

suppresses PTI can be recognised by a specific resistance gene (R-gene) in 

plant, eliciting effector-triggered immunity (ETI) (Cui et al., 2015). ETI gives rise 

to hypersensitive response (HR) – rapid localised cell death that may restrict 

replication and spread of (biotrophic) pathogens. Interestingly, pathogens have 

evolved effectors that suppress ETI and, thus, avoid HR. The PTI, ETS and ETI 

together are referred as the ‘’Zig-Zag Model’ of plant immunity and often leads to 

an ‘’arms-race’’ between plant ability to recognise the pathogen and pathogen 

evading the immunity (Jones and Dangl, 2006). According to this model, evasion 

of host defence is possible when pathogens possess effectors that suppress PTI 

as well as ETI and when plants lack R-genes that would recognise such effectors. 
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The gene-for-gene concept (Flor, 1971) predicts coevolution of R-genes and 

effectors involved in ETI. Therefore, effectors are expected to be selected for 

evading the repertoire of existing R-genes in pathogens plant-host range.  

Pathogens possess a collection of effectors, many of which may promote 

virulence via other mechanisms than suppression of PTI or ETI. For example, 

Pseudomonas syringae (Pto DC3000) effectors induce extracellular 

accumulation of cytoplasmic proteins from host cells with a potential role to aid 

assimilation of host nutrients (Kaffarnik et al., 2009). Another P. syringae effector 

HopW1 targets plant actin cytoskeleton to modulate the actin-dependent 

processes that were shown to be required to restrict pathogen growth (Kang et 

al., 2014). HopAM1 interferes with abscisic acid signalling (ABA), promoting P. 

syringae virulence on A. thaliana under drought and salinity stress as well as 

enhancing ABA-mediated stomatal closure to protect bacteria from osmotic 

stress inside the leaf (Goel et al., 2008). Xanthomonas spp. secrete TAL-effectors 

to induce leaf canker but the exact function of canker morphology remains elusive 

(Pereira et al., 2014). Interestingly, phytopathogenic nematodes are also known 

to secrete effectors into plant to modify cell wall architecture to aid migration of 

infective juveniles or production of specialised (giant) feeding cells (Davis et al., 

2008).  

 

1.2.14. Putative function of other AY-WB effectors 

Hitherto, no studies have tested role of phytoplasma effectors in triggering 

or suppressing ETI or PTI. AY-WB effectors SAP11 and SAP54 have a significant 

effect on host-plant development (Sugio et al., 2011b). In addition, the fecundity 

of insect vectors is significantly enhanced on SAP11 expressing plants (Sugio et 

al., 2011a). However, these two effectors do not function in isolation. The 56 

candidate effector proteins are significantly up-regulated during AY-WB infection 

of plants or insects (MacLean et al., 2011). Moreover, different sets of AY-WB 

effectors are upregulated in plants and insects (Figure 1.13). Effectors SAP11 

and SAP54 are up-regulated only in the plant-host, confirming that these effectors 

act predominantly in the plant. The function of other 54 candidate effectors in 

plants or insects remains to be elucidated.  
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Figure 1.13. Expression levels of ‘Ca. Phytoplasma asteris’ strain Witches’ Broom 

predicted effector proteins differs between plant-host Arabidopsis thaliana and 

insect-vector Macrosteles quadrilineatus. SAP11 and SAP54 are indicated with 

arrows. Figure taken from MacLean et al. (2011). 

 

1.2.15. Phytoplasma genomes have dynamic structure and suggest 

frequent reorganisations 

To date there are only five fully assembled genomes (Oshima et al., 2004; 

Bai et al., 2006; Kube et al., 2008; Tran-Nguyen et al., 2008; Andersen et al., 

2013) and a further nine draft genome (contig) sequences available of 

phytoplasmas (Saccardo et al., 2012; Chung et al., 2013; Chen et al., 2014; 

Kakizawa et al., 2014; Mitrović et al., 2014; Quaglino et al., 2015). These belong 

to 16Sr-I, -II, -III, -X and XII groups of diverse clades within the phytoplasma 

phylogenetic tree enabling assessment of the diversity in phytoplasma genome 

content and organisation. Phytoplasmas have one of the smallest genomes of all 

sequenced bacteria (600-960 kb) (Figure 1.13). Phytoplasmas lack genes in 

pathways of many amino and fatty acid as well as nucleotide synthesis. 

Surprisingly, glycolysis pathway or phosphotransferases that many bacteria use 

for phosphorylating and importing disaccharides (sucrose, trehalose) or 

monosaccharides (glucose, fructose) from plant or insect hosts are absent in 

most sequenced phytoplasma genomes. Instead, phytoplasmas have malate 

importers and have active enzymes to convert malate to pyruvate and perform 
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downstream reactions for NAD or NADP reduction and energy (ATP) generation 

from malate (Kube et al., 2008; Saigo et al., 2014; Siewert et al., 2014). Reduced 

genome size and absence of basal metabolism genes may be an adaptation to 

their parasitic lifestyle and reflect their dependency on their host plants and insect 

vectors for nutrients (Oshima et al., 2004; Bai et al., 2006).  

 

 

Figure 1.14. Genome maps of the MBSP (16SrI-B), OY-M (16SrI-B), and AY-WB 

(16SrI-A) phytoplasmas. Concentric circles from the outside in: (1) scale marks, (2 and 

3), protein-coding genes on the forward and reverse strand, respectively (color-coded by 

the functional categories), (4) putative PMU segments (green) and effector genes 

(orange), (5) polymorphic sites among the MBSP isolates, (6) GC skew (positive: dark 

shade; negative: light shade), and (7) GC content (above average: dark shade; below 

average: light shade); two high-GC peaks corresponding to rRNA gene clusters are 

indicated by a set of black triangles. Figure from Orlovskis et al. (2017). 

 

In addition to reduced anabolic capacity, some phytoplasmas have lost 

DNA repair genes, such as recA (Bai et al., 2006; Chu et al., 2006), potentially 

allowing to accumulate mutations and evolve faster. Moreover, phytoplasma 

genomes are rich in repeats, which can be >20 kb (Bai et al., 2006; Jomantiene 

and Davis, 2006; Wei et al., 2008; Toruño et al., 2010; Andersen et al., 2013; 
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Chung et al., 2013; Ku et al., 2013). The repeats organize in conserved gene 

clusters, named Potential Mobile Units (PMUs) or sequence-variable mosaics 

(SVM) (Bai et al., 2006; Jomantiene and Davis, 2006). At least one PMU was 

shown to exist as chromosomal and extrachromosomal units in the genome of 

Aster Yellows phytoplasma Witches’ Broom (AY-WB) (Toruño et al., 2010). PMUs 

are prone to recombination and degeneration and there is evidence that the 

PMUs recombine and have horizontally transferred between diverged 

phytoplasmas (Bai et al., 2006; Hogenhout and Musić, 2010; Sugio and 

Hogenhout, 2012; Chung et al., 2013; Ku et al., 2013). Interestingly, AYWB PMU1 

encodes several membrane-targeted proteins which may function in horizontal 

transfer of PMUs or interact with the plant or insect host (Toruño et al., 2010). 

PMUs appear to determine the genome size reduction and plasticity of the small 

and AT-rich phytoplasma genomes (Bai et al., 2006; Jomantiene and Davis, 

2006; Hogenhout and Musić, 2009; Andersen et al., 2013). Synteny of the circular 

chromosomes between closely related phytoplasmas within “Ca. P. asteris” 16SrI 

group is low (Figure 1.15) compared to that of other closely related bacteria 

(Hogenhout and Musić, 2009). The majority of the metabolic genes lie in the 400 

kb to 600 kb regions and the majority of the PMU-like sequences in the 150 kb to 

400 kb regions of the phytoplasma chromosomes (Figure 1.14). The PMU-rich 

regions show large inversions and discontinuous synteny (Figure 1.15) that 

suggest recombination have occurred in these regions since MBSP, AY-WB and 

OY-M diverged from their common ancestor. Furthermore, the AY-WB and OY-

M genomes also have irregular GC-skew patterns (Figure 1.14) (Oshima et al., 

2004; Bai et al., 2006) that is indicative of high genomic plasticity, possibly caused 

by relatively recent recombination events of, for example, PMUs (Bai et al., 2006). 

Synteny between phytoplasmas from different 16Sr groups is very poor or absent. 

As well, some phytoplasmas, such apple proliferation phytoplasma “Ca. P. mali” 

have linear chromosomes (Kube et al., 2008). 

The majority of phytoplasma virulence proteins, including SAP54 and 

SAP11, lie within or adjacent to PMU and PMU-like gene clusters (Figure 1.14) 

(Bai et al., 2009; Toruño et al., 2010). This presents an opportunity for horizontal 

transfer of virulence factors important for phytoplasma propagation within hosts 

or acquisition and transmission to new hosts. Therefore, such dynamic genome 

structure may enable host-switching or expansion of phytoplasma host range.  
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Figure 1.15. Pairwise genome alignments indicate partial synteny between 16SrI 

group phytoplasmas. Matches on the same strand are indicated by red dots and 

matches on the opposite strands are indicated by blue dots. Figure from Orlovskis et al. 

(2017). 

 

1.3. Aims, outline and outcomes of the PhD thesis 

Why do microorganisms modulate development of their hosts? 

Phytoplasmas alter plant development by secretion of effector proteins into the 

host cells. This makes them an extremely interesting system to study the adaptive 

role of modifying host biology. Phytoplasma effector SAP54 prevents normal 

flower development, and, instead, induces leaf-like structures, called phyllody. 

Intriguingly, phyllody symptoms are common in many phytoplasma-infected 

plants worldwide. The aim of my thesis is to better understand the adaptive 

significance of SAP54-mediated degradation of MTFs generating leaf-like 

flowers. My hypothesis is that the vegetative tissues of the flower make the 

infected plant more attractive to the insect vectors that will benefit phytoplasma 

dispersal in nature.  

 To this end I first investigated how widespread and structurally similar are 

phyllodies induced by diverse groups of phytoplasma and effector homologs of 

SAP54 (Chapter 2). I discovered that the induction of phyllody is genetically linked 

with promotion of insect colonisation of the infected plants that exhibit the leaf-

like flower phenotype.  

 Findings of Chapter 2 supported my hypothesis that the generation of leaf-

like flowers is an adaptive manipulation of host plants by phytoplasmas in order 

to attract insect vectors. In Chapter 3 I directly tested this hypothesis and, 

surprisingly, found that SAP54 enhances leafhopper vector egg laying on plants 

independently from the induction of leaf-like flowers. I discuss the possibilities 

that the production of phyllody may be a side-effect of phytoplasma infection and 
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that, instead, SAP54 modulates plant vegetative organs to promote plant 

colonisation by insect vectors. 

 In Chapter 4 I explored possible roles of SAP54 in modulating visual, 

olfactory and other cues that leafhoppers are known to use for the selection of 

host plants. When testing whether insects make a choice bases on feeding 

(males and females) and egg laying (only females), I made the interesting 

discovery that male leafhoppers are required for the preference of females to lay 

eggs on SAP54 transgenic plants. 

 Next, I analysed the effect of SAP54 on male and female-induced 

transcriptional changes in plants (Chapter 5). I found that male and female 

leafhoppers elicit different plant responses. Moreover, SAP54 suppresses insect 

induced responses in sex-specific manner by selectively downregulating male-

induced defence and secondary metabolism pathways.  

 Since SAP54 destabilises plant MADS-box transcription factors (MTFs), I 

further investigated which MTFs are expressed in leaves and are involved in 

insect egg laying preference (Chapter 6). I identified four MTFs that play 

important roles in egg-laying preferences by leafhoppers and demonstrate sex-

specific regulation of these MTFs by SAP54.  

 Finally, I put my findings in the broader context of the current knowledge 

about plant-insect and plant-microbe interactions (Chapter 7). I highlight the 

novelties and advances in our current understanding how plants defend 

themselves against insects and how a parasite, such as phytoplasma, modulates 

hosts to aid their spread in nature thereby increasing its Darwinian fitness. I 

discuss the implications for effector roles in driving phytoplasma disease 

epidemiology in natural and agro-ecosystems.  

Taken together, I have achieved the aim of the thesis. I found that 

phytoplasma effector SAP54 has pleiotropic roles in plant reproductive 

development and suppression of insect-induced plant resistance to egg-laying 

via targeting conserved groups of plant proteins with potential roles in both 

development and defence against herbivorous insects. I discovered that the 

bacterial effector protein downregulates male-induced plant responses to 

promote plant colonisation by female insects, thereby potentially aiding the 

spread of the pathogen in nature. These findings have contributed to our 

mechanistic understanding how plant pathogens manipulate their hosts to their 

advantage. This work has also proven that bacterial effector proteins can be a 
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useful genetic tool to better understand how plant immunity and development are 

regulated as an integrated system. Furthermore, I have, for the first time, 

demonstrated how sexual dimorphism in an important group of hemipteran insect 

pests is perceived by their plant hosts. Crucially, the work presented in this thesis 

has already resulted in several peer-reviewed publications (MacLean, Orlovskis 

et al., 2014, Orlovskis et al., 2015, Orlovskis et al., 2016, Orlovskis et al., 2017; 

see Appendices A,B,C,E) and, to my belief and determination, will serve as a 

source and reference for many others.  
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‘’Nothing in Biology Makes Sense Except in the Light of Evolution’’ 

Theodosius Dobzhansky (1973), American Biology Teacher, Vol. 35, p 125-9 

 

 

Chapter 2 

Phytoplasma Effector SAP54 Hijacks Plant Reproduction by 

Degrading MADS-box Proteins and Promotes Insect 

Colonization in a RAD23-Dependent Manner 

 

 

Part of this work is published in: 

MacLean AM, Orlovskis Z, Kowitwanich K, et al. (2014) Phytoplasma Effector 

SAP54 Hijacks Plant Reproduction by Degrading MADS-box Proteins and 

Promotes Insect Colonization in a RAD23-Dependent Manner. PLoS Biology 

12(4): e1001835. doi:10.1371/journal.pbio.1001835. See Appendix B 

Z. Orlovskis (2015) ‘’Leafy flower.’’ 
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2.1. Introduction 

Changes in plant morphology such as induction of phyllody have been 

widely reported in phytoplasma infected plants for several decades (Bertaccini, 

2007). However, only recent advances in characterising phytoplasma effector 

proteins have established that phytoplasma secreted proteins are causal for 

changes in plant development (Sugio et al., 2011b). Understanding the molecular 

mechanism of phytoplasma effector SAP54 has opened new doors for testing the 

roles of effector function in plant reproductive development and plant-insect 

interactions as well as investigating the evolution of phytoplasma virulence 

factors and proposing the hypotheses about the adaptive significance of effector-

triggered changes in the host.  

Induction of phyllodies in many plant families have been associated with 

diverse groups of phytoplasmas. For example, ‘Ca. Phytoplasma asteris’ from 

16SrI-C ribosomal subgroup has been associated with phyllody symptoms in 

numerous dicot plant hosts like coneflowers (Echinacea purpurea; Asteraceae), 

several clover species (Trifolium spp.; Fabaceae), tomato (Lycopersicon 

esculentum; Solanaceae) and strawberry (Fragaria x ananassa; Rosaceae) 

(Fránová et al., 2009; Jomantiene et al., 2011 (and references therein)). In 

addition to the 16SrI-C phytoplasmas above, some other members of 16SrI-C 

subgroup can infect but have no documented evidence of phyllody induction in 

other hosts such as willow (Salix spp.; Salicaceae) or lilac (Syringa vulgaris; 

Oleaceae) (Jomantiene et al., 2011), giving a reason to question why phyllody 

phenotype may not be conserved in all phytoplasmas of the same lineage. 

Interestingly, phyllody has been reported in related plant species that are infected 

by different phytoplasmas. For example, phyllody in sesame (Sesamum indicum; 

Fabaceae) is associated with either 16SrIX or 16SrII group phytoplasmas 

(Mirzaie and Rahimian, 2007; Ikten et al., 2014). Likewise, 16SrIX and 16SrI 

group phytoplasmas are the potential causal agents of phyllodies in Brassicaceae 

plants such as toria (Brassica rapa) (Azadvar et al., 2011) or rapeseed (Brassica 

napus) (Zwolińska et al., 2011).  

Phyllody appears to be a common symptom in plants infected with diverse 

phytoplasma groups. If phyllody could also be induced by phytoplasmas that lack 

SAP54, this may suggest multiple origins (convergent evolution) of phyllody-

inducing mechanism in phytoplasmas. Alternatively, single origin of phyllody-

inducing SAP54 gene and horizontal gene transfer between distantly related 
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phytoplasmas may explain the worldwide occurrence of phyllody phenotype in 

plants infected by different phytoplasma groups. To distinguish between these 

hypotheses, a comparative genome analysis of wide variety of phytoplasma 

strains that induce phyllody would be required. Moreover, despite worldwide 

reporting of phyllody symptoms in plants infected with phytoplasmas, detailed 

photographic and comparative analysis of the morphology of leaf-like tissues in 

the related host plants or related phytoplasmas is often lacking. A significant 

proportion of reported phyllody symptoms is found in crop species or ornamental 

plants. Studies about prevalence of phyllodies in phytoplasma-infected wild 

species in their natural habitats are lacking, rising questions whether modern 

plant breeding and selection has enriched for plant genotypes that are 

susceptible to development of phyllody symptoms after phytoplasma infection. 

Only association between phyllody and phytoplasma appears in many disease 

reports. Nevertheless, the exact causal link of phyllodies has not been 

investigated due to previously limited knowledge about the effector proteins of 

phytoplasma and their mode of action. 

 It has been only recently discovered that conversion of flowers into leaves 

(phyllody) is induced by secreted phytoplasma effector protein SAP54 (MacLean 

et al., 2011). SAP54 homologs from ‘Ca. Phytoplasma asteris’ strains Witches 

Broom and Onion Yellows have been shown to induce phyllody by destabilising 

plant MADS-box transcription factors (MTFs) normally required for floral 

meristem identity and specification of floral organs (MacLean et al., 2014; 

Maejima et al., 2014). Moreover, induction of phyllody and degradation of MTFs 

by SAP54 is dependent on plant 26S proteasome shuttle protein RAD23 

(MacLean et al., 2014). This major finding has resulted in a novel mechanistic 

model where SAP54 hijacks host plant ubiquitin-proteasome machinery to 

degrade MTFs, leading to generation of leaf-like flowers (Figure 2.1).  
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Figure 2.1. SAP54 induces formation of leaf-like flowers by degrading MADS-box 

transcriptional regulators in RAD23-dependent manner. Schematic representation 

of the molecular mechanism of phytoplasma effector SAP54 is based on findings in 

Maclean et al. (2014). (A) AY-WB phytoplasma secretes effector SAP54 within the host 

cells of wild-type A.thaliana Col-0 plants. The effector binds a selection of Type II MADS-

box transcription factors (MTFs) and two isoforms of RADIATION SENSITIVE proteins 

(RAD23 C and D). This results in degradation of MTFs by plant proteasome. Since MTFs 

are key regulators of floral development in plants, SAP54 induces floral reversion into 

leaf-like structures (phyllody) and indeterminate meristem growth. (B) Presence of the 

interacting RAD23 isoforms C and D is crucial for SAP54-mediated degradation of MTFs 

and production of leaf-like flowers. In absence of RAD23 isoforms C and D, SAP54 

interacts with but does not degrade MTF targets and generate normal flowers. (C) 

RAD23 isoforms C and D act in a redundant manner to aid MTF-degradation by SAP54. 

Presence of either  RAD23 isoforms C or D is required for induction of phyllody.  

  

Plant MTFs are modular proteins. SAP54 has specificity for keratin-like (K) 

domain of plant MTFs (Figure 2.2). The K-domain is present only in a subclass 

of plant MTFs - type-II MTFs - which evolved after divergence of land plants 

(Alvarez-Buylla et al., 2000). The K-domain is involved in protein-protein 

interactions with other type-II MTFs to form dimers and quartets that determine 

specificity for various regulatory functions (Davies et al., 1996; Yang and Jack, 

2004; Smaczniak et al., 2012b). SAP54 is predicted to fold into coiled-coil helices 
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that mimic the structure of the K-domains of type-II MADS. Due to low sequence 

similarity between MTF K-domains and SAP54, this could be an example of 

structural convergence to selectively interact with a certain group of conserved 

plant targets (Rümpler et al., 2015). So far there is evidence for SAP54 interaction 

and destabilisation of type-II plant MTFs (MacLean et al., 2014). However, it 

remains to be empirically tested if SAP54 may also interact and destabilise other 

targets than type-II plant MTFs. Since animals also possess MTF proteins that 

are more closely related to type-I plant MTFs, interference with insect MTFs could 

result in direct effects of SAP54 on insect vectors in addition to modulation of 

plant reproductive development.  

 

Figure 2.2. SAP54 interacts with Keratin-like (K) domain of type-II MADS-box 

transcription factors (MTFs). APETALA1 (AP1) is an example of modular type-II plant 

MTFs: They consist of MADS and intervening domain, Keratin-like (K) domain and 

variable C’-terminal domain. Yeast-two-hybrid demonstrates that Aster Yellows Witches’ 

Broom effector SAP54 has the highest binding affinity to the K-domain of AP1 compared 

to MADS (+intervening) or the C-terminal domain alone. SAP54 is fused to the Binding 

Domain (BD) of GAL4 gene. AP1 and its individual domains are fused to the activation 

domain (AD) of GAL4 gene. Positive interaction between AD and BD initiates growth on 

selective media (-L-W-H). Whole length APETALA1 (AP1) and empty vector (EV) used 

as controls. Figure published in MacLean et al. (2014). 
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SAP54 homologs have been identified in several Candidatus Phytoplasma 

species. Furthermore, SAP54 homologs from two related ‘Ca. Phytoplasma 

asteris’ strains (AY-WB and OY-W) interact and destabilise similar plant MTF 

targets – APETALA1 and SEPELLATA family proteins (MacLean et al., 2014; 

Maejima et al., 2014, 2015). SAP54 targeted RAD23 and MTFs are conserved 

families of plant proteins. Although comparative analysis of MTF and RAD23 

target interaction with SAP54 homologs from diverse phytoplasmas are yet 

lacking, the numerous reports of phyllodies in different plant species infected by 

diverse groups of phytoplasmas present a hypothesis that phyllody may arise 

from a convergent evolution or horizontal transfer of phytoplasma effectors that 

interact with conserved plant proteins. It is known that targeting conserved plant 

regulators by phytoplasma effectors can have an effect on both plant 

development and resistance to insects. For example, SAP11 affects plant 

branching as well as increases the reproduction of the insect vector of 

phytoplasmas (Sugio et al., 2011a). It remains to be elucidated whether SAP54 

interactions with MTFs and RAD23 elicit changes in plant-insect interactions in 

addition to alteration of plant morphology. 

This chapter aims to investigate the hypothesis that plant phyllody is a 

convergent phenotype induced by SAP54 homologs from phylogenetically 

diverse phytoplasmas that interfere with similar set of plant targets. To this end I 

will explore morphological similarity between phyllody symptoms in various 

families of wild and cultivated plants and compare the floral phenotypes of several 

homologs of SAP54. I will further investigate the interaction specificity of SAP54 

homologs with plant MTF and RAD23 targets. Finally, I investigate the potential 

role of RAD23-dependent SAP54 functions in plant-insect interactions.  
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2.2. Results 

 

2.2.1. Phyllody is induced by diverse groups of phytoplasma in numerous 

plant families 

How widespread are phytoplasma-induced changes in floral morphology? 

To better understand the prevalence of phyllody in plants and compare the 

morphology of leaf-like tissues induced by different phytoplasmas, I gathered 

photographic evidence for the occurrence of phyllody symptoms around the world 

and the associated phytoplasmas in different plant families. Photographs in 

Figure 2.3 demonstrate phyllodies that are associated with phytoplasmas of 16SrI 

and 16SrII groups from Europe and Asia. Partial or full reversion of flowers into 

leaf-like structures is a common phenotype in many phytoplasma-infected plant 

families (Figure 2.3). Phyllodies appear to be common in dicots, while the 

documentation of monocot phyllodies is lacking. Various subgroups of ‘Ca. 

Phytoplasma asteris’ are associated with multiple plant hosts (Lee, 2004) that 

exhibit phyllody symptoms (Figure 2.3). Conversion of flowers into leaf-like 

structures can be full (for example Figure 2.3E-f and P) or partial (Figure 2.3A, 

M). Interestingly, there can be a lot of variation in the exact appearance and 

structure of leaf-like tissue in plant population of the same genotype (Figure 2.3C) 

or within individual plants (Figure 2.3J and O). This suggests that there could be 

clonal variation in phytoplasmas infecting the same host species or mixed 

infections of different phytoplasmas. Alternatively, hosts may also be infected at 

different stages of their development, therefore, the morphological changes 

induced by phytoplasma infection may depend on the developmental time of plant 

tissue.  
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Figure 2.1.  
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Figure 2.3. Partial or full reversion of flowers into leaf-like structures is a common 

phenotype in many phytoplasma-infected plant families worldwide. Rapeseed 

(Brassica napus) has single terminate flowers arranged in a panicle inflorescence. 

Rapeseed infected with ‘Ca. Phytoplasma asteris’ (16SrI-B subgroup) can sometimes 

develop flowers with normal sepals and petals but massively enlarged carpels (arrow) 

(A). Infected rapeseed occasionally shows indeterminate growth where a single flower 

meristem (arrow) gives rise to other normal-looking flowers (B) or single normal flowers 

can be turned into telescopic leaf-like flowers (C). Notable is the variation in size of the 

leaf-like petals and swelling of carpel (arrow) in some of these flowers (C). Tale cress 

(Arabidopsis thaliana) is a close relative of rapeseed with single white terminate flowers 

(D). After infection with ‘Ca. Phytoplasma asteris’ (16SrI-A subgroup) A. thaliana 

develops sterile leaf-like flowers with shorter carpel and no stamens (E). Many infected 

A. thaliana flowers demonstrate indeterminate growth of floral meristems (F). Strawberry 

(Fragaria x ananassa) can be infected with ‘Ca. Phytoplasma asteris’ (16SrI various 

subgroups) and demonstrates the multiplication of green petals from the centre of 

receptacle above the normal-looking white petals (G). Chickpeas (Cicer arietinum) 

produce single terminate flowers with white petals (H). C. arietinum infected with 16SrII-

D subgroup phytoplasma generates sterile flowers with enlarged sepals and green leaf-

like petals. These often show indeterminate telescopic flowers (I). Alfa-alfa (Medicago 

sativa) normally produces purple flowers arranged in raceme inflorescence whereas 

branches of the same plant infected with 16SrII-D subgroup phytoplasma generate 

inflorescences consisting of leaf-like flowers that make these branches look bushier than 

branches with normal flowers (J).  White clover (Trifolium repens) has a round umbel 

inflorescence consisting of single white flowers. Infection with clover phytoplasma ‘Ca. 

Phytoplasma asteris’ (16SrI-C subgroup) is often associated with emergence of leaf-like 

flowers from the base of the inflorescence (K). Infection of Petunia sp. with ‘Ca. 

Phytoplasma asteris’ (16SrI-A subgroup) renders normal petals (L) into more leaf-like 

sepals lacking the characteristic floral pigments (M). Eggplant (Solanum melongena) 

from 16SrII-D subgroup phytoplasma infected fields exhibits characteristics of phyllody 

(N). Mayweed (Tripleurospermum inodorum) has numerous yellow-petal flowers 

arranged in a head-type inflorescence (capitulum) (O). In habitats where ‘Ca. 

Phytoplasma asteris’ (16SrI-B and C subgroup) has been detected mayweed displays 

inflorescences containing normal or various number of leaf-like flowers (O). Coneflower 

(Echinacea purpurea) infected with ‘Ca. Phytoplasma asteris’ (16SrI-A subgroup) 

develop indeterminate leaf-like flowers instead of their normal brown disk flowers and 

purple ray flowers within the inflorescence (P). Pictures A-C courtesy from Agnieska 

Zwolińska (IORPIB, Poland); images D-F and L-M taken by Andrew Davis (JIC, UK); 

photos H-J and N cortesy from Ali Al-Subhi (SQUO, Oman); pictures in panel O taken 
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by Tomasz Klejdysz (IORPIB, Poland); photo G taken from www.living-

mudflower.blogspot.co.uk; K from www.myeducationofagardener. wordpress.com; P 

from www.wikipedia.org. Scale bars are 5 cm in panel O whole plant picture, 1 cm in 

remaining pictures A-C, G-P, 1 mm in pictures D-F. 

 

Since this represents only a limited geographical distribution and few 

lineages of phytoplasmas, I used a collaborative opportunity to sample wild plant 

species in Brazil and find novel phytoplasma groups that are associated with 

phyllody symptoms in South America. I photographed and collected plant material 

from numerous plants that demonstrated phytoplasma symptoms such as 

increased stem branching, phyllody or increased susceptibility by insects in the 

field. I amplified the phytoplasma elongation factor Tu (tuf) gene for high 

resolution strain level identification of phytoplasmas and detection of mixed 

infections (Macarova et al., 2012; details in materials & methods). In order to 

identify the phytoplasma, I sequenced and aligned the tuf sequences from field 

samples with known sequences from members of all major phytoplasma groups. 

Uncharacterised before, I identified phytoplasmas from groups 16SrIII and 

16SrVII to be associated with phyllody phenotypes in Acteraceae and Malvaceae 

family plants growing in savanna (cerrado) biome in Brazil (Figure 2.4). Moreover, 

there is genetic variation within group 3 and 7 phytoplasmas that were identified 

from these phyllody exhibiting plants. These findings suggest that phyllodies are 

found in diverse families of dicot plants and are associated with diverse groups 

and strains of phytoplasmas. Due to limited number of sequenced phytoplasma 

genomes (see details in Section 1.2.14) and lack of known primer sequences for 

SAP54 in group 3 and 7 phytoplasmas, no new SAP54 homologs were identified 

from the Brazilian field isolates. However, further whole-genome sequencing 

incentives may discover novel effector homologs in these phytoplasmas. 

Although the exact structure and shape of the leaf-like floral tissue vary 

between different plant species infected with closely related or distinct 

phytoplasmas, there appears to be shared similarity – greening of petals and 

induction of indeterminate meristematic growth (Figures 2.3 and 2.4). In order to 

investigate if different phytoplasmas induce distinct alterations of floral 

morphology, I infected pathogen-free Catharanthus roseus plants of the same 

developmental stage separately with ‘Ca. Phytoplasma asteris’ strain Withces’ 

Broom (AY-WB) of 16SrI-A subgroup and Sweet Potato Little Leaf (SPLL) 
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phytoplasma of 16SrII-D subgroup. Surprisingly, the leaf-like floral phenotypes 

generated by these two phylogenetically distinct phytoplasmas were identical 

(Figure 2.5), suggesting that the phytoplasma effector responsible for leaf-like 

flower generation, SAP54, may able to interact with similar set of plant targets. 

Furthermore, the phyllody phenotype induced by the same phytoplasma (AY-WB) 

in A. thaliana (Figure 2.3E) and C. roseus (Figure 2.5B) are structurally very 

similar.   

Taken together, given that the leaf-like floral phenotypes are present in 

diverse groups of plants and potentially induced by different phytoplasmas, 

phytoplasma effectors may be adapted to interact with the such a set of plant 

targets to produce similar leaf-like structures in many different host plants.  
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Figure 2.4. 
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Figure 2.4. Wild plants infected with group 3 and 7 phytoplasmas demonstrate 

changes in plant morphology and resistance to insects. Wild plants of Sida spp. 

(Malveae), Conyza bonariensis (Asteraceae), Sonchus oleraceus (Asteraceae), 

Crotalaria incana (Crotalarieae) and Euphorbia heterophylla (Euphorbiaceae) were 

collected in tropical savanna biome (Cerrado) in Goias State, central Brazil, and 

analyzed for phytoplasma infection. All collected plant samples were tested with general 

phytoplasma primers (details in Materials and Methods). Phytoplasma-positive samples 

were further amplified for tuf gene, cloned and transformed into E.coli to detect potential 

infection with multiple phytoplasma strains. Ten different E.coli colonies with tuf gene 

clones from each plant sample were sequenced for the tuf gene. Obtained sequences 

were aligned with reference sequences from diverse phytoplasma groups and Maximum 

likelihood tree (bootstrap 1000) constructed using MEGA. All plant hosts sampled were 

infected with single phytoplasma strain, grouping within either group 3 (red) or group 7 

(yellow) phytoplasmas. Numbers on plant photographs correspond to the sequenced 

phytoplasma isolates on the phylogenetic tree. Infected plants demonstrated diverse 

symptoms: leaf proliferation (72, 69), phyllody (48, 50, 51) or indeterminate floral growth 

(46,49), reddening (66), leaf yellowing (52, 55, 63) or no characteristic symptoms (47,62, 

60). Infected Sida plants had gall-like leaf structures and leaf crinkling but no obvious 

oviposition sites of galling insects. Sonchus oleraceus (60) demonstrated very high aphid 

colonisation compared to non-infected conspecifics few decimeters away. I would like to 

acknowledge Joao Roberto Spotti-Lopes (ESALQ, Sao Paolo) and Julio Barbosa (State 

University of Ponta Grossa, Parana) for assistance during field sampling and host plant 

identification.  
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Figure 2.5. Infection with different phytoplasmas generates similar leaf-like flower 

phenotypes in host plant. Non-infected Madagascar periwinkle (Catharanthus roseus; 

Apocynaceae) has single terminate flowers with reduced sepals and five large petals 

(A). Upon infection with ‘Ca. Phytoplasma asteris’ strain Withces’ Broom (16SrI-A 

subgroup) (B) or Sweet Potato Little Leaf phytoplasma (16SrII-D subgroup) (C) plants 

develop sterile leaf-like flowers with characteristic greening of petals. At later stages of 

infection both phytoplasmas induce smaller-sized leaf-like flowers as shown in picture C. 

Photographs by Zigmunds Orlovskis and Andrew Davis (JIC, UK). Bars approximately 1 

cm. 
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2.2.2. Diverse phytoplasmas have SAP54 homologs that induce phyllody 

Since leaf-like flower phenotype is induced by phytoplasma effector 

SAP54 (MacLean et al., 2011), I looked for homologs of SAP54 from publically 

available data. Reciprocal BLAST search in GenBank revealed several 

sequences homologous to SAP54 from AY-WB phytoplasma from diverse groups 

of phytoplasma (Figure 2.6A). SAP54 sequence contains several leucine-rich 

motifs throughout the peptide length, indicating their potential conserved role in 

protein-protein interactions with the plant targets of SAP54. Phylogenetically 

distinct phytoplasmas from various 16Sr (sub-)groups have been identified in the 

same or closely related plant species (Lee, 2004). Infection of the same host (i.e., 

sympatric phytoplasmas in the same ecological niche) would, therefore, present 

opportunities for convergent evolution or horizontal gene transfer of virulence 

genes that essential for phytoplasma fitness. I wanted to investigate whether the 

phylogeny of SAP54 homologs is similar to the species-level relationship between 

the phytoplasma groups where the SAP54 homologs have been found. I 

compared the phylogenetic relationship of SAP54 and a housekeeping gene 

(elongation factor Tu), which has previously used in phytoplasma classification 

and is congruent with 16S ribosomal DNA-based identification (Macarova et al., 

2012). Interestingly, the effector and species-level phylogenies are not 

corresponding (Figure 2.6B,C). Given that the phytoplasmas investigated here 

are generalists and can infect multiple plants hosts (Lee et al., 2004; Bertaccini 

and Duduck, 2009), these data suggest that SAP54 has evolved independently 

from the rest of phytoplasma genome either by adapting to the MTF repertoire of 

its respective host plant range in each phytoplasma clade separately or horizontal 

transfer of SAP54 between phylogenetically diverse phytoplasmas that infect the 

same host plant species.  
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 Figure 2.6. 
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Figure 2.6. SAP54 homologs from diverse phytoplasmas show convergence of the 

effector sequence. (A) Alignment of SAP54 protein demonstrates conserved motifs of 

over the entire length of the effector protein. N’-terminal and C’-terminal ends of the 

peptide appear to be leucine-rich among SAP54 homologs. Alignment does not include 

the signal peptide. SAP54 sequences from diverse members of phytoplasma 16Sr 

groups I, II, III, VI, IX and XII demonstrate convergence of the effector sequence (B) 

which is not congruent with species-level phylogeny that is based on diversification of 

phytoplasma elongation factor Tu (tuf) (C). Alignments made using ClustalW. 

Phylogenetic trees constructed using Maximum Likelihood method. Numbers at the 

nodes indicate bootstrap (1000) support. Strain identity and GenBank accession 

numbers for phytoplasma sequences are given in materials and methods (Table 8.1).  

 

In order to determine whether SAP54 homologs from phylogenetially 

distinct phytoplasmas can induce phyllody, transgenic A. thaliana plants that 

ectopically express three different SAP54 homologs were generated. 

Interestingly, SAP54 homologs from 16Sr group I, II and XII can induce sterile 

leaf-like flowers with characteristic greening of petals and indeterminate growth 

(Figure 2.7). SAP54 homologs from Aster Yellows Witches’ Broom phytoplasma 

(AY-WB) (16SrI-A subgroup) and Peanut Witches’ Broom phytoplasma (PnWB) 

(16SrII group) generate very similar morphology of leaf-like flowers. However, 

sometimes SAP54 homolog from PnWB generates inflorescence that resembles 

cauliflower-like florets. SAP54 homolog from Stolbur (16SrXII) group 

phytoplasma causes elongation and swelling of carpels that has often been 

observed in rapeseed fields infected with 16SrI-B subgroup phytoplasma (Figure 

2.3A-C). Otherwise the morphological changes in leaf-like flowers induced by 

Stolbur and AY-WB homologs of SAP54 are very similar.  



78 

 

 

Figure 2.7. SAP54 homologs from AY-WB, PnWB and Stolbur phytoplasmas 

induce leaf-like floral phenotypes in Arabidopsis thaliana. Transgenic 35S:GFP-

SAP54 A.thaliana (Col-0) lines expressing SAP54 homologs from Aster Yellows Witches’ 

Broom phytoplasma (AY-WB) (16SrI-A subgroup) and Peanut Witches’ Broom 

phytoplasma (PnWB) (16SrII-A group) and Stolbur phytoplasma (16SrXII group) are 

compared with 35S:GFP control with normal flowers. White bars are approximately 1mm. 

Photographs by Andrew Davis (JIC, UK).  

 

2.2.3. SAP54 homologs show conserved interaction with type-2 MTFs and 

RAD23 proteins 

Since different phytoplasma lineages have SAP54 homologs that show 

sequence similarities independent from phylogenetic relationships among 

phytoplasmas, and the SAP54 homologs can induces leaf-like flowers, I 

hypothesise that SAP54 homologs have evolved to interact with similar set of 

plant targets that are required for induction of phyllody in different host species 

that these phytoplasmas infect. It was previously demonstrated that SAP54 

interacts with type-II plant MTFs and RAD23 proteins (MacLean et al., 2014). I, 

therefore, analysed the protein-protein interactions between a subset of A. 
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thaliana MTFs and RAD23 proteins using yeast-two-hybrid approach. 

Surprisingly, SAP54 homologs from AY-WB, PnWB and Stolbur phytoplasmas 

demonstrate similar specificity to RAD23 protein isoforms C and D as well as 

SOC1 and SEPELLATA family MTF proteins (Table 2.1; Appendix C), suggesting 

that the SAP54 interactions with  RAD23 and MTFs could be conserved in many 

phytoplasmas.   

 

Table 2.1. SAP54 homologs from AY-WB, PnWB and Stolbur phytoplasmas 

demonstrate conserved protein-protein interactions with plant MTFs and RAD23 

proteins. SAP54 homologs were cloned as prey in yeast expression vector containing 

the Binding Domain of GAL4 gene. Plant MTF and RAD23 target proteins were cloned 

as bait in yeast expression vector containing the Binding Domain of GAL4 gene. Upon 

interaction of the pray and the bait proteins, expression of marker genes allows yeast 

growth on selective media. Positive interactions indicated by yeast growth on –L-W-H 5 

mM 3-AT SD media are depicted ‘’+’’ and shaded green; no interactions indicated by no 

yeast growth are depicted as ‘’-‘’. SEP1-3 are SEPELLATA family MTF proteins; SOC1= 

SUPPRESSOR OF CONSTANS1; FLC= FLOCERING LOCUS C; RAD23= RADIATION 

INSENSITIVE23 (isoforms A,B,C,D); ev= empty vector not containing SAP54, MTFs or 

RAD23. Any differences in SAP54 homolog interaction with plant targets are shaded red. 

Yeast images for the full dataset are included in Appendix C. 

 

 

AD-plant target BD-SAP54 Interaction AD-plant target BD-SAP54 Interaction

AY-WB  + AY-WB  -

PnWB  + PnWB  -

Stolbur  + Stolbur  -

ev  - ev  -

AY-WB  - AY-WB  -

PnWB  - PnWB  -

Stolbur  - Stolbur  -

ev  - ev  -

AY-WB  + AY-WB  +

PnWB  + PnWB  +

Stolbur  + Stolbur  +

ev - ev  -

AY-WB  - AY-WB  +

PnWB  - PnWB  -

Stolbur  - Stolbur  +

ev  - ev  -

AY-WB  + AY-WB  -

PnWB  + PnWB  -

Stolbur  - Stolbur  -

ev  - ev  -

RAD23A

RAD23B

RAD23C

RAD23D

evSEP3

SOC1

FLC

SEP1

SEP2
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So far yeast-two-hybrid analysis have identified type-II plant MTFs as 

potential interactors of SAP54 (MacLean et al., 2014). For this reason only 

members of type-II have been tested for degradation by SAP54 in planta assays. 

In order to investigate whether SAP54 may targets other plant MTFs than type-II 

plant MTFs, I cloned members of all subclasses (Mα, Mβ, Mγ; Smaczniak et al., 

2012) of A.thaliana type-I MTFs to investigate the possible degradation by 

SAP54. I found that SAP54 only partially degrades type-I plant MTFs in transient 

Nicotiana benthamiana expression assays (Figure 2.8). Given that the levels of 

type-II MTFs were much reduced or absent in plants producing SAP54 in an 

analogous experiment (MacLean et al., 2014; Fig.2) compared to type-I MTFS 

(Figure 2.8), the slight reduction of type-I MTF levels may be non-specific due to 

interference with protein translation or proteasome function in presence of SAP54 

or occurrence of type-I MTFs in higher order protein complexes that may be 

indirectly perturbed by SAP54. In planta pull-down assays have shown that 

SAP54 specifically interacts with members of type-II MTFs but not type-I MTFs 

(MacLean et al., 2014).  

 

Figure 2.8. Aster Yellow Witches’ Broom effector SAP54 partially destabilises type-

I MTFs AGAMOUS-like 50 (AtAGL50), AGAMOUS-like 62 (AtAGL62), AGAMOUS-

like 80 (AtAGL80). Nicotiana benthamiana leaves were infiltrated with A. tumefaciens 

cultures containing either flag-tagged SAP54 or Red Fluorescent Protein (RFP) control 

together with myc-tagged type-I plant MTF. Leaves were harvested 3 days after agro-

infiltration to assess the protein levels using Western blotting with antibodies for flag- or 

myc- tags. In presence of both SAP54, there the amount of MTFs is slightly reduced 

compared to co-expression with RFP control.  Well loading control stained for RuBISCO 

with Ponceau stain on the SAP54 blot. 



  

81 

 

Taken together, these data indicate that SAP54 interactions with type-II 

plant MTFs and RAD23 are specific and conserved across diverse phytoplasma 

groups. Targeting type-II MTFs by SAP54 from AY-WB phytoplasma results in 

degradation of type-II MTFs in proteasome-dependent manner (MacLean et al., 

2014). It remains to be tested whether SAP54 homologs from other phytoplasmas 

also degrade its MTF interactors.  

 

2.2.4. SAP54 promotes insect colonisation in a RAD23 dependent manner 

It has been demonstrated earlier that SAP54 requires RAD23 proteins in 

order to destabilise several type-II plant MTFs and induce leaf-like flowers 

(MacLean et al., 2014). IT is also known that single phytoplasma effectors, such 

as SAP11, can play a role in modulating both plant development as well as plant-

insect interactions (Sugio et al., 2011a). Since we know only about SAP54 effects 

of floral development, I wanted to use the knowledge about the mechanisms of 

SAP54 activity to investigate whether SAP54 could have potential effects on plant 

colonisation by the insect vector of phytoplasma. I designed an assay to measure 

insect choice to reproduce on two alternative host plants. I placed rad23bd and 

rad23bcd (Vierstra, 2009) mutants in a choice arena opposite each other (see 

materials & methods Figure 8.1) and released a mixed population of 

phytoplasma-free male and female aster leafhopper Macrosteles quadrilineatus 

– the principal vector of AY-WB phytoplasma. After 5 days I removed the adults 

and isolated the plants to later count the leafhopper progeny on each plant. 

Leafhoppers did not show any preference to reproduce on phytoplasma-free 

rad23bd or rad23bcd plants (Figure 2.9). However, when rad23bd or rad23bcd 

plants are infected with AY-WB phytoplasma, M. quadrilineatus demonstrates 

significant preference to reproduce on rad23bd mutant plants (Figure 2.9). Given 

that only rad23bd demonstrate leaf-like flower phenotype in presence of 

phytoplasma, these results suggest that phytoplasma effector SAP54 may alter 

plant floral development and promotes plant colonisation by its insect vector in 

RAD23-dependent manner. 
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Figure 2.9. Aster leafhopper Macrosteles quadrilineatus demonstrates oviposition 

preference for rad23bd plants with leaf-like flowers. In dual-choice tests M. 

quadrilineatus produces significantly more progeny on AY-WB infected rad23bd plants 

with leaf-like floral phenotype compared to rad23bcd plants with normal floral phenotype 

(t5=4.7; p=0.042). Insects do not show any preference for non-infected rad23bd or 

rad23bcd plants (t5=0.45; p=0.694). The graph represents the percentage of M. 

quadrilineatus nymphs found on each test plant within a single choice cage. Data 

analysed using paired t-test. Bars on the graph are 1 standard error of the mean. White 

scale bars are approximately 1 cm.  

 

2.3. Discussion 

It was most intriguing to find that the induction of leaf-like flowers and 

enhancement of insect reproduction on infected plants are genetically linked via 

26S proteasome cargo protein RAD23 (Figure 2.9). Given our current 

mechanistic understanding (Figure 2.1), these data suggest that degradation of 

MTFs may be causal for induction of phyllody and the attraction of insects to the 

infected host plants. Furthermore, this supports the hypothesis that generation of 

leaf-like flowers may be an adaptive phenotype of phytoplasmas to attract insect 

vectors and enhance their spread in nature (Figure 2.10). However, alternative 

explanations such as flower or MTF independent attraction of insect vectors are 

plausible and will require to be tested (Figure 2.10). 
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Figure 2. 2 Graphical representation of alternative hypotheses for SAP54-mediated 

promotion of insect attraction to phytoplasma infected plants. Hypothesis 1 (red 

arrows): SAP54 destabilises MTFs to induce leaf-like flowers in RAD23-dependent 

manner. The leaf-like flowers are required for attraction of insect vectors to infected 

plants. Hypothesis 2 (purple arrows): SAP54 destabilises MTFs in RAD23-dependent 

manner to induce changes in plants that required for attraction of insect vectors. The 

leaf-like flowers are side-effect of MTF degradation. Hypothesis 3 (black arrows): SAP54 

attracts insect in RAD23 dependent manner but independently from degradation of MTFs 

or induction of leaf-like flowers 

 

Given the first hypothesis, it is reasonable to speculate that induction of 

phyllody is under natural selection to promote acquisition by insect vectors. This 

is supported by the observations that plant phyllody phenotype is associated with 

diverse groups of phytoplasmas and shares similar features of indeterminate 

floral growth, greening of petals and absence of stamens and carpels (Figures 

2.3-2.5). Moreover, SAP54 homologs from different phytoplasmas induce similar 

morphological changes in plants – indeterminate growth of floral meristems and 

complete reversion of floral organs into leaf-like structures (Figure 2.7). 

Nevertheless, there is variability in the phyllody phenotype which may originate 

from promiscuous interaction with multiple MTF targets from the same plant 

(variation in leaf-like floral phenotype by PnWB homolog of SAP54 in A. thaliana, 

Figure 2.7). Alternatively variation in the leaf-like flower phenotype such as seen 

in infected rapeseed fields (Figure 2.3A-C) may originate from plants being 

infected at different stages of their development or from variation in plant 

genotype, or clonal variation of SAP54 alleles in the field. Nevertheless, variation 

in the exact appearance in phyllody may be host-specific. For example, C. roseus 
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plants infected with the AY-WB and SPLL phytoplasmas induce phyllodies that 

are visually indistinguishable (Figure 2.5) despite that the A.thaliana transformed 

with SAP54 homologs from AY-WB and SPLL (SPLL SAP54 shares 100% 

nucleotide similarity with PnWB SAP54 homolog) may sometimes demonstrate 

different floral phenotypes (Figure 2.7).  

Given that SAP54 sequences do not necessarily share sequence similarity 

between closely related phytoplasmas (Figure 2.6B-C) and that effectors are 

located on potential mobile genetic elements (Ku et al., 2013), there is a 

possibility that SAP54 effector may be exchanged by horizontal gene transfer 

between different sympatric phytoplasma groups infecting the same host species. 

Nevertheless, the sequence similarity between SAP54 from ‘Ca. P. phoenicium’ 

in herbaceous Helmanthoteca echioides (Asteraceae) from Italy and ‘Ca. P. 

asteris’ from Brassica napus (Brassicaceae) field in Poland (Figure 2.6B-C) 

suggests that perhaps in some cases SAP54 may demonstrate convergent 

sequence evolution than horizontal gene transfer due to large geographical 

distances that separates them and different host plants they infect. Alternatively, 

of course, horizontal gene transfer may have occurred in the ancestral 

phytoplasma, and SAP54 could have been under strong purifying selection in two 

sister lineages.  

The conservation of certain amino acid residues within the secondary 

folded structure of SAP54 may be more important rather than conservation of the 

entire SAP54 peptide. For example, SAP54 homologs from ‘Ca. P. asteris’ (AY-

WB and BPIP) and ‘Ca. P. solani’ (Stolbur) share little sequence similarity (Figure 

2.6A). Nevertheless, these SAP54 homologs demonstrate similar interaction with 

plant MTFs and Rad23 proteins (Table 2.1) as well as similar phenotypes when 

SAP54 homolog from ‘Ca. P. solani’ is compared to ‘Ca. P. asteris’ homolog of 

SAP54 in Figure 2.7 or compared to ‘Ca. P. asteris’ infected rapeseed in Figure 

2.3C. Alignment of SAP54 homologs indicates conservation of certain leucine-

rich motifs at the N’-terminal and C’-terminal end of SAP54 protein (Figure 2.6A). 

These may be key for folding into the coiled-coil helical structure of the SAP54 

protein (Rümpler et al., 2015). Therefore, conservation of structural similarity in 

the effector folding may be key to interactions with similar set of MTF targets from 

different plant families.  

SAP54 is significantly upregulated in the plant host (MacLean et al., 2011) 

and appears to have evolved specificity for type-II plant MTF, resulting in specific 
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degradation of this clade of plant proteins (MacLean et al., 2014). I confirmed that 

SAP54 is not likely to target type-I MTFs in planta (Figure 2.8). Hence, the affinity 

for K-domain, may determine target specificity (Figure 2.2). Although the 

duplication event that gave rise to type-I and type-II MTFs is believed to precede 

divergence of plants and animals (Alvarez-Buylla et al., 2000), the K-domain is 

present only in type-II plant MTFs and absent in other eukaryotes (Ng and 

Yanofsky, 2001). Thus, targeting the K-domain would avoid interfering with insect 

MTFs and compromise the fitness of the insect vector. Selective interaction with 

type-II plant MTFs means that SAP54 targets a structurally conserved class of 

plant proteins with conserved functions in plant reproductive development 

(Theissen et al., 2000; Ng and Yanofsky, 2001). Type-I plant MTFs are believed 

to evolve new functions faster than type-II plant MTFs (Nam et al., 2004). In 

contrast, recruitment of type-II MTFs as homeotic genes regulating reproductive 

development is believed to occur before the divergence of ferns and seed plants 

(Munster et al., 1997) and maintained similar structural and functional complexity 

after divergence of angiosperms and gymnosperms (Becker et al., 2000). 

Similarly, RAD23 proteins are structurally and functionally conserved across 

eukaryotes (Schauber et al., 1998; Vierstra, 2009). Therefore, by interacting with 

conserved MTF and RAD23 proteins, SAP54 is likely to target a similar 

developmental processes in diverse groups of flowering plants (angiosperms), 

which may enable this plant pathogen to infect multiple hosts and, thus, occupy 

a broad ecological niche.  
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‘’I cannot give any scientist of any age better advice than this: the intensity of the 

conviction that a hypothesis is true has no bearing on whether it is true or not.’’ 

 Sir Peter B. Medawar (1979), ‘’Advice to a Young Scientist’’, p 39 

 

 

Chapter 3 

Phytoplasma Effector SAP54 Mediates Insect Vector Attraction 

to Host Plants Independently of Developmental Changes 
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Orlovskis Z, Hogenhout SA. 2016. A bacterial parasite effector mediates insect 

vector attraction in host plants independently of developmental changes. 

Frontiers in Plant Science 7, doi: 10.3389/fpls.2016.00885 See Appendix D 

Z. Orlovskis (2006/2016) ‘’Picking the flower.’’ 
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3.1. Introduction 

Phyllody is common in many phytoplasma infected plants and induced by 

phytoplasma effector SAP54 (MacLean et al., 2011). Moreover, several 

homologs of SAP54 have been identified in phylogenetically distinct 

phytoplasmas, and, when ectopically expressed in Arabidopsis, can induce 

phyllody (Chapter 2). The induction of phyllody and attraction of phytoplasma 

insect vectors appears to be mechanistically linked via 26S proteasome cargo 

protein RAD23, given that RAD23 is required for generation of phyllody and plant 

colonisation by insect vector of phytoplasma (MacLean et al., 2014). This 

presents a hypothesis that phytoplasma may induce changes in plant morphology 

in order to attract insect vectors of phytoplasma. Thus, phyllody may be an 

adaptive manipulation of host plant by the parasitic phytoplasmas to enhance the 

spread of the pathogen in nature.  

Nature is full with examples of alteration of host development, behaviour 

and inter-specific interactions by parasites (Figure 3.1). In many cases host 

modification is detrimental to the host but beneficial to the parasite by enhancing 

their survival, reproduction or transmission as part of the parasitic life-cycle. For 

example, the severe limb malformations of frogs by trematodes of the genus 

Ribeiroia (Figure 3.1B) is thought to increase predation of the locomotion-

impaired frogs by birds, which are essential for spread of the trematodes in the 

environment (Johnson et al., 2004). In addition to developmental alteration of 

hosts by parasites, modulation of host behaviour is implicated in spread of 

parasites, too. Rodents infected with Toxoplasma gondii change their behaviour 

increasing the likelihood of predation by cats (Figure 3.1C), which are the 

definitive hosts for T. gondii (Berdoy et al., 2000). Likewise, nematomorph worms 

coerce their cricket hosts to orientate towards water bodies and perform a 

“suicidal death jump” (Figure 3.1D) to release the parasite in water where it can 

complete its life cycle (Thomas et al., 2002; Biron et al., 2005a,b).  
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Figure 3.1. Parasites alter host development and behaviour. (A) Phytoplasma 

effector SAP54 changes flower development and induces formation of sterile 

photosynthetic leaf-like flowers (bottom image) instead of normal flowers (top image). 

Additionally, phytoplasma vectoring insects can be found on infected leaf-like structures. 

Photo of a healthy and AY-WB infected Catharanthus roseus flower with aster leafhopper 

Macrosteles quadrilineatus by Andrew Davis, JIC. (B) Trematode parasite Ribeiroia 

ondatrae alters amphibian limb development (www.hcn.org/blogs/goat/amphibian-

alterations). (C) Unicellular apicomplexan parasite Toxoplasma gondii can infect rodent 

brains and alter their vigilance behaviour to encounter its natural feline predators. Picture 

taken from www.wallpaperspicturesphotos.blogspot.co.uk/ and www.istockphoto.com. 

(D) Parasitic nematomorph worms such as Spinochordodes tellinii infect cricket host to 

coerce the insect for a suicidal entering of water where the parasite exits the insect body. 

Picture from www.en.wikipedia.org/?title=Nematomorpha. (E) Fungi of genus 

Ophicordiceps develop spore-containing fruiting body from infect tropical ants like this 

Dinomyrmex gigas (https://www.flickr.com/photos/orionmystery/).  

 

Such host manipulations by parasites are often viewed as an extended 

phenotype of parasitic gene(s), where parasite genome is responsible for 

alteration of phenotype of another organism (the host) as an adaptation to 

increase parasite fitness (Dawkins, 1982; Hughes, 2014). However, the 

molecular or physiological mechanisms underpinning host manipulations by 
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parasitic organisms are largely unknown limiting our ability to investigate if the 

modulations are adaptive or neutral (Poulin, 1995, 2013; Thomas et al., 2005). 

Only a few parasite genes that orchestrate dramatic changes in host phenotype 

and behaviour have been identified so far (Hoover et al., 2011; Sugio et al., 2011; 

MacLean et al., 2014). If host manipulation is an adaptation of a parasite, natural 

selection has to act on parasitic genes that encode this phenotype (Dawkins, 

1990, 2004). Alternatively, changes in host biology may be just a side-effect of 

parasitic infection that does not contribute to parasite reproduction, survival or 

spread in nature and, therefore, are not an extended phenotype (Dawkins, 2004). 

It is a challenging task to demonstrate whether a particular manipulation of host 

organism is adaptive. For example, a fungal parasite of genus Ophiocordyceps 

infects Camponotus ants and coerces the insect host to perform the ‘’dead-grip’’ 

in a micro-habitat (Figure 3.1E) with the right humidity and temperature suitable 

for the development of fungal fruiting body and dispersal of the spores (Andersen 

et al., 2009). Outside this manipulative zone the fungus is not able to reproduce. 

Since the reproductive fitness of the fungus depends on the exact details of 

manipulation of the ant, the fungal genes reponsible for this manipulation should 

be under natural selection. In many other host-parasite systems, however, 

parasites induce multiple changes in the host simultaneously. For example, the 

freshwater shrimp Gammarus pulex, infected with acanthocephalan parasite 

Pomphorynchus laevis, demonstrates altered coloration as well as positive 

phototactism and immune depression (Thomas et al., 2010), rising questions 

which of these traits, if any, are adaptive and causal for enhanced trophic 

transmission of parasite to fish predators. It is difficult to unambiguously test the 

adaptive role of parasite induced changes in their hosts without a mechanistic 

understanding about these modifications and experimental tools to manipulate or 

isolate individual parasite altered traits (Cézilly and Perrot-Minnot, 2010).  

Mechanistic understanding about the generation of leaf-like flowers in 

phytoplasma-infected plants allows, for the first time, to directly test the adaptive 

function of the changes in host morphology by a single parasite gene. 

Understanding the functions of host manipulation by parasite effector (virulence) 

genes has significant implications for understanding the epidemics of vector-

borne plant diseases (Lefèvre and Thomas, 2008) and modelling disease spread 

in natural and agro-ecosystems.  
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This chapter aims to test the hypothesis that induction of leaf-like flowers 

by phytoplasma effector SAP54 is an adaptive manipulation of the plant host by 

phytoplasma to attract insect vectors. A series of experiments resulted in a 

breakthrough finding that refutes this hypothesis and demonstrates that 

leafhoppers make a choice to colonise SAP54 plants independently from 

morphological changes in the host plant. Additional adaptive roles of phyllody are 

investigated and discussed. 

 

3.2. Results 

 

3.2.1. Leafhoppers prefer rosette leaves over normal or leaf-like floral 

structures 

Given the finding that leafhopper M. quadrilineatus preferentially colonises 

phytoplasma infected rad23bd mutants with leaf-like flowers (MacLean et al., 

2014), I wanted to further examine if the leafhoppers are attracted by leaf-like 

flowers or repelled by wild-type flowers. I observed the behaviour and residency 

preference of 10 male and 10 female M. quadrilineatus on infected rad23 mutants 

that had either leaf-like flowers or normal floral phenotype (Figure 3.2A). M. 

quadrilineatus was not repelled by the normal flowers of infected rad23bcd plants. 

Both male and female leafhoppers were found to land and explore the 

inflorescence, possibly feed on flower pedicel and inflorescence stems and probe 

the petals or carpels. Similarly, leafhoppers were found in leaf-like flowers of 

infected rad23bd mutant plants, where they feed on the leaf-like petals and 

pedicel of telescopic flowers. These observations suggest that the insects may 

not prefer the leaf-like flowers over the wild-type ones. 

Next, I quantified the distribution of M. quadrilineatus adults between 

rosette leaves and floral tissue of the phytoplasma infected rad23 mutants over 

5 day period. Interestingly, most leafhoppers preferred to reside on the rosette 

leaves rather than floral stems and flowers of rad23bd plants with leaf-like flowers 

or rad23bcd plants with normal-looking flowers (Figure 3.2B). Moreover, the leaf-

like and normal flowers attract approximately equal proportion of the insects. 

These data suggest that the flowers may not be required for leafhopper attraction.  
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Figure 3.2. Leafhoppers demonstrate similar distribution on plants with leaf-like 

and wild-type flowers. (A) M. quadrilineatus leafhoppers were photographed whilst 

residing and feeding on all parts of infected Arabidopsis thaliana rad23BD and rad23BCD 

plants, including rosette leaves and petioles, stems, cauline leaves and flowers. Insects 

were found on carpels, sepals, petals and pedicels of wild-type-looking A. thaliana 

flowers as well as leaf-like flowers. White scale bars on each picture are 1 cm. (B) 

Number of insects found on rosettes or floral tissue is plotted as percentage of the total 

number of insects on wild-type plants and plants with leaf-like floral phenotype. Bars 
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represent standard error of the mean of 8 independent replicate cages. M. quadrilineatus 

has significant residency preference for rosette leaves compared to other floral structures 

both on AY-WB infected rad23BCD mutant plants with leaf-like (L) flowers and AY-WB 

infected rad23BD mutant plants with wild-type flowers (GLM with time as covariate; 

F1,137=1797.78; P≤0.001). There is no difference between insect residency on wild-type 

and leaf-like flowers during the five-day leafhopper choice experiment (GLM with time as 

covariate; F1,67=0.19; P=0.666).  

 

3.2.2. Leafhoppers prefer SAP54 plants for oviposition independently from 

induction of leaf-like flowers  

Given that leafhoppers demonstrate oviposition preference for infected 

rad23bd plants with leaf-like flowers (Chapter 2) but flowers themselves do not 

appear to trigger leafhopper attraction (Figure 3.2), I further investigated whether 

leafhoppers prefer to reside and lay eggs on transgenic plants expressing 

phytoplasma effector SAP54. 10 male and 10 female M. quadrilineatus adults 

were given a choice between 35S:GFP-SAP54 plants with leaf-like flowers and 

35S:GFP plants with normal flowers for 5 days. Insect residency and egg-laying 

was recorded. M. quadrilineatus adults spent more time on GFP-SAP54 

transgenic plants with leaf-like flowers versus GFP transgenic plants with wild-

type flowers (Figure 3.3), and these insects also produced more progeny on GFP-

SAP54 transgenic plants with leaf-like flowers (Figure 3.4A). However, when 

insects were not given a choice between host plants, by caging the leafhoppers 

on either GFP-SAP54 transgenic plants with leaf-like flowers or control GFP 

transgenic plants with wild type flowers, no increase in nymph production was 

observed (Figure 3.5). Thus, greater number of M. quadrilineatus progeny on 

SAP54 plants may result from preferential orientation and egg-laying choice on 

SAP54 plants with leaf-like flowers rather than increase in leafhopper 

reproductive efficiency per se.  
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Figure 3.3. Aster leafhopper Macrosteles quadrilineatus demonstrates greater 

residency preference for SAP54 expressing plants with leaf like-flowers. More 

insects were found on SAP54 plants over the entire 5 day choice period (GLM with time 

as covariate; F1,57=22.14; P≤0.001). Picture scale bar is 1 mm. Bars in the graph are one 

standard error of the mean. 

 

 

Figure 3.4. 

A 

B 

C 

D 
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Figure 3.4. Flowers and transition from floral to vegetative phase are not required 

for SAP54-mediated enhancement of insect colonization. (A) M. quadrilineatus 

produces more nymphs on 35S:GFP-SAP54 transgenic A. thaliana (Col-0) plants with 

leaf-like flowers than on 35S:GFP (Col-0) control plants with wild type flowers (p≤0.001). 

(B) Removal of flowers and floral stems does not affect M. quadrilineatus colonization 

preference of 35S:GFP-SAP54 transgenic A. thaliana (Col-0). (C) Leafhoppers also 

prefer GFP-SAP54 transgenic plants prior to transition from vegetative to floral growth. 

(D) M. quadrilineatus lays more eggs on single rosette leaves of GFP-SAP54 transgenic 

plants. Bars shown are one standard error of the mean. Each experiment was replicated 

in six independent choice cages. Significant difference in leafhopper reproductive 

preference are indicated as follows *** p≤0.001; ** p≤0.025 (paired t-test). All 

experiments were repeated three times with similar results. 

 

 

 

 

Figure 3.5. M. quadrilineatus leafhoppers produced similar nymph numbers when 

confined to 35S:GFP-SAP54 or 35S:GFP plants. Leafhoppers were released on whole 

plants, which were caged inside a plastic tube as shown at left and right (picture scale 

bars are 5 cm). The middle graphs show mean numbers of leafhopper nymphs produced 

in these cages of three independent experiments (paired t-test; n=6; p=0.773). Bars 

shown are one standard error of the mean. 
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To analyse the impact of leaf-like flowers on leafhopper preference further, 

I removed both the leaf-like and wild-type flowers from 35S:GFP-SAP54 and 

35S:GFP plants in the insect choice experiments and found that the leafhoppers 

still preferred the GFP-SAP54 plants (Figure 3.4B), suggesting that the presence 

of leaf-like flowers is not required for leafhopper preference for SAP54 plants. A. 

thaliana plants used in insect choice tests so far were grown at long days to 

induce bolting and flowering. Therefore, I conducted choice tests on A. thaliana 

plants grown at short days before flowering. Again, M. quadrilineatus produced 

more nymphs on GFP-SAP54 versus GFP (control) plants (Figure 3.4C), 

suggesting that insect preference for the GFP-SAP54 plants does not involve 

physiological and developmental transformations that occur during floral 

transition. To confirm this finding, leafhoppers were also given a choice between 

single leaves of GFP-SAP54 and GFP plants grown at short days. Importantly, 

leafhoppers preferred to lay eggs onto single leaves of GFP-SAP54 plants 

(Figure 3.4D), suggesting that leafhoppers are attracted solely to the leaves of 

GFP-SAP54 plants. Taken together, these data demonstrate that leaf-like flowers 

are not required for host plant selection by the leafhopper vector, and that SAP54 

modulates processes in leaves to promote leafhopper attraction.  

 

3.2.3. Phyllody is not required for leafhopper oviposition choice 

The above experiments provide evidence that leaf-like flowers are not 

required for insect vector preference. Nonetheless, these flowers could contribute 

to the insect preference. To test this, I conducted choice experiments with A. 

thaliana lines displaying leaf-like flowers, including MTF mutant lines ap1 (Mandel 

et al., 1992) and lfy (Weigel et al., 1992) and the 35S:SVP transgenic line (Gregis 

et al., 2013). All these lines produce flowers that share leaf-like structures 

reminiscent to those of phytoplasma-infected and GFP-SAP54 transgenic plants 

(MacLean et al., 2011). I found that leafhoppers produce similar numbers of 

progeny on both plants indicating no colonization preference for either wild type 

or mutant plants with leaf-like floral phenotypes (Figure 3.6). These data are in 

agreement with insect preference for rosette leaves rather than floral stems or 

flowers (Figure 3.2). Thus, the leaf-like flowers are neither required nor involved 

in the host preference of M. quadrilineatus, the insect vector of phytoplasmas. 
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Figure 3.6. Aster leafhopper Macrosteles quadrilineatus has similar oviposition 

preference for plants with normal and leaf-like flower phenotype. M. quadrilineatus 

did not show a preference for colonization of Col-0 wild-type versus Col-0 apetala1 (ap1-

12) (p=0.835), Col-0 versus Col-0 leafy (lfy-1) (p=0.985) and Col-0 versus 35S:SVP (Col-

0) (p=0.960). Choice experiments were conducted with whole plants retaining both 

vegetative and floral organs. Data shown as percentage of M. quadrilineatus nymphs 

found on each test plant per total number of nymphs within a single choice cage (bars 

are standard error of the mean). Data were analysed by paired t-tests. All experiments 

were repeated three times with similar results. Picture scale bar is approximately 1 mm. 

 

3.2.4. SAP54 plants do not show increased longevity 

Although leaf-like flowers (phyllody) may not be contributing to leafhopper 

oviposition preference for SAP54 plants, abolishment of flowering and fruit 

production may delay plant senescence and increase the longevity of the plant 

host and thus enhance the possibility of phytoplasma acquisition by its insect 

vector. To test this hypothesis, I compared the time of bolting, flowering and 

senescence of 35S:GFP-SAP54 and 35S:GFP transgenic plants under different 

photoperiods. Plants were grown side by side and photographed weekly until 

complete senescence. Surprisingly, 35S:GFP-SAP54 required similar time till the 

complete senescence (death) of the plant compared to 35S:GFP and wild-type 

Col-0 plants (Figure 3.7). Moreover, 35S:GFP-SAP54 plants demonstrated 
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significantly earlier bolting as well as slightly earlier onset of senescence 

compared to controls. This suggest that abolishment of plant reproduction by 

generation of sterile leaf-like flowers in SAP54 expressing plants may not 

contribute to leafhopper attraction by increase in plant survival.  

 

 

Figure 3.8. SAP54 plants show earlier bolting but similar longevity compared to 

control and wild-type plants. A. thaliana (Col-0) wild type and A. thaliana (Col-0) 

35S:GFP-SAP54 and 35S:GFP transgenic plants were grown under short day (8h/16h 

day/night) and long day (14h/10h day/night) photoperiods at 22oC, 48% humidity without 

prior vernalisation until complete death of the plants. Average time (weeks) until the first 

appearance of 1 cm bolts at the centre of rosette (bolting), the first appearance of 

yellowing stems and leaves (senescence) and complete yellowing of the entire plant 

(death) was recorded. 35S:GFP-SAP54 showed significantly earlier (1.5 weeks) bolting 

compared to 35S:GFP and wild-type Col-0 plants under short day photoperiod (ANOVA; 

F2,15=13.33; p≤0.001; Tukey pairwise comparison). Bars are one standard error from the 

mean. Experiment was performed using 6 plants and repeated twice with identical 

results. 
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Photographs were taken to assess whether, in addition to plant longevity, 

plants with leaf-like flower phenotype showed any differences in plant architecture 

or biomass. At short day photoperiod 35S:GFP-SAP54 plants demonstrate very 

similar above-ground biomass compared to 35S:GFP plants from start of bolting 

until senescence (Figure 3.8A). However, 35S:GFP-SAP54 plants show slightly 

more branching and greater shoot biomass after bolting at long-day photoperiod 

(Figure 3.8B). Taken together, these data suggest that under certain 

environmental conditions phyllody may play potential additional roles in plant-

insect interactions independently from adult leafhopper attraction. This remains 

to be explored and tested empirically.  
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Figure 3.8. SAP54 plants display increased areal shoot biomass compared to 

control plants under long day photoperiod. Representative photographs of 35S:GFP-

SAP54 and 35S:GFP transgenic plants were grown under short day (8h/16h day/night) 

(A) and long day (14h/10h day/night) (B) photoperiods for the experiment in Figure 3.6. 

Numbers indicate the age (weeks) after the plant after sowing. Scale insets = 20 cm.  

A 
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Figure 3.8. (continued) 

B 
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3.3.5. Phyllody does not increase phytoplasma titer  

Although adult leafhoppers are mainly attracted to rosette leaves of SAP54 

(Figure 3.4) and phyllody is not likely to contribute to this attraction (Figure 3.6) 

or longevity of the plant (Figure 3.7), higher pathogen titer in the leaf-like flowers 

compared to normal flowers may facilitate phytoplasma acquisition by leafhopper 

nymphs that have hatched on rosettes but move to upper parts as late instars. 

To test this hypothesis, I infected rad23bcd and rad23bd plants with AY-WB 

phytoplasma and measured the amount of phytoplasma DNA relative to plant 

DNA as a measure of phytoplasma replication (bacterial titer) in rosette leaves 

and inflorescence (Figure 3.9). 

 

Figure 3.9. AY-WB infected rad23bcd plants and rad23bd plants have similar 

phytoplasma titer. 3-weeks old plants were inoculated with AY-WB phytoplasma by 

adding 5 infected male M. quadrilineatus on each plant for 5 days. 21 days post 

inoculation rosette leaves and floral tissue were harvested for qPCR of phytoplasma 

DNA and plant DNA as a reference. Data show the amount of phytoplasma 16S rRNA 

gene copies relative to plant actin DNA. Infected rad23bd plants developed leaf-like 

flowers but infected rad23bcd – normal flowers (picture insects; scale=1mm). Leaf-like 

flowers contained the same amount of phytoplasma DNA compared to normal flowers 

(t2,4= 0.24; p=0.815). There is no difference in phytoplasma titer between rosettes of 

infected rad23bcd and rad23bd plants (t2,4= 1.24; p= 0.256). Flowers contain slightly but 

not significantly less phytoplasma compared to rosette tissue in both rad23bd (t2, 4=3.02; 

p=0.039) or rad23bcd plants (t2, 4= 1.78; p=0.15). Data analysed using two-tailed t-test; 
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experiment included 4 replicate plants and was repeated 2 times with similar results. Bar 

represents 1 standard error of the mean.  

 

Interestingly, there was no difference in phytoplasma titer of infected 

flowers or rosettes between rad23bcd or rad23bd plants, suggesting that leaf-like 

flowers per se do not enhance phytoplasma replication within the plant. In 

addition, pathogen titer in rosette leaves is not RAD23 dependent.  

 

3.3. Discussion  

Hitherto, direct analyses of the adaptive significance of parasite extended 

phenotypes have been limited because many parasites (such as phytoplasma) 

are not amenable to genetic manipulation and parasite genetic factors that induce 

the dramatic host alterations are often unknown. Given that leafhoppers feed and 

lay eggs mostly on vegetative tissues, including stems and leaves (Weintraub 

and Beanland, 2006), and that the plant 26S proteasome cargo protein RAD23 

is required for both the induction of leaf-like flowers and insect vector attraction 

(MacLean et al., 2014), I hypothesized that leafhoppers may be attracted to leaf-

like flowers of phytoplasma-infected and SAP54 transgenic plants. However, this 

study has shown that leaf-like flowers are not required nor are involved in 

attraction of the phytoplasma insect vectors (Figures 3.4 and 3.6). Moreover, 

leafhoppers preferred plant vegetative tissues above reproductive organs (Figure 

3.2). Thus, leaf-like flowers do not promote leafhopper colonization, even though 

these two phenotypes are genetically connected via SAP54 interaction with the 

26S proteasome cargo protein RAD23 (Figure 3.10).  
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Figure 3.10. Phytoplasma effector SAP54 mediates insect vector attraction to host 

plants independently of the presence of leaf-like flowers. The phytoplasma virulence 

proteins (effector) SAP54 interacts with specific MADS-box transcription factors (MTFs) 

and degrades these via the 26S proteasome leading to the development of leaf-like 

flowers that resemble those of phytoplasma-infected plants (MacLean et al., 2011; 

MacLean et al., 2014). The SAP54-mediated degradation of MTFs is dependent on 

SAP54 interaction with the 26S proteasome shuttle factor RAD23 (MacLean et al., 2014). 

Leafhoppers prefer to lay eggs on SAP54 transgenic lines and phytoplasma-infected 

plants and this preference is also dependent on RAD23 (MacLean et al., 2014). 

Nonetheless, leaf-like flowers are not required for the leafhopper egg-laying preference. 

Whether MTFs that are degraded by SAP54 regulate other cellular processes, such as 

plant defence responses to insect pests, remains to be investigated. 

 

In order to test the role of phyllody in plant colonization by insects I 

removed the phyllody phenotype from potential additional effects of SAP54 on 

insect vector (Figure 3.4) as well as generated phyllody de novo independently 

from SAP54 (Figure 3.6). This holistic approach allowed to functionally uncouple 

the multiple simultaneous changes in host plants in presence of phytoplasma or 

its effector SAP54 alone. In order to test the functions of parasite altered host 

phenotypes, other studies have used pharmacological approaches to mimic or 
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interfere with parasite induced phenotypes (Perrot-Minnot et al., 2012; Hojo et 

al., 2015). This has provided correlative evidence for involvement of certain 

neurotransmitters such as dopamine or serotonin in altered host behaviours 

(Cézilly and Perrot-Minnot, 2010). Elucidating the cause-effect relationship 

between certain manipulations of host biology and their function often requires 

mechanistic understanding about parasite genes and their host targets. By 

employing such knowledge from previous studies (MacLean et al., 2014), I 

managed to demonstrate that phyllody phenotype is not required in the plant 

colonization by leafhopper vector M. quadrilineatus. Although, without empirical 

testing, I cannot exclude that other species of phytoplasma vectors may be 

attracted to phyllody, in the light of experimental evidence from this work I further 

discuss the role of phyllody as adaptive manipulation or side-effect of 

phytoplasma infection.  

Phyllody-inducing ‘Ca. Phytoplasma asteris’ phytoplasmas, such as AY-

WB, often infect annual plants (Lee et al., 2004), which die upon flowering and 

seed production. Phytoplasmas are dependent on insect vectors for spread 

before plants die (Weintraub and Beanland, 2006). Hence, phytoplasmas that 

produce effectors, such as SAP54, which attract insect vectors, are likely to 

spread faster than phytoplasmas that do not produce such effectors. Similarly, 

increase in plant survival would benefit acquisition of generalist phytoplasmas 

and transmission to alternative host species even when healthy conspecifics of 

the original host have died. Given that leaf-like flowers neither increase plant 

longevity (Figure 3.7) nor affect leafhopper oviposition preference (Figures 3.4 

and 3.6), phyllody does not appear to have any benefits for attraction of adult 

leafhoppers. The possible increase in shoot biomass under long day photoperiod 

(Figure 3.8B) may result from the indeterminate growth of leaf-like flowers on 

SAP54 plants. However, given the overall preference of leafhoppers for rosette 

leaves compared to the leaf-like flowers (Figure 3.2) together with oviposition 

preference for SAP54 rosette leaves independently from bolting and generation 

of leaf-like flowers (Figure 3.4), the apparent increase in areal biomass above the 

rosette is not likely to contribute to leafhopper reproductive preference for SAP54 

expressing or phytoplasma infected plants. Furthermore, similar phytoplasma 

titer in normal and leaf-like inflorescences (Figure 3.9) indicates that adult insects 

that preferentially reside and lay eggs on plants with phyllody may not acquire 

phytoplasma with higher efficiency than from infected plants with no phyllody.  
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Experimental evidence thus far strongly suggests that phyllody itself or the 

associated traits such as phytoplasma titer in leaf-like tissue is not likely to be an 

adaptive manipulation of the host plant by phytoplasma to enhance pathogen 

acquisition or colonisation by adult leafhoppers. However, phyllody may have 

additional functions, for example, affect pathogen spread by enhancing or 

hindering the transmission of phytoplasma from infected to healthy plants by the 

first generation progeny of adult leafhoppers on SAP54 or infected plants with 

leaf-like flowers. According to the Deceptive Host Hypothesis, plant pathogens 

may initially enhance vector attraction to virus or bacteria infected plants but 

subsequently alters the quality of the host plant to facilitate the spread of 

pathogen-carrying vectors to healthy, yet uninfected, host plants (Mauck et al., 

2010; Mann et al., 2012). While there are more leafhopper nymphs to potentially 

acquire phytoplasma on SAP54 expressing plants, it remains to be investigated 

whether SAP54 induced phyllody contributes to the further transmission of 

phytoplasma to healthy plants by affecting nymph survival or how soon nymphs 

leave the infected plants. Although the phyllody may not be an adaptive 

manipulation to attract adult leafhoppers for reproduction on the host plant, there 

is a possibility that increased biomass on plants with indeterminate floral growth 

could potentially support larger number of leafhopper progeny. The no-choice 

experiment assessed if the total leafhopper egg production and nymph survival 

was dependent on SAP54 or SAP54-induced leaf-like flowers (Figure 3.6). In this 

experiment SAP54 plants developed leaf-like flowers by the time nymphs had 

hatched from the rosette leaves. Since there was no significant increase in nymph 

number on SAP54 plants (Figure 3.6), the potential benefits of larger shoot 

biomass on nymph survival are unlikely. Nevertheless, nymph survival could 

benefit from increase in plant biomass when the number of insect nymphs on the 

control plant without leaf-like flowers approaches or exceeds the carrying 

capacity of a single plant. Additional experiments with increased number of 

nymphs per plant would be necessary to test this hypothesis. Contrary to the 

35S:GFP-SAP54 plants, phytoplasma infected plants are stunted and do not 

appear to have greater biomass compared to healthy plants (Sugio et al., 2011). 

For this reason, increase in biomass on infected plant that produces leaf-like 

flowers could support high number of nymphs compared to infected plant with no 

leaf-like flowers. Furthermore, it remains to be elucidated whether increase in 
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biomass would arrest the developing nymphs longer on the infected plant or 

encourage to find an alternative (non-infected) host.  

Conversion of flowers into leaves is different from other cases where 

insect-vectored bacterial or fungal pathogens alter plant floral development 

(Mescher, 2012). For example, fungi in the genera Puccinia and Uromycetes alter 

floral architecture of infected plants to mimic other sympatric species and attract 

pollinating insects (Ngugi and Scherm, 2006). The rust fungus Puccinia monoica 

induces pseudoflowers in its plant host Boechera stricta that mimic co-occurring 

buttercup flowers providing olfactory cues and nectar awards to entice pollinating 

insects which can transfer fungal spores from the opposite mating types (Roy, 

1993; Roy and Raguso, 1997). This fungus induces major transcriptome 

programming of its host plant, likely through the production of multiple effectors 

(Cano et al., 2013). Similarly, fungus Molinia vaccinii-corymbosi induces floral 

mimicry in vegetative tissues to attract pollinating insects that transfer their 

ascospores to plant reproductive organs (BATRA and BATRA, 1985). In contrast 

to the examples above, phytoplasmas rely on phloem-feeding insects for 

dispersal rather than pollinating insects. And the induction of leaf-like flowers 

does not contribute to the host selection by phytoplasma vectors.  

It is possible that the induction of phyllody is a side-effect of SAP54-

mediated modulation of a processes involved in insect attraction. Likewise, limb 

malformations in R. ondatrae infected amphibians may not play a direct role in 

amphibian predation by herons and may not significantly affect the life-cycle of 

the trematode, and therefore remains a subject of empirical testing (Figure 3.11). 

Ribeiroia-mediated limb malformations in amphibians may be a ‘’side-product’’ of 

infection itself or indirectly derive from the activity of certain parasite effectors. 

Moreover, environmental pollutants are also implicated in development of limb 

abnormalities, thus providing alternative explanations for the origin of complex 

developmental phenotypes observed in the field (Skelly et al., 2007).  
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Figure 3.11. Morphological changes induced by parasites may not be always 

required for transmission and spread of parasites. Experimental evidence suggests 

that phytoplasma induced developmental changes in flowers are not required for the 

enhancement of plant colonisation by insect vectors. Insect preference for oviposition on 

SAP54 expressing plants is mediated through different mechanisms. Likewise, the 

abnormal development of amphibian limbs may be a consequence of environmental 

factors or presence of the trematode parasite but not necessarily a requirement for 

enhanced amphibian predation by the avian host of the trematode.  

 

 Complementary to adaptionist view held by Dawkins (Dawkins, 1982), the 

activity of parasite genes in the host may lead to emergence of non-adaptive 

secondary structures which derive as a result of genetic and developmental 

correlations together with selected features. In their seminal paper Gould and 

Lewontin (1979) used the example of the Spandrels of San Marco to illustrate 

how existance of certain intuitively adaptive features of an organism (like the 

spandrel shape to accomodate iconography of the cathedral) are influenced by 

evolutionary constraints (spandrel shape is architectural by-product of the dome 

structure) and urged to consider the non-adaptive hypothesis in explaining 

complex phenotypes or behaviours in nature (alongside adaptive explanations). 

For example, there are several adaptive explanations for insect-induced galls on 

plant leaves (Stone and Schönrogge, 2003). However, the variation and 

convergent evolution of several insect gall features – air spaces, sticky outer 

surface or spines – in cynipid wasps are difficult to conceive as necessary 
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adaptations for insect survival inside the gall (Stone and Cook, 1998). These may 

arise as by-products from the parasite interfering with conserved developmental 

programmes. A recent study by Perrot-Minnot et al. (2012) recreated the 

decreased photophobic effect of acanthocephalan infected amphipods by 

injecting them with serotonin and demonstrated no increase in predation by fish. 

These findings revisited the paradigm that all parasite-altered complex host 

behaviours should be regarded as parasite adaptation. Furthermore, it is 

important to approximate more natural experimental conditions when testing the 

adaptive significance of altered host phenotypes. For example, based on many 

model system (non-human) studies, it has been suggested that Plasmodium-

infected mosquito vectors are more responsive to human cues due to 

manipulation by the malarial parasite. Contrary to this hypothesis, Vantaux et al. 

(2015) demonstrated that mosquitoes do not show altered long range or short 

range locomotory behaviour and preference for human odour by using host-

vector-parasite system that has coevolved in nature.  

According to the principle of Darwinian pluralism where adaptation and 

selection are separable, features like phyllody in phytoplasma-infected plants 

may have been selected together with primary adaptive role of SAP54 in 

enhancing insect colonisation and may, therefore, be a secondary 

epiphenomenon of the activity of parasite gene that may have the potential to 

eventually acquire novel functions. In a similar way like the human culture is an 

emergent property of human genes responsible for learning but not necessarily 

a Darwinian adaptation selected on the basis of genetic variation (Dawkins, 

2004). The non-adaptive explanation and the adaptionist view are equally 

instrumental in understanding the evolution of parasite-altered host phenotypes 

and the mechanistic insight is key to uncouple the two.  

Finally, I want to discuss how developmental side-effects such as leaf like 

flowers may originate. In this chapter I demonstrated that insect attraction and 

induction of phyllody are functionally un-coupled. However, Chapter 2 showed 

that these phenotypes are genetically linked. SAP54 induces leaf-like flowers by 

mediating degradation of MTFs via interaction with RAD23 (MacLean et al., 

2014). MTFs are regulatory hubs for a plethora of physiological processes in 

plants, including plant immunity (comparable to animal HOX genes); several 

MTFs appear to (in)directly regulate cytokinin and jasmonic acid (JA) synthesis 

and response genes (Gregis et al., 2013), which affect plant-insect interactions 
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(Schafer et al., 2011; Erb et al., 2012; Giron et al., 2013; Naessens et al., 2015), 

such as that of the AY-WB leafhopper vector M. quadrilineatus (Sugio et al., 

2011). In addition, MTFs regulate age-related resistance responses to pests 

(Wilson et al., 2013). Therefore, SAP54-mediated degradation of MTFs may 

modulate plant responses to leafhoppers as well as alter of floral meristem 

identity and floral organ architecture later in development. Findings of this chapter 

lead to hypothesis that certain MTFs may be expressed in plant vegetative 

tissues and have yet uncharacterised regulatory roles in plant-insect interactions. 

This hypothesis will be further explored in Chapter 6. Pleiotropic effects of 

transcription factors are known in animal systems, too. For example, Toll-like 

receptors are known to play roles both in development and defences against 

pathogens. In Drosophila melanogaster Toll10b controls development of dorsal 

axis and is linked to fungal defences. Knock-out of this gene results in both 

developmental defects and impaired resistance to fungal antagonists (Lemaitre 

B et al., 1996; Artero et al., 2003).  

Targeting conserved plant proteins, such as MTFs, by phytoplasma 

effector may enable the phytoplasma parasites to infect a broad range of plant 

species. The 26S proteasome shuttle proteins RAD23 are also conserved among 

plant species (Vierstra, 2009). Compatibility of phytoplasmas with multiple plant 

species is likely essential given that AY-WB phytoplasma and related parasites 

are transmitted by polyphagous insect species, such as leafhoppers of the genus 

Macrosteles (Lee et al., 2004; Weintraub and Beanland, 2006). Because these 

insects readily feed on many plant species, phytoplasmas will increase their 

fitness if they can modulate these plants to increase attraction and colonization 

of insect vectors. In agreement with this, SAP54 homologs are found in diverse 

phyllody-inducing phytoplasmas that infect a wide range of plant species 

(Bertaccini, 2007; Sugio et al., 2011; Maejima et al., 2014). Thus, generalist 

parasites, especially those dependent on alternative hosts for transmission, could 

gain fitness benefits via interfering with conserved host processes. 
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‘’The experiment should be set up to open as many windows as possible on the 

unforeseen.’’  

Jean F. Joliot-Curie, in C. C. Gillespie (1973), Dictionary of Scientific Biography, Vol. 7, 

p 153 

 

 

Chapter 4 

Males Are Required for the Attraction and Increased 

Reproduction of Female Leafhoppers on SAP54-Expressing  

Plants 

 

 

  
Z. Orlovskis (2016) ‘’Senses deceived.’’ 
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4.1. Introduction 

The phytoplasma effector SAP54 induces the formation of leaf-like flowers 

(MacLean et al., 2014). In Chapter 3 I demonstrated that leaf-like flowers are not 

required for the attraction of the phytoplasma leafhopper vector Macrosteles 

quadrilineatus and that this leafhopper prefers to lay eggs on single leaves of 

SAP54 expressing plants (Orlovskis and Hogenhout, 2016). This indicates that 

SAP54 modulates leaves in a way that attracts the phytoplasma insect vector for 

egg-laying. So far I studied only the production of M. quadrilineatus eggs and 

nymphs as a measure of leafhopper attraction to plants. However, the cues that 

are involved in leafhopper attraction to SAP54 transgenic plants and selection of 

the host plant for feeding and egg-laying have not yet been investigated. Plant 

visual appearance and volatile compounds can act at a distance to orientate and 

attract insects to a host plant prior to direct contact with the leaf surface (Rid et 

al., 2016; Todd et al., 1990a,b). Furthermore, mechanical barriers such as 

epidermal trichomes or thickness and composition of the leaf cuticle can 

determine insect choice to stay on the leaf and start feeding or laying eggs 

(Serrano et al., 2014). Plant nutritional quality and constitutive levels of defence 

chemicals in healthy or infected plant may further influence insect arrestment on 

a plant and duration of feeding or egg-laying (Mann et al., 2012). Therefore, 

SAP54-mediated enhancement of leafhopper reproduction may be achieved via 

cues perceived by leafhoppers at a distance prior to direct contact with host plant 

or cues that act after direct contact between an insect and a plant. For example, 

insect herbivory can induce leaf volatiles that subsequently determine the host 

plant choice of the insects that have not yet come in direct contact with the insect-

infested plant (Allmann et al., 2013; Mumm & Dicke, 2010). Mating behaviour can 

also affect the attraction of male or female leafhoppers to a plant (Heady et al., 

1986). Therefore, sex-specific mechanisms of insect attraction by SAP54 could 

play a role in leafhopper preference to reproduce on plants colonised by a mating 

partner. 

There is evidence for phytoplasma-induced changes in plant volatiles that 

attract their insect vectors. For example, apple tree infecting ‘Ca. Phytoplasma 

mali’ alters plant sesquiterpene production, thereby luring the psyllid vector to 

phytoplasma infected plants (Mayer et al., 2008a,b; Rid et al., 2016). Moreover, 

changes in plant volatiles may be induced by effector proteins. For example, 

SAP11 effector homolog from ‘Ca. P. mali’ alters production of volatile organic 
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compounds that are implicated in pheromone-mediated attraction between 

insects, albeit this was shown in SAP11 transgenic N. benthamiana plants (not 

apple) and no insect assays were performed to test the attractiveness of SAP11 

induced volatile compounds (Tan et al., 2016). Nonetheless, the AY-WB 

leafhopper vectors appear to use predominantly visual cues to select host plants, 

and preferentially orientate towards yellow spectrum of visible light (Todd et al., 

1990a,b), though olfactory cues may play a role in enhancing insect response to 

visual cues (Patt and Sétamou, 2007). Volatile attractants may operate at various 

distances and in combination with visual cues such as colour and shape of the 

plant. 

Plant cuticle thickness and composition play important roles in resistance 

to both abiotic and biotic stress, including pests and pathogens (Serrano et al., 

2014). Similarly, leaf trichomes present an important mechanical barrier to 

feeding and oviposition of herbivorous insects. For example, increased trichome 

density on tomato leaves negatively affects whitefly egg-laying (Oriani and 

Vendramim, 2010). In addition, glandular trichomes may contain secondary 

chemicals that deter potential herbivores. In contrast to plant species with diverse 

types of trichomes, such as tomato or N. benthamiana, leaves of Arabidopsis 

thaliana (Col-0 ecotype) have only single-cell non-glandular epidermal trichomes 

typically with 3 branches (Marks, 1997). Thus, any effects of SAP54 on trichome 

quantity may affect host plant selection by leafhoppers.  

Constitutive and induced plant defence responses play an important role 

in protection against herbivore feeding and egg-laying (oviposition). For example, 

leafhopper Dalbulus maidis is a specialist of maize (Zea mays) (Nault, 1990) and 

cannot survive or reproduce on A. thaliana. In contrast, the generalist leafhopper 

Macrosteles quadrilineatus cannot survive and reproduce on maize plants 

(Weintraub & Beanland, 2006) as efficiently as the specialist D. maidis, indicating 

that the specialist has evolved more effective mechanisms to tolerate or silence 

constitutive or induced defence responses of maize compared to the generalist. 

Jasmonate synthesis is induced during leafhopper feeding, and has a negative 

effect on host selection in the field (Kessler, 2004) and leafhopper reproduction 

(Sugio et al., 2011). In addition, butterfly P. brassicae oviposition elicits plant 

defence responses via salicylic acid accumulation, which may suppress 

jasmonate-dependent plant responses to feeding of S. littoralis larvae (Bruessow 

et al., 2010). Thus insect feeding and egg-laying may interfere with each other 
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due to defence hormone crosstalk or simply behavioural arrestment of insects on 

plant where they both feed and lay eggs.  

Phloem feeding hemipteran insects also secrete effector proteins into the 

plant in order to dampen plant defence responses (Hogenhout and Bos, 2011). 

Therefore, any effects of the phytoplasma effector SAP54 on constitutive or 

induced plant defence responses to insect colonisation or modulation of insect-

derived effector protein functions may play essential roles in plant-insect vector 

interactions. 

The main aim of the current chapter is to explore the possible mechanisms 

of leafhopper attraction to SAP54 transgenic plants. To this end I analyse various 

cues acting at a distance (before insect settlement and probing) and contact cues 

(after insect settlement and probing) that may mediate insect host selection 

preference and be modulated by SAP54 activity. Furthermore, I explore the 

attractiveness of plants for male and female insects to identify any sex-specific 

or sex-dependent effects of SAP54. The main finding is that SAP54 expressing 

plants attract female insects for egg-laying in male dependent manner by 

modulating insect induced plant responses. 

 

4.2. Results 

 

4.2.1. Leafhoppers use visual cues in preference to olfactory cues for host 

location 

First I wished to investigate if SAP54-mediated changes in plant visual 

appearance or volatile emissions could impact leafhopper preference for SAP54 

expressing plants. To do this, I developed an experimental setup to measure the 

effect of volatile compounds in absence or in combination with visual cues (Figure 

4.1; detailed setup in Chapter 8). Numerous other experimental designs were 

tested (see Chapter 8) but were less successful that the assay described herein. 

The setup described in Figure 4.1 was used in several dual choice assays (Figure 

4.2) that directly compared the attractiveness of two different odours or 

investigated the effect of additional visual stimulus on insect response. Two pots 

were placed at opposite ends of a choice arena where a group of 20 male and 20 

female insects were released. After 8 hours the number of insects stuck to the 

sticky landing platforms were counted.  
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Figure 4.1. Schematic representation of the experimental setup to investigate the 

role of olfactory and visual stimuli in insect attraction to host plants. A plant or 

other odour source was placed in two inversely fitted black plastic pots. They completely 

block the visual signal from the plant/odour source but allow for diffusion of volatiles 

through the top of the chamber. In one setup the top of the pot is fitted with a colourless 

sticky landing platform, permitting the diffusion of odours but not introducing any colour 

stimulus (A). In an alternative setup I introduce a coloured sticky landing platform that 

adds a visual stimulus to the odour source beneath (B). Insects are trapped on the 

colourless (A) or coloured (B) sticky landing platforms after first landing choice, thus 

facilitating the counting.  

 

Since no positive olfactory stimulus has been reported to attract M. 

quadrilineatus, I used vinegar fly Drosophila suzukii, which is attracted to vinegar 

odour, as a positive control to validate the experimental setup. D. suzukii 

demonstrated a very strong attraction to the vinegar compared to water (Figure 

4.2A). This indicates that directional odour gradient has been established, and 

the assay is suitable for dual-choice experiments. Next, I tested the attraction of 

M. quadrilineatus to a blend of oat and cabbage volatiles from insect non-exposed 

plants. Oat and cabbage plants are both hosts for M. quadrilineatus and are often 

used to rear leafhopper colonies at the JIC Entomology Facility. Phytoplasma-

free leafhoppers were used in all our host choice experiments. Interestingly, 

leafhoppers demonstrated no response to plant odours neither in daylight or at 

night (Figure 4.2B,C). However, when a yellow colour trap (known visual 

attractant of leafhoppers (Todd et al., 1990b) was added to complement either 

the plant-emitted volatiles or plant volatile-free controls, insects were attracted to 

the yellow colour trap with or without the presence of plant volatiles (Figure 

4.2D,E), suggesting that leafhoppers use primary visual cues in preference to 

volatiles for orientation in space. Moreover, plant volatile signals neither compete 

nor complement visual cues in leafhopper attraction. Next, I repeated experiment 
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B-E but instead of intact plants I used ground plant tissue extract in water (Figure 

4.2F-I). Ground plant tissue mimics plant damage and may release different blend 

of compounds than intact plants. Results were identical to experiments with intact 

growing plants in that the leafhoppers were attracted by yellow colour irrespective 

of the presence or absence of ground plant tissue. These data suggested that M. 

quadrilineatus has a strong preference for using visual cues in their orientation to 

find a host plant and that, compared to the visual cues, any volatiles compounds 

constitutively produced in intact plants or damage-induced volatiles from the or 

ground plant tissue have minor impacts on the leafhopper orientation to host 

plants. 

 

 

 

 

 

 

 

 

 

Figure 4.2. Visual cues have a stronger effect on Macrosteles quadrilineatus 

orientation preference to host plants compared to plant olfactory cues. Test odours 

are presented on the left-hand side but controls – on the right-hand side. Experiments 

were performed either in light or dark conditions as indicated in the diagram. The letters 

on the diagram correspond to letters in the graph below. In experiments E and I the 

volatile stimuli are complemented with visual cues. In experiments D and H the volatile 

stimuli are compared to visual cues. Drosophila suzukii has a strong preference for 

odours from vinegar (t4=18.86; p≤0.001) (A). Macrosteles quadrilineatus demonstrates 

no attraction to olfactory signals from oat and cabbage plants in light (B) or in dark (C) 

conditions. M. quadrilineatus demonstrates strong attraction to yellow colour visual cue 

irrespective of absence (t4=70.82; p≤0.001) (D) or presence (t4=5.22; p=0.014) (E) of 

olfactory stimuli from plants. Macrosteles quadrilineatus demonstrates no attraction to 

olfactory signals from grinded oat and cabbage extract in light (F) or in dark (G) 

conditions. M. quadrilineatus demonstrates strong preference for yellow colour visual 

cue irrespective of absence (t4=14.07; p=0.001) (D) or presence (t4=30.21; p≤0.001) (E) 

of olfactory stimuli from plant extract.  



  

117 

 

 

Figure 4.2. 
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In the dual choice experiments reported above I used equal mix of male 

and female insects. Given that leafhopper mating occurs on plants, and males 

emit female-attracting acoustic signals (Heady et al., 1986), I wished to test for 

any sex-specific leafhopper response to odours and colours. For example, if more 

males are attracted to SAP54 plants initially, female egg-laying preference may 

be explained by attractiveness of male odours or singing. I counted both male 

and female insects in all experiments described in Figure 4.2 and plotted the sex-

ratio from all landing platforms that contained (1) only odour but no colour, (2) 

only colour but no odour and (3) both colour and odour together. I found that 

volatile and olfactory stimuli alone or in combination trigger equal attraction of 

male and female insects (Figure 4.3), suggesting that leafhopper may have no 

sex-specific response to volatile or visual cues acting at a distance prior to 

physical contact with the plant.  

 

 

Figure 4.3. The ratio between female and male insects responding to a 

combination of olfactory and visual cues (A) is similar to insect response to visual 

cues without additional plant odours (B) and similar to response to plant odours 

only (C). Male and female insects were trapped after their first landing on platforms with 

the test or control stimuli in experiments described in Figure 4.2.  

 

I used the setup described in Figure 4.1 to test if volatiles from SAP54 

transgenic plants attract leafhoppers, and to investigate if visual stimuli override 

the effect of olfactory cues from the SAP54 plants. In contrast to the previous 

setup, I substituted the yellow landing platform with a green one that matches the 

plant leaf colour. Leafhoppers demonstrated neither preference nor avoidance 

for volatiles from the SAP54 plants compared to control plant when any 

A 

B 

C 
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differences in plant odour are complemented with identical visual cues (Figure 

4.4A). Furthermore, in absence of visual clues, insects showed no orientation to 

either SAP54 or the control plant (Figure 4.4B). However, when the visual cue is 

combined with potential volatile cues from the SAP54 plants or presented on its 

own without volatile stimuli of the plant, insects strongly preferred to land on the 

platform with the visual cue irrespective of volatiles released by the SAP54 plants 

or complete absence of plant volatiles (Figure 4.4C and D). Together, these data 

suggest that volatiles emitted by SAP54 plants are unlikely to play a major role in 

the initial choice of plant hosts by leafhoppers. Visual cues dominated over 

volatile cues in leafhopper attraction, posing the question if the SAP54 plants are 

perhaps visually more attractive to the leafhoppers. 

 

 

Figure 4.4. Leafhoppers prefer visual cues over volatile cues from SAP54-

expressing plants. (A) M. quadrilineatus demonstrates equal landing preference for the 

odour of SAP54-expressing and control plants when plant volatile signal is 

complemented with identical green colour landing platforms (t4=0.29; p=0.788). (B) 

Insects show minimal attraction to volatile cues derived from SAP54-expressing and 

control plants. (C) Leafhoppers show significant preference for SAP54 plant combined 

with visual stimulus (t4=4.52; p=0.02). (D) The visual stimulus alone is an equally potent 

and significant leafhopper attractant than the combination between plant volatile 

signature and visual cue (t4=4.90; p=0.008).   
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4.2.2. Phytoplasma effector SAP54 increases yellow spectral reflectance 

of leaves 

Given that the leafhopper M. quadrilineatus demonstrated stronger 

response to visual cues compared to volatile stimuli, I investigated if the leaves 

of the SAP54 transgenic plants differ in their colour appearance compared to 

control plants. First, I measured the leaf surface spectral reflectance across the 

perceived visual spectrum of insect eyes (approximately 400-630nm 

wavelength). Notably, majority of insect species do not detect wavelength 

corresponding to the red and far-red spectrum (650-750 nm), whereas 

wavelength between 500 and 600nm (green-to-yellow) were previously shown to 

be important in leafhopper orientation (Todd et al., 1990b). Interestingly, leaves 

of the SAP54 plants showed significantly greater reflectance (approximately 1-

2% more reflected light) at wavelengths corresponding to green-orange colours 

(between 500-650 nm) compared to control plants (Figure 4.5). Independently 

from surface reflectance measurements, I also measured leaf absorbance using 

SPAD meter. SPAD values are measures of leaf chlorophyll index derived from 

absorbance maxima of various leaf pigments and is correlated to the chlorophyll-

to-carotenoid ratio in photosynthetic tissue (Ling et al., 2011). Concurrent with 

spectral reflectance measurements, the SAP54 plants demonstrated significantly 

lower SPAD readings than control plants (Figure 4.6), suggesting reduction in 

chlorophyll content and higher proportion of yellow reflecting leaf pigments. To 

human eye too, SAP54 appeared lighter green and more yellow compared to 

control plants (Figure 4.6 picture insets), supporting the quantitative 

measurements of leaf reflectance and absorbance. If the measured differences 

in leaf colour at the green and yellow spectra can be perceived by insect vision, 

it may play a role in leafhopper perception and location of host plants. 
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Figure 4.5. SAP54 transgenic plants demonstrate increased leaf reflectance at 

green-orange colour spectra compared to control plants. Leaf reflectance was 

measured across 11 channels corresponding to the approximate spectrum of insect 

vision. Significant difference in reflectance was measured across 20 independent plants 

per line (each replicate averaged 3 largest leaves of 8-weeks old plants) using two-tailed 

t-test at each channel. The resulting p-values were (Bonferroni) corrected for multiple 

comparisons. Only corrected p-values ≤0.001 are displayed.  

 

 

Figure 4.6. SAP54 transgenic plants have lower SPAD meter readings compared 

to control plants. SPAD values are leaf absorbance measurement across different 

wavelength and correlate to leaf chlorophyll content. SPAD values were averaged from 



122 

 

three largest leaves per plant and measured for 36 independent biological replicate 

plants per line (8-week old plants). SAP54 significantly reduces SPAD readings 

compared to the control plants (two-tailed t-test; t36=3.58; p=0.001). Boxplot 

demonstrates the 1st and 4th quartiles as vertical line, 2nd and 3rd quartiles as box, median 

as horizontal line, mean as a cross and outliers as asterisk. Photographs of a 

representative sample of leaves from the SAP54 and control plants are displayed on the 

left and right of the boxplots respectively.  

 

4.2.3. Leafhopper preference for SAP54 plants does not involve visual cues 

Given the measurable differences in visual appearance between leaves 

from SAP54 and control plants, I further investigated if these differences might 

explain the greater attraction of leafhoppers to the SAP54 plants. I caged the 

whole rosettes of the SAP54 and control plants in completely transparent 

polycarbonate material to allow the permeation of leaf-reflected light but prevent 

any release of volatiles. I covered the surface of the polycarbonate cage with 

transparent glue and arranged plant rosettes in a choice arena to measure 

leafhopper first landing choice (for details see materials & methods). I previously 

determined that the polycarbonate material and the glue used in this experiment 

were completely transparent and did not alter the profile of reflected light from 

leaves. Surprisingly, I did not find a significant effect in leafhopper landing on 

SAP54 plants compared to controls (Figure 4.7A), suggesting that the observed 

difference in leaf reflectance at green-yellow spectra between SAP54 and control 

plants (Figure 4.5) did not affect leafhopper orientation behaviour towards the 

plant. Next, I used a yellow replica of A. thaliana rosette and observed significant 

landing preference for yellow compared to the SAP54 plants (Figure 4.7A). The 

yellow colour rosette had greater reflectance at green-orange spectra of light 

compared to the leaf surface from SAP54 and control plants (Figure 4.7B). Taken 

together, these data indicated that the increased reflectance at green-yellow 

wavelengths can be more attractive to M. quadrilineatus, however the difference 

between the spectral reflectance of SAP54-expressing and control plants is 

relatively minute to have a significant effect on leafhopper host selection by 

vision.  
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Figure 4.7. SAP54 has no effect on visual cues that leafhoppers use for host plant 

selection. (A) M. quadrilineatus has similar landing preference for SAP54 and control 

plants (paired t-test; t12=0.83; p=0.428). Yellow is a strong attractant of leafhoppers 

compared to the green appearance of the plant (paired t-test; t4=33.66; p=0.001). 

Diagrammatic representation of the visual image of the landing platforms in the choice 

experiment is given at the sides of the bars. (B) The yellow sticky trap reflects more light 

at the green-orange visual spectrum compared to both SAP54 and control plants.  
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4.2.4. Rosette leaf trichome morphology and density do not differ between 

SAP54 and control plants  

The results above suggest that, although leafhoppers respond to distance 

(mainly visual) stimuli to locate host plants, the difference in visual or olfactory 

cues between the SAP54 and control plants may not explain preferential 

attraction of leafhoppers. Instead, leafhoppers may decide to choose to stay on 

a plant after the first landing and exploring the surface of the leaf. This presents 

a possibility that leaf mechanical barriers such as epidermal trichomes and cuticle 

may determine host selection or insect arrestment on the plant. Trichomes are 

likely to interfere with leafhopper locomotion already before feeding or egg-laying, 

whereas the cuticle can impose resistance to insect mouthparts or ovipositor. 

From laboratory observations, leafhoppers are likely to land and first encounter 

the adaxial (top) side of the leaf but feed and lay eggs on the abaxial (under) side. 

Furthermore, leafhoppers penetrate leaf surface with their stylets at various 

distances from the primary or secondary leaf veins, and lay eggs at leaf margins 

and the intersection between the midvein and leaf blade. For these reasons, 

measurements of cuticular thickness, structure or composition may be technically 

challenging and require high spatial resolution over the entire leaf area to 

accurately correlate with feeding or egg laying preference. However, 

measurements of leaf trichome morphology and density are technically less 

challenging and would provide valuable insight in whether the SAP54 plants 

demonstrate altered trichome phenotype that is correlated with increase in egg-

laying. To test this, I first visually compared the distribution pattern of trichomes 

on 35S:GFP-SAP54 and 35S:GFP plants by taking scanning electron 

micrographs (SEM) of the adaxial surface of leaves and leaf-like flowers. 

Interestingly, leaf-like flower tissue and cauline leaves appeared to have greater 

trichome density compared to rosette leaves (Figure 4.8). Moreover, as 

demonstrated previously, leafhoppers prefer to reside on rosette parts compared 

to stems, cauline leaves and floral or leaf-like flower tissues (Chapter 3). This 

prompted to investigate the density of rosette leave trichomes in greater detail. I 

counted the trichomes on both adaxial and abaxial leaf sides using optical stereo-

microscope. To avoid variance in trichome density due to local patchiness, I 

quantified the number of trichomes over the entire leaf blade and normalised for 

leaf area (Figure 4.9). 35S:GFP-SAP54 plants show slight decrease in trichome 

density on adaxial leaf side but such effects are not significant and may be 
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caused by natural variation in trichome density among replicate plants. The 

difference in trichome density on abaxial side was less pronounced, and the total 

number of trichomes on abaxial side (where insects feed and lay eggs) was 

significantly less than adaxial side on both 35S:GFP-SAP54 and 35S:GFP plants 

(Figure 4.9). Moreover, no trichomes were found on the typical M. quadrilineatus 

oviposition sites near midvein and leaf edges on adaxial side of the leaves from 

SAP54 or control plants. This indicated that leafhoppers may prefer to feed and 

lay eggs in trichome-free zones on the leaf. However, the variation in adaxial 

trichome density could be important for the initial decision (or acceptance) of the 

leaf to stay and commence feeding and egg-laying. 

 

 

Figure 4.8. Scanning electron microscopy images display increased trichome 

densities on leaf-like flowers of 35S:GFP-SAP54 plants and cauline leaves of both 

35S:GFP-SAP54 and 35S:GFP plants compared to rosette leaves. Representative 

images from rosette leaves, cauline leaves are displayed. Leaf-like flowers are found 

only on 35S:GFP-SAP54 plants. Plants were 8-week old. Fully expanded older rosette 

leaves were imaged. Bars are 100 µm. 
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Figure 4.9. Quantification of trichomes on 8-week old 35S:GFP-SAP54 or 35S:GFP 

plant rosette leaves.  Ectopic expression of phytoplasma protein SAP54 does not 

significantly affect adaxial (t2,16=1.25; p=0.223), abaxial (t2,16=1.1; p=0.281) and total 

trichome number (t2,16=1.6; p=0.122). Trichomes were counted over the entire leaf blade 

and normalised per unit of leaf area.  

 

In order to investigate potential role of trichome density in leafhopper 

reproductive preference for SAP54 plants, I correlated the total number of 

trichomes per unit of leaf area with leafhopper egg number. I performed a single-

leaf choice experiment where I counted both trichome density and egg number 

on single leaves from 35S:GFP-SAP54 or 35S:GFP plants. Surprisingly, trichome 

density does not correlate with leafhopper egg-laying preference for SAP54 

expressing or control plants (Figure 4.10). Therefore, differences in trichome 

density between SAP54 and control plants are not likely to cause any significant 

effect on leafhopper oviposition choice.  
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Figure 4.10. Egg laying preferences of the aster leafhopper M. quadrilineatus on 

A. thaliana leaves are not correlated with leaf trichome numbers. The number of M. 

quadrilineatus eggs is not correlated with the total number of trichomes on the adaxial 

and the abaxial side of a single rosette leaf from SAP54 (Pearson r=0.24; p=0.337) and 

GFP (Pearson r=0.423; p=0.073) plants. Trichomes and eggs were counted on the same 

leaf under stereomicroscope. 

 

In addition to the quantification of trichome density, I also took scanning 

electron micrographs (SEM) of adaxial trichomes of rosette leaves on 35S:GFP-

SAP54 and 35S:GFP plants to detect any changes in trichome morphology. From 

a representative sample of leaf surface images I did not detect any obvious 

difference in trichome height and branch length between SAP54 expressing and 

control plants (Figure 4.11). Absolute majority of trichomes on both 35S:GFP-

SAP54 and 35S:GFP plants had the characteristic tripartite branching. Only few 

trichomes on rosette leaves of SAP54 plants had two or four branches (Figure 

4.11). Most trichome branches were straight, although branch tip bending, as 

depicted in Figure 4.11, could be observed in a small fraction of trichomes on 

35S:GFP-SAP54 as well as 35S:GFP plants.  

Taken together, I conclude that SAP54 plants do not show significant 

differences in trichome morphology and density compared to control plants. 

Furthermore, total leaf trichome density is not a strong predictor of leafhopper 

egg-laying preference.  
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Figure 4.11. Scanning electron microscopy images of individual trichomes on 

epidermis of 8-week old 35S:GFP-SAP54 or 35S:GFP plant rosette leaves. The 

length of trichome stalk and branches is similar between SAP54 and control plants. While 

the majority of branches on 35S:GFP-SAP54 or 35S:GFP plants are straight, some 

branches are uneven and curved on both plants. Images display rare examples of 

reduced branch number (top right) or increased branch number (bottom) on SAP54 

expressing rosette leaves. Scale is identical in all images for ease of comparison. 

 

4.2.5. Female egg-laying preference for SAP54 plants is dependent on the 

presence of male leafhoppers 

Hitherto, the experimental results suggest that leafhopper oviposition 

preference for SAP54 plants may be mediated neither by constitutive visual or 

olfactory signals acting at a distance to orientate the insect vector towards host 

plant nor constitutive local leaf surface barriers, such as trichomes, that influence 

insect decision to stay on the plant. Therefore, I hypothesise that female 

leafhopper egg-laying preference for 35S:GFP-SAP54 plants is determined after 

insect settlement and perhaps during feeding or oviposition. This may involve 

either constitutive differences in plant quality between SAP54 and control plants 

or differences in insect-induced defence responses. During probing and feeding 

leafhoppers may determine plant quality and suitability in order to decide to 

continue feeding or begin oviposition on the current plant or move to another host. 

Alternatively, during probing, feeding or oviposition leafhoppers induce plant 
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responses that may be altered by phytoplasma effector SAP54 to favour insect 

colonisation. Because male insects feed on the plant but cannot lay eggs like 

female leafhoppers, the induction of plant responses may be sex-specific.  

In order to test whether egg-laying preference for SAP54 plants depends 

on insect (sex-specific) induced plant responses and whether these induced 

responses enhance insect egg-laying as well as feeding I devised a series of 

dual-choice experiments and separated males and females in time and space 

(Figure 4.12A). All choice experiments were carried out by releasing mixed sex 

leafhopper population or male-only or female-only populations (with 

specifications outlined in Figure 4.12A) into a choice arena with one 35S:GFP-

SAP54 and one 35S:GFP (control) plant. Leafhoppers produced more progeny 

on the SAP54 transgenic plants when equal number of male and female 

leafhoppers are given a choice between the SAP54 and control plants (Figure 

4.12B experiment 1). Next, I introduced only female leafhoppers in the choice 

arena to see if females demonstrate the same preference for SAP54 plants as 

mixed-sex insect population. Surprisingly, females chose to lay the same number 

of eggs on the SAP54 and control plants in absence of males (Figure 4.12AB 

experiment 3). This indicated that female leafhoppers may not rely on constitutive 

differences in plant quality to select SAP54 plants over the control. Instead, male 

leafhopper induced plant responses may be required for female oviposition 

preference for SAP54 plants. To test this further, I exposed the SAP54 and 

control plants to equal number of male insects before removing them and adding 

female leafhoppers which were allowed to choose to lay eggs between the two 

plants (Figure 4.12A experiment 4). Thus, males and females were temporarily 

and spatially separated on the plant. Surprisingly, female insects still did not show 

any preference for SAP54 plants that were exposed to males prior to addition of 

females (Figure 4.12A experiment 4). However, the male-induced plant 

responses could have faded after removal of the male insects. Therefore, I caged 

equal number of male insects on two rosette leaves of SAP54 and control plants 

and simultaneously released female leafhoppers to freely choose between the 

two plants before counting the progeny (Figure 4.12A experiment 5). Thus males 

and females were only spatially separated from any contact. Now females 

demonstrated significant reproductive preference for SAP54 plants (Figure 4.12B 

experiment 5). These data suggest that the SAP54 plants could modulate male-

induced responses to favour female leafhopper oviposition compared to the 
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control plants. Moreover, female preference for the SAP54 plant was 

independent from male insect preference for the SAP54 or control plant (Figure 

4.12B) because the experiment 5 mimicked equal male choice. 

In order to find out whether the male-dependent enhancement of female 

reproduction on SAP54 plants was associated with preferential feeding of male 

or female insects, I assessed leafhopper feeding by measuring the amount of 

insect excreted honeydew after giving leafhoppers the choice between the 

SAP54 or control plants (Figure 4.12C). Insect choice experiments were 

performed as described in Figure 4.12A. However, this time leafhoppers were 

choosing between single leaves of the SAP54 and control plants (see materials 

and methods). I measured the amount of insect-deposited honeydew around 

each leaf. Intriguingly, mixed population of male and female insects demonstrated 

slightly greater honeydew deposition around the leaf of 35S:GFP-SAP54 plant 

compared to the control plant (Figure 4.12C experiment 1), suggesting greater 

amount of ingested phloem sap and more intense feeding. Nevertheless, this 

effect was not statistically significant due to the great variation among 

experimental replicate cages. Noticeably, the slight feeding preference for SAP54 

plants disappeared when either males or females were removed (Figure 4.12C 

experiments 2 and 3). Thus, nether male nor female feeding in a single-sex 

population was enhanced on the SAP54 plants. However, similar to the female 

oviposition preference for SAP54 plants (Figure 4,12B), females showed 

tendency of increased feeding on SAP54 leaf when other leaves were 

simultaneously exposed to male insects (Figure 4.12C experiment 5) but not 

when the males were removed before adding the females for the choice tests 

(Figure 4.12C experiment 4).  
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Figure 4.12. 
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Figure 4.12. Male leafhopper presence on SAP54 plants shows significant 

attraction of female for egg-laying. Experimental design of experiments 1-5 is depicted 

in panel A. Female leafhopper reproduction preference is measured as nymph count 

between 35S:GFP-SAP54 and 35S:GFP plants and displayed in panel B. Leafhopper 

feeding preference is measured as honeydew deposition, shown in panel C. Experiment 

1. When both male and female leafhoppers are allowed to feed on SAP54 or control 

plants, leafhoppers show significant reproduction (t6=6.67; p=0.001) and slight feeding 

(t6=1.07; p=0.333) preference for SAP54. Experiment 2. In absence of females, male 

leafhoppers do not show any feeding preference for SAP54 plants (t6=0.3; p=0.775). 

Experiment 3. In absence of males, female leafhoppers do not show any reproduction 

(t6=0.33; p=0.753) or feeding (t6=0.1; p=0.923) preference for SAP54 plants. Experiment 

4. When females are given a choice between male pre-exposed plants after male 

removal, female leafhoppers do not show any oviposition (t6=0.12; p=0.91) or feeding 

(t6=1.43; p=0.211) preference for SAP54 plants. Experiment 5. SAP54 and control plants 

are exposed to equal numbers of male leafhoppers, contained in clip-cages separate 

from females during female feeding. Female leafhoppers do show significant oviposition 

(t6=3.37; p=0.028) and slight feeding (t6=1.02; p=0.353) preference for SAP54 plants. All 

pairwise comparisons done with paired t-test based on 6 biological replicates. Bars are 

one standard error from the mean.  

 

Taken together, male-insect presence on 35S:GFP-SAP54 plants shows 

significant attraction of females for egg-laying but not feeding. Nevertheless, 

female feeding and reproduction are positively correlated (Figure 4.13), 

suggesting that one may influence the other via female arrestment on the plant. 

To verify how significant is the potential effect of SAP54 on insect feeding, I used 

an alternative method to ingested honeydew measurements and instead 

quantified insect probing/feeding sites by staining the stylet punctures and tracks 

in various regions of the leaf (Figure 4.14). When male and female insects were 

allowed to feed together, they demonstrated detectable probing and feeding 

activities compared to background staining of insect non-exposed leaves (Figure 

4.14A). I counted the probing/feeding sites of mixed-sex population of 

leafhoppers near the primary and secondary veins as well as mesophyll tissue. 

Interestingly, leafhoppers demonstrate slightly more probing on SAP54 

expressing leaves compared to controls (Figure 4.14B) similar to the honeydew 

measurements. However, the difference is not significant due to great variation 

among the choice cages.  
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Figure 4.13. Correlation between female Macrosteles quadrilineatus feeding 

(measured as honeydew excretion) and egg-laying. The relative amount of insect 

feeding preference on either 35S:GFP-SA54 plants or 35S:GFP control plants is strongly 

correlated (Pearson’s r=0.973; p≤0.001) with the relative host plant preference for egg-

laying. Correlated are the female data from Figure 4.12 experiments 1 and 3-5. 

 

Given that male presence is required for female oviposition choice, this 

presents a tantalising hypothesis that phytoplasma effector SAP54 is modulating 

the male mating behaviour or signals that operate beyond close physical contact 

to attract female leafhoppers. To verify the plausibility of such hypothesis, I tested 

female egg-laying preference for male exposed wild-type Col-0 plants compared 

to male free plants. Male insects were confined on the plant using clip-cages 

similar to experiment 5 in Figure 4.12. Interestingly, females showed no 

significant oviposition preference for plants with or without males (Figure 4.15). 

This suggests that with the given experimental conditions, females are not likely 

to be attracted to male acoustic or chemical signals. Conversely, females are not 

deterred by male induced plant responses.    
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Figure 4.14. (A) Trypan blue staining of leafhopper probing sites at two 

magnifications of a representative sample from insect exposed and insect-free 

A.thaliana leaves. (B) Number of probing sites per 1cm2 of leaf tissue near 

vasculature, in mesophyll or mesophyll and vascular tissue combined (total per 

leaf). Four different measurements were taken for a single leaf to represent the mean 

probing sites per each leaf. Six independent plant leaves from 35S:GFP-SAP54 and 

35S:GFP control lines are represented in the graph. P-values given for paired-t-test. Bars 

are one standard error from mean 
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Figure 4.15. Leafhopper Macrosteles quadrilineatus females has no egg-laying 

preference for male-exposed plants (t6=1.09; p=0.325). 10 female leafhoppers were 

allowed to choose to lay eggs between insect-free A. thaliana Col-0 plants and Col-0 

plants with 10 male insects confined in clip-cages. Eggs laid by females were counted 

over the entire plant. Data analysed using paired t-test.  

 

4.3. Discussion 

Within this chapter I analysed multiple possible mechanisms that could be 

involved in host plant selection by leafhoppers, and found that SAP54-mediated 

enhancement of female oviposition requires the presence of male insects (Figure 

4.12). This finding supports the hypothesis that SAP54 may suppress male 

insect-induced plant responses in order to attract and/or arrest female 

leafhoppers on the plant for feeding and egg laying, thus resulting in greater egg 

and nymph production on the SAP54 plants. Phytoplasma effector SAP54 may 

have an effect on plant visual appearance, volatile production or trichome density. 

However, these alterations do not appear to be important for leafhopper attraction 

to the plant and could not explain female reproduction preference for the SAP54 

plants. Therefore, current data are in favour of a model where female attraction 

to SAP54 plants depends on modulation of insect sex-specific induced plant 

responses contrary to manipulation of constitutive distance or direct contact cues 

that act in host location and settlement (Figure 4.16).  
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Figure 4.16. Expression of phytoplasma effector SAP54 results in numerous 

altered plant phenotypes, including generation of leaf-like flowers and enhanced 

attraction of female insects for egg-laying (red block arrows). Plant signals induced 

by male direct contact with the plant are required for female reproductive preference for 

the SAP54 plants (green tick). This is an adaptive trait that enhances plant colonisation 

by phytoplasma vectors (green block arrow). This chapter investigated the mechanisms 

that could play a role in female leafhopper oviposition choice: 1) manipulation of 

constitutive signals such as visual, olfactory cues before insects come in contact with a 

plant (dash-dot lines); 2) manipulation of constitutive mechanical barriers such as 

trichomes or cuticle that may determine insect settlement or feeding and egg-laying 

(dash-dot lines); 3) manipulation of male-induced signals directly required for female egg 

laying alone (solid lines) or 4) manipulation of male-induced signals required for female 

egg-laying indirectly mediated via female feeding preference or male-induced volatiles 

(dashed lines). Red crosses indicate SAP54-induced changes that were shown not to 

play a significant role in female attraction and oviposition choice.  

 

Plant colour and shape together with emitted volatile organic compounds 

are important stimuli for host plant location and selection by herbivorous insects 

and their natural enemies (Reeves, 2011; Mumm & Dicke, 2010). These cues 

can orientate and attract insects from a distance. In the Cicadellidae family (incl. 

leafhoppers) vision is one of the main signals used for host location (Todd et al., 

1990a,b), and olfactory cues can function to enhance insect responsiveness to 

visual stimuli (Patt and Sétamou, 2007). Results from this chapter agree with the 

importance of visual over chemosensory signals in host plant choice by 

leafhoppers (Figures 4.2). I also investigated the combination of the two types of 
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distance cues and found no significant interaction between the two stimuli for 

leafhopper orientation and responsiveness (Figures 4.2 and 4.4). Interestingly, 

changes in plant appearance may not be limited to spectral reflectance at 

different wavelength. In addition, polarisation of the reflected light can be affected 

by leaf surface properties such as formation of cuticular waxes: plant viruses can 

change the light polarisation from leaves that may be attractive to insects among 

which polarisation-sensitive visual systems are prevalent (Maxwell et al., 2016). 

Although the SAP54 plants may show alterations in their volatile production or 

visual phenotype (Figure 4.5), such changes are not likely to attract insects from 

a distance (Figures 4.4 and 4.7). Insect choice experiments involving single 

leaves of the SAP54 and control plants (chapter 3) also showed that leafhopper 

attraction may not be caused by changes in rosette architecture or leaf shape 

that could be perceived by insect vision or interact with volatile cues (Patt and 

Sétamou, 2007).  

If not for their effect of light reflection from the leaf surface, plant trichomes 

and cuticle are important mechanical barriers to affect insect behaviour after 

leafhoppers have landed on the plant surface. For example, trichomes are 

important for insect locomotion (Björkman and Ahrné, 2005) and can be induced 

upon herbivore attack (Dalin and Björkman, 2003). I directly compared trichome 

density on SAP54 and control plants before insect exposure and found no 

differences in trichome number (Figure 4.9). In addition, I investigated the 

relationship between the number leafhopper eggs and number of trichomes found 

on leaves after exposure to adult insects and found no correlation on either 

35S:GFP-SAP54 or 35S:GFP plants (Figure 4.10). This strongly suggests that 

any constitutive or insect-induced changes in trichome density may not be 

responsible for increased egg-laying on SAP54 plants. Moreover, females lay 

eggs in trichome-free zones on abaxial leaf side (Supplemental Figure 3; 

Appendix C). There is no difference in the abaxial trichome density between 

SAP54 and control plants before or after insect exposure (Supplemental Figure 

2; Appendix C). Abaxial oviposition sites are typically localised in leaf pedicel, at 

the intersection between midvein and mesophyll tissue and leaf edges 

(Supplemental Figure 3; Appendix C). Therefore, any detailed measurements 

about leaf surface structure, like cuticle, would have to be performed with high 

spatial resolution in multiple sites on the leaf surface. A.thaliana cuticle is about 

100nm thick and consists of cutin matrix with embedded waxes (Shumborski et 
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al., 2016). Transmission electron microscopy is a common method used to study 

the ultrastructure and thickness of the cuticle. For these reasons cuticular 

measurements can be labour intensive and were not performed here.  

Leafhopper mating behaviour may also be important for locating host plant 

with a potential mate. Data presented in this chapter support the conclusion that 

female attraction and settlement on SAP54 plants is dependent specifically on 

male insect presence (Figure 4.12B). Male leafhoppers did not show any feeding 

preference for SAP54 plants (Figure 4.12C). Furthermore, experiments with 

equal number of males confined to leaves of SAP54 and control plants still 

demonstrated female oviposition preference for SAP54 plants (Figure 4.12B). 

Together this suggests that higher male abundance is not likely to explain female 

reproductive preference for SAP54 plants. However, I cannot exclude the 

possibility that SAP54 plants may modulate male emitted mating calls or vibration 

signals that travel through the plant. Male leafhoppers possess specialised 

tymbal organs or use their entire bodies to emit acoustic courtship calls and 

attract females (Heady et al., 1986). Acoustic signals may travel not only in the 

air but also via plant tissue as a medium. In fact, substrate vibrational 

communication is found in more than 90% of all insect species (Cocroft and 

Rodríguez, 2005), including leafhoppers (Eriksson et al., 2011). It is tantalising to 

hypothesise that SAP54 could have an indirect effect on leafhopper mating calls 

or modulate the vibrational communication by modulation of the plant tissue 

structure. Thus, despite equal number of male insects on SAP54 and control 

plants, males on SAP54 plants may communicate differently to females. 

Nevertheless, the observation that male exposed plants are not significantly more 

attractive for female egg-laying (Figure 4.15) contradicts this hypothesis and 

suggests that perhaps in the given experimental setup males are not using such 

acoustic signals to attract females.  

Instead of direct male produced acoustic signals, female egg-laying 

preference for SAP54 expressing plants could be stimulated by male-induced 

plant responses. Plants are likely to perceive insect attack using damage or 

chemical cues that trigger phytochormone signalling to mount defence response 

(Erb et al., 2012). Mechanical damage from penetration of male insect piercing-

sucking mouthparts (stylets) or chemicals released during and male salivation 

and feeding could induce specific signals in plants that are modulated by SAP54 

or complement SAP54 effector activity to render plants more attractive for female 
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egg-laying. Alternatively, such male-dependent effect may stimulate female 

feeding on SAP54 plants and thus enhance female arrestment, indirectly 

resulting in greater oviposition time on SAP54 plants. Due to limited knowledge 

about leafhopper feeding and oviposition behaviour, it is difficult to establish the 

cause-effect relationship between feeding and egg-laying. M. quadrilineatus 

feeding and oviposition are strongly correlated (Figure 4.13). In other insect 

families, however, feeding and oviposition host choice can be different or use 

distinct cues. For example, Drosophila melanogaster (Diptera) alternate between 

hosts plants with different nutritional quality and prefer to feed on carbohydrate-

rich substrates but lay eggs on protein-balanced substrates (Lihoreau et al., 

2016). Cereal stemborer Busseola fusca (Lepidoptera) uses plant surface 

chemicals to accept host plant for egg-laying. Furthermore, egg laying or insect 

feeding can induce plant volatile production. For example, eggs from another 

species of stemborer, Chilo partellus (Lepidoptera), have been shown to induce 

volatile production in maize (Mutyambai et al., 2016). Likewise, phloem feeding 

hemipteran insects trigger release of plant volatiles (Machado et al., 2014). 

However, in most cases herbivore induced volatiles function to directly harm the 

attacking insect or attract its natural enemies (Pare and Tumlinson, 1999; 

Machado et al., 2014; Veyrat et al., 2015) rather than attract conspecifics. It still 

remains to be elucidated whether M. quadrilineatus male induced volatiles may 

play a role in female attraction to or arrestment on SAP54 plants for feeding or 

oviposition. Females may use such male induced volatiles as direct close-

distance oviposition cues or general attractants for feeding and oviposition.  

Male requirement for female attraction to SAP54 plants presents a 

tantalising hypothesis that phytoplasma effector SAP54 manipulates insect 

induced plant responses in sex-dependent manner. Given that coinciding male 

presence is required for female oviposition choice, plants are simultaneously 

exposed to herbivore feeding and oviposition induced signals. There is a 

crosstalk in defence responses from feeding and egg-laying (Bruessow et al., 

2010), therefore male feeding in addition to female feeding may strengthen the 

feeding induced signals compared to oviposition induced defence signals. In 

addition, male insects may present a plant response elicitor (a sex-specific 

chemical or damage by mouthparts) that is absent in females but is key to female 

preference for SAP54 plants.  
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The current studies of plant-leafhopper interactions are limited by certain 

end-point measurements such as egg production or amount of insect excreted 

honeydew. In order to get more detailed understanding about plant-insect 

interactions, high-tech real-time observation methods such as 3D insect tracking 

systems (Thoen et al., 2016) would allow recording movements of male and 

female insects separately in time and space. This would allow to better 

understand whether male and female leafhoppers make synchronised selection 

of a host plant. By using an insect-tracking video system, it would be possible to 

confirm whether female leafhoppers preferentially fly to (are attracted to) and 

spend more time (are arrested on) male-colonised SAP54 plants and how often 

females change host plants. In addition, electro-penetration graph (EPG) studies 

paired with real-time imaging would allow to understand whether oviposition and 

feeding occur simultaneously or sequentially. For this purpose, the feeding 

characteristic electrical signals (waveforms) would have to be characterised first 

like in the studies of other pathogen vectoring insects from Cicadellidae family 

(Almeida and Backus, 2004). Similarly, our knowledge is limited about the plant-

derived kairomones or conspecific-produced pheromones that play a role in mate 

attraction or initiation of feeding and oviposition behaviours in leafhoppers. Laser-

based methods in detecting leafhopper vibratory communication, such as 

described by (Eriksson et al., 2011), may aid to address role of intra-specific 

communication in leafhoppers.  
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‘’To produce a really good biological theory one must try to see through the clutter 

produced by evolution to the basic mechanisms lying beneath them, realizing that 

they are likely to be overlaid by other, secondary mechanisms. What seems to 

physicists to be a hopelessly complicated process may have been what nature 

found simplest, because nature could only build on what was already there.’’  

Francis Crick (1988), What Mad Pursuit: A Personal View of Scientific Discovery, p 139  

 

 

Chapter 5 

Phytoplasma Effector SAP54 Modulates Insect-Induced Plant 

Responses 

 

 

  Z. Orlovskis (2016) ‘’Scientific Reductionism.’’ 
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5.1. Introduction 

In Chapter 4 I presented the surprising discovery that female leafhoppers 

prefer to lay eggs on male-colonised plants expressing phytoplasma effector 

SAP54 compared to male-colonised plants not expressing this gene. Crucially, 

the female oviposition preference disappears in the absence of male insects, 

suggesting that SAP54 may modulate insect-induced plant responses rather than 

constitutive defences. Therefore, the hypothesis is that SAP54 specifically alters 

male insect-induced plant responses leading to the attraction and/or arrest of 

female leafhoppers on a host plant for egg laying. 

Plants balance the investment into defences against pests and pathogens 

versus investment into growth and reproduction, and this is key for plant fitness 

(Figure 5.1). Maintaining constitutive mechanical barriers to herbivores in the 

form of spines, hairs or trichomes or constitutive high levels of defence chemicals 

in the plant tissue can be energetically costly strategies to resist herbivore attack 

and require reallocation of resources from ‘’primary’’ metabolism (Koricheva, 

2001; Schwachtje & Baldwin, 2008; Firn & Jones, 2009). Therefore, plants have 

adapted to perceive various biotic signals such as herbivore attack to activate 

defence responses only when needed (Fürstenberg-Hägg et al., 2013). 

Moreover, plants allocate the defences to selected organs such as young leaves 

regardless of the location of the original herbivore attack to potentially maximise 

the fitness benefits of defence response (Eisenring et al., 2017). Interestingly, 

epigenetic changes of plants that experienced herbivory attack may prime these 

plants against insect attack in the next generations (Rasmann et al., 2012). And 

neighbouring plants may transmit insect-induced signals via underground 

mycorrhizal networks to warn their conspecifics that aphid attack may occur 

(Babikova et al., 2013). Thus, plants can protect themselves against attack at 

individual level and also at population and community levels. 

 In nature plants are attacked by a range of different pathogens and 

herbivores in addition to being exposed to various environmental stresses such 

as suboptimal temperatures, light or water availability. Therefore, identifying the 

stress and fine-tuning the strengths and specificities of signal responses to a 

range of different biotic and abiotic stimuli are important for allocating and 

optimally partitioning resources to effectively induce defence while also 

sustaining growth. Plant resistance to insect herbivore attack relies on multiple 

layers of induced immunity: 1) recognition of herbivore molecules or herbivore 
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damage by plant membrane or intracellular receptors; 2) signal transduction and 

amplification through protein kinases and plant hormone-dependent defence 

pathways; 3) mounting effective defence responses such as production of anti-

herbivore chemical compounds (Howe and Jander, 2008; Fürstenberg-Hägg et 

al., 2013). An exogenous molecule from a vector-borne microbial plant pathogen 

that could manipulate any of these aspects of herbivore-induced plant immunity 

to the benefit of its vector would be a remarkable adaptation of the pathogen to 

aid its transmission in nature.  

 

 

Figure 5.1. Plants balance their investment into defence and stress responses 

versus growth and reproduction. Plant resources are limited. Therefore, trade-offs 

exist between response to biotic or environmental stress and generation of more 

biomass or reproduction. Plant primary resources are not only consumed (reduced) by 

herbivores (Zangerl et al., 2001) but may also function as signals and precursors for 

synthesis of defence compounds (Schwachtje & Baldwin, 2008). Plant hormones like 

jasmonate are regulators of metabolite partitioning in plants (Havko et al., 2016). Global 

changes in ‘’primary’’ and ‘’secondary’’ metabolism pathways after biotic and abiotic 

stresses have been characterised by several –omics studies and plant physiological 

measurements (Hui et al., 2003, Ralph et al., 2006; Papazian et al., 2016).   

 

Plants detect conserved molecules of herbivores and pathogens that 

antagonize them. These molecules are known as elicitors. Hitherto, the best 

studied elicitors are present in the oral secretions (saliva) of chewing insects. 

Sometimes plants recognize insect-derived amino acids conjugated with plant 

fatty acids (Halitschke et al., 2001). Not only insect oral secretions or gut-derived 

molecules but also egg-laying fluids contain elicitors of plant defences (Reymond, 

2013). Moreover, in addition to direct detection of herbivore-derived molecules, 
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plants can perceive molecular changes induced by insects. For example, insects 

damage plant tissues by chewing, snipping or tearing, resulting in the generation 

of damage-associated molecular pattern peptides such as Pep1 or systemin from 

their plant precursors (Schaller and Ryan, 1996; Bartels et al., 2013). Similarly, 

insects feeding may produce inceptins derived from chloroplast ATP synthase 

subunits in the ingested plant tissues (Schmelz et al., 2006). It is thought that the 

different kinds of herbivore- or damage-associated molecular patterns (HAMPs 

or DAMPs) are perceived via plant pattern recognition receptors (PRRs) to induce 

the first stage of plant immunity, named PAMP-triggered immunity (PTI). A gene 

cluster of three rice membrane lectin receptor kinase, has been associated with 

resistance to rice brown planthopper Nilaparvata lugens (Liu et al., 2015), but 

what planthopper elicitors these receptors recognize is not yet known. Plant 

PRRs resemble animal and other eukaryotic Toll and Toll-like receptors that play 

important roles in immunity (Shiu and Bleecker, 2001), suggesting common 

origins of membrane receptors among eukaryotes.  

Plant leucine-rich repeat receptor-like kinases (LRR-RLKs) often function 

as PRRs to elicit downstream immune signaling events, involving activation of 

mitogen-activated protein kinases (MAPKs), induction of Ca2+ waves and reactive 

oxygen species (ROS) bursts (Fürstenberg-Hägg et al., 2013). These signals are 

key for triggering both general defence responses such as callose depositions or 

induction of certain defence genes. The cell surface-localized receptor BAK1 has 

been shown to be important in herbivory-induced defence responses in 

Arabidopsis thaliana (Prince et al., 2014; Chaudhary et al., 2014) and Nicotiana 

attenuata (Yang et al., 2011a), and  is required for activation of jasmonic acid 

(JA)-mediated defences (Yang et al., 2011b). Nevertheless, a single PRR, like 

BAK1, does not function alone in the perception of HAMPs or DAMPs. Instead, 

various different PRRs may act in concert with BAK1 to integrate various stimuli 

from wounding, oral secretions or oviposition fluids. Herbivory activates a 

combination of salicylic acid (SA)-induced protein kinases (SIPKs), wound-

induced protein kinases (WIPKs) and mitogen-activated protein kinases (MAPKs) 

(Wu et al., 2007; Yang et al., 2011b), suggesting that these signaling cascades 

may integrate signals perceived by a multitude of different receptors. Moreover, 

activation of several protein kinase cascades may be important to ensure 

simultaneous elicitation of different defence responses as well as ensuring the 

robustness of the immune response. Wu et al. (2007) demonstrated that SIPKs 
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and WIPKs signals converge to upregulate JA and ethylene (ET)-associated 

signaling in N. attenuata attacked by lepidopteran herbivore Manduca sexta. 

Plant hormones SA, JA and ET are important integrators of signals induced by 

generalist or specialist herbivores and their cross talk may be important for the 

specificity of plant responses to insect attack (Diezel et al., 2009). JA-activated 

defences were shown to be key in plant selection of leafhoppers in the field 

(Kallenbach et al., 2012).  

Downstream of plant hormone signaling transcription factors regulate 

various secondary metabolite pathways for the production of alkaloids, 

glucosinolates, terpenoids, phenolics and their numerous derivatives. Upon 

insect attack, plants activate production of various compounds, such as protease 

inhibitors, lectins, polyphenol oxidases or chitinases, which directly target insect 

digestive tracts (Howe and Jander, 2008). One of the most important groups of 

anti-herbivore chemicals in Brassicaceae, including A. thaliana, are 

glucosinolates, which function as insect toxins and feeding deterrents. Quantity 

and composition of indole and aliphatic forms of glucosinolates were shown to be 

key in host plant selection by aphids (Kim and Jander, 2007; Zust et al., 2012). 

Many phenolics are activated upon herbivore attack and aid plant resistance to 

insect colonization via structural changes in plants (Barakat et al., 2010). For 

example, fortification of cell walls by deposition of lignins impedes the penetration 

of hemipteran stylets. Simple phenolic compounds such as phytoalexins and 

other phenylalanine-derived propanoids such as caffeic, ferulic and coummaric 

acids are important plant chemicals induced by insect attack and mediate insect 

selection of host plants (Robert et al., 2012). Terpenoids (monoterpenes and 

sesquiterpenes) are common plant components that produce blends of volatile 

compounds with various functions – from directly deterring attacking aphids to 

the attraction of predatory and parasitoid insects (Fürstenberg-Hägg et al., 2013) 

– and their synthesis is induced upon insect attack.  

Herbivorous insects either adapt to the plant-derived chemical warfare or 

try to modulate the plant ability to induce these. An emerging paradigm in plant-

insect interactions is the presence of specialized effector proteins in insect saliva 

that suppress defense responses of plants (Hogenhout and Bos, 2011). 

Moreover, molecules (putative effectors) in insect frass also suppress induced 

plant responses (Ray et al., 2016). However, plants possess numerous intra-

cellular nucleotide-binding leucine-rich repeat (NBS-LRR) receptor-like kinases 
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(RLKs) that may recognize such insect effectors and may reinstate defence 

signaling leading to effector-triggered immunity (ETI). For example, the NBS-

LRRs Mi confers resistance to potato aphids, Vat to cotton/melon aphid in melon, 

and Bph14 was identified to confer resistance to planthopper N. lugens in rice 

(Vos et al., 1998; Du et al., 2009; Boissot et al., 2016). However, so far there are 

no insect effectors/elicitors identified that are recognized by plant NBS-LRRs. 

Like extracellular PRRs, the intracellular NBS-LRRs share many structural and 

functional similarities with animal immune receptors (Maekawa et al., 2011). 

It is not known whether males and females of sexually dimorphic insect 

species secrete different defence elicitors or effectors into the plant and thus 

induce plant responses differentially. Moreover, could vector-borne plant 

pathogens, such as phytoplasmas, modulate plant responses that are 

differentially induced by male and female vectors? In this Chapter I focus on 

investigating how SAP54 may modulate insect-induced plant transcriptional 

responses. I find that (1) plants respond differentially to male and female 

leafhoppers, and that (2) insect-induced plant defence responses are altered in 

the presence of SAP54 in insect sex-specific manner. I discuss the implications 

of RNA-seq results for novel hypothesis about potential mechanisms how SAP54 

may modulate insect induced plant responses to promote female egg-laying. 

 

5.2. Results 

 

5.2.1. Experimental design of the RNA-sequencing experiment 

In order to elucidate A. thaliana transcriptional response to insect feeding 

and oviposition and how SAP54 may modulate these, I exposed 35S:GFP and 

35S:GFP-SAP54 plants separately to male and female adult leafhoppers and 

compared to plants which were not exposed to insects (Figure 5.2).  
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Figure 5.2. The design of RNA-seq experiments. Each plant was exposed to five male 

or five female insects or, as control treatments, insect-free clip cages. Each treatment 

was repeated four times (i.e. four plants each) to generate four independent samples 

that were each processed for RNA isolation, library construction and sequencing. 

 

Insects were confined to single fully-expanded leaves using clip cages. To 

investigate if crowding of insects inside the clip cages may have density-

dependent effects on insect performance such as egg laying, I first experimentally 

quantified female egg-laying as a function of insect density per clip cage over a 

period of 48h (Figure 5.3). Five females per clip-cage were found to be the most 

optimal insect density for the RNA-seq experiment based on the highest egg 

count. Standardizing this among the treatments and repeats is important because 

oviposition is shown to induce plant defence responses (Reymond, 2013). Insect 

crowding appears to negatively correlate with female reproductive output. Low 

insect density, on the other hand, did not ensure egg production in every 

experimental replicate, and, therefore, may not induce egg-laying specific 

defence responses.  Clip-cages with 5 male or 5 female insects contained similar 

amount of honeydew excretions (observations under microscope), suggesting 

similar levels of feeding by males and females. Together, these experiments 

indicated that 5 insects per clip cage is the most optimal density in the 48h 

duration. Hence, these conditions were used to obtain the 24 plant samples as 

shown in Figure 5.2 for subsequent RNA extractions, library constructions and 

sequencing. 
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Figure 5.3. Number of M. quadrilineatus eggs laid by females or males and females 

together when put in a single clip-cage for 48h. Insects were taken directly from stock 

cages and put on experimental plants.  

 

5.2.2. Assessment of technical and biological variation in RNA-seq data 

The RNA-seq experiment yielded great read depth and good coverage. 

Across the 24 RNA-seq libraries generated, the average coverage was 33.29 per 

(±0.84 SEM) million reads per library with 96.14% (±0.48% SEM) mapping onto 

the reference genome (A.thaliana TAIR10). I further assessed the dataset for any 

confounding biological variation due to differential expression of transgenes in 

the experimental lines or technical batch-effects associated with RNA extraction 

and sequencing. To do this, I first mapped all library reads to the SAP54 and GFP 

nucleotide sequences.  Given that SAP54 and GFP are not part of the A. thaliana 

genome I used these sequences to confirm the genotype of the plant and to 

assess the variation in SAP54 and GFP expression levels using normalised 

expression values (Figure 5.4). As was hoped, samples extracted from 35S:GFP 

contained reads matching GFP only and no reads matching SAP54. Moreover, 

in the samples derived from the 35S:GFP-SAP54 plants, the number of reads 

matching SAP54 was perfectly correlated with those matching GFP (Figure 5.4). 

Only one replicate from the non-insect exposed samples was excluded from 

further analysis (leaving three replicates) due to the absence of reads matching 

SAP54, indicating that SAP54 was not expressed in this plant. These data 
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indicate that there were no significant differences in SAP54 or GFP expression 

levels between male, female or non-insect exposed 35S:GFP-SAP54 and 

35S:GFP plants. Therefore, differences in SAP54 or GFP expression levels are 

unlikely to contribute to plant responses to males/females. 

 

 

Figure 5.4. Correlation between normalised reads (FPKM counts) corresponding 

to nucleotide sequences of SAP54 and GFP of samples derived from 35S:GFP (left 

panel) and 35S:GFP-SAP54 (right) plants. Since SAP54 is GFP-tagged, reads derived 

from these plants demonstrate perfect positive correlation to SAP54 and GFP sequences 

(right). It was confirmed that no reads corresponding to SAP54 were present in the 

35S:GFP plants (left). Plants exposed to female (f), male (m) or no insects (n) do not 

differ in number of normalized reads matching either SAP54 (F2,10=2.67; p=0.129; 

ANOVA) or GFP (F2,11=0.19; p=0.83; ANOVA) across biological replicates (numbered 

0,1,2,3 on the graph). 

 

Whereas there is no statistical difference in SAP54 and GFP expression 

between male, female and no-insect treated plants, the biological replicates of 

each treatment represent a range of SAP54 and GFP expression values, and this 

may be reflected in the variance in normalised read counts for male and female 

induced plant transcripts, thus lowering the number of significantly induced genes 

in both treatments. Therefore, I wanted to test if the observed variation in the 

expression of GFP and SAP54 within each treatment may confound the global 

expression patterns of all sequenced transcripts. To assess this, I plotted the 
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median of FPKM normalised expression of all sequenced transcripts against the 

GFP expression in all samples (Figure 5.5). Since SAP54 is GFP-tagged, GFP 

alone accounts for the transgene expression in both 35S:GFP-SAP54 and 

35S:GFP plants. There were no effects of the biological variation in SAP54 and 

GFP expression on global gene expression in either male, female or no-insect 

treated plants (Figure 5.5).  

 

 

Figure 5.5. Variations in GFP and SAP54 expression levels of 35S:GFP (left) and 

35S:GFP-SAP54 (right) plants do not positively correlate with the median 

expression levels of all sequenced transcripts. Plants exposed to female (f), male 

(m) or no insects (n) demonstrate similar spread of transgene and global gene 

expression across all 4 biological replicates (labelled 0-3). Median was chosen as a 

statistical measure of non-normal distribution of expression values in all sequenced 

transcripts.  

 

Samples were randomly allocated to four sequencing lanes on the Illumina 

HiSeq2000 platform to minimize the possibility that all samples from same 

treatment or day of RNA extraction would enter the same sequencing lane. In 

order to address the possibility of technical variation among sequencing lanes, 

GFP expression levels of samples run on different lanes were plotted (Figure 5.6). 

Since SAP54 is GFP-tagged in 35S:GFP-SAP54, GFP alone accounts for the 
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transgene expression in both 35S:GFP-SAP54 and 35S:GFP plants. There were 

no significant differences in GFP expression levels across the different 

sequencing lanes (Figure 5.6). Thus, technical variation is unlikely to explain plant 

gene expression differences among the samples.  

 

 

Figure 5.6. There are no significant differences in GFP expression levels among 

the four Illumina HiSeq2000 sequencing lanes. Biological replicates of all insect 

treatments in each genetic background were randomized among lanes of the sequencing 

platform and showed no significant difference in the FPKM normalised GFP read count 

(F3,19=0.78; p=0.522; ANOVA). 

 

Taken together, these results suggest that technical errors in the 

preparation of the experiment nor expression-dependent effects of SAP54 and 

GFP in the transgenic lines are unlikely to confound the effects of male and 

female insect feeding and oviposition on plants. 
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5.2.3. SAP54 alters plant response to leafhoppers in sex-specific manner 

  I previously demonstrated that female leafhoppers prefer male-colonised 

35S:GFP-SAP54 plants for egg-laying but show no oviposition preference for 

35S:GFP-SAP54 plants in absence of males (Chapter 4). This suggests that 

SAP54 may alter male-induced plant responses. To investigate this further, I 

compared the overlap between all significantly differentially expressed (DE) 

transcripts in male- and female-exposed SAP54 and control plants. I found 

considerably more differentially regulated transcripts on male-exposed 35S:GFP-

SAP54 compared to 35S:GFP plants (Figure 5.7). A similar number of transcripts 

(about 900) were upregulated in male- and female-exposed 35S:GFP plants, 

indicating considerable overlap between male and female-induced responses. 

Interestingly, there is a significant proportion (39% upregulated and 82% 

downregulated) of genes specifically regulated by females but not males in 

35S:GFP plants, suggesting that females potentially regulate additional plant 

processes to males. Surprisingly, this trend is completely reverted on 35S:GFP-

SAP54 plants where male leafhoppers upregulate and downregulate a 

considerably greater proportion of transcripts than female insects. This suggests 

that SAP54 may primarily alter plant responses to male leafhoppers.  

 

 

Figure 5.7 
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Figure 5.7. Male insects differentially regulate more genes on 35S:GFP-SAP54 

plants compared to 35S:GFP control plants. The overlap between female and male 

insect upregulated (red) and downregulated (green) genes on 35S:GFP and 35S:GFP-

SAP54 plants. Each circle represents the number of DE transcripts combining 4 

biological replicates in male or female exposed plants compared to the 4 biological 

replicates in no-insect (empty clip-cage) treatment (DEseq; DE transcripts called for 

each-treatment vs control at p<0.05 and q<0.05). Brackets contain the percentage of 

differentially regulated transcripts from the total in each pairwise comparison.  

 

Next, I wanted to investigate which plant processes are changed in 

response to male and female insects on SAP54 and control plants. Therefore, I 

took all significantly up- and down-regulated plant transcripts in response to male 

and female insects and tested for pathway enrichment using MapMan functional 

annotation tool (see materials & methods). Biotic stress transcripts are DE in 

male- and female-exposed control plants. For comparisons, other plant 

processes such as photosynthesis are enriched in DE transcripts only in female- 

but not male-exposed plants (Table 5.1). Interestingly, no single pathway is 

enriched with DE transcripts in female-exposed SAP54 plants, suggesting that 

plant responses to female leafhoppers may not be induced on these plants or 

were silenced by SAP54 after female induction. However, consistent with the data 

presented in Figure 5.7, male insect exposure elicits significant changes in plant 

biotic stress and hormone responses in the SAP54 plants (Table 5.1).  

Since the leafhopper effects on plant biotic stress responses could be one 

of the key components mediating plant-insect interactions, I decided to visualise 

up- and down-regulated transcripts in different components of biotic stress 

responses in the SAP54 and control plants. I used the MapMan functional 

annotation tool to plot fold change (log scale) of insect sex-specific induced plant 

transcripts. More biotic stress-related transcripts were DE in female- compared 

to male-exposed control plants (Figure 5.8). Intriguingly, many of the female and 

male induced transcripts are not DE in the SAP54 plants. Furthermore, pathways 

involved in stress signalling, protein degradation and abiotic (heat) stress are 

significantly downregulated only in male-treated SAP54 plants (Figure 5.8).  

In summary, SAP54 appears to modulate plant stress responses to 

leafhopper-treated plants. Moreover, biotic stress transcripts are significantly 

suppressed in male-exposed SAP54 plants.  
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Table 5.1. Enrichment of biological functions in female and male exposed 35S:GFP 

and 35S:GFP-SAP54 plants compared to insect free plants. Enrichment is calculated 

taking together fold change in all up-regulated and down-regulated transcripts. Biological 

functions are ranked using Wilcoxon rank test with Benjamini-Hochberg correction for 

multiple comparisons. The number of elements in each pathway corresponds to the total 

number of genes within each functional group, based on in-built TAIR9 functional 

annotation in MapMan.  

 

  

bin name elements p-value

29.2 chloroplast ribosomal protein synthesis 44 2.42E-09

1.1 Photosynthesis (light reactions) 27 8.44E-08

20.1 biotic stress related transcripts 97 7.25E-06

26 various cell functions 218 1.19E-04

16 secondary metabolism 77 7.26E-04

27.3.32 WRKY domain transcription factor family 23 1.33E-03

20.1.7 PR-proteins (biotic stress) 48 1.09E-02

26.16 myrosinases (lectin-jacalin domains) 11 1.20E-02

30.2.99 signalling: receptor kinases 14 1.88E-02

17.2.3 hormone metabolism (auxin) 35 1.88E-02

1.3 Photosynthesis (Kalvin cyle) 10 1.88E-02

16.1.5 secondary metabolism (isoprenoids;terpenoids) 4 1.93E-02

17.5.2 hormone metabolism (ethylene signal transduction) 11 3.02E-02

26.10 various cytochrome P450 27 3.58E-02

20.1 biotic stress related transcripts 59 1.81E-02

1 Photosynthesis 5 1.16E-01

16.1.5 secondary metabolism (isoprenoids;terpenoids) 4 1.16E-01

10.2 cell wall (cellulose synthesis) 4 3.16E-01

16.5.1.1 secondary metabolism (sulfur glucosinolate synthesis) 3 4.62E-01

11.9 lipid anabolism 3 4.62E-01

27.3.6 Basic Helix-Loop-Helix family transcription factors 4 4.62E-01

20.1 biotic stress related transcripts 11 4.62E-01

26 various cell functions 58 1.04E-03

20.1 biotic stress related transcripts 16 3.19E-03

17 hormone metabolism 19 2.48E-02

26.16 myrosinases (lectin-jacalin domains) 11 3.02E-02

20.2.1 abiotic stress (heat) 18 4.28E-02

female_GFP vs no insect_GFP

male_GFP vs no insect_GFP

female_SAP54 vs no insect_SAP54

male_SAP54 vs no insect_SAP54
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Figure 5.8. Female and male leafhopper induced plant (biotic) stress responses 

differ between 35S:GFP and 35S:GFP-SAP54 plants. Female insects (A) differentially 

regulate more transcripts than males (B) on 35S:GFP plants compared to no-insect 

treated plants. Female leafhoppers (C) elicit fewer changes than males (D) in plant stress 

responses on 35S:GFP-SAP54 plants compared to no-insect treated plants.  

 

The analyses hitherto did not reveal whether the same DE genes in insect-

exposed control plants were also DE or were regulated in opposite direction in 

insect-exposed SAP54 plants. To test this, I compared the identity of all DE 

transcripts (biotic stress together with other processes) in insect exposed SAP54 

and control plants (Figure 5.9). Surprisingly, almost none of the DE transcripts in 

insect-treated control plants show DE in the opposite direction in the insect-

exposed SAP54 plants (Figure 5.9), suggesting that male and female insects may 

regulate a different set of transcripts on SAP54 compared control plants. 

However, a certain proportion of upregulated and downregulated transcripts in 

insect-exposed control plants are not DE in SAP54, suggesting that SAP54 may 

be modulating the expression of certain insect-regulated plant transcripts. A large 
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proportion of DE transcripts in the leafhopper-treated control plants are DE in the 

same direction in the SAP54 plants.  

Together, these finding suggest that SAP54 may largely modulates the 

type of plant response to the insects independently from silencing insect-induced 

plant responses. In other words, SAP54 modulates plant response in a given 

pathway, such as biotic stress response, by altering expression of leafhopper-

induced genes as well as differentially regulating another set of genes in insect-

dependent manner. 

 

 

Figure 5.9. Male and female insects regulate a different set of transcripts on 

35S:GFP-SAP54 plants compared to 35S:GFP control plants. Male and female insect 

upregulated (red) and significantly downregulated (green) genes on 35S:GFP are 

compared the equivalent treatments on 35S:GFP-SAP54 plant. Each circle represents 

the number of significantly regulated transcripts (DEseq; p<0.05 and q<0.05) in male or 

female exposed plants compared to the no-insect (empty clip-cage) treatment. Brackets 

contain the percentage of differentially regulated transcripts from the total in each four-

way comparison.  

 

There is a possibility that DE transcripts in the female-exposed control 

plants may be oppositely regulated in the male-exposed SAP54 plants. This may 

be important for female attraction to male-colonised plants. I investigate the 

overlap between plant responses to males and females in Figure 5.10. 

Interestingly, most genes that were up- or down-regulated in the male-treated 
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SAP54 plants are not DE in the female-exposed control plants, suggesting that 

males in SAP54 plants may not oppositely regulate the transcripts which females 

would normally induce in the control plants.  

 

 

Figure 5.10. Male insect regulated transcripts on 35S:GFP-SAP54 plants are 

different from female regulated transcripts on 35S:GFP plants. Female insect 

significantly upregulated (red) and significantly downregulated (green) genes on 

35S:GFP are compared the differentially regulated gene set in male exposed 35S:GFP-

SAP54 plants. Each circle represents the number of significantly regulated transcripts 

(DEseq; p<0.05 and q<0.05) in male or female exposed plants compared to the no-insect 

(empty clip-cage) treatment. Brackets contain the percentage of differentially regulated 

transcripts from the total in each four-way comparison 

 

Taken together, data in Figures 5.7-5.9 demonstrate that male-elicited 

responses in the SAP54 plants are largely different from male as well as female 

insect induced responses in the control plants because different sets of genes 

are DE in insect-exposed SAP54 and control plants. Nevertheless, genes that 

are not DE in insects exposed 35S:GFP-SAP54 plants compared to 35S:GFP 

could be silenced by SAP54 or not induced by insects in presence of SAP54.  

It could be that SAP54 alters plant transcriptional responses independently 

from insect exposure, thus explaining why there is a large proportion of DE 

transcripts in insect-exposed SAP54 plants that are not DE in the control plants. 

To test if the effects of the effector were insect-dependent, I compared the DE 
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transcripts between 35S:GFP-SAP54 and 35S:GFP plants exposed to only 

males, only females or no insects (Figure 5.11). I found that most SAP54-induced 

changes in plants are dependent on insect exposure. Furthermore, the greatest 

effect of SAP54 is significant upregulation of 341 transcript in male-dependent 

manner.     

 

 

Figure 5.11. SAP54 differentially regulates plant genes in insect-dependent 

manner. The number of significantly upregulated (red) and significantly downregulated 

(green) genes in 35S:GFP-SAP54 plants compared to 35S-GFP plants depends on the 

insect presence and are specific to male and female leafhoppers.  Each circle represents 

the number of significantly regulated transcripts (DEseq; p<0.05 and q<0.05) in insect 

exposed or non-exposed 35S:GFP-SAP54 compared to insect exposed or non-exposed 

35S:GFP plants. Brackets contain the percentage of differentially regulated transcripts 

from the total in each three-way comparison. 

 

 In summary, female insects can elicit different plant responses to males in 

35S:GFP plants. However, both male and female induced plant responses are 

altered in 35S:GFP-SAP54 plants in leafhopper sex-specific manner. In addition 

to altering expression of transcripts initially induced by males or females in 

35S:GFP plants, another set of transcripts are DE in the SAP54 plants in insect-

dependent manner.  
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5.2.4. One half of A.thaliana genes are expressed in vegetative state and 

define insect sex-specific plant responses 

Analysing only the significantly differentially regulated transcripts may not 

reflect the cumulative effect of small, yet un-significant, changes in insect-induced 

plant pathways. For example, differential expression of a transcription factor may 

cascade to co-ordinated and additive changes in genes representing a certain 

defence pathway. To characterise such effects and identify which pathways may 

be paramount for male-dependent preference of female egg laying on SAP54 

plants, I decided to analyse the transcriptional changes of all expressed plant 

genes. 

To do this, I first identified the set of all expressed transcripts distinct from 

transcripts that show very low expression in any of the experimental conditions. 

Plotting the normalised expression level of all genes in A.thaliana transcriptome 

against the fold change in the gene expression between 35S:GFP-SAP54 and 

35S:GFP plants in male, female-or no-insect treatments showed that transcripts 

with the greatest fold change have very low relative expression (Figure 5.12).  

 

Figure 5.12. Relationship between differential gene regulation (fold change 

between SAP54 and GFP) and gene expression values in female, male and no 

insect exposed plants. Genes with very low expression demonstrate greatest change. 
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This means that a great proportion of genes with minute expression in both 

the experimental treatment and the control can demonstrate massive differences 

in fold change. In a hypothetical example, transcript A changing from 1x10-20 

FPKM (control) to 1x10-18 FPKM (after male insect exposure) shows 100 fold 

increase in expression but transcript B changing from 50 FPKM to 200 FPKM 

only 4 fold. Given the average read depth of 33x106 cDNA fragments and 

assuming the length of transcripts A and B to be approx. 1000 bp, the 

approximate number of reads for transcript A in male exposed plants would be 

negligible, only 33x10-12, whereas transcript B would be detected with 66x108 

reads. To avoid such low expression bias and increase the resolution of reliably 

detectable differences among the treatments, I decided to define an expression 

threshold. Defining the threshold would help to eliminate the negligibly expressed 

transcripts that would give enormous fold-changes. I plotted the frequency of 

transcripts as the function of gene expression. About 25% of the total 

transcriptome across all biological replicates in each treatment has lower 

expression than one FPKM (Figure 5.12). Therefore, for further analysis I 

considered only those transcripts that demonstrate ≥1 FPKM expression (i.e., 

approximately 1 read per million reads of 1kb transcript) in more than a half of all 

biological replicates in at least one of the six experimental treatments (Figure 5.2) 

sequenced. This would capture any meaningful increase or decrease in gene 

expression regardless of the treatment of interest. However, in order to not 

exclude significant changes that result from very small but consistent expression 

changes across biological replicates in any treatment, I kept all significantly 

changed transcripts in the final set of 17153 transcripts for further analysis (Figure 

5.13).  

Together, this approach defines a working list of genes that would 

characterise the global transcriptome changes within the transcribed genome 

including but not restricted to small number of significant fold changes (which are 

defined by statistical assumptions in calculating DE transcripts in Cufflinks (see 

section 8.12)). This would give greater power to subsequent enrichment analysis 

of functional pathways that display the greatest transcriptional changes and 

minimise the ‘’noise’’ of transcripts that are not expressed in all biological 

replicates.  
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Figure 5.13. Combination of all expressed transcripts and transcripts that 

demonstrate significant fold-change in expression levels between any pairwise 

comparisons between treatments. All cDNA libraries show similar distribution of 

normalised gene expression with overrepresentation of low-expressed transcripts. All 

transcripts that demonstrate ≥1 FPKM expression in any of the treatments (top panel) 

were selected together with all transcripts that show significant fold-change irrespective 

of their expression (red; bottom panel) to obtain the final list of 17’153 genes (out of total 

~33’000 mapped transcripts).  
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 I next performed multi-dimensional distance-similarity (MDS) analysis to 

visualise the differences between 35:GFP-SAP54 and 35:GFP plant responses 

to male and female insects based on the expression of the 17’153 genes (Figure 

5.14). Female treated samples group separately from male and no-insect 

exposed plants. The grouping of biological replicates by male, female and no-

insect treatment is stronger than distinction between all GFP or SAP54 plants. 

Interestingly, more distinct subgrouping of SAP54 and GFP plants is observed 

within the group of male-exposed plants compared to females or no-insect 

treatment. This suggests, that the list of expressed 17’153 transcripts captures 

the difference between male and female insects and the potential male-

dependent effects of SAP54.  

 

Figure 5.14. Multi-dimensional plot displays similarity and differences among all 

24 cDNA libraries. Numbers 0 to 3 label biological replicates in male, female and no 

insect control (UTCTRL) on 35S:GFP and 35S:GFP-SAP54 plants. Male (green) and 

female insects (red) group separately from no-insect exposed plants (blue). These 

groupings were highlighted manually after MDS analysis. Within the male group, SAP54 

and GFP plants form more distinct sub-groups than within the groups of female and no-

insect exposed plants. The only exception were biological replicate SAP54_MALE_2 and 

GFP_MALE_2 (confirmed transgene expression in Figure 5.4) grouping to male treated 

GFP and SAP54 plants respectively.  
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5.2.5. Female leafhoppers show differential effects on plant primary and 

secondary metabolism compared to males 

I the previous sections I revealed that SAP54 changes plant responses to 

insects in sex-specific way. Therefore, such effect should rely on the difference 

between male and female induced plant responses. Understanding the 

differential recognition of insect sexes by plants and characterisation of plant 

responses is a paramount for developing a testable hypothesis about the 

mechanism of SAP54- and male-dependent female oviposition preference.  

I visualised the response of all 17’153 expressed A. thaliana transcripts to 

female and male Macrosteles quadrilineatus on 35S:GFP plants. Interestingly, 

both males and females affect similar metabolic pathways in the plant, although 

the extent to which certain pathways are induced appears to be sex-specific 

(Figure 5.15). Both male and female insects induce changes in photosynthesis, 

amino acid metabolism, protein transport as well as alteration in gene regulation 

related to chromatin remodelling and transcription factor activation (Table 5.2). 

Interestingly, many defence-related pathways are enriched in transcripts 

regulated by both male and female insects. These include receptor-like kinases, 

JA and ET pathways as well as secondary metabolites. 

 I used Iterative Group Analysis (IGV) approach to further discriminate 

which functional pathways are enriched in upregulated and downregulated 

transcripts by male and female insects (Table 5.3). Both males and females show 

downregulation of gibberellin pathway and upregulation of jasmonic acid and 

biosynthesis of glucosides and monoterpenes.  

Functional group enrichment analysis also suggest that certain groups of 

secondary metabolites (glucosides and monoterpenes) show correlated change 

with regulation of phytochormone signalling and, therefore, might be situated 

downstream insect perception to mount resistance against herbivore attack 

(Table 5.3). Moreover, some responses in secondary metabolisms appear to be 

sex-specific: cellulose synthesis is significantly enriched with upregulated 

transcripts in male exposed plants but lignin biosynthesis – in female treated 

plants (Table 5.3). Although all components of cell wall synthesis (including 

cellulose and lignin synthesis) are affected in plants exposed to both sex insects 

(Figure 5.15), the degree to which each of these pathways are altered is insect 

sex-dependent. This suggests that modulation of cell wall composition may be a 

general response to leafhoppers, and there could be sex-specific differences in 
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regulation of cell wall components. Similarly, photosynthesis pathway is 

significantly enriched with downregulated transcripts in both male and female 

exposed plants (Table 5.2). However, female insects demonstrate much stronger 

suppression of photosynthetic pathways compared to males (Figure 5.15 and 

relative p-value difference in Table 5.2).  

  

Table 5.2. List of pathways in MapMan annotation that show significant enrichment 

of differentially regulated transcripts in both male and female exposed plants. For 

convenience, redundant functional groups (bins) already represented by higher order 

groupings are omitted from this list. Enrichment analysis is based on Benjamini-

Hochberg correction for multiple pathway comparisons using Wilcoxon rank test.  

 

 

MapMan 

Bin
Pathway description

Nr elements 

in pathway

p-value 

(male 

insects)

p-value 

(female 

insects)

1.1.1 light reactions photosystem II 59 0.009582 1.26E-16

1.3.13 calvin cyle rubisco interacting proteins 6 0.007271 0.0212272

13.1.3 amino acid metabolism: synthesis of aspartate 48 7.66E-04 0.0119167

13.1.7 amino acid metabolism: synthesis of histidine 10 0.040206 0.0048714

16.1.4
secondary metabolism: isoprenoids and 

carotenoids
13 0.004834 0.0020084

17.5.2
hormone metabolism: ethylene signal 

transduction
35 1.26E-08 1.31E-04

17.7.3
hormone metabolism: jasmonate ignal 

transduction
15 0.004335 0.0212272

20.1.7 biotic stress: PR-proteins 502 0.001538 1.55E-10

27.3.3
transcriptional changes: APETALA2/Ethylene-

responsive element binding protein family
117 5.17E-06 4.42E-04

27.3.32
transcriptional changes: WRKY domain 

transcription factor family
72 2.53E-06 6.56E-12

27.3.44
transcriptional changes: Chromatin Remodeling 

Factors
36 1.49E-07 0.0280811

29.1.30 proteina activation: pseudouridylate synthase 15 0.042528 0.0054951

29.2.1 protein synthesis ribosomal proteins 439 0.011931 1.23E-77

29.3.4 protein secretory pathway 128 0.029239 3.57E-04

30.2.17 signalling receptor-like kinases: DUF 26 family 50 0.003154 1.46E-06

30.2.20 signalling receptor-like kinases: LRK10 family 12 0.048369 0.013881

35.1.5
not assignedno ontologypentatricopeptide (PPR) 

repeat-containing protein
455 8.15E-63 2.72E-15
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Figure 5.15. Both female (A) and male (B) insects induce global transcriptional 

changes in A. thaliana. Insects have marked effect on numerous metabolic pathways, 

including carbohydrate, lipid and amino-acid metabolisms. Pathways involved in 

photosynthesis light and dark reactions demonstrate sex-specific degree of regulation. 

All transcripts are coloured based on log2(fold change) when compared insect exposed 

plants to no insect exposed controls.  
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Table 5.3. Iterative group analysis reveals functional groups that are significantly 

overrepresented within the list of upregulated or down-regulated transcripts.  The 

method estimates enrichment of certain pathways based on fold-change ranking of 

differentially expressed transcripts compared to random un-ranked list of the same gene-

set. P-value threshold is adjusted for false-discovery rate.  

 

  

In order to analyse the relative differences between males and females, I 

tested for enrichment of transcripts that demonstrate the greatest difference in 

fold change between male and female exposed plants (Table 5.4). The strength 

of regulation of anabolic primary metabolism pathways (light reactions and Kalvin 

cycle) as well as catabolic reactions (glycolysis and TCA cycle) is different in 

female compared to male exposed plants. Similarly, female exposed plants 

display stronger induction of secondary metabolism pathways such as synthesis 

of glucosinolates, phenylpropanoids and flavonoids (Table 5.4).   

 

 

 

Biological function
Total nr of 

genes

Nr of genes 

changed
P-Value

% genes 

changed

Calvin cycle 39 11 1.92E-05 28.205

gibberellin biosynthesis II (early C-3 hydroxylation) 2 2 3.82E-05 100

cyanate degradation 8 3 0.0001 37.5

gibberellin biosynthesis I (non C-3, non C-13 

hydroxylation)
3 2 0.00011 66.667

gibberellin biosynthesis III (early C-13 hydroxylation) 3 2 0.00011 66.667

flavonoid biosynthesis 21 3 0.0008 14.286

gibberellin biosynthesis II (early C-3 hydroxylation) 2 2 9.67E-05 100

gibberellin biosynthesis I (non C-3, non C-13 

hydroxylation)
3 2 0.00029 66.667

gibberellin biosynthesis III (early C-13 hydroxylation) 3 2 0.00029 66.667

jasmonic acid biosynthesis 15 8 5.76E-08 53.333

monoterpene biosynthesis 2 2 4.78E-05 100

lipoxygenase pathway 11 5 5.11E-05 45.455

glucoside biosynthesis 49 8 5.74E-05 16.327

lignin biosynthesis 30 8 0.00086 26.667

jasmonic acid biosynthesis 15 10 1.73E-08 66.667

lipoxygenase pathway 11 8 5.62E-08 72.727

monoterpene biosynthesis 2 2 5.84E-05 100

glucoside biosynthesis 49 7 0.00012 14.286

anthocyanin biosynthesis 5 3 0.00052 60

cellulose biosynthesis 31 5 0.00085 16.129
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Taken together, I detected differences in plant transcriptional response to 

male and female insects, suggesting that different insect genders may elicit 

distinct responses in plants. RNA-seq data support a hypothesis that female 

insect attack may cause greater suppression of photosynthesis genes and 

stronger upregulation of secondary metabolism pathways compared to male 

leafhoppers. There might also be qualitative differences in regulation of cell wall 

composition in male and female exposed plants. Further metabolomic analysis 

could verify such hypotheses about plant responses to different insect genders. 

 

 

Table 5.4. Enrichment of pathways that show the greatest differences between 

female and male exposed plants. Pathways are derived from MapMan functional 

annotation and ranked based on Benjamini-Hochberg correction for multiple pathway 

comparisons using Wilcoxon rank test. The number of elements in each pathway 

correspond to the total number of expressed genes within each functional bin.  

 

 

 

 

 

 

 

 

 

 

BinCode Pathway description
elements in 

pathway
p-value

1.1 Photosystem light reaction 133 8.742E-36

9 mitochondrial electron transport / ATP synthesis 109 4.841E-06

16.5 secondary metabolism of glucosinolates 54 2.104E-05

10.7 cell wall modification 41 4.200E-04

16.2 secondary metabolism of phenylpropanoids 60 2.730E-03

4 glycolysis 56 5.946E-03

10.8 cell wall pectin esterases 31 9.194E-03

2.2.2 starch degradation 26 1.252E-02

19 tetrapyrrole synthesis 41 1.690E-02

1.3 Kalvin cyle 34 2.167E-02

16.8 secondary metabolism of flavonoids 56 2.207E-02

5 fermentation 11 2.567E-02

10.2 cell wall cellulose synthesis 32 3.156E-02

8.1 TCA cycle 37 3.321E-02

16.10 secondary metabolism of phenols 5 4.185E-02
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5.2.6. Plants differentially perceive male and female insects 

The evidence for sex-specific insect effects on plant primary and 

secondary metabolism suggest that plants may perceive and distinguish between 

male and female insect attack. I aimed to determine whether M. quadrilineatus 

differentially regulates plant pattern recognition receptors and triggers signalling 

cascades characteristic to microbial pathogen recognition via PTI and ETI.  

To investigate this, I compiled a list of all published genes involved in 

pathogen/herbivore perception and signal transduction, and visualised insect 

induced changes within various functional categories (Figure 5.16A). I found that 

leafhoppers upregulate several classes of membrane PRR as well as cytoplasmic 

receptors, including NBL receptors. I also highlighted the families of receptors 

that are significantly enriched in differentially regulated transcripts by either males 

or females (Figure 5.16B). Interestingly, SD, LRKL and L-lectin receptor families 

are significantly differentially expressed only in plants exposed to female insects 

(Figure 5.16A). In contrast, cytoplasmic receptors are significantly enriched by 

both sex insects (Figure 5.16A-B).  

I also quantified the difference in fold change between male and female 

insects to determine which families of receptors show the greatest sex-specific 

responses. Interestingly, induction of cytoplasmic NBL and membrane SD and 

LRR receptors is significantly different between female and male treated plants 

(Table 5.5). There is a significantly large number of NBL transcripts that are 

induced in female-specific manner (Figure 5.16A). Among them are many 

members of TIR-domain containing TNL clade and CCRPW8-domain containing 

CNL clade of NBL receptors which demonstrate 1.5 to 2 fold greater induction in 

females compared to males. Similarly, many LLR are regulated in female-specific 

manner (Table 5.5). In particular, type I LRR are upregulated approximately 4 to 

16 fold stronger by female compared to male exposed plants. In contrast, type III 

LRR are induced 0.6 to 1 fold stronger by males compared to females. SD and 

L-lectin receptors are significantly upregulated by females but not males (Figure 

5.15C), constituting a significant difference between female and male exposed 

plants (Table 5.5).  

Taken this evidence together, the differences between males and females 

could be perceived by plant membrane and cytoplasmic receptors to trigger PTI 

and ETI responses.  
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Figure 5.16. 
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Figure 5.16. Males and females induce JA, SA and ET defence pathway through 

activation of PTI and ETI. Female (A) and male (B) induced defence responses are 

represented by functional categories of all upregulated (red) and downregulated (green) 

transcripts. Panel C summarises the statistical significance of all male and female altered 

defence pathways represented in panels A and B. DE gene enrichment analysis is based 

on Benjamini-Hochberg correction for multiple pathway comparisons using Wilcoxon 

rank test. P-Values <0.05 are shaded in C and highlighted in panels A and B. 

 

 

 

Table 5.5. Enrichment of gene families that show the greatest differences in 

defence gene expression between female and male exposed plants. Groups are 

ranked based on Benjamini-Hochberg correction for multiple comparisons using 

Wilcoxon rank test. The number of elements in each pathway correspond to the total 

number of expressed genes within each functional group.  

 

 

 

 

 

 

 

Pathway 

description
elements in pathway p-value

NLR 85 1.00E-20

LRR 139 2.61E-11

SD 26 1.92E-07

DUF26 33 2.25E-06

WAKL 11 6.94E-06

CDPK 21 3.39E-05

L-lectin 21 3.62E-05

JA SIGNALLING 32 2.34E-04

MEKK 15 4.82E-04

RAF 37 5.35E-04

SA signalling 24 5.51E-04

LRKL 10 6.70E-04

ET SIGNALLING 15 0.0060

CrRLK 12 0.0082

JA BIOSINTHESIS 18 0.0102

MAP4K 9 0.0181

SnRK 30 0.0460

RLCK 72 0.0486
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5.2.7. Leafhoppers induce plant hormone signalling through calcium 

dependent and mitogen activated kinases 

Leafhoppers upregulate calcium-dependent protein kinases (CDPK) and 

MAP kinase cascade (Figure 5.16). CDPK and MEKK are significantly 

upregulated by females (Figure 5.16A) and demonstrate the greatest difference 

between females and males compared to other gene families involved in defence 

signal transduction (Table 5.5). Some of the male and female induced signals 

may converge via MAP2K which appear to be significantly upregulated in both 

males and females (Figure 5.16C) with little difference between insect sexes. 

Given that there could be male and female specific regulation of 

membrane and cytoplasmic receptors and potentially sex-specific signal 

propagation via calcium-dependent or mitogen-activated protein kinases, I 

wanted to further investigate any sex-specific differences in plant hormone 

production and signalling. Both male and female leafhoppers showed enrichment 

of differentially regulated transcripts in ethylene (ET), jasmonic acid (JA) and 

salicylic acid (SA) related pathways relative to other defence signalling 

components (Figure 5.16). Furthermore, there appear to be significant 

differences in insect induced SA, JA and ET signalling between male and female 

exposed plants (Table 5.5). To characterise which transcripts may contribute to 

such differences I arranged all plant hormone production and signalling 

associated transcripts based on their differential induction or suppression by 

leafhoppers (Table 5.6). Interestingly, most transcripts in SA, JA or ET-related 

signalling pathways are regulated in the same direction by both males and 

females. However, females show much stronger relative up- or down-regulation 

of majority of transcripts compared to males. Only female regulated transcripts 

are significantly induced or suppressed relative to no-insect exposed plants, 

suggesting more consistent and less variable response than male insects. The 

significant differences between plant defence hormone response to females and 

males (Table 5.5) can thus be largely explained by the relative strength of JA and 

SA pathway induction (Table 5.6). In contrast, ET signalling genes EIN2/4/5 and 

EIL3 appear to be up-regulated by females but suppressed by males, suggesting 

potential sex-specific regulation. EINs and EILs are known inducers of defence 

genes PDF1.2, PR3 and PR4 (HEL). Moreover, EIN2 has been implicated in 

mediating the cross-talk between SA-JA pathways by potentially upregulating SA 

and NRP1 dependent defence responses (Leon-Reyes et al., 2009). 
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Interestingly, lipoxygenase LOX1, which is involved in jasmonate synthesis, is 

down-regulated in males but upregulated by females, while other lipoxygenases 

LOX2/3/4 also show stronger induction by females compared to weaker 

upregulation by males. Together, this suggests that males and females induce 

SA and JA pathways at different strength but ET pathway may be induced 

specifically by females.  

 

 

Table 5.6. Transcriptional regulation of production and signalling of SA, JA and 

ET pathways by male and female leafhoppers in 35S:GFP plants compared to no-

insect treated 35S:GFP plants. Table displays log2 fold change of gene expression in 

insect exposed compared to insect non-exposed plants. Genes are ranked based on the 

difference between female and male exposed plants. Significantly up- or down-regulated 

transcripts are bold (DEseq of 4 biological replicates; p<0.05; q<0.05).

 

 

TABLE 5.5

id description
female vs no insect 

(35S:GFP)

male vs no insect 

(35S:GFP)

(female vs no insect)-

(male vs no insect) 

(35S:GFP)

AT5G13320 PBS3 2.038453 1.0922304 0.9462226

AT4G18170 WRKY28 3.9393482 3.098744 0.8406042

AT4G39030 SID1 2.2740843 1.6474695 0.6266148

AT4G39030 EDS5 2.2740843 1.6474695 0.6266148

AT2G46400 WRKY46 2.0816283 1.5506265 0.5310018

AT3G56400 WRKY70 1.7672385 1.3786796 0.3885589

AT3G48090 EDS1 0.9557557 0.59020996 0.36554574

AT3G20600 NDR1 1.0259084 1.0818098 -0.0559014

AT2G40750 WRKY54 2.2545888 2.3119123 -0.0573235

AT5G64930 CPR5 0.028154718 0.119974025 -0.091819307

AT4G12560 CPR1 -0.1654363 -0.026598284 -0.138838016

AT1G74710 ICS1 -0.029779283 0.17548081 -0.205260093

AT3G52430 PAD4 0.12851208 0.40768555 -0.27917347

log2(fold change)
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AT1G17420 LOX3 4.3289576 2.4381256 1.890832

AT1G72520 LOX4 4.4609165 2.82393 1.6369865

AT1G55020 LOX1 0.28585416 -1.0923829 1.37823706

AT2G06050 OPR3 2.7020977 1.672469 1.0296287

AT3G45140 LOX2 2.4655602 1.5782071 0.8873531

AT4G16760 ACX1 1.5137568 0.7200791 0.7936777

AT3G16000 MFP1 0.07482655 -0.618786 0.69361255

AT2G46370 JAR1 0.60744244 0.033485174 0.573957266

AT1G76690 OPR2 0.85008407 0.341881 0.50820307

AT1G76680 OPR1 0.8197753 0.38173556 0.43803974

AT3G25780 AOC3 4.3167863 3.8839233 0.432863

AT1G04710 KAT1 -0.2647943 -0.39428568 0.12949138

AT5G42650 AOS 1.554721 1.4870981 0.0676229

AT3G11170 FAD7 0.022748405 0.048456497 -0.025708092

AT1G13280 AOC4 0.73064405 0.7981008 -0.06745675

AT3G25770 AOC2 1.4615489 1.7227287 -0.2611798

AT5G05580 FAD8 -1.6402881 -1.2008085 -0.4394796

AT2G29980 FAD3 -0.81951714 0.03234403 -0.85186117
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TABLE 5.5

id description
female vs no insect 

(35S:GFP)

male vs no insect 

(35S:GFP)

(female vs no insect)-

(male vs no insect) 

(35S:GFP)

log2(fold change)

AT1G01480 ACS2 5.2939487 4.3415475 0.9524012

AT5G05170 CEV1 -0.13861525 -0.4120789 0.27346365

AT4G11280 ACS6 0.48662218 0.3624949 0.12412728

AT1G05010 ACO4 1.1218976 1.1712813 -0.0493837

AT2G22810 ACS4 -1.8239913 -1.5241562 -0.2998351
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AT4G31800 WRKY18 3.7193127 2.59613 1.1231827

AT5G01900 WRKY62 6.274597 5.190764 1.083833

AT3G57260 PR2 5.0163164 4.037296 0.9790204

AT2G38870 PR6 1.6211275 0.7149163 0.9062112

AT2G25000 WRKY60 2.4429326 1.562141 0.8807916

AT1G80840 WRKY40 4.112769 3.3168128 0.7959562

AT1G07745 SSN 1.7039462 0.9766103 0.7273359

AT5G65210 TGA1 0.9274293 0.23980545 0.68762385

AT4G23810 WRKY53 1.7642965 1.2547551 0.5095414

AT1G28480 GRX480 6.288935 5.7966275 0.4923075

AT1G22070 TGA3 0.77078557 0.33946538 0.43132019

AT5G06960 TGA5 0.43851793 0.022438537 0.416079393

AT3G56400 WRKY70 1.7672385 1.3786796 0.3885589

AT1G64280 NPR1 0.5010381 0.15805438 0.34298372

AT5G22570 WRKY38 3.959954 3.6389165 0.3210375

AT5G06950 TGA2 0.100450434 -0.11068462 0.211135054

AT2G14610 PR1 6.1748886 5.9912786 0.18361

AT3G12250 TGA6 0.16283306 0.02465451 0.13817855

AT5G45110 NPR3 0.82424957 0.6951729 0.12907667

AT3G01080 WRKY58 2.1253784 2.0288255 0.0965529

AT4G19660 NPR4 0.24828006 0.24072301 0.00755705

AT2G40750 WRKY54 2.2545888 2.3119123 -0.0573235

AT1G75040 PR5 1.2474132 1.404043 -0.1566298

AT3G28910 MYB30 -0.44031727 0.65615004 -1.09646731
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TABLE 5.5

id description
female vs no insect 

(35S:GFP)

male vs no insect 

(35S:GFP)

(female vs no insect)-

(male vs no insect) 

(35S:GFP)

log2(fold change)

TABLE 5.5

AT1G72260 Thi2.1 3.8823571 2.6024313 1.2799258

AT1G19180 JAZ1 3.3158224 2.0527022 1.2631202

AT5G01900 WRKY62 6.274597 5.190764 1.083833

AT1G17380 JAZ5 4.1672425 3.1219172 1.0453253

AT5G24780 VSP1 6.312779 5.2881503 1.0246287

AT5G24770 VSP2 4.3108935 3.4761329 0.8347606

AT5G13220 JAZ10 6.470355 5.740018 0.730337

AT1G30135 JAZ8 5.6011305 4.965972 0.6351585

AT1G32640 MYC2 1.9626862 1.3749169 0.5877693

AT1G74950 JAZ2 1.9068791 1.3305334 0.5763457

AT1G28480 GGRX480 6.288935 5.7966275 0.4923075

AT5G44420 PDF1.2 1.0419223 0.57555866 0.46636364

AT1G06160 ORA59 2.7084787 2.2484264 0.4600523

AT3G23240 ERF1 2.8181264 2.4051445 0.4129819

AT2G34600 JAZ7 4.2659073 3.8769312 0.3889761

AT3G56400 WRKY70 1.7672385 1.3786796 0.3885589

AT5G07690 MYB29 -0.27639887 -0.6582582 0.38185933

AT5G60890 MYB34 1.3233855 0.9819616 0.3414239

AT5G22570 WRKY38 3.959954 3.6389165 0.3210375

AT1G72450 JAZ6 1.8250027 1.5084853 0.3165174

AT3G12500 PR3 0.548494 0.29447377 0.25402023

AT1G70700 JAZ9 1.5126938 1.2734305 0.2392633

AT5G61420 MYB28 -0.6114925 -0.79694295 0.18545045

AT3G43440 JAZ11 0.4652497 0.2905136 0.1747361

AT5G46760 MYC3 0.4817684 0.32032853 0.16143987

AT5G20900 JAZ12 0.6689292 0.6424131 0.0265161

AT3G17860 JAZ3 0.7180001 0.74961 -0.0316099

AT2G39940 COI1 -0.17561957 -0.09402071 -0.08159886

AT4G17880 MYC4 -0.2539431 -0.15622522 -0.09771788

AT4G38130 HDA19 -0.1410645 0.032698687 -0.173763187

AT3G04720 PR4 (HEL) 0.49584702 0.75437933 -0.25853231

AT5G36910 Thi2.2 -3.2929645 -1.230961 -2.0620035
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AT3G23150 ETR2 2.7041664 1.5432498 1.1609166

AT1G54490 EIN5 0.5697638 -0.3558608 0.9256246

AT5G03280 EIN2 0.42001158 -0.30556643 0.72557801

AT1G73730 EIL3 0.17236136 -0.52529967 0.69766103

AT5G47220 ERF2 2.9783523 2.3535407 0.6248116

AT3G04580 EIN4 0.11394911 -0.28113168 0.39508079

AT3G20770 EIN3 0.38962603 0.005105758 0.384520272

AT5G03730 CTR1 0.37758657 0.05827357 0.319313

AT1G73500 MKK9 1.7137291 1.4774594 0.2362697

AT1G66340 ETR1 0.19407798 -0.013085906 0.207163886

AT2G25490 EBF1 0.41305023 0.24427769 0.16877254

AT2G43790 MPK6 0.19730307 0.06393588 0.13336719

AT2G40940 ERS1 0.19430064 0.1116522 0.08264844

AT3G45640 MPK3 0.43769658 0.39159405 0.04610253

AT2G27050 EIL1 -0.24474297 -0.16881028 -0.07593269
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To validate the findings from RNA-seq, expression of several marker 

genes for JA, SA and ET signalling pathways was measured by rt-qPCR (Figure 

5.17). These genes were selected independently from the results revealed by 

RNA-seq experiment. The transcriptional changes in defence gene signalling are 

likely to be an integrated measure of the upstream response to insect-specific 

stimuli (e.g., receptors in Figure 5.16A) and downstream hormonal cross-talk 

(Figure 5.17A) (Pieterse et al., 2012). For example, the ET response factor ERF1 

is activating PDF1.2 and PR4 (HEL) while simultaneously suppressing VSP2 and 

LOX2. In contrast, JA response factors MYC2 and ORA37 positively 

regulateVSP2 and LOX2 but suppress PDF1.2 and HEL. Therefore, focus on 

individual marker genes may not be a measure of independent variables but 

rather reflect an inter-correlated network of transcriptional regulation and cross-

talk. qPCR data indicate that both male and female insects induce SA, JA and 

ET marker genes, although there is large variation among biological replicates 

(Figure 5.17B-F). PR1 was upregulated by both sex insects (Figure 5.17B). JA-

induced LOX2 expression in female exposed plants was significantly increased 

compared to no-insect treatment (Figure 5.17F). VSP2 was significantly 

upregulated by male leafhoppers (Figure 5.17E). PR4 showed significant 

induction by female leafhoppers and was also strongly upregulated by males 

(Figure 5.17D), while PDF1.2 was not induced by females and showed slight 

induction by males (Figure 5.17C).   

In agreement with RNA-seq data, rt-qPCR data suggest that ET, JA, SA 

pathways are upregulated by male and female insects alike. However, RNA-seq 

data indicate that many defence genes are upregulated stronger in female treated 

plants compared to slightly lower induction by males. For example, JA-response 

genes MYC2 and ORA37 are more strongly upregulated by females than males 

(Table 5.6). Similarly, JA responsive genes ERF1 and ORA59 (positive regulators 

of PDF1.2 and HEL), are also more strongly upregulated by females compared 

to males (Table 5.6). Therefore, the interpretation of inset-sex specific plant 

signalling responses may depend on the functional delimitation of each signalling 

pathway and the effects of hormonal cross-talk.  
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Figure 5.17. Plant exposure to male and female M. quadrilineatus upregulate 

marker genes of SA response (PR1), and JA (VSP2, LOX2) and ET response (HEL, 

PDF1.2). (A) Herbivory induced JA pathway consist of two branches – MYC activated 

VSP2 branch and ERF1/ORA59 activated PDF1.2 branch. ET and SA signals engage in 

a complex cross-talk with each other and the JA signalling (Pieterse et al., 2012). Pointed 

arrows indicate positive regulation but block arrows – negative. Solid lines indicate direct 

regulation; dashed lines - indirect downstream response. (B-F) Gene expression (rt-

qPCR) measurements for selected JA, SA and ET marker genes in no-insect (X), male 
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(M) and female (F) exposed 35S:GFP-SAP54 and 35S:GFP plants. Different letters 

above the bars indicate treatments that are significantly different (Tukey test; p<0.05) in 

any pairwise comparison within each panel. Bars are one standard deviation from the 

mean. Expression measured in 3 independent experiments 48h after exposure to insects 

in identical setup as the RNA-seq experiment. This work is a contribution from Gatsby 

summer student Hannah Smith (University of Manchester), supervised by Z. Orlovskis.  

 

5.2.8. M. quadrilineatus alters regulation of plant secondary metabolism in 

sex-specific manner 

Given the involvement of JA, SA and ET signals in insect-induced defence 

responses, I decided to characterise the transcriptional changes relating to 

secondary metabolite biosynthesis pathways that may be the downstream the 

hormonal defence signals. I visualised the differentially regulated secondary 

metabolism genes in male and female exposed 35S:GFP plants and found 

induction of several pathways (Figure 5.18).  The most enriched pathways with 

insect regulated transcripts relate to phenylpropanoid, carotenoid and 

anthocyanin synthesis (Table 5.7).  

 

Table 5.7. Enrichment of secondary metabolism pathways that show the greatest 

differences in female and male exposed 35S:GFP plants compared to insect non-

exposed 35S:GFP plants. Groups are ranked based on Benjamini-Hochberg correction 

for multiple comparisons using Wilcoxon rank test. The number of elements in each 

pathway correspond to the total number of expressed genes within each functional 

group. Significant enrichment is highlighted in bold.  

 

 

bin  pathway name elements p-value (male) p-value (female)
16.1.4 isoprenoids; carotenoids 14 9.80E-03 6.27E-03
16.8.1 flavonoids; anthocyanins 16 1.79E-02 9.44E-03

16.2 phenylpropanoids 60 7.26E-02 1.74E-03

16.8.5 flavonoids;isoflavonols 7 3.20E-01 1.12E-01

16.1.5 isoprenoids; terpenoids 9 4.17E-01 1.12E-01

16.5.1 sulfur-containingglucosinolates 50 4.31E-01 3.35E-02
16.10 simple phenols 5 4.39E-01 1.05E-02
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Figure 5.18. Enrichment of the secondary metabolism pathways with female (A) 

and male (B) regulated transcripts. Genes are coloured based on log2(fold change) 

when compared insect exposed plants to no insect exposed controls. Red indicates 

upregulated transcripts and green – downregulated transcripts. 

 

The parts of the phenylpropanoid pathway affected by insects are involved 

in lignin biosynthesis and may reflect remodelling of cell wall composition as a 

direct mechanical defence to insect feeding and egg-laying. Moreover, since 

amino acids tyrosine and phenylalanine are involved in the first steps of 

phenylpropanoid-derived lignin synthesis, these results confirm the observed 

changes in upregulation of several modules for amino-acid metabolism (Figure 
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5.11). Another important branch of phenylalanine and phenylpropanoid 

metabolism is the synthesis of salicylic acid (SA), which I found to be 

transcriptionally upregulated by both male and female insects (Figures 5.16 and 

5.17). MapMan analysis reveal that several methyl-transferases are upregulated 

by males and females equally, suggesting upregulation of transcripts involved in 

volatile methyl-salicylate production (Figure 5.19).  

Interestingly, the carotenoid pathway, especially synthesis of lycopene 

and its volatile derivatives, is downregulated by both male and female insects 

(Figure 5.19). Carotenoids are conjugated tetraterpenoids (isoprenoids) that 

protect plant photosynthetic machinery from oxidative stress like ROS as well as 

function in light absorption. Decrease in carotenoid levels could, therefore, be 

associated with general downregulation of photosynthetic processes by insects. 

In addition, carotenoids are precursors of ABA synthesis. ABA biosynthetic 

pathway is not significantly altered by male (p=0.48) or female (p=0.28) insects.  

 

Figure 5.19. Enrichment of the phenylpropanoid (green) and carotenoid (orange) 

pathways with female (A) and male (B) regulated transcripts. Genes are coloured 

based on log2(fold change) when compared insect exposed plants to no insect exposed 

controls. Red indicates upregulated transcripts and green – downregulated transcripts. 

Synthesis of cummarate and its derivatives are the first steps in synthesis of diverse 

range of phenylpropanoids. Methyl-SA is derived from SA and functions as herbivore-

induced volatile signal. Carotenoid pathway depicts synthesis of lycopene and its volatile 

derivatives.  
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In contrast to suppression of carotenoid pathway, most oxidoreductases 

and transferases involved in anthocyanin anabolism are upregulated in both 

females and males (Table 5.7). Anthocyanins are flavonoid compounds that 

accumulate in response to various biotic and abiotic stresses (Nicholson and 

Hammerschmidt, 1992) and can be upregulated by JA (Li et al., 2014). 

Anthocyanins are implicated to function as deterring signal to foliar herbivores 

(Gould, 2004), although detailed mechanistic biochemical analyses on their 

defence role in insect feeding are absent. It could be that anthocyanin 

accumulation is a secondary side-effect of JA signalling without a direct role in 

protection from herbivore attack. Interestingly, phytoplasma infection also change 

leaf pigmentation reminiscent of anthocyanin accumulation (Orlovskis et al., 

2017), suggesting that this may be a general response to biotic stress.   

When analysing only the transcripts that show significant differential 

expression in male and female treated plants compared to non-exposed controls, 

the terpenoid pathway (includes carotenoid synthesis) (p=0.0268) appears to be 

significantly upregulated in females, whereas no secondary metabolism 

pathways are enriched by significantly differentially regulated transcripts in male 

treated plants. This suggests that insect colonisation may induce a plethora of 

subtle changes in secondary metabolism pathways that are better described by 

the cumulative effect of all transcripts rather than only the significantly regulated 

transcripts. Nevertheless, relative to other elements of secondary metabolism, 

terpenoid pathway shows the greatest change (p=0.12) in significantly 

differentially regulated genes in male treated plants as well. In addition, 

monoterpenoid pathway displays significant enrichment with upregulated 

transcripts in both male and female exposed plants by IGA analysis (Table 5.3). 

Terpenoids are diverse class of secondary metabolites. They include many 

herbivore induced volatiles (HIV) such as isoprene (C5), monoterpenes (C10) and 

sesquiterpenes (C15) which function in attraction of herbivore natural enemies like 

parasitoids (Mumm et al., 2008).  

Having looked at male and female elicited responses separately, I 

calculated the relative difference in fold-change between males and females in 

order to characterise secondary metabolite pathways that are most different 

between male and female treated plants. Interestingly, the greatest difference 

between male and female exposed plants can be observed in glucosinolate 

synthesis and degradation (p=5.8E-6) as well as phenylpropanoid (p=0.0027) 
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and terpenoid (p=0.0069) pathways. The individual transcripts that could 

contribute to the male-female difference in phenylpropanoid and terpenoid 

pathways is discussed in figure 5.19. I further analyse transcripts in glucosinolate 

pathway which are most different between male and female exposed 35S:GFP 

plants. Interestingly, transcription factor MYB34 (AT5G60890), known inducer of 

indole glucosinolate synthesis, is significantly upregulated by both male and 

female insects but only female exposed plants demonstrate significant induction 

of monooxygenases and sulfotransferases required for synthesis of indole 

glucosinolates (Table 5.8). In contrast, transcription factor MYB28 (AT5G61420), 

an inducer of the aliphatic glucosinolate pathway, is significantly suppressed only 

by males. This correlates with downregulation of CYP79 family P450 and several 

other transcripts required for aliphatic glucosinolate synthesis in male but not 

female exposed plants (Table 5.8).  

Taken together, M. quadrilineatus males and females appear to 

transcriptionally induce phenylpropanoid (incl. lignins), flavonoid (anthocyanin) 

and terpenoid (incl. carotenoids) biosynthesis. However, these findings would 

require further verification by metabolic analysis. Based on comparison of plant 

transcriptional response to male and female insects, I hypothesise that the 

greatest difference between male and female insects could be stronger induction 

of indole glucosinolate pathway and stronger lignification of cell walls (as part of 

the phenylpropanoid pathway) in female compared to male exposed 35S:GFP 

plants.  
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Table 5.8. Transcriptional regulation of glucosinolate synthesis and degradation 

by male and female leafhoppers compared to no-insect treated 35S:GFP plants. 

Changes in gene expression are expressed as log2(fold change compared to insect non-

exposed plants). Gene list is sorted based on known and putative function as well as the 

magnitude of difference between male and female induced transcripts. All significantly 

differentially regulated transcripts (DEseq; p<0.05; q<0.05) are bold. 

 

 

TABLE 5.7

id description
known and putative 

function

female vs no insect 

(35S:GFP)

male vs no insect 

(35S:GFP)

(female vs no insect)-

(male vs no insect) 

(35S:GFP)

AT4G39950 CYP79B2; monooxygenase synthesis indole 1.7729112 0.43222108 1.34069012

AT2G22330 CYP79B3;  monooxygenase synthesis indole 1.5175377 0.7540856 0.7634521

AT1G74100 SOT16 (SULFOTRANSFERASE 16) synthesis indole 1.1729567 0.59525937 0.57769733

AT1G16400 CYP79F2; oxidoreductase synthesis aliphatic 0.32026076 -0.80146646 1.12172722

AT1G16410 CYP79F1 (CYTOCHROME P450 79F1); oxidoreductase synthesis aliphatic 0.57130045 -0.54832387 1.11962432

AT1G62570

 FMO GS-OX4 (FLAVIN-MONOOXYGENASE 

GLUCOSINOLATE S-OXYGENASE 4); synthesis aliphatic 0.60042006 -0.36836898 0.96878904

AT1G65860

FMO GS-OX1 (FLAVIN-MONOOXYGENASE 

GLUCOSINOLATE S-OXYGENASE 1); synthesis aliphatic 0.56903267 -0.26665014 0.83568281

AT5G23010 MAM1 (METHYLTHIOALKYLMALATE SYNTHASE 1) synthesis aliphatic 0.4307763 -0.34757137 0.77834767

AT2G25450 2-oxoglutarate-dependent dioxygenase synthesis aliphatic 0.67215 -0.061365664 0.733515664

AT1G62540

FMO GS-OX2 (FLAVIN-MONOOXYGENASE 

GLUCOSINOLATE S-OXYGENASE 2) synthesis aliphatic 1.1422445 0.4332868 0.7089577

AT5G23020 IMS2 (2-ISOPROPYLMALATE SYNTHASE 2) synthesis aliphatic -0.09634639 -0.7477016 0.65135521

AT1G74090 SOT18 (DESULFO-GLUCOSINOLATE SULFOTRANSFERASE synthesis aliphatic 0.21963859 -0.42224443 0.64188302

AT1G62560

FMO GS-OX3 (FLAVIN-MONOOXYGENASE 

GLUCOSINOLATE S-OXYGENASE 3); synthesis aliphatic 0.13320608 -0.45724124 0.59044732

AT1G12140

 FMO GS-OX5 (FLAVIN-MONOOXYGENASE 

GLUCOSINOLATE S-OXYGENASE 5) synthesis aliphatic 0.40223497 -0.17337592 0.57561089

AT4G13770  CYP83A1 (CYTOCHROME P450 83A1); oxidoreductase synthesis aliphatic 0.062380746 -0.47709513 0.539475876

AT2G31790 UDP-glucoronosyl/UDP-glucosyl transferase family synthesis aliphatic -0.019870277 -0.484284 0.464413723

AT1G18590  SOT17 (SULFOTRANSFERASE 17) synthesis aliphatic 0.37352785 0.013907112 0.359620738

AT4G13430  IIL1 (ISOPROPYL MALATE ISOMERASE LARGE SUBUNIT 1) synthesis aliphatic 0.1673143 -0.15055872 0.31787302

AT4G03060 AOP2 (ALKENYL HYDROXALKYL PRODUCING 2); synthesis aliphatic -0.03274115 -0.27625024 0.24350909

AT1G80560 3-isopropylmalate dehydrogenase, chloroplast synthesis aliphatic -0.30280465 -0.5436517 0.24084705

AT3G58990 aconitase C-terminal domain-containing protein synthesis aliphatic -0.2284998 -0.28174993 0.05325013

AT3G19710  BCAT4 (BRANCHED-CHAIN AMINOTRANSFERASE4) synthesis aliphatic 0.20200075 0.18485317 0.01714758

AT3G49680  BCAT3 (BRANCHED-CHAIN AMINOTRANSFERASE 3) synthesis aliphatic -0.46392485 -0.47311455 0.0091897

AT1G31180 3-isopropylmalate dehydrogenase, chloroplast synthesis aliphatic -0.42228907 -0.19216147 -0.2301276

AT2G43100 aconitase C-terminal domain-containing protein synthesis aliphatic -0.26336655 -0.008706165 -0.254660385

AT5G67310 CYP81G1 synthesis 5.734708764 3.644918738 2.089790026

AT3G25180 CYP82G1 synthesis 7.63184507 6.009682376 1.622162694

AT4G31500

CYP83B1 (CYTOCHROME P450 MONOOXYGENASE 83B1); 

oxidoreductase synthesis 1.6477817 0.48997673 1.15780497

AT1G24100 UGT74B1 (UDP-glucosyl transferase 74B1) synthesis 0.69371015 -0.060552128 0.754262278

AT5G36220 CYP81D1 synthesis 1.746823619 1.059982586 0.686841033

AT2G20610  SUR1 (SUPERROOT 1); S-alkylthiohydroximate lyase synthesis 0.5239903 -0.15184383 0.67583413

AT4G37430 CYP81F1 synthesis 1.144144323 0.622831593 0.52131273

AT4G37400 CYP81F3 synthesis 0.149975043 -0.31901503 0.468990073

AT4G37410 CYP81F4 synthesis 7.405770954 7.040912492 0.364858462

AT4G37310 CYP81H1 synthesis 0.012109377 -0.307006269 0.319115646

AT5G10600 CYP81K2 synthesis 0.095560293 -0.187498143 0.283058436

AT5G10610 CYP81K1 synthesis 0.823319942 0.556163456 0.267156486

AT4G36220 CYP84A1 synthesis 0.115630123 -0.004300672 0.119930795

AT4G37370 CYP81D8 synthesis 0.952039755 0.928726089 0.023313666

AT4G37330 CYP81D4 synthesis -0.348075546 -0.354996578 0.006921032

AT4G37320 CYP81D5 synthesis -0.826339545 -0.570429629 -0.255909916

AT4G03070 AOP1; oxidoreductase synthesis -0.51234895 -0.16057749 -0.35177146

AT4G12030 bile acid:sodium symporter family protein  transport aliphatic 0.07099996 0.06900377 0.00199619

AT5G60890 MYB34 (MYB DOMAIN PROTEIN 34)  regulation indole 1.3233855 0.9819616 0.3414239

AT1G18570  MYB51 (MYB DOMAIN PROTEIN 51);  regulation indole 0.48416606 0.43518615 0.04897991

AT3G09710 IQD1 (IQ-DOMAIN 1); calmodulin binding  regulation indole 0.09980682 0.058305793 0.041501027

AT1G07640 OBP2;  transcription factor  regulation indole -0.026937073 -0.0194419 -0.007495173

AT5G07700 MYB76 (myb domain protein 76);  regulation aliphatic 0.32542762 -0.41016668 0.7355943

AT5G07690 MYB29 (ARABIDOPSIS THALIANA MYB DOMAIN PROTEIN  regulation aliphatic -0.27639887 -0.6582582 0.38185933

AT5G61420 MYB28 (myb domain protein 28)  regulation aliphatic -0.6114925 -0.79694295 0.18545045

AT3G44300  NIT2 (nitrilase 2); indole-3-acetonitrile nitrilase  degradation nitrilase 3.7133937 2.0089164 1.7044773

AT5G22300 NIT4 (NITRILASE 4); 3-cyanoalanine hydratase  degradation nitrilase 0.4140047 0.14701194 0.26699276

AT3G44310 NIT1; indole-3-acetonitrile nitrilase  degradation nitrilase 0.7149703 0.68318886 0.03178144

AT3G44320 NIT3 (NITRILASE 3); indole-3-acetonitrile nitrilase  degradation nitrilase 1.7170254 1.7797713 -0.0627459

AT5G25980 TGG2 (GLUCOSIDE GLUCOHYDROLASE 2); hydrolase  degradation myrosinase 0.10047097 -0.35671127 0.45718224

AT5G26000 TGG1 (THIOGLUCOSIDE GLUCOHYDROLASE 1)  degradation myrosinase -0.19902748 -0.3562 0.15717252

AT1G54020 myrosinase-associated protein  degradation myrosinase 7.1731653 6.2215157 0.9516496

AT1G52040 MBP1 (MYROSINASE-BINDING PROTEIN 1)  degradation myrosinase 3.8152065 3.068632 0.7465745

AT2G44490 PEN2 (PENETRATION 2); hydrolase  degradation myrosinase 0.0317747 -0.22750616 0.25928086

AT1G54010 myrosinase-associated protein  degradation myrosinase 7.184137 6.9978223 0.1863147

AT3G14210 ESM1 (epithiospecifier modifier 1); carboxylesterase  degradation myrosinase -0.566893 -0.59116584 0.02427284

AT5G48180 NSP5 (NITRILE SPECIFIER PROTEIN 5)  degradation 0.15783691 0.23907402 -0.08123711

AT1G54040 ESP (EPITHIOSPECIFIER PROTEIN);  degradation 0.8126608 0.78560185 0.02705895

log2(fold change)
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5.2.9. Insect induced plant stress responses are central in multi-functional 

gene network  

RNA-seq results in section 5.2.5 suggested that biotic stress related 

pathways are among the strongest plant responses to insects in addition to insect 

effect on primary metabolic processes like photosynthesis. Why so many different 

plant processes are altered at the same time by insect exposure? Regulation of 

plant defence, growth and nutrition can be linked in a regulatory gene or protein 

interaction network. To assess the extent to which defence related genes are 

wired up to other plant processes, I took all expressed genes from the RNA-seq 

dataset (Figure 5.13) and analysed their interaction network using all publically 

available protein-protein and transcription factor-target gene interactions from 

STRING and JASPAR databases respectively (for details see materials and 

methods section) to generate network of all expressed genes in my RNA-seq 

dataset (red circle Figure 5.20).  

Within this network, I highlighted the total interactome (green circle Figure 

5.20) of all defence genes annotated in Figure 5.16 to look at the functional 

enrichment of all genes that are directly interacting with genes encoding 

receptors, signalling cascades and phytohormone signals (Figure 5.21). I found 

the 693 annotated and expressed defence genes are well connected with nodes 

that have diverse biological functions in primary and secondary metabolism. 

Protein modifications, immune response and developmental regulation are 

examples of biological functions that are significantly enriched with defence gene 

interactors (Figure 5.21). 

I found that the sub-network including all defence genes and their first-

level interactors (green circle Figure 5.20) has an average of 10 connections to 

other expressed genes, half of which are interactions between defence genes 

with each other (network analysis, Cytoscape). This connectivity is similar to the 

mean number of edges (interactions) per each node within the network of all 

expressed transcripts (red circle Figure 5.20), suggesting that any similar size 

random list of genes could produce a network with similar connectivity. Therefore, 

it could have been difficult to isolate a hypothetical network of defence gene 

interactors based on network topology alone. I found that many biological 

functions that are enriched with interactors from defence-related nodes (Figure 

5.21) are also part of plant transcriptional response to insect attack (Table 5.1). 

This suggests that, given the co-expression of the neighbouring (interacting) 
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genes in the network, perception of insect attack and downstream signalling 

cascade may affect a variety of other biological processes in addition to activating 

plant defence. Hence, the properties (topology) of gene regulatory and protein-

protein interaction network may underlie the trade-offs between growth and 

defence (Figure 5.1) and confound the multitude of changes that are observed in 

plant response to insects (Figure 5.15).  

 

 

Figure 5.20. Schematic diagram describing the interaction network of A.thaliana 

defence genes. I annotated 1082 genes (blue circle) relating to the defence signalling 

from membrane and cytoplasmic receptors to kinases and SA, JA, ET signalling 

(displayed in Figure 5.16). 693 of these genes are expressed in the RNA-seq dataset 

and have direct interaction with each other or with any other expressed gene, constituting 

a network with 16 763 interactions or edges (green circle). 15 430 or 89% out of the total 

of 17 153 expressed genes have identifiable interactions, comprising a network of 183 

835 interactions (red circle). The defence genes interact with each other (green + blue 

interaction) and with other genes of various functions (red + green intersection). The 

defence genes (4.4% of total expressed network nodes) constitute approximately 9.1% 

of all interactions within the total interaction network of expressed genes (red circle), 

indicating considerable inter-connectivity or centrality. 
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Figure 5.21. Visualisation of the biological function enrichment within the 

interaction network of all defence-related genes and their direct (first level) 

interactors. Genes are assigned biological function based on GO terms and clustered 

according on their function and network topology using BINGO enrichment tool within 

Cytoscape network visualisation package. Enrichment analysis is done by 

hypergeometric test and Bejamini-Hochberg (BH) False Discovery rate correction. Two 

pathways relating to defence signalling and developmental regulations are highlighted to 

demonstrate the broad biological context of the interactors of the 693 gene set of 

selected receptors, kinases and signalling pathways. For clarity, enrichment of only few 

biological functions is displayed in the table. 

 

5.2.10. Plant perception of male and female insects is altered on SAP54 

plants 

Upon exposure to male or female leafhoppers, plants differentially regulate 

membrane and cytoplasmic receptors (Table 5.5), which may be directly involved 

in insect sex-dependent recognition. These results suggest that plants could 

potentially recognise the difference between female or male insect presence and 

activity. I, therefore, wanted to investigate whether SAP54 may change the male 

and female differentially induced plant responses and identify functional groups 
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of genes that do not any longer show the observed difference between male and 

female insect induced responses in 35S:GFP-SAP54 plants.  

To do this, I took the fold change for each transcript in response to male 

(and, separately, female) insects (relative to no-insect treatment) on 35S:GFP 

and 35S:GFP-SAP54 plants. Then I calculated the difference between male (and, 

separately, female) effect in 35S:GFP and 35S:GFP-SAP54 plants. Finally, I 

calculated the difference between male and female differentially induced 

responses in 35S:GFP and 35S:GFP-SAP54 plants. I investigated which plant 

responses are enriched in this parameter.  Surprisingly, I found that SAP54 has 

the greatest effect on the difference in how male and female insects affect 

expression of plant signalling genes, especially receptor kinases (Table 5.9; 

Analysis 1). This suggests that SAP54 may alter how plants perceive male and 

female leafhoppers. Moreover, there are significant differences between male 

and female effects on transcriptional regulation, protein translation and basal 

metabolism on 35S:GFP-SAP54 plants compared to 35S:GFP plants (Table 5.9; 

Analysis 1). Because many members of plant receptor families are wired up in a 

dense network of genes with diverse range of functions from defence to 

development (Figure 5.21), 35S:GFP-SAP54 plants may demonstrate different 

responses in many biological functions to male and female insects compared to 

35S:GFP plants. 

To characterise which receptors are most affected, I performed similar 

enrichment analysis specifically for all defence signalling genes manually 

annotated in Figure 5.16 and found that leucine-rich repeat receptors (LLRs, 

especially subfamily III and XI), nucleotide binding LLR receptors (NLRs) as well 

as MAP3K (RAF sub-family) demonstrate the greatest sex-specific effects of 

SAP54 (Table 5.9; Analysis 2). In addition, male and female induced changes in 

phytohormone (SA, JA, ET) biosynthesis are significantly different on 35S:GFP-

SAP54 plants compared to 35S:GFP plants (Table 5.9; Analysis 2). 

This provides strong case for further in-depth comparative analysis of male 

and female effects on defence signalling and potential downstream responses of 

secondary metabolites in 35S:GFP-SAP54 and 35S:GFP plants. 
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Table 5.9. Functional enrichment analysis of transcripts that demonstrate SAP54 

dependent changes in the difference between female and male induced plant 

responses. Analysis 1 describes the enrichment of all A.thaliana pathways (17153 

expressed genes). Analysis 2 was performed independent of analysis 1 and specifically 

describes the SAP54 effects on female-male difference in manually curated defence 

signalling pathway (693 expressed genes). Both analysis are based on Benjamini-

Hochberg correction for multiple pathway comparisons using Wilcoxon rank test and are 

ranked according to significance.  

 

 

Bin Code Bin Name
Number of 

genes
p-value

30 signalling 872 <1E-100

30.2 signalling via receptor kinases 294 <1E-100

29.2.1 protein.synthesis.ribosomal protein 361 1.73E-71

29.2 protein.synthesis 511 1.12E-49

27.3 RNA.regulation of transcription 1451 1.62E-09

9 mitochondrial electron transport / ATP synthesis 109 2.68E-09

28.1 DNA.synthesis/chromatin structure 262 1.96E-07

31.1 cell organisation 257 3.42E-07

27.3.44 RNA.regulation of transcription.Chromatin Remodeling Factors 24 3.70E-07

20.2.1 stress abiotic heat 141 1.30E-05

30.2.3 signalling via receptor kinases (leucine rich repeat III) 27 1.88E-05

30.11 signalling (light reactions) 91 2.07E-05

31.2 cell division 75 4.28E-05

34.16 ABC transporters and multidrug resistance systems 75 5.70E-05

29.5.1 protein degradation (subtilases) 21 1.70E-04

9.7 mitochondrial electron transport / ATP synthesis.cytochrome c oxidase 23 2.25E-04

30.2.11 signalling via receptor kinases (leucine rich repeat XI) 21 2.46E-04

29.4 protein postranslational modification 513 2.48E-04

27.1.2 RNA.processing (helicases) 32 2.73E-04

2 major Charbohydrate metabolism 77 3.44E-04

29.3.4.99 protein targeting (secretion) 48 5.69E-04

Analysis 1: Enrichment of all functional pathways

manual curation LRR 139 <1E-20

manual curation NLR 85 <1E-20

manual curation RAF 37 <1E-20

manual curation DUF26 33 0.0006

manual curation WAKL 11 0.0083

manual curation ET BIOSYNTHESIS 5 0.0129

manual curation SD 26 0.0149

manual curation CrRLK 12 0.0149

manual curation MEKK 15 0.0163

manual curation extensin 5 0.0203

manual curation MAP4K 9 0.0210

manual curation SA synthesis 12 0.0272

manual curation JA BIOSINTHESIS 18 0.0318

manual curation CDPK 21 0.0510

manual curation ET SIGNALLING 15 0.0566

manual curation PERKL 5 0.0995

manual curation ZIK 9 0.1072

manual curation NB 14 0.1628

manual curation CR4L 4 0.1630

manual curation OTHER RLK 14 0.1879

manual curation RLCK 72 0.2131

manual curation JA SIGNALLING 32 0.4997

manual curation CRK 7 0.6555

manual curation LRKL 10 0.7036

manual curation MAPK 18 0.7496

manual curation SnRK 30 0.7731

manual curation L-lectin 21 0.7787

manual curation SA signalling 24 0.8972

manual curation MAP2K 6 0.9882

Analysis 2: Enrichment of defence signaling transcripts
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5.2.11. Phytoplasma effector SAP54 alters male leafhopper induced plant 

defence signals 

Since female leafhoppers demonstrate preference for male-colonised 

35S:GFP-SAP54 plants (Chapter 4), and the specificity of male and female 

induced defence responses is altered on 35S:GFP-SAP54 compared to control 

plants, I hypothesise that insect induced plant defence signals may be changed 

by SAP54 in insect sex-specific manner.  

In order to evaluate this hypothesis and tease apart which elements of 

insect-induced plant responses are modulated by SAP54, I analysed the 

transcriptional changes in defence signalling of male and female exposed 

35S:GFP-SAP54 plants and compared to 35S:GFP plants. Intriguingly, SAP54 

appears to suppress male-induced defence signalling (Figure 5.22B) but not 

female-induced defence responses (Figure 5.22A). Most of the female-induced 

transcripts in 35S:GFP plants remain upregulated in female exposed 35S:GFP-

SAP54 plants. In contrast, male-exposed plants show considerable 

downregulation of cytoplasmic NBLs proteins, membrane PRRs as well as MAP 

and Ca-dependent kinase cascades in SAP54 plants. Surprisingly, even though 

the effect of SAP54 on the expression of different functional groups of defence 

signalling genes in female treated plants is barely noticeable, the families that 

demonstrate the greatest change relative to other categories of defence genes 

between SAP54-expressing and non-expressing plants within male or female 

treatments are similar (Figure 5.22C). These include NLR, LRR, SD and L-lectin 

receptor families which are more upregulated in female-, compared to male-, 

exposed 35S:GFP plants. These receptors are largely downregulated in male-

exposed 35S:GFP-SAP54 plants but are changing only slightly in female-

exposed 35S:GFP-SAP54. This suggests that the degree of suppression of plant 

pattern recognition receptors may be highly insect sex dependent. However, this 

would require further validation with RNA-seq independent methods.  

Dramatic downregulation of receptors as well as defence signalling 

through kinases can be observed only in male-exposed plants. Kinases in MEKK 

and CDPK families were significantly induced by female but not male insects in 

35S:GFP plants (Figure 5.16C). Interestingly, particular CDPK transcripts, for 

example, CDPK29, which are primary induced by both male and female insects 

in 35S:GFP plants, are downregulated only in male-exposed 35S:GF-SAP54 

plants. In addition, many MAP3K, that were not induced by insects in 35S:GFP 
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plants, are downregulated in male colonised SAP54 plants as well (Figure 5.22B). 

This suggests that SAP54 may modulate both insect induced and non-induced 

plant defence signals predominantly in male-dependent manner. 

 

 

 

Figure 5.22. (continued next page) 
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Figure 5.22. The effect of SAP54 on female (A) and male (B) leafhopper induced 

plant defence signalling responses. For each panel insect treated plants are 

compared to no-insect exposed control to characterise differentially expressed 

transcripts. Insect induced responses are compared between SAP54 non-expressing 

plants (left) and SAP54 expressing plants (right). Colour scale indicates log2(fold 

change).  Panel C summarises the overrepresentation of SAP54-altered expression of 

different functional groups in the defence pathway by taking the difference in fold change 

between female induced responses in SAP54 expressing plants (right) and female 

induced responses in SAP54 non-expressing plants (left). The enrichment analysis is 

based on Benjamini-Hochberg correction for multiple pathway comparisons using 

Wilcoxon rank test. P-Values <0.05 are shaded in C and highlighted on the right-hand 

side in panels A and B. 

 

Interestingly, SA or JA synthesis and signalling are not significantly altered 

in female exposed SAP54 compared to the control plants. Nevertheless, 

transcripts in ET signalling show significantly different induction by females in 

35S:GFP-SAP54 compared to 35S:GFP plants (Figure 5.22A,C). While SA 

pathway is not significantly altered by males, the transcripts involved in both JA 

synthesis and ET signal transduction are significantly changed in male exposed 

SAP54 plants compared to GFP controls (Figure 5.22B,C). The alteration of both 

female and male induced ET signalling related transcripts in SAP54 plants may 

explain the significant effects of SAP54 on the difference between male and 

female induced ET synthesis and signalling (Table 5.9; Analysis 2).  

This prompted me to further investigate which particular transcripts may 

best demonstrate sex-specific induced responses to leafhoppers in 35S:GFP-

SAP54 plants. In Table 5.10 I compare regulation of all SA, JA and ET synthesis 

and response genes in male and female exposed plants. ET signalling pathway 

demonstrates most dramatic male-specific regulation in 35S:GFP-SAP54 plants 

relative to JA or SA pathways. Ethylene response factors EIN2/5 and EIL3 are 

significantly downregulated only in male-exposed SAP54 plants. Moreover, 

several other transcripts (e.g., EIM3/5, CTR1, ETR1, EIL1) show greater 

downregulation in male-exposed 35S:GFP-SAP54 plants compared to male-

treated 35S:GFP plants or any of the female treatments (Table 5.10). 

Majority of male and female induced SA synthesis and signalling genes in 

35S:GFP plants remain induced in 35S:GFP-SAP54 plants. Only SA synthesis 



192 

 

gene EDS1 and SA response factor TGA6 are downregulated (yet not 

significantly) in male-exposed SAP54 plants. The expression of PR1 was 

independently confirmed in insect exposed SAP54 plants by rt-qPCR. Similar to 

RNA-seq data, PR1 transcripts did not display significant change in male or 

female treated SAP54 plants compared to insect exposed GFP controls (Figure 

5.17B).  

JA synthesis genes LOX1, MFP1 are significantly suppressed in both 

female and male treated 35S:GFP-SAP54 plants compared to 35S:GFP controls. 

While several other JA synthesis genes (e.g., LOX2/3, OPR2/3, ACX1, FAD7) 

and jasmonate-amido synthetase JAR1 are significantly upregulated in female 

exposed SAP54 and control plants, these transcripts are not significantly 

regulated in male exposed SAP54 or control plants (Table 5.10). This further 

suggests that strength of induction of JA synthesis transcripts may be sex-specific 

but SAP54 may not alter these responses. Furthermore, female and male 

regulated expression of JA signalling transcripts is very similar in both 35S:GFP 

and 35S:GFP-SAP54 plants. JA signalling genes largely demonstrate the same 

fold change in response to female and male insects compared to no-insect 

treatments in 35S:GFP and 35S:GFP-SAP54 plants. Nevertheless, male-induced 

transcripts in 35S:GFP-SAP54 are significantly upregulated compared to non-

significant but similar fold induction in 35S:GFP, suggesting less variable 

35S:GFP-SAP54 plant response to males across the 4 biological replicates 

compared to male response in GFP plants. Independent qPCR measurements 

confirm RNA-seq data and display no significant effect of SAP54 on male or 

female induced expression of VSP1 (Figure 5.17E). However, the marker gene 

for other JA signalling branch – PDF1.2 - was significantly upregulated only in 

male exposed SAP54 plants compared to GFP controls (Figure 5.17C). In 

contrast, the expression of PDF1.2 in female exposed SAP54 was not 

significantly changed compared to GFP plants (Figure 5.17C). 

Regulation of PDF1.2 is partially dependent on the ET pathway. Hence, 

sex-specific transcriptional changes in PDF1.2 in SAP54 plants are consistent 

with the marked downregulation of several ethylene response factors in male 

exposed SAP54 plants compared to any other treatment (Table 5.10).  In 

addition, such effect may also be mediated by ET biosynthesis genes like CEV1 

(CONSTITUTIVE EXPRESSION OF VSP1), which is downregulated in male 

exposed 35S:GFP-SAP54 plants. CEV1, also known as CESA3, is a cellulose 
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synthase gene and a negative regulator of JA and ET synthesis (Ellis et al., 2002). 

For example, PDF1.2 expression is increased in cev1 mutant (Ellis et al., 2002). 

Similarly, another example of only male downregulated transcript in 35S:GFP-

SAP54 plants, is a chloroplast protein MFP1 (AT3G16000) which may influence 

the distribution of plastid nucleoid-associated transcription factors such as 

JASMONATE- AND ETHYLENE-RESPONSIVE FACTOR3 (JERF3) (Melonek et 

al., 2012).  

Taken together, male leafhoppers significantly downregulate many 

families of plant receptors as well as kinases, involved in defence signal 

transduction, and ethylene signalling in 35S:GFP-SAP54 plants compared to 

female exposed plants. This supports a hypothesis that phytoplasma effector 

SAP54 may modulate plant (defence) response to insects in sex-specific manner. 

 

 

 

Table 5.10. Transcriptional regulation of production and signalling of salicylic 

acid, jasmonic acid and ethylene pathways by male and female leafhoppers in 

35S:GFP  and 35S:GFP-SAP54 plants compared to no-insect treated controls. 

Changes in gene expression are expressed as log2(fold change compared to insect non-

exposed plants) and colour coded based on magnitude of fold change. All significantly 

differentially regulated transcripts (DEseq; p<0.05; q<0.05) are bold. Genes within each 

functional category are ranked based on the difference between female induced 

responses in 35S:GFP and male exposed 35S:GFP-SAP54 plants.  

 

 

Bin 

Name
id description

female vs no 

insect (35S:GFP)

female vs no 

insect (35S:GFP-

SAP54)

male vs no insect 

(35S:GFP)

male vs no 

insect (35S:GFP-

SAP54)

(male vs no insect) 

(35S:GFP)-(male vs 

no insect) (35S:GFP-

SAP54)

at3g48090 EDS1 0.9557557 0.7251941 0.59020996 -0.65636635 1.61212205

at4g18170 WRKY28 3.9393482 3.4627066 3.098744 2.3907247 1.5486235

at5g13320 PBS3 2.038453 1.7392759 1.0922304 0.53526837 1.50318463

at4g39030 SID1 2.2740843 1.9657433 1.6474695 0.90483624 1.36924806

at4g39030 EDS5 2.2740843 1.9657433 1.6474695 0.90483624 1.36924806

at3g56400 WRKY70 1.7672385 1.5156872 1.3786796 0.7960569 0.9711816

at2g40750 WRKY54 2.2545888 1.8499814 2.3119123 1.7706509 0.4839379

at2g46400 WRKY46 2.0816283 2.1729584 1.5506265 1.7340697 0.3475586

at1g74710 ICS1 -0.029779283 0.37514928 0.17548081 -0.28217867 0.252399387

at5g64930 CPR5 0.028154718 -0.066701725 0.119974025 -0.11814707 0.146301788

at4g12560 CPR1 -0.1654363 -0.06942983 -0.026598284 0.16309403 -0.32853033

at3g20600 NDR1 1.0259084 1.3992205 1.0818098 1.4007345 -0.3748261

at3g52430 PAD4 0.12851208 0.485579 0.40768555 0.5950565 -0.46654442

log2(fold change)
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at1g17420 LOX3 4.3289576 3.5756466 2.4381256 0.72666466 3.60229294

at1g72520 LOX4 4.4609165 3.3013844 2.82393 1.1659689 3.2949476

at1g55020 LOX1 0.28585416 -0.94393677 -1.0923829 -2.2608175 2.54667166

at3g45140 LOX2 2.4655602 1.7664899 1.5782071 0.3057747 2.1597855

at3g16000 MFP1 0.07482655 -0.54007465 -0.618786 -1.9904559 2.06528245

at2g06050 OPR3 2.7020977 1.8931677 1.672469 0.70544827 1.99664943

at4g16760 ACX1 1.5137568 0.8888173 0.7200791 -0.27062008 1.78437688

at1g76680 OPR1 0.8197753 0.49909 0.38173556 -0.42025355 1.24002885

at1g04710 KAT1 -0.2647943 -0.40562248 -0.39428568 -0.9386587 0.6738644

at2g46370 JAR1 0.60744244 0.58598113 0.033485174 -0.032989044 0.640431484

at3g25780 AOC3 4.3167863 3.9525578 3.8839233 3.687311 0.6294753

at1g76690 OPR2 0.85008407 0.73942757 0.341881 0.4512251 0.39885897

at5g42650 AOS 1.554721 1.5823281 1.4870981 1.2671357 0.2875853

at3g11170 FAD7 0.022748405 0.063611746 0.048456497 -0.13525379 0.158002195

at1g13280 AOC4 0.73064405 0.9138545 0.7981008 1.0448301 -0.31418605

at5g05580 FAD8 -1.6402881 -1.4607558 -1.2008085 -1.2516963 -0.3885918

at3g25770 AOC2 1.4615489 1.7989235 1.7227287 1.9538772 -0.4923283

at2g29980 FAD3 -0.81951714 -1.2109964 0.03234403 -0.08214166 -0.73737548

at1g01480 ACS2 5.2939487 4.2355185 4.3415475 2.7584414 2.5355073

at5g05170 CEV1 -0.13861525 -0.5794741 -0.4120789 -1.4813585 1.34274325

at4g11280 ACS6 0.48662218 0.43505165 0.3624949 -0.36386567 0.85048785

at1g05010 ACO4 1.1218976 1.2673575 1.1712813 1.1211358 0.0007618

at2g22810 ACS4 -1.8239913 -0.43556368 -1.5241562 -0.5310869 -1.2929044

at1g80840 WRKY40 4.112769 3.014189 3.3168128 2.170846 1.941923

at4g31800 WRKY18 3.7193127 3.3309233 2.59613 2.3694453 1.3498674

at5g22570 WRKY38 3.959954 2.8239894 3.6389165 2.7153137 1.2446403

at5g01900 WRKY62 6.274597 6.802041 5.190764 5.167966 1.106631

at5g65210 TGA1 0.9274293 0.309489 0.23980545 -0.1728847 1.100314

at1g07745 SSN 1.7039462 0.93663 0.9766103 0.61561877 1.08832743

at3g56400 WRKY70 1.7672385 1.5156872 1.3786796 0.7960569 0.9711816

at3g12250 TGA6 0.16283306 -0.040248826 0.02465451 -0.6418953 0.80472836

at1g28480 GRX480 6.288935 6.0329523 5.7966275 5.5204635 0.7684715

at4g23810 WRKY53 1.7642965 1.5030613 1.2547551 1.0263273 0.7379692

at2g25000 WRKY60 2.4429326 2.2083583 1.562141 1.7178147 0.7251179

at1g64280 NPR1 0.5010381 0.5708589 0.15805438 -0.17861564 0.67965374

at2g38870 PR6 1.6211275 1.4795359 0.7149163 0.9432469 0.6778806

at5g06960 TGA5 0.43851793 0.18769374 0.022438537 -0.23623034 0.67474827

at3g01080 WRKY58 2.1253784 2.0469582 2.0288255 1.5634657 0.5619127

at5g06950 TGA2 0.100450434 -0.047796313 -0.11068462 -0.4527204 0.553170834

at3g57260 PR2 5.0163164 5.5427523 4.037296 4.49393 0.5223864

at2g40750 WRKY54 2.2545888 1.8499814 2.3119123 1.7706509 0.4839379

at1g22070 TGA3 0.77078557 0.82025695 0.33946538 0.2878519 0.48293367

at4g19660 NPR4 0.24828006 0.351899 0.24072301 0.18015772 0.06812234

at5g45110 NPR3 0.82424957 0.99316263 0.6951729 0.7585778 0.06567177

at1g75040 PR5 1.2474132 0.95370764 1.404043 1.7556505 -0.5082373

at3g28910 MYB30 -0.44031727 -0.13865685 0.65615004 0.45825464 -0.89857191

at2g14610 PR1 6.1748886 7.1062393 5.9912786 8.086036 -1.9111474
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5.2.12. SAP54 suppresses glucosinolate pathway in both female and male 

exposed plants 

Manipulation of insect induced defence responses in SAP54-expressing 

plants prompted to further investigate if there are any sex-specific leafhopper 

effects on plant secondary metabolite production in 35S:GFP-SAP54 compared 

to 35S:GFP plants. Interestingly, female triggered plant responses are largely 

very similar between SAP54 and control plants (Figure 5.23A), whereas male 

insects downregulate several transcripts in isoprenoid (non-mevalonic acid) 

at1g19180 JAZ1 3.3158224 1.992522 2.0527022 1.0722562 2.2435662

at1g30135 JAZ8 5.6011305 4.181439 4.965972 3.633433 1.9676975

at1g17380 JAZ5 4.1672425 3.3774276 3.1219172 2.282001 1.8852415

at5g24770 VSP2 4.3108935 3.592643 3.4761329 2.6144319 1.6964616

at5g24780 VSP1 6.312779 5.941676 5.2881503 4.6462083 1.6665707

at1g32640 MYC2 1.9626862 1.3031694 1.3749169 0.6179589 1.3447273

at5g22570 WRKY38 3.959954 2.8239894 3.6389165 2.7153137 1.2446403

at5g13220 JAZ10 6.470355 6.2962723 5.740018 5.2448177 1.2255373

at1g72260 Thi2.1 3.8823571 4.916722 2.6024313 2.7487748 1.1335823

at5g01900 WRKY62 6.274597 6.802041 5.190764 5.167966 1.106631

at3g56400 WRKY70 1.7672385 1.5156872 1.3786796 0.7960569 0.9711816

at1g74950 JAZ2 1.9068791 1.5979201 1.3305334 1.0070405 0.8998386

at1g28480 GGRX480 6.288935 6.0329523 5.7966275 5.5204635 0.7684715

at2g34600 JAZ7 4.2659073 3.762066 3.8769312 3.497509 0.7683983

at1g72450 JAZ6 1.8250027 1.85572 1.5084853 1.3018297 0.523173

at3g23240 ERF1 2.8181264 2.4511504 2.4051445 2.328989 0.4891374

at5g46760 MYC3 0.4817684 0.40021035 0.32032853 0.088264056 0.393504344

at1g70700 JAZ9 1.5126938 1.5970533 1.2734305 1.3295035 0.1831903

at5g60890 MYB34 1.3233855 1.2048147 0.9819616 1.1748875 0.148498

at5g61420 MYB28 -0.6114925 -0.8210182 -0.79694295 -0.587066 -0.0244265

at4g38130 HDA19 -0.1410645 -0.27167192 0.032698687 -0.061193146 -0.079871354

at3g43440 JAZ11 0.4652497 0.28946346 0.2905136 0.560985 -0.0957353

at3g17860 JAZ3 0.7180001 0.88043576 0.74961 0.8346824 -0.1166823

at5g07690 MYB29 -0.27639887 -0.29359707 -0.6582582 -0.15048313 -0.12591574

at2g39940 COI1 -0.17561957 -0.043961227 -0.09402071 -0.001246829 -0.174372741

at5g20900 JAZ12 0.6689292 0.86653954 0.6424131 0.940759 -0.2718298

at4g17880 MYC4 -0.2539431 -0.13125104 -0.15622522 0.14829773 -0.40224083

at3g12500 PR3 0.548494 1.1369607 0.29447377 0.96000546 -0.41151146

at1g06160 ORA59 2.7084787 4.715375 2.2484264 4.6777434 -1.9692647

at5g36910 Thi2.2 -3.2929645 -2.5298922 -1.230961 -1.0240619 -2.2689026

at3g04720 PR4 0.49584702 3.8881545 0.75437933 4.307714 -3.81186698

at5g44420 PDF1.2 1.0419223 6.6946893 0.57555866 7.5760565 -6.5341342

at1g54490 EIN5 0.5697638 -0.5840838 -0.3558608 -2.2040825 2.7738463

at3g23150 ETR2 2.7041664 1.0975465 1.5432498 0.4544361 2.2497303

at5g03280 EIN2 0.42001158 -0.5309605 -0.30556643 -1.7185597 2.13857128

at5g47220 ERF2 2.9783523 2.4403372 2.3535407 1.293253 1.6850993

at1g73730 EIL3 0.17236136 -0.35726884 -0.52529967 -1.2915127 1.46387406

at3g20770 EIN3 0.38962603 -0.023225255 0.005105758 -0.7070481 1.09667413

at5g03730 CTR1 0.37758657 -0.21693277 0.05827357 -0.6967671 1.07435367

at3g04580 EIN4 0.11394911 -0.2394421 -0.28113168 -0.85658085 0.97052996

at1g66340 ETR1 0.19407798 0.031079073 -0.013085906 -0.66752315 0.86160113

at2g27050 EIL1 -0.24474297 -0.48481268 -0.16881028 -0.73382765 0.48908468

at2g43790 MPK6 0.19730307 -0.04973423 0.06393588 -0.23647425 0.43377732

at2g25490 EBF1 0.41305023 0.104349084 0.24427769 0.13547496 0.27757527

at3g45640 MPK3 0.43769658 0.57963616 0.39159405 0.24465919 0.19303739

at2g40940 ERS1 0.19430064 0.00031429 0.1116522 0.066562295 0.127738345

at1g73500 MKK9 1.7137291 1.9687945 1.4774594 1.6953958 0.0183333
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pathway as well as in phenylpropanoids (incl. lignin biosynthesis) pathways in 

35S:GFP-SAP54 compared to 35S:GFP plants (Figure 5.23B). Nevertheless, no 

single pathway is significantly enriched in transcripts that are differentially 

regulated by males on SAP54 compared to control plants (Figure 5.23C). This 

suggests that there are small transcriptional changes relatively evenly distributed 

in most secondary metabolite pathways in male exposed SAP54 plants. 

Surprisingly, glucosinolate pathway (p=0.0067) is significantly enriched in female 

regulated transcripts that show the greatest difference between 35S:GFP-SAP54 

and 35S:GFP plants. Glucosinolates also demonstrate the greatest difference 

between male exposed 35S:GFP-SAP54 and 35S:GFP plants relative to other 

male-regulated pathways (Figure 5.23C).  

I further investigated which transcripts involved in regulation and 

production of glucosinolates are most changed in insect exposed 35S:GFP-

SAP54 compared to 35S:GFP plants. I found that numerous transcripts involved 

in indole and aliphatic glucosinolate synthesis as well as mirasonase production 

are significantly downregulated in male-treated SAP54 plants (Table 5.11). The 

male-suppressed mirasonases TGG1 and 2 are hydrolysing insect ingested plant 

glucosinolates into toxic thiocyanates within herbivore guts (Bennett and 

Wallsgrove, 1994). 

 

 

 

Figure 5.23 (continued next page) 



  

197 

 

 

 

Figure 5.23. The effect of SAP54 on female (A) and male (B) leafhopper induced 

secondary metabolism. For each panel insect treated plants are compared to no-insect 

exposed control to characterise differentially expressed transcripts. Insect induced 

responses are compared between SAP54 non-expressing plants (left) and SAP54 

expressing plants (right). Colour scale indicates log2(fold change).  Panel C summarises 

the overrepresentation of SAP54-altered expression of different functional groups in the 

secondary metabolite pathway by taking the difference in fold change between insect 

induced responses in SAP54 expressing plants (right) and insect induced responses in 

SAP54 non-expressing plants (left). The enrichment analysis is based on Benjamini-

Hochberg correction for multiple pathway comparisons using Wilcoxon rank test. P-

Values <0.05 are shaded in C and highlighted on the right-hand side in panels A and B. 

Only a selection of pathways with top-ranked p-values are selected.  
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Table 5.11. Transcriptional regulation of indole and aliphatic glucosinolates in 

male and female leafhoppers exposed 35S:GFP and 35S:GFP-SAP54 plants 

compared to no-insect treated controls. Changes in gene expression are expressed 

as log2(fold change compared to insect non-exposed plants) and colour coded based on 

magnitude of fold change. All significantly differentially regulated transcripts (DEseq; 

p<0.05; q<0.05) are bold. Genes within each functional category are ranked based on 

the difference between female induced responses in 35S:GFP and male exposed 

35S:GFP-SAP54 plants. 

 

 

id description
known and putative 

function

female vs no 

insect (35S:GFP)

female vs no insect 

(35S:GFP-SAP54)

male vs no 

insect (35S:GFP)

male vs no insect 

(35S:GFP-SAP54)

(female vs no insect)-

(male vs no insect) 

(35S:GFP)

AT5G67310 CYP81G1 synthesis 5.734708764 3.470017846 3.644918738 2.359747653 3.374961111

AT1G16410 CYP79F1 (CYTOCHROME P450 79F1); synthesis aliphatic 0.57130045 -0.788865766 -0.54832387 -1.81240731 2.38370776

AT4G39950 CYP79B2; monooxygenase synthesis indole 1.7729112 0.916526859 0.43222108 -0.497437957 2.270349157

AT4G31500
CYP83B1 (CYTOCHROME P450 MONOOXYGENASE 

83B1); oxidoreductase
synthesis 1.6477817 0.823289067 0.48997673 -0.599654152 2.247435852

AT3G25180 CYP82G1 synthesis 7.63184507 7.409947722 6.009682376 5.404231632 2.227613438

AT5G25980 TGG2 (GLUCOSIDE GLUCOHYDROLASE 2);  degradation myrosinase 0.10047097 -0.054013303 -0.35671127 -1.925235743 2.025706713

AT1G16400 CYP79F2; oxidoreductase synthesis aliphatic 0.32026076 -1.063178206 -0.80146646 -1.570664634 1.890925394

AT1G74090
SOT18 (DESULFO-GLUCOSINOLATE 

SULFOTRANSFERASE 18)
synthesis aliphatic 0.21963859 -0.647898571 -0.42224443 -1.43223977 1.65187836

AT5G23010 MAM1 (METHYLTHIOALKYLMALATE SYNTHASE 1) synthesis aliphatic 0.4307763 -0.541799801 -0.34757137 -1.133081215 1.563857515

AT1G62570
 FMO GS-OX4 (FLAVIN-MONOOXYGENASE 

GLUCOSINOLATE S-OXYGENASE 4); 
synthesis aliphatic 0.60042006 -0.177937329 -0.36836898 -0.949551162 1.549971222

AT5G23020 IMS2 (2-ISOPROPYLMALATE SYNTHASE 2) synthesis aliphatic -0.09634639 -1.896244287 -0.7477016 -1.641550655 1.545204265

AT2G20610  SUR1 (SUPERROOT 1); S-alkylthiohydroximate synthesis 0.5239903 -0.237699077 -0.15184383 -0.968302974 1.492293274

AT1G24100 UGT74B1 (UDP-glucosyl transferase 74B1) synthesis 0.69371015 -0.275694444 -0.060552128 -0.792207754 1.485917904

AT1G65860
FMO GS-OX1 (FLAVIN-MONOOXYGENASE 

GLUCOSINOLATE S-OXYGENASE 1); 
synthesis aliphatic 0.56903267 -0.405147819 -0.26665014 -0.916625458 1.485658128

AT4G37430 CYP81F1 synthesis 1.144144323 0.553467845 0.622831593 -0.336232755 1.480377078

AT5G26000 TGG1 (THIOGLUCOSIDE GLUCOHYDROLASE 1)  degradation myrosinase -0.19902748 -0.192668067 -0.3562 -1.646868682 1.447841202

AT1G62540
FMO GS-OX2 (FLAVIN-MONOOXYGENASE 

GLUCOSINOLATE S-OXYGENASE 2)
synthesis aliphatic 1.1422445 0.475969937 0.4332868 -0.305285159 1.447529659

AT1G12140
 FMO GS-OX5 (FLAVIN-MONOOXYGENASE 

GLUCOSINOLATE S-OXYGENASE 5)
synthesis aliphatic 0.40223497 -0.212307699 -0.17337592 -1.012708161 1.414943131

AT4G37410 CYP81F4 synthesis 7.405770954 7.781563458 7.040912492 6.009708061 1.396062893

AT2G22330 CYP79B3;  monooxygenase synthesis indole 1.5175377 1.001156956 0.7540856 0.136084248 1.381453452

AT3G44300  NIT2 (nitrilase 2); indole-3-acetonitrile nitrilase  degradation nitrilase 3.7133937 3.971744969 2.0089164 2.392378709 1.321014991

AT3G09710 IQD1 (IQ-DOMAIN 1); calmodulin binding  regulation indole 0.09980682 -0.262214254 0.058305793 -1.196354485 1.296161305

AT4G13770  CYP83A1 (CYTOCHROME P450 83A1); synthesis aliphatic 0.062380746 -0.682369236 -0.47709513 -1.207385865 1.269766611

AT1G62560
FMO GS-OX3 (FLAVIN-MONOOXYGENASE 

GLUCOSINOLATE S-OXYGENASE 3);
synthesis aliphatic 0.13320608 -0.873531512 -0.45724124 -1.100956582 1.234162662

AT1G74100 SOT16 (SULFOTRANSFERASE 16) synthesis indole 1.1729567 0.594173458 0.59525937 -0.010474552 1.183431252

AT5G36220 CYP81D1 synthesis 1.746823619 1.326902872 1.059982586 0.604776447 1.142047172

AT2G31790
UDP-glucoronosyl/UDP-glucosyl transferase 

family protein
synthesis aliphatic -0.019870277 -0.893475673 -0.484284 -1.096926818 1.077056541

AT5G10600 CYP81K2 synthesis 0.095560293 0.133269852 -0.187498143 -0.843368345 0.938928638

AT1G80560 3-isopropylmalate dehydrogenase, chloroplast synthesis aliphatic -0.30280465 -0.870433118 -0.5436517 -1.213001337 0.910196687

AT2G25450 2-oxoglutarate-dependent dioxygenase synthesis aliphatic 0.67215 0.275177695 -0.061365664 -0.170843955 0.842993955

AT4G13430
 IIL1 (ISOPROPYL MALATE ISOMERASE LARGE 

SUBUNIT 1)
synthesis aliphatic 0.1673143 -0.236492655 -0.15055872 -0.513267956 0.680582256

AT2G44490 PEN2 (PENETRATION 2); hydrolase  degradation myrosinase 0.0317747 -0.093617953 -0.22750616 -0.575872104 0.607646804

AT4G37310 CYP81H1 synthesis 0.012109377 -0.029547183 -0.307006269 -0.541710606 0.553819983

AT4G37330 CYP81D4 synthesis -0.348075546 -0.734563235 -0.354996578 -0.89373471 0.545659164

AT3G44320 NIT3 (NITRILASE 3); indole-3-acetonitrile nitrilase  degradation nitrilase 1.7170254 1.330786163 1.7797713 1.182687883 0.534337517

AT4G37400 CYP81F3 synthesis 0.149975043 -0.179923516 -0.31901503 -0.321989152 0.471964195

AT4G03060
AOP2 (ALKENYL HYDROXALKYL PRODUCING 2); 

oxidoreductase
synthesis aliphatic -0.03274115 -0.445818992 -0.27625024 -0.389852668 0.357111518

AT1G54040 ESP (EPITHIOSPECIFIER PROTEIN);  degradation 0.8126608 0.756212049 0.78560185 0.511297971 0.301362829

AT3G49680  BCAT3 (BRANCHED-CHAIN AMINOTRANSFERASE synthesis aliphatic -0.46392485 -0.724750238 -0.47311455 -0.756805267 0.292880417

AT5G22300 NIT4 (NITRILASE 4); 3-cyanoalanine hydratase  degradation nitrilase 0.4140047 0.697651932 0.14701194 0.143410826 0.270593874

AT3G14210 ESM1 (epithiospecifier modifier 1);  degradation myrosinase -0.566893 -0.491033651 -0.59116584 -0.810639183 0.243746183

AT5G10610 CYP81K1 synthesis 0.823319942 0.856913881 0.556163456 0.581699652 0.24162029

AT1G18570  MYB51 (MYB DOMAIN PROTEIN 51);  regulation indole 0.48416606 0.667369893 0.43518615 0.300101456 0.184064604

AT5G48180 NSP5 (NITRILE SPECIFIER PROTEIN 5)  degradation 0.15783691 -0.253961903 0.23907402 -0.020037128 0.177874038

AT1G52040 MBP1 (MYROSINASE-BINDING PROTEIN 1)  degradation myrosinase 3.8152065 5.054194229 3.068632 3.644459199 0.170747301

AT1G18590  SOT17 (SULFOTRANSFERASE 17) synthesis aliphatic 0.37352785 0.183423245 0.013907112 0.203498992 0.170028858

AT5G07700 MYB76 (myb domain protein 76);  regulation aliphatic 0.32542762 0.21717874 -0.41016668 0.157191114 0.168236506

AT5G60890 MYB34 (MYB DOMAIN PROTEIN 34)  regulation indole 1.3233855 1.204814666 0.9819616 1.174887526 0.148497974

AT1G07640 OBP2;  transcription factor  regulation indole -0.026937073 -0.008055827 -0.0194419 -0.131225708 0.104288635

AT4G36220 CYP84A1 synthesis 0.115630123 0.214767901 -0.004300672 0.018621044 0.097009079

AT5G61420 MYB28 (myb domain protein 28)  regulation aliphatic -0.6114925 -0.821018235 -0.79694295 -0.587066015 -0.024426485

AT3G44310 NIT1; indole-3-acetonitrile nitrilase  degradation nitrilase 0.7149703 0.680483838 0.68318886 0.761379128 -0.046408828

AT4G37370 CYP81D8 synthesis 0.952039755 0.607814584 0.928726089 1.056812292 -0.104772537

AT1G31180 3-isopropylmalate dehydrogenase, chloroplast synthesis aliphatic -0.42228907 -0.453803884 -0.19216147 -0.30621 -0.11607907

AT5G07690
MYB29 (ARABIDOPSIS THALIANA MYB DOMAIN 

PROTEIN 29)
 regulation aliphatic -0.27639887 -0.293597075 -0.6582582 -0.150483131 -0.125915739

AT1G54020 myrosinase-associated protein  degradation myrosinase 7.1731653 9.22090584 6.2215157 7.326834253 -0.153668953

AT3G58990 aconitase C-terminal domain-containing protein synthesis aliphatic -0.2284998 -0.372115539 -0.28174993 -0.060800193 -0.167699607

AT4G37320 CYP81D5 synthesis -0.826339545 -0.329099341 -0.570429629 -0.526234396 -0.300105149

AT3G19710  BCAT4 (BRANCHED-CHAIN synthesis aliphatic 0.20200075 0.194267845 0.18485317 0.511263224 -0.309262474

AT4G12030 bile acid:sodium symporter family protein  transport aliphatic 0.07099996 0.008997615 0.06900377 0.460592245 -0.389592285

AT1G54010 myrosinase-associated protein  degradation myrosinase 7.184137 8.329665295 6.9978223 7.658668308 -0.474531308

AT2G43100 aconitase C-terminal domain-containing protein synthesis aliphatic -0.26336655 -0.27992406 -0.008706165 0.302004345 -0.565370895

AT4G03070 AOP1; oxidoreductase synthesis -0.51234895 -0.451526411 -0.16057749 0.272201395 -0.784550345
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Next, I aimed to investigate in which other secondary metabolism groups 

the difference between male and female induced responses is most significantly 

altered by SAP54. Surprisingly, SAP54 does not have significant effects on the 

difference between male and female induced responses (Table 5.12). These 

results suggest that SAP54 may similarly affect the same processes in male and 

female exposed plants but have greater effect only in male-exposed plants. Thus, 

expression of SAP54 may simply amplify the already existing differences 

between male and female differentially induced secondary metabolite transcripts. 

Nevertheless, the carotenoid and lignin biosynthetic pathways demonstrate the 

greatest effect of SAP54 on differences between male-to-female induced 

responses relative to other pathways (Table 5.12).  

 

Table 5.12. Functional enrichment analysis of transcripts that demonstrate SAP54 

dependent changes in the difference between female and male induced plant 

responses in secondary metabolite biosynthesis. Pathways are ranked according to 

significance, applying Benjamini-Hochberg correction for multiple pathway comparisons 

after Wilcoxon rank test. Some pathways demonstrate nested redundancy for greater 

discrimination of overrepresented changes due to SAP54 activity. 

 

 

 

Bin Code Bin Name
Number of 

genes
p-value

16.1.4 isoprenoids; carotenoids 14 0.1264

16.2.1 phenylpropanoids; lignin biosynthesis 31 0.2268

16.4.2 betaine 3 0.2425

16.8.3 flavonoids; dihydroflavonols 16 0.4590

16.10 simple phenols 5 0.4744

16.5.1 glucosinolates 50 0.5215

16.1.2 isoprenoids; mevalonate pathway 15 0.5920

16.1.5 isoprenoids; terpenoids 9 0.6646

16.8.2 flavonoids; chalcones 9 0.6651

16.8.4 flavonoids; flavonols 9 0.6918

16.1.3 isoprenoids; tocopherol biosynthesis 8 0.7324

16.2 phenylpropanoids 60 0.7417

16.1.1 isoprenoids; non-mevalonate pathway 19 0.7763

16.8.1 flavonoids; anthocyanins 16 0.8969

16.8.5 flavonoids; isoflavonols 7 0.9378

16.7 wax 9 0.9451

13.1.6.4 synthesis of tyrosine 2 0.9650

13.1.6.3 synthesis of phenylalanine 6 0.9702

16.4.1 misc. alkaloid-like 18 0.9857

 Enrichment of all secondary metabolism pathways
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Detailed analysis of male and female regulation of the carotenoid pathway 

reveal that transcripts involved in lycopene biosynthesis and conversion are more 

strongly downregulated in male than female exposed 35S:GFP-SAP54 plants 

compared to 35S:GFP controls (Figure 5.24). A greater difference between male 

and female induced responses in SAP54 plants can be observed in phenyl-

propanoid (lignin) pathway (Figure 5.24). While some PAL transcripts that 

catalyse conversion of phenylalanine to cinnamic acid are upregulated in both 

male and female exposed 35S:GFP plants, all PAL transcripts are downregulated 

in SAP54 plants in male-specific manner (Figure 5.24). In concordance with such 

changes in PALs, similar effects can be observed for several 4CL transcripts 

which have previously been identified to show similar expression profile with PAL 

(Lois and Hahlbrock, 1992) and may be regulated by the same set transcription 

factors. In contrast to PAL and 4CL, males significant upregulate CCoAOMT 

genes (p=0.089) that methylate caffeate, ferrulate and sinapate in the lignin 

biosynthesis pathway in 35S:GFP-SAP54 plants compared to 35S:GFP. It is 

possible that upregulation of these genes is a result of lower abundance of their 

substrates due to male-specific suppression of 4CL in SAP54 plants (Figure 

5.24). Caffeic, ferrulic and sinapic acids form various conjugates with different 

solubility. The composition and bioavailability of these different phenolic acid 

derivatives is implicated in the induced systemic resistance to herbivory (Erb et 

al., 2015). Limiting the transformation of phenylalanine into these phenolic acids 

may suppress plant resistance to leafhoppers and enhance host acceptance for 

oviposition.     

In summary, glucosinolate production is significantly downregulated in 

male-exposed SAP54 plants but much less reduced in female-exposed SAP54 

plants. Moreover, male insects specifically downregulate transcripts involved 

production of anti-herbivore phenolic acids in 35S:GFP-SAP54 plants while such 

effects are not characteristic in female-exposed plants.  
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Figure 5.24. The effects of SAP54 on phenylpropanoid and carotenoid pathways. 

Insect exposed control plants are on the left column and SAP54 expressing plants 

are on the right. All plants are exposed to either female (top) or male (bottom) insects. 

Scale bars represent log2(fold change) for phenylpropanoid and carotenoid pathways. 

Pathway images adopted from MapMan visualisation interface. PAL (phenylalanine 

ammonia-liase) genes are involved in phenylalanine conversion to cinnamate. 

Cinnamate or cinnamic acid are further converted to cummarate and caffeic acid 

(represented by multiple sequential arrows), then ferrulic and sinapic acids (single 

arrows). These organic acids are conjugated to Co-A by Co-A ligase (4CL). CCoAOMT 
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(caffeoyl–coenzyme A (CoA) O-methyltransferase) genes (marked as B) are involved in 

methylation pathway of lignin biosynthesis using Co-A conjugated caffeate, ferrulate, 

hydrohyferrulate and sinapate as substrates (marked by single arrows). SAP54 

downregulates PAL and 4CL catalysed steps and upregulates CCoAOMT in male 

exposed plants. The carotenoid pathway depicts conversion of two geranylgeranyl-

pyrophosphates (GGPP) into phytoene, zeta-carotene and lycopene. Lycopene is later 

converted into various carotenes and their volatile derivatives. This pathway is 

downregulated by both male and female insects. SAP54 induces even stronger 

suppression in male-exposed plants.  

 

5.2.13. Downregulation of defence signalling in male-exposed plants is 

linked to transcriptional suppression of plant secondary metabolism via 

interacting protein network   

A key step to understand the potential mechanism of SAP54 effect on 

plant-insect interactions is to analyse the regulatory links between insect 

perception, signal transduction and defence responses such as changes in plant 

chemistry. These components could be linked via dense network of protein-

protein interactions (PPI) and transcription factor interactions (TFI) with their 

targets. I wanted to investigate whether the male-specific downregulation of 

defence signalling genes could be linked with secondary metabolism transcripts 

and demonstrate co-ordinated regulation in 35S:GFP-SAP54 plants.  

I used the available knowledge about experimentally validated as well as 

strongly predicted PPI and TFI to construct an interaction network consisting of 

all expressed and annotated defence signalling genes (Figure 5.16), their 

interactions with each other and with the secondary metabolism pathways. This 

way I will test whether transcriptional responses of various plant defence genes 

that demonstrated sex-specific response to insect exposure demonstrate 

correlated changes in expression with their interacting partners in the network. I 

chose to visualise the network interactions between defence signalling genes 

with each other and the glucosinolate, phenylpropanoid (lignin biosynthesis) and 

carotenoid pathways. The glucosinolates demonstrated greatest difference 

between male and female leafhopper exposed 35S:GFP plants (section 5.2.7) 

and showed the greatest difference between 35S:GFP and 35S:GFP-SAP54 

plants in response to male and female insects (5.23C). Lignin biosynthesis and 

carotenoid pathways demonstrated the strongest effect of SAP54 on the 
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difference between plant responses to female and male insects (Table 5.12). 

Hitherto, I demonstrated male-specific suppression of defence responses (Figure 

5.16) and secondary metabolite pathways (Figure 5.20) in 35S:GFP-SAP54 

plants. For this reason, I plotted the change in gene expression in male-exposed 

SAP54 plants within the interaction network (Figure 5.25). 

Interestingly, plant receptors, protein kinases and phytohormones (JA, SA, 

ET synthesis and signalling) grouped into a network of well-connected and 

functionally distinct modules that showed coordinated changes in gene regulation 

(Figure 5.25). Moreover, glucosinolate pathway was more connected to defence 

signalling modules via PPI compared to carotenoid or phenylpropanoid pathway. 

There is experimental evidence for plant hormone-induced transcription 

factors that regulate receptor-like kinases. For example, WRKY60 is induced by 

SA-dependent signalling and regulates PR gene expression, and together with 

WRKY40 and 18 form an integrated hub in plant biotic and abiotic stress 

responses (Chen et al., 2010). Moreover, WRKY60 represses cysteine-rich 

receptor-like kinase CRK5 (Lu et al., 2016). Interestingly, the network in Figure 

5.25 (largest cluster within SA signalling group) displays WRKY18/40/60 

transcription factors to be linked with several down-regulated receptor-like 

kinases. There may be positive feedback loops between phytohormone-

dependent defence signals and membrane receptors. Therefore, it is plausible to 

hypothesise that the defence signalling network may be multi-directional and not 

strictly hierarchical.  

Most of the interactions between genes in the defence network in Figure 

5.25 are PPI. LRR kinases demonstrate ample interactions with CDPK and MAPK 

which are appear to be the main interacting modules with JA, SA and ET 

signalling genes. Interestingly, many NLR receptors are likely to interact with 

LRR, SD and RCLK membrane receptors as well as Ca-dependent and mitogen-

activated kinases. This suggests that membrane and cytoplasmic receptor 

complexes may function together in defence signalling via kinase cascades in 

agreement with recent findings (Peng et al., 2016). Furthermore, many 

membrane receptors demonstrate interactions with each other, for example, 

WAKL family kinases have multiple confirmed and predicted interactions with 

LRR, SD, DUF26, CrRKL receptors suggesting similar functions. In addition, 

LRR, WAKL, SD and DUF26 families demonstrate the greatest difference 

between male and female insect perception (Table 5.5), supporting the finding 
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about their interconnectivity and potential common regulation. Male leafhoppers 

downregulate most of the receptor kinases in 35S:GFP-SAP54 plants, but 

predominantly LRR (Table 5.9; analysis 2). The observed connectivity of LRR 

with other defence modules may further explain the coordinated downregulation 

of MAPK, SA, JA and ET pathways (Figure 5.25). Intriguingly, ET, JA and SA 

biosynthesis and signalling modules interacts via PPI suggesting that in 

additional to the known transcriptional crosstalk there might be extensive 

crosstalk at post-translational level as well.  

Interestingly, lignin synthesis and carotenoid pathways demonstrate very 

few PPI, suggesting that most of the regulation of these secondary metabolites 

could be transcriptional. Lack of the connectivity between these secondary 

metabolism modules with JA, SA or ET modules at protein-protein interaction 

level does exclude potential upstream regulation by hormone-dependent signal.  

In contrast, glucosinolate pathway has more PPI with SA, JA and ET signalling 

modules as well as few Ca-dependent protein kinases.  

Taken together, the analysis of PPI network of defence responses 

suggests that many insect-sex specific transcriptional responses in SAP54 plants 

may be correlated due to the inter-connectivity of particular functional modules in 

the network. Together with analysis from previous sections, the current results 

induce a hypothesis that downregulation of chemical defences against insects 

may be mediated by SAP54-dependent modulation of insect recognition in plants. 

I further hypothesise that altered insect perception may be mediated through the 

kinase and phytohormone dependent signalling cascades to potentially induce 

different defence chemicals.  

 

Figure 5.25. The PPI and TFI network linking Membrane receptor like kinase gene 

families (LRKL, L-lectin, LRR, CrRLK, DUF26, WAKL, SD), cytoplasmic receptors 

(NLR, NB, RLCK), Ca-dependent kinase cascade (CDPK, CRK, SnRK), mitogen-

activated kinases (MAPK, MAPK2, MAPK3, MAPK4), JA, SA and ET biosynthesis 

and signalling, lignin, glucosinolate and carotenoid synthesis. The network depicts 

all experimentally confirmed PPI as black solid lines (edges), predicted PPI as grey 

dashed lines and all confirmed TFI as blue lines (only one was identified). Each box 

(node) represents a single transcript. Colours represent log2(fold change) of the 

difference between SAP54 expressing and non-expressing male exposed plants. 
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5.3. Discussion 

In this chapter I investigated the differences between male and female 

leafhopper induced transcriptional responses in 35S:GFP and 35S:GFP-SAP54 

plants. The aim of this research was to better understand if phytoplasma effector 

SAP54 alters insect triggered plant responses. Hitherto, I have discovered that 

male insect induced responses in 35S:GFP-SAP54 plants are significantly 

different from female regulated transcripts in 35S:GFP-SAP54 plants and 

different from both male and female induced responses in 35S:GFP plants. 

Moreover, male and female leafhoppers differ in their induced responses in 

35S:GFP plants. Together this strongly suggests that SAP54 remodels plant 

responses to leafhoppers in male-dependent manner by interacting with 

herbivore sex-specific induced plant reactions. Plant defence responses to biotic 

stress are among the most strongly downregulated plant functions in male 

exposed SAP54 plants compared to GFP controls. Surprisingly, downregulation 

of biotic stress responses was not observed in female exposed plants. Detailed 

analysis of plant transcriptional responses relating to insect perception, signal 

integration via plant hormone network and mounting potential defences has 

suggested the following hypothesis (Figure 5.26).  

 

 

A B 
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Figure 5.26. Hypothetical model of insect-sex specific remodelling of herbivore 

induced plant defence responses by phytoplasma effector SAP54. (A) Female 

leafhoppers demonstrate stronger induction of plant Nucleotide Binding Site Leucine-

Rich Repeat (NBL) receptor family together with stronger upregulation of Receptor-like 

kinases (RLKs) belonging to Leucine Rich Repeat (LRR) family, Domain of Unknown 

Function 26 (DUF26) RLKs, and S-domain (SD) RLKs compared to male insects. 

Receptor activity induces cascading effects in the interconnected plant regulatory 

network to activate jasmonic acid (JA) and salicylic acid (SA) production and defence 

signalling in both males and females. Ethylene production and signalling is much weaker 

induced in males compared to females. The cumulative effects of insect induced defence 

signalling upregulate plant secondary metabolism pathways. The induction of 

glucosinolate, phenylpropanoid (incl., phenolic acid and lignin), and flavonoid 

(anthocyanin) pathways is stronger in female compared to male exposed plants. 

Together, anti-herbivore chemicals could act as toxicants or deterrents and contribute to 

plant defences against herbivores. (B) Phytoplasma effector SAP54 remodels male 

insect induced plant responses resulting in downregulation of plant RLKs, NBL and 

signal transduction via protein kinases. This may result in suppression of ET signalling 

and certain defence metabolite, including glucosinolate, pathways. Such changes may 

weaken plant defences against insects and be required for female attraction to male 

colonised SAP54 plants.  

 

 Plant responses to insects show significant enrichment with biotic stress 

and signalling related transcripts (Table 5.2). Further analysis of manually 

annotated plant defence pathway (Figure 5.15) revealed that insects upregulate 

numerous families of RLKs as well as cytoplasmic receptors, predominantly NBS-

LRR proteins, which often function as plant resistance (R) genes. This suggests 

that insects are recognised by plants and, similar to microbial pathogens, could 

trigger plant responses characteristic to pattern triggered immunity (PTI) as well 

as effector-triggered immunity (ETI). Moreover, male and female insects differ in 

the specificity and average fold change of induced receptor families. The greatest 

differences between male and female induced receptors were within NBS-LRR 

proteins, LRR, S-domain and DUF26 RLKs (Table 5.5). This was mainly due to 

greater fold change and larger number of female induced NBS-LRRs and RLKs 

compared to males. Many RLK transcripts were specifically induced by female 

but not male insects. Insect induced RLKs have multiple functions in defence and 

development. For example, S-domain serine/threonine RLKs are one of the 



208 

 

largest and fastest evolving plant groups of receptor-like/Pelle kinases and 

function in reproductive self-compatibility mechanisms (Xing et al., 2013). The 

Domain of unknown function-26 receptors, also known as Cysteine-rich 

Receptor-like Kinases (CRKs), play important roles in pathogen defence and 

programmed cell death, and can be regulated by SA-dependent signals 

(Wrzaczek et al., 2010). This also suggests that insect induced phytohormone 

signalling may show positive feedback to regulate plant receptors. SD and L-

lectin RLKs were significantly induced by female leafhoppers (Figure 5.16A). 

Interestingly, lectin RLKs were also identified in the rice resistance locus to brown 

planthopper N. lugens (Du et al., 2009). SERK family RLKs, such as BAK1, is a 

ubiquitous co-receptor of many RLKs in recognition of pathogens (Couto and 

Zipfel, 2016). Therefore, many HAMP or DAMP activated RLKs may not function 

alone but associate with co-receptors. Furthermore, tomato homolog of SERK1 

may also bind coiled-coil domain NBS-LRR proteins to recognise aphid effector 

and confer resistance to the herbivore (Peng et al., 2016). Although female 

leafhoppers upregulate a greater number of NBS-LRR proteins, both sex insects 

mainly regulate TIR-domain containing NBS-LRR proteins (MapMan analysis for 

Figure 5.16). The TIR- and LRR domains are likely to regulate the activity of these 

receptors via binding to co-receptors or downstream targets (Belkhadir et al., 

2004). While no leafhopper effectors have yet been characterised, the potential 

differences in male and female secreted effectors could contribute to sex-specific 

induced plant responses. Such differences would mean that effector-containing 

salivary secretions during male or female feeding could potentially trigger 

different ETI responses.  

 Nevertheless, the most obvious difference between male and female 

insects is that males can feed from the plant but females can also lay eggs in 

addition to feeding. During egg-laying female leafhoppers penetrate plant surface 

with a specialised egg-depositing organ, called ovipositor, and produce 

oviposition fluids that facilitate deposition and attachment of eggs into the leaf. 

Leafhoppers lay eggs that are partially or fully embedded in leaf tissue 

(Supplemental Figure 3; Appendix C). Therefore, egg surface may come into 

direct contact with sub-epidermal layers of plant tissue. Thus, during egg-laying 

female leafhoppers present plants with additional set of oviposition-related 

HAMPs and DAMPs compared to feeding-related signal elicitors. The potential 

elicitors of oviposition-triggered defence responses are bruchins in female 
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oviposition fluids or benzyl cyanide and indole compounds on the egg-surface 

(Reymond, 2013). Interestingly, oviposition is known to induce similar plant 

responses to PTI: deposition of callose, activation of ROS as well as upregulation 

of CDPK and MAPK induced genes in the SA pathway (Little et al., 2006; 

Gouhier-Darimont et al., 2013). Furthermore, egg laying induced responses can 

modulate plant-insect interactions. For example, Pieris brassicae butterfly eggs 

induce responses in A.thaliana that result in deterrence of females for egg-laying 

(Groux et al., 2014). In addition, P. barassicae egg-laying can enhance local 

arrestment of egg-parasitoid Trichogramma wasp during host location (Fatouros 

et al., 2005). Plant responses to egg-laying could be not only local but also 

systemic. P. brassicae egg triggered upregulation of SA-dependent defences 

negatively regulate JA signals and reduces plant resistance to generalist chewing 

herbivore (Bruessow et al., 2010). This may also suggest that eggs or female 

oviposition fluids may contain effectors that manipulate certain aspects of plant 

defence responses.  

I hypothesise that egg-laying could contribute to female-specific induction 

of PTI by differential regulation of certain RLKs and activation of ETI via 

upregulation of female-specific NLR proteins. Furthermore, CDPK and MAP3K 

(MEKK subfamily) are also specifically induced by females (Figure 5.16) and 

could potentially transduce the female-specific signals. M. quadrilineatus females 

induce both JA- and SA-related defences which is characteristic to oviposition 

and wounding responses (Reymond, 2013). Because male leafhoppers also 

induce JA- and SA-responses that are hardly distinguishable from female 

exposed plants (Table 5.6), there could be overlap between some of the feeding 

and oviposition induced defence signalling downstream insect recognition by 

plant receptor kinases or NBS-LRR proteins. In contrast, ethylene receptors 

ETR1 and EIN4 as well as their downstream relays EIN2/5 and EIL3 are 

downregulated by male but upregulated by female leafhoppers. Moreover, ET 

marker genes ORA59 and ERF1 are significantly induced in females but not 

males (Table 5.6). Differential regulation of ET signalling pathway is one of the 

most evident differences between male and female induced plant responses and 

could originally arise from differential ETI and PTI signals. Furthermore, this 

suggests that ET signalling may be an important element of oviposition-related 

plant responses. Hitherto, ET signalling has been little studied in context of insect 

oviposition. Egg secretions of sawfly Diprion pini reduces ethylene production in 
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pine Pinus sylvestris (Schröder et al., 2007). It is known that exogenous 

application of ethylene in olive fields can reduce olive moth Prays oleae egg 

production (Ramos et al., 2008). However, mechanistic links between egg-laying 

and induction of ET-dependent defence genes has not yet been reported 

(Reymond, 2013). Similar to JA, ET production is induced during plant wounding 

and therefore could play a role in responses to egg deposition within leaf tissue. 

ETHYLENE RECEPTOR1 (ETR1) and ET signalling component EIN2 are key in 

ETI-dependent hypersensitive response and cell death (van Loon et al., 2006). 

These transcripts are upregulated by female leafhoppers compared to males. 

Together, the transcriptome data support the hypothesis that female oviposition 

may induce sex-specific plant responses that are similar to PTI and ETI and result 

in upregulation of ethylene signalling pathway via female-specific Ca2+-

dependent and mitogen activated kinases.  

It is most intriguing that SAP54 modulates ET signalling in plants by 

significantly downregulating several ET signalling transcripts in male-specific 

manner. This suggests that SAP54 either 1) requires activation of certain male-

specific components not present in female exposed plants or 2) interacts with a 

component that is induced by both male and female insects but may be 

suppressed by female-specific activities such as egg-laying. The key component 

for SAP54 activity may be related to or function upstream ET signalling. This is 

also consistent with the finding that the effect of SAP54 on ET signalling is more 

consistent than effect on SA or JA signalling pathways in male exposed plants.  

It is, however, possible that modulation of ET signalling by SAP54 is only 

means towards a different aim. Instead of being a principal regulator per se, ET 

signals are often viewed as modulators of SA or JA signals due to the complex 

crosstalk between these phytohormones (Broekgaarden et al., 2015). ET 

response factors EIN3 and EIN2 are key regulators that connect ET signalling to 

other plant hormones (Bisson et al., 2009; Yoo et al., 2009; Yan et al., 2012; 

Chang et al., 2013). Similarly, SA or JA can alter ET responses. For example, 

perception of JA signals activate ETHYLENE RESPONSE FACTOR1 (ERF1) 

and AP2/ERF transcription factor ORA59 (Lorenzo et al., 2003; Pre et al., 2008). 

Moreover, ERF1 suppresses SA-dependent PATHOGENESIS RELATED (PR) 

gene expression and increases plant susceptibility to biotrophic pathogens 

(Pantelides et al., 2013). For this reason pathogenic bacteria like Pseudomonas 

syringae may modulate ET responses to suppress plant defences (Guan et al., 
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2015). Interestingly, the male-specific suppression of ET responses in 35S:GFP-

SAP54 plants does not correlate with any obvious changes in JA and SA 

pathways (Table 5.6) which remain similarly regulated in male and female 

exposed 35S:GFP and 35S:GFP-SAP54 plants. The effect of ET on JA and SA 

responses is largely mediated via MPK3 and MPK6 (Guan et al., 2015). These 

kinases do not appear to be differentially regulated by male leafhoppers in SAP54 

plants. Together, this indicates that SAP54 may be directly targeting ET 

responses in male-dependent manner rather than using ET pathway to target 

signalling by other plant hormones.  

ET responses are important for the Induced Systemic Resistance (ISR) in 

plants (van Loon et al., 2006; Broekgaarden et al., 2015). ISR is often induced by 

above- and below-ground non-pathogenic beneficial microbes and involves 

priming of plant defence responses. In contrast, SA responses are required for 

Systemic Acquired Resistance (SAR) and often effective against biotrophic 

pathogens. By downregulating ET-related plant responses to insects, SAP54 

could be modulating plant ISR and priming of defence responses that function in 

oviposition. Furthermore, by altering ET responses, phytoplasma effector SAP54 

could modulate plant secondary metabolism that is important in plant-insect 

interactions. Phenolic acids are involved in induced systemic resistance and host 

plant selection by foliar herbivores (Erb et al., 2015). And, interestingly, the 

conversion of phenylalanine into phenolic acids (cinnamate, caffeate, ferrulate 

and sinepate) appear to be downregulated in male exposed 35S:GFP-SAP54 

plants (Figure 5.24). ET signals are implicated in production of volatile terpenoids 

(monoterpenes, sesquiterpenes) that play diverse roles in plant-herbivore and 

plant-herbivore natural enemy interactions (Fürstenberg-Hägg et al., 2013; 

Broekgaarden et al., 2015). EIN2-dependent ET responses are also required for 

broad-spectrum anti-microbial and anti-herbivore phytoalexin synthesis in N. 

benthamiana (Matsukawa et al., 2013). Many subfamilies of cytochrome P450 

genes (CYP79/82/83/84) are involved in synthesis of indole derivatives like 

glucosinolates, camalexin (phytoalexin) or auxin from tryptophan (Mizutani and 

Ohta, 2010). Many of the CYP genes involved in glucosinolate synthesis are 

significantly downregulated in male exposed SAP54 plants (Table 5.8). 

Interestingly, it has been demonstrated that cyp79b2 cycp79b3 double mutant 

plants are compromised in indole glucosinolate as well as camalexin 

accumulation and more susceptible to aphids (Glawischnig et al., 2004; Kim et 
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al., 2008). CYP79B2 and CYP79B3 are significantly induced by females in 

35S:GFP and 35S:GFP-SAP54 plants but downregulated in male exposed 

35S:GFP-SAP54 compared to female exposed plants or male exposed 35S:GFP 

plants (Table 5.11). In addition to CYP79B2/3, many more transcripts with 

functions in indole and aliphatic glucosinolate synthesis are suppressed by male 

leafhoppers in SAP54 plants. Several studies highlight the importance of MPK3/6 

and their downstream WRKY transcription factors in indole glucosinolate and 

phytoalexin synthesis (Ren et al., 2008; Ishihama et al., 2011; Lassowskat et al., 

2014). Nevertheless, there may be numerous other kinase-dependent regulatory 

loops of the indole-derived defence chemicals. For example, ethylene receptor 

CTR1 is a RAF family MAP3K which regulate the ET response factor EIN3 in an 

opposite manner than MAP3/6-MKK9 kinase branch, thus constituting bifurcate 

control of ethylene signalling (Yoo et al., 2008). Many mitogen-activated kinases 

show protein-protein interactions with ET response factors and transcription 

factor or enzymes involved in glucosinolate synthesis (Figure 5.25). Moreover, 

these transcripts show correlated suppression specifically in male exposed 

SAP54 plants. Neither MPK3/6 nor camalexin synthesis enzyme PAD3 and 4 

(PHYTOALEXIN DEFICIENT3 and 4) are differentially regulated by SAP54 in 

male and female exposed plants, suggesting that other branches of indole 

compounds than phytoalexins could be the targeted by SAP54 via alternative 

MAP-kinase dependent regulation. Interestingly, Matsukawa et al. (2013) found 

that a N. benthamiana calreticulin gene confers resistance to Phytophtora 

infestans by positively regulating ET-dependent indole compound production. 

This occurs independent from MAPK induced cell death but is mediated via 

ethylene-induced Cytochrome P450s. Calreticulins are chaperone proteins on 

plant and animal endoplasmic reticulum where they aid processing of 

glycosylated membrane receptors (Thelin et al., 2011). A. thaliana has 3 

calreticulin genes - CLT1A, CLT1B, and CLT3. All three are significantly 

upregulated by female leafhoppers in 35S:GFP plants. Surprisingly, CLT1A, 

CLT1B are significantly downregulated while CLT3 upregulated slightly but not 

significantly in male exposed 35S:GFP-SAP54 plants.  

Taking together, SAP54 may target plant receptors or receptor modifying 

proteins such as calreticulins to modulate male insect induced PTI and ETI 

responses that lead to suppression of ET-signalling transcripts involved in plant 

secondary metabolite such as glucosinolate synthesis in sex-specific manner.  
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Given that SAP54 enhances female preference for oviposition in male-

dependent manner (Chapter 4), an intriguing question arises – how does SAP54 

modulate plant responses to simultaneous male and female attack? I investigated 

plant transcriptional response to males and females separately. The insect choice 

experiments reported in the previous chapters involved simultaneous release of 

male and female leafhoppers. Males may differ in their feeding behaviour from 

females and feed immediately after release whereas females may be more 

passive and demonstrate delayed choice of the host plant compared to males. 

This awaits empirical testing. However, this would offer a behavioural context for 

the hypothesis that SAP54 suppresses male-dependent priming of plant 

defences to make the host plant appear less-defended and thus positively affect 

female landing choice.  

I would like to close the discussion of this chapter by addressing the 

questions why plant responses to insects involve so many other plant functions 

in addition to biotic stress (Figure 5.15) and why SAP54 may differentially 

regulate many additional transcripts to the insect induced ones (Table 5.9)? 

Although I cannot exclude the possibility that SAP54 is modulating something 

other than plant defence responses to enhance female oviposition, it is plausible 

to hypothesise that alteration of insect induced defence responses are key. I 

highlighted that plant defence genes involved in the recognition of biotic stress 

and signalling do not exist in isolation but are positioned in a dense network of 

interacting proteins with diverse functions, including plant nutrition, anabolic 

primary metabolism (photosynthesis), growth and development (Figure 5.21). It 

is often conceived that co-expressed genes may be co-regulated and co-

functional (Allocco et al., 2004; Michalak, 2008). Indeed, many plant defence 

genes show correlated suppression in insect exposed plants which may be 

explained by their linkage in protein-protein interaction network (Figure 5.25) or 

common transcriptional regulators. Similarly, many defence related genes are 

upregulated under insect attack but growth-related transcripts are downregulated 

(Table 5.3). Such effects may result from the trade-offs between growth and 

defence (Figure 5.1) and are enabled by the connectivity of diverse functions via 

common regulators (Figure 5.20). Furthermore, synthesis of various secondary 

metabolites like glucosinolates or phenylpropanoids requires amino acids 

methionine, tryptophan or phenylalanine (Fürstenberg-Hägg et al., 2013). This 

may explain the correlated changes in amino-acid metabolism and transport to 
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balance the demands for nutrition, growth and defence (Figure 5.15; Table 5.2). 

Similarly, downregulation of photosynthesis and remodelling of tilakoid 

membranes may affect many chloroplast localised defence regulators such as 

MFP1 (Melonek et al., 2012).  

Experimental work and modelling approaches have identified ample 

transcriptional and post-translational regulatory links that ensure coordinated and 

robust response of plant defence network (Tsuda et al., 2009; Sato et al., 2010). 

The annotated defence network in Figure 5.25 contained very few transcription 

factor – target gene interactions that have experimentally verified transcription 

factor binding motifs (See materials and methods for de novo search for 

transcription factor-target interactions for this study). Instead, majority of the 

visualised links were protein-protein interactions. By targeting certain regulators 

upstream plant hormone responses, SAP54 may modulate various components 

of plant defences due to cross-talk between plant hormone signalling (incl., JA, 

SA, ET, ABA, brassinosteroids). For example, by targeting plant receptors, 

SAP54 may induce a plethora of secondary side-effects which may not be 

adaptive for the effector function in enhancing insect colonisation but instead may 

result from the inter- and intra-connectivity of the defence signalling network. 

Further analysis of predicted transcription factor binding sites within the defence 

network can be instrumental to better understand the genetic mechanism of 

SAP54 activity.  
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"In the strict formulation of the law of causality - if we know the present, we can 

calculate the future - it is not the conclusion that is wrong but the premise." 

Werner Heisenberg, in C.D. Cassedy (2009), Beyond Uncertainty: Heisenberg, Quantum 

Physics, and the Bomb, p 228  

 

 

Chapter 6 

The Role of MADS-box Transcription Factors in Plant-

Phytoplasma-Insect Interactions 

 

 

 

 

  Z. Orlovskis (2016) ‘’Mechanistic Insights in the Question of Causality.’’ 
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6.1. Introduction 

Data presented in the previous chapters suggest that SAP54 enhances 

female insect egg-laying preference for male colonised plants by modulating plant 

responses to male leafhoppers. Furthermore, SAP54 interacts and destabilises 

plant MADS-box transcription factors (MTFs) via recruitment of 26S proteasome 

cargo protein RAD23. SAP54-mediated female leafhopper oviposition preference 

requires RAD23 (MacLean et al., 2014) but is independent from developmental 

changes in flowers (Orlovskis and Hogenhout, 2016). Since plant MTF may 

regulate additional plant processes to their well-established role in reproductive 

development, I hypothesise that modulation of MTF-regulated plant processes 

other than flowering could be key to transcriptional reprogramming plants by 

SAP54 to attract insects for egg-laying.   

There is growing body of evidence that members of the same plant 

transcription factor family do not have discrete functions but instead regulate a 

myriad of different plant processes. For example, TCPs are recognised for their 

role in both vegetative and reproductive development as well as phytohormone 

biosynthesis and crosstalk (Uberti Manassero et al., 2013). TCPs are highly 

connected proteins within plant regulatory network and have roles in plant 

immunity (Kim et al., 2014; Lopez et al., 2015). Similarly, in addition to their 

evolutionary conserved roles in regulating floral meristem and organ identity, 

MTFs may regulate plant responses to biotic stress. Chip-seq experiments 

suggest that LEAFY (LFY) targets pattern recognition receptors such as FLS2 

(Winter et al., 2011), SHORT VEGETATIVE PHASE (SVP1) regulates JAZ 

proteins, which are involved in perception of jasmonic acid (Gregis et al., 2013), 

and SUPPRESSOR OF CONSTANS1 (SOC1) targets TCPs and miRNA319 that 

are implicated in plant immunity as well (Immink et al., 2012). Interestingly, 

pathogen effector proteins were shown to target multifunctional plant 

transcriptional regulators like TCPs to suppress jasmonate production (Sugio et 

al., 2011) or circadian clock regulating Glycine-Rich Proteins GRP7 to regulate 

PAMP receptors like FLS2 (Nicaise et al., 2013).  

Intriguingly, many plant developmental processes and interaction with 

pathogens may be mediated by the same pattern recognition receptors (Govers 

and Angenent, 2010). Plant MLO family receptor-like kinases recognise both 

pollen tube and powdery mildew hyphae (Kessler et al., 2010). In Chapter 5 I 

found insect sex specific induction of plant receptors and male-specific 



  

217 

 

transcriptional regulation by phytoplasma effector SAP54. However, 

transcriptional regulation of RLK in mammals and plants is yet poorly understood. 

There is some evidence for the effects of abiotic stress and plant hormone 

pathways on transcriptional regulation of RLKs (Wrzaczek et al., 2010; Wu et al., 

2015) 

Along with transcription factors, plant receptor-like kinases are recognised 

as an important component of coordination of cell division, control of organ shape 

and tissue specification (De Smet et al., 2009). Plant RLKs are controlled by 

transcription factors and respond to PAMP-elicited transcriptional reprogramming 

(Wrzaczek et al., 2010; Wu et al., 2015). The pleiotropic roles of transcriptional 

regulators like MTFs could be explained by specificity to diverse targets as well 

as multiple functions of the targets such as RLKs themselves. For example, 

brassinosteroid receptor BRI1 functions in regulation of growth and pathogen 

resistance in dicots and monocots (Nam and Li, 2002; Ali et al., 2014).  

In this chapter I aim to understand the transcriptional regulation of plant 

MTFs in response to insects and SAP54. Furthermore, I will test the direct effect 

of MTFS in plant resistance to insect egg-laying. I will explore the potential targets 

of SAP54 other than MTFs and investigate the transcriptional circuits that could 

link SAP54 targets with plant defence genes, including pattern recognition 

receptors. 

 

6.2. Results 

 

6.2.1. Expression of plant MADS-box transcription factors is altered by 

SAP54 in insect sex-dependent manner 

The effect of SAP54 on leafhopper egg-laying is independent from 

flowering and floral transition, and leafhoppers prefer to lay eggs on plant 

vegetative organs expressing SAP54 (Orlovskis and Hogenhout, 2016). 

Therefore, I wished to find out which of the potential SAP54-targeted MTFs are 

expressed in the vegetative plant tissue. I clustered all annotated MTFs in A. 

thaliana genome based on their normalised expression values to see which MTFs 

are expressed and may functions in leaves. A significant proportion of MTFs 

demonstrates negligible expression in leaves while other MTFs are expressed 

during vegetative growth (Figure 6.1). Moreover, numerous MTFs show different 
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expression in response to insects and SAP54. Interestingly, SAP54 mainly 

interacts with MTFs expressed in leaves (Figure 6.1). Yeast-two-hybrid studies 

show that SAP54 interacts with 15 out of the total 107 MTFs. These interactors 

belong to the type II MICK clade of MTFs and are traditionally considered to 

function in floral transition and reproductive development. RNA-seq experiment 

indicates that many of these MTFs, including FUL and SEP4, are actually 

expressed in the vegetative organs prior to floral transition, and could perform 

functions other than regulation of reproductive development. 

Out of 107 MTFs, I selected only those genes that demonstrated 

consistent expression above the pre-determined expression threshold (see 

materials methods) in majority of technical replicates in any single treatment. I 

discovered 20 genes that met these criteria and were expressed in the vegetative 

tissue of A. thaliana. Out of 20 vegetative stage expressed MTFs four interact 

with SAP54 directly (Figure 6.2). While most of the 20 expressed MTFs are not 

direct targets of SAP54, some leaf-expressed MTFs interact with SAP54 

interactors and therefore may be targeted indirectly as part of MTF multimer 

complexes (de Folter et al., 2005).  

I calculated the fold change in MTF expression in response to male and 

female insects compared to no-insect treatment of 35S:GFP and 35S:GFP-

SAP54 plants. Interestingly, MTFs exhibit insect sex-dependent regulation 

(Figure 6.2). For example, AGL30, MAF2, MAF3 and MAF5 are upregulated in 

female but suppressed in male leafhopper exposed plants. Furthermore, MAF5 

is downregulated in male exposed 35S:GFP-SAP54 but upregulated in 35S:GFP 

plants. Other genes, such as SVP1 and AGL24, are downregulated by both male 

and female insects in 35S:GFP but upregulated in SAP54 plants.  

In summary, I identified a set of type II MTFs that are expressed in 

vegetative plant tissue prior to floral transition and interact with SAP54 directly or 

associate with SAP54 interactors. Interestingly, certain MTFs demonstrate sex-

specific response to leafhoppers. Furthermore, RNA-seq experiment suggests 

that the expression of several insect-induced MTFs (MAF5, SVP1, and AGL24) 

is altered in insect exposed SAP54 plants compared to controls. 
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Figure 6.1. SAP54 interacts with MADS-box transcription factors which are 

expressed in leaves. MTF interaction with SAP54 in yeast-two-hybrid is highlighted in 

yellow colour (MacLean et al. (2014)). Red colour intensity correlates to the absolute 



220 

 

gene expression values (normalised FPKM). Columns from left to right represent all 

sequenced experimental treatments as follows: (Lane 1) MTF expression in female-

exposed SAP54 plants, (Lane 2) MTF expression in female-exposed GFP plants, (Lane 

3) MTF expression in male-exposed SAP54 plants, (Lane 4) MTF expression in male-

exposed GFP plants, (Lane 5) MTF expression in no insect-exposed SAP54 plants, 

(Lane 6) MTF expression in no insect-exposed GFP plants. Clustering performed using 

Euclidean distance via centroid linkage of untransformed FPKM values (Cluster 3.0), 

viewed in TreeView (contrast 0.05 to highlight the low-expression transcripts).  

 

 

Figure 6.2. Clustering of MADS-box transcription factors with similar expression 

in response to male and female insects in SAP54 and control plants. Log2(fold 

change) is displayed as measure of differential regulation of MTF genes, red indicates 

upregulation and green – downregulation. Lane 1: female vs no insect exposed GFP 

plants. Lane 2: female vs no insect exposed SAP54 plants. Lane 3: male vs no insect 

exposed GFP plants. Lane 4: male vs no insect exposed SAP54 plants. Direct SAP54 

interactions with MTFs are indicated in yellow (MacLean et al. (2014)). N.A. applies to 

few MTFs that have not yet been tested for interactions with SAP54. All other interactions 
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between any pair of expressed MTFs are highlighted in yellow, based on Y2H screen by 

de Folter et al (2005). Clustering based on Euclidean distance via centroid linkage. 

 

6.2.2. Host plant selection for insect egg-laying is dependent on MADS-

box transcription factors 

Given that a number of leaf-expressed MTFs interact with SAP54 or 

demonstrate sex-specific regulation in 35S:GFP-SAP54 plants, I wanted to 

directly test the role of these MTFs in host plant selection by leafhoppers. I 

acquired seeds for several homozygous MTF mutant (T-DNA insertion) lines and 

performed leafhopper oviposition choice tests to test which MTFs play a role in 

plant resistance to insect colonisation. Interestingly, two MTF mutants – svp1 and 

maf5 – demonstrate significantly greater leafhopper egg-laying preference 

compared to the wild-type control plants (Figure 6.3A). These results suggest that 

destabilisation or downregulation of SVP1 and MAF5 may mimic the leafhopper 

oviposition preference for SAP54 plants.  

In the experiment described above I measured insect reproductive 

preference for MTF mutant or wild-type plants that are not infected with 

phytoplasma and have no SAP54. Next, I wanted to determine which MTFs may 

be required for SAP54-dependent leafhopper attraction. Due to time constraints 

for generating 35S:GFP-SAP54 plants in MTF mutant background, I infected MTF 

mutant plants with AY-WB phytoplasma to introduce SAP54 into the plant via 

phytoplasma. Surprisingly, svp1 and maf5 no longer showed leafhopper 

oviposition preference (Figure 6.3B), suggesting that SVP1 and MAF5 may act 

downstream SAP54. Interestingly, two other MTF mutants – agl24 and ful – 

demonstrated significantly less attraction of leafhoppers compared to wild-type 

controls (Figure 6.3B), suggesting that AGL24 and FUL may be required for 

leafhopper egg-laying preference in infected plants similar to RAD23 protein 

(Maclean et al., 2014). MAF5, SVP1, AGL24 and FUL are not direct targets of 

SAP54 and may be differentially regulated in SAP54 plants as a result of 

destabilisation of other MTFs or MTF-complexes.  

In conclusion, I demonstrated that MTFs may play an important role in host 

plant selection by insects in both healthy and phytoplasma infected plants. SVP1, 

MAF5 may be indirectly targeted by SAP54 to enhance plant colonisation by 

insects, and such mechanism would require AGL24 and FUL.  
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Figure 6.3. Measurement of leafhopper Macrosteles quadrilineatus egg-laying 

preference for non-infected (A) or AY-WB phytoplasma infected (B) MTF mutant or 

wild-type (Col-0) plants. There is significant leafhopper preference for reproduction on 

svp1 (t6=3.31; p=0.021) and maf5 (t6=4.78; p=0.005) mutants. agl24 (t6=2.02; p=0.100), 

sep4 (t6=2.05; p=0.096), maf4 (t6=0.09; p=0.932), maf1 (t6=0.54; p=0.615), ful-1 (t6=0.27; 

p=0.796) and soc1 (t6=0.18; p=0.865) plants do not show significant leafhopper 

preference compared to wild-type controls. When both MTF mutant and control plants 

are infected with AY-WB phytoplasma leafhoppers show significant preference to wild-

type plants compared to agl24 (t6=3.02; p=0.029) and ful (t6=10.22; p≤0.001). Insects 

showed no preference for wild-type or maf5 (t6=1.52; p=0.188), svp1 (t6=0.46; p=0.668), 

sep4 (t6=0.68; p=0.531), maf4 (t6=0.28; p=0.789) or maf1 (t6=0.72; p=0.501) mutants. 

For each experiment 10 female and 10 male adult leafhoppers were released in a choice 
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cage with control plant and MTF mutant plant. Adult insects were removed after 5 days 

and nymphs counted on each plant within the choice cage separately. The graph 

displays the relative distribution of nymphs on control and mutant plants. Data analysed 

using paired t-test and p-values <0.05 indicated with an asterisk.  

 

6.2.3. MADS-box transcriptional regulators demonstrate co-expression 

with defence genes in response to insect attack and SAP54 

Due to the insect sex-specific effects of on the expression of MTFs in 

35S:GFP-SAP54 plants, genes like MAF5 are the prime suspects to orchestrate 

the transcriptional changes upstream the defence signalling and secondary 

chemical pathways which showed male-dependent suppression by SAP54 as 

described in the chapter 5. To test such potential roles of MTFs, I performed a 

co-expression clustering analysis with all 20 leaf-expressed MTFs and around 

1060 manually annotated genes (see materials methods) with role in plant 

defence signalling. I aimed to investigate which defence signalling components 

cluster most closely with MTFs. I identified 6 MTF clusters containing defence-

related genes that show correlated expression and similar magnitude of fold 

change in response to male and female insects on 35S:GFP-SAP54 and 

35S:GFP plants (Figure 6.3). Intriguingly, MTFs cluster closely with a range of 

different families of the membrane and cytoplasmic receptor kinases. In addition, 

Ca-dependent and mitogen-activated kinases as well as SA or JA signalling 

genes show similar expression patterns to certain MTFs. SVP1, MAF5, AGL24 

and FUL cluster most closely with LRR, SD-domain and L-lectin RLKs (Figure 

6.3). Together, this suggests that pattern recognition receptors show similar 

response to insects as MTFs that are potentially targeted by SAP54 and show 

altered plant resistance to insect egg-laying.  

Furthermore, I wanted to determine whether defence genes in any of the 

identified 6 MTF clusters in Figure 6.3 are enriched with predicted binding sites 

for any known families of plant transcription factors, including CArG-box of MTFs. 

I performed a promoter motif search for predicted transcription factor sites of 

MTF, WRKY, Ethylene-AP2 and other factors in the -5000 bp non-overlapping 

upstream promoter regions of all defence genes included in the clustering 

analysis. I calculated the overrepresentation of binding sites for any particular 

transcriptional regulator in each defence gene cluster from Figure 6.3. I found 
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that defence genes that cluster with MTFs are not only enriched with potential 

MTF binding sites but also other transcription factors, including bZIP, WRKY, 

DOF and AP2 (Table 6.1). 

 Next, I highlighted clusters with MTFs that interact with SAP54 directly or 

MTFs that interact with other SAP54-targetted MTFs from Figure 6.2. These 

include 10 MTFs found in clusters 1, 3 and 5 in Figure 6.3. From the potential 

SAP54-targeted proteins only MAF5 cluster contains overrepresentation of 

defence-related transcripts with MTF and WRKY binding sites (Table 6.1). Within 

this cluster CArG-box was found in DUF26 and CR4L families of RLKs whereas 

W-box sites were present in almost all transcripts of cluster 5. Ethylene-AP2 

binding sites were significantly overrepresented in the cluster containing AGL24 

and SVP1. Interestingly, SOC1 and FUL containing cluster 1 shows 

overrepresentation of bZIP sites. MYB-factor or DOF binding sites were not 

overrepresented in any of the clusters with potential SAP54 interactors (Table 

6.1). 

Taken together, these data suggest that the SAP54 effect on defence gene 

expression may act not exclusively via direct MTF-defence gene interactions but 

via a combination of putative MTF effects on other transcription factors that may 

control the defence network. Further analysis on SAP54 effects on insect induced 

transcriptional regulation is required to elucidate which transcriptional regulators 

are likely to mediate the downstream effects of SAP54-MTF interactions on 

defence signalling and secondary metabolism described in the previous chapter.  

 

 

Figure 6.4. MTFs and defence genes demonstrate co-expression in response to 

insect attack and phytoplasma effector SAP54. 20 MTFs are clustered together with 

1062 defence genes annotated from figure 5.11. Each gene identifier was linked to the 

belonging of a functional group such as JA signalling or particular PRR family, as 

displayed in the figure. MTFs are identified with arrows. Clusters 1 and 3 also contain 

AGL18 and AGL26 respectively (not displayed as they are further from the rest of MTFs 

in the respective clusters). Column 1 indicates transcript upregulation (red) or 

downregulation (green) in female exposed plants without SAP54; column 2- female 

exposed SAP54 expressing plants; column 3 - male exposed plants without SAP54; 

column 4 - male exposed SAP54 expressing plants. Clustering based on Euclidean 

distance via complete linkage (Cluster 3.0), viewed in TreeView (colours depict log2(fold 

change)). 



  

225 

 

 
Figure 6.4 
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Table 6.1. Summary of the presence of transcription factor binding sites in the 

upstream -5000 bp non-overlapping promoter regions of defence genes that 

demonstrate correlated expression patters with MTFs (cluster numbers based on 

figure 6.3). The total number of genes in the clusters and number of potential cis-

regulatory elements for each transcription factor (TF) family are indicated within each 

cluster. The probability of random TF binding site discovery is based on cumulative 

hypergeometric distribution in each cluster relative to the occurrence of TF binding sites 

in the total population of all expressed defence genes. Any probability below 1/2 tells that 

the observed cis-element enrichment is against the odds to be discovered at random 

and hence indicates overrepresentation of the transcription factor binding sites in the 

cluster. Clusters that contain potential SAP54interactors of (based on figure 6.2) are 

highlighted bold.   

 

Cluster Cluster size
Nr of cis-binding 

sites in cluseter

Probability of random 

discovery

Cluster with 

SAP54 

Interactors

1 76 4 0.796 YES

2 22 2 0.459 NO

3 77 4 0.821 YES

4 49 4 0.449 NO

5 21 2 0.435 YES

6 41 3 0.553 NO

1 76 55 0.942 YES

2 22 13 0.992 NO

3 77 54 0.979 YES

4 49 38 0.664 NO

5 21 19 0.142 YES

6 41 33 0.482 NO

1 76 0 1 YES

2 22 0 1 NO

3 77 2 0.132 YES

4 49 0 1 NO

5 21 0 1 YES

6 41 0 1 NO

1 76 8 0.666 YES

2 22 2 0.74 NO

3 77 6 0.901 YES

4 49 5 0.683 NO

5 21 1 0.925 YES

6 41 5 0.516 NO

1 76 31 0.854 YES

2 22 13 0.147 NO

3 77 34 0.666 YES

4 49 20 0.81 NO

5 21 7 0.919 YES

6 41 23 0.115 NO

1 76 47 0.402 YES

2 22 9 0.979 NO

3 77 34 0.998 YES

4 49 25 0.926 NO

5 21 13 0.517 YES

6 41 32 0.009 NO

49 CArG box motifs in 707 expressed defence genes

6 AP2  motifs in 707  expressed defence genes

423 bZIP box  motifs in 707  expressed defence genes

324 C2C2 DOF box  motifs in 707 defence genes

81 MYB box  motifs in 707  expressed defence genes

557 W-box  motifs in 707  expressed defence genes
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6.2.4. Male leafhoppers suppress plant transcriptional regulators in 

SAP54-dependent manner 

To investigate if SAP54 may have insect sex-dependent effect on plant 

transcriptional regulators, I compared male and female leafhopper induced 

changes in numerous transcription factor families in 35S:GFP-SAP54 and 

35S:GFP plants (Figure 6.5). Interestingly, female insects significantly upregulate 

plant WRKY (p=1.78E-14), MYB (p=5.22E-4) as well as AP2/Ethylene responsive 

(AP2/EREBP) (p=0.0546) transcription factors in 35S:GFP plants (Figure 6.5A). 

In addition, females significantly downregulate histone and histone-binding 

proteins compared to no insect treatment (p=7.92E-8). Like females, male insects 

significantly upregulate WRKY (p=8.49E-9) and AP2/EREBP (p=2.53E-5) 

transcription factors and downregulate histone as well as chromatin remodelling 

factor genes compared to no insect exposed 35S:GFP plants (p=8.04E-5) (Figure 

6.5B).  

Surprisingly consistent with data in chapter 5, male insect induced 

changes in plant transcription factors are dramatically changed in 35S:GFP-

SAP54 compared to 35S:GFP plants (Figure 6.5B). Interestingly, such 

differences are not observed in female exposed 35S:GFP-SAP54 plants (Figure 

6.5A). Next, I investigated which functional groups of transcriptional regulators 

are changing most in male and female 35S:GFP-SAP54 plants compared to the 

controls. Notably, histone genes, histone acetyltransferases and other chromatin 

remodelling factors such as SET-domain, PWWP-domain, JUMONJI-domain or 

GTE transcription factors are significantly altered in both male and female 

exposed SAP54 plants (Figure 6.5C). However, the magnitude to which these 

gene groups are downregulated is considerably greater in male compared to 

female exposed plants (comparing Figure 6.5A to B).  

Along with other chromatin remodelling factors, SET-family proteins were 

most downregulated by SAP54 in female and, especially, male exposed plants 

compared to GFP control (Figure 6.5C). Among most suppressed SET factors 

are several SUVH (SU(VAR)3-9 HOMOLOG) genes that encode histone methyl-

transferases. PWWP and GTF family factors are amongst other most 

downregulated transcripts in insect exposed 35S:GFP-SAP54 compared to 

35S:GFP (Figure 6.5). PWWP-domains are found in nucleosome-binding DNA 

methyl-transferases and resemble other eukaryotic DNA-binding domains such 

as SAND and Tudor (Qiu et al., 2002). The General Transcription Factor Group 
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E6 (GTE) are bromodomain-containing nuclear localised proteins involved in leaf 

development by histone acetylation (Yii et al., 2005). In addition, SAP54 

downregulates many JUMONJI or jmjN/C-domain transcription factors, including 

EARLY FLOWERING 6 (ELF6). ELF6 has a H3K27me3 demethylase activity and 

is important for the activity of FLC in embryos (Crevillen et al., 2014). 

Furthermore, brassinosteroid response factor BES1 recruits ELF6 to regulate 

target gene expression and coordinate developmental processes and disease 

responses (Yu et al., 2008). In contrast to the significant effects of SAP54 on 

chromatin remodelling factors, the phytoplasma effector does not significantly 

affect the insect-induced WRKY or MYB factors which largely remain upregulated 

after leafhopper feeding and oviposition (Figure 6.5A,B). There is significant 

enrichment of AP2/EREBP factors in female exposed plants (p=0.0485) among 

transcription factor families that change their expression most in response to 

SAP54 (Figure 6.5C). However, this is explained by a mixture of AP2/EREBP 

transcripts being upregulated and downregulated by SAP54 in female exposed 

plants (Figure 6.5A). Interestingly, the enrichment of MTFs among SAP54 most 

changed families of transcription factors in male and female exposed plants is not 

so high as, for example, alterations in chromatin remodelling factor expression 

(Figure 6.5C). Chromatin remodelling factors, including PWWP, SET, JUMONJI 

and others, display stronger downregulation in male exposed SAP54 plants 

compared to female exposed plants (Figure 6.5A,B). 

Having analysed the main effect of SAP54 in male and female exposed 

plants separately, I wanted to characterise the main difference between female 

and male induced responses in 35S:GFP plants and investigate how SAP54 

affects this male-female difference. To do this, I calculated the difference between 

male and female effect in 35S:GFP and, separately, 35S:GFP-SAP54 plants. 

Then I calculated the difference between male-female difference in 35S:GFP and 

35S:GFP-SAP54 plants and investigated which transcriptional regulator 

categories are enriched using MapMan. The regulation of chromatin remodelling 

factors, including PWWP, GTE and JUMONJI families is most different between 

the two insect sexes in 35S:GFP plants (Table 6.2). In addition, females 

demonstrate higher relative induction of WRKY and MYB factors compared to 

males. In contrast, males show slight upregulation of Zn-finger GATA 

transcription factors compared to downregulation of these by females. 

Interestingly, that SAP54 has the strongest effect on the insect sex-specific 
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effects in chromatin remodelling factors such as CHROMATIN REMODELING 12 

(CHR12), which arrests plant growth in response to environmental stress, as well 

as GTE and JUMONJI proteins (Table 6.2).   

Taken together, these data suggest that SAP54 alters plant responses to 

insects through chromatin remodelling. Male and female leafhoppers have sex-

specific effects on transcriptional regulation of plant chromatin structure and 

function. Chromatin remodelling factors are downregulated by the phytoplasma 

effector SAP54 largely in male-dependent manner.  
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 Figure 6.5 (continued next page) 
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 Figure 6.5 (continued next page) 
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Figure 6.5. The effect of SAP54 on female leafhopper (A) and male leafhopper (B) 

induced changes in plant transcriptional regulators. Red indicates upregulation and 

green – downregulation. Scale bar is log2(fold change). The relative enrichment of 

SAP54 altered transcripts by females (A) or males (B) are summarised in the table (C). 

P-values are based on Benjamini-Hochberg correction for multiple group comparison 

using Wilcoxon rank test. All significant SAP54 effects on male and female responses 

are displayed. 
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Table 6.2. Main differences in transcription regulators between female and male 

insect exposed plants are illustrated in the top panel of the table. The effect of 

phytoplasma effector SAP54 on the difference in transcription regulator expression 

between female and male leafhopper exposed plants are demonstrated on the bottom 

panel of the table. Enrichment analysis performed using Wilcoxon rank test and 

Benjamini-Hochberg correction for multiple comparisons. Only significant differences 

(p<0.05) are displayed. 

 

 

6.2.5. Plant defence gene promoters contain binding sites for MTFs and 

other families of insect induced transcriptional regulators 

In the previous section I identified potentially significant effect of SAP54 

on various transcription factor families and chromatin remodelling factors. 

However, what are the targets downstream these regulators remains to be 

elucidated. To better understand such potential regulatory links, I selected plant 

defence modules from Figure 5.15 and analysed overrepresentation of binding 

sites for any particular family of transcriptional regulators within promoters of 

these defence genes. To calculate the enrichment of the known motifs of 

MapMan 

bin
Functional group

Nr of 

expressed 

genes

p-value 

28.1.3 chromatin structure (histone modification) 40 1.6E-08

27.3.32 WRKY domain transcription factor family 42 3.0E-06

27.3.44 Chromatin Remodeling Factors 24 9.3E-06

27.3.25 MYB domain transcription factor family 75 2.8E-04

27.3.9 C2C2(Zn) GATA transcription factor family 22 6.2E-04

27.3.68 PWWP domain protein 8 2.7E-03

27.3.52 Global transcription factor group 13 5.1E-03

27.3.67 other putative transcription regulators 123 1.0E-02

27.3.57 JUMONJI family 12 1.6E-02

27.3.40 Aux/IAA family 19 1.7E-02

27.3.60 NIN-like bZIP-related family 5 2.2E-02

27.3.39 AtSR Transcription Factor family 6 4.8E-02

27.3.44 Chromatin Remodeling Factors 24 3.7E-07

27.3.67 other putative transcription regulators 123 6.8E-05

27.3.57 JUMONJI family 12 1.2E-02

27.3.52 Global transcription factor group 13 1.2E-02

27.3.4 ARF, Auxin Response Factor family 14 2.2E-02

27.3.68 PWWP domain protein 8 3.1E-02

Main difference between female and male induced responses

Main effect of SAP54 on the difference between female and male induced responses
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regulatory cis-elements (obtained from AtcisDB) for MTF, WRKY, MYB, 

AP2/EREBP, DOF, bZIP, bHLH and GATA  proteins I compared their frequency 

in promoters of defence-related genes to their overall occurrence in all of the 

expressed transcripts from A. thaliana genome (Table 6.3). Interestingly, I found 

that the DUF26 and extensin receptors, NLR genes and RAF family of MAP3K 

have a considerable overrepresentation of putative MTF binding sites. Similarly, 

SA biosynthetic genes, glucosinolates and carotenoids are enriched in CArG-box 

sites in their promoters compared to rest of the genome. WRKY, bHLH and GATA 

factors are generally overrepresented in all defence genes, including membrane 

and cytoplasmic receptors, suggesting that defence could be one of the main 

regulatory functions of these proteins. WRKY sites show the greatest 

overrepresentation in L-lectin NLR receptors and CDPKs, whereas bHLH and 

GATA binding sites are most often found in LRR genes. Interestingly, bHLH and 

GATA binding sites are also considerably overrepresented in lignin and 

carotenoid biosynthetic pathways. Glucosinolates showed overrepresentation of 

several transcriptional regulators, including MYB-like factors, DOF, bZIP, bHLH 

and GATA regulators, suggesting a very diverse regulation of glucosinolate 

synthesis. In addition to overrepresentation within glucosinolate biosynthesis 

gene promoters, MYB-binding sites are enriched in several membrane receptor 

kinases as well as NLR proteins while DOF and bZIP binding sites are also 

frequently found in ET and JA signalling and various membrane receptors (Table 

6.3).  

In contrast to the ubiquitous WRKY, bHLH and GATA binding sites in 

defence genes, AP2/EREBP sites are not overrepresented in most of the defence 

modules, indicating that these regulators may function predominantly in other 

processes than biotic stress. Nevertheless, LRR and DUF26 receptors as well as 

ET signalling genes are enriched in AP2/EREBP binding sites (Table 6.3). 

Importantly, these receptors and ET signalling are likely to be important in 

mediating insect-sex specific responses in plants and were significantly affected 

by SAP54 (chapter 5). Thus, AP2/EREBP may function in a positive feedback 

loop with ET-related defence signals.  
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Table 6.3 (next page). Table of enrichment analysis for various transcription factor 

binding sites in the promoters of defence gene modules that are affected by 

SAP54. Table contains information about male and female specific significant (p<0.05) 

effects of SAP54, indicated by YES/NO. Number of expressed transcripts and transcripts 

containing the specified cis-regulatory element is provided. Overrepresentation of these 

sites is calculated using cumulative probability hypergeometric test when compared of 

the absolute frequency of the transcription factor binding sites in the whole set of 17153 

expressed A.thaliana transcripts. The total number of binding sites is provided below the 

table. The p-value indicates the probability to find the indicated number or more cis-

elements in any given module at random. Any probability below ½ is indicated in bold as 

overrepresentation.  
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I further investigated how frequent are the MTF binding sites within the 

promoters of members of other transcription factor families. Moreover, are 

transcription factors that have MTF binding sites in their promoters 

downregulated by male insects in SAP54 plants? To do this I filtered out all 

transcripts that lack CArG motif in their promoter from Figure 6.5 and displayed 

separately in Figure 6.6.  

 

 

Figure 6.6. The effect of SAP54 on male-induced expression of A. thaliana 

transcriptional regulators (A). Only genes with putative MADS-box binding sites are 

indicated. The graph plots the log2(fold change) of the difference between male induced 

bin name
elements with 

CArG-box
p-value

27.3.5 ARR 3 0.534

27.3.44 Chromatin Remodeling Factors 2 0.549

27.3.42 Bromodomain proteins 2 0.549

27.3.24 MADS box transcription factor family 5 0.594

27.3.48 FHA transcription factor 2 0.594

27.3.25 MYB domain transcription factor family 7 0.594

27.3.54 Histone acetyltransferases 2 0.594

27.3.39 AtSR Transcription Factor family 1 0.594

27.3.69 SET-domain transcriptional regulator family 3 0.594

27.3.15 CCAAT box binding factor family, HAP3 2 0.594

27.3.62 Nucleosome/chromatin assembly factor group 1 0.594

27.3.12 C3H zinc finger family 1 0.599

27.3.50 General Transcription 3 0.599

27.3.11 C2H2 zinc finger family 5 0.599

27.3.63 PHD finger transcription factor 1 0.599

A 

B 
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transcripts in presence of SAP54 minus male induced transcripts in absence of SAP54. 

Green indicates transcripts which are suppressed but red – activated by SAP54 relative 

to GFP control. (B) There is no enrichment of responsive transcriptional regulators that 

contain CArG-box in their promoter and show greatest changes between male exposed 

35S:GFP-SAP54 and 35S:GFP plants. Analysis performed using Wilcoxon rank test and 

Benjamini-Hochberg correction for multiple comparisons.  

 

I found that putative MTFs binding sites occur in several other transcription 

factor families, apart from C2C2 DOF factors and GATA regulators, which do not 

have predicted CArG-box in their promoters (Figure 6.6A). In many other 

transcription factor families the probability of CArG-box occurrence is higher than 

in a random list of genes (Table 6.3). Interestingly, from all transcriptional 

regulators that have putative MTFs binding sites and are differentially regulated 

between male exposed SAP54 and control plants, there is no significant 

enrichment for any transcription factor family (Figure 6.6B). From the genes that 

have predicted CArG-box, male insects differentially regulate several transcripts 

in MTF, MYB as well as chromatin modifying protein families in 35S:GFP-SAP54 

plants (Figure 6.6A). In addition, males suppress a few ARABIDOPSIS 

RESPONSE REGULATORS (ARR1 and 2) and upregulates transcriptional 

repressors of the NUCLEAR FACTOR Y family (e.g., HAP3) in SAP54 dependent 

manner. The former are implicated in SA signalling (Choi et al., 2010), whereas 

the latter – in flowering time control as well as root elongation and responses to 

draught stress (Nelson et al., 2007; Ballif et al., 2011).  

To summarise, MTFs may potentially regulate several defence modules, 

including extensin and DUF26 receptors, NLRs, RAF kinases, SA pathway, 

glucosinolates and carotenoids, based on MTF-binding site predictions in gene 

promoter regions. In addition, MTF binding sites are found on range of other 

transcriptional regulators and chromatin remodelling factors which respond 

transcriptionally to insect attack in SAP54 plants. Many of the observed 

transcriptional changes in defence genes may be mediated by MTFs indirectly 

via their downstream effects on WRKY, AP2/EREBP, MYB, bHLH, or bZIP 

regulators which have ample binding sites in defence gene promoters and are 

likely to be part of positive or negative regulatory loops. Synthesis of 

glucosinolates, carotenoids and lignins may be controlled by GATA and DOF 

transcription factors which may not be directly regulated by MTFs. 
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6.2.6. SAP54 may interact with other targets than only MTFs 

MTFs are the only known targets that are destabilised in planta by SAP54 

(MacLean et al., 2014). Moreover, MTFs appear to be important for host plant 

selection by leafhoppers (section 6.2.2). Nevertheless, the role of other potential 

plant targets of SAP54 in generation of leaf-like flowers or insect oviposition 

preference have never been investigated. Here I gather results from a Y2H 

screen for SAP54 interactions with A. thaliana proteome library (Hybrigenics 

Services, France). In addition to MTFs, this revealed numerous other candidate 

protein-protein interactions between SAP54 and plant transcriptional regulators. 

I combined the interaction data with the RNA-seq data to reveal that many of the 

predicted strong interactors are significantly downregulated in SAP54 in sex 

specific manner (Figure 6.7). 

   

 

Figure 6.7. Potential SAP54 interacting non-MTF plant targets show expression 

change in response to male and female insects in 35S:GFP and 35S:GFP-SAP54 

plants. Log2(fold change) is displayed as measure of differential regulation of male or 
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female exposed plants compared to no-insect exposed plants. Red colour indicates 

upregulation and green - downregulation in the following treatments: (Lane 1) female vs 

no insect exposed GFP plants, (Lane 2) female vs no insect exposed SAP54 plants, 

(Lane 3) male vs no insect exposed GFP plants, (Lane 4) male vs no insect exposed 

SAP54 plants. The corresponding significance test for differential regulation is 

highlighted as YES or NO (p<0.05; q<0.05). Clustering based on Euclidean distance via 

centroid linkage (Cluster 3.0), viewed in TreeView. The strength of SAP54 interactions 

are graded from A (very high confidence for interaction) to D (moderate confidence for 

interaction); N/A (interaction confidence score cannot be calculated). Interactions with 

high or very high confidence are shaded blue. Number of the predicted CArG-box sites 

in gene promoters obtained via TAIR sequence motif search tool.  

 

 I discovered that numerous strong candidate SAP54 interactors are 

significantly downregulated in male exposed 35S:GFP-SAP54 plants but not in 

any other treatment. One of such interactors is RAD23C which is known to 

mediate MTF degradation via 26S proteasome and required for host plant 

selection by leafhoppers (MacLean et al., 2014). Other such candidates may play 

various roles in a range of cellular processes like autophagy, cell division, 

vacuolar traffic or transcriptional regulation. Furthermore, several SAP54 

candidate interactors have CArG-box site in their promoter, suggesting a putative 

regulation by MTFs.  

 Some SAP54 interactors may have similar expression pattern to plant 

defence signalling genes. I clustered all genes showing high or very high 

interaction confidence from Figure 6.7 together with annotated defence signalling 

genes in Figure 5.15 based on their transcriptional response to male and female 

insects in 35S:GFP and 35S:GFP-SAP54 plants (Figure 6.8). I identified clusters 

that contained transcripts that were significantly differentially regulated in any of 

the insect treatments on SAP54 or control plants. Interestingly, cluster 1 in Figure 

6.8 contained several candidate SAP54 interactors like serine peptidase TTP2 or 

chloroplast-localised gene of unknown function LETM1 which are upregulated 

only in female exposed 35S:GFP plants but downregulated in all other treatments 

similar to many RLKs, LRR-NBS proteins, MAP kinases and SA/JA signalling 

genes. Interestingly, KIP1-like kinase interacting protein clustered with LRR RLKs 

and a LRR-NBS receptors (cluster 2) which were significantly downregulated only 

by male insects in 35S:GFP-SAP54 plants (Figure 6.8). Other SAP54 interacting 
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targets like putative bHLH transcription factors are significantly upregulated in all 

insect exposed plants regardless of the presence of SAP54 (Cluster 3). 

 

 
Figure 6.8 
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Figure 6.8. Candidate SAP54 interactors and plant defence genes demonstrate co-

expression in response to insect attack in 35S:GFP and 35S:GFP-SAP54 plants. 

The A and B score interactors from Figure 6.7 are clustered together with 1062 defence 

genes annotated from figure 5.15. Each gene TAIR identifier was linked to the belonging 

of a functional group such as JA signalling or particular PRR family, as displayed in the 

clusters. Column 1 indicates transcript upregulation (red) or downregulation (green) in 

female exposed plants without SAP54; column 2- male exposed plants without SAP54; 

column 3 - female exposed SAP54 expressing plants; column 4 - male exposed SAP54 

expressing plants. Clustering based on Euclidean distance via complete linkage (Cluster 

3.0), viewed in TreeView (colours depict log2(fold change)). 

 

 Taking together, SAP54 has other candidate interactors in addition to 

MTFs (Figure 6.7). These putative interactors are appear downregulated in male-

exposed SAP54 plants together with numerous plant defence genes (Figure 6.7, 

6.8). In contrast, SVP1, MAF5 which are involved in plant-insect interactions 

(Figure 6.3) are upregulated in male-exposed SAP54 plants (Figure 6.2).  

 

6.4. Discussion 

 In this chapter I investigated how MTF expression is influenced by male 

and female insects in 35S:GFP and 35S:GFP-SAP54 plants. I demonstrated that 

a subset of MTFs is expressed in plant vegetative growth stage and is 

differentially regulated by male and female leafhoppers in SAP54-dependent 

manner (Figures 6.1, 6.2). Furthermore, MTFs play an important role in plant-

insect interactions. Knock-out of MAF5 and SVP1 significantly enhanced 

leafhopper egg-laying preference in healthy plants but not during AY-WB 

infection when SAP54 is in the plant (Figure 6.3), suggesting that SAP54-

dependent enhancement of insect oviposition preference could be MTF 

mediated. In contrast, AGL24 and FUL are required for insect oviposition on 

phytoplasma infected plants but not on healthy plants (Figure 6.3), suggesting 

that these MTFs may be required for the remodelling of MTF network in such a 

way that attracts insects for egg-laying. Male insects significantly downregulate 

several families of transcription and chromatin remodelling factors in SAP54 

plants. Many of these regulators have predicted MTF binding sites in their 

promoters with probability higher than in random list of genes (Figure 6.6), 

suggesting that MTFs could mediate the transcriptional remodelling of male 
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colonised SAP54 plants. Furthermore, leaf-expressed MTFs have similar 

expression pattern to many plant receptor kinases and defence genes (Figure 

6.4), suggesting a potential regulation of plant defences downstream MTFs. 

Although MTFs are shown to be destabilised in planta by SAP54 (MacLean et al., 

2014) and have an effect on plant-insect interactions (Figure 6.3), SAP54 may 

have additional targets that could mediate the male-specific suppression of plant 

defences required for female egg laying (Figures 6.6 and 6.7).  

 

 

Figure 6.9. Phytoplasma effector SAP54 may alter plant MTF network in AGL24- or 

FUL-dependent manner to suppress MAF5 or SVP1 functions. Such remodelling of 

MTF network  may cascade to global reprogramming of plant transcription factors and  

changes in chromatin activity to suppress insect induced plant defence responses that 

are key in insect selection of plant hosts for oviposition. In addition to MTFs, SAP54 may 

have other targets that could be influenced by MTF network remodelling in insect se-

specific manner and could contribute to the transcriptional remodelling of plants.   

 

 SAP54 interacts and destabilises type II MTFs, including AP1, SEP3 and 

SOC1 (MacLean et al., 2014) and is likely to interact with several other MTF 

targets in leaves (Figure 6.2). The known and potential SAP54 MTF targets lie at 

the heart of a complex and dynamic MTF interaction network. MTF proteins have 

multiple interactions with each other: they form homo- and hetero-dimers as well 

as higher order complexes, known as floral quartets, to control meristem identity 

and specify vegetative and reproductive organs (Davies et al., 1996; Egea-
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Cortines et al., 1999; Theissen and Saedler, 2001; de Folter et al., 2005). 

Moreover, MTFs interact with nucleosome (chromatin) remodelling factors and 

form complexes with other transcription factor families to control flower 

development (Smaczniak et al., 2012b; Simonini et al., 2012). Therefore, 

interaction and destabilisation of MTFs may have a myriad of effects on other 

MTFs as well as other families of transcriptional regulators and chromatin 

remodelling factors (Figure 6.5). This could happen either via direct 

transcriptional regulation of other transcriptional regulators by binding to their 

promoters (Figure 6.6) or post-translationally by disrupting the transcription factor 

protein complexes and the existing regulatory feedback loops.  

 Changes in MTF network could result in up- or down-regulation of certain 

MTFs that are important in plant-insect interactions. Interference with MAF5 and 

SVP1 functions by SAP54 may be required to enhance female leafhopper 

oviposition preference. Moreover, other components like AGL24 and FUL could 

be required for such remodelling of MTF network. Since MAF5 and SVP1 are 

actually upregulated in male exposed 35S:GFP-SAP54 plants compared to 

downregulation in male exposed 35S:GFP plants, there is a possibility that 

SAP54 may, nevertheless, disrupt the protein complexes formed by MAF5 or 

SVP1 with their interactors, thus mimicking the effect of maf5 and svp1 mutants 

on insect oviposition choice (Figure 6.3). In such case expression levels of MTFs 

may not necessarily correlate with the protein levels and functions. Furthermore, 

in the current display of RNA-seq data, spliced variants of MTF proteins and other 

regulators were not considered. Neither MAF5, SVP1, AGL24 nor FUL directly 

interact with SAP54 (Figure 6.2). Nevertheless, the latter three are interactors of 

SOC1 – a direct target of SAP54. Moreover, SVP1 or AGL24 separately form 

complexes with both AP1 and SEP3 (Gregis et al., 2006, 2009), and FUL can 

interact with AGL24, based on Y2H studies (de Folter et al., 2005). Both AP1 and 

SEP3 are destabilised by SAP54 (MacLean et al., 2014). However, since AP1 

and SEP3 are not expressed in the vegetative tissue (Figure 6.1), SVP1 or 

AGL24 may be interacting with another, yet unknown, MTF that may be targeted 

by SAP54. Interestingly, the soc1 and ap1 mutants did not show any significant 

effect on insect oviposition choice (Figures 3.6 and 6.3), indicating that 

remodelling of MTF network may be mediated via destabilisation of multiple 

MTFs. Furthermore, the role of the MAF5, SVP1, AGL24 nor FUL in plant-insect 
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interactions may be mediated through higher order complex formation among the 

leaf-expressed MTFs.  

 The interactions and resulting functions of MTF proteins in leaves could 

be very different from MADS role in orchestrating the floral transition by specifying 

inflorescence meristem and floral meristem identity. Most type II MTFs are known 

for their roles in flowering time regulation and floral organ development (Dornelas 

et al., 2011; Smaczniak et al., 2012a). For example, MAF5 and SVP1 are 

characterised as floral repressors, whereas AGL24 and FUL are positive 

flowering regulators. MAF5 and SVP1 negatively regulate floral signal integrators 

FT, SOC1 and FUL, thus suppressing shoot apical meristem from acquiring the 

inflorescence identity (Torti and Fornara, 2012; Shen et al., 2014a). AGL, FUL 

and SOC1 stimulate flowering by positively regulating inflorescence meristem 

identity and expression of floral meristem identity genes AP1 and LFY (Lee et al., 

2008; Torti and Fornara, 2012). AGL24 is important in maintaining the 

inflorescence meristem and needs to be repressed by LFY/AP1 to activate floral 

homeotic genes and form determinate flowers with the characteristic organs (Yu 

et al., 2004). Although 35S:GFP-SAP54 plants are early flowering (Figure 3.7), 

like maf5 and svp1 mutants, and show indeterminate inflorescence growth 

characteristic to AGL24 function in floral meristems, the modulation of flowering 

time or meristem identity may not be the primary target of SAP54 to attract 

insects. First, experiments in chapter 3 demonstrate that SAP54 effect on insect 

egg laying is independent from plant being in vegetative, inflorescence or floral 

‘’state’’ (Figure 3.4). Second, lfy and ap1 mutants, arrested in the inflorescence 

state, did not affect leafhopper choice (Figure 3.6). This suggests that SAP54 

may alter AGL24, ,FUL, SVP1 or MAF5 functions in vegetative tissue that are 

different from the functions of these proteins during floral transition and floral 

meristem specification. 

 AGL24 and SVP1 are known to have stage specific functions in plant 

reproductive growth. While being activator or repressor of inflorescence meristem 

at early stages of floral transition, later in floral meristems they form complex with 

AP1 and SEP3 to recruit LEU-SEU floral repressor of flower organ identity genes 

(Gregis et al., 2006, 2009). It may be possible that in the vegetative tissue they 

have completely different interactors and yet different functions from 

inflorescence meristems and floral meristems. Moreover, phytoplasmas may 

infect plants at different stages of development – before or after flowering. 
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Therefore, SAP54 may target multiple MTFs for robust modification of plant 

defences during vegetative and floral stages. I use Iceberg analogy to illustrate 

this idea (Figure 6.9). maf5 and svp1 mutants had significant role in insect choice 

during vegetative stage, as in the experiments performed in this chapter (Figure 

6.3). However, different MTFs mutants may show the same response after bolting 

or during flowering. Such scenario implies that different subsets of MTFs may 

regulate plant defences during vegetative and reproductive growth. Further 

experiments need to be performed to test this.  

 

Figure 6.10. Imagine a floating iceberg representing the plant genome and the 

submerged under-water part of the iceberg being the expressed genome. In 

vegetative organs a certain subset of MTFs may have diverse roles in leaf and root 

development as well as defence, whereas Fruit or flowering genes and their regulators 

are not expressed. During developmental time the water temperature rises and the 

underwater parts of the iceberg melt. Reduction of mass underwater makes icebergs flip 

over. This symbolises the transition from vegetative to flowering stages when a different 

subset of MTFs become active and regulate flowering time and plant reproduction. 

Certain functions like defence may be still regulated by MTFs but a different subset from 

the vegetative stage.  

 

There is increasing evidence for MTF roles in other plant processes in 

addition to developmental regulation. For example, LFY is expressed during 

reproductive growth and is regulating biotic stress related genes, including 

receptor kinases, WRKY and MYB transcription factors to suppress plant defence 

response to Pseudomonas (Winter et al., 2011). Chip-seq experiments have 
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identified that SVP1 has different set of targets in vegetative and reproductive 

growth stages. Jasmonate-signalling genes like COI1 and JAZ proteins were 

identified as potential direct targets of SVP1 in vegetative stage, and showed 

altered expression in svp1 mutant or overexpression lines (Gregis et al., 2013). 

SOC1 can target miRNA319 with known function in regulating TCP transcription 

factors and jasmonate synthesis (Immink et al., 2012). Moreover, in addition to 

regulating each other and themselves, SOC1 and SVP1 have common 

transcription factor targets, indicating to the importance of the regulatory 

feedback loops in MTF network (Tao et al., 2012). MTFs may regulate plant 

defence in growth-stage specific manner, depending on the presence of co-

expressed interactors or (post-)translational modifications of MTFs. When all 

protein-DNA and protein-protein interactions are clustered in interaction-dense 

subnetworks, there remain substantial links between such subnetworks or 

modules in addition to dense interactions within each module (Boucher et al., 

2016). This suggests that, depending on the timing of expression or cellular co-

localisation of genes in neighbouring modules, a given node in a pathway 

(corresponding to intra-connected module) may branch out to have numerous 

other effects on neighbouring pathways. Furthermore, a phenomena, known as 

protein moonlighting, occurs when spliced variants or small (post-translational) 

changes in protein (e.g., receptor kinases or transcription factors) determines its 

role in multiple cellular processes (Jeffery, 2014, 2016). 

Type I MTFs are key regulators in gametophyte, embryo and seed 

development (Masiero et al., 2011). Despite few reports of MTF role in nutrient 

uptake, root elongation, lateral root development or stomatal patterning in leaves 

(reviewed in Smaczniak et al., 2012a), the role of type I and II MTFs in vegetative 

organs is largely unknown.  

 The effects of MTFs on plant transcriptome could be mediated via 

nucleosome binding and chromatin remodelling factors (section 6.2.4). MTFs 

may regulate chromatin state of other MTFs or other transcription factor families. 

Interestingly, SET family chromatin remodelling factors SDG8 and SDG26 are 

positive regulators of MAF5 and MAF4 (Liu et al., 2016) while Polycomb RING1 

is a suppressor (Shen et al., 2014b). The expression of these three chromatin 

remodelling factors is significantly suppressed in male exposed SAP54 plants 

(Figure 6.5), suggesting that SAP54 effect on MTFs may be mediated via 

chromatin remodelling. In addition, RAD23 showed significant male dependent 
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effects in SAP54 plants (Figure 6.7). In yeast, RAD4-RAD23 proteins are known 

to be key in chromatin remodelling during DNA repair (Gong et al., 2006). Thus, 

the observed male-dependent effects on chromatic state in SAP54 plants may 

have multiple mechanistic explanations.  
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"I am never content until I have constructed a mechanical model of the subject I 

am studying. If I succeed in making one, I understand; otherwise I do not." 

"You can understand perfectly, if you give your mind to it" 

Lord Kelvin (1904), Baltimore Lectures on Molecular Dynamics and The Wave Theory of 

Light  

 

Chapter 7  

General Discussion on Ecological and Molecular Mechanisms 

in Plant-Microbe-Insect Interactions 

 

Part of this chapter is published in: 

Orlovskis Z, Canale MC, Kuo CH et al. (2017). A few sequence polymorphisms among 

isolates of Maize bushy stunt phytoplasma associate with organ proliferation symptoms 

in infected maize plants. Annals of Botany, doi:10.1093/aob/mcw213. See Appendix E  

Z. Orlovskis (2016) ‘’Understanding the Bigger Picture.’’ 
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7.1. Summary and implications of the key findings 

26S proteasome shuttle protein RAD23 is required for generation of 

phyllody in phytoplasma-infected plants (MacLean et al., 2014). In this thesis I 

discovered that AY-WB infection also enhances insect egg-laying preference in 

RAD23 dependent manner. This suggested that phytoplasma-induced leaf-like 

flower phenotype and enhancement of insect colonisation are genetically linked 

via RAD23. Phytoplasma effector SAP54 interacts with both RAD23 and MTFs, 

resulting in MTF degradation by plant 26S proteasome and induction of phyllody 

(MacLean et al., 2011, 2014). Furthermore, SAP54 significantly enhanced insect 

oviposition compared to control plants. These findings supported the hypothesis 

that phytoplasma may alter plant floral development to enhance insect vector 

colonisation of infected plants and thus aid phytoplasma spread in nature.  

Surprisingly, I found that insect egg-laying preference for SAP54 plants is 

independent from the SAP54-induced developmental changes in plants and does 

not require plant transition from vegetative growth to bolting and flowering. 

Instead, SAP54 appears to modify processes in rosette leaves to promote 

leafhopper oviposition (Orlovskis and Hogenhout, 2016). Furthermore, I 

discovered that female leafhopper oviposition preference for SAP54 plants does 

not require female contact with males but depends on male insect simultaneous 

presence. This suggested that male insects induce plant responses that may be 

altered by SAP54 to attract females. 

I analysed plant transcriptional responses to male and female leafhoppers 

on SAP54 plants and plants without SAP54. Surprisingly, male and female 

insects elicit sex-specific plant responses characteristic to PTI and ETI. 

Moreover, SAP54 suppresses insect induced plant responses in sex-specific 

manner by selectively downregulating male-induced defence and secondary 

metabolism pathways. Male colonized SAP54 plants demonstrate 

downregulation of plant hormone and defence responses to insects. This 

suggests that SAP54 may suppress plant priming to herbivores in insect sex-

specific manner.   

Furthermore, I identified four MTFs that are expressed in plant leaves and 

play important roles in egg-laying preferences by leafhoppers as well as 

demonstrate sex-specific regulation by SAP54. Firstly, this indicates that MTFs 

have additional roles in regulation of plant defence against herbivores. Secondly, 

it gives additional support to the model outlined in Figure 7.1. In this model SAP54 
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degrades MTFs to alter the function of MTF network in order to modulate male 

recognition by plant and male-induced plant responses. This stimulates female 

insect to choose male-exposed SAP54 plants for oviposition. Changes in flower 

development emerge as a result of remodelling MTF network. However, plant 

morphological changes are not required for female insect attraction to the plant. 

 

  

Figure 7.1. Schematic model of the mechanism and role of phytoplasma effector 

SAP54 in enhancing insect vector colonisation of phytoplasma-infected host 

plants.  

 

Key future work to verify or refine this mechanistic model would include 1) 

investigation of all (especially MTF) interactors of SAP54 in planta; 2) test 

whether plant exposure to male leafhoppers is required for female oviposition 

preference on MTF mutants that interact with SAP54 in planta and MTFs that are 

important for plant resistance to insects; 3) determine if MTF mutants 

demonstrate transcriptionally similar plant response to insects as SAP54.  

Together, data in this thesis suggest that modulation of insect induced 

plant responses can be considered the extended phenotype of phytoplasma 

SAP54 gene. Increased insect vector egg-laying preference for infected plants 

expressing SAP54 may increase transmission of the pathogen in nature and thus 

benefit phytoplasma fitness.  
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7.2. Mechanisms of effector-mediated target destabilisation 

Phytoplasma effector SAP54 degrades MTFs by using 26S proteasome 

shuttle protein RAD23 (MacLean et al., 2014). However, a detailed mechanism 

how MTFs are recruited to the proteasome complex and how SAP54 evade 

degradation by the proteasome remain to be elucidated in future experiments. 

MacLean and colleagues (2014) proposed several mechanistic hypotheses 

(Figure 7.2). 

 

 

Figure 7.2. Models of SAP54-mediated degradation of MTFs. (A) SAP54 binds 

directly to both MTFs and RAD23. The latter takes the SAP54–MTF complex to the plant 

UPS where the MTFs are degraded. SAP54 may remain associated with RAD23 to 

prevent being degraded. (B) RAD23 and SAP54 do not interact directly, but via one or 

more ubiquitin moieties linked via lysine (K) residue(s) on SAP54. RAD23 takes the 

SAP54–MTF complex to the plant UPS (as in A). (C) An unknown pathway is involved 

in transportation of SAP54–MTF complexes to the host UPS, whereupon SAP54 

interacts with RAD23 to evade degradation. RAD23 and SAP54 may interact directly (as 

in A) or via ubiquitin (as in B). Image taken from MacLean et al., 2014. 
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SAP54 has many conserved leucine, asparagine and glutamic acid 

residues along the peptide (Figure 2.6) and a predicted coiled-coil (CC) structure 

(Figure 7.3A). CC structure may be important for SAP54 interactions with the K-

domain of MTFs (Figure 2.2). A proline residue at residue 53 may influence 

protein folding into two interaction CC helices which may be important for 

simultaneous interaction with MTFs and RAD23 in models A and B in Figure 7.2. 

I generated two SAP54 truncations by deleting either the N’- or the C’-terminal 

portion of the peptide up to the proline residue 53. This may generate two CC 

peptides as outlined in Figure 7.3A. I further generated transgenic A.thaliana lines 

to see if either of the two CC fragments of SAP54 could induce the leaf-like flower 

phenotype. Interestingly, both N’- and C’-terminal truncated fragments of SAP54 

produced determinate flowers with normal floral organs (figure 7.3B). This 

indicates that residues in the both halves (or correct folding of the whole length 

SAP54) may be required for MTF degradation and induction of phyllody. Other 

truncations and single amino-acid mutations could be further analysed in a 

protein-protein interaction assay, such as yeast-two-hybrid, to elucidate the MTF 

and RAD23 interacting domains.  

Cristal structure of SAP54 together with its MTF and/or RAD23 interactors 

would greatly enhance understanding about the structural motifs and residues 

that are involved in SAP54 interaction with MTF and RAD23 targets. It could be 

possible that the two predicted CC halves of a single SAP54 molecule 

simultaneously interacting with RAD23 or MTFs as in models A and B of Figure 

7.2. Alternatively, the entire SAP54 may interact with either MTF or RAD23 and 

later form dimers to shuttle the complex to proteasome for degradation, 

consistent with model C in Figure 7.2. Interestingly, genomes of some 

phytoplasmas like ‘Ca. P. aurantifolia’ strain SPLL encodes a tandem duplicate 

of SAP54 homolog (Al-Subhi, unpublished data), suggesting that SAP54 may be 

expressed as a dimer.  

The exact mechanism how the other phytoplasma effector SAP11 

destabilises its targets is unknown, too. There could be many possible 

mechanisms how phytoplasma effectors interfere with their target functions. 

Degradation of plant targets via 26S proteasome could be one mechanism, which 

is employed by other plant pathogenic bacteria as well (Nomura et al., 2006). A 

review by Howden and Huitema (2012) discussed that bacterial effectors may 

also 1) exhibit a direct enzymatic activity in target phosphorylation, ubiquitination 
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or SUMOlation or 2) act as mimics of such signals, e.g., ubiquitin mimics, as well 

as 3) recruit plant enzymes that modulate the function of the target proteins. 

 

 

Figure 7.3. Prediction of SAP54 structural domains that may be required for 

induction of leaf-like flower phenotype. (A) After the cleavage of the N’-terminal signal 

peptide (not shown), the remaining peptide of SAP54 is highly predicted to fold into two 

coiled-coil (CC) structures from residues 20-48 (red fragment) and 55-90 (red fragment) 

approximately, separated by a non-CC ‘’bridge’’ (middle of blue fragment) around the 

proline residue at position 53. The first 20 residues at N’-terminal end of SAP54 are not 

predicted to form CC (green fragment). The two CC fragments may interact with each 

other, and the non-CC and part of the CC sequence in the middle of SAP54 may form a 

‘’bridge’’ between the two interacting CC helices. Two truncated forms of SAP54 – 

SAP54∆1 and SAP54∆2 were generated to transform A.thaliana with either of the two 

CC fragments. (B) 35S:GFP-SAP54∆1 and 35S:GFP-SAP54∆2 plants produce normal 

flowers.  
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7.3. Microbial pathogens may use diverse strategies to increase their 

virulence and spread in nature 

Fitness of many microbial plant pathogens depends on the ability to evade 

recognition by their plant hosts and suppress pathogen-induced plant defence 

responses. In addition, pathogens which rely on vectors for transmission between 

plant hosts would benefit from increased host colonisation by the vectors. There 

are several potential strategies that plant microbial pathogens may employ to 

achieve these ‘’goals’’. One involves modulation of plant immunity (Boller and He, 

2009) and the other may involve alteration of other plant processes, including 

development and tissue morphology (Mescher, 2012). I will briefly outline both in 

the following sections. I will discuss that in some cases the manipulation of 

development by itself may be adaptive to enhance the microbial colonisation or 

transmission. However, in other cases the evidence for the adaptive role of 

developmental changes is not so compelling. Instead, modulation of development 

may be a side-effect of targeting regulators with pleiotropic roles in development 

and plant immunity (Orlovskis et al., 2016). 

 

7.3.1. Microbial pathogens evade plant immune recognition and suppress 

plant defences. 

 Microbial plant pathogens show variations in molecules (MAMPS) on their 

surface or molecules inside their cells that would typically be recognised by plant 

Pathogen Recognition Receptors (PRRs). For example, modulation of bacterial 

cell wall chitins, peptidoglycans, lipopolysaccharides, flagellin or protein 

elongation factor Tu may evade recognition by plant receptors (Pel and Pieterse, 

2013).  

A complementary strategy involves delivery of bacterial effector molecules 

in the apoplast or inside plant cell to modulate pathogen recognition and 

downstream defence responses in plants. For example, some fungal pathogens 

secrete chitin binding proteins (de Jonge et al., 2010) while some bacteria 

produce flagellin degrading peptidase (Bardoel et al., 2011) to impede MAMP 

recognition by plant PRRs and molecules that can detoxify the apoplastic 

environment and inhibit host plant proteases (reviewed in Okmen and 

Doehlemann, 2014).  
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Pathogenic bacteria, like Pseudomonas, secrete a plethora of effector 

proteins inside the plant cell to suppress PTI (Boller and He, 2009). P. syringae 

effectors AvrPto and AvrPtoB can interfere with kinase functions of PRRs (Xiang 

et al., 2008) or complex formation between PRRs and their SERK co-receptors 

(Shan et al., 2008). Furthermore, HopA1 inactivates MAPKs dependent signals 

downstream of pathogen perception (Zhang et al., 2007). In addition, HopU1 

targets several RNA-binding proteins such as GRP7 that interacts with transcripts 

of FLS2 and EFR – two important plant PRRs (Nicaise et al., 2013). Another 

Pseudomonas effector, HopM1, degrades MIN7, which may be involved in 

vesicle trafficking (Nomura et al., 2006) and perhaps transport of PRRs to the cell 

membrane. Bacterial effectors can interfere with plant hormone signalling as well. 

For example, HopI1 suppresses salicylic acid (SA) defences (Jelenska et al., 

2007) but HopX1 upregulates jasmonic acid (JA) defences to potentially 

complement the effect of HopI1 on SA (Gimenez-Ibanez et al., 2014). In addition 

to Pseudomonas effectors mentioned above, there are many other effectors in 

Ralstonia, Xanthomonas, Pantotea interfering with plant targets which may 

function in modifying plant PTI (Block et al., 2008).   

 The strategies above illustrate that pathogens have specific adaptations 

to target plant immunity. Moreover, individual bacterial effector proteins may not 

function in isolation but rather act in concert to achieve robust modulation of 

induced plant immune responses.  

 

7.3.2. Phytoplasma effectors may act in concert to alter plant immunity 

against insect vectors 

Insect-vectored plant pathogens are known to modulate plant processes 

such as emission of volatile compounds or plant colour to attract their insect 

vectors (Mauck et al., 2016). However, whether insect vector attraction also 

occurs via suppression of insect-induced plant immune responses is yet elusive. 

Findings presented in this thesis (Chapters 5 and 6) suggest that phytoplasma 

effector transcriptionally remodels plant immune responses to insects, including 

PTI-like responses. Data suggest strong association between male-dependent 

female leafhopper oviposition preference for SAP54 plants and male-specific 

remodelling of plant responses to herbivores by SAP54 (Chapter 4). Thus, the 

SAP54-dependent alteration of plant transcriptional responses to insects may be 
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required for host plant selection by leafhoppers. Given that SAP11 suppresses 

JA pathway to increase leafhopper fecundity (Sugio et al., 2011), the two effectors 

– SAP11 and SAP54 – may act together to attract insect vectors to plants and 

increase the egg-laying on the insect-selected plants.  

 

7.3.3. Parasites alter host plant vegetative and reproductive development 

 Prokaryotic and eukaryotic plant parasites have diverse effects on cellular 

structure as well as on organ and tissue morphology of their plant hosts. A 

detailed review by Le Fevre et al. (2014) discusses numerous examples of tissue 

proliferation and tissue or organ trans-differentiation by plant pathogenic bacteria, 

fungi and nematodes. In addition, insect herbivores such as galling wasps change 

plant morphology by producing galls that range from open pits on the surface of 

plant leaves to swollen enclosed structures with spikes or hairs (Stone and 

Schönrogge, 2003). Many of such morphological modifications may be caused 

by delivery of microbial nucleic acids (T-DNA, small RNAs) or protein effectors 

that pathogenic microbes or herbivores secrete into the plant (Evangelisti et al., 

2014; Le Fevre et al., 2014). Alternatively, production of plant hormone (auxin, 

cytokinins, abscisic acid, salicylic acid) mimics by microbes or insects may be 

involved in remodelling plant tissues (Giron et al., 2013; Denancé et al., 2013; Le 

Fevre et al., 2014). In most cases, however, the molecules inducing the 

developmental alterations in plants and their targets are unknown.  

Examples with phytoplasma effectors SAP54 and SAP11 targeting MTFs 

and TCPs, respectively, are not isolated incidents in nature where parasite 

effectors target transcriptional regulators with known function in development. For 

example, Xanthomonas effector AvrBs3 upregulates bHLH-domain transcription 

factor upa20, a master regulator of cell size (Kay et al., 2007). Similarly, anther-

smut fungus Microbotryum violaceum differentially regulates homologs of floral 

homeotic genes SUPERMAN and PISTILLATA in dioecious plant Silene latifolia 

to induce anther genesis in female flowers (Kazama et al., 2005, 2009). Together 

with research on phytoplasma effectors, these studies also demonstrate the utility 

of pathogen infections and their effector proteins as tools for studying the genetic 

regulation of plant development.   
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7.3.4. Phytoplasma effectors may act in concert to alter plant development 

When individual phytoplasma effectors are ectopically expressed in plants, 

they generate plant phenotypes that are reminiscent of certain developmental 

alterations in phytoplasma-infected plants. This is known for SAP11 and SAP54 

and discussed previously. However, other phytoplasma effectors may also 

interfere with plant development. For example, ectopic expression of another 

phytoplasma candidate effector SAP05 in A.thaliana (Col-0) shows increased 

number of aerial rosette leaves from axillary meristems (AM) compared to wild-

type Col-0 plants. SAP05 was found to interact with GATA transcription factors 

(A. MacLean, unpublished data). Furthermore, the number of rosette leaves from 

AM increases with the emergence of secondary stems from the AM (Figure 7.4). 

Interestingly, SOC1 and SOC1-like MTFs AGL42, AGL71 and AGL72 control 

induction of flowering stems as well as aerial rosette leaves from AM (Dorca-

Fornell et al., 2011).  It is, therefore, possible that the downstream effects of 

several phytoplasma effectors may converge to certain families or transcription 

factors and demonstrate some degree of cross-talk. 

 

 

Figure 7.4. Induction of aerial rosette leaf number by SOC1-like genes and ectopic 

expression of phytoplasma effector SAP05. (a) Wild-type Col-0 plants usually develop 

single cauline leaf at axillary meristems (AM) that give rise to secondary branches. (b) 

soc1 and soc1 agl24 ami:agl71-72 mutants show increased number of aerial rosette 

leaves from AM. (d) 35S:SAP05 plants demonstrate numerous aerial rosette leaves from 

AM before emergence of secondary stems. (e) The number of aerial rosette leaves from 

AM in 35S:SAP05 plants increases after emergence of secondary stems. AM indicated 

by arrows in all photos. Scale bars are approximately 1 cm. Images (a-c) taken from 

Dorca-Fornell et al. (2011). Plants for images (d-e) generated by Dr Allyson MacLean.   
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Phytoplasma candidate effector SAP41 was found to interact with 

A.thaliana Basic Pentacysteine (BPC) transcription factors in a yeast-two-hybrid 

screen (A. Zwolińska, unpublished data). BPC facilitate MTF complex binding to 

their target genes, for example, binding of AP1-SVP1-SEU-LUG repressor 

complex to STK promoter (Simonini et al., 2012).  

Ectopic expression of candidate effector SAP44 in A.thaliana induced 

stunting (R.Wouters, unpublished data), and a yeast-two-hybrid screen revealed 

that SAP44 may interact with a plant NB-LRR (Nuclear Binding domain-Leucine 

Rich Repeat) protein (A. MacLean, unpublished data), suggesting that 

phytoplasma effectors may potentially be recognised by plant R-genes. Effector 

triggered immunity may slow plant growth (Denancé et al., 2013) similar to the 

observed stunting in SAP44 expressing plants and phytoplasma-infected plants.  

28 different (candidate) phytoplasma effectors are upregulated in plants, 

including SAP05, SAP11, SAP41, SAP44 and SAP54 (MacLean et al., 2011). 

Thus, the phenotypic alterations in phytoplasma-infected plants may be the 

product of combined activity of multiple phytoplasma effectors.  

 

7.3.5. Adaptive role of altering host development 

 Morphogenic alteration of plant tissue or tissue identity by itself can be 

adaptive to the parasitic life-cycle of microbes. For example, induction of 

pseudoflowers on plant leaves by rust fungi presents visual and olfactory cues 

that attract pollinating insects which disseminate fungal spores (Roy and Raguso, 

1997). Changes in tissue coloration or volatile production from vegetative and 

floral organs may also play important role in attraction of arthropod vectors to 

infected plants (Mauck et al., 2010; Shapiro et al., 2012). Nevertheless, in many 

cases the adaptive significance of alteration of plant development by vector-

borne plant pathogens is less clear. For example, Mycobotrium infected Silene 

flowers are actually less attractive to pollinator insect vectors of this fungus 

compared to healthy plants (Shykoff and Kaltz, 1998). 

It is possible that developmental effects of phytoplasma effectors may 

have amplifying effects on the suppression of insect induced responses by other 

effectors. For example, rosette leaves of SAP54 plants are more attractive to 

leafhoppers than rosette leaves without SAP54. And leafhoppers select rosette 

leaves of phytoplasma-infected plants in preference to cauline leaves and leaf-
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like floral tissue (Orlovskis and Hogenhout, 2016). If other phytoplasma effectors 

such as SAP05 generates aerial rosette leaves (i.e., more leaves with rosette leaf 

identity), this would amplify the effects of SAP54 on leafhopper host plant choice. 

Similarly, increased stem branching of SAP11 plants may aid leafhopper 

attraction. Such developmental effects may positively interact with SAP11 role in 

suppressing JA production and enhancing leafhopper fecundity (Sugio et al., 

2011).  

Developmental effects may also turn beneficial in certain stages of plant 

infection. For example, at late stages of infection, when xylem-inhabiting plant 

pathogen Xylella fastidiosa reaches high density, it forms biofilms and can induce 

xylem blockages associated with leaf blotches and yellowing (Chatterjee et al., 

2008). Such morphological changes may encourage the sharpshooter vector of 

Xylella to leave infected plant and facilitate the dissemination of pathogen.  

On the other hand, the developmental alterations in parasite infected hosts 

can also be viewed as side-effects of pathogen infection or effector activity. 

SAP54 may produce a myriad of developmental and physiological effects such 

as changes in leaf surface reflected light or plant volatiles in addition to generation 

of leaf-like flowers. Although I cannot completely exclude a potentially adaptive 

function of these altered plant phenotypes, these phenotypes neither appear to 

play a significant role in insect attraction and oviposition on SAP54 plants nor 

have a direct effect on plant longevity or phytoplasma replication within the plant 

(Chapters 3 and 4).  

The potential reason for emergence of secondary developmental effects 

in infected plants may be the fact that certain microbial effectors target master 

regulators of various plant processes. Due to their pivotal regulatory roles in 

development and selection against accumulations of mutations, the genes of 

these master regulators are under evolutionary constraint to evade recognition 

by the effectors. SAP54 targets MTFs. MTFs are conserved developmental 

regulators but known to regulate defence-related targets like JAZ proteins (Gregis 

et al., 2013) or other transcription factors like TCPs. TCPs, also targeted by 

SAP11, are another family of conserved regulators for plant growth and organ 

formation. In addition, TCPs regulate a variety of microRNAs and the plant 

defence hormones jasmonic acid (JA) (Immink et al., 2012, Schommer et al., 

2008) and salicylic acid (SA) (Wang et al., 2015). Plant development and 

immunity appear to be interlinked in a complex regulatory network. For example, 
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JAZ proteins, jasmonic acid pathway regulators, interact with many transcription 

factors in development such as NAC and GATA (Sen et al., 2016).  

 

7.4. Phytoplasma effectors and genome organisation in agricultural 

context 

 It is important to consider how research on pathogen effector functions in 

laboratory can be translated to agricultural systems. Next I would like to describe 

recent work on single plant host (specialist) phytoplasma, called Maze Bushy 

Stunt Phytoplasma (MBSP), and the association between polymorphisms in 

MBSP genome and MBSP-induced disease symptoms in maize. Using MBSP as 

an example, I will discuss that phytoplasma effectors can be under strong 

selection and are likely to play an important role in disease symptom development 

in the field. In the following sections I will summarise findings from Orlovskis et 

al. (2017) and refer to figures of the full version of the paper in Appendix E.  

 

7.4.1. Maize Bushy Stunt Phytoplasma (MBSP) induces diverse disease 

symptoms in its maize host 

MBSP is predominantly transmitted by the maize specialist leafhopper, 

Dalbulus maidis (DeLong and Wolcott) (Hemiptera: Cicadellidae) (Nault, 1980; 

Oliveira et al., 2011). Both the pathogen and the vector are present throughout 

maize production zones in Central and South America (Oliveira et al., 2013; Van 

Nieuwenhove et al., 2015; Triplehorn and Nault, 1985) and are thought to have 

co-evolved with maize since its domestication from a teosinte ancestor (Nault and 

DeLong, 1980; Nault 1980; Doebley et al., 1997). Maize bushy stunt disease 

symptoms are characterised by leaf reddening, shortening of internodes, plant 

height reduction (stunting), lower grain yield and lateral shoot production (Nault, 

1980). MBSP-infected maize plants show a diversity of symptoms, depending on 

maize genotype, weather conditions and perhaps also the MBSP isolate (Murral 

et al., 1996; Moya-Raygoza and Nault, 1998), and it is likely that MBSP is under 

strong selection for increased virulence and insect transmission on the maize 

genotypes that are widely grown in Brazil. 

MBSP field isolates from two maize-growing regions in Brazil were 

collected, and several maize hybrids and lines were infected with these isolates 

(Orlovskis et al., 2017). Authors found that disease symptoms vary depending on 
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MBSP isolate and maize genotype. Variation in maize organ proliferation, in 

particular, lateral branching, was dependent on the collected MBSP isolates in all 

maize genotypes (Figures 2 and 3, Appendix E). 

 

7.4.2. MBSP effectors and PMUs are under strong selection  

SAP11 homolog was previously identified in a Mexican strain of MBSP 

(Sugio and Hogenhout, 2012). Since SAP11 from AY-WB induces lateral 

branching (Sugio et al., 2011), I hypothesized that the differential contributions of 

MBSP isolates to branching induction in infected maize genotypes may be due 

to variation in SAP11 sequences among the MBSP isolates. SAP11 gene and 

other genes previously identified to locate in the SAP11 PMU-like region in the 

Mexican strain were successfully amplified from all MBSP Brazilian isolates. 

Moreover, SAP11 sequence was identical among the MBSP isolates from Brazil 

and also with one MBSP isolate from Mexico (Figure S2, Appendix E). Thus, in 

contrast to the prior prediction, the variation in lateral branching symptoms among 

the MBSP isolates cannot be explained by sequence variations in the SAP11 and 

absence/presence of genes in the SAP11 PMU-like region. 

 To better understand MBSP genome organisation and effector repertoire, 

the MBSP Brazilian isolate which induced the greatest branching in maize was 

sequenced. The MBSP genome has an irregular GC-skew pattern (Figure 4, 

Appendix E) that is different from most prokaryotic genomes, which usually 

consist of two major shifts near the origin of replication and the terminus of 

replication (Guy and Roten, 2004). However, the AY-WB and OY-M genomes 

also have irregular GC-skew patterns (Figure 4, Appendix E) (Oshima et al., 

2004; Bai et al., 2006) that is indicative high genomic plasticity, possibly caused 

by relatively recent recombination events of, for example, PMUs (Bai et al., 2006). 

The MBSP genome has 36 candidate effector genes (based on the presence of 

a signal peptide sequence and absence of predicted transmembrane domain 

beyond the signal peptide sequence, Bai et al., 2009) (Table S3, Appendix E). 

Interestingly, PMU-like genes, which were identified based on similarities to tra5, 

dnaB, dnaG and other genes that are present in AY-WB PMU1 (Bai et al., 2006), 

and effector genes co-localise between 0 and 250 kb on the genome map, but 

not in the 250-550-kb stretch of the MBSP genome (Figure 4, Appendix E). 

Similarly, in AY-WB genome, PMU-like and effector genes co-localize between 
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150 and 400 kb and less so in the other parts of the genome, whereas both 

groups of genes are distributed throughout the OY-M genome (Figure 4, 

Appendix E).  

Ten of the 36 MBSP effectors have homologs in other phytoplasmas. 

These include tengu-su and SAP11 (Table S3, Appendix E). However, no SAP54 

homolog was identified in the MBSP genome. Sixteen out of 36 MBSP candidate 

effector protein genes locate within or nearby five predicted PMU-like regions. Six 

putative effector genes encoding homologs lie within or adjacent to MBSP_PMU1 

(Figure 7, Appendix E). SAP11 is also part of a PMU-like region in the MBSP 

isolate M3 genome (Table S4, Appendix E) and in a Mexican isolate of MBSP 

(Sugio and Hogenhout, 2012). 

 The whole genomes of several different MBSP Brazilian isolates were 

resequenced to identify changes in genome organisation or polymorphisms 

associated with the variation in MBSP disease symptoms in maize. Surprisingly, 

all sequenced genomes turned out to be nearly identical with a total of only 86 

polymorphisms scattered evenly across the MBSP genome. The identified 

polymorphisms in MBSP Brazilian isolate genomes did not cluster to PMUs. The 

majority of these were synonymous single nucleotide polymorphisms (SNPs) 

rather than insertions or deletions (Table S5, Appendix E). Forty nine (49)% 

polymorphic sites were in non-coding intergenic regions, 45% in coding regions, 

5% in pseudogenes and 1% in tRNA genes. Only one SNP was found to affect a 

candidate effector gene (locus tag c1710, Table S5, Appendix E). This effector 

gene lies within MBSP-PMU3 (Table S4, Appendix E) and is annotated as 

encoding a phase-variable surface lipoprotein. MBSP-PMU3 also contains 

sequences similar to candidate effector protein genes SAP21 and SAP27 of AY-

WB phytoplasma (Figure 7A, Appendix E). The lipoprotein, SAP21 and SAP27 

genes are about 100-kb apart in the AY-WB genome, but lie adjacently to 

pseudogenes that are found in PMU-like regions or that are present at high copy 

numbers in phytoplasma genomes (Bai et al., 2006). Homologs of the SAP21 and 

SAP27 genes are also found in the genomes of Peanut witches’ broom 

phytoplasma (PnWB) and Echinacea purpurea witches’ broom phytoplasmas, 

which belong to the 16Sr-II phytoplasma group and exchanged PMU elements 

via horizontal gene transfer with 16Sr-I phytoplasmas (Chung et al., 2013; Ku et 

al., 2013). Thus, MBSP genomes carry PMU-like pathogenicity islands, and a 
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candidate lipoprotein effector gene on MBSP-PMU3 is polymorphic among 

Brazilian MBSP isolates.  

 

7.4.3. Effector variants are associated with symptom development in maize 

Orlovskis et al. (in press) investigated which of the 86 polymorphisms are 

associated with the MBSP-isolate-dependent symptom differences of infected 

maize genotypes. Surprisingly, both candidate lipoprotein effector in 

MBSP_PMU3 and a lipoprotein ABC export protein were found to be associated 

with the observed variation in lateral branching phenotype during MBSP infection 

of maize.   

MBSP Brazilian isolate M3 induced the strongest and most consistent 

lateral branching in all maize genotypes tested. The M3 allele of the polymorphic 

lipoprotein had a frame-shift mutation that would produce 2-times longer peptide 

than other MBSP alleles. Moreover, this lipoprotein is predicted to be exported by 

the phytoplasma. Two additional non-synonymous single nucleotide 

polymorphisms (SNPs) locate within a gene encoding a conserved ABC-family 

transporter, which has a lipoprotein transporter ATP-binding subunit LolD domain 

(Blastp E-value: 1.38e-82 against the non-redundant GenBank database). LolD 

mediates lipoprotein detachment from cytoplasmic membranes (Yakushi et al., 

2000). Interestingly, two MBSP Brazilian isolates with the strongest induction of 

lateral branching also had a 2 bp insertion 47 bp downstream of the stop codon 

of lplA.  It encodes a lipoate-protein ligase A which is conserved among 

phytoplasmas.  

Bacterial lipoproteins can have diverse virulence functions. They may be 

perceived as pathogen-associated molecular patterns (PAMPs) by host pattern-

recognition receptors (PRRs) (Janeway and Medzhitov, 2002) such as extra- or 

intra-cellular TIR (Toll/Interleukin-1) domain or NOD family receptors to trigger 

immune responses in both plants and animals (Medzhitov, 2001). For example, 

mycoplasmal lipopeptide MALP2 is recognised by a TLR2 receptor (Takeuchi et 

al., 2000). Lipoproteins are also implicated in a wide range of invertebrate 

immune responses, including activation of anti-fungal and anti-bacterial 

responses (Whitten et al., 2004). These proteins have a role in cellular adhesion 

(Paredes et al., 2015) and the recruitment (transport) of host lipids (Herren et al., 

2014). While in Gram-negative bacteria several ABC transporter subunits 
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(LolCDE) are required for lipoprotein detachment from the inner membrane 

(Yakushi et al., 2010), the single-membrane bounded phytoplasmas lipoprotein 

transport may coordinate by fewer ABC transporter subunits, such as LolD. 

Interestingly, in Pseudomonas aeruginosa a LolD-type ABC exporter and an 

exported lipoprotein promote the activity of the type VI secretion system 

(Casabona et al., 2013). Even though phytoplasmas lack components that are 

characteristic of Type III, IV and VI secretion systems, an intriguing possibility 

arises that the lipoprotein effector and ABC exporter are involved in the 

attachment of phytoplasma cells to host cells and the activation of the secretion 

of other candidate effector proteins, including perhaps MBSP SAP11 and tengu-

su homologs. 

 

7.4.4. Conclusions 

 MBSP genomes reveal highly dynamic organisation. Most of predicted 

MBSP effector proteins cluster within putative PMUs. Genes within these PMUs, 

including effectors, could be exchanged via horizontal gene transfer. PMUs are 

conserved among geographically distant MBSP isolates, indicating strong natural 

selection on PMU genes. This findings suggests that effectors like SAP11 may 

be important for phytoplasma virulence in plants or transmission by insect vectors 

in agricultural systems. Furthermore, phytoplasma effector function in host cells 

may depend on other genes that may regulate effector delivery into the host cell. 

 

7.5. Role of phytoplasma effectors in disease epidemiology 

Given the importance of phytoplasma effectors SAP54 and SAP11 in 

plant-insect interactions, phytoplasma effectors may be key factors in disease 

epidemiology in the field. Understanding effector contribution to the attraction, 

reproduction and dissemination of insect vectors would allow to mathematically 

describe the relationship between infection rate and effector function in pathogen 

acquisition and transmission.  

Let me illustrate this with a theoretical example in two thought 

experiments. First, imagine a plant population where 10% of the total number of 

plants are originally infected with a single strain of phytoplasma. The number of 

plants in the population is constant. Whenever a healthy or infected plant dies 

from natural causes, a new healthy plant emerges. Phytoplasma can only be 
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transmitted form plant to plant via insect vectors. I assume that vectors do not 

reproduce or die during this thought experiment. So, the total number of insect 

vectors is fixed. Any insect vector that feeds on an infected plant, becomes 

infected itself. When infected vector feeds on a healthy plant, this plant becomes 

infected. 

This is illustrated graphically in Figure 7A. Intuitively, I can predict that over 

time the number of infected insects and infected plants in the population will 

increase if there is a disease inoculum in the original plant population and insects 

freely move between plants. Increase of infected plants will be directly 

proportional to the number of infected vectors if insects are equally attracted to 

healthy and infected plants. But how would dynamics of disease spread over time 

change if phytoplasma infection (as result of effector function perhaps) would aid 

attraction of healthy vectors to infected plants? In other words, healthy insects 

would preferentially select infected over healthy hosts? Now it becomes helpful 

to describe the change in infected and healthy plant and insect populations 

mathematically to better appreciate how the effect of phytoplasma infection on 

plant-insect interactions would change disease spread (Figure 7B).  

The speed at which healthy plants are turned into infected depends on the 

number of infected vectors (V) and proportion of healthy (or susceptible) plant 

hosts in the total plant population (S/(S+I)). In addition, speed of disease spread 

will also depend on the attraction of infected leafhoppers to the healthy plants 

compared to infected (p). Therefore, the change of infected plant number over 

time will depend on the term V × p ×
�

(���)
 (equation 1). I assume that infected 

plants die at a constant rate d. As defined before, the number of healthy plants 

will change inversely proportional to infected plants (equation 2).  

If infected plants are more attractive to leafhoppers, the number of infected 

vectors (V) would increase proportionally to available infected hosts in the 

population (I/(S+I)). Moreover, preference of healthy vectors to select infected 

plants over healthy plants can be described with parameter (a). Furthermore, the 

efficiency to acquire phytoplasma when healthy insects land on infected plant can 

attributed to parameter (u). Together, changes in infected vector number over 

time can be described by the term 
�

(���)
× a × u × H (equation 3). The starting 

number of healthy insects (H) will logically decrease as more insects acquire 

phytoplasma from infected plants and become infected (∆V↑) (equation 4). 
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Figure 7.5. Modelling how the effects of phytoplasma infection on plant-insect 

interactions affect phytoplasma disease spread in theoretical model. (A) Graphical 

representation of changes in number of infected plants as a result of phytoplasma 

transmission by its insect vector. (B) Mathematical relationships describing phytoplasma 

disease spread by its insect vector. Parameters in the model can be experimentally 

validated. Model is explained in the text.  
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In the model above, I can expect that the number of infected plants would 

increase faster than in a simple arithmetic progression if infected plants are more 

attractive to healthy vectors than healthy plants (a>1). All parameters in the model 

can be determined experimentally (Figure 7.5B). Parameter u can be quantified 

by determining the proportion of healthy insects acquiring phytoplasma from 

infected plants. Parameters a and p could be quantified by giving either healthy 

or infected insects a choice between healthy and infected plants at different 

stages of infection. For example, during early stages of phytoplasma-infection 

plants may be more attractive to insect vectors than healthy (a>1), but at later 

stages, when insects have already acquired the pathogen, infected insect may 

orientate towards healthy plants (p>1), thus facilitating the dispersal of the 

pathogen (Mauck et al., 2010).   

 The thought experiment hitherto described how plant infection status 

would affect plant-insect interactions but did not take into account any underlying 

mechanism. How to predict the contribution of individual phytoplasma effectors 

to phytoplasma disease spread? To answer this, let’s consider the final thought 

experiment.  

 Again, the number of plants in the population is constant. Whenever a 

healthy or infected plant dies from natural causes, a new healthy plant emerges. 

However, this time, instead of single phytoplasma strain, there are two different 

hypothetical phytoplasma strains of that can infect healthy plants and are carried 

by the same insect vector. Once infected, each individual insect can carry only 

one of the two strains. Let’s assume that phytoplasma strain1 has an effector 

(e.g., SAP54) that better attracts the insect vector to the strain1-infected plant 

compared to strain2 which lacks this effector. In addition, strain1 has another 

effector (e.g., SAP11) that increases insect vector reproduction on the infected 

plant compared to strain 2 which lacks this effector. As a result, the rate of disease 

spread of the two phytoplasmas is expected to be different (Figure 7.6A). 
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Figure 7.6. (continued next page) 
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Figure 7.6. Modelling how the effects of phytoplasma effectors on plant-

insect interactions affect phytoplasma disease spread in a theoretical 

model. (A) Graphical representation of changes in number of infected plants as 

a result of phytoplasma strain 1 or strain 2 transmission by insect vector. (B) 

Mathematical relationships describing phytoplasma strain 1 or strain 2 spread by 

its insect vector. Parameters in the model can be experimentally validated. Model 

is explained in the text. 

 

 In the current model (Figure 7.6), speed of increase in number of plants 

infected with strain1 (I1) depends on the number of vectors that carry strain1 (V1) 

as well as their attraction to healthy vs infected plants (p) and available healthy 

plants at any given time (equation 1). The same is true for plants infected with 

strain1 (I1) (equation 2). Logically, number of healthy plants would change 

inversely proportional to the sum of plants infected with strain1 and strain2 

(V1+V2) (equation 3).  

 Equations 4 and 5 describe that changes in strain1- and strain2-infected 

vectors over time would depend on the availability of plants infected with one 

strain relative to sum of all infected and healthy plants multiplied by strain-specific 

(i.e., effector dependent) healthy vector attraction to infected plants (a1 and a2). If 

the acquisition efficiency of the two strains is also different (as a result of particular 

effector), the term u can be specified for each strain. The specific birth rate (b1) 

of infected insects on strain1-infected plants can be measured as the proportion 
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of insect reproduction on SAP11 plants from the total reproduction on SAP11 and 

control plants. Similarly, b2 (vector reproduction on strain2-infected plants without 

SAP11) can be quantified in laboratory. Equations 4 and 5 also contain a density 

dependent term, which limits the increase of infected vector (bV) beyond the 

carrying capacity (K) of the total insect population. The number of healthy vectors 

would decrease as healthy insects acquire strain1 or strain2 from infected plants 

and increase according to the specific birth rate of healthy insects (bhH) (equation 

6).  

Investigating the role of other phytoplasma candidate effectors in plants 

and insect may add new differential parameters and build even more complex 

(and perhaps more realistic) models. For example, effectors that function in 

insects may affect the preference of infected insects to locate healthy plants 

(parameter p). There are about 18 different AY-WB effectors upregulated in insect 

vectors (MacLean et al., 2011). Some of these effectors may influence the biology 

of infected insects. Similarly, the role of plant effectors can be incorporated in 

more complex way than shown in Figure 7.6. For example, if certain effector in 

the infected plants increase plant biomass, the total carrying capacity (K) of the 

plant population would depend on the number of plants infected with a particular 

strain of phytoplasma. Hence, K can be expressed as a function of I1 or I2. 

 In summary, when new information about the function of phytoplasma 

effectors accumulate, this knowledge can be holistically integrated into more 

complex disease models. This would allow to better understand the relative 

contribution of individual phytoplasma effectors or combinations of effectors to 

disease spread. These models may inform field data collections and analysis of 

phytoplasma occurrence in agricultural crops, wild plants and insect vectors. 

Moreover, by combining the predictions of disease models with field data for 

effector repertoires and mechanistic knowledge about effector function scientists 

can test evolutionary hypotheses about selection on particular effector genes or 

PMUs in phytoplasma genome.  
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‘’An experiment is a question which science poses to Nature, and a measurement 

is the recording of Nature's answer.’’ 

Max Planck (1949), Science Vol 110, p 325  

 

 

Chapter 8 

Materials and Methods 

 

 

 

 

 

Z. Orlovskis (2016) ‘’Know Thyself.’’ 
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8.1. Generation of plants for insect assays 

Seed material 

Generation of 35S:GFP-SAP54 and 35S:GFP transgenic Arabidopsis lines 

was done according to methods described in MacLean et al. (2011, 2014). The 

rad23 mutant lines (used in Chapters 2 and 3) were provided by Richard Vierstra 

Lab and described in Vierstra (2009). The 35S:SVP line used in Chapter 3 was 

kindly supplied by Martin Kater Lab and described in Gregis et al. (2013). ful-1 

line was provided by Lars Ostergaard Lab. soc-1 and sep4-1 by Richard Immink 

Lab and described in Immink et al. (2012). maf4-2 and maf5-3 seeds were 

provided by Hao You Lab and described in Shen et al. (2014). maf1 (known as 

flm-3) was provided by Claus Schwechheimer Lab and described in Lutz et al. 

(2015). Other MTF mutant lines used in Chapters 3 and 6 were obtained from 

The European Arabidopsis Stock Centre (NASC): ap1-12 (N6232), lfy-1 (N6228), 

agl16-1 (N604701), agl24 (N595007, SALK_095007). Transgenic plants with 

35:GFP-SAP54∆1 and 35:GFP-SAP54∆2 (truncated variants of SAP54 from AY-

WB strain phytoplasma) and 35S:GFP-SAP54 (full length SAP54 homologs from 

PnWB and Stolbur strains) were cloned as described in section 8.9 and 

transformed into A. thaliana identical to the methods in MacLean et al. (2011, 

2014). 

 

Plant growth conditions 

Non-flowering plants for insect choice experiments were sown on insecticide-

free F2 compost soil (Levington, UK) and grown at 22°C, short day photoperiod 

(10/14-h light/dark) for 8 weeks. In contract, flowering plants were grown at 22°C, 

long day photoperiod (16/8-h light/dark) for 6 weeks. 1 week after germination 

transgenic lines 35S:GFP-SAP54 and 35S:GFP were sprayed twice (one-week 

interval) with herbicide Harvest® (13.52% w/v glufosinate-amonium) following 

manufacturers recommendations (Bayer, Cambridge, UK). 4-weeks old plants 

were transplanted into 10x10x10 cm (H x W x D) plastic pots. Experiments 

involving pre-cut flowers, floral stems were removed by metal scissors 4 days 

prior to insect addition.  
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Generation of infected plants 

To generate phytoplasma-infected plants, three-weeks old plants were 

infected with ‘Ca. Phytoplasma asteris’ strain Aster Yellows Witches Broom (AY-

WB) by adding five AY-WB-carrying adult Macrosteles quadrilineatus Forbes 

(Hemiptera: Cicadellidae) to each plant in a transparent Perspex tube (10 cm 

high, diameter 4 cm) for 5 days. Two weeks after the removal of adult insects, 

three rosette leaves were collected for extraction of genomic DNA to confirm 

phytoplasma infection using AY-WB specific primers BF 5’ 

AGGATGGAACCCTTCAATGTC 3’ and BR 5’ GGAAGTCGCCTACAAAAATCC 

3’ (MacLean et al., 2014).  

 

8.2. Rearing of insect colonies 

Phytoplasma-free colonies of Macrosteles quadrilineatus Forbes 

(Hemiptera: Cicadellidae) were maintained on pathogen-free oat plants (Avena 

sativa) in an aerated 50x50x50cm transparent plastic cage at 22°C, long day 

photoperiod (16/8-h light/dark), 48% humidity. Phytoplasma-infected colonies 

were reared on AY-WB-infected aster (Aster amellus) and Chinese cabbage 

(Brassica rapa) under the same conditions as healthy insect colonies.  

To maintain the insect colonies male and female insects are reared 

together. Adult females used in all experiments described in this thesis may have 

already mated with males in the stock cage prior to experiments. Therefore, 

female leafhoppers may not require additional fertilization to lay eggs. 

 

8.3. Insect reproduction assays 

Insect choice assays 

All insect choice experiments were performed in transparent polycarbonate 

cages 62cm x 30cm x 41cm (H x W x D) using the setup displayed in Figure 8.1. 

The opposite sides of the cage were fitted with white nylon mesh held by magnetic 

strips to the carcass of the cage for ventilation and access. Test and control plants 

were placed randomly diagonally opposite each other in the corners of a cage.  

A small population of male and female insects were taken from the stock 

cages and separated by sex. Ten male and 10 female adult M. quadrilineatus, 

which did not carry AY-WB phytoplasma, were released from a transparent 
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Perspex tube (9cm high, diameter 3cm) in the center of the cage, at equal 

distance from each test plant. Adult insects were removed 5 days after addition 

to the cage. Plants were removed from the choice cage and contained individually 

in transparent perforated plastic bags at 22°C, long day photoperiod (16/8-hour 

light/dark). Nymphs were counted on each test plant 14 days after removal of 

adult insects from the cages. Data were expressed as proportion of total number 

of nymphs found on the test plants within each choice cage. Similar experiments 

were done with phytoplasma-infected and healthy plants or wild type and MTF-

mutants plants.  

For female-only oviposition choice experiments described in Figure 4.12 and 

Figure 4.15, five male leafhoppers were confined in two transparent 2cm diameter 

clip-cage placed on two fully expanded older rosette leaves of 8-week old 

35S:GFP-SAP54 plants. Two empty clip-cages were placed on 35S:GFP control 

plants. Otherwise, female choice experiments were performed in identically to the 

method described above.  

 

Insect no-choice assay 

For the no-choice experiment (Figure 4) 5 female and 5 male non-infected 

adult M. quadrilineatus were added to individual plants surrounded by a 

transparent plastic cage. Plants were grown and insect progeny measured as in 

choice experiments.  

 

Single-leaf insect choice assays 

For the experiment in Figure 3D, single rosette leaves that remained attached 

to 35S:GFP and 35S:GFP-SAP54 transgenic plants were fitted opposite each 

other in a 2cm x 8cm x 12cm (H x W x D) transparent plastic cage fitted with nylon 

mesh-lined holes (4cm diam.) to allow for air circulation. Five male and 5 female 

adult M. quadrilineatus leafhoppers (which did not carry AY-WB) were introduced 

into the cage and allowed free access to both leaves. Eggs were dissected and 

counted under stereomicroscope (15x) five days after the first day of exposure to 

the insects. 
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Figure 8.1. Experimental setup for insect oviposition choice experiments. 

Photograph (top) illustrates the actual arrangement of one test and one control plant (A, 

D) in a choice cage. Several other choice cages are visible in the background with 

alternative positioning of the test plants. Diagramme (bottom) depicts all available 

positions for the test and control plant in the cage (A, B, C, D). Only two positions are 

occupied in any given cage, resulting from randomly placing the test plants in two out of 

the four available corners. Insects are introduced in the centre of the cage (equidistant 

from both plants) and released from a transparent plastic tube (E). Arrows indicate the 

physical dimensions of the cage. 

 

8.4. Insect olfactory and visual choice assays 

Measuring insect response to olfactory cues requires a reliable 

behavioural assay that is easy to use for measuring the behaviour of individual 

or a group of insects by comparing to a known positive attractant or negative 

deterrent stimuli. In addition, I wanted to use an assay that could simultaneously 

use either or both visual and olfactory stimuli to measure leafhopper settlement 
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choice in adequately large space to do not restrict leafhopper flight, hopping and 

walking behaviour. To this end I tested already known insect olfactometer assays, 

adapted modifications to such devices as well as designed new experimental 

setups de novo (Figure 8.1).  

 

 

Figure 8.2. Design of various behavioural assays to measure insect response to 

olfactory stimuli. (A) Y-tube olfactometer. Insects are introduced either individually or 

as a group in the central column. Carbon- and water-filtered air passes through airtight 

chambers and brings test and control odours separately into the arms of the bi-directional 

choice tube (Y-tube). Air-flow was controlled via flow meters. (B) Y-tube in dark 

conditions under far-red light. (C) Modification of Y-tube into cylinder arena with each 

end presenting a different odour to insect(s) released in the centre. (D1) Choice test with 

test (plant in soil) and control (soil) odours in passive diffusion chamber with no added 

air-flow. (D2) Insects may respond to diffusing volatiles and enter a pitfall trap at either 

end of the chamber. (E) Odour source was placed in the centre of a plastic pot and 

covered with a dark perforated sticky film that permits passage of odours but blocks the 

visual stimuli from the odour source. (F) OVIC-box measures Olfactory or Visual Insect 

Choice. One end presents a visual cue competing with an olfactory stimulus at the 

opposite end for insect attraction. Insects are released in the centre of the box. Insects 

stick to a landing platform at both ends of the chamber.  

 

The initial aim was to find a positive olfactory stimulus that attracts 

Macrosteles quadrilineatus or use another insect species – odour combination as 

a positive control to test the olfactometer designs depicted in Figure 8.1. With Y-

tube olfactometer (Figure 8.1A) I observed positive attraction of Drosophila 
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suzukii to yeast, vinegar and banana odours but failed to detect M. quadrilineatus 

response to any plant (aster, China cabbage, tale cress, tobacco or oat) odours 

when compared to no-plant controls. I performed these trial experiments in both 

light and dark, with various levels of air-flow as well as using horizontal and 

vertical angles of the Y-tube to account for positive or negative photo- and gravi-

kinetic behaviours of leafhoppers (Figure 8.1B). Since the Y-tube restricted 

leafhopper jumping behaviour I widened the choice chamber (Figure 8.1C) but 

failed to establish a positive attraction to a plant odour. In order to avoid any 

confounding effect of leafhopper response to air-draft, I tried a sealed chamber 

which is equally wide to allow for leafhopper jumping but relies on passive 

diffusion of odours as stimuli (Figure 8.1D1). Interestingly, leafhoppers moved 

towards the odour emitting compartments and were successfully trapped in the 

pitfalls (Figure 8.1D2). Nevertheless, this response can be explained by insect 

movement to any side with higher humidity (wet tissue or soil) irrespective of plant 

odours. Next I placed a test odorant (plant/banana/vinegar/yeast) into visually 

identical pots with perforated sticky cover to conceal the pot contents but 

permeate any odours and trap insects after their first landings (Figure 8.1E). 

Unfortunately, M. quadrilineatus did not show any landings onto the pots, and D. 

suzukii did not show the preference for yeast, vinegar or banana as in the 

previous assays, which were only suitable for presentation of volatile stimuli but 

not visual cues (Figure 8.1A-D). Because I aimed to compare the relative effect 

of visual and olfactory cues in plant selection by insects in the same setup, I 

designed a ventilated arena to simultaneously present insects with a visual and 

volatile stimuli (Figure 8.1F). Although leafhoppers were attracted to yellow 

colour, neither M. quadrilineatus nor D. suzukii responded to plant, yeast, vinegar 

or banana-skin emitted volatiles.  

Finally, I decided to further modify the assay shown in Figure 8.1E to mimic 

the initial choice experiments with whole plants. I concealed the odour source in 

two plastic pots (Figure 8.2A) and were able to fit a sticky landing platforms of 

different colours around the odour sources (Figure 8.2B). Detailed assemblage 

of the assay is explained in Figure 8.2C, steps 1 to 4. Within this setup, D. suzukii 

demonstrated strong preference for vinegar and yeast extracts by entering the 

black pots and drowning in the test solutions. Leafhoppers were more passive to 

enter the pots, and only very few were detected on the plant or soil controls inside 

the pots (Figure 8.2D-E). Therefore, I fitted a colourless sticky landing platform 
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(OECO, Kimpton, UK) around each pot when measuring insect response to 

olfactory stimuli only. I added a coloured sticky landing platform to compare or 

complement visual and olfactory stimuli with each other.  

 

 

 

Figure 8.3. Visual representation of experimental setup to measure leafhopper 

response to plant olfactory stimuli in presence or absence of visual cues. (A) pots 

containing a single point source of a test and control odours are placed opposite each 

other in 62x30x41cm (HxWxD) transparent polycarbonate cages. (B) Colourless or 

coloured landing platforms with odour-less sticky surface are fitted on top of the odour 

sources. (C) Detailed setup of the pots with odour source: 1) required 10x11x11cm 

(HxWxD) and 9x8x8cm (HxWxD) black plastic pots, 50mL glass vial containing odour-

emitting or odourless solution or equivalent odour source such as small pot with a 

plantlet, a sponge bun and 11x11cm landing platform covered with transparent sticky 

tape (Rollertrap, OECOS, Kimpton, UK); 2) place the sponge bun at the base of the 

bigger pot; 3) place the glass vial or the plantlet on top of the bun; 4) cover the setup with 

the smaller pot upside-down and finish with the landing platform. The perforated bottom 

of the smaller pot permits odour transmission. In absence of the landing platform few M. 

quadrilineatus were detected inside the smaller pot on cabbage (D) or tale cress (E) 

plant. 
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I released a mixed population of 20 male and 20 female insects in the 

centre of the arena (Figure 8.2A,B) under light or dark conditions for 6 hours at 

22oC. During this period most insects had made their first landing choice and 

stuck to the landing platform. Insects were sexed and counted on the sticky traps 

as well as inside the pots. Majority of insects were found stuck on landing 

platforms. Only very few insects were ever found inside the pots. For each 

experiment I used new pots and landing platforms to avoid the residual 

semiochemicals left by insects from the previous experiment to bias the 

leafhopper choice in the next experiment.  

 

 

Figure 8.4. Experimental setup of Macrosteles quadrilineatus visual choice 

experiment (A) Rosettes of 35S:GFP-SAP54 and 35S:GFP plants are contained within 

an air-tight transparent plastic cage (1x11x11cm; HxWxD) placed in opposite corners of 

ventilated 62x30x41cm (HxWxD) transparent polycarbonate cages. (B) Rosettes of 

35S:GFP-SAP54 and 35S:GFP plants viewed side-by-side. Insects landed on the plants 

are permanently stuck to the landing surface. (C) Yellow colour rosette replica and 

35S:GFP or SAP54 expressing plants were used as a positive control in our experiments. 

(D) Yellow (RGB 255, 250, 0) rosettes are more attractive to leafhoppers compared to 

either SAP54 or control plants.   
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In order to measure only insect visual choice based on plant colour in 

absence of plant olfactory stimuli, I modified the setup described in Figure 8.2 by 

cutting off plant rosettes and placing between two 11x11 cm transparent plastic 

sheets (Figure 8.3). I sealed the gap between the two plastic squares to prevent 

any plant odours from escaping and thus completely caging the plant rosettes. I 

covered the cage with a transparent sticky glue spray (OECO, Kimpton, UK; 

http://www.oecos.co.uk) to fix insects after the first landing. I used yellow (sRGB 

255, 250, 0) rosette replicas as a positive control. Similar to the olfactory choice 

experiments above I released a mixed population of 20 male and 20 female 

insects in the centre of the arena under light conditions for 6 hours at 22oC.  

 

8.5. Measurement of light reflectance and absorbance from leaf surface 

Leaf reflectance was measured using VideometerLab3 19 channel (365-

970 nm) multispectral imager and the associated software (Videometer A/S 

Copenhagen, Denmark) following the manufacturers user instructions. An image 

of the whole leaf was taken over the supplied blue background stage. After taking 

the image, the layer tool in the accompanying software was used to select the 

freeform of the entire leaf and measure the reflected light across the selected 

area. Measurements were taken and averaged from three oldest leaves of 8-

week old 35S:GFP-SAP54 and 35S:GFP transgenic Arabidopsis thaliana plants. 

Average reflectance of 20 independent replicate plants per transgenic line were 

measured for each of the 19 channels. Leaf reflectance from 11 channels 

corresponding to the visual spectrum of insect vision (370-650 nm) were 

analysed. Since each channel is an independent reflectance measurement, data 

were analysed using two-tailed t-test for each channel and (Bonferroni) corrected 

for multiple comparisons.  

SPAD-502Plus meter (Konica Minolta, Inc., USA) was used to measure 

the chlorophyll index of 8-week old 35S:GFP-SAP54 and 35S:GFP plant rosette 

leaves. Three oldest leaves were measured per plant by selecting an area of leaf 

blade with no intersection with midvein. The average absorbance from three 

technical replicates per plant was recorded for 36 independent plants. 
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8.6. Scanning Electron Microscopy (SEM) of leaf trichomes 

For imaging hydrated surfaces of biological structures such as trichomes 

a cryo-SEM approach was used. Rosette leaves, cauline leaves or leaf-like flower 

petals of 8-week old 35S:GFP-SAP54 and 35S:GFP plants were placed on an 

aluminium (Al) platform using the Optimal Cutting Temperature (OTC) compound 

(Agar Scientific Ltd, Essex, UK) and immersed in nitrogen slush at -210ºC for 

cryopreservation. The leaf samples were transferred to the cryostage of Alto 2500 

cryotransfer system (Gatan, Oxford, UK) and subjected to sublimation for 3 min 

at 95ºC. The sample surface was sputter-coated with platinum (Pt) for 2 min with 

10 mA current at ≤-110 ºC. Next, samples were transferred to a cryostage inside 

Zeiss Supra 55 VP field emission gun scanning electron microscope (Carl Zeiss 

Ltd, Germany) at -125ºC. For visual comparison of trichome density between 

cauline leaves, leaf-like flowers and rosette leaves 6 images at 200x 

magnification were taken across leaf surface and 3 leaves per tissue type of 

35S:GFP-SAP54 and 35S:GFP plants were imaged. Pictures of individual 

trichomes were taken at approximately 500x magnification.  

 

8.7. Measurement of leafhopper probing and feeding on leaves 

Quantification of insect excreted honeydew 

Honeydew excretion was quantified as a proxy measure for leafhopper 

feeding preference for 35S:GFP-SAP54 and 35S:GFP plants. 5 ♀ and 5 ♂ adult 

Macrosteles quadrilineatus were introduced into 8x12 cm plastic cages 

containing filter paper (Watman, Buckinghamshire, UK) and 3 equal sized rosette 

leaves from opposite-facing 35S:GFP and 35S:GFP-SAP54 plants (Figure 8.4A). 

Filter paper was collected 5 days after the start of the feeding experiment and 

stained with 2% (w/v) ninhydrin solution in ethanol. The filter paper is heat-dried 

on a heating block (1000C) for few seconds to catalyse the reaction between 

ninhydrin and amino acids contained by honeydew and leaf exudates (Figure 

8.4B). Photos of filter-papers were analysed using Fiji (ImageJ) analysis software 

by measuring the stained area for each test plant within single cage as outlined 

in Figure 8.4C. Colour images opened in Fiji were given scale by selecting the 

image of the ruler and equating the selected pixels with a known distance on the 

image (step 1). Next colour images are transformed to 8-bit monochromatic files 

(step 2). Contrast threshold was adjusted to highlight only the pixels representing 
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the stained area (step 3). Selected pixels were counted and expressed as stained 

area (step 4) according to the scale set in step 1. The stained area for each 

genotype was expressed as the proportion of the total stained area per cage 

(Figure 8.4D) and further analyses statistically with paired t-test. 

 

 

Figure 8.5. Analysis of honeydew excretion by M. quadrilineatus. Leaves of 

35S:GFP and 35S:GFP-SAP54 plants are arranged opposite each other above the 

filter paper in an enclosed cage. Foam buns cushion the petioles against the edges of 

a side opening in the cage. Leaves remain attached to the plant throughout the feeding 

experiment (A). Filter papers are removed and stained with ninhydrin (B). The step-to-

step commands and appropriate tabs in Fiji software are executed to highlight the stained 

area (C). Data are analysed as the ratio between honeydew excretion around 35S:GFP 

and 35S:GFP-SAP54 plants (D).  

 

Quantification of leafhopper probing and feeding sites in leaf tissue 

M. quadrilineatus feeding/probing sites on Arabidopsis leaves were 

visualised using trypan blue staining. Leaves of 8-week old 35S:GFP-SAP54 and 

35S:GFP plants were arranged identical to single leaf choice experiments 

described in section 8.3 and depicted in Figure 8.5. Instead of counting the 

number of eggs, the insect exposed rosette leaves were detached and 

submerged in the staining solution consisting of 0.7% (w/v) trypan blue, 33% (v/v) 
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lactic acid, 33% (v/v) phenol, and 33% (v/v) glycerol. To prepare the mixture, 

trypan blue is dissolved in boiling lactic acid and glycerol before carefully adding 

phenol and ceasing the boiling process. Leaves are directly immersed into the 

hot staining mixture and incubated for 5 min. Mixture must be hot to effectively 

bleach chlorophyll and other pigments from the leaves and facilitate the 

penetration of trypan blue. Samples were destained with 70% (v/v) chloral 

hydrate on a shaker until good contrast between stained and stain-free zones is 

obtained. The destained leaves were soaked in 80% (v/v) glycerol for 30 min and 

mounted on microscope slides for imaging under bright-field light microscope. 

Trypan blue stains dead plant cells around insect stylet punctures and tracks 

around probing and feeding sites (Figure 8.5). Four randomly chosen quadrants 

(1 cm2) adjacent to vascular tissue and four quadrants in mesophyll tissue were 

examined and the total amount of punctures and stylet tracks were counted 

together. Six older rosette leaves from 35S:GFP-SAP54 and 35S:GFP plants 

were analysed.  

 

 

Figure 8.6. Experimental setup for feeding choice experiment and staining of M. 

quadrilineatus stylet punctures and penetration tracks (blue). Plant vascular tissue 

appear as darker lines contrasting the nearly transparent mesophyll cells. 5 male and 5 

female insects were released in the choice arena for 5 days before staining the sample 

as described in the text.  
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8.8. Measuring phytoplasma titer in infected plants 

Phytoplasma-infected plants were generated identical to methods 

described in the section 8.1. Since the replication of phytoplasma cells may vary 

between individual plant organs, the whole rosette and the whole inflorescence 

(stems and cauline leaves including) were collected separately in liquid nitrogen 

and grinded with pestle and mortar. Genomic DNA was extracted from 100 mg 

(wet weight) of the ground sample using QIAGEN DNeasy® Plant kit following 

the manufacturer’s protocol. DNA was eluted in 50 µL of distilled water.  

I designed a probe-based multi-plex qPCR assay using a probe and a 

primer pair for AY-WB phytoplasma 16S rRNA gene as well as a probe and a 

primer pair for plant actin-2 gene  as a reference. qPCR was performed in 25 µL 

final volume using 12.5 µLTaqMan Universal PCR Master 2X Mix (Roche Applied 

Biosystems, USA), 2 µL of 10 µM forward and reverse phytoplasma primers and 

1 µL of 5 µM phytoplasma probe together with 1 µL of 5 µM forward and reverse 

actin primers and 0.5 µL of 5 µM actin probe, 5 µL extrated gDNA from AY-WB 

infeted plants. qPCR was run on the CFX96 Real-Time System C1000 thermal 

cycler (Biorad) using the following settings: (1) 50oC, 2 min; (2) 95oC, 10 min; (3) 

[92oC, 15 sec; 60oC, 1 min] X 40 cycles; (4) 60 oC, 30sec. Ct value of AY-WB 

phytoplasma 16S ribosomal gene was compared to plant actin (reference gene) 

in each sample, and the relative value for phytoplasma titer obtained using the 

comparative cycle threshhold method (2-∆Ct). Each sample was amplified in 3 

wells and average readings taken. 4 plant samples were analysed per tissue type. 

The following primer and probe sequences were used: 

Phytoplasma 16S forward primer: 5’ CGTACGCAGTATGAAACTTAAA 3’ 

Phytoplasma 16S reverse primer: 5’ CTTCGAATTAAACAACATGATCC 3’ 

Phytoplasma 16S probe: 5’ [6FAM]GACGGGACTCCGCACAAGCG[BHQ1] 3’ 

Plant actin forward AtACT2-primer: 5’ GCTGAGAGATTCAGATGCCCA 3’ 

Plant actin reverse AtACT2-primer: 5’GTGGATTCCAGCAGCTTCCAT 3’ 

AtACT2 probe: 5’ [Cyanine5]AAGTCTTGTTCCAGCCCTCGTTTGTGC[BHQ3] 3’ 
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8.9. Sequence alignments and construction of phylogenetic trees 

All sequence alignments were performed using ClustalW algorithm 

(default settings) in MEGA (Molecular Evolutionary Genetics Analysis) software 

(version 6; available from www.megasoftware.net). Phylogenetic trees were 

constructed in MEGA from the obtained alignments using Maximum likelihood 

Bootstrap (1000) method, setting gamma distribution and general time reversible 

model for nucleotide substitutions but Jones-Taylor-Thornton model for amino 

acid substitutions. Resulting trees were formatted and annotated in FigTree 

v1.4.2 (www.tree.bio.ed.ac.uk/software/figtree/).   

To generate the tree in Figure 1.1, the following GenBank accession 

number for 16S rRNA gene sequences were used: NC000913 (Escherichia (E.) 

coli), NR044924 (Erwinia (Er.) tracheiphila), NR104928.1 (Pa. stewartii), 

NC004547 (Pectobacterium (Pe.) carotovorum), DQ508182 (Ca. A. 

triatominarum), NC004578 (Pseudomonas (P.) syringae), FJ494776.1 (Ralstonia 

(R.) solanacearum), NC007508 (Xanthomonas (Xa.) campestris), NC004556 

(Xylella (X.) fastidiosa), NR074528 (Ca. Liberibacter (L.) asiaticus), NC003062 

(Agrobacterium (Ag.) tumefaciens), NC007761 (Rhizobium (Rh.) etli), NC000964 

(Bacillus (B.) subtilis), NC008533 (Streptococcus (S.) pneumoniae), NC007716 

(Ca. Phytoplasma (Ph.) asteris), NC010163 (Acholeplasma (Ac.) laidlawii), 

X63781 (Spiroplasma (Sp.) citri), NC000908 (Mycoplasma (M.) genitalium), 

NC009480 (Clavibacter (C.) michiganensis), NC006087 (Leifsonia (Le.) xyli), 

AB026221 (Streptomyces (St.) turgidiscabies), AL645882 (Streptomyces (St.) 

coelicolor), AB211229 (Rhodococcus (Rho.) fascians), NC009525 

(Mycobacterium (My.) tuberculosis) and NC002754 (Sulfolobus (Su.) 

solfataricus). Since no complete 16S rRNA sequence data are available for Ca. 

Arsenophonus (A) phytopathogenicus (*) and Pantoea (Pa.) ananatis (*) their 

relationships were based on the 16S RNA gene sequences of the related species 

‘Ca. Arsenophonus triatominarum’ and the Pantoea species Pa. stewartii, 

respectively. 

To obtain tuf gene sequences and produce Figure 2.4, genomic DNA from 

the collected field samples was extracted with DNeasy Plant kit (QIAGEN, US). 

Phytoplasma infection was assessed using universal primers R16R2 + R16F2n 

nested in P1 + P7 (Gundersen & Lee, 1996) and plant DNA quality checked using 

primers for EF1 gene. Phytoplasma-positive samples were further amplified for 

tuf gene as described in Makarova et al., 2012 and cloned via pGEM-easy TA 
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(Promega, US) system. Multiple colonies from each plant sample were 

sequenced for the tuf gene to detect potential infection with multiple phytoplasma 

strains. Obtained sequences were aligned with reference sequences from 

diverse phytoplasma groups and Maximum likelihood tree (bootstrap 1000) 

constructed using MEGA. 

 

Table 8.1. Phytoplasma classification, strain names and GenBank accession 

numbers for sequences used to construct phylogenetic trees for SAP54 protein 

and tuf gene in Figure 2.4. SAP54 homolog from Rapeseed Phyllody Inducing 

Phytoplasma was sequenced recently and GenBank accession number is pending; 

classification in 16SrI-B group based on 16S rDNA genotyping. Tuf sequence from 

another Rapeseed phyllody strain belonging to 16SrI-B group was chosen (Macarova et 

al., 2012).  

 

 

To produce Figure 2.6, I obtained the sequences for SAP54 and 

elongation factor Tu (tuf) gene from phytoplasmas representing the same 

(sub)group of a single Candidatus phytoplasma species. SAP54 homologs were 

identified in reciprocal BLAST search using SAP54 peptide sequence from AY-

WB phytoplasma as query. Tuf gene sequences were retrieved from GenBank 

using the accession numbers in Macarova et al. (2012). In most cases, the 

SAP54 and tuf sequence could be retrieved from the same phytoplasma strain. 

However, due to limited number of full phytoplasma genome sequences available 

in GenBank, obtaining the SAP54 and tuf gene sequences from the same 

Candidatus 

phytoplasma species
16Sr (sub)group

Phytoplasma strain 

containing SAP54 

homolog

GenBank accession

Phytoplasma strain 

containing tuf 

homolog

GenBank accession

Ca  Phytoplasma asteris' I-A

Aster Yellows 

Witches' Broom 

(AYWB)

CP000061.1
Aster Yellows Witches' 

Broom
CP000061.1

Ca  Phytoplasma asteris' I-B (OY) Onion Yellows-M (OY) AP006628.2 Onion Yellows-M (OY) AP006628.2

Ca  Phytoplasma asteris' I-B (RPIB)

Rapeseed Phyllody 

Inducing Phytoplasma 

(RPIP)

ID pending Rapeseed Phyllody JQ824246

Ca  Phytoplasma asteris' I-C Leontodon Yellows AB862484.1 Carrot Yellows JQ824226

Ca  Phytoplasma asteris' I-F
Apricot Aster Yellows 

Phytoplasma (AAYP)
AB862477.1

Apricot chlorotic 

leafroll (AAY)
JQ824251

Ca  Phytoplasma 

aurantifolia'
II-A

Peanut Witches' 

Broom and Sweet 

Potato Litle Leaf

WP_004994552.1
Sweet Potato Little 

Leaf
JQ824270

Ca  Phytoplasma pruni' III Spirea stunt AB862489.1 Spirea stunt JQ824281

Ca  Phytoplasma trifoli' VI

Beetroot Leafhopper 

Transmitted 

Virescence Agent 

(BLTVA)

BAQ08267.1 Clover Phyllody JQ824231

Ca  Phytoplasma 

phoenicium'
IX Phoenicium Yellows AB862490.1

Pichris echioides 

yellows (PEY)
JQ824256

Ca  Phytoplasma solani' XII Tomato Stolbur CCP88386.1 Tomato Stolbur JQ824280
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phytoplasma strain was not possible. Therefore, another strain within the same 

16Sr subgroup was chosen for tuf gene sequence. The Identity and GenBank 

accession numbers for sequences used to construct phylogenetic trees for 

SAP54 and tuf genes are listed in Table 8.1.  

 

8.10. Molecular cloning 

Cloning of type I and type II MTFs and RAD23 isoforms is described in 

MacLean et al. (2014). SAP54 homologs from Stolbur and PnWB (SPLL) 

phytoplasma strains (Chapter 2) and the two truncated fragments of SAP54 

homolog from AY-WB phytoplasma strain (Chapter 7) were amplified using the 

primer sequences in table 8.2 without including the predicted signal peptide.  

 

Table 8.2. List of primers for Gateway cloning  

 

  

After amplification of the target sequence by PCR, the original PCR 

product was amplified in a second round of PCR with a pair of full-length attB 

adapter primers. The product of the second PCR was run on EtBr-stained 1% 

agarose gel to cut out the correct size band before gel-purification using QIAquick 

Gel Extraction Kit (QUAGEN). The purified PCR product was cloned into 

Gateway-compatible donor vectors pDONR201 or pDONR207 using BP clonase 

II (Invitrogen) following manufacturer’s instructions. Reactions were transformed 

into electrocompetent Escherichia coli (DH5α) cells. Transformed bacterial 

colonies were identified by antibiotic selection and colony PCR using attB site 

specific primers. Plasmids from positive clones were purified using QIAprep Spin 

Primer name Sequence (5' - 3')

attB1 adaptor GGGGACAAGTTTGTACAAAAAAGCAGGCT

attB2 adaptor GGGGACCACTTTGTACAAGAAAGCTGGGTG

attB1 SAP54∆1 AAAAAGCAGGCTCCACC ATGGATAAAGATATT

attB2 SAP54∆1 AGAAAGCTGGGTGTTATCTAGGTTCATTATTTGATAATTGTTG

attB1 SAP54∆2 AAAAAGCAGGCTCCACC ATGGAACCTAGAAAAAATACTCTTTTAACC

attB1 SAP54∆2 AGAAAGCTGGGTGTTA ATTATTTTCATCAT

attB1 SAP54 (PnWB) AAAAAGCAGGCTCCACC ATGG ATGGCAGCGGATCCAAAACT

attB2 SAP54 (PnWB) AGAAAGCTGGGTGTTAGTTTTTTTCATCA

attB1 SAP54 (Stolb) AAAAAGCAGGCTCCACC ATGGCAATGAATAATAATGAAGCTGC

attB2 SAP54 (Stolb) AGAAAGCTGGGTGTTAATCATTTAAAGATTTTAAAAGTG

Notes

attB1 primers contain part of attB1 adapter sequence (bold), followed by a Kozak sequence (italics), 

followed by gene specific sequence

attB2 primers contain part of attB1 adapter sequence (bold), followed by gene specific sequence
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Miniprep Kit (QIAGEN) and sequenced. Correct sequences were cloned from the 

donor-vectors into destination vectors using LR clonase II (Invitrogen) following 

manufacturer’s instructions. The destination vectors were pB7WGF2.0 for plant 

transformations and pDEST22 or pDEST32 for Y2H analysis.   

 

8.11. Yeast-two-hybrid analysis for protein-protein interactions 

Transformation of yeast 

Saccharomyces cerevisiae yeast strain MaV203 (Invitrogen), auxotrophic 

for leucine (leu2) and tryptophan (trp1-901), was streaked on 2X YPDA (yeast 

extract-peptone-dextrose-adenine) agar media and grown at 28°C. A single yeast 

colony was inoculated in aliquots of 10mL 2X YPDA media and grown in shaking 

incubator (220 rpm) at 28°C to an OD600=0.5, equivalent to a density of 5×106 

yeast cells/mL. 1 mL of the culture was inoculated into pre-warmed aliquots of 

100 mL 2X YPDA media and grown to final density of 2×107 cells/mL. Yeast cells 

were pelleted by centrifugation at 2500 g for 5 min at room (20-25°C) temperature 

to remove YPDA media and washed twice with sterile water. Finally yeast cells 

were resuspended in sterile water to final concentration of 1×109 yeast cells/mL.  
100 µL of the yeast suspension was added to 360 µL of transformation 

mixture consisting of 240 µL 50% (w/v) polyethylene glycol (PEG), 36 µL 1M 

lithium acetate (LiOAc), 50 µL of 2mg/µL boiled single-strand carrier DNA (Salmo 

salar sperm DNA, Invitrogen) and 1 µg of both pDEST22 and pDEST32 plasmid 

carrying the cloned gene for interacting proteins. The mixture was vortexed 

thoroughly and incubated at 42°C for 40-60 min before centrifugation at ≤10 000 

g for 30 sec to remove supernatant and resuspended in 500 µL sterile water.  

Yeast transformation and subsequent screening for interactions was 

repeated three times independently. For repeating the transformations, frozen 

competent yeast cells were made following the protocol from Gietz and Schiestl 

(2007). After washing off the YPDA medium, yeasts were resuspended in 

filtersterilised mixture of 5% v/v glycerol and 10%v/v DMSO and stored in 100 µL 

aliquots at -80°C. To use cells again, cells were thawed at room temperature and 

resuspended in 100 µL sterile water and proceeded directly to transformation 

again. 
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Screening for yeast transformants 

The transformed yeast suspension was plated on synthetic defined (SD) 

minimal agar medium lacking tryptophan (-W) and leucine (-L) and incubated at 

28°C for 3 to 5 days till formation of individual yeast colonies. Plant RAD23 and 

MTFs were cloned into yeast vectors pDEST22 (complementing W auxotroph) 

but SAP54 homologs - in pDEST32 (complementing L auxotroph). Upon uptake 

of both plasmids a yeast cell is able to grow on the SD-L-W selective media.  

 

Screening for protein-protein interactions via yeast-two-hybrid 

 Three individual colonies with yeasts transformed for both constructs were 

suspended in 1 mL of sterile water as well as 1:10 and 1:100 serial dilutions. Thus 

each interaction was replicated 3 times for each dilution. 10 µL yeast suspension 

was spotted on SD minimal agar medium lacking tryptophan (-W) and leucine (-

L) and histidine (-H) as well as 10, 30 and 60 mM 3-amino-1,2,4-triazol (3-AT). 

The pDEST22 encoded a fusion protein of GAL4 gene activation domain (AD) 

with plant RAD23 and MTF proteins but pDEST32 - a fusion protein of GAL4 gene 

Binding domain (AD) with SAP54. Upon interaction of SAP54 and plant target 

proteins, the AD and BD trigger expression of yeast histidine synthesis gene 

(HIS3) complementing the histidine auxotroph yeast and allowing to grow on SD-

L-W-H selective media. 3-AT prevents the (auto-)activation of HIS3 gene. 

Increasing the concentration of 3-AT selects for stronger interactions between 

proteins.  

 The expression of plant RAD23 and MTFs and phytoplasma SAP54 

proteins in yeast was confirmed by protein extraction, SDS-PAGE and 

immunoblotting with antibodies for AD and BD following the exact methods 

(Kushnirov, 2000).  

 

8.12. Other protein methods 

Agrobacterium-mediated transient protein expression in N. benthamiana 

Cultures of Agrobacterium tumefaciens strain GV3101 previously 

transformed with expression vectors containing plant type-I MTF genes or SAP54 

were inoculated in liquid LB-medium with appropriate antibiotic selection and 

incubated overnight at 220rpm, 28°C. Cultures were pelleted at 2300g for 10 min 
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and resuspended in infiltration buffer consisting of 10mM MgCl2, 10mM 2-(N-

Morpholino) ethanosulfonic acid (MES) at pH=5.6 to OD600=0.6 for SAP54 and 

OD600=1.0 for MTFs. Acetosyringone was added to each culture to final 

concentration of 100 µM and incubated for 1h at room temperature to enhance 

the expression of A. tumefaciens virulence genes and thus facilitate the 

transformation. Two youngest fully expanded leaves of four-week old Nicotiana 

benthamiana were co-infiltrated with equal volumes of two cultures using a 1 mL 

needleless syringe. After 72 hours two leaf disks (1 cm diam.) from the infiltrated 

site were collected in liquid nitrogen.  

 

SDS-PAGE and Western-blotting 

Collected plant samples were grounded in liquid nitrogen, mixed in 40 µL 

of 10mM DTT and 1x NuPAGE LDS sample buffer (Invitrogen) and boiled for 10 

min. For detecting yeast protein levels, cells were pelleted by centrifugation, 

resuspended in 0.1M final conc. NaOH, incubated for 10 min, pelleted and 

resuspended in 40 µL 1x NuPAGE LDS sample buffer  before boiling. 12.5% 

SDS-polyacrylamide gels were loaded with the denaturated protein sample (3 µL 

for flag-tagged proteins; 15 µL for 10xmyc-tagged proteins; 10 µL for proteins 

with GAL4-AD and GAL4-BD) and 10 µL pre-stained protein Marker (Broad 

Range P7708s, BioLab). The protein gel was run at 150V in Mini PROTEAN III 

tanks (Bio-Rad) with 1xTris-glycine SDS running buffer until the samples reach 

the lower half of the gel. Proteins were transferred to 0.45 µm Protran BA85 

nitrocellulose membrane (Watman) using electroblotting at 250mA for 90 min in 

1xTris-glycine 20% methanol transfer buffer.  

 

Immunodetection of tagged-proteins 

The nitrocellulose membrane containing immobilised, denaturated proteins was 

incubated on gentle shaker at room temperature for 40 min with blocking buffer 

(5% (w/v) milk powder in 1x Phosphate buffered saline (PBS) and 0.1%(v/v) 

detergent Tween-20 (Sigma-Aldrich)). The membrane was then incubated with 

the blocking buffer containing the primary antibody for 1 hour at room temperature 

or 4°C overnight. Αnti-flag (monoclonal mouse, Sigma Aldrich) and anti-myc 

(polyclonal, rabbit, Sigma Aldrich) were used at 1:10000 and 1:6667 dilution in 
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blocking buffer respectively. Anti-GAL4-AD and anti- GAL4-BD (polyclonal, 

rabbit, Sigma Aldrich) were used at 1:10000 dilution. After washing the primary 

antibody with the blocking buffer, the membrane was incubated with secondary 

antibody (same conditions as primary antibodies). Then membrane is washed 

with 1x PBS and 0.1% (v/v) Tween-20. Bound antibodies were detected by 

Immobilon Western Chemiluminiscent Horseraddish Peroxidase substrate 

(Milipore, UK) when exposed to Super RX film (Fujifilm, Germany) and 

developed.  

 

Protein structure predictions 

Bacterial effector signal peptides were predicted using SignalP 3.0 using 

both Neural networks and Hidden Markov models (available at 

http://www.cbs.dtu.dk/services/SignalP-3.0/). Candidate lipoprotein effector 

signal peptides were analysed using PRED-LIPO tool (available at 

http://bioinformatics.biol.uoa.gr/PRED-LIPO/). Presence of putative 

transmembrane domains was performed using TMHMM Server 2.0 (available at 

http://www.cbs.dtu.dk/services/TMHMM/). The coiled-coil structural predictions 

were calculated with PRABI coiled-coil prediction tool (available at https://npsa-

prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_lupas.html).  

 

8.13. Analysis of plant transcriptional response to insects 

Generation of plants for RNA-sequencing 

The experiment used 8-weeks old Arabidopsis thaliana (Col-0) plants 

ectopically expressing Aster Yellows phytoplasma strain Withes’ Broom effector 

SAP54 (35S:GFP-SAP54) or a control construct (35S:GFP). Plants were grown 

at short day photoperiod (10h/14h day/night) prior and during the experiment. 

Plants were selected for presence of the transgene by herbicide selection 2 

weeks after germination. Single fully expanded leaf of each plant was exposed to 

either 5 male or 5 female insects by placing them in a transparent 2cm diameter 

clip-cage. An empty clip-cage was placed for no-insect control. Plant tissue 

samples were collected 48h after exposure to insects. Insect number and 

exposure time was previously experimentally optimised by measuring number of 

feeding sites and eggs laid per clip-cage.  

 



294 

 

RNA extraction for RNA-seq and quality control 

Leaf tissue was collected from the leaf area enclosed by the clip-cage and 

stored at -80°C for subsequent RNA extraction using QIAGEN Plant RNeasy kit 

(following manufacturer instructions). RNA integrity was assessed by gel 

electrophoresis (1% Agarose) visualisation of ribosomal bands in extracted 

dsRNA and ssRNA (65°C denaturation and immediate transfer on ice to prevent 

hybridisation). RNA concentration and quality was assessed using Nanodrop 

(Thermofisher). Total ≥2µg of each RNA sample at ≥50ng/µL concentration, 

260/280 ratio between 1.9 and 2.1, and 260/230 ratio between 1.5 and 2.0 was 

submitted for RNA-sequencing.  

 

RNA sequencing 

Library preparation and sequencing was performed in The Genome 

Analysis Centre (TGAC, Norwich Research Park). Total of 24 RNA samples were 

submitted for IlluminaTruSeq cDNA library construction and sequencing on 

Illumina HiSeq 2000 platform pooling 4 libraries per lane, with 50bp single-end 

reads and 25M read coverage per sample. The Raw reads were assessed for 

their quality and processed for mapping onto Arabidopsis reference genome 

(available from The Arabidopsis Information Resource; TAIR 10).  

 

RNA-seq read alignment and differential expression analysis 

TGAC performed data quality control using FastQC (fastqc-0.11.2, 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to check for the basic 

metric of quality control in the raw data, it gives a quick impression of whether the 

data is of good quality before doing further analysis. An in-house contamination-

screening pipeline called Kontamination (not published yet) was used to check 

for any obvious contamination in the raw reads. Since the data quality was good, 

there was no trimming done on the raw reads.  

Alignment of RNA-seq reads to transcriptome reference (Arabidopsis 

thaliana TAIR10 was done using TopHat (Tophat v2.1.1, 

http://ccb.jhu.edu/software/tophat/manual.shtml) with --min-anchor-length 12. 

TopHat will report junctions spanned by reads with at least 12 bases on each side 

of the junction. Every junction involved in spliced alignments is supported by at 
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least 8 reads with 12 bases on each side. This must be at least 3 and the default 

is 8. The read alignment files (bam and bam index files) for each sample were 

visualised with IGA.   

Transcript reconstruction and differential expression analysis was done 

using Cufflinks (Cufflinks-2.2.1, http://cole-trapnell-lab.github.io/cufflinks).  

Normalized FPKM (fragments per kilobase per million reads) were used for 

differential gene expression analysis. Statistically significant expression changes 

were identified based on p and q metrics. P-values reflect the magnitude (fold 

change of treatment relative to control) and variation among biological replicates, 

whereas q-values account for false discovery rate based on library size. 

 

Functional representation of differentially regulated transcripts 

Graphical visualisation for functional categorisation of differentially 

regulated transcripts was performed using MapMan 3.5.1R2 functional 

annotation tool (Thimm et al., 2004). The tool, supporting resources and 

annotation database (based on TAIR9 annotation) can be downloaded from 

http://mapman.gabipd.org/web/guest/home. Statistical analysis on enrichment of 

differentially changed pathways was performed using Wilcoxon rank test and 

Benjamini-Hochberg (BH) p-value correction (Usadel, 2005). Methods for manual 

creation of new pathways and categorical filtering of expression data were 

adopted from (Usadel et al., 2009) and explained in sections below. 

I custom made the graphical overview of pathway of interest such as 

defence signalling cascades in Figure 5.11 and loaded as separate pathway file 

into MapMan. Next I loaded a mapping file containing list of gene identifiers and 

descriptions manually assigned to new functional bins previously absent from the 

MapMan annotation. To generate the mapping file, I analysed recently published 

literature and public TAIR database (www.arabidopsis.org/browse/genefamily) 

for all membrane-located receptor-like kinases and their classes (Shiu and 

Bleecker, 2001), cytoplasmic receptors such as NLR proteins (Hofberger and 

Jones, 2014; Kroj et al., 2016; Sarris et al., 2016), CDPK-SnRK superfamily 

(Hrabak et al., 2003), MAP kinases cascade (Asai et al., 2002; Jonak et al., 2002) 

as well as SA, JA and ET biosynthesis and signalling genes (Verk, 2010). 

Expression data were supplemented with categorical variables for filtering 

different custom set attributes such as significance (previously determined in DE 
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analysis) or putative transcription factor (TF) binding. To predict (TF) binding sites 

I searched for known TF binding motifs in Arabidopsis transcription factor 

database (www.arabidopsis.med.ohio-state.edu/AtTFDB/) and queried 

Upstream Gene Sequences (-3000bp) in TAIR Statistical Motif Analysis tool for 

presence of the respective motifs (www.arabidopsis.org/tools/bulk/motiffinder).  

 

Iterative Group Analysis (IGV) for functional pathway enrichment 

I ranked all transcripts based on the fold change values for any comparison 

between two experimental treatments. The ranked lists of most upregulated and 

downregulated transcripts were submitted for enrichment analysis of various 

functional classes based on published gene ontologies using Iterative Group 

Analysis (IGA) tool. This is an open-source command-line run package available 

to download from supplementary materials in Breitling et al. (2004). The IGA was 

run first on a randomised list of transcripts to determine the threshold for false 

gene enrichment. Functional pathways with large number of genes can be 

overrepresented in the experimental sample by chance, therefore, the false 

discovery threshold was further applied to the ranked gene lists. The command 

line used for gene family enrichment in chapter 5: 

iga –i_name.txt –ot_name.txt -agene-anot.txt -ggene-names.txt -t0.1 

where i – input file with ranked gene list; o – name of output file; a – annotation 

file; g – gene list in pathways; t – threshold [0;1]. Threshold for similar stress 

responses was 0.2 and cis-element enrichment 0.9.  

 

Clustering analysis 

 Clustering genes with most similar differential regulation across the 

treatments in RNA-seq data was done in Cluster 3.0 (available at 

http://bonsai.hgc.jp/~mdehoon/software/cluster/). I used Euclidean distance to 

calculate the gene similarity matrix that would take into account both the 

magnitude of fold change in any given treatment as well as relative proportions 

of fold change between pairs of treatments (i.e., relative up- or down-regulation 

with respect to different treatments) and is suitable for log-transformed 

expression data (D’haeseler, 2005). The calculated similarity matrix was then 

used in agglomerative hierarchical clustering by adding nearest neighbour (the 
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next most similar gene) to any given other observation. The size of each cluster 

was based on centroid or complete linkage. Centroid linkage delimits clusters 

based on the distance between the average similarity scores for all observations 

in the cluster. This method was chosen for datasets including few genes such as 

MTF family proteins. Complete linkage delimits clusters based on the furthest 

distance between any two observations in the clusters and tends to generate 

more equal-size clusters (http://support.minitab.com/en-us/minitab/17/topic-

library/modeling-statistics/multivariate/item-and-cluster-analyses/linkage-

methods/). For this reason, complete linkage method was chosen for larger 

datasets such as MTF clustering with plant defence genes. The clustering files 

were visualised with TreeView (available at http://jtreeview.sourceforge.net/).  

 

RNA extraction for rt-qPCR 

Total RNA was extracted using Tri-Reagent (Sigma-Aldrich) following 

manufacturer’s instructions and applying DNaseI treatment after the extraction 

(RQ1 DNase set; Promega, Madison, WI, USA). Resulting RNA was analysed for 

purity and yield using EtBR staining in agarose gel electrophoresis and 

spectrophotometer (NanoDrop 2000 Thermo Scientific, Loughborough, 

Leicestershire, UK). RNA samples with A260/A280 ratios between 1.9 and 2.1 

were diluted to similar concentrations before proceeding to cDNA synthesis.  

 

cDNA synthesis 

cDNA was synthesised from 1 μg RNA using the M-MLV-RT Kit 

(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions and 

primed using oligo-dT. 

 

Real-time quantitative PCR (rt-qPCR) for defence gene expression 

Resulting cDNA was diluted 1:10 with distilled H2O before using for rt-

qPCR. Each PCR reaction contained 25 ng of cDNA and 0.5 μg of each primer 

added to SYBR Green JumpStart Taq ReadyMix (Sigma-Aldrich) in a final volume 

of 20 µL. Three technical replicates of each sample were used per experiment. 

Reactions were loaded in 96-well format white ABgene PCR plate (Thermo 

Scientific) and run in a CFX96 Real-Time System with a C1000 Thermal Cycler 
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(Bio-Rad, Hemel Hempstead, Hertfordshire, UK) with the following settings: 3 min 

at 95°C, with 40 cycles of 30 s at 95°C, 30 s at 60 °C, 30 s at 72°C, followed by 

melt curve analysis: 30 s at 50°C (65-95°C at 0.5°C increments, 5 s for each). 

Primers for 5’ region of actin (AT2G37620) and 3’ region of GAPDH 

(AT1G13440) was used as a reference. The geometric mean of the reference 

gene expression was calculated for each well. Relative expression values were 

calculated following the comparative ΔCt method (Schmittgen and Livak, 2008). 

The mean Ct value was calculated between the three technical replicates. The 

relative change in the expression of a gene was calculated as ΔCt =(mean Ct 

gene of interest - mean Ct reference gene). The fold-change between treatments 

was calculated as (ΔCt treatment- ΔCt control)/ ΔCt control. This method ensures 

consistency with DE calculations for RNA-seq data.  

 

8.14. Construction of A.thaliana interaction network 

De novo transcription factor binding site predictions 

I aimed to create a network demonstrating protein-protein (PPI) as well as 

transcription factor-target gene (TFI) interactions. Many databases for TF binding 

sites such as AtcisDB (http://arabidopsis.med.ohio-state.edu/AtcisDB/), 

TRANSFAC (http://gene-regulation.com/pub/databases.html) contain predictive 

binding motifs for certain classes (families) of transcription factors (TFs). In 

contrast, databases like ORegAnno (http://oreganno.org/) or PAZAR 

(http://pazar.info/) contain experimentally verified information for specific pairs of 

gene target-TF interactions. In order to bypass the shortcomings of the both types 

of databases, I aimed to do de novo TF-target binding predictions using only 

experimentally validated A.thaliana TF binding motifs from JASPAR CORE 

Plantae database (http://jaspar.genereg.net/). I obtained binding site matrices for 

192 different TFs. I obtained -5000 bp upstream DNA sequences (no overlap with 

neighbouring CDS) for every gene coding sequence in A. thaliana genome 

(Regulatory Sequence Analysis Tools RSAT PLANTS http://www.rsat.eu/) and 

scanned all 192 TF binding matrices across all regulatory sequences to identify 

pattern match with high degree of stringency (Marcov order 2; p<5E-07 to 

minimize false discovery). Each match between the experimentally obtained TF 

binding motif and target gene was recorded as an interacting edge and combined 

with PPI. 
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Acquiring protein-protein interaction data 

All experimentally verified and predicted PPI scores were obtained from 

STRING v10.0 database (fully licenced version download from http://string-

db.org/), integrating data from other databases like BioGRID, InterAct and 

containing a total of 1,048,575 A.thaliana PPI (Szklarczyk et al., 2015). I 

considered only confirmed PPI as well as strong PPI prediction (i.e., PPI with the 

following scores coexpression >500; exp_transfer>900; database transfer>900; 

textmining>500; overall score>500). Furthermore, I filtered the resulting list of 

genes, leaving only the transcripts which are expressed in our dataset.  

Next I combined the filtered PPI layer with TFI layer to give 183,835 

interactions among different 15,430 genes. Interestingly, this list of genes is 

highly redundant (89.9%) with the expressed list of 17,153 genes from our RNA-

seq data, and therefore, captures most of the potential interactions. 

 

Visualisation of defence gene interaction network 

The gene list obtained above was further queried for genes that are 

involved in defence (identical to the MapMan defence map described earlier) and 

their first level interactors (Chapter 5, figure 5.15). Interactions were visualised 

using Cytoscape v3.4 (http://www.cytoscape.org/). I imported a separate 

annotation table as edge (interaction) attributes to colour code the predicted PPI, 

confirmed PPI and TFI. Similarly, annotations for node (gene) fold change and 

functional categorisation such as identity of JA, MAPK etc. pathway (Figure 5.11) 

were imported. Network layout was based on the imported node attributes.  

 

Functional enrichment analysis within the interaction network of all defence-

related genes 

BINGO application (http://apps.cytoscape.org/apps/bingo) was 

downloaded and installed into Cytoscape. BINGO (Maere et al., 2005) calculates 

overrepresented GO terms in the network and display them as a network of 

significant GO terms using a hypergeometric test and Benjamini-Hochberg (FDR) 

correction.  

 

 



300 

 

8.15. Statistical analysis 

Statistical analysis was performed in Minitab16 and R-studio. Insect 

oviposition data were analysed using paired t-test, two- tailed t-test or GLM. 

Assumptions of the statistical tests – normal distribution and equal variance – 

were checked with the Anderson–Darling and the Levene’s tests, respectively. 

Principal Components Analysis and hierarchical clustering of RNA-seq libraries 

was done with R-based CummeRbund package (available at Bioconductor.org 

together with user manuals). For this the Cufflinks data were read in 

CummeRbund and analysed with MAplot and csDendro functions, respectively.  

Statistical tests for enrichment analysis of gene functions was performed 

using MapMan, BINGO or IGA software packages, as described in previous 

sections. Additional hypergeometric tests for evaluating the enrichment of 

transcription factor binding sites was performed in Microsoft Excel2013 

(hypergeometric distribution, cumulative probability).  
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Philosophical Epilogue 
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Morality in Modern Science and Society 

 

‘’Truth is the only daughter of time,’’ attributed to Leo da Vinci1, 

encapsulates the ideal, pure reality, which, described by Plato, exists since the 

beginning of universe and is attainable by the reason only. The pioneering 

experimentalist Aristotle used empirical observations to attempt to describe the 

Platonic reality2. He was criticised by many to be deceived by his senses. 

‘’Science is but an image of truth,’’ noted Francis Bacon3, father of the scientific 

method, that inclines under the centuries-old schools of scepticism from Greek 

sophists to David Hume2. And yet, scientific discoveries have been at the heart 

of many transformations of society. French botanist Leo Errera said4: ‘’Truth is on 

a curve whose asymptote our spirit follows eternally.’’ Given the premise that 

reality, as it is, may be beyond description of the scientific method, many 

scientists describe the instrumental reality, as it appears5,6. Equipped with such 

understanding about nature, how should scientists better communicate the 

implications and influence the decisions about the applications of their theories in 

morally just manner?  

I would like to discuss the strengths and limitations of the scientific method 

as a paramount to social constructivism, political decision-making as well as 

ethical foundations of morality. I will argue that the latter is the most crucial aspect 

in the path from enlightenment to engagement and empowerment by scientific 

knowledge. 

Pursuing the truth is one of the main goals of all philosophical (including 

pre-historic mythological and religious) teachings in all civilisations of all times2. 

Like scientific investigation is empirical, the others are rational methods to 

analyse and conceive the reality. ‘’A theory can be proved by experiment; but no 

path leads from experiment to the birth of a theory,’’ said Albert Einstein7. Through 

scientific induction we can make generalisations – theories, hypothesis or thought 

experiments – and conceive the ideal Platonic reality. Through scientific 

deduction we test such theories using observation or experimentation. Thus, the 

scientific process is inherently rational and empirical. As is any other 

philosophical process, given it is complemented with tools and experimental 

systems to verify the ideas. However, within the experimentation itself resides the 

limitation of scientific conclusions. Karl Popper elaborates8: ‘’The method of 

science depends on our attempts to describe the world with simple theories: 
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theories that are complex may become untestable, even if they happen to be true. 

Science may be described as the art of systematic over-simplification—the art of 

discerning what we may with advantage omit.’’ Reduction of a complex problem 

to a testable hypothesis is instrumental to scientific deduction and key to the 

remarkable success of science in development of new technologies. Notably, this 

has also a great impact on normative ethics by creating the ‘’utilitarian 

selectionism’’ where everything that improves the condition (of majority) is 

desired and apprized. Nevertheless, the utilitarian value of scientific discoveries 

inherently lies within the framework of the simplified theory originally considered. 

Natural systems and human existence as their part is more complex than the 

simplified models tested by scientists and implemented in socio-economic 

processes. English weather is inherently chaotic system; so is potato yield more 

to the national economy and gastronomic dinner than ten mega-pennies of 

revenue per hectare.  

‘’To measure is to know,’’ a strong belief of Lord Kelvin9, may be a splendid 

illustration of scientism – the over-esteemed confidence that any problem is 

tractable by the empirical aspect of scientific process. Moreover, scientism is at 

the heart of ‘’scientific socialism’’ where application of scientific data to solving 

social issues and making political decisions is under strict utilitarian logics and 

pre-defined simplified templates of society. For example, what will be the price of 

kilo rice tomorrow? Or, substitution of human-labour with machine-work guided 

by the company revenue. Such considerations have been at the heart of post-

modernist era criticism on science. Social constructivism has influenced both the 

theoretical implications and application of science. In his thought-provoking book 

‘’The Structure of Scientific Revolutions’’ Thomas Kuhn wrote10: ‘’As in political 

revolutions, so in paradigm choice — there is no standard higher than the assent 

of the relevant community... this issue of paradigm choice can never be 

unequivocally settled by logic and experiment alone.’’ There are undisputable 

advantages of working within a framework of a given theory agreed by community 

to understand the mechanistic basis of many natural or social phenomena. 

Identification of a ‘’turning-point’’ when new data propose alternative theory is 

fundamental to paradigm shift and scientific revolutions. While this principle is in 

general concurrence among scientists for how we make objective conclusions 

and implications from experiments, the adoption of this principle to how we decide 
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on applications of scientific theories is rather more dogmatic and less open to 

alternative views.  

The reason for this is that decision making process on application of 

scientific theories is largely detached from scientific discovery process itself. J. 

Robert Oppenheimer was a key figure in the Manhattan Project and said11: ‘’It is 

a profound and necessary truth that the deep things in science are not found 

because they are useful; they are found because it was possible to find them.’’ 

Although I hereby lay no contra-arguments to the stated fact that many 

discoveries are made in serendipity, I argue, however, that a scientist should not 

be blind to the conflict of interest by the paymasters of the research. While 

significant proportion of science is funded by governments and, ever increasingly, 

public crowd-funding12, a significant proportion of funding comes from industry - 

corporations with private interests13. Moreover, most of government research 

spending concern military R&D14. Although ‘’It is open to every man to choose 

the direction of his striving; and also every man may draw comfort from Lessing's 

fine saying, that the search for truth is more precious than its possession,’’ as 

noted Einstein15, I repute more to what was reasoned by British scientist and 

novelist C.P. Snow16. ‘’A scientist has to be neutral in his search for the truth, but 

he cannot be neutral as to the use of that truth when found. If you know more 

than other people, you have more responsibility, rather than less.’’ 

I clarify that hitherto I made no argument in favour of applied versus 

fundamental sciences. I conveyed that whatever discoveries derive from the two 

alike, are subject to decisions for its utility by scientist as the member of public. 

Role of science is enlightenment, engagement and empowerment17. Jean-

Baptiste Lamark signified18: ‘’It is not enough to discover and prove a useful truth 

previously unknown, but that it is necessary also to be able to propagate it and 

get it recognized.’’ Imanuel Kant’s ‘’Doctrine of Virtue’’ and David Anscombe’s 

‘’Modern Moral Philosophy’’ recognise enlightened individuals as leaders of 

society19,20. They engage public and communicate their philosophy and 

discoveries which are attained by reason and experiments alike. Furthermore, 

possession and recognition of knowledge and know-how is foundation for 

empowerment of society. Therefore, virtuous individuals or, better, virtuous 

society, should consider the limitations of scientific process and all conflicts of 



  

305 

 

interest before utilising the knowledge they possess already or invest in 

acquisition of such knowledge. 

With reference to Kuhn, many of these decisions are unattainable by 

experiments and utilitarian logics alone10. Given the limitation by any one 

methodological approach in attaining the truth, scientific method can only 

complement other philosophical methods to address the questions about morality 

in modern society and thus enable just and objective path from enlightenment to 

empowerment of scientific and philosophic ideas. John Paul II addressed the 

Pontifical Academy of Sciences in his speech21: ‘’Every scientist, through 

personal study and research, completes himself and his own humanity. [..] 

Scientific research constitutes for you, as it does for many, the way for the 

personal encounter with truth, and perhaps the privileged place for the encounter 

itself with God, the Creator of heaven and earth. Science shines forth in all its 

value as a good capable of motivating our existence, as a great experience of 

freedom for truth, as a fundamental work of service. Through research each 

scientist grows as a human being and helps others to do likewise.’’ The mission 

of a scientist is to pursue the truth, inform about his findings and guide others in 

their path to humanity by contextualising the discoveries of science in ethical 

framework of moral philosophy.  
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Supplemental Figure 1 (for Table 2.1, Chapter 2, page 78). 

SAP54 homologs from AY-WB, PnWB and Stolbur phytoplasmas demonstrate 

conserved protein-protein interactions with plant MTFs and RAD23 proteins in 

yeast-two-hybrid experiment. SAP54 homologs were cloned as prey in pDEST32 

vector containing Binding Domain of GAL4 gene. Plant MTF and RAD23 target proteins 

were cloned as bait in pDEST22 vector containing the Binding Domain of GAL4 gene. 

Successful transformants with both bait and pray plasmid are selected on SD media 

lacking Leu/Trp (–L-W). Upon interaction of the pray and the bait proteins, expression of 

marker genes allows yeast growth on selective SD media lacking Leu/Trp/His (–L-W-H).  
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Supplemental Figure 2.  

SAP54 and GFP plants have similar trichome density on leaf abaxial and adaxial 

sides before and after exposure to Macrosteles quadrilineatus feeding and egg-

laying. The total number of trichomes was counted over entire leaf blade on the adaxial 

and abaxial sides of A.thaliana leaves that were un-exposed to M. quadrilineatus. 

Trichome number was normalised by total area of the leaf as a measure of trichome 

density per cm2. Trichome density was determined on another group of SAP54 and GFP 

plants that were exposed to 10 male and 10 female adult M. quadrilineatus feeding and 

oviposition for 5 days in a small choice cage (Figure 8.6; materials & methods).  
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Supplemental Figure 3. 

Macrosteles quadrilineatus oviposition sites on Arabidopsis thaliana leaves.  

Leafhopper M. quadrilineatus females deposit their eggs in four possible locations on the 

abaxial side of A. thaliana leaves: (1) inter-vein region where eggs are protruding out 

from the leaf surface; (2) leaf blade margin where eggs are embedded beneath 

epidermal tissues and often packaged parallel to each other; (3) embedded within or 

deposited right next to the midvein; (4) within leaf pedicel. Black triangles are pointing to 

the location of individual eggs. Pictures depict eggs of different ages after deposition. 

The quantity of eggs in each location is not representative and varies from leaf to leaf. 

Bars are approximately 1mm in all pictures.
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Appendix D 

 

Orlovskis Z, Hogenhout SA. 2016. A bacterial parasite effector mediates 

insect vector attraction in host plants independently of developmental 

changes. Frontiers in Plant Science 7, doi: 10.3389/fpls.2016.00885 
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Appendix E 

 

Orlovskis Z, Canale MC, Kuo CH et al. (2017). A few sequence 

polymorphisms among isolates of Maize bushy stunt phytoplasma 

associate with organ proliferation symptoms in infected maize plants. 

Annals of Botany, doi:10.1093/aob/mcw213. 
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