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Abstract

In recent years the amount of genomic resources of wheat has increased
to the point where manual analysis is unfeasible. The aim of this PhD
was to develop bioinformatics tools that help answer biological ques-
tions relevant to research and breeding by addressing the complexities
associated with the wheat genome. I took advantage of resources which
became publicly available as the analyses were carried out and I de-
veloped new approaches, strategies and tools to help accelerate wheat
research. Chapter 1 reviews the genomic resources used for the thesis,
placing them in historic context with the work and analyses performed.
Chapter 2 describes the development of PolyMarker, a bioinformatics
pipeline to design genome-specific primers in a timely and effective man-
ner. Examples of different applications of PolyMarker are also included.
Chapter 3 describes the analysis of an F2 population to generate a genetic
map for Yr15, a gene that provides resistance to yellow rust. The SNP
calling was done from bulked segregating samples, sequenced with RNA-
Seq as a method of reduced representation. Chapter 4 describes expVIP,
a tool to integrate RNA-Seq experiments in a relational database. Data
from different studies can be visualised simultaneously, enabling com-
parisons between them. Lastly, in Chapter 5 all the data types used for
the analysis on each of the previous chapters is integrated into a rela-
tional database. The discussion further explores how genetic maps, SNP
markers, novel SNPs, gene annotations, gene assemblies and gene expres-
sion can be used simultaneously in research and breeding programs. All
the tools and pipelines described in this thesis are open source and are
available on: https://github.com/homonecloco.

https://github.com/homonecloco
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Chapter 1

Introduction

1.1 Wheat Genetics

1.1.1 Polyploidy and Wheat

A polyploid species contains more than one set of related genomes, that
may come from a chromosomal duplication (autopolyploid) or from an
hybridisation with a related species (allopolyploid; Shewry 2009). Triti-
cum aestivum (bread wheat) has gone through an speciation event and
two major hybridisation events. Initially, a common progenitor evolved
into two different species around 7 million years ago to form the A and
B genomes, whose closest known relatives today are Triticum urartu and
Aegilops speltoides (Dubcovsky and Dvorak, 2007), respectively. Around
5.5 million years ago, these two lineages hybridised though homoploid
hybrid speciation to give rise to the D genome progenitor Ae. tauschii
(Marcussen et al., 2014; El Baidouri et al., 2016). Homoploid hybrid
speciation refers to the event which occurs when a fertile lineage, in this
case Ae. tauschii, results from hybridisation between two distinct spe-
cies (T. urartu and Ae. speltoides), without a change in ploidy level
(Gross, 2012). Then, less than 800 thousand years ago the ancient A
and B genome species hybridised and formed a tetraploid wheat, Triti-
cum turgidum ssp. dicoccoides (wild emmer). A final event occurred less
than 400 thousand years ago, when emmer wheat hybridised with Ae.
tauschii, leading to bread wheat (Figure 1.1.1, Marcussen et al. 2014).
Wild emmer tetraploid wheat was later domesticated to give rise to pasta
wheat (Dubcovsky and Dvorak, 2007).
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Figure 1.1: Hibridisations that led to bread wheat T. aestivum. Seven col-
oured chromosomes are drawn alongside each species to depict ploidy level
and genome constitution.

Because bread wheat contains three related, yet independent copies
of its genome, the expectation is that it has three copies of each genes,
which are referred to as homoeologs. The actual values are close to this
expectation with some variations depending on specific genes. Over-
all, the first global analysis by Brenchley et al. (2012) showed that the
hexaploid wheat genome had a gene ratio of between 2.5:1 and 2.7:1
compared to the D genome.

1.1.2 Experimental lines

In crops, genetic research usually consists on crossing individuals and
study the traits of the next generation. The progeny of a cross is called
population. Groups of seeds with the same genetic background are called
lines. Plants with the same homozygous background are pure lines. To
study particular locus experimental lines are developed, the following list
describe the most common (Van Ooijen and Jansen, 2013b):

F1 The first generation of the cross between two plants. If the progen-
itors are homozygous and different, all the lines in the resulting
population are heterozygous at any given locus.



CHAPTER 1. INTRODUCTION 16

F2 populations come from a single heterozygous F1 plant or popula-
tion that is crossed to itself. The progeny is segregating (Figure
1.2a) with homozygous and heterozygous individuals. This type
of population is used for the experiments in Chapter 3 and it is
described in more detail in Section 3.1.1.

Back-cross (BC) lines are used to fix a trait on a genetic background.
The process starts from a plant in the F1 with the desired genotype
or phenotype. This plant is crossed again ("back-crossed") to a
plant from the line used as background (P1; known as the recurrent
parent). The progeny are called Back Cross 1 (BC1; Figure 1.2b).
A plant from the BC1 with the desired genotype is selected and
crossed again to P1. The process can be repeated, and with each
cross the region linked to the target locus is narrowed and the
background becomes more similar to P1.

Near Isogenic Lines (NILs) After BC6, a line is considered Near Iso-
genic (Stam and Zeven, 1981). At this level of back crossing most of
the genetic material is the same as P1, except for the region linked
to the trait which has been actively selected during the crossing
scheme. In most cases sibling lines are selected so that pairs of
NILs are used either carrying the desire trait or not.

Recombinant Inbred Lines (RILs) are used to produce homozygous
lines from an F2 population. Each plant in the population is self-
crossed. A single plant is usually selected and self-pollinated again
in a process usually called "single seed descent". After several iter-
ations the line is considered homozygous. 1.2c).

Doubled Haploid (DH) lines are an alternative technique to pro-
duce homozygous lines. The individuals on the F1 population are
crossed to a different plant (ie maize crossed to produce wheat DH)
to simulate pollination (Reviewed in Niu et al. 2014) . Under nat-
ural conditions, the gametes would be aborted, therefore the em-
bryos are rescued and treated with colchicine to induce a genome
duplication. Since the duplication comes from a single gamete, the
resulting plant is homozygous (Figure 1.2d). This process is quicker
than the production of homozygous RIL, but is more technically
demanding and expensive.
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Figure 1.2: Types of experimental lines. represent populations and
individual plants. (× represent a cross between lines. (⊗) represent self-
pollination. Ellipsis (. . .) represent repetition. represent a treatment
to double the chromosomes from the gamete. (a) F2 population. (b) Back
Cross population. (c) Recombinant Inbred Lines (RIL). (d) Doubled Haploid
(DH).
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1.2 Sequencing

Over the past 10 years there have been multiple developments in sequen-
cing technology that have revolutionised many aspects of modern science.
Details of the different methods and their history have been reviewed ex-
tensively (Goodwin et al., 2016) and are outside the scope of this thesis.
However, more details will be provided on the Illumina system since this
technology is most heavily used in the thesis.

1.2.1 DNA sequencing with Illumina

In the Illumina sequencer, the DNA library is loaded into a flow cell,
where the fragments are captured by their adaptors. Each fragment is
amplified into clonal clusters, resulting in multiple copies of the sequence
bounded to the surface in close proximity. Then, the sequencer detects
the fluorescent dye-labelled oligonucleotides that are added one by one
to the bound sequences by taking multiple images. This process can
be repeated for each pair of the DNA. copies of the same sequence are
clustered together, it is possible to analyse the images and detect which
base is added to each cluster, determining multiple sequences with high
fidelity, and exporting them as a FastQ file (Goodwin et al., 2016; Cresko
Lab, 2015; Illumina Inc).

According to the objectives of the experiment and the quality and
volume of the available DNA, the library can be prepared on fragments
of different sizes, the classification of the available sequencing for the
fragments is the following Myllykangas et al. (2012); Metzker (2010);
Shendure and Ji (2008); Hutchison (2007):

Single end. The DNA fragments are sequenced in from the 5’-end. This
can be used when long DNA fragments can’t be produced due to
the quality of the sample(i.e. ancient DNA), or when the target
are small molecules (i.e. expression of microRNAs).

Paired end. As in the single end sequencing, the 5’-end of a the frag-
ments are sequenced. However, after sequencing one strand, the
process is repeated with the reverse complement. This allows to to
get more sequence for each fragment and an indication that both
fragments are close.
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Overlapping Read Pairs. A variation to paired end sequencing, where
the size of the fragment is shorter than two times the read length.
This allow an alignment between the two reads to get an longer
contiguous read with the limitations of the instrument.

Mate pairs. Used to get reads separated at distances between 1kbp and
5kbp. To achieve this, the molecule is circularised and the point
were the two ends of the fragment were joint a biotin marker is
inserted. Then, the molecule is fragmented again and the fragments
containing the biotin are sequenced in the same fashion that read
pairs. The resulting reads have the same orientation.

1.2.2 RNA-Seq

During transcription, a DNA sequence is transcribed into the primary
RNA transcript (pre-mRNA) by the RNA polymerase. The RNA poly-
merase, and associated transcription factor, binds to promoter DNA and
creates an RNA complementary copy. Depending on multiple factors,
including gene regulation, this process can be repeated to create mul-
tiple copies of the sequence(Alberts et al., 2014). The pre-mRNA suffers
various modifications like splicing and capping. In a gene, there are in-
tragenic regions, called introns, that are removed from the pre-mRNA,
while the remaining sequences, called exons, become part of the mature
mRNA. Splicing is catalysed by the spliceosome, which recognises the
sequences of the splice donor, branch and acceptor sites in the intron,
cuts the intron and pastes the remaining exons. In some cases, different
introns and exons can be included or excluded, creating alternative spli-
cings of the RNA sequence (Alberts et al., 2014). Then, the 5’ and 3’
ends of the RNA sequence are modified to generate a mature messenger
RNA (mRNA). A 7-methylguanosine cap is added to the 5’ end. The 3’
end is cleaved and polyadenidated, acquiring a poly(A) tail of approxim-
ately 200 adenines (Alberts et al., 2014). The result of this process is a
mature mRNA, which forms part of the transcriptome.

Both DNA and RNA can be sequenced using available Next Gener-
ation Sequencing (NGS) technologies. The preferred starting template
will depend on several factors including the biological question at hand,
the size of the genome and gene space, the resources available, etc. In
the case of wheat, complete representation of DNA is impractical given
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the genome size (Borrill et al., 2015). Therefore reduced representation
methods constitute an important alternative (Figure 1.3). Among them,
we used exome capture and RNA-Seq during the course of this PhD.
However, my main focus was on the use of RNA-Seq and therefore I
detail more on this methodology below. Originally, sequencers where
designed with DNA in mind, so that analysing RNA requires converting
the transcriptome into a cDNA library (Wang et al., 2009). To begin
with, RNA is first isolated, purified and enriched for mature mRNA. For
some sequencers, the resulting mRNAs need to be fragmented to improve
sequence coverage, as current sequencers can only read sequences shorter
than the transcripts. Once the quality of the RNA has been verified,
it is converted into cDNA and adaptor sequences are added. First, the
RNA strand is copied into first strand cDNA using the reverse tran-
scriptase, as traditional polymerases cannot convert from RNA to DNA
(Alberts et al., 2014). Reverse transcriptase, as other polymerase, re-
quires a primer annealed to begin the polymerisation, so random primer
are used to avoid 3’ bias and improve coverage. To obtain the second
strand, RNase is used to cleave the original RNA. The remaining frag-
ments serve as primers for DNA polymerase I, creating a double-stranded
complementary DNA. The cDNA fragments then go through an end re-
pair process, the addition of a single ‘A’ base, and then ligation of the
adaptors, which will be used by the sequencer to read the sequence. The
products are then purified, to remove artefact and their quality is veri-
fied. The remaining sequences are enriched using the polymerase chain
reaction (PCR), which can generate thousands to millions of copies of a
particular DNA sequence (Illumina Inc). The resulting cDNA library is
sequenced using available high throughput sequencing technologies.

1.3 Sequence analysis

From the computational point of view, the problem can be viewed as
a string matching. The Smith-Waterman (Smith and Waterman, 1981)
and Needleman-Wunsch (Needleman and Wunsch, 1970) algorithms are
the gold standard interns of accuracy looking for similarity between se-
quences. However, the execution time for both of them is prohibitive to
run in massive databases. The algorithm execution time is O(mn), as it
requires calculating a matrix of size m×n where m is the target sequence
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RNADNA

Reduced 
representation

Complete 
representation

Exome captureWhole genome RNA-Seq

expVIP
(Chapter 4)

Yr15 BFR
(Chapter 5)

PolyInDelPolyMarker
(Chapter 2)

Figure 1.3: General types of sequencing ant their relationship with this PhD.
PolyInDel is a project still in progress, not discussed in this Thesis.

and n is the query sequence. To scale this to a manageable problem al-
gorithms like BLAST, BLAT and exonerate index the references to make
the search faster. This alignments tools are useful for long stretches of
DNA (like cDNA or contigs; Altschul et al. 1990).

BLAST requires to index the sequences used in the database. The
heristic search looks for occurances of patterns of the target se-
quence in the index and the alignment is then extended doing a
local alignment (Altschul et al., 1990). When the query sequence
and sequence within the database have a high sequence similarity
and length coverage this is defined as a ‘hit’. The significant hits are
generally termed as those that have protein sequence comparisons
above 75% sequence similarity and high coverage.

BLAT Blast-Like Alignment Tool, is much faster than BLAST but less
sensitive as it does a k-mer indexing of the database instead of
a linear search, which means it finds seeds quicker. The way that
BLAT performs quick analyses is by computing an "index of all non-
overlapping K-mers in the genome". It is important to note that
BLAT is less effective for sequences with less than 90% sequence
identity (Kent, 2002). This level of identity is enough to find the
homoeologous genes in wheat, as they have an identity over 92%
between chromosomes (Krasileva et al., 2013)
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Exonerate Is another alignment program that works as a faster altern-
ative to exhaustive sequence alignment methodologies, by imple-
menting bounded sparse dynamic programming (BSDP). It per-
forms pairwise sequence comparisons, doing so by using various
alignment models, exhaustive dynamic programming or different
heuristic algorithms (Slater and Birney, 2005). Exonerate is able
to model intron-exon junctions when doing the alignment.

When analysing high-throughput sequencing, having millions of short
sequences make unfeasible to try to align the data to every possible refer-
ence. However, one can take advantage of the fact that you know which
organism you are looking for and, if available, use a genomic reference.
For this, tools like MAQ, BWA, Bowtie, among others, provide indexed
search. Once the reads are aligned, to a reference the downstream ana-
lysis will depend on the biological question being asked and the type
of sequencing carried on. Fortunately, most of the Short-Read sequence
alignment produce similar outputs and the SAM format is becoming a
de facto standard. This is allowing to make more a modular downstream
analysis where you can test different aligners with different settings and
pick the algorithm that better fits your experiment (Liu and Schmidt,
2012; Li and Durbin, 2009; Li et al., 2009).
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IUPAC Ambiguity Codes

To represent polymorphisms in a single sequence the IUPAC has de-
veloped an representation of a single character combining more than one
possible nucleotide. This table is used in Chapters 2 and 3 to represent
Single Nucleotide Polymorphisms (SNPs).

Table 1.1: IUPAC ambiguity codes

IUPAC Code Meaning Complement
A A T
C C G
G G C

T/U T A
M A or C K
R A or G Y
W A or T W
S C or G S
Y C or T R
K G or T M
V A or C or G B
H A or C or T D
D A or G or T H
B C or G or T V
N G or A or T or C N

1.3.1 RNA-Seq

One way to narrow down which genes are involved in certain trait or
response to the environment is to focus on studying only the expressed
genes. One of the techniques involving NGS is RNA-Seq (See Section
1.2.2). Depending on how much a priori information of the analysed
organism is available different bioinformatic approaches can be used.

Transcriptome alignment The reads are aligned to a database of known
cDNA. Ideally, alternative splicing sequences are available, so a
simple alignment should work (i.e. BWA, bowtie).

Genomic alignment The reads are aligned to the genome. The splice
junctions, introns and axons need to be accounted, so simple align-
ment doesn’t work. Regular alignments are used, but the reads
may be trimmed at fixed sizes to allow discontinuous alignments
using regular tools (i.e. Stampy, Tophat/cufflinks)
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De Novo transcriptome assembly If a reference of the organism is
not available, it is possible to generate a draft transcriptome with
the RNA-Seq reads with traditional assemblers (velvet, abyss) or
with specialised assembler tools like Trinity.

Once you have the alignments it is possible to evaluate the relative
expression of the genes in the sample calculating the Reads Per Kilobase
of transcript per Million of mapped reads (RPKM) or the Transcripts per
Million of mapped reads (TPM). This normalises the expression by the
amount of sequenced data and can be used to find which genes change
in expression volume across different samples.

1.4 Wheat genomics

During the course of this PhD, several resources were released in the
wheat community. A timeline of the release of each one of those resource
is in Figure 1.4.

1.4.1 Genomic sequence

The length of the genomic references available for wheat has been in-
creasing year by year. During my PhD the following genomic references
where published.

454 Liverpool. A whole genome shotgun (WGS) sequencing project for
Chinese Spring (CS) done in 454. The average coverage was around
5x. Assembling the reads produced an assembly with shorter con-
tigs than the original reads. Hence, it was released as raw reads
(Brenchley et al., 2012). Despite not being a proper reference gen-
ome, the reads where enough to find variations across the gen-
omes and was used to designed genome specific primers before the
IWGSC reference was published.

IWGSC CSS. The International Wheat Genome Sequencing Consor-
tium (IWGSC) is able to extract DNA from a single chromosome
arm, using a method called flow sorting. DNA for each sample was
sequenced with Illumina to a coverage of at least 60x and it was
assembled (Mayer et al., 2014). The assembly is quite fragmented
partly because the assembler not being able to cope with repetitive
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regions, and partly because the flow sorting reduces the quality of
DNA, preventing the preparation of long fragments.

Chapman. A WGS project, done with Illumina. Instead of sequencing
CS, a synthetic wheat was used. The scaffolds are longer than the
Chinese Spring Chromosome arm survey sequence (CSS) assembly,
but the project was not annotated. It was used mainly to develop
markers in a mapping population between synthetic (W7984) and
non-synthetic (Opata) wheat lines (Chapman et al., 2015).

TGACv1 A WGS originally proposed as an improvement to the CSS
assembly. The scaffolds are longer than in Chapman and it uses the
contigs from CSS to assign the chromosome arm corresponding to
each contig. An annotation for this assembly is available (Clavijo
et al., 2016).

1.4.2 Gene models

For this thesis, a set of gene models correspond to the coding sequence
of a gene. The following sets of gene models are used in this thesis.

UniGenes. This is an effort of the National Center for Biotechnology
Information (NCBI) to unify several ESTs deposited on their data-
bases, per species. The set is generated automatically by aligning
all the ESTs to each other and clustering them by identity. The
longest EST is selected as the canonical representation of the gene
(Pontius et al., 2002). Because this approach is not aware of the
different genomes, and the set of ESTs may not include them, the
algorithm collapses homoeologous genes. This needs to be taken in
account when doing down stream analysis.

UCW gene models. This set of gene models come for tetraploid wheat
come from a de novo assembly of T. turgidum (AABB) a T. urartu.
In both cases RNA-Seq was assembled with several parameters and
the resulting assemblies where merged. To separate homoeologues
genes that were assembled as a single gene, the reads were aligned to
the assembly. Then, the phasing of the reads was used to separate
the gene in the two homoeologues (Krasileva et al., 2013). This gene
models are useful for tetraploid wheat. When using this reference
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with hexaploid wheat, care must be taken of reads coming from the
D genome that will map to one of the alternative homoeologues.

Genome annotation IWGSC. To complement the CSS genome as-
sembly, the genome was annotated using related grasses ( Brachy-
podium distachyon, Oryza sativa, Sorghum bicolor, and Hordeum
vulgare. The annotation was supported by RNA-Seq data from
five samples from different tissues at three developmental stages
(Mayer et al., 2014). This was the first genome-scale annotation
effort including the three genomes independently. The main caveat
of this annotation is that due the relatively small size of the scaf-
folds used as reference, several genes are split in two different gene
models.

Genome annotation TGACv1. This is the companion annotation for
the TGACv1 assembly. The annotation was produced with a novel
approach, by merging four alternative assemblies from three RNA-
Seq datasets and long reads from PacBio sequencing (Venturini
et al., 2016). The polished assemblies and full length cDNA align-
ments were used together with protein alignments as basis for
evidence-based ab initio predictions with Augustus. This gene
models were made public during the last year of this PhD, hence
they were not used for the analysis. However the tools described
in Chapters 2 and 4 can work with the updated gene models.

1.4.3 Genetic markers and maps

The development of high resolution genetic maps had been benefited by
technologies like SNP arrays and NGS. SNP arrays allow the genotyping
of thousands of alleles from a single plant. Likewise, low coverage sequen-
cing can be used with the support of a good reference to do genotyping.
Both techniques had been used recently to produce the following genetic
maps:

90k iSelect chip The marker sequences used for the design of this ar-
ray were defined from 81,597 SNPs coming from 19 hexaploid and
18 tetraploid wheat accessions and, a an aggregation of previously
published SNPs. The wheat accession where sequenced with RNA-
Seq and the reads where used to detect polymorphisms. The se-
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quence flanking the SNPs come may include the intron-exon junc-
tion. 46,977 of the SNPs were genetically mapped with a combin-
ation of eight mapping populations (Wang et al., 2014).

820k Axiom chip The SNP discovery for this array was done using
exome capture from 43 bread wheat and relative species. Three
mapping populations (Avalon × Cadenza, W7984 × Opata and
Savannah × Rialto) were used to produce a consensus map with
56,505 markers (Allen et al., 2016; Winfield et al., 2016). This
points out that a higher number of markers does not necessarily
means a higher resolution in the genetic map, the main constrain
are the mapping populations.

Popseq/Chapman The SNPs came from a mapping population of 90
individuals, all consisting of DH lines from a cross W7984 × Opata.
Those DH lines were lightly sequenced, with a coverage less than
2×. Because of the high density of the SNPs, the haplotypes could
be inferred. The total number of SNP is over 24 million, but the
minimal set of markers 112,687 for the genetic map. The same
population was used for the original CSS assembly (Mayer et al.,
2014) and the assembly from Chapman et al. (2015).

1.5 Aim and objectives

The main aim of this PhD is to develop bioinformatics tools that help
answer biological questions of importance by addressing the complexities
associated with the wheat genome, such as its size and polyploid nature.
These tools can only be effective if they are designed within a biological
context and as such I have worked alongside experimental biologists over
the past four years. The strategies and resources developed in this PhD
take advantage of the latest developments in wheat research and I incor-
porated these as they were made public (Figure 1.4). The topics covered
by this thesis, their relationship and, the chapter where they are used
are shown in Figure 1.5.

As my aim was to develop new approaches, strategies and tools in
polyploid wheat, I have listed a series of objectives, rather than specific
hypotheses, which I tried to address over the course of this PhD.
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1. Simplify and automate the design of primers for marker assisted
selection in polyploid wheat (Chapter 2).

2. Develop a pipeline that can be used to find genetic markers for
breeding, using bulked segregant analysis and reduced representa-
tion sequencing (Chapter 3).

3. Develop a platform to integrate and visualise RNA-seq expression
experiments (Chapter 4)

4. Establish an overall framework to integrate the different resources
developed in this PhD (Chapter 5).
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All the pipelines and data produced by this project are publicly avail-
able. Towards this end I have also strived to publish this research in open
access journals. Peer reviewed publications stemming from these research
chapters are listed below:

• Chapter 2 (PolyMarker)

– Ramirez-Gonzalez RH, Uauy C, Caccamo M (2015) Poly-
Marker: a fast polyploid primer design pipeline. Bioinform-
atics, doi:10.1093/bioinformatics/btv069 (corresponding au-
thor)

– King R, Bird N, Ramirez-Gonzalez RH, Coghill JA, Patil
A, Hassani-Pak K, Uauy C, Phillips AL (2015) Mutation scan-
ning in wheat by exon capture and next-generation sequen-
cing. PlosOne. 10 (9), e0137549

– Hubbard A, Lewis CM, Yoshida K, Ramirez-Gonzalez RH,
de Vallavieille-Pope C, Thomas J, Kamoun S, Bayles R, Uauy
C, Saunders DGO (2015) Field pathogenomics reveals the
emergence of a diverse wheat yellow rust population. Gen-
ome Biology 16:23

• Chapter 3 (Bulked segregant mapping)

– Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Hold-
gate S, Berry S, Jack P, Caccamo M, Uauy C (2014) RNA-Seq
bulked segregant analysis enables the identification of high-
resolution genetic markers for breeding in hexaploid wheat
Plant Biotechnology Journal 13:613-624

– Ramirez-Gonzalez RH, Segovia V, Bird N, Caccamo M,
Uauy C (2015) Next Generation Sequencing Enabled Genetics
in Hexaploid Wheat. in Advances in Wheat Genetics: From
Genome to Field eds Ogihara Y, Takumi S, Handa H, pg 201-
209

• Chapter 4 (expVIP)

– Borrill P, Ramirez-Gonzalez RH, Uauy C. 2016. expVIP:
a customisable RNA-Seq data analysis and visualisation plat-
form. Plant Physiology 170:2172 (joint first author)
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Chapter 2

PolyMarker: A fast polyploid
primer design pipeline.

2.1 Background.

Single Nucleotide Polymorphism (SNP) are variations that occur in spe-
cific positions of the genome in at least 1% of the population of certain
species (Jehan and Lakhanpaul, 2006). In modern breeding programs
SNP markers are a prevalent technology to select individual plants or
seeds containing a particular locus, which is linked to a trait (ie. a
marker linked to a resistance gene, see Chapter 3). SNPs marker is a
specific case of Polymerase Chain Reaction (PCR) amplification where
two competing sequences from different alleles are amplified. However, in
polyploid species the variations between homoeologues are not considered
SNPs. Because of the similarity homoeologous regions can interfere in
PCR amplification it is preferable to design primers that will take in
account the variations between the genomes and the target SNP simul-
taneously. This chapters describes PolyMarker, a bioinformatic tool to
design genome-specific primers.

2.1.1 Primers and Polymerase Chain Reaction

To generate new copies of DNA, biological systems require a DNA poly-
merase to copy DNA into DNA or a reverse transcriptase to translate
RNA to DNA. During DNA replication, the DNA polymerase binds to
the template strand and to a short strand of RNA that serves as a primer
for DNA synthesis and replication, and then adds complementary nuc-

32
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leotides. Eventually, this results in two complementary DNA strands
(Mullis et al., 1987).

This process can be used to generate multiple copies of a DNA se-
quence using the PCR. PCR uses a heat-stable DNA polymerase to amp-
lify the template sequence. The DNA polymerase requires a primer se-
quence that is complementary to the template strand to begin the reac-
tion. Usually, chemically synthesised oligonucleotides of approximately
20 bases are added as primers (see Section 2.1.2 for details on primer
design). This primer sequence can be specific to the target region, or ran-
dom if multiple regions are being duplicated. Once the DNA strand has
been elongated, the temperature is elevated and then lowered to separate
the DNA strands. The process is repeated multiple times to increase the
number of DNA sequences exponentially Alberts et al. (2014).

PCR amplification is a technique that can be used to copy a fragment
of DNA several times. To start the amplification a pair of sequences (left
and right primers) on each side of the target sequence is required. The
sequence between primers is copied thanks to the DNA polymerase, an
enzyme that moves along the DNA strand making a copy (product).
The process starts with an increase in temperature in which the double
stranded DNA when the DNA molecule is melted in individual strands.
Then, the temperature is dropped so the primers anneal to the DNA
strands. Depending on the reaction type the temperature is raised again
to 72°C which is the temperature at which Taq polymerase extends. At
this point, the polymerase starts extending the strand from the 3’-end of
the primer. The temperature is raised again to separate the new strand
from the original DNA and lowered again to get the right primer to anneal
to the new product. Then, in the extension step, the amplification occurs
until the end of template sequence, were the 5’-end of the left primer was
originally located. This process is repeated several times to increase the
representation of the target DNA (Figure 2.1).

2.1.2 Primer design with Primer3

To initialize de PCR reaction (Section 2.1.1)) it is crucial to design pairs
of short DNA sequences, primers, that will start the amplification pro-
cess. For a primer to be effective it has to be design under certain con-
strains. Primer3 (Untergasser et al., 2012) is a bioinfrmatic tool to desig
primers, considering the following critera:
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Right primerLeft primer

target DNA

Product

5’ 3’ 5’3’

Figure 2.1: PCR Diagram. PCR is used to amplify a region of the DNA (green
bar) target to amplify (product; red line) is found by a pair of primers (blue
lines). The 3’ and 5’ represent the orientation of the primers.

Oligonucleotide melting temperature . It is the temperature at
which the double stranded primer melts into single strands. If the
melting temperature is too high, the primer will not bind to the
target sequence (Breslauer et al., 1986).

Size. The size of the primers needs to be balanced to be long enough
to provide the desired specificity to the target seqnece, and short
enough to to bind easily to the target sequence. A common range
of sizes for priemrs is between 18-25bp.

GC content. Primers with a high GC content are more efficent, how-
ever they also tend to be less specific (Rychlik, 1995).

Avoid primer-dimers. In a primer pair, if the corresponding 3’ ends
are similar the primer pairs may bind to each other. Hence, when
selecting a primer pair, even if the individual primers are good
candidates, the corresponding pair must be checked to avoid this
issue. (Chou et al., 1992).

PCR product size. It is the distance between the 5’ end of both primers.
The length of the product will determine how many cycles of exten-
sion are needed. For SNP markers, a short product size is prefered
because the snp is already contained in the primer.

Positional constrains in the template sequence. It is possible to
exclude or force the inclusion of certain regions in the primer design.
In particular, this capability enables PolyMarker to select primers
with the SNP in the 3’ end of the first primer for KASP (see Sec-
tion 2.1.3) and genome-specifc priemrs on the second primer (see
Section 2.1.4).

This list is of criteria considered by Primer3 is not comprehensive, but it
includes the relevant options considered for primer design in PolyMarker.
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2.1.3 KASP assays.

A technology used for genotyping SNP markers is Kompetitive Allele Spe-
cific PCR (KASP) assay, the original target technology for PolyMarker.
The assay consists on triplets of primers, having a primer for each allele
and a common primer that will amplify both alleles. The allelic primers
have at the 5’-end a tail, HEX (5’ GAAGGTCGGAGTCAACGGATT
3’) or FAM (5’ GAAGGTGACCAAGTTCATGCT 3’), which is used to
distinguish between them (Figure 2.2a). The KASP mix contains com-
plementing oligos to the HEX and FAM tail, which contain a dye that is
only visible when the corresponding allele has amplified. The intensity of
each dye is used to measure relative amplification of each allele. In KASP
assays, the distance between the left and right primers is kept as short as
possible, to avoid having an extension step. As the primers are around
21-25bp, the minimum product size is between 42-50bp, with products
rarely going over 75bp. Samples with the same genotype cluster: Samples
on each axis correspond to homozygous individuals and samples clustered
between the homozygous clusters are heterozygous (Figure 2.2b). If the
experiment fails, because poor amplification, that means that there are
no distinguishable clusters amongst the samples (Figure 2.2c; LGC Ge-
nomics 2014).

2.1.4 Genome specific primers.

One of the main challenges of working with polyploid species is the design
of genome specific molecular markers. In hexaploid wheat, most of the
genes have at three homoeologues copies, one for each genome (See sec-
tion 1.1.1). The similarity between homoeologues is around 98% (Krasil-
eva et al., 2013), which represent around 1 mismatch for every 50 bp.
This means that a primer in a conserved region of 21 bases targets any
of the homoeologues if it does not have variations on it. In Figure 2.3,
variations between genomes are represented with red lines, which are
randomly distributed across homoeologues. The α is randomly gener-
ated using the sequence of chromosome 1D, however, because it doesn’t
have any variation specific to the D genome, products from it can amp-
lify any of the genome. On the contrary, the β starts with a base that is
unique to the D genome, hence the product is genome specific.



CHAPTER 2. POLYMARKER 36

(a)

A

B

Common

HEX

FAM

5’ 3’

5’ 3’

5’3’

Common 5’3’

A

T

(b)

B

A A/A

A/B

B/B

(c)

B

A

Figure 2.2: KASP Assays (a) A KASP assay consists on three primers.
Primers A and B are specific for certain allele and the HEX and FAM tails
are added at the 5’-end on each primer. The common primer amplifies both
possible products. The SNP is an A/T, the only difference between alleles.
(b) Ideal KASP results are obtained when tight and distinct clusters are ob-
tained. The samples containing A allele clusters on the top-left (blue), the B
allele cluster on the bottom-right (red) and the heterozygous cluster between
the homozygous clusters (green). Each dot represent a sample and the axes
are the relative intensity of amplification of each allele. (c) KASP results in
an experiment with inconsistent amplification between the two alleles, clear
clusters between samples are missing.

!

1B

1D

1A

"
5’ 5’3’ 3’

Figure 2.3: Target of genome specific primer. Primers selected randomly
(blue lines) can bind to any of the three homoeologous regions if they fall on
regions without variations between them (red vertical lines). The α primer
doesn’t contain any variation between chromosomes, hence it will bind to the
chromosomes 1A, 1B and 1D. The β primer has a variation specific to the D
genome, hence it will only amplify the 1D chromosome.
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Chromosome 1A   cgcatttgcgcgcgcgataccggcgcctGtgggaatatttgcagcgaaggcgtg

Chromosome 1B   cgcatttacgcgcgcgataccggcgcctTtgggaatatttgc---gaaggcgtg

Chromosoom 1D   c--atttgcgcgTgcgataccggcgcctGtgggaatatttgcagcgaaggcgtg

     cgataccggcgcctTtgg

     cgataccggcgcctTtgg

     cgataccggcgcctTtgg

     cgataccggcgcctTtgg

Mismatch at 3’ end = Strong specificity

Mismatch at 2nd position = intermediate specificity

Mismatch at 3rd position = weak specificity

Mismatch at 4th position = does not provide specificity

Figure 2.4: Effect of position of variation on primer specificity. Several candid-
ate primers to design a genome specific assay for chromosome 1B are shown.
The T highlighted in blue is a variation unique to the target chromosome. The
closer the T providing specificity is to the 3’ of the primer, the more specific
it is.

A variation between homoeologues in the primers is not enough to
guarantee that the amplification is going to be genome specific. The
polymerase is more specific to variations were the amplification starts,
so variations in the 3’-end improve the specificity of primers (Huang
and Brûlé-Babel, 2010). Hence, when designing genome-specific assays
the specificity of the primers is scored according to the position of the
variation as: strong, when the variation is on the 3’-end; intermediate,
when the variation is on the 2nd position; weak when the variation is on
the 3rd position; and not specific when the variation occurs after the 3rd
position (Figure 2.4).

To ensure that all the constrains needed to produce genome-specific
primer pairs, the following steps need to be done:

1. First, a global alignment of the target sequence is used to find all
the homoeologues and paralogues in the reference genome. This
is done with tools like blast (Altschul et al., 1990), blat (Kent,
2002) or exonerate (Slater and Birney, 2005). All of these tools
take a reference sequence and make an index of the database to
speed up the search of the queried sequence 2.5. Since some of the
sources of SNPs come from transcriptome data and gene references,
the original sequence may go over the intron-exon junction (see
Section 1.2.2). The results are aligned to the target and may include
sequences only from one exon, but not the adjacent intron, hence it
is necessary to make a local alignment to ensure that corresponding
bases are aligned correctly.
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IWGSC Scaffolds

Contig1_1A

Contig7_1D

Contig3_1B

Template match 
Scaffold 

Figure 2.5: Global search of templates in the reference contigs.

Contig1_1A

Contig7_1D

Contig3_1B

Template 

Figure 2.6: Selected regions around the SNP on every chromosome. The blue
line represents the position of the SNP.

2. To put all the sequences in the appropriate context, a local align-
ment is done (Figure 2.6). This is done by extracting all the hits
(matches) to the target reference and using a program like mafft
(Katoh and Standley, 2013) or clustal (Higgins and Sharp, 1988).
These tools are based on aligning all the possible sequences in pair-
wise combinations. The distance between pairs is calculated to find
which sequences are closer to each other, and then the process is
repeated to refine the alignments until a consensus alignment is
reached. This is useful on the context of genome-specific primer
design because to correct the alignment on the presence of small
insertions and deletions (indels).

3. Finally, the primers are validated to conform physicochemical prop-
erties that ensure the amplification. The melting temperature
needs to be in the range were the DNA will separate, but not
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too high that the temperature will damage other elements in the
reaction, such as the polymerase. Also, the primers must avoid se-
quences that self-bind, hairpins, or binding to the complementary
primer. The validation primers based on their intrinsic properties
can be done with tools like Primer3 (Rozen and Skaletsky, 2000).

2.1.5 Objective.

Most of the steps required to design genome-specific primers require dif-
ferent bioinformatic tools and the rules to improve the efficiency of the
primers are established. The objective of PolyMarker is to automate the
primer design process, from a reference genome and a list of SNPs and
produces genome-specific primers. The pipeline has been published in
Ramirez-Gonzalez et al. (2015a).

2.2 Pipeline.

PolyMarker is an automated pipeline that takes as input a list of SNPs
and a reference file and produces a list of primer triplets for SNP geno-
typing. The list of SNPs is first converted to a FASTA file with ambiguity
codes (Cornish-Bowden, 1985) The template sequences are aligned with
exonerate (Slater and Birney, 2005) to find the homoeologous and para-
logue regions to the target sequence. For my thesis, I implemented this
using the IWGSC reference sequence (described in Chapter 1.4). Then,
the alignment between homoeologues is refined using MAFFT (Katoh and
Standley, 2013). A list of candidate variations is produced and used as
input for Primer3 (Rozen and Skaletsky, 2000). Finally, the output of
Primer3 is parsed to select the shortest primer pair containing the tar-
geted SNP and a base that is specific to the target genome (Figure 2.7).
The pipeline is written as a Ruby script, using parsers and wrappers from
BioRuby (Goto et al., 2010) and bio-samtools (Etherington et al., 2015;
Ramirez-Gonzalez et al., 2012). The software is open source and released
as a biogem (Bonnal et al., 2012), bio-polyploid-tools, the source code
is available in: https://github.com/TGAC/bioruby-polyploid-tools.

The PolyMarker input consists on SNP list with: unique name for the
marker, the target chromosome and the sequence for the marker. The
alternative alleles are flanked by square brackets within the sequence.

https://github.com/TGAC/bioruby-polyploid-tools
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SNPList

Exonerate

Template3
Sequences

MAFFT

Primer3Input3
file

Primer3

Primer3Output3
file
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Alignments

Primer3File

CSS3con@gs

Inputs

Output

External3tools

Internal3files

Ac@on3in3script
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Figure 2.7: Steps and tools called by PolyMarker. The colours of the boxes
represent: the step is an action inside the script(red); actions of the script(light
red); temporary files(yellow); inputs(blue) and; outputs(green)
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BS00112130,1B,gcgataccggcgcctKtg[G/A]gaatatttgcagcgaaggcgtg
BS00112229,5A,GCCACATCCATATCCTTCCATC[A/G]TGTTCACCTGGCAGCTTTTG
BS00112558,5A,CCCGGATCCAAAATC[T/G]ctcttgccttctgaacgaaagagg

Marker&id

Chromosome&and&genome Marker&sequence

SNP

Figure 2.8: PolyMarker input. The alternative alleles are surrounded by brack-
ets. The rest of the figures are based on BS00112130, renamed as SNP-1.

PolyMarker can take a list of several markers and design them in batch
(Figure 2.8). A FASTA file is produced with all the template sequences,
with the alternative alleles substituted by the IUAPC ambiguity codes
(Cornish-Bowden, 1985). The flanking sequence surrounding the SNP is
limited by default to 100bp to reduce the search time and avoid missing
regions that diverge near the SNP, as when the variation is near an
intron-exon junction. The limitation of the flanking sequence to +/- 100
is consistent with the marker assay which is restricted to amplicons of
100-120 bp.

The template sequences are aligned to the reference using exonerate
(Slater and Birney 2005; Figure 2.5). The following parameters are used
to optimise the output:

–verbose 0 –show –alignment no –show vulgar no. To override the
default output.

–bestn 20. By default, it increases the number of best hits to 20. In-
tuitively, it would be expected to have 3 copies, on for each ho-
moeologue. However, the CSS assembly has some duplication in
the scaffolds and it is possible to find paralogues elsewhere in the
genome.

–model est2genome. To allow the search of sequences coming from tran-
scripts, such as the SNPs described in Chapter 3 and in the SNP
chip described by (Allen et al., 2011)

–ryo ’RESULT:\t%S\t%pi\t%ql\t%tl\t%g\t%\n’. To set the output
in a tabular format that is easy to parse as follow: \%S the minimum
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SNP-1 A    cgcatttGcgcgYgcgataccggcgcctKtgGgaatatttgcagcgaaggcgtg

SNP-1 B    cgcatttAcgcgYgcgataccggcgcctKtgAgaatatttgcagcgaaggcgtg

IWGSC-1A   cgcatttgcgcgcgcgataccggcgcctgtgggaatatttgcagcgaaggcgtg

IWGSC-1B   cgcatttacgcgcgcgataccggcgcctttgggaatatttgcgaaggcgtg

IWGSC-1D   catttgcgcgTgcgataccggcgcctgtgggaatatttgcagcgaaggcgtg

Figure 2.9: Sequence of flanking regions around the SNP. The indels produce
a slight shift on the sequence.

information of the alignment, \%pi percentage of identity, \%ql
query length, \%tl target length and, \%g orientation.

All the hits that contain the SNP and have a percentage of identity
over 90% are extracted, this threshold allows to match homoeologs and
paralogs. The coordinate of the SNP is calculated and 100bp on each
flank are extracted by default, a reasonable product size for KASP assays.
The flanking sequence may contain indels and the sequences do not align
naturally (Figure 2.9). The following parameters can be adjusted to
extend the functionality of PolyMarker: Minimum Identity to designs for
organisms with homoeologous regions that are more divergent; flanking
sequence for different types of primers (ie. for Sanger sequencing) and;
model to adjust the search according to the source of the SNP (ie. if it is
known that the SNP comes from DNA, affine:local would be a better
option as exonerate will not pay attention to the intron-exon junctions).

Each SNP marker is represented on the Bio::PolyploidTools::SNP
class, containing the flanking sequence, the position of the SNP, multiple
alignments and primers. For each step step there is a container that
holds the SNP set and parses each output for all the called programs.
The container for exonerate is BIO:PolyploidTools::ExonContainer.
The hits with the SNP are called exon henceforth, as the original design
was for SNPs in gene models which may contain intron-exon junctions.
The main job of the ExonContainer is to parse the exonerate output
and add it to the corresponding SNP (Listing 2.1).
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Listing 2.1: Method in Bio::PolyploidTools::ExonContainer that adds
to each SNP object the alignments

1 def add_alignments (opts=Hash.new)
2 opts = {: min_identity =>90 }. merge !( opts)
3 exonerate_filename = opts [: exonerate_file ]
4 File.open( exonerate_filename ) do |f|
5 f. each_line do | line |
6 record =Bio ::DB:: Exonerate :: Alignment . parse_custom (

line)
7 if record and record .identity >= opts [: min_identity ]
8 snp_array = @snp_map [ record . query_id ]
9 snp_array .each do |snp|

10 if snp. position . between ?( ( record . query_start +
1) , record . query_end )

11 exon= record . exon_on_gene_position (snp. position
)

12 snp. add_exon (exon , arm_selection .call( record .
target_id ))

13 end
14 end
15 end
16 end
17 end

Each SNP contains a Hash to the best alignment to each chromosome,
based on identity. When the ExonContainer adds an alignment, the SNP
verifies that is the best hit for a given chromosome, to avoid scaffolds
with duplicated sequences (Listing 2.2).

Listing 2.2: Method in Bio::PolyploidTools::SNP that adds an align-
ment

1 def add_exon (exon , arm)
2 @exon_list [arm] = exon unless @exon_list [arm]
3 @exon_list [arm] = exon if exon. record .score >

@exon_list [arm ]. record .score
4 end

As it is common to have different conventions over different refer-
ences on how the chromosomes are named, PolyMarker can be easily
extended to parse different naming conventions. To achieve this, when
the ExonContainer is initialised a parsing function is set up. Then, when
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SNP-1 A    cgcatttGcgcgYgcgataccggcgcctKtgGgaatatttgcagcgaaggcgtg

SNP-1 B    cgcatttAcgcgYgcgataccggcgcctKtgAgaatatttgcagcgaaggcgtg

IWGSC-1A   cgcatttGcgcgcgcgataccggcgcctGtgGgaatatttgcagcgaaggcgtg

IWGSC-1B   cgcatttAcgcgcgcgataccggcgcctTtgGgaatatttgc---gaaggcgtg

IWGSC-1D   c--atttGcgcgTgcgataccggcgcctGtgGgaatatttgcagcgaaggcgtg

Figure 2.10: Local alignment on regions around the SNP detects indels.

each alignment is added, the ID of the target sequence is parsed using the
custom function (Listing 2.1, line 12). An example of parsing functions
for a chromosome are in Listing 2.3.

Listing 2.3: Example function that assigns a chromosome from the two
first letters of the scaffold

1 arm_selection_functions [: arm_selection_first_two ] =
lambda do | contig_name |

2 ret = contig_name [0 ,2]
3 return ret
4 end

To ensure that the indels between homoeologues do not produce spuri-
ous mismatches a local alignment is produced with MAFFT (Figure 2.10).
The arguments used are the recommended ones in the manual for small
number of sequences:

–maxiterate 1000. The local alignment is defined up to 1000 times.

–localpair. Compares all the possible pairs of alignment to each other

–quiet. To reduce the size of the logs.

The class Bio::PolyploidTools::SNP has the method aligned_sequences
which executes MAFFT for the best hit on each chromosome to the marker.
The first time it is invoked it stores the result as an attribute (Listing
2.4). This approach hides the execution of the local alignment as an
attribute and it avoids executing it several times when calculating the
variations between homoeologues.
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Listing 2.4: Method in Bio::PolyploidTools::SNP that calculates the
local alignment

1 def aligned_sequences
2 return @aligned_sequences if @aligned_sequences
3 options = ['--maxiterate ', '1000 ', '--localpair ', '--

quiet ']
4 mafft = Bio :: MAFFT.new( 'mafft ' , options )
5 report = mafft. query_align ( sequences_to_align )
6 @aligned_sequences = report . alignment
7 @aligned_sequences
8 end

PolyMarker searches across each base in the local alignment to identify
the variations across homoeologues and the target marker. A mask is
produced to highlight the bases with a variations, Figure 2.11, on the
following categories:

Specific Homoeologous polymorphism which is only present
in the target genome (upper case).

Semi-specific Homoeologous polymorphism is found in 2 of the 3
genomes, hence it discriminates against one of the
off-target genomes or when not all the homoeologous
sequences were found (lower case).

Non-specific No variation is found across homoeologues (-).

Homoeologous The target SNP is present across different chromo-
somes, so candidate SNP markers on this category
are not expected to be reliably identifying the allele
as these are not necessarily varietal polymorphisms
(:).

Non-homoeologous The target SNP is not present across chromosomes,
so it is most likely a varietal polymorphism which can
be used to identify alternative alleles in the position
(&).

To generate the mask the following logic is followed:

1. The aligned sequence of the target chromosome is set up as the
default mask (Listing 2.11, line 5).
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SNP

Genome)specific

Genome)
semi/specific

homoeologous)
varia7on

SNP-1 A    cgcatttGcgcgYgcgataccggcgcctKtgGgaatatttgcagcgaaggcgtg

SNP-1 B    cgcatttAcgcgYgcgataccggcgcctKtgAgaatatttgcagcgaaggcgtg

IWGSC-1A   cgcatttGcgcgcgcgataccggcgcctGtgGgaatatttgcagcgaaggcgtg

IWGSC-1B   cgcatttAcgcgcgcgataccggcgcctTtgGgaatatttgc---gaaggcgtg

IWGSC-1D   c--atttGcgcgTgcgataccggcgcctGtgGgaatatttgcagcgaaggcgtg

           -------:----c---------------T--&----------------------

Figure 2.11: Alignment with mask and primer candidates. The green and
light red boxes highlight the allele specific primers. The blue box highlights a
genome specific primer.

2. Then each position in the mask is iterated base per base (Listing
2.11, line 7).

3. A count of how many bases are the same across the chromosome
and how many from the same chromosome group (defined by the
first letter in the parsed chromosome) and how many chromosomes
have local alignment (excluding indels; lines 9-18).

4. A position is labelled as uninformative (-) when the position does
not have any different bases, the sequence is only available from the
target chromosome or there are unknown bases on that particular
position (any chromosome has an N on the given position; line 19).

5. When no alignment is present at all, the mask is filled with * (line
20). This allows to identify the cases where only the initial marker
sequence is available.

6. If the target chromosome has an unique variation, the base is con-
verted to upper case (line 22). This implicitly leaves as a lower
case the semi-specific variations. The genomes_count is a variable
set at initialisation time and keeps track of the number of expected
alignments from the target group. This allows to use the same code
for any level of polyploidy.

7. At the position of the SNP, the special symbols are setup (lines
23-30)
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(a) By default, the SNP position is labelled as & (line24).

(b) All the observed bases, except the one in the target chromo-
some, are collected and converted to an IAUP ambiguity code
(Cornish-Bowden, 1985) (lines 26-28). If the bases in the SNP
are contained in the ambiguity code the SNP is marked as
homoeologous (:; line 29)

When designing SNP markers the aim is to have the amplification as
specific as possible. To improve the specificity of the assays, PolyMarker
categorises all the possible primers as Specific; Semi-specific or; Non-
specific. The candidate primer pairs are then evaluated with Primer3
(Rozen and Skaletsky, 2000). Primer3 receives a file with the preferences
to design the markers, for PolyMarker the following preferences are set
up:

PRIMER_PRODUCT_SIZE_RANGE=50-150. A reasonable size for KASP mark-
ers, as the technology does not have an extension step.

PRIMER_MAX_SIZE=25. KASP primers are usually between 21 and 25
bases.

PRIMER_LIB_AMBIGUITY_CODES_CONSENSUS=1. To ensure that bases with
ambiguity code are matched between primer pairs.

PRIMER_LIBERAL_BASE=1. To allow the use of ambiguity codes in the
sequence

PRIMER_NUM_RETURN=5. The maximum number of primer candidates.

To design a different kind of primers it is possible to have a different set
of preferences by feeding a standard Primer3 preferences file with the
option --primer_3_preferences FILE.

The input file for primer3 also include the template sequences with
an ID. To keep track of what kind of marker each position will pro-
duce the ID field has the name of the primer and the specificity of
the starting position of the common primer. The starting position of
the primers is forced with the options SEQUENCE_FORCE_LEFT_END and
SEQUENCE_FORCE_RIGHT_END on the specific and semi-specific positions.
For the non specific positions only the SEQUENCE_FORCE_LEFT_END is
given to make a full search of candidates.
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Listing 2.5: Method in Bio::PolyploidTools::SNP that calculates the
mask of the alignment

1 def mask_aligned_chromosomal_snp ( chromosome )
2 names = exon_sequences .keys
3 parentals = parental_sequences .keys
4 local_pos_in_gene = aligned_snp_position
5 masked_snps = aligned_sequences [ chromosome ]. downcase
6 i = 0
7 while i < masked_snps .size
8 different = cov = from_group = Count = 0
9 names.each do | chr |

10 if aligned_sequences [chr] and aligned_sequences [
chr ][i] != '-'

11 cov += 1
12 nCount += 1 if aligned_sequences [chr ][i] == 'N'

or aligned_sequences [chr ][i] == 'n'
13 from_group += 1 if chr [0] == chromosome_group
14 if chr != chromosome
15 different += 1 if masked_snps [i]. upcase !=

aligned_sequences [chr ][i]. upcase
16 end
17 end
18 end
19 masked_snps [i] = '-' if different == 0 or if cov ==

1 or nCount > 0
20 masked_snps [i] = '*' if cov == 0
21 expected_snps = names.size - 1
22 masked_snps [i] = masked_snps [i]. upcase if different

== expected_snps and from_group == genomes_count
23 if i == local_pos_in_gene
24 masked_snps [i] = '&'
25 bases = ''
26 names.each do | chr | { bases << aligned_sequences

[chr ][i] if aligned_sequences [chr] and
aligned_sequences [chr ][i] != '-' }

27 code_reference = 'n'
28 code_reference = Bio :: NucleicAcid . to_IUAPC (bases)

unless bases == ''
29 masked_snps [i] = ':' if Bio :: NucleicAcid . is_valid (

code_reference , original ) and Bio ::
NucleicAcid . is_valid ( code_reference , snp)

30 end
31 i += 1
32 end
33 masked_snps
34 end
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The class Bio::DB::Primer3::Primer3Record is used to keep the
details of all the primers generated by primer3 for each template. In
order to prioritise which primer is selected as the best primer on for
each SNP, each Primer3Record is scored according to their type and the
product length (Listing 2.6). By default, more priority is given to the
specific, semi-specific and non-specific primers, in that order. In case of
having more than one primer pair with the same specificity, the one with
the shortest product length is chosen (Listing 2.7).

Listing 2.6: Method that calculates the score of a primer
Bio::DB::Primer3::Primer3Record

1 def score
2 ret = 0
3 ret += @scores [type]
4 ret -= product_length
5 ret
6 end

Listing 2.7: Initialisation of the Bio::DB::Primer3::Primer3Record class,
including the default score weights

1 def initialise
2 @properties = Hash.new
3 @scores = Hash.new
4 @scores [: chromosome_specific ] = 1000
5 @scores [: chromosome_semispecific ] = 100
6 @scores [: chromosome_nonspecific ] = 0
7 end

Finally, the best primer for each marker is produced and a CSV file
is produced with the following columns:

Marker The ID of the Marker

SNP The position of the SNP in the original sequence and the kind of
SNP

RegionSize The size of the original sequence tested, up to the maximum
size including the flanking sequence.

chromosome The target chromosome
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total_contigs How many contigs mapped to the SNP. If it is more than
the expected by the ploidy of the organism it can show paralogues
or repetitive regions.

contig_regions The locations where the marker mapped. In the format
Scaffold:start-end

SNP_type homoeologous or non-homoeologous. If it is homoeologous,
the SNP is probably a variation between chromosomes.

A Primer for the first allele.

B Primer for the second allele.

common Common primer that gives the specificity to the assay.

primer_type specific, semi-specific or non-specific. Depending on the
rules described previously.

orientation If it is forward, the allelic primers are in the same orient-
ation as the original sequence. If it is reverse, the common primer
is in the same orientation as the original sequence.

A_TM Melting temperature of the first allelic primer

B_TM Melting temperature of the second allelic primer

common_TM Melting temperature of the common primer

selected_from For internal purposes, points from which of the primers
was used as template.

product_size The size of the PCR product produced by the primers.

PolyMarker also produces a text file with the local alignments that
contain all the positions that can produce a genome-specific primer. The
file has the same format as Figure 2.11, but without the highlights. The
mask is useful in case that the original assay failed, or to explore the
details of the other homoeologs and paralogs which are similar to the
assay.
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2.2.1 PolyMarker public web service

To make PolyMarker accessible to the community, a web server that
allow the submission of SNPs was developed. The web interface consists
on two virtual machines, one with a web-facing interface that stores the
queries, and a dedicated node to submit jobs to an HPC cluster. The on-
line interface further simplifies the design of KASP assays, a process that
used to take between 15-45 minutes per marker is now automated. Since
the release of the public service in July 2014 until August 2016, 1,739
requests to PolyMarker have been done, demonstrating the popularity of
the PolyMarker tool.

Besides the previously described output, the web interface of Poly-
Marker provides a graphical representation of the multiple sequence align-
ment and the mask used to design the primer (Figure 2.12). The visu-
alisation consists on a table containing the primers and the BioJS com-
ponent MSAViewer (Yachdav et al., 2016), that highlights the designed
primers. On an ideal case, you have an SNP that is in a non-homoeologous
position with a genome-specific triplet (Figure 2.12a). However, some-
times the SNP is located in an homoeologous variation (Figure 2.12b),
which can signal a miscalled SNP. In some extreme cases, a SNP is loc-
ated in regions that have homoeologues and paralogs in several chromo-
somes (Figure 2.12c), it is useful to highlight such kind of SNPs that
can produce spurious amplification from non-target chromosomes. The
graphical representation is helpful to understand how the primers were
designed.

2.3 Applications of PolyMarker

Besides the project described in Chapter 3, PolyMarker has been used
to design KASP primers for the wheat community.

2.3.1 KASP assays for public sets of SNPs

PolyMarker was used to design KASP assays for the 81,587 markers
from (Wang et al., 2014), available on the PolyMarker website and in
CerealsDB (Wilkinson et al., 2012). Of those markers, 40,267 where
designed based on the target chromosome from the genetic map provided
in Wang et al. (2014). Genes without a genetic position were aligned



CHAPTER 2. POLYMARKER 52
(a
)

(b
)

(c
)

Fi
gu

re
2.
12

:
Ex

am
pl
es

ou
tp
ut
s
fr
om

th
e
Po

ly
M
ar
ke
r
w
eb

sit
e.

(a
)
T
he

pr
im

er
tr
ip
le
t
is

ge
no

m
e
sp
ec
ifi
c.

T
he

or
ig
in
al

m
ar
ke
r
se
qu

en
ce

ha
d

th
e
SN

P
ne

ar
th
e
be

gi
nn

in
g
of

th
e
te
m
pl
at
e,

bu
tP

ol
yM

ar
ke
r
us
ed

th
e
ge
no

m
ic

re
fe
re
nc

e
to

co
m
pl
em

en
tt

he
se
qu

en
ce
.
(b
)A

n
sp
ec
ifi
c
pr
im

er
,

bu
t
th
e
SN

P
is

lo
ca
te
d
on

th
e
sa
m
e
po

sit
io
n
th
an

an
ho

m
ol
og

ou
s
va
ria

tio
n.

(c
)
A

ca
se

w
he

re
th
e
m
ar
ke
r
se
qu

en
ce

al
ig
n
to

10
di
ffe

re
nt

ch
ro
m
os
om

es
.
T
he

SN
P

is
al
so

lo
ca
te
d
on

a
po

sit
io
n
w
ith

va
ria

tio
ns

be
tw

ee
n
ge
no

m
es
.



CHAPTER 2. POLYMARKER 53

Table 2.1: Count of KASP assays designed for the 40,267 SNP markers located
in the genetic map from Wang et al. (2014). 4,228 assays did not align to the
target chromosome. Not designed: Primer3 could not find viable primers
flanking the SNP.

Homoeologous Varietal Percentage
variant SNP

Non-specific 1,765 5,857 21.15%
Semi-specific 7,942 6,907 41.20%

Specific 6,813 5,957 35.43%
Not designed 242 556 2.21%

Total 16,762 19,277 36,039

to scaffolds sorted by chromosome arms from the International Wheat
Genome Sequencing Consortium (Mayer et al., 2014) with BLAT (Kent,
2002) and the best hit was selected as the putative location. 97.5% of
the assays where designed and 76% of them are semi-specific or specific,
thereby improving their expected performance with respect to randomly
designed primers (Table 2.1). The pre-designed markers have been taken
up by the community, for example, a subset of the designed assays was
used to genotype a mapping population to find resistance to Fusarium
head blight (Burt et al., 2015).

Also, PolyMarker was used to design KASP assays for the 820K SNP
Axiom array described in Winfield et al. (2016). Briefly, the original set
contains 819,556 SNPs called from exome capture on 43 bread wheat
accessions and wheat relatives. Of those, 616,525 where mapped with
exonerate (Slater and Birney, 2005) to the CSS scaffolds. Of those,
86.1% have an specific or semi-specific assay (Table 2.2. This set of
primers is also available in CerealsDB and it provides a valuable resource
to groups that want to genotype using a subset of SNPs in the array,
without the need to run the complete Axiom array. This is especially
relevant in breeding programmes who might want to run a small subset
of markers linked to their favourite traits. The fact that the assays could
be downloaded all in one makes it difficult to document the impact, but
based on conversation with molecular breeders we are aware that they
are being implemented in several breeding companies.
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Table 2.2: Count of KASP assays designed for the 616,525 SNP markers loc-
ated to a CSS scaffold from the 819,556 SNPs from Winfield et al. (2016) Not
designed: Primer3 could not find viable primers flanking the SNP.

Homoeologous Varietal Percentage
variant SNP

Non-specific 20,189 56,516 12.44%
Semi-specifc 167,018 132,145 48.52%

Specific 139,202 92,487 37.58%
Not designed 3,116 5,852 1.45%

Total 329,525 287,000 616,525

2.3.2 SNPs in a mutant population

PolyMarker was used to design primers to validate SNPs in a Targeted
Induced Local Lesions in Genomes (TILLING) population, an approach
to identify the function of genes by mutating them. Briefly, wheat lines
are mutated with ethyl methanesulphonate that produce G>A or C>T
mutations. The initial mutation is called M1 and each plant is self-
pollinated to fix the mutations. The second generation is called M2,
and so on. With each generation the mutations, which were originally
heterozygous, get fixed and become homozygous. In the process, some
mutations are lost. For this experiment, three M5 lines were sequenced
with exome capture. The purpose of the experiment was to assess the
feasibility of exome capture for call for SNPs.

To validate the SNPs detected at different levels of coverage and allele
frequencies 150 assays were designed. The assays were tested on the M5

used for SNP calling and on the progenitors atM ′′,M3. Most of the SNP
calls with more than 8 variant calls or an allele frequency over 0.8 were
validated (Table 2.3). At the same time, only 27% of the SNPs with an
allele frequency of 0.6 and 17% of the cases with seven or less variant reads
were successful. (King et al., 2015). On this experiment PolyMarker was
useful on validating and calibrating the minimum coverage to call SNPs
reliably.

On a follow-up experiment consisting of 1,200 Cadenza (Hexaploid)
and 1,535 Kronos (Tetraploid) wheat lines (Krasileva et al., submitted
2016) over 250 SNPs were experimentally validated where also valid-
ated. Genome-specific primers were designed for 172 and 80 SNPs in the
Cadenza and Kronos populations, respectively. These mutations were
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Table 2.3: Summary table of the validation of candidate SNPs by KASP
marker assays. Candidate SNPs are classified by number of supporting variant
reads or by allele frequency and validated by KASP assays. Table from King
et al. (2015).

Criterion Number/ KASP Validated Validated
Frequency assays SNPs (%)

Variant reads 4 25 1 4%
5 17 3 18%
6 14 2 14%
7 14 3 21%
8 10 5 50%
9 12 9 75%
>10 35 29 83%

Allele frequency 0.2 51 2 4%
0.4 27 13 48%
0.6 18 9 50%
0.8 3 2 67%
1 31 27 87%

spread across 19 and 8 M4 Cadenza and Kronos lines respectively. Of
those, 71(85.5%) Kronos and 147(88.8%) of the Cadenza primers where
valid assays, consistent with the pilot study (Tables A.1 and A.2).

2.4 Modifications of PolyMarker

PolyMarker is not restricted to wheat or to KASP assays, the source code
is flexible and can be extended for other types of analyses. On each of
the following projects, PolyMarker has been adapted to design primers in
species where KASP has not been used before, the primers are used for
regular PCR amplification, or the use of KASP is not the conventional
SNP calling.

2.4.1 Deletions on a mutant population

On some of the TILLING mutant lines, long deletions spanning multiple
scaffolds were detected (Krasileva et al., submitted 2016). To validate
the deletions it is possible to use KASP assays to produce primers that
amplify homoeologues. PolyMarker was modified to search for variations
across homoeologues to select a common primer that will amplify two
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Figure 2.13: KASP assays to validate homozygous deletions. (a) Primer po-
sitions for wildtype. Red and black indicate the A and B genome respect-
ively. Primers are indicated by arrows with the target homoeologous SNP
marked by an "X"(b) Primer positions on homozygous deletion on M4 (c)
Heterozygous amplification on wildtype DNA (no deletion), including both
homoeologues. (d) Homozygous amplification on deletion line, only the non-
deleted homoeologue is amplified.

genomes (Figure 2.13a, b; reverse primer). On lines without the targeted
deletion, the amplification corresponds to an heterozygous assay with
equal signal for both the A and the B allele (Figure 2.13c). When a
deletion is present the results of the assay resemble the results for a
homozygous individual, with the intensity of the assay towards the the
conserved homoeologue (Figure 2.13d).

To be able to select primers that will amplify two homoeologues, the
default scoring values (Listing 2.7) are changed. The altered scoring gives
priority in the following order semi-specific, non-specific and specific. The
rest of the pipeline is unaltered, showing that the modular design allows
to add new functionality without breaking the pipeline.

Listing 2.8: Score values to select semi-specifc primers

1 kasp_container . scores [: chromosome_specific ] = 0
2 kasp_container . scores [: chromosome_semispecific ] = 1000
3 kasp_container . scores [: chromosome_nonspecific ] = 100
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A set of KASP assays for the the deletions and mutations located on
the same chromosome where designed to validate 11 homozygous dele-
tions on M4 plants. In all cases the segregation of the mutations was as
expected, except for a predicted heterozygous mutation that was called
as homozygous. Also, all the KASP assays that contained a deletion were
called homozygous, as expected. To ensure that the calls did not come
from a single cluster, 4 wildtype plants were genotyped and the markers
for deletions where called as heterozygous. An example of a validated de-
letion and the surrounding mutations, with the calls for each individual
is shown on Table 2.4.

2.4.2 Genotyping Puccinia striiformis f. sp. tritici
isolates.

In Hubbard et al. (2015), Puccinia striiformis f. sp. tritici (PST)
isolates were sequenced and assigned to clusters, according to their gen-
otype. The clusters are useful to monitor the changes in the pathogen
population, which can be used to predict if certain wheat lines will be
resistant to the isolates in the field. PST is a dikaryon, an organism
with two nuclei, each one containing a single haploid chromosome. For
PolyMarker it can be treated as a diploid, so the --genomes_count 1
argument was used. PolyMarker was used to design primers for PST,
using the assembly PST-130 (Cantu et al., 2011a). As the assembly is
fragmented, an ad hoc function was used to always get the name of the
assembly (Listing 2.9). Out of 15 assays, 11 can be used to identify to
which cluster of isolates a sample is likely to belong, Table 2.5. Until this
study, the previous method to genotype PST was Simple Sequence Re-
peat (SSR) markers which were difficult to replicate across laboratories
and interpret in cases of multiple alleles (Ali et al., 2014).

Listing 2.9: Function that always returns PST130 as chromosome

1 arm_selection_functions [: pst130 ] = lambda do |
contig_name |

2 return " PST130 "
3 end
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2.5 Discussion

Before the Chinese Spring Chromosome arm survey sequence (CSS) as-
sembly, which has scaffolds assigned to a chromosome arm, the design
and validation of genome-specific primers for polyploid wheat was a la-
bour intensive process (Figure 2.14; Akhunov et al. 2010). Briefly, the
steps to develop primers for wheat was:

1. Find candidate ESTs from a database. This could be the Uni-
Gene database from the National Center for Biotechnology Inform-
ation (NCBI) or gene sequences from a relative species, such as
Brachypodium distachyon.

2. Design primers from UniGenes. The sequence of the ESTs
used as a reference are aligned across them. The conserved regions
are used to design primers to be able to amplify the same region
across different species.

3. PCR amplification of diploid species. DNA from T. urartu,
Ae. tauschii and, Ae. speltoides are used to amplify the identified
sequences.

4. Sequence the amplicons. The PCR products from the relative
species are sequenced individually with capillary sequence.

5. Alignment of the amplicons. To search for variations between
related species, the amplicons are aligned and the bases that are
different across diploid species are used to design new primers, that
should be genome specific in hexaploid wheat.

6. Validation on nullisomic-tetrasomic lines. Those research
lines have been treated to remove one of their chromosome pairs.
In the process, one of the homoeologue chromosomes is duplicated
(four chromosomes, hence tetra). This lines are useful to evalu-
ate the effect of a particular chromosome. In the case of genome-
specific primer design, it is possible to evaluate if the primer is
specific to the missing chromosome, as it will not amplify in the
nullisomic-tetrasomic line. If the primer amplifies it means that it
is not specific to the target chromosome (Figure 2.15).
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Design primers 
from unigenes

PCR amplify 
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Align sequences 
to find variations

Validate primers 
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Sequences 
products 
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Figure 2.14: Previous process of primer design and validation

1 2 3 4 5 6 7
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D

Figure 2.15: Nullisomic-
tetrasomic lines. This
example has chromosome
5A missing and 5B du-
plicated.

Even having a the sequence for each homoeologue, without an auto-
mated bioinformatic pipeline, the primer design was done manually, a
slow, error-prone and, repetitive process. The steps require the use of
several bioinformatics tools, but once I understood the primer design
steps I decided to automate the process. Since designing genome-specific
primers is a common task in wheat research and breeding, the com-
munity showed interest on the tool and I decided to refine it and make it
open source. PolyMarker has been used successfully in several projects
(Ramirez-Gonzalez et al., 2015c; Hubbard et al., 2015; Burt et al., 2015;
King et al., 2015; Sollars et al., 2016) and it even allowed the novel use
of KASP assays to validate long deletions in polyploids (Krasileva et al.,
submitted 2016).

As a common source of SNPs are gene models, designing primers
directly from the sequence flanking the SNP may run over the intron-exon
junctions, producing primers that will not amplify on genomic DNA.
To be able to use DNA I had to identify on which hit the SNP was
located, the internal coordinate and a mapping coordinate to the original
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sequence. With this dual coordinate system I was able to design primers
in the genome space, even when the origin was a transcript.

In order to be able to represent more than one base at the same tame,
the IUAPC ambiguity codes (Cornish-Bowden, 1985) were useful in the
development of PolyMarker. With an ambiguity code, the template for
the search can contain the SNP. Also, the codes were useful when repres-
enting all the observed bases on each coordinate in the local alignment.

The ideas behind PolyMarker had been taken by other projects like
the scripts described in Ma et al. (2015) and the corresponding web in-
terface, GSP (Wang et al., 2016). Briefly, GSP does uses blast to search
in a local database to find all the homoeologous regions and provides a
diagram with the bases that are genome specific. It then allows the user
to select a primer pair according to the constrains for their individual
experiment, like product size. The advantage over PolyMarker is that it
allows to pick arbitrary primers, at the cost of having a step for manual
selection of the pair. Recently, LGC also developed a program (MA-
GICBOX) that require a SNP sequence, does the alignment and selects
primers with a genome specific anchor. As PolyMarker, it produces a
local alignment with the genome-specific bases (Curry et al., 2016) and a
mask highlighting the variations providing the specificity to the primer.
On personal communications in conferences I had found out that LGC,
the company behind KASP, uses PolyMarker to design primers. Also
Bayer has an in house implementation of the algorithm.

As the code is open source, anyone can see the implementation de-
tails and extend the code for different types of primers. A successful
modification to PolyMarker was to be able to design primers to detect
homozygous deletions with KASP assays, despite the fact that neither
KASP or PolyMarker were designed for deletions. The modularity of the
code permits to swap components with relatively little effort.

The current web interface of PolyMarker is limited to KASP assays,
however the command line version is more flexible and has been used
to design primers for PCR amplicons, capillary sequencing and on other
organisms. However, to install the command requires a Linux machine
and some knowledge on the command line.

PolyMarker is a tool that was originally designed to design the mark-
ers to validate the SNPs found in Chapter 3. Overall, PolyMarker
provides an useful resource to the wheat community, as the primer design
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process is now streamlined. PolyMarker is not restricted to wheat, it
can be used on any polyploid systems, like the polyploids in the genus
Brassica. As new references of wheat come available, PolyMarker should
be updated to work with pseudo-molecules and the web interface updated
accordingly. The source code of PolyMarker is open source and available
on https://github.com/TGAC/bioruby-polyploid-tools.

https://github.com/TGAC/bioruby-polyploid-tools


Chapter 3

Genetic map of Yr15 with
RNA-Seq.

3.1 Background.

Wheat breeding programs aim to improve the wheat lines available for
production. One of the traits desired in an elite line is the resistance to
pathogens, such asPuccinia striiformis f. sp. tritici (PST), the fungi
responsible of yellow rust. A source of resistance genes are introgres-
sions from other species, such as Triticum dicoccoides (emmer, Figure
1.1). In the University of Sydney a collection of Near Isogenic Lines
(NILs) with introgressions to several yellow rust resistance genes on a
susceptible background were developed (Wellings and McIntosh, 1998).
In this chapter the NIL for the Yr15 locus is used to produce a mapping
population to produce a mapping population, which when combined with
mapping by sequencing approaches, results in improved diagnostic mark-
ers.

3.1.1 Segregation on F2 populations.

Molecular markers can be used to select lines by testing if certain allele
is present in a line, without the need to phenotype the given line. To find
which regions are linked to a trait the use of F2 mapping populations is a
common practice, especially for major single gene traits. The population
is produced by crossing two (usually homozygous) parents (P1 and P2)
with different alleles, A/A (dominant, resistant if containing Yr15 ) and
a/a (recessive, susceptible in our experiment). When the trait is domin-

64
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(a)

 F1A/a

⊗

 P1 A/A  P2 a/a 

a/A

 A/A A/a
F2  a/a

(b)

 F1
⊗

S bulkR bulk

SusceptibleResistant

Figure 3.1: Alleles on F2 population and Bulk Segregant Analysis. The ⊗
represent self-pollination. (a) The cross of two homozygous parents, P1 and
P2, with a dominant and a recessive allele of a gene produces an heterozygous
F1. The F1 crossed with itself produce a segregating F2 population with a
1:2:1 ratio (A/A:A/a:a/a). The upper and lower cases represent dominant
and recessive alleles, respectively. (b) Bulk Segregant Analysis consist on
pooling DNA from the F2 population. The DNA is mixed in bulks coming
from plants with a shared phenotype. For a dominant resistance gene, an R
sulk contains only resistant individuals (with A/A and A/a genotype) and, an
S bulk with the susceptible individuals (with a/a genotype).

ant and has a Mendelian segregation, the F1 population should exhibit
the dominant trait, as it has a copy of each allele (A/a). The F1 is then
self-pollinated to produce and F2 population which should segregate with
a ratio of 1:2:1, dominant:heterozygous:recessive respectively. This gen-
erates a population with a phenotypic ratio of 3:1 (resistant:susceptible),
since the effect of the recessive allele is masked by the dominant allele
(Van Ooijen and Jansen 2013a; Figure 3.1a).

3.1.2 SNP calling

Bulk Segregant Analysis (BSA) consists on pooling the DNA of individu-
als from a segregating population with contrasting phenotypes (Michel-
more et al., 1991) in a segregating population. By combining multiple
independent individuals with similar phenotypes, one can identify regions
which are over-represented or enriched in the corresponding bulks. Re-
gions which are not linked to the trait of interest show up as heterozygous
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in the bulks, whereas regions which are linked to the trait of interest will
be enriched for either parental allele. Here one would expect an enrich-
ment of the resistant allele A with respect to the susceptible allele a in
the resistant bulk. Analogously, one would expect the absence of the
resistant allele A in the susceptible bulk (Figure 3.1b). This approach
can be used to identify SNPs using Next Generation Sequencing (NGS)-
based methods, such as exome capture (Hodges et al., 2007), RNA-Seq
(Pickrell et al., 2010), whole genome re-sequencing (Schneeberger et al.,
2009), among others.

To find SNPs linked to the trait segregating in an F2 population us-
ing NGS data there are several options. In organisms with a contiguous
reference genome, a normalised count of the times each allele is observed
is enough to find the region linked to the trait; this simple ratio is called
SNP-Index (Takagi et al., 2013b). However, wheat is a polyploid or-
ganism, with an average identity between homoeologues of over 98%.
Because of the high identity, reads coming from different homoeologues
may map to the same position; and this problem is exacerbated in cases
where a reference sequence for some of the homoeologues is absent. The
Bulk Frequency Ratio (BFR) (Trick et al., 2012) methodology can work
on organisms that have more than one pseudo genome and where not all
of the genes, either homoeologues or paralogues, have been characterised
independently; it works with a single reference by collapsing similar re-
gions. Both methodologies rely on an enrichment of the alleles linked to
the trait in the corresponding locus.

An example of homoeologous variants between two sub-genomes of
wheat is the G>T variant at position 181; K in consensus (Figure 3.2).
This variant will produce the same ambiguity code for both parental
consensus sequences and can therefore be excluded. An example of real
allelic varietal SNPs between the parental genotypes is exemplified by
the G>A variant at position 184; R in consensus. These variants are
distinguished by the presence in only one of the consensus sequences.
The allelic SNPs are then examined further with the alignments of the
bulks to identify the SNPs that are enriched on the resistant plants. The
SNP index is the proportion of times an alternative allele is observed
over the coverage at certain position, in the example the susceptible bulk
has an SNP index of 1/8 = 0.125 while the resistant bulk has an index
of 6/8 = 0.75 (Takagi et al., 2013b). The BFRs are then calculated by
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dividing the SNP Index of the sample containing the target phenotype
(resistance) over the sample without the trait (susceptible). For this
example, it would be 0.75/0.125 = 6. A high BFR suggests that the SNP
is linked to the target trait (Trick et al., 2012). The implementation of
the BFR analysis is detailed in Section 3.10.3 and the results on the F2

population are discussed in Section 3.5.
To call SNPs from RNA-Seq, a reference transcriptome rather than a

reference genome sequence is used as target to align the reads. The Uni-
Genes database, from NCBI, contains the known genes of each species
with all the variations of each gene automatically collapsed and repres-
ented with the longest available cDNA (Pontius et al., 2002). The UCW
gene set described in Krasileva et al. (2013) contains 94,177 models from
tetraploid and hexaploid wheat, assembled and phased to separate dif-
ferent homoeologues. Both gene sets complement each other, however,
the UCW gene models should provide an improved alignment, since the
different homoeologues have not merged in a single model - a possible
side effect of the UniGene pipeline.

3.1.3 In Silico mapping.

There are several layers of information that can be used to add a context
to the SNPs. When the SNPs are called from genes like the UniGenes
(Pontius et al., 2002) or the UCW gene models (Krasileva et al., 2013),
the location of the genes can be assigned by aligning them to a genomic
reference, even if it is fragmented. A source to get the order of the scaf-
folds are previously published genetic maps, such as the one described in
Wang et al. (2014), which has the sequence of the markers available. The
markers and the genes can be aligned to the scaffolds with a high iden-
tity cutoff (over 98%), to avoid them being assigned to a homoeologue
or paralogue on a different chromosome. The practice of using genetic
maps to sort genomic sequence and produce pseudo-chromosomes is com-
mon in genome wide projects, and is usually performed with ad-hoc tools
(Tang et al., 2015). The highly fragmented state of the CSS assembly
prevents the use of genetic maps to produce pseudo-molecules, as those
maps which are currently available do not have enough resolution. How-
ever, they are dense enough to sort the scaffolds in bins when several
markers map to the same location. In this way, it is possible to use the
scaffolds as a proxy to map the genes to their genetic position (Figure
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Figure 3.2: BFR formula. Illustration of a non-informative homoeologous
SNP (G181T) present in both parental lines, and an informative allelic SNP
(G184A), only present in the resistant progenitor Avocet S + Yr15. The con-
sensus sequences from the parental genotypes include this information in the
form of ambiguity codes (K and R, respectively). In the bulks, the individual
reads align across the reference sequence, with matches indicated by dots,
and polymorphisms at positions 181 and 184 indicated by the corresponding
nucleotide variants. The SNP index is calculated as the frequency of the in-
formative allelic SNP in each bulk. The Bulk Frequency Ratio is the quotient
of the resistant and susceptible bulk SNP Indexes. Figure previously published
in Ramirez-Gonzalez et al. (2015b).
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Pseudomolecule

Genetic maps 

Genomic scaffolds 

Gene models

X XX X
SNPs between lines

Figure 3.3: Layers of information to do In Silico mapping. SNPs are called
from gene models. The genes and markers from genetic maps are aligned to
scaffolds. The order of the markers in a genetic map can be used to sort the
scaffolds.

3.3). The results of mapping the genes with SNPs to the CSS assembly
and the genetic map are described in Section 3.6. For a longer description
of resources available for wheat see Section 1.4.

Finally, the best candidate SNPs were selected to produce a genetic
map which lead to a triplet of markers diagnostic for the target locus.

The steps described in this chapter were first published in Ramirez-
Gonzalez et al. (2015b) and the results of this chapter are published in
Ramirez-Gonzalez et al. (2015c).

3.2 Mapping population.

The population was developed by crossing the resistant line Avocet +
Yr15 (Yr15 ) (Wellings and McIntosh, 1998), Figure 3.4a, to the suscept-
ible line Avocet S (AVS), Figure 3.4b. Yr15 is a NIL of a 6th generation
Back-cross (BC) and the AVS background is highly susceptible to yel-
low rust, hence the resistance is conferred by the Yr15 locus. F2 seeds
from three independent F1 plants where sown and tissue was collected
before fungal inoculation to avoid the effect of the disease resistance re-
sponse on gene expression. Sampling after inoculation could have led
to associations in the bulks due to expression of genes downstream of
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(a) (b)

(c)

Resistant

R1: 70 ind.
R2: 67 ind.
R3: 50 ind.

Susceptible

S1: 15 ind.
S2: 17 ind.
S3: 13 ind.

 F1
⊗

Figure 3.4: Avocet + Yr15 F2 mapping population. Response of (a) Avocet +
Yr15 and (b) Avocet when inoculated with Puccinia striiformis f. sp. tritici
at the three leaf stage. (c) The phenotype of the F2 population was used to
produce 6 bulks, 3 resistant and 2 susceptible. The RNA was pooled in bulks
accordingly. Adapted from (Ramirez-Gonzalez et al., 2015c)

Yr15 and not due to the gene itself. Seedlings were challenged at the
three leaf stage as it is known that Yr15 confers resistance in seedlings
(Gerechter-Amitai et al., 1989). The expected segregation of a F2 popu-
lation is 3:1 (resistant:susceptible), since Yr15 is a dominant gene. From
the 232 plants in the F2 population that germinated, 187 were resistant
and 45 were susceptible, which deviates slightly from the expected ra-
tio (χ2 = 0.049). Segregation distortion has been shown for the same
Yr15 donor (Randhawa et al., 2009), however the decreased number of
susceptible plants can be explained by escapes in the virulence essays
(i.e. plants scored as resistant without the Yr15 locus). For this study,
we extracted DNA from individual plants in the F2 population and we
bulked RNA on 6 different bulks: 3 resistant and 3 susceptible ( Figure
3.4c).
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Table 3.1: Arrangement and number of sequenced base pairs per sample.

Library name Bar code Lane Reads (×108 bp)
LIB1715 Bulk R1 ATCACG 1 0.77
LIB1716 Bulk R2 TAGCTT 1 1.20
LIB1717 Bulk R3 ACTTGA 2 0.96
LIB1718 Bulk S1 GGCTAC 2 1.64
LIB1719 Bulk S2 CGTACG 2 1.49
LIB1720 Bulk S3 GTGGCC 1 1.88
LIB1721 AvocetS N/A 3 4.13
LIB1722 AvocetS + Yr15 N/A 4 3.99

3.3 Sequencing and mapping.

RNA-Seq was used as a reduced representation method, and thus avoided
sequencing the non-coding regions. This effectively reduces the search
space, which is especially important in a species with a genome as rich in
repeat content as wheat. The sequencing of the bulks and the parents was
done on a single Illumina Hi-Seq2000. The bulks were multiplexed and
sequenced on a third of a lane each, as shown on Table 3.1. To ensure that
quality of sequencing, fastqc-0.10 (Babraham Bioinformatics, 2012)
was run with its default parameters for each of the FASTQ files. The
GC content was around 52% in all the samples (Appendix B.2), which
is as expected as the sample should be of coding regions, and for wheat
the reported GC content in genes is around 55%. The quality of the
reads is fairly consistent, in general dropping after base 80 across samples
(Appendix B.1).

When the analysis was started, the draft genome and the correspond-
ing annotation had not been released yet, hence gene models were used
instead of a genome reference. All the samples were aligned to the Uni-
Genes v60 (56,954 genes) and the gene models from UCW (Krasileva
et al., 2013) using BWA 0.5.9 (Li and Durbin, 2009). The alignment
showed that few genes were very highly expressed, however, there was
still sufficient coverage of over 20x in Yr15 across 22,107 and 36,808
genes, on the UniGenes and the UCW gene set, respectively. Both gene
sets performed similarly in terms of the percentage of genes with reads
and percentage of aligned reads. The percentage of genes with a coverage
of at least 20x is 45% and 39% for AVS and Yr15 , irrespective of the
reference gene set chosen (Figure 3.5a). Since each individual bulk has a
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lower coverage, the susceptible and resistant reads were merged in silico
as: (i) susceptible bulks 1 with 2 (S1+S2) and resistant bulks 1 with
2 (R1+R2) and (ii) all the susceptible (S1+S2+S3) and resistant bulks
(R1+R2+R3). The merged samples increased the percentage of genes
with coverage over 20x to 44% and 50% in the resistant and susceptible
bulks (Table 3.2), which is close to the coverage from the progenitors.
We treated bulk 3 slightly differently since these bulks included a few
lines which were borderline with respect to their phenotype. Therefore
exclusion of bulk 3 plants in the S1+S2 and R1+R2 bulk would provide
the "cleanest" possible data, whereas inclusion in the second set of bulks
would allow us to evaluate the effect of possible noise within the system.

3.4 SNP Calling

The SNP calling was done on positions with a coverage of at least 20x
on the progenitor lines against the gene reference. The AVS progenitor
had roughly 3% more genes with polymorphisms than Yr15 , consistent
with the difference in coverage, suggesting that with a higher coverage
we could recover more SNPs from Yr15 . The UniGenes have a higher
number of SNPs because the University of California Wheat (UCW) gene
models have a higher number of monomorphic genes when compared to
the UniGenes (Figure 3.5b; Table 3.3). The difference in the number of
relative monomorphic SNPs between reference can be explained by the
fact that in the UniGenes set many homologous might have been col-
lapsed into a single representative sequence, whereas the UCW gene set
is homoeologue-specific. Therefore, mapping to the correct homoeologue
is improved in the UCW gene set over the UniGenes.

Both gene sets were derived from varieties different to AVS and are
likely to be incomplete, hence we set a low threshold of at least 20%
of the observed nucleotides on any position to call a SNP. To represent
cases where more than one consensus base is called we use International
Union of Pure and Applied Chemistry (IUPAC) codes (Cornish-Bowden
(1985); Section 1.3; Figure 3.2). To focus the analysis on informative
SNPs, the common varietal SNPs and variations between homoeologues
were removed by finding cases where the consensus call on both progen-
itors was the same. The SNPs that are unique to a single parental were
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Figure 3.5: Coverage and SNPs between progenitors. (a) Box plot distri-
bution of the gene coverage of the parent reads (AVS and Yr15 ) across the
UCW (blue) and the UniGene (red) gene models. The dashed line represents
the 20x minimum coverage required for SNP calling. The full line represents
the average coverage across all gene models. (b) Percentage of genes exhibit-
ing SNPs across references. The number of Single Nucleotide Polymorphism
(SNP)s between the parent reads and the corresponding references was cal-
culated (per 100 bp, rounded). The ‘between-parents’ category corresponds
to putative SNPs when comparing the consensus sequence between AVS and
Yr15 Adapted from Ramirez-Gonzalez et al. (2015c)
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Table 3.3: Count of SNPs per 100 bp on genes with at least 20x coverage.

SNPs UCW UniGene v60
per
100bp AVS AVS+

Yr15
Between

progenitors AVS AVS+
Yr15

Between
progenitors

0 67, 389 70,338 81,921 36,210 38,339 47,097
71.6% 74.7% 87.0% 63.6% 67.3% 82.7%

1 16,111 14,770 10,107 10,058 9,175 8,061
17.1% 15.7% 10.7% 17.7% 16.1% 14.2%

2 8,904 7,676 1,893 8,529 7,648 1,621
9.5% 8.2% 2.0% 15.0% 13.4% 2.9%

3 1,517 1,192 215 1,870 1,568 59
1.6% 1.3% 0.2% 3.3% 2.8% 0.3%

4+ 253 198 38 287 224 16
0.3% 0.2% 0.0% 0.5% 0.4% 0.0%

UCW
 (16,022 genes)

UniGene 
(11,056 genes)

12,599 UCW/
8,221 UniGene

2,8353,423

Figure 3.6: Gene models with
putative SNPs in common
between the UCW and Uni-
Genes reference. The intersec-
tion represents the genes that
are common in both sets. Ad-
apted from Ramirez-Gonzalez
et al. (2015c)

examined in detail. There are 66,426 putative SNPs across 16,022 (17%)
UCW genes and 52,262 SNPs on 11,056 UniGenes (19.4%; Figure 3.6).

The high number of genes with SNPs was unexpected as a BC6 NIL
used for a F2 mapping population expects to have less than 1% of the
genetic background segregating. Both sets of gene models were aligned
with BLAT (Kent, 2002) to the Chinese Spring Chromosome arm survey
sequence (CSS) assembly (Mayer et al., 2014); the alignment resulted
on 80,031 (85.0%) UCW gene models and 41,118 (72.2%) UniGenes as-
signed to a chromosome arm (Table 3.4). The SNPs found in the mapped
genes are evenly distributed across all the chromosomes (see Section 3.6),
suggesting that the AVS (John Innes Centre (JIC), UK) used as parent
in the F2 is different to the AVS used for the Yr15 NIL development
(University of Sydney, Australia).

To confirm that the AVS seed stocks from JIC are distinct to the
stocks in Sydney, DNA from both stocks was procured and compared
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Table 3.4: Number of genes with SNPs assigned to the wheat chromosome
arm CSS scaffolds (Mayer et al., 2014) using the best hit from BLAT (Kent,
2002)

Wheat
Chromosome
Arm

UCW (94,177) UniGene v60 (56,954) Total (151,131)

1AL 3,251 (3.45%) 1,404 (2.47%) 4,655 (3.08%)
1AS 1,366 (1.45%) 560 (0.98%) 1,926 (1.27%)
1BL 2,610 (2.77%) 1,280 (2.25%) 3,890 (2.57%)
1BS 1,487 (1.58%) 693 (1.22%) 2,180 (1.44%)
1DL 997 (1.06%) 1,057 (1.86%) 2,054 (1.36%)
1DS 753 (0.80%) 687 (1.21%) 1,440 (0.95%)

2AL 3,491 (3.71%) 1,460 (2.56%) 4,951 (3.28%)
2AS 2,305 (2.45%) 974 (1.71%) 3,279 (2.17%)
2BL 3,658 (3.88%) 1,546 (2.71%) 5,204 (3.44%)
2BS 2,790 (2.96%) 1,139 (2.00%) 3,929 (2.60%)
2DL 1,098 (1.17%) 1,069 (1.88%) 2,167 (1.43%)
2DS 796 (0.85%) 833 (1.46%) 1,629 (1.08%)

3AL 2,135 (2.27%) 978 (1.72%) 3,113 (2.06%)
3AS 1,543 (1.64%) 718 (1.26%) 2,261 (1.50%)
3B 6,559 (6.96%) 2,839 (4.98%) 9,398 (6.22%)
3DL 915 (0.97%) 938 (1.65%) 1,853 (1.23%)
3DS 412 (0.44%) 450 (0.79%) 862 (0.57%)

4AL 3,393 (3.60%) 1,335 (2.34%) 4,728 (3.13%)
4AS 2,011 (2.14%) 817 (1.43%) 2,828 (1.87%)
4BL 2,119 (2.25%) 898 (1.58%) 3,017 (2.00%)
4BS 1,946 (2.07%) 892 (1.57%) 2,838 (1.88%)
4DL 1,069 (1.14%) 945 (1.66%) 2,014 (1.33%)
4DS 800 (0.85%) 699 (1.23%) 1,499 (0.99%)

5AL 2,640 (2.80%) 1,132 (1.99%) 3,772 (2.50%)
5AS 963 (1.02%) 407 (0.71%) 1,370 (0.91%)
5BL 5,324 (5.65%) 1,943 (3.41%) 7,267 (4.81%)
5BS 1,360 (1.44%) 591 (1.04%) 1,951 (1.29%)
5DL 2,067 (2.19%) 1,688 (2.96%) 3,755 (2.48%)
5DS 620 (0.66%) 614 (1.08%) 1,234 (0.82%)

6AL 2,397 (2.55%) 896 (1.57%) 3,293 (2.18%)
6AS 2,285 (2.43%) 936 (1.64%) 3,221 (2.13%)
6BL 1,564 (1.66%) 820 (1.44%) 2,384 (1.58%)
6BS 1,308 (1.39%) 731 (1.28%) 2,039 (1.35%)
6DL 1,399 (1.49%) 1,050 (1.84%) 2,449 (1.62%)
6DS 870 (0.92%) 680 (1.19%) 1,550 (1.03%)

7AL 1,918 (2.04%) 849 (1.49%) 2,767 (1.83%)
7AS 1,717 (1.82%) 764 (1.34%) 2,481 (1.64%)
7BL 1,592 (1.69%) 776 (1.36%) 2,368 (1.57%)
7BS 1,239 (1.32%) 713 (1.25%) 1,952 (1.29%)
7DL 2,040 (2.17%) 1,301 (2.28%) 3,341 (2.21%)
7DS 1,224 (1.30%) 1,016 (1.78%) 2,240 (1.48%)

Assigned 80,031 (84.98%) 41,118 (72.20%) 121,149 (80.16%)
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Table 3.5: Total number of SNPs scored in parents, individual bulks and in
silico merged bulks.

Gene set R1
S1

R2
S2

R3
S3

R1+R2
S1+S2

R1+R2+R3
S1+S2+S3

SNPs in
parents

UCW 16,269 29,703 31,891 44,224 64,522 66,426
24.49% 44.72% 48.01% 66.58% 97.13%

UniGene v60 15,261 25,143 24,548 35,698 49,738 52,262
29.20% 48.11% 46.97% 68.31% 95.17%

with the iSelect 90k wheat SNP chip. Between two independent AVS
seeds from JIC only 58 out of 71,972 (0.08%) valid assays were poly-
morphic. Nonetheless, there are over 5,000 (> 7.5%) assays with poly-
morphisms between JIC-AVS and AVS from Sydney. The difference was
not expected originally, but considering that the AVS seeds are com-
ing from different stocks and the fact that in both countries commercial
varieties with the same name had been released, it is not surprising.

3.5 Bulk Frequency Ratios

The objective was to find the SNPs enriched (or depleted) in each bulk
and hence linked to the phenotype. SNPs originating from Yr15 would
be expected to be linked to resistance whereas those from AVS to sus-
ceptibility in the segregating population. Across individual bulks, it was
possible to score between 15,261 (24.5%) and 31,891(48.0%) SNPss across
both reference sets. On the in silico mixes, over 95% of SNPs where
scored (Table 3.5), suggesting that the coverage of individual bulks is
not enough to score all the SNPs. The scoring was done with the Bulk
Frequency Ratio (Trick et al. 2012;Figure 3.2; Section 3.10.3), which has
a value that increases as the Yr15 allele is observed more times relatively
to the AVS allele.

When increasing the minimum BFR threshold, enrichment of SNPs
was observed in the short arm of the group 1 chromosomes (1S). Without
taking into account the BFR, 3.6% of the SNPs are located in the 1S
group, similar to the number of SNPs located in other groups 3.4. How-
ever, when increasing the threshold (between BFR > 5 and BFR > 7)
the relative number of SNPs in group 1S increases. After BFR > 7 the
gains in relative enrichment only improves marginally, but the number
of called SNPs is reduced (Table 3.6; Figure 3.7). For that reason, SNPs



CHAPTER 3. GENETIC MAP OF YR15 78
Ta

bl
e
3.
6:

SN
Ps

in
ch
ro
m
os
om

e
gr
ou

p
1S

vs
to
ta
ln

um
be

r
of

SN
Ps

w
ith

a
m
in
im

um
B
FR

fr
om

0
to

10
.
AV

S:
SN

Ps
co
m
in
g
fr
om

Av
oc
et

S.
Yr

15
:
SN

Ps
co
m
in
g
fr
om

Av
oc
et

+
Yr

15
.

M
in

B
F
R

G
en
e
Se
t

R
1/
S1

Y
r1

5
R
1/
S1

A
V
S

R
2/
S2

Y
r1

5
R
2/
S2

A
V
S

R
3/
S3

Y
r1

5
R
3/
S3

A
V
S

S1
+
2/

R
1+

2
Y

r1
5

S1
+
2/

R
1+

2
A
V
S

S1
+
S2

+
S3

/
R
1+

R
2+

R
3

Y
r1

5

S1
+
S2

+
S3

/
R
1+

R
2+

R
3

A
V
S

0
U
C
W

30
8/
8,
04
9

(3
.8
3%

)
30
5/
8,
22
0

(3
.7
1%

)
50
5/
14
,1
21

(3
.5
8%

)
55
6/
15
,5
82

(3
.5
7%

)
53
2/
14
,8
75

(3
.5
8%

)
62
3/
17
,0
16

(3
.6
6%

)
67
0/
18
,7
60

(3
.5
7%

)
88
5/
25
,4
64

(3
.4
8%

)
86
0/
24
,0
26

(3
.5
8%

)
1,
50
5/
40
,4
96

(3
.7
2%

)
U
ni
G
en
e
v6

0
30
7/
7,
82
3

(3
.9
2%

)
29
9/
7,
43
8

(4
.0
2%

)
42
8/
12
,4
09

(3
.4
5%

)
42
1/
12
,7
34

(3
.3
1%

)
42
7/
12
,0
50

(3
.5
4%

)
41
5/
12
,4
98

(3
.3
2%

)
53
6/
15
,6
72

(3
.4
2%

)
59
5/
20
,0
26

(2
.9
7%

)
71
2/
19
,3
58

(3
.6
8%

)
90
1/
30
,3
80

(2
.9
7%

)

1
U
C
W

21
4/
4,
41
5

(4
.8
5%

)
19
4/
4,
10
8

(4
.7
2%

)
32
5/
7,
60
3

(4
.2
7%

)
31
4/
7,
37
4

(4
.2
6%

)
36
5/
7,
92
0

(4
.6
1%

)
41
5/
8,
85
0

(4
.6
9%

)
42
6/
10
,1
22

(4
.2
1%

)
49
4/
12
,1
85

(4
.0
5%

)
53
9/
13
,0
37

(4
.1
3%

)
84
2/
19
,4
66

(4
.3
3%

)
U
ni
G
en
e
v6

0
20
7/
4,
47
4

(4
.6
3%

)
19
4/
3,
63
0

(5
.3
4%

)
26
9/
6,
64
9

(4
.0
5%

)
26
9/
6,
19
3

(4
.3
4%

)
27
9/
6,
51
1

(4
.2
9%

)
27
2/
6,
43
6

(4
.2
3%

)
32
9/
8,
70
4

(3
.7
8%

)
36
9/
9,
34
3

(3
.9
5%

)
44
6/
10
,8
60

(4
.1
1%

)
54
1/
14
,2
26

(3
.8
0%

)

2
U
C
W

92
/6
51

(1
4.
13
%
)

75
/6
71

(1
1.
18
%
)

14
2/
1,
37
2

(1
0.
35
%
)

11
1/
1,
10
1

(1
0.
08
%
)

14
7/
1,
16
2

(1
2.
65
%
)

14
9/
1,
41
1

(1
0.
56
%
)

16
7/
1,
32
4

(1
2.
61
%
)

16
3/
1,
47
8

(1
1.
03
%
)

19
4/
1,
37
0

(1
4.
16
%
)

20
7/
1,
76
5

(1
1.
73
%
)

U
ni
G
en
e
v6

0
77
/5
68

(1
3.
56
%
)

58
/5
27

(1
1.
01
%
)

10
1/
1,
01
7

(9
.9
3%

)
81
/7
20

(1
1.
25
%
)

10
5/
77
5

(1
3.
55
%
)

84
/8
67

(9
.6
9%

)
12
2/
99
1

(1
2.
31
%
)

11
6/
97
3

(1
1.
92
%
)

14
5/
1,
03
0

(1
4.
08
%
)

13
2/
1,
21
0

(1
0.
91
%
)

3
U
C
W

78
/2
99

(2
6.
09
%
)

45
/2
95

(1
5.
25
%
)

11
8/
64
6

(1
8.
27
%
)

70
/4
09

(1
7.
11
%
)

12
3/
57
7

(2
1.
32
%
)

85
/4
94

(1
7.
21
%
)

14
5/
67
3

(2
1.
55
%
)

98
/5
63

(1
7.
41
%
)

16
8/
76
8

(2
1.
88
%
)

12
2/
66
5

(1
8.
35
%
)

U
ni
G
en
e
v6

0
65
/2
54

(2
5.
59
%
)

26
/1
86

(1
3.
98
%
)

87
/4
99

(1
7.
43
%
)

54
/2
94

(1
8.
37
%
)

93
/3
79

(2
4.
54
%
)

48
/3
15

(1
5.
24
%
)

10
7/
52
5

(2
0.
38
%
)

66
/3
79

(1
7.
41
%
)

13
3/
61
7

(2
1.
56
%
)

78
/4
89

(1
5.
95
%
)

4
U
C
W

75
/2
32

(3
2.
33
%
)

28
/1
60

(1
7.
50
%
)

10
9/
48
4

(2
2.
52
%
)

44
/2
17

(2
0.
28
%
)

10
5/
41
6

(2
5.
24
%
)

44
/2
46

(1
7.
89
%
)

13
4/
53
9

(2
4.
86
%
)

53
/2
77

(1
9.
13
%
)

14
9/
64
0

(2
3.
28
%
)

64
/3
23

(1
9.
81
%
)

U
ni
G
en
e
v6

0
63
/1
92

(3
2.
81
%
)

17
/1
04

(1
6.
35
%
)

83
/3
90

(2
1.
28
%
)

29
/1
55

(1
8.
71
%
)

82
/2
88

(2
8.
47
%
)

29
/1
73

(1
6.
76
%
)

10
4/
43
1

(2
4.
13
%
)

40
/2
14

(1
8.
69
%
)

12
7/
51
9

(2
4.
47
%
)

29
/2
66

(1
0.
90
%
)

5
U
C
W

69
/2
02

(3
4.
16
%
)

19
/1
08

(1
7.
59
%
)

95
/4
16

(2
2.
84
%
)

33
/1
38

(2
3.
91
%
)

96
/3
54

(2
7.
12
%
)

23
/1
43

(1
6.
08
%
)

12
7/
47
7

(2
6.
62
%
)

28
/1
75

(1
6.
00
%
)

14
0/
58
0

(2
4.
14
%
)

42
/2
22

(1
8.
92
%
)

U
ni
G
en
e
v6

0
58
/1
63

(3
5.
58
%
)

11
/7
0

(1
5.
71
%
)

76
/3
37

(2
2.
55
%
)

14
/1
02

(1
3.
73
%
)

70
/2
28

(3
0.
70
%
)

20
/1
12

(1
7.
86
%
)

10
0/
38
9

(2
5.
71
%
)

23
/1
46

(1
5.
75
%
)

11
8/
46
9

(2
5.
16
%
)

21
/1
78

(1
1.
80
%
)

6
U
C
W

65
/1
79

(3
6.
31
%
)

12
/8
5

(1
4.
12
%
)

86
/3
80

(2
2.
63
%
)

22
/9
8

(2
2.
45
%
)

87
/2
99

(2
9.
10
%
)

11
/9
4

(1
1.
70
%
)

12
2/
42
9

(2
8.
44
%
)

21
/1
30

(1
6.
15
%
)

12
6/
51
4

(2
4.
51
%
)

29
/1
65

(1
7.
58
%
)

U
ni
G
en
e
v6

0
57
/1
51

(3
7.
75
%
)

7/
48

(1
4.
58
%
)

73
/3
00

(2
4.
33
%
)

6/
71

(8
.4
5%

)
65
/1
91

(3
4.
03
%
)

13
/8
4

(1
5.
48
%
)

98
/3
58

(2
7.
37
%
)

20
/1
22

(1
6.
39
%
)

11
5/
43
9

(2
6.
20
%
)

16
/1
43

(1
1.
19
%
)

7
U
C
W

58
/1
61

(3
6.
02
%
)

11
/7
3

(1
5.
07
%
)

77
/3
40

(2
2.
65
%
)

13
/7
4

(1
7.
57
%
)

73
/2
48

(2
9.
44
%
)

7/
69

(1
0.
14
%
)

11
6/
39
3

(2
9.
52
%
)

20
/1
11

(1
8.
02
%
)

11
4/
46
8

(2
4.
36
%
)

22
/1
43

(1
5.
38
%
)

U
ni
G
en
e
v6

0
56
/1
32

(4
2.
42
%
)

4/
37

(1
0.
81
%
)

68
/2
73

(2
4.
91
%
)

5/
58

(8
.6
2%

)
60
/1
71

(3
5.
09
%
)

9/
64

(1
4.
06
%
)

94
/3
34

(2
8.
14
%
)

18
/1
03

(1
7.
48
%
)

11
3/
41
2

(2
7.
43
%
)

16
/1
24

(1
2.
90
%
)

8
U
C
W

58
/1
49

(3
8.
93
%
)

10
/6
2

(1
6.
13
%
)

68
/3
10

(2
1.
94
%
)

12
/5
9

(2
0.
34
%
)

66
/2
14

(3
0.
84
%
)

6/
56

(1
0.
71
%
)

10
4/
35
9

(2
8.
97
%
)

17
/1
02

(1
6.
67
%
)

10
8/
42
9

(2
5.
17
%
)

16
/1
19

(1
3.
45
%
)

U
ni
G
en
e
v6

0
55
/1
26

(4
3.
65
%
)

3/
33

(9
.0
9%

)
64
/2
55

(2
5.
10
%
)

5/
50

(1
0.
00
%
)

55
/1
50

(3
6.
67
%
)

9/
55

(1
6.
36
%
)

91
/3
13

(2
9.
07
%
)

14
/8
9

(1
5.
73
%
)

10
5/
37
6

(2
7.
93
%
)

15
/1
08

(1
3.
89
%
)

9
U
C
W

54
/1
35

(4
0.
00
%
)

8/
53

(1
5.
09
%
)

63
/2
89

(2
1.
80
%
)

8/
51

(1
5.
69
%
)

61
/1
82

(3
3.
52
%
)

5/
49

(1
0.
20
%
)

10
0/
33
1

(3
0.
21
%
)

15
/9
1

(1
6.
48
%
)

10
0/
38
7

(2
5.
84
%
)

13
/1
06

(1
2.
26
%
)

U
ni
G
en
e
v6

0
53
/1
17

(4
5.
30
%
)

1/
30

(3
.3
3%

)
62
/2
44

(2
5.
41
%
)

5/
46

(1
0.
87
%
)

50
/1
36

(3
6.
76
%
)

9/
48

(1
8.
75
%
)

88
/2
91

(3
0.
24
%
)

13
/8
3

(1
5.
66
%
)

97
/3
45

(2
8.
12
%
)

12
/9
9

(1
2.
12
%
)

10
U
C
W

52
/1
26

(4
1.
27
%
)

8/
50

(1
6.
00
%
)

62
/2
79

(2
2.
22
%
)

8/
50

(1
6.
00
%
)

56
/1
65

(3
3.
94
%
)

4/
45

(8
.8
9%

)
96
/3
09

(3
1.
07
%
)

14
/8
2

(1
7.
07
%
)

91
/3
55

(2
5.
63
%
)

13
/1
00

(1
3.
00
%
)

U
ni
G
en
e
v6

0
50
/1
05

(4
7.
62
%
)

1/
28

(3
.5
7%

)
60
/2
26

(2
6.
55
%
)

5/
39

(1
2.
82
%
)

43
/1
19

(3
6.
13
%
)

7/
45

(1
5.
56
%
)

85
/2
72

(3
1.
25
%
)

13
/8
2

(1
5.
85
%
)

92
/3
18

(2
8.
93
%
)

12
/9
7

(1
2.
37
%
)



CHAPTER 3. GENETIC MAP OF YR15 79

with a BFR > 6 were selected for further validation. The method de-
scribed by Trick et al. (2012) was extended to include cases where there
is a complete lack of coverage in one of the samples (BFR =∞), which
is an ideal case where the linkage between the SNP and the phenotype
is perfect. A total of 1,582 SNPs across 1,173 genes had a BFR > 6.

3.6 In silico mapping

From the mapped SNPs with a BFR > 6, 872 of 1,582 (∼ 60%) were
assigned to the chromosomes in group 1 of hexaploid wheat, being the
only group with more than 4% of the SNPs assigned to it (Table 3.7).
From group 1, the B genome contained the higher proportion of SNPs
mapped (54%), having 255 (54%) and 214 (46%) assigned to the long and
short arms respectively (Figure 3.8). These results are expected since
previous studies have located Yr15 near the centromere in the short arm
of chromosome 1B and the Yr15 introgression contains regions from the
long and short arm from T. dicoccoides (Murphy et al., 2009; Peng et al.,
2000; Sun et al., 1997).

The CSS assembly was used as a common reference between the ref-
erence genes and the 40,266 SNP markers published at the time (Wang
et al., 2014) to locate the SNPs with a BFR > 6 (including BFR =∞)
in a genomic position (Figures 3.9, 3.10). From the 1,582 SNPS across
1,173 genes, only 678 SNPs (43%, 474 genes) were successfully located
in the genetic map. Since the CSS assembly is quite fragmented, the low
percentage of located SNPs can be because not all candidate SNPs had
a corresponding scaffold that has at least one of the 40,266 markers in
the genetic map. Even if the number of located SNPs was not enough
to give a position for over 50% of the SNPs from the parental line, the
resolution of the genetic position SNPs that were assigned improved over
just having the chromosome arm information from the CSS assembly.
The mapping position further confirmed an enrichment of SNPs near the
centromere of chromosome 1B with 325 out of 678 SNPs. Furthermore,
311 of those where located within an interval of 30cM (Figures 3.10b,
3.9a).

Studies in diploid organisms using QTL-Seq (Takagi et al., 2013a) or
other NGS-enabled genetic approaches (James et al., 2013) have shown
smooth curves with a defined peak in the region linked to the studied
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Figure 3.8: Location of SNPs with
BFR > 6 according to the best align-
ment of the UniGene (red) and UCW
(blue) gene models to the flow-sorted
group 1 chromosomes from the CSS
(Mayer et al., 2014). Figure adapted
from Ramirez-Gonzalez et al. (2015c).

trait. In practice, we only observe clusters of SNPs with enriched BFRs
near the centromere of chromosome 1B (Figures 3.9a, 3.10b).

The location of the clusters with an enrichment of SNPs near the
centromere is not expected on a random selection of genes, as the gene
density increases with the distance to the centromere (Akhunov et al.,
2003). This suggests that the experiment was successful on finding SNPs
linked to Yr15 . There are several factor that prevent a clear peak; these
include the biases induced by the differential expression and the fragmen-
ted reference sequence, with scaffolds that are not long enough to span
genetic positions. Since there are several SNPs with a high BFR and the
genetic map is not dense enough to locate a single region linked to Yr15 ,
multiple criteria were needed to prioritise SNPs that were more likely to
yield successful genetic markers.

3.7 Assay selection

Three independent criteria were used to prioritise the SNPs for marker
development and validation:

High BFR. SNPs with a BFR > 6 in at least two independent bulk
replicates or in either of the in silico mixes were selected to ensure
consistency and recover SNPs with a low coverage on a particular
bulk.

Group 1S. SNPs that are in CSS scaffolds in the short arm of chro-
mosome group 1 were selected. The selection included SNPs from
the A, B and D genomes because the best hit to each gene model
may be missing from the CSS assembly. Therefore, in cases where
one or more of the homoeologous genes is missing from the refer-
ence, reads might be assigned to the wrong sub-genome. This is
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Figure 3.9: In silico location of SNPs with BFR > 6. (a) Number of SNPs
with BFR > 6 per cM in chromosome 1B. (b) BFRs of mapped genes with
SNPs on chromosome 1B. The area of the circle represents the number of
SNPs clustered by location (windows size: 10 cM) and BFR (window size:
5cM). R11 is the only marker near the Yr15 locus that had a corresponding
position in the genetic map. The percentage of genes with SNPs per cM is
also illustrated based on UCW (blue) and UniGene (red) gene models. The
centromere is imputed by the centre of a window of 10 cM where the short arm
switches to the long in the genetic map. BFRs correspond to those from the
mixed in silico bulk S1 + S2 + S3/R1 + R2 + R3. Adapted from (Ramirez-
Gonzalez et al., 2015c).
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Figure 3.10: Genetic location of genes with SNPs between AVS and Yr15.
The colour scale indicates the percentage of genes with SNPs per centi-Morgan
(cM) across the 21 wheat chromosomes. The location of the genes was determ-
ined by the best alignment to the CSS scaffolds, and the location of these was
determined by their position on a genetic map (Wang et al., 2014) (a). All the
SNPs between progenitors. Note the lack of enrichment across any individual
chromosome. (b) SNPs with BFR>6. Note the enrichment in Chromosome
1B
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Figure 3.11: Selection criteria for marker design. Venn diagrams based on
the three selection criteria (SNP in the short arm of chromosome group 1;
SNP has a BFR > 6; and SNP is from the Yr15 parent) for the UCW (blue)
and UniGene (red) gene models. The centre diagram shows the intersection
between common genes matching all three criteria across both data sets. Note
that the numbers are not directly additive as in cases, multiple models from one
reference set will relate to a single gene model in the other values. Published
in (Ramirez-Gonzalez et al., 2015c)

consistent with the in silico genetic map and with previous studies
(Murphy et al., 2009; Peng et al., 2000; Sun et al., 1997).

Yr15 parent. The SNPs should originate from the Yr15 parent to en-
sure that the SNP is coming from the T. dicoccoides introgression
and not from a SNP in the AVS genetic background, who would be
less useful in breeding programs with a different background.

Only SNPs meeting the three criteria were selected for further ana-
lysis.

Applying these multiple criteria, the number of genes with a putative
SNP went down from over 27,000 to just 175; 77 and 98 from the UniGene
and UCW gene sets, respectively. As the two gene sets originate from
independent sources, an overlap between the two selected sets is to be
expected. When we aligned the 77 and 98 genes from the two collections,
we indeed found that around half of the genes overlap (Figure 3.11). The
50 SNPs with the highest BFRs, out of the 175 genes, were selected for
validation; fifteen of them were found to be redundant between references,
resulting in a final set of 35 SNPs to validate.

The separate bulks and the in silico mixes were evaluated in detail
to understand the behaviour and value of having multiple bulks. The
initial expectation was that the number of SNPs with BFR =∞ should
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Figure 3.12: BFRs of selected SNPs across the individual bulks and in silico
mixes (UCW, red; UniGene, blue). The dotted line represents the BFR
threshold of 6 (logarithmic scale). Left: Distribution of the BFRs for each
selection criteria and the selected SNPs for validation. The circles on the top
of each plot represent the percentage of SNPs with BFR =∞. The Selection
may include SNPs with BFR < 6 when the same SNP has a higher score on
the complementing reference (ie. BFR > 6 on UCW, but BFR < 6 on Uni-
Genes). Right: The BFR values of selected SNPs were sorted in descending
order across the different bulks and according to their origin. Validated SNPs
are indicated by open triangles, and SNPs corresponding to markers R5, R8
and R11 are labelled across different bulks and mixes. Note that some SNPs
are below the threshold in a specific bulk as they meet the BFR criteria across
others.
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drop in the mixes, as the improved coverage should reduce the number
of instances where the absence of an allele is due to the lack of coverage
on a particular sample. However, the opposite happened, the additional
coverage in the in silico mixes recovered SNPs in genes with a low expres-
sion at the time of the sampling (Figure 3.12). Some SNPs were present
across all the samples, however the value of the BFR changed depending
on the sample (e.g. marker R5). In some cases a SNP was missing in
an individual bulk, but present in the rest and also in the mixes (e.g.
marker R8). The main parameter affecting the scoring was the coverage
in the sample for each particular gene, hence a strategy with a consistent
coverage would be preferred for this kind of analysis. Previous studies
have shown that a coverage of less than 5x is sufficient to call SNPs in
model organisms with a high-quality reference (Schneeberger and Weigel,
2011). However, the results on this study are in line with other studies
using populations for SNP calling (Abe et al., 2012; Takagi et al., 2013a).
The non-uniform distribution of the coverage in RNA-Seq experiments
affects the number of reads that can be used to call for SNPs, especially
on genes with a low expression level (Mortazavi et al., 2008).

Around 60% of the gene models, across both references, had a unique
hit with greater than 99% sequence identity to a single CSS scaffold
(Table 3.8). This is likely because the gene models don’t have a unique
mapping between gene sets because in cases where only one homoeologue
is present in one reference, all the homoeologues in the complementary
reference will map to the only represented gene in the original set of
genes. To reduce the number of spurious SNPs we used IUPAC ambiguity
codes (Section 1.3, Cornish-Bowden (1985)) when two different alleles
were observed. This had the side effect that in order to keep only high
confidence SNPs we required a higher coverage (> 20x). On the original
study introducing the BFR in tetraploid wheat, the authors show that
increasing the coverage, from 8x to 16x, reduces the putative SNPs by
60%, but the validated SNPs increase from 57% to 83% (Trick et al.,
2012). Hence, a compromise between increasing the minimum coverage
at the cost of reducing the SNP candidates had to be reached in line with
the objectives and available resources for this particular study.



CHAPTER 3. GENETIC MAP OF YR15 88

Table 3.8: Number of genes (and SNPs) with a unique hit (> 99% sequence
identity) to a single wheat survey sequence scaffold.

Chromosome 1 All SNPs BFR>6 % BFR>6
SNP Genes SNP Genes SNPs Genes

UCW Unique 5,283 1,245 311 214 5.89% 17.19%
Total 8,086 1,954 486 330 6.01% 16.89%
Percentage 65.34% 63.72% 63.99% 64.85%

UniGene Unique 3,687 745 213 139 5.78% 18.66%
Total 6,422 1,318 386 246 6.01% 18.66%
Percentage 57.41% 56.53% 49.17% 56.07%

UCW Unique 8,970 1,990 524 353 5.84% 17.74%
+ Total 14,508 3,272 872 576 6.01% 17.60%
UniGene Percentage 61.83% 60.82% 60.09% 61.28%

All SNPs All SNPs BFR>6 % BFR>6
SNP Genes SNP Genes SNPs Genes

UCW Unique 39,247 9,585 481 368 1.23% 3.84%
Total 66,426 16,022 859 643 1.29% 4.01%
Percentage 59.08% 59.82% 56.00% 57.23%

UniGene Unique 27,292 5,698 344 252 1.26% 4.42%
Total 52,262 11,056 723 530 1.38% 4.79%
Percentage 52.22% 51.54% 47.58% 47.55%

UCW Unique 66,539 15,283 825 620 1.24% 4.06%
+ Total 118,688 27,078 1,582 1,173 1.33% 4.33%
UniGene Percentage 56.06% 56.44% 52.15% 52.86%
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3.8 SNP Validation

KASP assays were designed to validate and generate a genetic map
of the Yr15 locus for the 35 selected SNPs. To automate the design
of genome-specific primers for polyploid organisms PolyMarker was de-
veloped (Chapter 2). Out of the 35 assays to design, 17 were designed
as specific, 9 as semi-specific to chromosome 1BS, and 9 were not spe-
cific because there was no information for the homoeologues on the CSS
scaffolds. PolyMarker also identified putative homoeologous variants
(between genomes, as opposed to between varieties) that were in the
list of candidate SNPs, but were not identified previously (Figure 2.11;
Table 3.9).

To validate if the 35 SNPs were polymorphic across the parents and
diagnostic for Yr15 we tested them in the progenitors plus six commercial
varieties, three containing Yr15 (Ochre, Boston and, Cortez) and three
without it (Shamrock, Robigus and, Cadenza). Two of the lines without
Yr15 have T. dicoccoides in their pedigree (Shamrock and Robigus), as
it is the donor species of Yr15 (McIntosh et al., 1995). This test panel
allows to test if the SNPs are only diagnostic to T. dicoccoides instead
of Yr15 . On the test panel, 28 (80%) SNPs were polymorphic across
the parents and three of them where diagnostic to Yr15 (R5, R8, R33).
From the five homoeologous SNPs, three of them were monomorphic and

(a)

R2 varieties
0

Yr15
Oc

Bo
Co

AVS
Sh

Ro
Ca

0.5

10.5

(b)

R8 varieties
0

0.5
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Oc Bo

Co

AVS
Sh

Ro Ca

(c)

R8 F₂ population

0
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Figure 3.13: KASP output from the wheat variety panel with (Ochre, Boston,
Cortez) and without (Robigus, Cadenza and Shamrock) Yr15 . Marker R2
(a) is monomorphic while R8 (b) is polymorphic between varieties known to
carry the gene. Marker R8 results for the F2 population (c) showing three
distinct clusters. The central cluster (light green) is comprised of heterozygous
individuals, whereas clusters near the axes are homozygous for either AVS
(VIC; orange) or Yr15 (FAM; dark green).
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two polymorphic, suggesting that PolyMarker is effective on detecting
which assays are less likely to work (Table 3.10; Figure 3.13a,b). The
segregation of the SNPs in the full F2 population (Section 3.2, Figure
3.13c) and a genetic map was produced (Section 3.9).

3.9 Genetic map

Initially, the 28 polymorphic markers were used to genotype a subset of
66 plants from the F2 population. From those, 23 (82%) were linked to
Yr15 and several markers map in a small interval around Yr15 (Figure
3.14a; Table 3.10), confirming that the multiple-criteria strategy(Section
3.7) for selecting candidate SNPs was effective. Then, the complete F2

population was assessed with:

• the seven markers that were most closely linked to Yr15 , including
two of the diagnostic markers from the variety panel (R5 and R8),

• The flanking SSR microsatellite markers used by UK breeders for
germoplasm selection (Xbarc8 and Xgwm413 ). These correspond
to the best markers available to breeders at the time of the study.

• A marker based on barley-wheat synteny (R43) which met the se-
lection criteria, but was not on the original set of 50 markers with
high BFR.

The F2 population consisted on 232 plants with phenotypic informa-
tion, of those 196 where genotyped reliably (no more than one data point
missing). Using the eight SNP markers and 2 SRRs, the Yr15 locus was
mapped to an interval of 0.77cM, with R8/xgwm413 0.26cM distal, and
R5/R11 0.77cM proximal from Yr15 (Figure 3.14b,c).

The sub-cM resolution is expected in a F2 population of 196 indi-
viduals, as 392 gametes should provide n average resolution of 0.26cM.
Despite the fact that none of the selected markers have perfect linkage
to Yr15 , the resulting genetic map is an improvement in the resolution
of the map for the locus and it enables the shift to SNP markers from
microsatellites. The former has become the preferred marker system in
Marker Assisted Selection (MAS) pipelines in breeding programmes.
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Figure 3.14: Genetic maps for Yr15 . (a) Genetic map of the test panel from
50 individuals. (b) Genetic map from 196 individuals from the full population
only with the 8 markers previously identified as closer to the Yr15 locus.
(c)Graphical genotype of the 196 F2 individuals used to develop the genetic
map. The alleles are abbreviated according to their origin: A: AVS; B: Yr15
and H: Heterozygous. Missing calls are indicated by a hyphen.
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Figure 3.15: Steps used to go from the F2 population to the genetic map.

3.10 Methods

The data analysis for this PhD required the use of some standard tools
and custom developed code. All the code produced for this project is
available and updated on the a github repository: https://github.
com/TGAC/bioruby-polyploid-tools. For clarity, the snippets of code
on this section had been simplified by removing the exception handling,
type checks and caching mechanism.

3.10.1 Base-call and Quality Control of sequencing
reads

The raw output from the Illumina HiSeq 2000 was processed with Casava
v1.8 (Illumina, 2011). Lanes 1 and 2, containing multiplexed bulks (Table
3.1) was de-multiplexed with a tolerance of 1 mismatch in the barcode.
Lanes 3 and 4 contained the parental sequences without a barcode. The
FastQ files where left compressed and in chunks of 40,000, as the default
for the BCL conversion pipeline from Casava to allow parallel processing

https://github.com/TGAC/bioruby-polyploid-tools
https://github.com/TGAC/bioruby-polyploid-tools
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in a cluster environment. The quality of the sequencing lanes was assessed
with FastQC v0.10.1 (Babraham Bioinformatics, 2012).

3.10.2 Alignment reads to gene models

The RNA-Seq reads were aligned with BWA 0.5.9 (Li and Durbin, 2009)
to the wheat UniGene database v60 (Pontius et al., 2002) and to the
UCW gene models (Krasileva et al., 2013), including the T. turgidum
and complementary ORFs (MAS Wheat, 2013). The alignments where
sorted and stored as single BAM files to have random access (Li et al.,
2009).

3.10.3 Bulk Frequency Ratios and SNP calling

To avoid the creation of several temporary files with the coverage in-
formation on all the bases I developed a Ruby pipeline based on the
bio-samtools library (Ramirez-Gonzalez et al., 2012), and some of the
improvements to work with pileups were published as a follow-up on the
library (Etherington et al., 2015). To call for the consensus, the function
Bio::DB::Sam::mpileup is called to generate the pileup of each gene.
As the pileups are used several times during the analysis, a function that
caches the current pileup is implemented. The consensus is called by
counting how many times each base appears, and if the number of bases
is higher than minumum_ratio_for_iuap_consensus the base is added
to the set of possible bases (Cornish-Bowden, 1985) If there is no coverage
at a certain position, the reference base is used, and set as lowercase. If
the set of called bases is not empty, the ambiguity code for the observed
bases is called, and set as upper case (Listing 3.1). The minimum ratio
was done on 0.2 (20%), as it allows calling for a consensus even when
more than one homoeologue is mapping to the same reference.
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Listing 3.1: Method to call for the consensus on progenitors from a
pileup

1 def consensus_iuap ( minumum_ratio_for_iuap_consensus )
2 minumum_ratio_for_iup_consensus
3 @consensus_iuap = self. ref_base . downcase
4 bases = self.bases
5 tmp = String .new
6 bases.each do |k,v|
7 if v/self. coverage > minumum_ratio_for_iup_consensus
8 tmp << k[0]. to_s
9 end

10 if tmp. length > 0
11 @consensus_iuap = Bio :: NucleicAcid . to_IUAPC (tmp)
12 end
13 end
14 @consensus_iuap . upcase
15 end

Then, to calculate the BFRs as shown on Figure 3.2 extra extensions
for the Bio::DB::Pileup were added to get the actual number of bases
in the pile (to exclude short insertions and deletions; Listing 3.2), and to
calculate the SNP-Index (Listing 3.3).

Listing 3.2: base_coverage gets the number of bases called from a single
pileup.

1 def base_coverage
2 total = 0
3 @bases .each do |k,v|
4 total += v
5 end
6 total
7 end
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Listing 3.3: base_ratios gets the SNP-Index on a single pileup.

1 def base_ratios
2 return @base_ratios if @base_ratios
3 bases = self.bases
4 @base_ratios = Hash.new
5 bases.each do |k,v|
6 @base_ratios [k] = v.to_f/self. base_coverage .to_f
7 end
8 @base_ratios
9 end

To calculate BFRs the class Bio::BFRTools::Container was im-
plemented to contain all the BIO:DB:Sam objects corresponding to the
progenitors and the bulks. The class Bio::BFRTools::BFRRegion was
implemented to contain the ratios and consensus sequences of each re-
gion. The method bfr uses the calculated SNP-Indices on every position,
from the point of view of both progenitors (lines 15-16: Listing 3.4, and
in the case of lack of coverage the value is set to 0 or Infinity (lines
8-13), depending on the progenitor where the base is not called at all.
Using this design where the values of each region are calculated at once
reduces the number of times the pileup needs to be generated for each
sample and allows to have in a single place in memory all the elements
to calculate the BFRs, without having to write any temporary files on
disc. Also, the fact that the calculation of each region is independent
from that for other regions, it is possible to use a computing cluster to
distribute the analysis on several nodes.

The code produces a table with the SNP-Indices and BFRs for all the
SNPs found in the progenitors. The program was used to calculate the
BFRs on the independent conditions (Bulk 1: S1-R1, Bulk 2: S2-R2 and
Bulk 3: S3-R3); the in silico mixes of bulks 1 and 2; and bulks 1, 2 and
3.
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Listing 3.4: Section of the code that

1 for i in (0.. self.size -1)
2 ratios_1 = @ratios_bulk_1 [i]
3 ratios_2 = @ratios_bulk_2 [i]
4 BASES.each do |base|
5 if ratios_1 [base] == 0 and ratios_2 [base] == 0
6 bfr1 = 0
7 bfr2 = 0
8 elsif ratios_1 [base] == 0
9 bfr1 = 0

10 bfr2 = Float :: INFINITY
11 elsif ratios_2 [base] == 0
12 bfr1 = Float :: INFINITY
13 bfr2 = 0
14 else
15 bfr1 = ratios_1 [base] / ratios_2 [base]
16 bfr2 = ratios_2 [base] / ratios_1 [base]
17 end
18 @BFRs [: first ][ base] << bfr1
19 @BFRs [: second ][ base] << bfr2
20 end
21 end

3.10.4 In Silico mapping

To find the chromosomal position of the SNPs with a high BFR the se-
quences of the markers with a genetic position from Wang et al. (2014)
were aligned with BLAT (Kent, 2002) to the CSS scaffolds (Mayer et al.,
2014). The best hit for each query was found and cached using a Ruby
script. Briefly, the class Bio::Blat::Report from BioRuby (Goto
et al., 2010) was extended to include an iterator only for the best align-
ment of each query: First, the whole file is iterated (line 5); the alignment
with the best score is stored in a hash (lines 7-9) and finally the hash
is iterated (line 11). The script found 46,977 scaffolds that contained at
least one marker from the map.



CHAPTER 3. GENETIC MAP OF YR15 99

Listing 3.5: Extension to Bio::Blat::Report that selects the best align-
ment from a psl file from BLAT

1 def self. each_best_hit (text = '')
2 emptyHit = Bio :: Blat :: Report :: Hit.new
3 emptyHit .score = 0
4 best_aln = Hash.new( emptyHit )
5 self. each_hit (text) do |hit|
6 current_score = hit.score
7 if current_score > best_aln [ current_name ]. score
8 best_aln [ current_name ] = hit
9 end

10 end
11 best_aln . each_value { |val| yield val }
12 end

Then, the UniGenes and the UCW gene models were also aligned with
BLAT to the scaffolds that were located in the genetic map. The class
Bio::Blat::Report::Hit was extended to calculate how many bases are
covered in the alignment and the percentage of covered bases in both, the
target and query sequences (Listing 3.6). Only the genes that align over
60% of covered bases with an identity of at least 90% were considered.
This removes spurious mappings from repetitive regions, while retaining
assignment to a homoeologue in the case in which the correct scaffold
is not in the genetic map. The genes were also aligned to the full CSS
reference, to be able to allocate the genes to a chromosome arm, even
when it is not possible to assign a position in neither the genetic map nor
to the cDNAs of Hordeum vulgare (Mayer et al., 2011) (as deposited in
Ensembl! Plants, release 16 (Kersey et al., 2012)). The genetic position
of the contigs was used to calculate the density of SNPs between AVS
and Yr15 in the genetic bins for Figure 3.10. This information was used
to select the SNPs with high BFR to validate.
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Listing 3.6: Extension to Bio::Blat::Report::Hit for filtering of spurious
alignments.

1 class Bio :: Blat :: Report :: Hit
2 def covered
3 match + mismatch
4 end
5 def query_percentage_covered
6 covered * 100.0 / query_len .to_f
7 end
8 def target_percentage_covered
9 covered * 100.0 / target_len .to_f

10 end
11 end

3.10.5 Primer design and KASP assays

The primer designs for KASP were designed with PolyMarker as de-
scribed in Chapter 2. The only difference with default settings is that
instead of using a template sequence, the sequence for each allele is cal-
culated from the consensus of the alignments. As described in Ramirez-
Gonzalez et al. (2015c),

[the primers] were ordered from Sigma-Aldrich (Gilling-
ham, UK), with primers carrying standard FAM or HEX
compatible tails (FAM tail: 5’ GAAGGTGACCAAGTTCAT-
GCT 3’; HEX tail: 5’ GAAGGTCGGAGTCAACGGATT
3’) and the target SNP at the 30 end. Primer mix was
set up as recommended by LGC [46 µL dH2O, 30 µL com-
mon primer (100 µM) and 12 µL of each tailed primer (100
µM)] (LGC Genomics, 2014) Assays were tested in 384-well
format and set up as 4-µL reactions [2-µL template (10–20
ng of DNA), 1.944 µL of V4 2 × Kaspar mix and 0.056 µL
primer mix]. PCR cycling was performed on a Eppendorf
Mastercycler pro 384 using the following protocol: hot-
start at 95°C for 15 min, followed by ten touchdown cycles
(95°C for 20s; touchdown 65°C, −1°C per cycle, 25 s) then
followed by 30 cycles of amplification (95°C 10s; 57°C 60s).
As KASP amplicons are smaller than 120 bp, an extension
step is unnecessary in the PCR protocol. 384-well optically
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clear plates (Cat. No. E10423000; Starlab Milton Keynes,
UK) were read on a Tecan Safire plate reader. Fluorescence
was detected at ambient temperature. If the signature gen-
otyping clusters had not formed after the initial amplific-
ation, additional amplification cycles (usually 5–10) were
conducted, and the samples were read again. Data ana-
lysis was performed manually using Klustercaller software
(version 2.22.0.5; LGC Hoddesdon, UK).

3.10.6 Genetic map

As described in Ramirez-Gonzalez et al. (2015c):

JoinMap version 3 (van Ooijen and Voorrips, 2002) was
used for linkage analysis and genetic map construction, us-
ing default settings. The linkage to Yr15 was determined
using a divergent log-of-odds (LOD) threshold of 3.0, and
genetic distances were computed based on recombination
frequency.

3.11 Discussion

Re-sequencing the ∼ 17Gbp genome of hexaploid wheat is costly and
approaches to reduce the required sequenced volume to effectively call
for SNPs had been evolving since the conception of this project. Both
the RNA and DNA extraction and the sequencing for this project were
carried out before the beginning of my PhD (before October 2012). At
that time, exome capture was already an established technique for gen-
otyping humans (Ng et al., 2009), however the first exome capture on
wheat had just been published, with probes coming from unassembled
454 reads (Winfield et al., 2012); the first probe designed directly from
transcripts (Henry et al., 2014) was not published until after the analysis
of this section was completed and validated (Figure 3.16). An even more
targeted capture for resistance genes (RenSeq), by capturing genes with
the NBS-LRR motif, was published while this study was executed (Jupe
et al., 2013). On the other hand, RNA-Seq had already been tested for
Bulk Segregant Analysis on tetraploid wheat (Trick et al., 2012). Hence,
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2012
Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul

2013 2014
Oct

2015 2016
Jul

Genome assemblies

Gene models

Wheat expression browsers

TGACv1 NRGene

expVIP

A. tushchii454 UK Survey

UCWMIPSv1 TGACv1MIPSv2.1 MIPSv2.2

IWGSC CSST. urartu
W7984

WheatExp

WheatExp

Figure 3.16: Timeline of resources used, or potentially used for Yr15 .

the decision of reducing the sequenced space with RNA-Seq was appro-
priate at the time (Figure 3.16). Unfortunately, one of the shortcomings
of using RNA-Seq for calling SNPs is that the coverage is not uniform,
and the genes that have low expression do not have enough coverage to
allow reliable SNP calling (Section 3.3). If a similar study had to be star-
ted today, a better alternative would be to use exome capture in general
from a segregating population for any trait, or RenSeq if the target gene
is a resistance gene.

The quality and completeness of the reference genome or gene models
directly affects the mapping of NGS reads. This is particularly true on
polyploid organisms: if one of the homoeologues is absent, the reads are
likely to map to the wrong genome if the parameters of the aligner are
relaxed, or not map at all if the required identity is too high. When the
bioinformatic analysis of this project started, the only available wheat
genomic reference was a whole genome shotgun 454 sequencing, unas-
sembled (Brenchley et al., 2012); the CSS assembly was being finished
(Mayer et al., 2014); the longer scaffolds from Chapman et al. (2015) were
not public yet; and finally, the efforts to make a whole genome shotgun
assembly were being planned independently by the International Wheat
Genome Sequencing consortium (Pozniak, 2016) and TGAC (Clavijo
et al. 2016 ; Figure 3.16). Because a contiguous assembly with the cor-
responding annotation was not available at the time of the analysis, and
the fact that all the data available was derived from transcriptomic se-
quencing, the use of gene models as a reference for the alignment was a
suitable approach.

In terms of available gene sets when the analysis started, the canonical
reference was the UniGenes from the NCBI (Pontius et al., 2002). The
UniGenes are produced with an automated pipeline that clusters all the
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Encoding Sequence Tags (ESTs) deposited in the NCBI by identity and
selects the longest transcript, which can merge homoeologous transcripts
as a single reference. Shortly after I started the bioinformatic analysis,
two additional gene models were made available, the draft annotation for
the CSS assembly (MIPSv1) in January 2013 and the UCW gene models
(Krasileva et al., 2013) in May 2013. I selected the UCW gene models,
as they were more mature, phased to distinguish between genomes and
already published, over the MIPSv1 genes, as they were still being re-
fined from an initial approach of lifting proteins from related organisms
combined with few RNA-Seq experiments. The MIPS gene models were
improved by removing duplications in the assembly in a later stage and
the nomenclature before the release of the assembly (Mayer et al., 2014),
but at that point the results of this project had already been submitted
for publication (Figure 1.4; Ramirez-Gonzalez et al. 2015c).

To locate the gene models in the chromosome arms and see if there was
an enrichment on the called SNPs, the use of a high resolution consensus
map is needed, as the genome assemblies available during the analysis are
fragmented. Initially, I used barley to locate the gene models because
the genetic map used to locate the CSS scaffolds was not released yet
and barley has a conserved synteny across the wheat genomes. The
release of a genetic map with over 42,000 markers (Wang et al., 2014)
was extremely timely, as it happened during the last phase of the project.
Furthermore, as I collaborated in the project, I was also able to use it
to locate several CSS scaffolds before the release of the assembly. The
located scaffolds were used as proxy to sort just under half of the reference
genes in their chromosomal position (Section 3.6). Despite the resolution
not being enough to find a single point of enrichment, it was enough to
confirm that the SNPs were in the expected location, including one of
the SNP candidates flanking the Yr15 locus (SNP R11, Figure 3.9b). If
the analysis was to be done today, the genetic map from Chapman et al.
(2015) along with their longer scaffolds, or the scaffolds from TGACv1
or the NRGene should provide a better resolution. Even without having
all the CSS scaffolds sorted, the fact that they come from individual
chromosome arms enabled the assignment of the genes to a chromosome.

The original expectation was to have a NIL for the BSA to simplify
the SNP discovery and analysis since the majority, if indeed not all of
the SNPs should be restricted to the region immediately flanking Yr15.
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R5 R8R11

C A T

T A T

T G C

SNP haplotype

Intermediate SusceptibleResistant

- 6 16

- 11 -

79 1 -

Reaction to P. striiformis

Figure 3.17: Haplotype analysis and phenotypic evaluation of the 113 doubled
haploid lines used in the study. The TGC haplotype corresponds to that
originally identified in the Yr15 parent and which was diagnostic across 112
of the 113 lines studied. Figure from (Ramirez-Gonzalez et al., 2015c)

However the number of SNPs called in the progenitors suggested that
the background, Avocet S, was not the same. This happened because
despite both susceptible lines being called the same and having the same
response to the pathogen, they are in fact different lines from different
countries (Section 3.4). This highlights the importance of genotyping
the material used when developing mapping populations, especially if
the seeds come from different seed banks.

Despite these shortcomings, the use of the BFRs to score the putative
SNPs was effective, as most of the SNPs with a high score mapped in
chromosome 1B, in line with previous studies (BFR > 6, Section 3.7).
Using the extra criteria of only selecting SNPs from the resistant progen-
itor and in the expected chromosome arm, I was able to produce a high
resolution genetic map (Section 3.9). The genetic map was of the expec-
ted resolution for the size of the population (0.26cM on 196 individuals).
Since the mapping population contained only one critical recombinant
between Yr15 and the flanking markers, the population could not yield
a better map. To improve the map, a cross from the two critical recom-
binants could be used to repeat a similar analysis, sequencing with either
exome capture or RenSeq.

As described in Ramirez-Gonzalez et al. (2015c):

The markers R11, R5 and R8 were tested across 122 doubled
haploid (DH) lines. These DH lines were derived from
crosses crosses between five different UK varieties/breed-
ing lines to Yr15 derivatives known to carry the resist-
ance gene. The expected Yr15 haplotype corresponded
to T, G and C alleles at markers R11, R5 and R8, re-
spectively (TGC haplotype). The DH lines were tested
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at seedling stage for reaction to P. striiformis, with 84
showing complete resistance and 34 presenting an inter-
mediate or completely susceptible reaction. The resistant
lines all carried the complete Yr15 haplotype (TGC, Fig-
ure 3.17) across the three SNP markers with the exception
of five lines which had a single missing data point, but were
otherwise consistent. This compared favourably with the
most diagnostic in-house SNP markers available within the
breeding programmes. Using the three in-house markers,
79 resistant lines carried the expected haplotype, but five
completely resistant DH lines were scored as false negative
due to the presence of the non-Yr15 haplotype. Within
the intermediate and susceptible DH lines, all but one had
a non-Yr15 haplotype (CAT or TAT) across R11, R5 and
R8 (Figure 3.17). This single DH line was scored as a false
positive as it carried the TGC Yr15 haplotype, but was
found to have an intermediate (chlorotic) reaction to P.
striiformis. This line was also the only one scored as a
false positive using the three in-house markers.

The fact that the developed markers perform better than markers
developed by breeders shows the value of this particular experiment and
further confirms that BSA combined with NGS is an effective way to
develop novel markers.

In this chapter the integration of different levels of data helped to
improve the selection of the candidate SNPs. The main criteria for se-
lecting SNPs was the BFR score. Thanks to the genetic map from Wang
et al. (2014) and the CSS scaffolds from Mayer et al. (2014), we were able
to confirm that the high scoring SNPs were in the expected region. As
the reference genome for wheat improves, defining the location of SNPs
linked to a trait of interest will become easier. With a continuous refer-
ence between two markers flanking a locus and an improved annotation,
it will also be possible to compile a more focused set of candidate genes.



Chapter 4

expVIP: a customisable
RNA-seq data analysis and
visualisation platform.

4.1 Background.

4.1.1 Alternative expression browsers.

To the best of my knowledge, the only alternative expression browser
developed for specifically for wheat is WheatExp (Pearce et al., 2015b).
This expression browser contains information of 6 studies from diploid,
tetraploid and hexaploid wheat. The studies were selected to be com-
plementary among them; “a broad study of five different tissues across
multiple time points (Choulet et al., 2014), a study of seedling photo-
morphogenesis (Fox et al., 2014), a study of drought and heat stress
in wheat seedlings (Liu et al., 2015), a study of wheat grain layers at
a single time point (Pearce et al., 2015a), a senescing leaf time-course
(Pearce et al., 2014) and a time-course of different grain tissue layers
during development (Pfeifer et al., 2014)”. The expression quantifica-
tion is produced by aligning to the gene transcripts using BWA (Li and
Durbin, 2010), and the counts are extracted with HTSeq (Anders et al.,
2015). The Expression Atlas from EBI is a public resource that collects
expression experiments of several species (Petryszak et al., 2016). The
samples are processed automatically from the reads deposited ArrayEx-
press (Kolesnikov et al., 2015), containing data from microarrays and
RNA-Seq. The studies included are manually curated and annotated

106
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with the relevant ontologies. As of September 2016, 202 differential and
82 base experiments had been included. The visualisation is designed
to explore each gene individually, showing all the related ontologies and
details on the expression by factor, or by pairs of factor on a heatmap.
The quantification is calculated with HTSeq (Anders et al., 2015), from
alignments produced with Tophat (Ling et al., 2013).

4.1.2 Aims

The aims of expression Visualisation and Integration Platform (expVIP)
are to:

1. Integrate RNA-Seq experiments from several sources in a single
database (Section 4.3).

2. Automate the calculation of the expression values and load them
in to the database (Section 4.4).

3. Produce a tool visualisation for said expression values with a short
time to learn, good performance, memorability, accuracy and sat-
isfaction s (Section 4.5).

4. Make the system available to the community (Section 4.5).

The software developed in this chapter is published in Borrill, Ramirez-
Gonzalez, and Uauy (2016).

4.1.3 Public wheat RNA-Seq experiments.

Table 4.1 contains the 16 studies used during the development of the
expVIP. This studies were categorised by developmental time courses,
tissues, pathogen infections, and abiotic stresses. The use of divers stud-
ies demonstrate the utility of an integrated platform to generate novel
hypotheses.

4.1.4 Expression quantification with Kallisto.

Differential expression experiments try to elucidate which genes change
under different conditions. To do that, a quantification of the levels of
expressions is needed. When using RNA-Seq, the expression analysis
usually consists of: aligning the reads to the genome or transcriptome
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Figure 4.1: “Overview of Kallisto. The input consists of a reference transcrip-
tome and reads from an RNA-seq experiment. (a) An example of a read (in
black) and three overlapping transcripts with exonic regions as shown. (b) An
index is constructed by creating the transcriptome de Bruijn Graph (T-DBG)
where nodes (v1, v2, v3, ... ) are k-mers, each transcript corresponds to a
coloured path as shown and the path cover of the transcriptome induces a k-
compatibility class for each k-mer. (c) Conceptually, the k-mers of a read are
hashed (black nodes) to find the k-compatibility class of a read. (d) Skipping
(black dashed lines) uses the information stored in the T-DBG to skip k-mers
that are redundant because they have the same k-compatibility class. (e) The
k-compatibility class of the read is determined by taking the intersection of
the k-compatibility classes of its constituent k-mers” (Bray et al., 2016).

reference and quantifying the expression according to how many reads
map to a region. However, this process usually takes around 6 hours per
sample. Aligners such as bwa or bowtie produce a detailed alignment of
each read, which is useful find polymorphisms (see Chapter 3) or to find
novel alternative splices (Trapnell et al., 2012).

For expression analysis only the count of how many reads with a
transcript is required, calculating the best local alignment and the out-
put of each read is unnecessary. Kallisto is a tool that generates an
index based on overlapping k-mers (sequences of size k), which are con-
nected sequentially to represent each transcript on a transcriptome de
Bruijn Graph (T-DBG). For alternative splicings of the same gene, were
some sequence overlap between transcripts, the connections produce two
different sets of connections between k-mers. The k-mers on each read
are then used to find the compatible transcripts across the T-DBG and
those are counted. Finally, the program estimates the abundance of the
transcript in the sample (Figure 4.1; Bray et al. 2016).
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id (int)
name (text)
scientific_name (text)

Species id (int)
accesion(text)
title (text)
manuscript (text)
species_id(int)

Studies

Figure 4.2: Example of a relationship between tables. The tables Species and
Studies are related. Each study has one species and each species can have
several studies.

Table 4.2: Example content for the table species

id name scientific_name
1 Bread wheat Triticum aestivum
2 Yellow rust Puccinia striiformis
3 wheat and rust T.aestivum,S.tritici

4.1.5 Relational databases.

A relational database is a set of structured tables that have relationships
between each other. The tables correspond to the data that is essential
for the represented concept (domain). For example, in a table repres-
enting several species, the common name and the scientific name belong
to the same domain (ie name: Bread wheat; scientific name Triticum
aestivum). Tables in the same relational database form relationships
between each other. Continuing with the example, a species can have
several scientific studies related to them. The domain of a study can
be formed by the accession, a title, a corresponding manuscript and the
species it is concerned with. The two tables can be connected by the
usage of a common ID signifying the species. It is therefore common
practice to create an extra column containing unique integer values, to
act as connecting keys between two or more tables. Such a column is
defined as the primary key of the table; although, strictly speaking, any
set of columns whose combination of values is unique for each row can
act as primary key. In our example an extra id column is added allowing
to create a stable relationship between the Species and the Studies
tables. (Figure 4.2; Codd 1970). The tables 4.2 and 4.3 have the content
of their corresponding domains.
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Table 4.3: Example content for the table studies

id accession manuscript species_id
1 DRP000768 10.1186/1471-2164-14-77 1
2 ERP003465 10.1186/1471-2164-14-728 1
3 ERP004505 10.1126/science.1250091 1
4 SRP004884 10.1186/1471-2164-12-492 1
5 SRP013449 10.1111/j.1467-7652.2012.00705.x 1
6 SRP017303 10.1186/1471-2164-14-270 2
7 SRP022869 10.1371/journal.pone.0081606 3

4.1.6 SQL.

Standard Query Language (SQL) is a common language to retrieve in-
formation from relational databases. SQL provides operations to select
columns and rows, join tables, group repeated values and order the res-
ults. Those simple operations are enough to retrieve information between
tables (Oracle, 2014). The following list shows a brief description of some
commands that can be used to build a query.

SELECT <EXPRESSIONS> A list of columns or an expression that will be
displayed, separated by commas (,). To display all the columns,
the * character all the columns in the table. The order of the
columns will be the same as the order given in this part of the
command

FROM <TABLE> follows the column names to add a list of tables to select
from.

JOIN <TABLE> ON <EXPRESSION> is used to join the table from the left
side of the statement with the <EXPRESSION> given after the ON
clause.

WHERE <EXPRESSION> filters the rows by the <EXPRESSION>

ORDER BY <COLUMNS> The rows will be sorted by the natural order of
the given <COLUMNS>.

GROUP BY <COLUMNS> The rows are merged by the columns stated. This
can be used to get an unique set of values and apply a function to
all the rows that have the same value, as a count.

Expressions can be values, operators or functions like:
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COLUMN The value of a column.

<EXPRESSION> = <EXPRESSION> TRUE when both, the left and right,
<EXPRESSION> are equal. FALSE otherwise

<EXPRESSION> > <EXPRESSION> TRUE when the left <EXPRESSION> is
greater than the right <EXPRESSION> are equal. FALSE otherwise

<EXPRESSION> < <EXPRESSION> TRUE when the left <EXPRESSION> is
less than the right <EXPRESSION> are equal. FALSE otherwise

COUNT(*) The count of rows that have the same values, as selected in
the GROUP BY clause.

A simple query to join the species and studies tables and displaying
only the species name, scientific name and accession of the study is shown
in Listing 4.1. The results of the query are in Table 4.4.

Listing 4.1: Join example query

1 SELECT
2 species .name ,
3 species . scientific_name ,
4 studies .accession ,
5 FROM species
6 JOIN studies on species .id = studies . species_id ;

Table 4.4: Join of the species and studies table.

name scientific_name accession
Bread wheat Triticum aestivum DRP000768
Bread wheat Triticum aestivum ERP003465
Bread wheat Triticum aestivum ERP004505
Bread wheat Triticum aestivum SRP004884
Bread wheat Triticum aestivum SRP013449
Yellow rust Puccinia striiformis SRP017303
wheat and rust T.aestivum,S.tritici SRP022869

The relationships between tables can be of the following types:

one-to-one. When rows on a table can be related to a row in a second
table. On the diagrams they are represented by a straight line.
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many-to-many. Rows on a table can have many corresponding rows in
a second table, resented with lines with whiskers on both sides of
the line.

one-to-many. Rows on a table can be related to many rows on the
second table, represented with whiskers only on one side of the
line.

An important feature of a database is the ability to store the data
consistently. A transaction is a set of related operations that need to be
performed at the same time; as such, it needs to follow the principles of
Atomicity, Consistency, Isolation and Durability (ACID) (Haerder and
Reuter, 1983).

Atomicity. All the operations or none have to be performed. If any of
them fails or an error happens while the transaction is executed,
the data has to be restored to the original status.

Consistency. The changes in the database have to be valid before and
after the transaction.

Isolation. If more than one transaction is being executed at the same
time, the result must be the same as if the transactions were ex-
ecuted one after the other.

Durability. The result of the transaction is stored even if the server is
restarted.

Several Relational Database Management System (RDBMS) imple-
ment SQL, with various levels of compliance to the standard and different
licenses. A popular RDBMS is MySQL. From the beginning MySQL aimed
to be a lightweight and easy to install open source product (Oracle, 2014).
This characteristics made it popular on the web and it is currently the
RDBMS behind Ensembl! (Flicek et al., 2012).

4.1.7 Model-View-Controller

The Model View Controller (MVC) is a metaphor to isolate the user in-
teractions from the underlying data. The models hold the data on logical
their domains. The views contain the layout on how the models are dis-
played to the user. The controllers receive the requests from the users
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Controller View

Model

User

Sees Uses

Manipulates Updates

Sends

Figure 4.3: MVC
interaction between
components.

and modify the models hold the data as mapped to their logical domains
accordingly and send a view back for display. The MVC metaphor allows
the development of independent parts of the system and helps to struc-
ture the underlying representation of the domains. (Figure 4.3; Krasner
and Pope 1988).

Ruby on Rails (RoR) is a framework to develop web applications
heavily influenced by the MVC metaphor. It is based on the Rails lan-
guage and provides several tools designed to facilitate development, such
as automated tasks designed to create models with their corresponding
views and controllers. On the top of that, it provides the tools to man-
age the connection and queries to the RDBMS, allowing the developer
to focus on functionality (Rails Guide, 2016).

4.1.8 Data visualisation

In the last couple of decades the amount of information available in
any given field has been growing exponentially, in part thanks to the
internet. A standing challenge is therefore to produce tools that help
interpretation. An effective way to communicate large amount of data is
through visualisation, but it has to have the following properties to be
usable (Myatt and Johnson, 2011):

Time to learn. The user needs to take little time to learn how to use
the system to extract the information they need. Also, all the
features should be easy to find.

Performance. The tool needs to be quick to access and transform the
visualisation as the user requests.
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Accuracy. The tool has to perform as the user expects, so if the tool is
prone to make users commit mistakes, it is not accurate.

Memorability. Once the user learns to use the system, is it easy to
remember how to use it? Systems that change their interface often,
or between windows are not as easy to remember.

Satisfaction. The user responds positively to the use of the system and
the time is spent actually exploring the data, rather than trying to
make the system work.

4.2 General design

One of the main objectives of expVIP is to make the public expression
datasets easily accessible and explorable for the target community (cur-
rently wheat, but not limited to it). A web interface is an effective way
to reach a global audience. A web service requires to have a server to
run the application, and a browser to connect to the server and dis-
play the application to the user (ie Internet Explorer, Chrome, Firefox).
The web server technology used for expVIP is RoR, as it abstracts the
MVC metaphor and it is designed to speed development (Rails Guide,
2016). In order to display the expression data to the users, expVIP relies
on a BioJS component (Yachdav et al. 2015, Section 4.5) developed for
expVIP. All the data is stored in a MySQL database (Section 4.3) and
it is accessed through models developed under RoR (Figure 4.4).

Server (Ruby On Rails)

MySQL database

Web interface

javascript

bio-vis-expression-bar

D3jquery

Figure 4.4: General design of expVIP
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4.3 Database design

To address the different types of conditions over different experiments,
expVIP is designed around a relational database. The design comprises
two core groups of tables and two auxiliary tables that take care of dif-
ferent species and homoeologues (Figure 4.5).

Metadata The tables in this group contain the information of each one
of the studies.

Studies holds general information for a study, which contain sev-
eral experiments. The table also contains the reference to the
paper where the data is published and the accession number
for the study.

Experiment group keeps together all the individual experiments
that come from the same study and that were taken on the
same condition (ie. replicates).

Factors holds all the possible factors used to group the experi-
ments. Each experiment group has many factors and each
factor group has many experiment groups. As the experiment
does not have a fixed number of columns representing each
factor, it is possible to have any arbitrary number factors to
group.

Experiment holds the information of each individual experiment,
with the corresponding accession.

Expression values. The tables on this block contain the information
for each genes and their expression values.

Types of value keeps a list of different units that are stored. On
the original design TPM and raw counts are set up, but as the
units are not hard coded it is possible to use FPKM, RPKM
or any other unit.

Gene Set contains the name of a reference gene set for the ana-
lysis. On the original version of expVIP, the gene models
from the IWGSC as deposited in Ensembl release 26 were
used (Mayer et al., 2014). However, this table allows to use
several reference gene models on the same database.
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Genes are related to a gene set, so even if two genes coming
from two different datasets share the same name it is possible
to distinguish them and avoid ID collisions. This situation is
unlikely to occur when using published references, but might
arise when joining several de novo gene model datasets.

Meta Experiment allows to have the same data analysed with
different tools. By default expVIP uses Kallisto (Bray et al.,
2016). However other tools, or different versions of the same
tool, can be used to repeat the analysis.

Values have a domain that includes the meta experiment, gene
and, type of value.

Homoeologues contains the relationship between genes. This allows to
get the expression values of several related genes.

Species contains the target species of a study. It is not linked to the
gene models to allow the direct comparison between related species
using the same gene models (ie, T. aestivum vs T. turgidum).

In the cases where a relationship between tables is not unique, such
as experiment_groups having many factors and the factors hav-
ing many experiment_groups, storing of relationships is done with an
auxiliary table (for example, ExperimentGroups_Factors, not explicitly
shown in Figure 4.5, but implicit by the lines with whiskers).

Once all the data is stored, the tables can be queried together to
make clear the relationship between specific rows. One of the core tasks of
expVIP is to get all the factors that define each experiment, in order to be
able to merge similar studies. To retrieve the experiments and factors
of an experiment group, auxiliary tables ExperimentGroups_Factors
and experiment_groups_experiments are used in the query. (Listing
4.2 and Table 4.5).
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Listing 4.2: Query experiments and factorsQuery experiments and
factors from accession ’DRR003148’

1 SELECT
2 experiments .accession ,
3 factors .factor ,
4 factors . description ,
5 experiment_groups .name as experiment_group
6 FROM factors
7 JOIN ExperimentGroups_Factors
8 ON factors .id = ExperimentGroups_Factors . factor_id
9 JOIN experiment_groups

10 ON experiment_groups .id = ExperimentGroups_Factors .
experiment_group_id

11 JOIN experiment_groups_experiments
12 ON experiment_groups_experiments . experiment_group_id =

experiment_groups .id
13 JOIN experiments
14 ON experiments .id = experiment_groups_experiments .

experiment_id
15 WHERE accession = 'DRR003148 '

Table 4.5: Results of querying the metadata for accession ‘DRR003148’ (List-
ing 4.2)

accession factor description experiment
group

DRR003148 Age 24 days Group1
DRR003148 High level age vegetative Group1
DRR003148 High level stress-disease no stress Group1
DRR003148 High level tissue roots Group1
DRR003148 High level variety Chinese Spring Group1
DRR003148 Stress-disease none Group1
DRR003148 Tissue roots Group1
DRR003148 Variety Chinese Spring Group1

Likewise, to get the expression_values for a gene with the corres-
ponding unit (type_of_values) and experiment a simple query joining
the four tables is used. The Listing 4.3 retrieves the expression_values
for the gene ’Traes_5BS_0AFC3F795.1’, and the result is on Listing 4.6
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Listing 4.3: Query values from ‘Group1’ and gene
‘Traes_5BS_0AFC3F795.1’

1 SELECT
2 genes.name as gene ,
3 expression_values .value ,
4 experiments .accession ,
5 type_of_values .name as unit
6 FROM expression_values
7 JOIN genes
8 ON expression_values . gene_id = genes.id
9 JOIN type_of_values

10 ON type_of_values .id = expression_values .
type_of_value_id

11 JOIN experiments
12 ON experiments .id = expression_values . experiment_id
13 WHERE
14 genes.name = 'Traes_5BS_0AFC3F795 .1 '

Table 4.6: Results of query to get the values for gene
‘Traes_5BS_0AFC3F795.1’ (Listing 4.3), only ‘Group1’ is displayed
from the output. The three values with the same unit correspond to replicates
on the same study.

gene value accession experiment unit
group

Traes_5BS_0AFC3F795.1 136.995 DRR003148 Group1 count
Traes_5BS_0AFC3F795.1 120.683 DRR003149 Group1 count
Traes_5BS_0AFC3F795.1 140.94 DRR003150 Group1 count
Traes_5BS_0AFC3F795.1 24.2277 DRR003148 Group1 tpm
Traes_5BS_0AFC3F795.1 23.9739 DRR003149 Group1 tpm
Traes_5BS_0AFC3F795.1 24.9835 DRR003150 Group1 tpm

With those two queries is enough to retrieve all the information re-
quired to do sub-groupings.

The database is implemented using the RDBMS MySQL 5.5.

4.4 Data integration pipeline

To prepare the database, expVIP requires to have all the metadata for the
experiments to integrate. ExpVIP contains tasks to load all the metadata
and a wrapper for Kallisto that can be run from expVIP. Alternatively,
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expVIP

Load metadata

Load gene sets

Load homoeology

Run expression 
tool on all 
samples

Merge expression  
files

Run Kallisto for 
each sample

load expression 
values

several 
samples in 

parallel

No

Yes

Start

End

Load factors

Figure 4.6: The pipeline for loading the data into expVIP. The black lines
represent a border of tasks that are not required to be executed in a particular
order.

the expression values can be calculated with another tool and loaded as
a single file, this approach is preferred for a large set of samples (Figure
4.6). Details on how to load the files in the database are in the expVIP
tutorial (Appendix C).

The required files for the metadata are:

Factors. The file contains all the possible factors that can be used to
group all the experiments. The file must contain the following
columns (Table 4.7):
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Table 4.7: Factors file. The table must be saved as a text file, with columns
separated by tabs

factor order name short
Age 1 7 days 7d
Age 2 seedling stage see
Age 3 14 days 14d
Age 4 three leaf stage 3_lea
Age 5 24 days 24d
High level age 1 seedling see
High level age 2 vegetative veg
High level age 3 reproductive repr
High level stress-disease 1 none none
High level stress-disease 2 disease dis
High level stress-disease 3 abiotic abio
High level stress-disease 4 transgenic trans
High level tissue 1 spike spike
High level tissue 2 grain grain
...

factor The category were the factor belongs. In the case of the
initial dataset used in expVIP, the grouping factors are: Age,
stress-disease, tissue and a corresponding ’High level’ for each
factor. The metadata file must contain a column correspond-
ing to each one of this factors.

order The default order in which to display each factor. This
ensures that the age of the plants is sorted chronologically.

name Long description of each level for the category. The values
in this column must match the values in the metadata file (see
below).

short Is a short name, used when the space to display the full
description of the factor is not enough.

metadata The metadata file is the file that contains the information
related to each study and the corresponding experiments. Each
study contains several experiment groups (replicates), which in turn
contain every individual experiment. The factors must be shared
across experimental groups.
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secondary_study_accession The accession number for exper-
iments carried as part of a single study. This is usually the
high level BioProject or SRA number.

run_accession The accession of the individual run.

scientific_name of the species.

experiment_title A description for the individual RNA-seq sample.

study_title A description of the general study.

Manuscript The DOI of the study.

Group_for_averaging A description of the experiment. This
must be the same all the replicates in the same study.

Group_number_for_averaging A short name for replicated
experiments.

Total reads (optional)

Mapped reads (optional)

Besides the main fields, each factor has a a corresponding column
Variety, Tissue,Age, Stress-disease, High level variety, High level
tissue, High level age and High level stress-disease

Gene set The gene set is provided as a single fasta file. The file may
contain alternative transcripts from the same gene. To identify
this, the fasta header may include the optional fields gene and
transcript. In the absence of this, the only stored value is the
name derived from the header, going from the ’>’ character to the
first space on the line (Listing 4.4).

Listing 4.4: A fasta entry on of the gene set.

1 >Traes_5BL_3FC5BA305 .1 cdna:novel scaffold : IWGSC2 :
IWGSC_CSS_5BL_scaff_1082268 :5:199: -1 gene:
Traes_5BL_3FC5BA305 transcript :
Traes_5BL_3FC5BA305 .1

2 TGCTGCTGCTAGGCTTGAAGAGGTTGCTGGCAAGCTCCAGTCTGCTC
3 GGCAGCTCATTCAGAGGGGCTGTGAGGAGTGCCCCAAGAACGAGGAT
4 GTTTGGTTCGAGGCATGCCGGTTGGCTAGCCCAGATGAGTCAAAGGC
5 AGTAATTGCCAGGGGTGTGAAGGCAATTCCCAACTCTGTGAAGCTGT
6 GGCTGCA
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homoeologues A file containing the homoeologues for the A, B and D
genomes. Currently these are the only supported default names.
The file also includes a column with the gene name and to which
Group (ie 1, 2, 3 ... 7) and Genome (ie A, B or D) it belongs (Table
4.8).

expVIP includes several tasks to load the different files. For example,
to load the factors the load_data:factor starts a transaction (Listing
4.5; line 2) to ensure that all the data is loaded, and if for some reason
the load fails, the database is restored to the previous status. In the
transaction, the file is read row by row using the csv library (line 3).
The function find_or_create_by is a function that RoR provides on
models to create an entry in the table, or update it if already exists.
Each row is used to create or update a Factor (lines 374-376). A similar
strategy is used for all the files that are regular tables.

Listing 4.5: Task that loads factors

1 task :factor , [: filename ] => : environment do |t, args|
2 ActiveRecord :: Base. transaction do
3 CSV. foreach (args [: filename ], : headers => true , :

col_sep => "\t") do |row|
4 factor = Factor . find_or_create_by (: factor =>row["

factor "], : description =>row["name"], :name=>
row["short"])

5 factor .order = row["order"]. to_i
6 factor .save!
7 end
8 end
9 end

The gene sets are loaded slightly differently, as the input is a fasta
file, as opposed to tabular file. The reader for the FastaFormat from
BioRuby (Goto et al., 2010) is used to read the file (Listing 4.6; line 4).
Since expVIP only records the name of the genes, only the id of the fasta
sequence is extracted (lines 6-79). The name is stored in the name and
cDNA columns. The parser for entries from Ensembl, such the one in
Listing 4.4 include code to load the cDNA and transcript fields correctly.
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Listing 4.6: Task that load genes from a fasta file

1 task : de_novo_genes , [: gene_set ,: filename ] => :
environment do |t, args|

2 ActiveRecord :: Base. transaction do
3 gene_set = GeneSet . find_or_create_by (: name=>args [:

gene_set ])
4 Bio :: FlatFile .open(Bio :: FastaFormat , args [: filename

]) do |ff|
5 ff.each do |entry|
6 arr = entry. definition .split (/\s+/)
7 name = arr [0]
8 g = Gene.new
9 g. gene_set = gene_set

10 g.name = name
11 g.cdna = name
12 g.save!
13 end
14 end
15 end
16 end

There are two options to load the expression values from the data-
base: a matrix with all the expression values and running Kallisto from
expVIP.

The task in Listing 4.7 loads the expression values from a tabular file
with the genes as rows and the values as columns. The exception handling
and messages are removed The task requires the following arguments:

meta_experiment. A name for the analysis. This can be the name of
the tool used for the expression quantification combined with the
name of the reference, as a single text variable.

gene_set. The reference used for the analysis.

value_type. The unit of the file (ie. TPM, count)

filename. The file that is going to be loaded in the database.

The steps to load the values are:

1. A transaction is initiated at the beginning of the task, to ensure
that if any step fails and the execution is aborted the database will
stay in a consistent state (Listing 4.7; line 2).
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2. The connection is assigned to the variable conn, to be able to ex-
ecute queries directly to the database (line 3).

3. The meta_experiment, gene_set and value_type are loaded and
stored to get the corresponding IDs in the insertion (line 4).

4. All the Genes and Experiments are loaded in their corresponding
hash table, to be able to get the IDs when the actual values are
inserted (lines 7-11).

5. The file is read with the CSV library from Ruby, keeping the headers
to be able to assign the correct experiment (line 14).

6. The first column is named target_id and contains the gene name.
The ID of the gene in the database is retrieved from the previously
loaded hash (lines 15-16)

7. Each column is iterated and the values needed to execute the in-
sertion to the database are concatenated.

8. Whenever the number of queued insertions reaches 1,000, the com-
mand to perform the insertions is executed (line 25).

9. As the number of genes is not usually a multiple of 1,000, when
the process finished reading the file an extra insertion is executed
to empty the queue (line 30).

The decision to execute the insertions in batches of 1,000 objects is to
reduce the number of processes running in the database, while keeping
low the memory usage of the application. This approach is faster than
using the functions for insertions RoR on multiple values. For trivial
operations, the functions from the framework are used, as they are easier
to maintain (compare insertion in line 4 to the block of code from line
18 to 26).
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Listing 4.7: Task to load the expression values from a tabular file.

1 task :values , [: meta_experiment , :gene_set , :value_type ,
: filename ] => : environment do |t, args|

2 ActiveRecord :: Base :: transaction do
3 conn = ActiveRecord :: Base. connection
4 meta_exp = MetaExperiment . find_or_create_by (: name=>args

[: meta_experiment ])
5 gene_set = GeneSet . find_by (: name=>args [: gene_set ])
6 value_type = TypeOfValue . find_or_create_by (: name=>args [:

value_type ])
7 experiments = Hash.new
8 meta_exp . gene_set = gene_set
9 genes = Hash.new

10 Gene. find_by_sql (" SELECT * FROM genes where gene_set_id
='#{ gene_set .id}'").each {|g| { genes[g.name] = g.id
}

11 Experiment . find_each {|e| experiments [e. accession ] = e.id
}

12 count = 0
13 inserts = Array.new
14 CSV. foreach (args [: filename ], : headers => true , : col_sep

=> "\t") do |row|
15 gene_name = row[" target_id "]
16 gene = genes[ gene_name ]
17 row. delete (" target_id ")
18 row. to_hash . each_pair do |name , val|
19 val = val.to_f
20 str = "(#{ experiments [name ]} ,#{ gene },#{ meta_exp .id

},#{ value_type .id},#{ val},NOW (),NOW ())"
21 inserts .push str
22 end
23 count += 1
24 if count % 1000 == 0
25 sql = " INSERT INTO expression_values (` experiment_id

`,`gene_id `, `meta_experiment_id `, `
type_of_value_id `, `value `,`created_at `, `
updated_at `) VALUES #{ inserts .join(", ")}"

26 conn. execute sql
27 inserts = Array.new
28 end
29 end
30 sql = " INSERT INTO expression_values (` experiment_id `,`

gene_id `, `meta_experiment_id `, `type_of_value_id `,
`value `,`created_at `, `updated_at `) VALUES #{ inserts
.join(", ")}"

31 conn. execute sql
32 end
33 end
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Figure 4.7: Steps to run and load
Kallisto

Alternatively, expVIP can execute
Kallisto on all the samples loaded
in the database. For this pur-
pose, expVIP stores the raw reads in
FastQ format, organised in director-
ies named with the same accessions
as in the metadata (ie a directory
named DRR003148 contains the reads
for the metadata displayed in table
4.5). expVIP takes all the accessions
for the experiments in the database
and searches for the corresponding
folder. If the folder exists and if it con-
tains the fastq files, then it is deemed
as valid. If the folder already has the
Kallisto output, the next folder is
evaluated, otherwise Kallisto is ex-
ecuted with its default settings and
the results are loaded into the data-
base. This process is repeated for all
the accessions (Figure 4.7). This pipeline allows to populate the data-
base partially, in case that not all the experiments are ready from the
beginning.

New experiments can be added to the existing metadata file or to a
new file; the expVIP loading procedure then can be run again to update
the list of experiments and the corresponding expression values. This
design allows to keep the database updated as more experiments become
available. The fact that the loading is done in transactions ensures that
the database is kept consistent, regardless of potential errors in the input
files.

4.5 Graphical interface

With the expression across experiments integrated in a single database,
the next challenge was to make the data accessible to a wide audience.
RoR has tasks to automate the construction of controllers and views from
the MVC metaphor, helping on the retrieval and formatting of the raw
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data. However, the main objective was to visualise the data from all the
experiments as intuitively as possible. To make the visualisation dynamic
in a browser, the use of JavaScript is necessary, as it is the only widely
adopted programming language used for web content. Among the tools
built on the top of JavaScript, D3 is a framework designed explicitly to
do dynamic visualisations (Bostock et al., 2011).

Usability was a top priority on the design of the visualisation com-
ponent for expVIP. The time needed to learn, performance are accuracy
were taken into account when designing expVIP. As memorability and
satisfaction are subjective, they were not directly tested for during de-
velopment.

Time to learn. The controls are located in two blocks, one for global
controls (ie. unit, save plot) and one to modify the factors, close
to the factor they affect (Figure 4.8).

Performance. All the data for the genes being displayed is loaded from
the database in a single transaction. The data is available in the
cache of web browser and whenever the user changes anything in
the visualisation, new values are calculated locally.

Accuracy. As knowing what the users will do is not obvious, the visu-
alisation was given to a panel of potential users (other members of
the Uauy lab) for comments. In previous versions the legends were
a confusing and the location of the buttons was too distant from
the aspect of visualisation that they controlled. After reviewing
the feedback, the accuracy was improved. Also, the position of the
controls don’t change, regardless of the representation of the data
(bar plot or heatmap).

The elements in the graphical are shown in Figures 4.9, 4.11 and 4.12,
with a description of each element of the GUI listed below.

1. Search box: at any point it is possible to type a new gene name
(based on Ensembl Plants nomenclature) and generate a new set
of expression data.

2. Compare box: it is possible to add a second gene and press the
Compare button to generate two expression graphs drawn at the
same scale.
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General information
General controls

Plot

Headers

Visualisation controls
Labels

Figure 4.8: expVIP Graphical User Interface components. The top bar shows a
short description of what is displayed. The General and Visualisation controls
contain the buttons and menus that enable the interaction with the figure.
The Headers, Labels and Plot are the actual components of the visualisation

3. Menu options: has several links on the details of the study and
tutorial. The menu can be edited to customise instances of expVIP.

4. Gene: shows the currently displayed gene, with a link to Ensembl
to the corresponding description.

5. Expression unit: selects the expression unit to visualise. This
can be either Transcripts per Million of mapped reads (TPM) or
estimated counts. If other units are loaded in the database, they
will appear in this field.

6. Save graph: these two buttons allow users to save the current
graphs in either SVG (to work on Adobe Illustrator) or as PNG
files. The export process selects the graphical elements from the
visualisation and binds them together on a single SVG file. The
reasons to follow this process are: to ensure that the plot reflects
the user selection; remove the elements that do not have a meaning
in a static context and; allow the user to format the image with
publication quality (Figure 4.10).

7. Save data: downloads a csv file with the data with the current
selection and order of factors as displayed on the screen. The data
will include the standard errors and the number of samples that
make up each value. An example of how the output looks is in
Listing 4.8.
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8. Homoeologues: this button displays the graphs of known ho-
moeologues of the original primary gene. This gene is highlighted
in bold and the homoeologous graphs will be displayed according
to A, B, D genome ordering. The scale of all the homoeologues is
the same to facilitate the comparison between them.

9. Gene names: each displayed gene is labelled on this block. If the
list of genes is too long, the gene names are rotated for readability.
In case that a gene name is too long to fit, the font is scaled to the
largest size that will fit in the designated area.

10. Expression level : the expression level adjusts according to the
expression of each set of gene homoeologues. The scale remains
consistent across homoeologues to allow comparison. The values
are based on the unit selected in the expression unit box (see point
5 above).

11. Filter : opens a pop-up window revealing the levels of the selected
category. By default, all the levels are selected, but the users can
decide to exclude from the visualisation experiments containing any
level. The order of the levels can be modified by dragging the levels
on the the pop-up window.

12. Display/hide category: Each category can be displayed or hid-
den by pressing the +/− button. As categories are added or
removed the expression graphs show the new values for the new
groups. Data is not removed when changing the displayed categor-
ies, instead the values are distributed according to the new groups
(the number of samples remains the same). The colours below the
category correspond to each level, and the plot is coloured accord-
ing to the sorting category.

13. Expression bars: These bars represent the expression level for
the n grouped samples according to the chosen categories (11 and
12 above). When hovering over the bar with the mouse a small
tooltip will appear, containing the expression level (tpm or counts)
and the standard error (sem) used for the error bars (see 14)

14. Error bars: Standard error of the means for the n expression val-
ues on which the bar graph is based.
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15. Factors: The colour of the rectangles represents the displayed cat-
egories, according to the selection criteria (11 and 12 above). To
clarify the meaning of the colour, hovering above the rectangle dis-
plays a tooltip with the long name of the examined level.

16. Description: Textual description of the grouped factors, accord-
ing to the selection criteria (11 and 12 above). The number of
grouped samples is also displayed.

17. Expression unit: For heatmaps, the default unit log2(tpm) as the
logarithmic scale provides a better context for comparisons across
several genes.

18. Heatmap: To compare several genes, the values are represented as
a heatmap. The sorting and filtering is done with the same controls
as for single genes. Up to 50 genes are displayed in the heatmap, as
more genes will degrade the performance of the database, and the
visual clutter makes the plot hard to interpret. This view allows to
visualise several candidate genes for a trait expressed under certain
conditions and quickly asses which one is a good candidate for
further research.

19. Scale: The scale is calculated according to the highest displayed
value in the current heatmap. Since logarithmic values below 1
result in negative values and anything with a TPM under 2 is con-
sidered as very low expressed, every value lower than 1 is plotted
as 0.

For a comprehensive user manual see Appendix C.
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Listing 4.8: Export data example, corresponding to the data plot in Figure 4.9

1 High level age seedling , vegetative , reproductive ,
2 High level stress - disease no stress , disease , abiotic , transgenic ,
3 High level tissue spike , grain , leaves /shoots , roots ,
4 High level variety Chinese Spring , other , Nullitetra Chinese Spring ,
5 tpm SEM tpm SEM tpm SEM
6 Traes_2AL_173FE664B .2 Traes_2AL_173FE664B .2 Traes_2BL_2141AFC9E .1 Traes_2BL_2141AFC9E .1 Traes_2DL_099F54442 .1 Traes_2DL_099F54442 .1
7 roots , vegetative , no stress (n=62) 4.96 0.99 1.77 0.49 2.08 0.47
8 roots , vegetative , abiotic (n=3) 7.26 1.95 3.00 0.13 2.85 0.66
9 leaves /shoots , vegetative , no stress (n=65) 1.59 1.50 0.91 0.55 0.87 0.56

10 leaves /shoots , vegetative , abiotic (n=3) 2.33 0.38 1.55 0.07 1.29 0.09
11 spike , reproductive , disease (n=30) 6.85 0.90 1.19 0.22 2.99 0.38
12 spike , reproductive , no stress (n=43) 6.01 1.67 1.32 0.43 2.58 0.81
13 grain , reproductive , no stress (n =147) 3.47 1.69 0.76 0.55 1.51 0.77
14 leaves /shoots , reproductive , transgenic (n=4) 2.15 0.40 0.88 0.18 1.11 0.25
15 leaves /shoots , reproductive , no stress (n=7) 2.69 0.67 1.37 0.89 1.30 0.62
16 leaves /shoots , seedling , disease (n=23) 3.25 1.50 0.85 0.71 1.64 0.72
17 leaves /shoots , seedling , no stress (n=13) 2.10 0.67 0.55 0.23 1.07 0.29
18 leaves /shoots , seedling , abiotic (n=12) 0.99 0.39 0.25 0.12 0.74 0.34
19 roots , seedling , no stress (n=2) 4.96 0.32 1.49 0.17 2.07 0.11
20 roots , reproductive , no stress (n=2) 5.06 1.46 1.62 0.32 2.10 0.14
21 spike , vegetative , no stress (n=2) 6.55 0.39 2.27 0.27 2.43 0.03
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4.6 Discussion.

4.6.1 Expression databases in wheat.

In model organisms there are several on-line resources that aggregate the
raw data and meta analysis of several expression studies. For example,
the Expression Atlas, from European Bioinformatics Institute (EBI), in-
cludes over 2,000 studies for Arabidopsis thaliana inclusive of other tech-
nologies besides RNA-Seq (ie Affymetrix expression arrays). For the
purpose of the discussion I will refer to www.wheat-expression.com as
expVIP as this is the wheat implementation of the pipeline. However,
when I started the development of expVIP the Expression Atlas only
included a couple of baseline experiments for wheat and WheatExp had
not been published yet (Figure 4.13).

WheatExp was developed roughly at the same time of expVIP and
contains 6 RNA-Seq studies (against 16 on expVIP; Pearce et al. 2015b).
Four of the studies in WheatExp are on hexaploid wheat and are included
in expVIP as well. In WheatExp, the expression for each gene is displayed
on the context of the original experiment, making it difficult to compare
across studies. However, because the studies are kept independently the
factors of each study are dependant on the study. WheatExp allows to
search genes by sequence, through a BLAST interface. This feature is
not yet implemented in expVIP but is a logical extension which will be
set up similarly to the work I’ve done on the www.wheat-tilling.com
blast search.

2012
Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul

2013 2014
Oct

2015 2016
Jul

Genome assemblies

Gene models

Wheat expression browsers

TGACv1 NRGene

expVIP

A. tushchii454 UK Survey

UCWMIPSv1 TGACv1MIPSv2.1 MIPSv2.2

IWGSC CSST. urartu
W7984

WheatExp

WheatExp

Figure 4.13: expVIP resources time line. In bold the line of the time for
development of expVIP and the annotation used. The Expression Atlas has
a line starting on the initial study deposited on it till the last update, as of
September 2016.

www.wheat-tilling.com
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The Expression Atlas from EBI, as of September 2016, contains 10
studies, 4 baseline and 6 for differential expression (Petryszak et al.,
2016). ExpVIP contains studies released before EBI started to upload
expression experiments for wheat. Even if some of the most recent studies
in the Expression Atlas are not included in expVIP yet, we are in the
process of updating our tool to include studies published after the initial
release. In terms of visualisation, the EBI Expression Atlas includes
a heatmap to compare to different factors at the same time for given
gene (ie. tissue vs stress); the same information can be displayed on
expVIP by sorting by two factors. The Expression Atlas currently uses
a similar gene set build as that implemented for wheat through expVIP
(IWGSC gene models). However, expVIP provides additional flexibility
as it allows users to update the different parameters. For example using
the Virtual Machine (detailed below) users can implement the pipeline
using a modified or extended gene build. Likewise we have implemented
expVIP for the recently released TGACv1 gene models which are now the
community standard and available through Ensembl Plants. We plan to
allow users to search for the original IWGSC CSS gene models or the new
TGACv1 models using a drop down menu. When the final gene models
are developed based on the NRGene assmebly a similar approach will be
pursued. Retaining all three datasets (IWGSC, TGACv1, NRGene) will
allow the community to have a smooth transition as data can be queried
based on the different gene model names. This flexibility is not available
in WheatExp nor in Expression Atlas.

4.6.2 Quantification of RNA-seq reads.

Most of the RNA-Seq studies report their results in terms of Reads Per
Kilobase of transcript per Million of mapped reads (RPKM). This nor-
malisation, which is computed for each feature g in the reference G,
requires the count of the number of reads rg, the feature length flg and
the total number of mapped reads R (Figure 4.14; equations 4.1 and 4.2
Mortazavi et al. 2008). As the denominator of 4.2 is based on the number
of mapped reads rather than the number of nucleotides covered, RPKM
does not allow to compare correctly results obtained between different
samples, or even results from the same sample when the average read
length changes due to variations in the experimental protocol (Wagner
et al., 2012). This is relevant for example in the case of the data in
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RNA-Seq reads

Figure 4.14: Units used for expression normalisation

WheatExp which includes studies with 101 bp paired end data and 50
bp single end data. Using RPKM as is implemented in WheatExp (and
EBI Expression Atlas), this data is not treated differently.

R =
∑
g∈G

rg (4.1)

RPKMg = rg × 109

flg ×R
(4.2)

The TPM is an alternative to RPKM that approximates the total
number of transcripts T as a normalisation factor (equation 4.3). Besides
the previously described parameters, the TPM also includes the read
length rl, which is dependent on the study. This formula assumes that
each read corresponds to a full observed transcript (equation 4.4; Wagner
et al. 2012).

T =
∑
g∈G

rg × rl
flg

(4.3)

TPMg = rg × rl× 106

flg × T
(4.4)

One of the aims in developing TPM was to be able to compare samples
from different studies; as it is more stable across different experiments
(Wagner et al., 2012), we decided to use it as the main unit of comparison
in expVIP. After we took the decision of which unit to use, we found
a couple of tools, Kallisto (Bray et al., 2016) and Sailfish (Patro et al.,
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2014), that could calculate the TPMs directly from mapping the reads to
a reference (sometimes referred as pseudo-aligner, but the logic behind is
closer to a mapping function than actually aligning), without producing a
precise alignment. The main advantage of only doing mapping, without
aligning is a significant reduction in both the computational resources
and the time needed to analyse a sample.

The traditional pipeline to quantify expression from RNA-Seq con-
sists on the following steps:

1. Index the reference. Only done once, as the same index can be used
for all the samples.

2. Align the reads to the reference.

3. Sort the alignment and remove duplicates.

4. Quantify the expression.

This is the prevailing pipeline for expression analysis. In my experience,
on a computing cluster it takes between 6 to 8 hours to process each
wheat sample on a computing cluster, using multiprocessing and up to
24 GB of RAM (Figure 4.15a). This pipeline is usually implemented by
aligning the reads with BWA (Li and Durbin, 2009) or Tophat (Trapnell
et al., 2012) and the quantification is performed with tools like HTSeq
(Anders et al., 2015) or cufflinks (Trapnell et al., 2012).

An advantage of using a mapper is that the quantification pipeline is
shorter:

1. Index the reference. Only done once, as the same index can be used
for all the samples.

2. Map the reads to the reference and quantify the expression in a
single program.

Since mapping does not require the precise alignment of every single
base on the read and the output is only the quantification for each gene,
as opposed to the alignment of each read, the programs implementing
mapping take around 15 minutes to run on a 6 GB RAM computer. This
amount of memory is now available on desktop computers, making this
analysis more accessible for groups that do not have access to an High
Performance Computing (HPC) cluster. RNA-Seq mapping algorithms
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Figure 4.15: Alignment vs mapping pipelines for RNA quantification. (a)
Alignment pipeline. (b) Mapping pipeline.

are implemented by Kallisto (Bray et al., 2016) and Sailfish (Patro
et al., 2014).

I decided to integrate Kallisto into expVIP because the algorithm
is able to walk through different splicing junctions via a T-DBG (see
Section 4.1.4; Bray et al. 2016), as opposed to Sailfish, which is based
on counting k-mers only (Patro et al., 2014). Since homoeologues with
a high level of identity may form a bubble in the graph, in a similar
way to small indels or SNPs (Leggett et al., 2013), Kallisto should
be able to assign the reads to the correct k-compatibility class for their
corresponding homoeologue.

4.6.3 Next steps in wheat expVIP.

Some features that could improve expVIP in the long term and that
already present in other expression browsers would include searching by
sequence, by gene ontology and a heatmap of a particular gene displaying
two different factors on each axis . A feature that expVIP could leverage
from other genomic resources is the retrieval of genes flanking a gene of
interest, or between genetic markers. The upcoming assemblies , from
the IWGSC (Clark, 2016) and TGACv1 (Pozniak, 2016) with longer
scaffolds in conjunction with the high resolution genetic maps from Wang
et al. (2014) and Chapman et al. (2015) can enable such kind of queries
(resources described in Section 1.4). Likewise, once the NRGene sequence
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is annotated, it will be possible to generate this information which will
be extremely useful to refine candidate genes for QTL or in positional
cloning projects.

For the TGACv1 assembly, an improved wheat annotation was made
available after the initial release of expVIP (Figure 4.13). The Inter-
national Wheat Genome Sequencing Consortium (IWGSC) is currently
working on developing an updated annotation based on the new NRGene
assembly. In the near future, expVIP will be updated to include those an-
notations and some development will be needed to allow the comparison
between annotations, at least while the community adopts a canonical
reference.

4.6.4 Comparisons within and between species.

The same mechanisms to compare expression between different refer-
ences can be used to compare the expression between different organisms.
However, the current implementation uses the homology table with one
column for each genome group in hexaploid wheat (A, B, and D; Figure
4.16a). To be able to allow the inclusion of different polyploids with dif-
ferent genome names, to compare homologoues and paralogues effectively
and to add any arbitrary relationship between genes, the homoeologues
table needs to be updated. Instead of representing triplets, the table
should contain binary relationships; each gene pair will have a type to
be able to distinguish between relationships. Furthermore, each gene set
should be linked to a species. With that explicit relationship, equivalent
genes from the same species, but coming from different gene models can
be identified. Likewise, genes known to be conserved across relatives (ie
Barley vs Wheat genes) can be compared through these modifications to
the database (Figure 4.16b).

To the best of my knowledge, none of the expression browsers avail-
able for wheat, or other polyploid species, allow the direct comparison
between homoeologues. However, the effect of different related genes is
a topic of active research in polyploids. Making the relationship of the
expression between related genes easily accessible can provide some ini-
tial evidence of having an uniform expression across homoeologues or of
a triplet with a dominant gene. Likewise, when the update to the table
that keeps arbitrary relationships between genes is completed, it will be
possible to find if related genes have a conserved expression pattern across
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(a)

GenesGene Sets

homoeologues

species

(b)

GenesGene Sets

related pair

species type of 
relationship

Figure 4.16: Changes to improve gene comparisons. (a) Current implement-
ation of homoeology. (b) Proposed implementation to extend the types of
relationships between genes.

species. To achieve this though it will be critical that the metadata uses
common nomenclature across species. For example, proper plant onto-
logy (Cooper et al., 2013) terms should be implemented in the metadata
to be able to conclude that expression patterns are conserved across the
same tissue and developmental stage in different species. This is not a
trivial undertaking but a new PhD project at Earlham Institute (EI) is
looking in ways to facilitate this feature.

4.6.5 An open access resource.

Since its conception, I wanted expVIP to be open source and avail-
able to the community. As part of the project, I released the visual-
isation component as a BioJS component (bio-vis-expression-bar;
http://biojs.io/d/bio-vis-expression-bar; Yachdav et al. 2015).
In a collaboration with the Earlham Institute and eLife, another PhD
student is working to integrate the visualisation plugin as a live figure.
If I had kept the code closed, this potential use of the component would
have never happened.

The webserver is also open and hosted on github (https://github.
com/homonecloco/expvip-web), with a tutorial on how to load the data
on a personal server (Appendix C). As the quantification tool used by
expVIP has a relatively low memory requirement, I was able to prepare
and preconfigure two virtual machines, one without any data loaded and
one with all the data used in the original article.This allows the compar-
ison of private projects in the context of previous studies. On the Norwich
Research Park, at least two groups are actively on using expVIP to make

http://biojs.io/d/bio-vis-expression-bar
https://github.com/homonecloco/expvip-web
https://github.com/homonecloco/expvip-web
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their data available to the community on other species. We had also been
contacted by both the team behind the annotation of TGACv1 and the
IWGSC NRGene assembly to include the upcoming annotations to the
public instance of expVIP.

The public server at http://www.wheat-expression.com has re-
ceived visitors from the majority of the wheat research institutes around
the globe (Figure 4.17). Since March 2016, when the Google analytics
tracker was setup in the website, over 1,921 users have visited the site.
Most of the users are based in the UK (34%), and within the nation the
majority of the traffic originates from Norwich, Cambridge, Harpenden,
London and Dundee. Those cities have research institutes that work on
wheat, so it is very likely that the users are real. Most of the interna-
tional users are coming from the US, China, Australia, India, Germany
and Canada. In those countries, most of the visitors also come from cit-
ies where wheat institutes are based (i.e. Perth, Ludhiana, Quedlinburg
(IPK), etc). Furthermore, around half of the sessions stay on the website
to access either the the individual genes or the heatmap with an average
session duration of over 4:30 across the >3,500 sessions. Around 25% of
the sessions consult their genes using the heatmap, suggesting that they
have a list of candidate genes for a trait of interest to select by comparing
their expression.

Overall, expVIP has met its aims (Section 4.1.2). I designed a re-
lational database capable of storing several RNA-Seq experiments with
their corresponding metadata. The expression analysis has been auto-
mated, to facilitate the process of running Kallisto, the selected quantific-
ation tool. The stored data can be visualised to compare the expression
across several conditions, and the visualisation tool allows the arbitrary
grouping and selection of studies. Finally, the open source code and the
virtual machines facilitate the adoption of expVIP on other communities,
not necessarily working on wheat.

http://www.wheat-expression.com
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Chapter 5

General discussion and final
remarks

Knowledge from computer science can be applied to produce software for
specific needs, and which can also be useful for the community. One of
the limitations though is that most approaches are developed for diploid
systems and are sometimes not compatible with polyploid species, such as
wheat. Polyploidy adds an extra level of complexity (due to homoeologs)
and in the case of wheat the large genome size also hinders certain ap-
proaches to genome analyses. Therefore bespoke tools are required to
deal with these barriers.

In this thesis we have taken advantage of technological developments
and in genomic resources to generate a series of solutions to several of
the problems associated with polyploidy. These methods and approaches
are not restricted to wheat, but can be applied and implemented to other
polyploid systems. Diploid species with recent whole genome duplication
events (such as Brassica rapa and B. oleracea; Cheng et al. 2014) present
similar issues surrounding closely related gene copies and the methods
and approaches developed here are likewise applicable.

I have discussed individual the elements of project at the end of each
chapter. However, looking forward my interest is to integrate this data
into a single scheme. I outline this in Figure 5.1 and discuss it below.

149
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5.1 Integration of different genetic maps

Genetic maps are a common starting point to search for a locus linked
to a trait, both for breeders and academic researchers. For example,
in Chapter 3 previous genetics maps had already identified the short
arm of chromosome 1B as the locus for Yr15 (Murphy et al., 2009).
Furthermore, I was able to confirm an enrichment of SNPs linked in
the expected region thanks to the mapping of the markers included in
the genetic map from Wang et al. (2014) to the CSS scaffolds (Mayer
et al., 2014). Since my initial analysis, other genetic maps with a higher
resolution have been published (Chapman et al., 2015; Allen et al., 2016;
Winfield et al., 2016) and these could be further integrated in future
analyses. The relationship between the tables used in the genetic map is
shown in Figure 5.2

Genetic maps are produced from the genotype of a population with
several markers (marker sets). Those markers can be developed explicitly
for the genetic map or from an already published marker set, usually in
the form of an SNP array. A database containing several genetic maps
should be able to distinguish the origin of the used markers. However,
a genetic map may contain markers from several marker sets as well.
For those reasons, a genetic map is not connected directly to a marker
set, but the relationship is maintained through the markers and their
position in the genetic map. For example in Simmonds et al. (2014), the
genetic map across a target locus includes microsatellite, diversity array
technology (DArT), CAPS, and SNP array derived KASP markers.

SNPs Scaffold

Marker

Genetic Map Map position

Marker Set

Marker Details

Scaffold_marker

Primer setPrimer type

Chromosome

Figure 5.2: Tables to store information about genetic maps.
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To be able to use the genetic markers in a genomic context, the se-
quence of the markers must be mapped to a reference. The assembly may
be in a single pseudomolecule (such as the new NRGene assembly) mo-
lecule or be separated in scaffolds (such as the IWGSC CSS or TGACv1
assemblies). If the assembly is fragmented, the map can be used to an-
chor the scaffolds to a genetic position. If the assembly consist of long
scaffolds the genetic map and the positions can be used to find if the
lines used for the map have a rearrangement event. If a rearrangement is
present, the collinearity between the genomic reference and the genetic
map is not conserved. Having the markers and scaffolds in the database
simplifies this kind of analysis, as all the needed data is readily available.
This will prove important as new genome references become available for
a diverse set of wheat varieties as well as high density maps for large
mapping populations. For example, Earlham Institute (EI) are currently
re-sequencing Avalon and Cadenza, two important lines in many UK vari-
ety pedigrees. A large Doubled Haploid (DH) population from these lines
is available and several high density genetic maps have been made from
different Single Nucleotide Polymorphism (SNP) arrays (Winfield et al.,
2016; Allen et al., 2016). It will be fascinating to see how the integration
of these high density maps and the long range scaffolds produced by the
EI genomic assemblies will help elucidate local rearrangements which are
proposed in this population (Allen et al., 2016).

Furthermore, PolyMarker (Chapter 2) has been used to design KASP
assays for most of the primers in the 90k (Wang et al., 2014) and 820k
Winfield et al. (2016) SNP arrays. The primers for the assays can be
integrated in the database. This allow a use case were known flank-
ing markers are queried and the database can return a list of possible
markers with the primers already designed to be validated on a mapping
population. This is now routinely done in many labs based on personal
communications. The general approach has been used in Simmonds et al.
(2014) who genotyped NILs with the SNP assays. After identifying poly-
morphic markers these had to be manually converted into KASP assays;
the delay in designing primers in this study inspired in part the devel-
opment of PolyMarker. Similarly, many labs routinely use RNA-Seq
for SNP discovery and spend several weeks or months in primer design
(Shatalina et al., 2013). Discussions with this group and others also sup-
ported the need to rapidly convert in silico SNP data into functional
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SNPs 

Scaffold Marker

Chromosome Assembly Scaffold_marker

Region

Features

Feature type

biotype

Gene

Scaffold mapping

Species

Figure 5.3: Tables to store information about genome assemblies and their
annotation.

individual SNP assays. PolyMarker has largely succeeded in removing
this important bottleneck.

5.2 Integration of different genome refer-
ences.

The efforts to produce a wheat reference genome had been focused on
the Chinese Spring (CS) landrace. CS is only cultivated as a research
line, as it is susceptible to several pathogens and its yield is inferior to
modern varieties. The reason for CS to be the selected cultivar to be
sequenced as reference is historic: it has long been a variety for research.
CS was originally chosen because it was able to cross with rye. It has
also been used to produce lines with chromosomic aberrations, useful to
find if any particular chromosome is responsible for certain traits (Sears
and Miller, 1985). Figure 5.3 includes the tables used to store assemblies,
the relationships between them and their annotation.

New assemblies are required to address the shortcomings of the use
of CS as a genome reference and to include the diversity from other lines
(Allen et al., 2016; Winfield et al., 2016). The assemblies may include
their own annotation, and that should be reflected in the database too.

As of September 2016 there are four sets of genomic sequence used
by the wheat community:

1. A 454 whole genome shotgun sequence that is unassembled, and
each read is treated as a scaffold (Brenchley et al., 2012).



CHAPTER 5. GENERAL DISCUSSION 154

2. The genome assembly and annotation from the Chinese Spring
Chromosome arm survey sequence (CSS) done by the IWGSC (Mayer
et al., 2014).

3. A whole genome shotgun sequence from a synthetic wheat, without
a corresponding annotation (Chapman et al., 2015).

4. The whole genome shotgun sequencing and annotation from CS
(TGACv1; Clark 2016).

All those references can be aligned to each other to find corresponding
regions. The corresponding regions can be stored in the scaffold map-
ping table. Furthermore, the scaffolds can be mapped to related species,
such as Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and
Hordeum vulgare to find syntenic blocks.

Each genome assembly is usually annotated with their genes and other
features. To include the annotation, each scaffold can contain several
features. As some features consist on sub-features, like genes conformed
by several exons, a recursive relationship is included in the features tables.
With the support of the scaffold mapping, the different annotations can
be projected on different references. Gene models, like the ones described
in (Krasileva et al., 2013), and genetic markers can be aligned to any of
the reference genomes.

With all those relationships available, the In silicomapping in Chapter
3 could be produced on several references at once. Also, the relationship
between different gene models could be simplified, as the correspond-
ing features will share coordinates. Likewise, the co-expression of genes
located in the same region is an useful feature for expVIP (Chapter 4).
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5.3 Integration of expression data and bey-
ond

A database to integrate expression studies was developed for expVIP
(Chapter 4). I designed the database to be as extensible as possible,
already with the idea of having an integrated database for different types
of resources for wheat. To better unify expVIP with the rest of the data-
base, the experiments can be assigned to a particular library. In that way,
when the RNA-Seq experiment is used for SNP calling, a relationship for
it will be available. A more comprehensive discussion of the tables in
Figure 5.4 is found in Chapter 4.

On Chapter 3, I described how RNA-Seq can be used as a reduced
representation method to call for SNPs. However, RNA-Seq is primarily
used to analyse differential expression, which can be used to find candid-
ate genes involved in a trait. Other studies have shown that it is possible
to do differential expression and SNP calling to improve the candidate
genes linked to a trait (Lopez-Maestre et al., 2016). On the current
design of the database it is possible to integrate both types of analyses
(Figure 5.5). Because the database is able to integrate previously pub-
lished studies from different source, it is possible to link the expression
to variations previously explored.

The effect of the SNPs can be predicted with tools like snpEFF (Cin-
golani et al., 2012) or Ensembl VEP (McLaren et al., 2016). I have imple-
mented this part of the database for the http://www.wheat-tilling.
com website, which contains all the mutations, their effects and primers
(see Section 2.3.2) described in Krasileva et al. (submitted 2016). Cur-
rently the database in the tilling website doesn’t include any information
regarding the expression. Hence, to see if a mutation is in a gene differen-

GeneSetGene Species Linehomoeologue pair

LibrarystudiesMeta 
Experiment

expression 
values

Experiment Experiment 
Grouptype of values Factors

Figure 5.4: Tables to store information about gene expression.

http://www.wheat-tilling.com
http://www.wheat-tilling.com
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tially expressed requires a separate visit to www.wheat-expression.com
(Chapter 4). If the two databases were merged as proposed, it would be
possible to have a query to find all the SNPs in genes that are differen-
tially express under certain conditions. Moreover, this integration would
allow users to query for specific mutations which result in truncations in
all differentially expressed genes in a given chromosome interval.

To increase the available information, the SNPs and the correspond-
ing alleles for lines with a known genotype can be added to the database.
Several varieties had been genotyped with the 820k (Winfield et al., 2016)
and 90k (Wang et al., 2014) SNP arrays, as well as with exome capture
methods (Jordan et al., 2015). Despite being publicly available in Cer-
ealsDB, the size of the datasets require specialised bioinformatic know-
ledge, as regular spreadsheet software is unable to load all the information
and stay responsive. For that reason, a database to query this datasets
would be valuable by itself. However, integrating the marker informa-
tion on the general database can be useful to validate if SNPs called for
a studied line are consistent with the expected genotype. This kind of
validation of the variety of the sample has been done with custom scripts
in (Hubbard et al., 2015). In addition the integration of SNP data across
the more contiguous physical sequence now available allows long-range
haplotypes to be established.

Finally, the coverage of certain regions can be stored as counts for
the expression analysis, or to analyse the copy-number variation. On the
same mutant population I have developed an algorithm to detect homo-
zygous deletions from exome capture. Since the sequencing is incomplete,
finding the exact location where a long deletion starts is difficult. How-

Gene SNPs Library BAM fileEffect Library

MutationScaffoldRegionFeatures

SpeciesGeneSet Lineexpression 
values

Region coverage

Allele

Figure 5.5: Relationship of different types .

www.wheat-expression.com
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ever, the relative coverage of the exon can be used as a proxy for the
deletion. We have proved that for homozygous deletions this approach
works (PolyInDel; Section 2.4.1; Krasileva et al. submitted 2016). In
the future, I would like to extend the algorithm to detect copy number
variations. Storing the coverage at the exon level in the database, along
with the annotation of the deletions, provide another set of candidate
genes if the phenotype of a line is known.

Overall, having a single database with different types of genomic and
genetic data, alongside with a reliable annotation can simplify functional
genomics.

5.4 Integration of sequencing experiments
and genetic maps

Genomic data by itself is a valuable resource that can help to find SNP
markers, differential expression under different condition and structural
variation of the genome. However, it is not the only available tool for
crop scientist and breeders to improve wheat. Genetic maps and their
associated markers had been used to identify locus linked to traits and
for selective breeding, as described in Chapter 3.

Another source of candidate genes is synteny with relative species
(Moore et al., 1995). Both Brachypodium distachyon and Hordeum vul-
gare can be used as models for wheat as they are closely related diploid
organisms with a small genome size (Brachypodium) or a more advanced
genome sequence (barley; full genome sequence submitted a few weeks
ago). In the case of barley, the seven chromosomes are mostly collinear
(Rustenholz et al., 2010) with each of the wheat genomes (A, B and D).
To take advantage of this relationship, the wheat genetic maps can be
linked to genes in more than one species (Figure 5.6). In personal com-
munication with other members of the Uauy group I became aware that
it is possible to test the effect of a candidate gene on a related diploid
species, where the effect of a change in a single gene can not be hidden
by homoeologues genes, as happens in wheat.

With a candidate gene tested in a related species, the syntenic rela-
tionships can be added as supporting evidence for results coming from
different datasets. For example, if a gene of unknown function is found to
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MarkerChromosome Scaffold_marker Effect 

SNPs Map position Syntenic positionGenetic Map expression 
values

GeneSpecies ScaffoldAssembly GeneSet

Figure 5.6: Tables to store information about gene expression, SNPs and their
effects, assemblies and, genetic maps.

contain a SNP which leads to a premature termination codon, it can be
compared to the corresponding gene in barley, which may have a known
function. Since the gene is mapped to a scaffold, and the scaffold is loc-
ated in a genetic map, it is possible to validate if there are any QTLs
for the same function observed in barley. This can be logically extended
to better characterised species like rice and can be updated with new
information on genes as this becomes available.

5.5 Integration with other services

Currently, the publicly available wheat resources are scattered as sup-
plemental materials on their corresponding publication or available as ad
hoc systems focused on a particular field. For example Ensembl has two
different views for every organism: from the genomic point of view and
from the expression data. The Collaborative Open Plant Omics (COPO;
Davey et al. 2015) is trying to integrate different sources and types of
data by connecting the data providers. This approach requires the co-
operation of the service providers, which have their own view of what is
important. I believe that in order to effectively integrate the resources it
is necessary to understand how the users are likely to interact with the
data.

In order to increase the exposure of PolyMarker (Chapter 2) and
expression Visualisation and Integration Platform (expVIP) (Chapter 4),
an integration with other online resources is necessary. So far, expVIP
links to Ensembl to get the details of a displayed gene. However, there
is no link back from a gene in Ensembl to expVIP. To address this it
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should be possible to contact Ensembl to link back, but it may require a
custom interface between both sites. This requires an active effort from
all the service providers. Initiatives like COPO try to reduce the friction
between data providers, by providing a common language between sites.
In the future, the proposed database and the webservices described earlier
should implement an interface to communicate with other databases.

5.6 Final remarks

I started my PhD with a strong computational background, but with a
limited knowledge of wheat genetics and breeding. When I was looking
for a PhD I wanted an interdisciplinary supervisory team, with a mem-
ber with bioinformatic background on one side, an one with a strong
knowledge of biology. Since I had previous experience with processing
sequencing data, the project led by Mario Caccamo and Cristobal Uauy
on using sequencing to improve wheat caught my attention.

On the first year of my PhD I did what at the time seemed as regular
bioinformatic analysis: aligning sequences and calling for SNPs. How-
ever, as the project of the mapping of Yr15 progressed I found out more
about genetics and how it is impossible to interpret sequencing data
without understanding the context surrounding the experiment (Chapter
3). As I got more involved in the genetic mapping project I took the op-
portunity to go and work in the lab to complement my bioinformatic
abilities. I was able to run the KASP assays I had designed and develop
the genetic maps for my publication. I also confirmed that the wet lab is
not my vocation, but I can better appreciate the work behind it. Also,
I found out that the level of uncertainty when doing the experiments in
the wet lab is higher than doing the computational analysis and the im-
portance of generating high-quality data interpretation before initiating
wet-lab work.

While working on the wet lab I figured out that some of the common
analysis can be automated, like the primer design. When I faced the pro-
spect of designing manually 50 primers to validate the SNPs and generate
a genetic map for Yr15 I thought that it is the kind of job that com-
puters can do faster with less mistakes. This led me to take the initiative
to make an automated pipeline to design primers in polyploid organisms
(PolyMarker, Chapter 2). To properly design PolyMarker I had to un-
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derstand the relationship between the three genomes of wheat and the
caveats of working with the CSS assembly, which I helped to assemble
before starting my PhD. That also changed my vision of bioinformatics.
I figured out that it is not necessary to have the perfect reference, or the
most sound method, if the resource you are producing is not accessible
to the target community.

It was around that time that I noticed that the number of available
resources for wheat was growing faster than the community could learn
how to use them effectively. For example, the development of a massive
number of markers can be used to produce high resolution genetic maps,
with the right population. However, the size of the tables represent a
problem to excel, one of the common tools used to organise tables. Hav-
ing a computational background I thought that the kind of queries that
could be done with those files could be implemented as a relational data-
base. At that point the CSS scaffolds were adopted by the community,
despite being relatively short, they enabled analyses that were impossible
before. I figured out that the high resolution maps could be used to give
some order to the scaffolds, and part of me wanted to make an improved
version of the scaffolding tool I worked on for the pig genome (Groenen
et al., 2012). However, the assembly didn’t have enough resolution to
produce a proper pseudo-molecule and other efforts were being carried
out to improve the assembly.

Nevertheless, the idea of integrating different types of data matured
enough as to start writing a prototype of the database. When discussing
with the group how to make available the public RNA-Seq samples de-
posited by the community I believed that I could leverage on part of my
design to power an expression browser. Originally, we thought on look-
ing for other open source expression browsers, but none of them had the
flexibility required to work on polyploids and they were designed with
model organisms in mind, with stable resources and conventions followed
by the community. So I decided to write the the expression browser that
eventually became expVIP (Chapter 4). For the visualisation I leveraged
on my previous experience developing BioJS components, as I worked
on a component to visualise BAM files in the browser, under the Google
Summer of Code in 2014.

During the last year I extended the database design and implement-
ation, as we required to display the data from the tilling population
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described in Krasileva et al. (submitted 2016). As the data grew in size
and complexity, a single table containing all the mutations with their
corresponding effects and primers was not enough. Since I already had
been developing a prototype of the database to simplify my own ana-
lysis when combining data sources, I thought it would be possible to
leverage on that code. However, the tables that would be useful for the
database were different to the tables I had developed already. At the
end, the combination of the expression and tilling databases, combined
with my initial prototype conform the relationships described in the final
discussion (this chapter).

After the four years of my PhD I became convinced that in order
to produce bioinformatic software that is powerful and usable it is a
requirement to understand both the biological processes to solve as well
as the computational methods and software development practices to be
be implemented.



Appendix A

Supplemental tables

A.1 PolyMarker supplemental tables.
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Table A.1: Validation of mutations on M4 on Cadenza

IWGSC contig Line Pos WT Mut Predicted M4 Primer 1 (Cadenza) Primer 2 (mutant) Common Primer

IWGSC_CSS_3B_scaff_10445294 Cadenza1772 6019 C T het het caggatAgtGggactgtcaaaG caggatAgtGggactgtcaaaA ggagacGGctGtggacatT
IWGSC_CSS_3DL_scaff_6955403 Cadenza1772 2418 C T het* hom tcagCggattgtcgggatG tcagCggattgtcgggatA tgtcCatgaaTcttgtccacG
IWGSC_CSS_4AL_scaff_7106846 Cadenza1772 11277 G A hom hom tgggatccatgcctacactG tgggatccatgcctacactA gatggtGgatttgccgctA
IWGSC_CSS_4AS_scaff_5991335 Cadenza1772 15710 G A hom hom ctggccctgcgctgctaC ctggccctgcgctgctaT gtggaaGttcagaaggaccaG
IWGSC_CSS_4BS_scaff_4956646 Cadenza1772 252 G A het* hom gcaggttgacttcccggaG gcaggttgacttcccggaA tGaggtacgaGcTaaagAaagC
IWGSC_CSS_4DS_scaff_1715962 Cadenza1772 1225 G A hom hom cagctgtggTatctcaactgG cagctgtggTatctcaactgA CcCtGaaACACcGtttggaT
IWGSC_CSS_5AL_scaff_2763407 Cadenza1772 2119 G A hom hom gcgacGaacctcgagatctG gcgacGaacctcgagatctA gaTggcaAtcgtCgtgcA
IWGSC_CSS_5AS_scaff_1548786 Cadenza1772 12625 C T het het AtaggcacattgctagactgaG AtaggcacattgctagactgaA ggattgggtgttgcacgC
IWGSC_CSS_5BL_scaff_10849226 Cadenza1772 2289 C T het* hom cctgacatcattgttcacgatC cctgacatcattgttcacgatT cactccgaggtgtccatgaT
IWGSC_CSS_5BS_scaff_2270737 Cadenza1772 2262 G A hom — attcCTgtgttgtggCaaatgaG attcCTgtgttgtggCaaatgaA taaGcacaaAccctccagctgG
IWGSC_CSS_1AL_scaff_3022915 Cadenza1661 891 C T hom hom ccacagtgagactcctattgaCG ccacagtgagactcctattgaCA atgtctgattcGtcGtagtcC
IWGSC_CSS_1AS_scaff_3297240 Cadenza1661 1970 C T het het catcccgccGtttcctcC catcccgccGtttcctcT gctcgccgatgaagagcT
IWGSC_CSS_1BL_scaff_3828996 Cadenza1661 1340 G A hom hom agccggatgttagtgttaacC agccggatgttagtgttaacT agcagcttgTcgcgttaaC
IWGSC_CSS_1DS_scaff_1884529 Cadenza1661 10575 G A hom hom aCagatacaAttgtcatgcaggC aCagatacaAttgtcatgcaggT acctgggTTgtccaatacttC
IWGSC_CSS_2AL_scaff_6318370 Cadenza1661 19142 C T het — cgtggcCgaatCtcGacG cgtggcCgaatCtcGacA ttcttgtgggagccgggC
IWGSC_CSS_2AS_scaff_5213460 Cadenza1661 1358 G A hom hom gtcacgaaCccgctcagG gtcacgaaCccgctcagA aggaaagagaggaaaagaGcG
IWGSC_CSS_2BS_scaff_5179331 Cadenza1661 5604 G A het het actctcgtcaagaactgatacaG actctcgtcaagaactgatacaA gcaGagaatgttcttgcaacT
IWGSC_CSS_2DS_scaff_5341235 Cadenza1661 4673 G A het het ggtgaggatctcggagctG ggtgaggatctcggagctA gcgcggtcgtacgagttG
IWGSC_CSS_3AL_scaff_4250995 Cadenza1661 7046 G A hom hom cCaagaaacgggtggtccaG cCaagaaacgggtggtccaA ctgcagctgtcccatcatcgT
IWGSC_CSS_3B_scaff_10404421 Cadenza1661 4303 G A het het ccttcgtcgaCaggacctG ccttcgtcgaCaggacctA GCcagtactCacAtgctctC
IWGSC_CSS_5DL_scaff_2390496 Cadenza1538 2125 C T hom het gcagttttatcctcagtagtcttgG gcagttttatcctcagtagtcttgA ttctgagaaTgtaatgtgcGatG
IWGSC_CSS_6AL_scaff_5753680 Cadenza1538 3920 C T hom hom tgctccaaatttgagcacaaTaaC tgctccaaatttgagcacaaTaaT aaatgcaaggggtaagtttttgT
IWGSC_CSS_6AS_scaff_4425792 Cadenza1538 4307 G A hom het agatgcttgtCggGccaG agatgcttgtCggGccaA gctgaagcaacgcgatcaaT
IWGSC_CSS_6BS_scaff_3003630 Cadenza1538 6933 C T het het ggcagtaatgtggtgctgagC ggcagtaatgtggtgctgagT tTgaCttctggtttggtggcA
IWGSC_CSS_6DL_scaff_3246988 Cadenza1538 9186 G A het het gctaaagaagagcttgagagaattC gctaaagaagagcttgagagaattT aatttctgaagagaggtgttgtatG
IWGSC_CSS_7AL_scaff_4480114 Cadenza1538 3446 C T het — gatatctcccacacggcgG gatatctcccacacggcgA tgagccactcttgcagtttT
IWGSC_CSS_7AS_scaff_4193541 Cadenza1538 8359 C T hom het agcaattctttggctatcaattagC agcaattctttggctatcaattagT tcatctGtcttaactctactgctG
IWGSC_CSS_7BL_scaff_6721572 Cadenza1538 9223 C T het het gctCagggaggaagacaagaaG gctCagggaggaagacaagaaA tgctatgaagaattccgacctC
IWGSC_CSS_7BS_scaff_3152545 Cadenza1538 3960 G A hom — tcagcaaaatcacctgcCgC tcagcaaaatcacctgcCgT gCtgccccatcatcgtttaT
IWGSC_CSS_7DS_scaff_3963838 Cadenza1538 2913 G A het het tCgttgcaagcCttTtgtgC tCgttgcaagcCttTtgtgT agaGttaTcaagcTactgtcacA
IWGSC_CSS_1AL_scaff_3903380 Cadenza1469 6193 G A hom hom ctcttcAgagatgaacgcgG ctcttcAgagatgaacgcgA tcGtGagatgGtggtttGTtA
IWGSC_CSS_1AS_scaff_3287728 Cadenza1469 3817 C T het* hom ccgaccaAttcactaaccgG ccgaccaAttcactaaccgA accctctttcccAgacatgaT
IWGSC_CSS_1BL_scaff_3815304 Cadenza1469 513 G A hom hom aacatttgcctTaCcaaaacGC aacatttgcctTaCcaaaacGT acacagcaagttataatgCAAgC
IWGSC_CSS_1DL_scaff_2266648 Cadenza1469 5926 C T het het caacatgagacacaacaccttC caacatgagacacaacaccttT gtcaacgcgtgaggattgtC
IWGSC_CSS_1DS_scaff_1906671 Cadenza1469 3697 C T hom hom tggTGtagacacttggcgaG tggTGtagacacttggcgaA catggcgaccaccAcctG
IWGSC_CSS_2AL_scaff_6337088 Cadenza1469 7334 G A het* hom acaatgccAagttgacaggttG acaatgccAagttgacaggttA gggagtgttggttCagaacaT
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IWGSC contig Line Pos WT Mut Predicted M4 Primer 1 (Cadenza) Primer 2 (mutant) Common Primer

IWGSC_CSS_2BL_scaff_7972799 Cadenza1469 8995 C T het hom gTgCtcctcGgcatccttC gTgCtcctcGgcatccttT gatccgGgcaaactacgTG
IWGSC_CSS_2DL_scaff_9832343 Cadenza1469 3262 G A het het TtgtctaAcagcacCGcagG TtgtctaAcagcacCGcagA agatctcggtcagcctttcT
IWGSC_CSS_2DS_scaff_5327939 Cadenza1469 3889 G A het het ttttTgccttatgtgactctagtaC ttttTgccttatgtgactctagtaT gaggccatcacagatagcG
IWGSC_CSS_3B_scaff_10395219 Cadenza1469 1292 G A hom — aggtgcttgtgcttgctgG aggtgcttgtgcttgctgA cctcttctgggggctttataC
IWGSC_CSS_3B_scaff_10592217 Cadenza0580 2994 C T het — acagcagtatcaagcccctC acagcagtatcaagcccctT tgatactgttgTggCggagG
IWGSC_CSS_3DS_scaff_2596771 Cadenza0580 1037 G A het het tggttatgCAcaggataatCagG tggttatgCAcaggataatCagA tggcaaatgtgatgtcattaggT
IWGSC_CSS_4AL_scaff_7093953 Cadenza0580 9881 C T hom hom GacaggaagccggtaacaC GacaggaagccggtaacaT ctccAgcaggcatgggaT
IWGSC_CSS_4BL_scaff_7037448 Cadenza0580 1837 C T hom hom CgttgaaaaGctgcaagaacttaaC CgttgaaaaGctgcaagaacttaaT cagttcttccTtCaGagcagataT
IWGSC_CSS_4BS_scaff_4929479 Cadenza0580 10668 G A hom — tggattttcccgcactgttC tggattttcccgcactgttT gtaaacaaggcatttcaagagtcA
IWGSC_CSS_4DL_scaff_14359838 Cadenza0580 1408 G A hom — gCtcAttcagggatTGTcCtaTatG gCtcAttcagggatTGTcCtaTatA tgaCagaacagttggtcatacT
IWGSC_CSS_4DS_scaff_2276484 Cadenza0580 8034 G A hom hom gccgtggttgatggAgaG gccgtggttgatggAgaA cgtccagattactgatacttgcA
IWGSC_CSS_5AL_scaff_2756579 Cadenza0580 5278 G A het het tgaatggatttttcgtcccgttC tgaatggatttttcgtcccgttT ggAAtCCTATgCAgaAgAaaCTG
IWGSC_CSS_5BL_scaff_10787208 Cadenza0580 10627 G A het — gcctctcacatgcggagaC gcctctcacatgcggagaT acgatgtcAggtggGcgT
IWGSC_CSS_5BS_scaff_2282179 Cadenza0580 5267 G A het — tgatgggctacgacgtgC tgatgggctacgacgtgT tcggcgcccttgaaAtcC
IWGSC_CSS_5DL_scaff_4498073 Cadenza0423 4937 C T hom hom gcaccctctggttggtcatC gcaccctctggttggtcatT tgagcagcaAagcagccG
IWGSC_CSS_5DS_scaff_2738970 Cadenza0423 2319 C T het — cgtgaggtgggtgatttgC cgtgaggtgggtgatttgT tggaactagttacactgcagtTC
IWGSC_CSS_6AL_scaff_5757109 Cadenza0423 2788 G A hom hom caggaGcctggcaaataaaGG caggaGcctggcaaataaaGA ctttcGcagtctcttagtttcG
IWGSC_CSS_6AS_scaff_4387871 Cadenza0423 2543 G A hom hom gcatgctaacaggcgaaaagG gcatgctaacaggcgaaaagA ctcatgctcctgatcttaaggtT
IWGSC_CSS_6BL_scaff_4271391 Cadenza0423 4660 C T hom hom tacgtgcatgatgtggtagtcgtaC tacgtgcatgatgtggtagtcgtaT gtttgaagtgcatcagatgTaccA
IWGSC_CSS_6DS_scaff_1880206 Cadenza0423 9159 G A het het ctgCgaaggctccacaaG ctgCgaaggctccacaaA ggatgagaagtttgcattgctC
IWGSC_CSS_7AS_scaff_4227506 Cadenza0423 952 G A het — ccatgtgtttccaatgttagagC ccatgtgtttccaatgttagagT tgccctagctggtatgcT
IWGSC_CSS_7BL_scaff_6681782 Cadenza0423 1486 C T hom hom agtaagCGtgacagcaatggG agtaagCGtgacagcaatggA AtgtctTtgGtggaagtacatcA
IWGSC_CSS_7BS_scaff_3160328 Cadenza0423 7801 C T het het tgttaaatGatacagCctgcagC tgttaaatGatacagCctgcagT tggaatggtgCgttgttttT
IWGSC_CSS_7DS_scaff_407428 Cadenza0423 2051 G A het het gtcGCgccatcctgacaG gtcGCgccatcctgacaA actcatcAggtcagcccaA
IWGSC_CSS_3AL_scaff_442479 Cadenza0364 3198 C T het het gagtcaTtaagttggtaagattggC gagtcaTtaagttggtaagattggT GCaGaTaaCaacaggatcacG
IWGSC_CSS_3AL_scaff_4447942 Cadenza0364 11917 G A het het gtcataaagattgctcctgtgaaG gtcataaagattgctcctgtgaaA ctcGgatgtgggaggaagA
IWGSC_CSS_3AS_scaff_1557483 Cadenza0364 2547 C T het het aaagtcacatcatgcttaccataaG aaagtcacatcatgcttaccataaA cgaaatccaacgcctcatcA
IWGSC_CSS_3AS_scaff_2648747 Cadenza0364 2688 G A het het tggAagcAcaaggggccC tggAagcAcaaggggccT GccgccgatggagactcG
IWGSC_CSS_3AS_scaff_3304956 Cadenza0364 1017 G A het het gtcccttgcacacagctttG gtcccttgcacacagctttA cctgctggactacaacttcaaT
IWGSC_CSS_3AS_scaff_3321091 Cadenza0364 4585 C T het het caagaatgATgctgatgttggaG caagaatgATgctgatgttggaA acatgctgaatcgccgaatC
IWGSC_CSS_3AS_scaff_3371333 Cadenza0364 538 G A het het gggaaaCgAgAcgagcgG gggaaaCgAgAcgagcgA ccgtgccttcctcacccT
IWGSC_CSS_3AS_scaff_3371815 Cadenza0364 1061 C T het het atccccacggcacagagG atccccacggcacagagA aAttggcccttggtgattcC
IWGSC_CSS_3AS_scaff_3440912 Cadenza0364 4498 G A het het ccgtaaaactttctgtgcttgC ccgtaaaactttctgtgcttgT atActgacaaactacatgatgtgC
IWGSC_CSS_3B_scaff_10343586 Cadenza0364 2242 G A het — ggttcTgTcctctcttccactG ggttcTgTcctctcttccactA tgtgttgaacccgcaagcA
IWGSC_CSS_3AL_scaff_442479 Cadenza0364 3198 C T het het gagtcaTtaagttggtaagattggC gagtcaTtaagttggtaagattggT GCaGaTaaCaacaggatcacG
IWGSC_CSS_3AL_scaff_4447942 Cadenza0364 11917 G A het het gtcataaagattgctcctgtgaaG gtcataaagattgctcctgtgaaA ctcGgatgtgggaggaagA
IWGSC_CSS_3AS_scaff_1557483 Cadenza0364 2547 C T het het aaagtcacatcatgcttaccataaG aaagtcacatcatgcttaccataaA cgaaatccaacgcctcatcA
IWGSC_CSS_3AS_scaff_2648747 Cadenza0364 2688 G A het het tggAagcAcaaggggccC tggAagcAcaaggggccT GccgccgatggagactcG
IWGSC_CSS_3AS_scaff_3304956 Cadenza0364 1017 G A het het gtcccttgcacacagctttG gtcccttgcacacagctttA cctgctggactacaacttcaaT
IWGSC_CSS_3AS_scaff_3321091 Cadenza0364 4585 C T het het caagaatgATgctgatgttggaG caagaatgATgctgatgttggaA acatgctgaatcgccgaatC
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IWGSC contig Line Pos WT Mut Predicted M4 Primer 1 (Cadenza) Primer 2 (mutant) Common Primer

IWGSC_CSS_3AS_scaff_3371333 Cadenza0364 538 G A het het gggaaaCgAgAcgagcgG gggaaaCgAgAcgagcgA ccgtgccttcctcacccT
IWGSC_CSS_3AS_scaff_3371815 Cadenza0364 1061 C T het het atccccacggcacagagG atccccacggcacagagA aAttggcccttggtgattcC
IWGSC_CSS_3AS_scaff_3440912 Cadenza0364 4498 G A het het ccgtaaaactttctgtgcttgC ccgtaaaactttctgtgcttgT atActgacaaactacatgatgtgC
IWGSC_CSS_3B_scaff_10343586 Cadenza0364 2242 G A het — ggttcTgTcctctcttccactG ggttcTgTcctctcttccactA tgtgttgaacccgcaagcA
IWGSC_CSS_5DL_scaff_242342 Cadenza0281 2433 C T hom hom catggCgacggtGtcctG catggCgacggtGtcctA aAccctcatTTtggCTACTtCT
IWGSC_CSS_5DL_scaff_4538822 Cadenza0281 1208 G A hom — acgtcagaacaaccgtttgaC acgtcagaacaaccgtttgaT ttaaattggttggcgccacC
IWGSC_CSS_6AL_scaff_5813297 Cadenza0281 4532 C T hom — gggagagggacgtctcgG gggagagggacgtctcgA ttcttctgccaacgattccG
IWGSC_CSS_6AS_scaff_4378990 Cadenza0281 6748 C T hom hom cccaggttctgcttcttttcC cccaggttctgcttcttttcT caagtatcaagaaaatgaagggTgT
IWGSC_CSS_6BL_scaff_4360781 Cadenza0281 5426 C T het het aCtactcaaatggcttGgtgtaG aCtactcaaatggcttGgtgtaA tcagtccaacatgTcaagagatT
IWGSC_CSS_7AL_scaff_4488310 Cadenza0281 3808 G A hom hom gttctcttgtagtagcagccG gttctcttgtagtagcagccA ggcgctttcttcggcctA
IWGSC_CSS_7BL_scaff_6696509 Cadenza0281 9232 G A het het gctctaggGgtggcaaAagG gctctaggGgtggcaaAagA ggcttGaGgtcGcagtgT
IWGSC_CSS_7BS_scaff_3143575 Cadenza0281 1866 C T het het agatgttgagagggcgcttC agatgttgagagggcgcttT gcttggAtggtggcaagtT
IWGSC_CSS_7DL_scaff_3346250 Cadenza0281 1663 G A het het acgtgcagcaacatcctaaC acgtgcagcaacatcctaaT TttcccaccaggcccaagA
IWGSC_CSS_7DS_scaff_3933917 Cadenza0281 1243 C T het het tgCtgagcCttTcaccttgC tgCtgagcCttTcaccttgT agaggtttggttccatcGG
IWGSC_CSS_3B_scaff_10626860 Cadenza0148 7847 G A het het gcagctctgggaaggagG gcagctctgggaaggagA gttaatgtacCTcctagcctcG
IWGSC_CSS_3DL_scaff_6915683 Cadenza0148 6904 C T het het cgtcaaCctgtgggcaattG cgtcaaCctgtgggcaattA tcatgctcataatgTcatagggT
IWGSC_CSS_4AS_scaff_5929057 Cadenza0148 4238 G A hom hom gcgcaacgtagCacctacC gcgcaacgtagCacctacT ttatctggtgaagtgacaggttCA
IWGSC_CSS_4AS_scaff_5950625 Cadenza0148 10590 C T het het agaTattCaaaTcggtggAttggC agaTattCaaaTcggtggAttggT cctgCtcccctcacgtcC
IWGSC_CSS_4AS_scaff_5967119 Cadenza0148 11626 C T hom hom cgtGgacaccccgagctG cgtGgacaccccgagctA gacgacgcactgcacgaC
IWGSC_CSS_4DL_scaff_14455742 Cadenza0148 1946 C T hom hom gCctgagggagatcgcgC gCctgagggagatcgcgT aaccgGtAaCTGtGgGcA
IWGSC_CSS_4DS_scaff_2318993 Cadenza0148 4000 C T hom hom tccagtttgacacagattgaatggG tccagtttgacacagattgaatggA tgagaTtctgtttcctttcacAttG
IWGSC_CSS_5AL_scaff_2750707 Cadenza0148 4603 G A het het ccttggtgctagccatttcaagTaG ccttggtgctagccatttcaagTaA ccaggaTgcAgtgcaatatttcaaG
IWGSC_CSS_5BL_scaff_10794137 Cadenza0148 9235 C T hom hom gaagctgcttctgcgttG gaagctgcttctgcgttA agtatcccttccatataagcagtG
IWGSC_CSS_5BS_scaff_1646558 Cadenza0148 2916 C T het het gccGtacactcacctAtcctttG gccGtacactcacctAtcctttA gcaaTgtccacttAtcatcccT
IWGSC_CSS_1AL_scaff_3883106 Cadenza0110 27536 C T het het accttccatcactggctgG accttccatcactggctgA gtgaagaacaacaggttgaagC
IWGSC_CSS_1BL_scaff_3812829 Cadenza0110 10770 G A het* hom cccccactccattccagG cccccactccattccagA gGatgttgttctgtgctggaA
IWGSC_CSS_1DL_scaff_2266648 Cadenza0110 6156 G A het het actgcgtggttatgggacC actgcgtggttatgggacT ccccatcactgaacacaacA
IWGSC_CSS_1DS_scaff_1889435 Cadenza0110 8826 C T hom hom aaccatgaattactcggacagG aaccatgaattactcggacagA gccctgaagaattgtatcaaaacaG
IWGSC_CSS_2AS_scaff_5268634 Cadenza0110 4636 G A het het gatccatgtgattggcatgtttG gatccatgtgattggcatgtttA TgctgtTggatatgcagttacT
IWGSC_CSS_2BL_scaff_7965110 Cadenza0110 15801 C T hom hom cattgaagcAtacacAattgcAtaC cattgaagcAtacacAattgcAtaT gccagagtatccagataaggTttA
IWGSC_CSS_2DL_scaff_9852812 Cadenza0110 13788 G A hom hom atttttgtatggtctcaatcttcgC atttttgtatggtctcaatcttcgT gaacgtTcattcttgtacttgcT
IWGSC_CSS_2DS_scaff_5371379 Cadenza0110 2166 C T hom hom agacacaaaactagtGatgcgC agacacaaaactagtGatgcgT gctgctgagaatgttTtgtatttG
IWGSC_CSS_3AL_scaff_4384278 Cadenza0110 1276 C T het het agcTgaactgccccTgtaG agcTgaactgccccTgtaA agggacctCgGtggatgaA
IWGSC_CSS_3AS_scaff_3340122 Cadenza0110 1467 C T hom hom attcctAgtgttgtcggaacatG attcctAgtgttgtcggaacatA gagaagactagaaagttttcAgcaT
IWGSC_CSS_5DL_scaff_4554222 Cadenza2103 6528 C T het* hom gctgccctacaaagaaacaaaattG gctgccctacaaagaaacaaaattA aTcccaactatCGaTtttgtcataC
IWGSC_CSS_6AL_scaff_5833640 Cadenza2103 7346 C T hom hom aagaaaagccacaatggtttctC aagaaaagccacaatggtttctT aCTctgTcagtgtttcccagC
IWGSC_CSS_6AS_scaff_4429974 Cadenza2103 3867 G A hom hom GagatgaAtttattgagcatgtggC GagatgaAtttattgagcatgtggT ggttccggctgcataagT
IWGSC_CSS_6DL_scaff_3307626 Cadenza2103 4970 C T hom hom tgcagatgttgtcctgtgtaG tgcagatgttgtcctgtgtaA ctaggaaggtgattttgtactGtC
IWGSC_CSS_6DS_scaff_2059604 Cadenza2103 5224 G A het — gctcaatgcatgcTgagtgG gctcaatgcatgcTgagtgA tgtcaagtattattttcctgctctG
IWGSC_CSS_7AL_scaff_4552322 Cadenza2103 1412 C T het het gcaaaggcTgatactccaacaG gcaaaggcTgatactccaacaA ggcAAGccAgtataaaagtaaGC
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IWGSC_CSS_7BS_scaff_3147455 Cadenza2103 4607 G A het — gcaccttaggatgtgagTtatgC gcaccttaggatgtgagTtatgT gcatgtagggtttatttgactgttA
IWGSC_CSS_7DL_scaff_3382467 Cadenza2103 3473 C T hom — GGTtctgCaGTTCATAActcatC GGTtctgCaGTTCATAActcatT attgaatcaactgatacGaaGactC
IWGSC_CSS_3B_scaff_10457010 Cadenza0277 10599 G A het het aaccttggccgcagaacaC aaccttggccgcagaacaT actggctgcacgagaggG
IWGSC_CSS_3B_scaff_10593852 Cadenza0277 10124 C T het het tgacaggggacgctatacaG tgacaggggacgctatacaA gtctaaCTtACattAcccatcagC
IWGSC_CSS_3DS_scaff_2583390 Cadenza0277 663 G A hom hom actgcactcatacaatActtCtgC actgcactcatacaatActtCtgT tcCacctggacagcaagtG
IWGSC_CSS_4AL_scaff_7093953 Cadenza0277 10004 C T hom hom ccttgtattcaatggaTtgTtttgG ccttgtattcaatggaTtgTtttgA ttccccaaaTaaaaaggaagagC
IWGSC_CSS_4AL_scaff_7176064 Cadenza0277 6220 C T het het gtgccgtaTtcCgcctgG gtgccgtaTtcCgcctgA atgttcgaggggatgggG
IWGSC_CSS_4DL_scaff_14122349 Cadenza0277 1010 C T hom hom gtcgctgctgCttgtgaG gtcgctgctgCttgtgaA ggaacaggcccaaggagG
IWGSC_CSS_5AL_scaff_2736916 Cadenza0277 4296 G A het het aagaactATgAaaGtaacacacgaC aagaactATgAaaGtaacacacgaT ttcGcTttTaagGcAttCtcG
IWGSC_CSS_5BL_scaff_10883744 Cadenza0277 2080 C T hom hom gcctctttCtgttTagcctcaG gcctctttCtgttTagcctcaA cgacaaggttcgtgatTgcA
IWGSC_CSS_1AL_scaff_3932013 Cadenza0548 11765 C T hom hom accgccaaCccaagacaG accgccaaCccaagacaA cccattaGccgTgcAacG
IWGSC_CSS_1BS_scaff_3417505 Cadenza0548 373 C T het het gtggtgaggaGGgtgGaG gtggtgaggaGGgtgGaA tggtcgGccagttgttgA
IWGSC_CSS_2AS_scaff_5305619 Cadenza0548 2786 C T hom hom atacagatgccctAAgtggTtC atacagatgccctAAgtggTtT ggaagacaAtGctccaggtaC
IWGSC_CSS_2AS_scaff_5306489 Cadenza0548 46953 T G het wt aggttccatgtccatagaagGT aggttccatgtccatagaagGG aggctaTAgactcctgtACAgT
IWGSC_CSS_2BL_scaff_7984123 Cadenza0548 11660 G A het het cattgtggcatagtaatcagtacaG cattgtggcatagtaatcagtacaA aatacattgaggaatcaaagccC
IWGSC_CSS_2DL_scaff_9907477 Cadenza0548 1363 C T hom hom tgcctccctttgccagaaC tgcctccctttgccagaaT ggcaaacctgatgtggcatC
IWGSC_CSS_2DS_scaff_5330886 Cadenza0548 5449 G A hom hom gcatgtccatttatactgaaCgtG gcatgtccatttatactgaaCgtA catgctgcttcttctggacC
IWGSC_CSS_3AL_scaff_4449951 Cadenza0548 633 C T het het tccaaacctaacagtctaacactaG tccaaacctaacagtctaacactaA gtctgcagTGCaatgtgC
IWGSC_CSS_3B_scaff_10479889 Cadenza0097 3339 C T hom — ttgTttctGgagaagatgcCG ttgTttctGgagaagatgcCA ggtgctcattcaAcGgcA
IWGSC_CSS_3B_scaff_10562262 Cadenza0097 7819 C T het het agaggggtgctatccatAttgG agaggggtgctatccatAttgA agcgatgccaaggcttcC
IWGSC_CSS_4AL_scaff_7040796 Cadenza0097 10772 G A hom hom acacaacattgccaccagaG acacaacattgccaccagaA CAatCgattgcttgctTctcC
IWGSC_CSS_4AL_scaff_7063488 Cadenza0097 6360 C T het het gcctctcacCttAatttgaagctgC gcctctcacCttAatttgaagctgT aggcagtggagtatgtgaagttT
IWGSC_CSS_4AL_scaff_7091701 Cadenza0097 5050 G A het het catgagcatctgggaggaaaatG catgagcatctgggaggaaaatA agcaagggaAtaatgaacggaaA
IWGSC_CSS_4DS_scaff_1845841 Cadenza0097 7110 G A hom hom aatgTAgctccccatacCgG aatgTAgctccccatacCgA actgaaacTgcaatcgtTtatggA
IWGSC_CSS_5AL_scaff_2767581 Cadenza0097 3737 G A het het gagaggtcctcactAtcggC gagaggtcctcactAtcggT cgTcatcacaaatattgctggG
IWGSC_CSS_5BL_scaff_10784643 Cadenza0097 1568 C T hom hom agaaaTAcatggatggatggaCG agaaaTAcatggatggatggaCA catctcCCttccaCgGaaaG
IWGSC_CSS_1AL_scaff_3952258 Cadenza2092 8107 C T het — tgagtagagaaattgacagtgtgG tgagtagagaaattgacagtgtgA tgccaccattgacatgagaG
IWGSC_CSS_1BL_scaff_3858008 Cadenza2092 10278 G A hom hom tttgagcaggcaggatcgC tttgagcaggcaggatcgT actcacggcctatatcActattC
IWGSC_CSS_1DL_scaff_2265172 Cadenza2092 9094 C T hom hom tgcaTGTcatttgttcttatcagC tgcaTGTcatttgttcttatcagT agtgtccaacttccGttcatC
IWGSC_CSS_2AL_scaff_6435867 Cadenza2092 16201 G A hom hom tttctgTaccttaacgtcaattgaC tttctgTaccttaacgtcaattgaT gtgaggatgatgaggtaagacC
IWGSC_CSS_2AL_scaff_6439430 Cadenza2092 25101 C T het — caagaaagggCagCtCagC caagaaagggCagCtCagT tcGttAcTctttcActggtgaA
IWGSC_CSS_2DL_scaff_9760848 Cadenza2092 4733 C T het het gcaccatgggtctcaggtaC gcaccatgggtctcaggtaT tcagtcagtttGCTCtgTCTG
IWGSC_CSS_3AL_scaff_4407012 Cadenza2092 2785 C T hom hom acatatAgtgttctcatccaccatC acatatAgtgttctcatccaccatT acctctctcatgttaataggtttgT
IWGSC_CSS_3AS_scaff_3441108 Cadenza2092 541 G A het het GtgatgaccttgagacGgaG GtgatgaccttgagacGgaA aggcaTgacaaCgcgcaA
IWGSC_CSS_3B_scaff_10449827 Cadenza1551 4779 G A hom hom ggcaaggtcaagaaacGgtC ggcaaggtcaagaaacGgtT aCagaGtgggttagaggcaG
IWGSC_CSS_3B_scaff_10550638 Cadenza1551 3250 C T het het ctccttcacttgttgcggC ctccttcacttgttgcggT gcaacAtTttgatactgcaaagG
IWGSC_CSS_3DL_scaff_6945816 Cadenza1551 589 C T hom hom agcatctcacctgcaaCaataC agcatctcacctgcaaCaataT TgtgcccTctgaAtattttcaTG
IWGSC_CSS_3DL_scaff_6954177 Cadenza1551 3508 C T het het tgtagcatcacattaactttcctG tgtagcatcacattaactttcctA gcttggtataaaccCttacgacA
IWGSC_CSS_4AS_scaff_5938272 Cadenza1551 19080 G A hom hom agAcCccgAtcgccatgG agAcCccgAtcgccatgA GggAgatAcaggtaaaActcTtcG
IWGSC_CSS_4AS_scaff_5977594 Cadenza1551 11092 C T het het gccttgattcggaacaacaaaC gccttgattcggaacaacaaaT gcgtctctcagtcctgcA
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IWGSC_CSS_5AL_scaff_2671035 Cadenza1551 5859 C T het het cggtgatattTttagacttcgacgC cggtgatattTttagacttcgacgT ggcagttcagcGacccatT
IWGSC_CSS_5BL_scaff_10889480 Cadenza1551 2530 G A hom hom gagcttaactcgcagatggaG gagcttaactcgcagatggaA tccatgCAacGccttggT
IWGSC_CSS_3B_scaff_10528396 Cadenza2088 8059 G A hom — cttttccgtccgtaagcaataG cttttccgtccgtaagcaataA gtgcactgttcaggcctgA
IWGSC_CSS_3B_scaff_10637573 Cadenza2088 16815 G A het het agcaagcttaccGgtctgC agcaagcttaccGgtctgT cgagcAactacgagcagctT
IWGSC_CSS_4AL_scaff_7086469 Cadenza2088 6697 G A het het gccgtctacttcaacgcG gccgtctacttcaacgcA ccaGaggcttgtTGcattttT
IWGSC_CSS_4AL_scaff_7126302 Cadenza2088 3627 G A hom hom gttcaaaaacaagtggctAatttgC gttcaaaaacaagtggctAatttgT cacaaggatatgaagcTcttctagA
IWGSC_CSS_4BL_scaff_7041808 Cadenza2088 10234 G A hom hom tcaatggatgagggtgcttC tcaatggatgagggtgcttT ccatagcagcatcagccacA
IWGSC_CSS_5AL_scaff_2794167 Cadenza2088 13162 G A het — agtattcaggacaagcatCttCaG agtattcaggacaagcatCttCaA caatgaaacctctcgaagaaGaG
IWGSC_CSS_5BL_scaff_10889232 Cadenza2088 3885 G A het het cTcaaccacaatgggcaAatC cTcaaccacaatgggcaAatT tccttcatcaatcatcaattgttgG
IWGSC_CSS_5BS_scaff_2267405 Cadenza2088 11113 C T hom hom ctttgatgatcctaggcctctTG ctttgatgatcctaggcctctTA tgatttggtCtggttAgagtttGA
IWGSC_CSS_3B_scaff_10475354 Cadenza1409 2203 G A hom hom agCgaacaagagGtcaaacG agCgaacaagagGtcaaacA ctgaaacacaCtagaCAattAccG
IWGSC_CSS_3B_scaff_10674115 Cadenza1409 4555 C T het het gcttcagtgcatgccttcaG gcttcagtgcatgccttcaA cttcacacccGagataatGtattG
IWGSC_CSS_4AL_scaff_7153568 Cadenza1409 13073 C T hom hom tccgaccgAtcaaccttgG tccgaccgAtcaaccttgA gaccggaactcctcggcC
IWGSC_CSS_4DL_scaff_14314966 Cadenza1409 2010 G A het hom gtaggtcccctcctCAggG gtaggtcccctcctCAggA cggcgTcacaAgttgCcT
IWGSC_CSS_4DS_scaff_2324074 Cadenza1409 7606 G A het het tGcatgaaaatgtgtGcaGaG tGcatgaaaatgtgtGcaGaA gggtaAgttcAaaactGaagtgaaG
IWGSC_CSS_5AS_scaff_1517889 Cadenza1409 3561 G A het het tctcgacatcttcccgtgtaC tctcgacatcttcccgtgtaT gtgcctggaacattgcttatttA
IWGSC_CSS_5AS_scaff_1523866 Cadenza1409 8054 G A hom — ggtgatctaccgccaGgaC ggtgatctaccgccaGgaT tcctgcagCcTctcctcA
IWGSC_CSS_5BL_scaff_10917655 Cadenza1409 19073 G A hom hom caaatgacatgcaaaagaagttgC caaatgacatgcaaaagaagttgT cgcttcatcactacaAaatatgtcT
IWGSC_CSS_1AL_scaff_3886649 Cadenza1599 5204 C T het het tgatgccaaccacaatGcC tgatgccaaccacaatGcT ggactgactgctgaccatatttaG
IWGSC_CSS_1BL_scaff_3810267 Cadenza1599 6634 C T hom hom ccCaggaaatgagcacctC ccCaggaaatgagcacctT cgcaggcgaagatgtgaTtG
IWGSC_CSS_1DL_scaff_2291677 Cadenza1599 12856 C T hom hom GgtagacaagtcgccgaG GgtagacaagtcgccgaA cctcctccttcaacGCcG
IWGSC_CSS_2AL_scaff_6354492 Cadenza1599 7566 G A het het gGagaatgcaCAgtAacTtctgG gGagaatgcaCAgtAacTtctgA ttccgaagaaccacaTccTG
IWGSC_CSS_2AS_scaff_5282937 Cadenza1599 9736 G A het het gctgtagattttatagctgctatgC gctgtagattttatagctgctatgT cacCagaattgttCactgatttTC
IWGSC_CSS_2BL_scaff_7952427 Cadenza1599 19249 G A hom hom cgTccctCcctagcacgaC cgTccctCcctagcacgaT aTcactccattagcgcgAG
IWGSC_CSS_2DL_scaff_9897981 Cadenza1599 5627 C T het het cttggtgctTgattgcttactC cttggtgctTgattgcttactT gTttgctCtctctgatctTtgtG
IWGSC_CSS_3AL_scaff_4446105 Cadenza1599 1765 G A hom — aaatgctttcctaCcgctagtG aaatgctttcctaCcgctagtA ttctAgaggcaatagctTatatgcT
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Table A.2: Validation of mutations on M4 on Kronos

IWGSC contig Line Pos WT Mut Predicted M4 Primer 1 (Kronos) Primer 2 (mutant) Common Primer

IWGSC_CSS_1AS_scaff_3284790 Kronos3085 7449 G A Het Het ccacaccttgagcctcgC ccacaccttgagcctcgT gtgattttgccaggggagA
IWGSC_CSS_1BL_scaff_3897513 Kronos3085 1515 C T Het Het gcttccactGggtcctgC gcttccactGggtcctgT acAaggactgcttcagaGaC
IWGSC_CSS_2AL_scaff_6434745 Kronos3085 3424 C T Het Het cctcGgttttgcaaatttctatgC cctcGgttttgcaaatttctatgT gGCaaTggcataacaacagatA
IWGSC_CSS_3AS_scaff_3408995 Kronos3085 732 C T Het Het aggccatttcgaattccgC aggccatttcgaattccgT ggTgttaTccagAacctgagTG
IWGSC_CSS_3B_scaff_10708748 Kronos3085 2675 G A Het Het gttgcatgcttcacccagG gttgcatgcttcacccagA gtaacaatctgagttcgtagcaC
IWGSC_CSS_4AL_scaff_7132733 Kronos3085 1799 C T Hom Hom cacccgtgagtgaccctC cacccgtgagtgaccctT aCcGcctaGaaagaaagcttC
IWGSC_CSS_5AS_scaff_1534693 Kronos3085 4605 C T Het Het cagcttcctggccctcAtC cagcttcctggccctcAtT gtaCctcacgAgtcaTgagAG
IWGSC_CSS_6AS_scaff_4361911 Kronos3085 8857 G A Het Het tcacgaaagacgacttcaacctcC tcacgaaagacgacttcaacctcT catgaggtgctgcatctccatcA
IWGSC_CSS_6BS_scaff_3008326 Kronos3085 1528 G A Het Het ccatgttgtactggtggtgC ccatgttgtactggtggtgT ggaagcatggCaagtgcA
IWGSC_CSS_7AS_scaff_4214385 Kronos3085 27835 C T Hom Hom cgtaccttcgttgggaaagG cgtaccttcgttgggaaagA ctcttggtcagctgtataagacT
IWGSC_CSS_1AL_scaff_3929964 Kronos3191 1336 C T Het Het tttcggccatacctgacatC tttcggccatacctgacatT attgcctccagttcttgcaG
IWGSC_CSS_1BL_scaff_3899789 Kronos3191 7925 C T Het Het actctcacTggcagcagC actctcacTggcagcagT caacgtggtgcccatcGtA
IWGSC_CSS_2AL_scaff_6426728 Kronos3191 1481 G A Hom Hom gaaActgccgcagctCgC gaaActgccgcagctCgT ccaGcaGctcgtgagaaA
IWGSC_CSS_2BL_scaff_7960273 Kronos3191 690 C T Hom Hom gccattcatccttaggcgC gccattcatccttaggcgT acatgcaattgctgatgactG
IWGSC_CSS_3AS_scaff_3286603 Kronos3191 2975 G A Het* Hom ccgtgtggtttgttgtggG ccgtgtggtttgttgtggA gaaaggaacgtgTcaTgcaG
IWGSC_CSS_5AL_scaff_2694249 Kronos3191 2399 C T Het Het gccttccagatagagccGC gccttccagatagagccGT cgccacatcgacattcctG
IWGSC_CSS_5BL_scaff_10923577 Kronos3191 3713 C T Het Het gtggattgcctgagcttgC gtggattgcctgagcttgT tggtggccttcttgggaC
IWGSC_CSS_6AL_scaff_5823017 Kronos3191 13225 C T Hom Hom ccctttcgagcctctggaG ccctttcgagcctctggaA ttcgagaaggcccatcgA
IWGSC_CSS_6BS_scaff_2955394 Kronos3191 1622 C T Het* Hom gtggagatgaaggtctagcaaG gtggagatgaaggtctagcaaA gatactcgTgcaatgggtgT
IWGSC_CSS_7BL_scaff_6739382 Kronos3191 12261 G A Hom Hom gagacaagctttgaattgctcC gagacaagctttgaattgctcT CgagtgacctTcatttcccG
IWGSC_CSS_1AS_scaff_3276389 Kronos3288 9720 C T Hom Hom aCcaGcaggaccAatgtctC aCcaGcaggaccAatgtctT atgatgcaacctcagccaT
IWGSC_CSS_2AL_scaff_6367515 Kronos3288 6976 G A Het Het caggtcgagTgtctccgG caggtcgagTgtctccgA ggggtgatCtggaagggC
IWGSC_CSS_2AL_scaff_6422019 Kronos3288 4523 G A Het Het cgctaggtccctgcatagG cgctaggtccctgcatagA acgcAcgctaagccgtaC
IWGSC_CSS_3AL_scaff_4284850 Kronos3288 7901 C T Hom Hom tggctttggacaacatcgG tggctttggacaacatcgA tgtcAgcatcgacagccaG
IWGSC_CSS_4AS_scaff_5962359 Kronos3288 13049 G A Het Hom ccatcaagaagtacgagttcgaC ccatcaagaagtacgagttcgaT accatgcccagcttgtcA
IWGSC_CSS_6AL_scaff_5778773 Kronos3288 6853 G A Het Het gagtgaccttcccgtctttC gagtgaccttcccgtctttT ggagaacagctactcggcT
IWGSC_CSS_6AS_scaff_4392100 Kronos3288 3434 C T Het Het atggaagcacaggtgaccG atggaagcacaggtgaccA ggAagcgaaagtgaacaaacA
IWGSC_CSS_7BL_scaff_6744240 Kronos3288 9772 G A Het Het agctgttcttctcctacttcaaG agctgttcttctcctacttcaaA caggtcgttcttgagctcC
IWGSC_CSS_1AL_scaff_3887185 Kronos3413 9708 C T Hom Hom gcacgcctttatcgaggtaaaG gcacgcctttatcgaggtaaaA AgaaacagcagagcgcaA
IWGSC_CSS_2BS_scaff_3381362 Kronos3413 5160 C T Het* Hom caacttctgggctgtagtgtG caacttctgggctgtagtgtA tgAgaattctgacGcaaaagaC
IWGSC_CSS_3AS_scaff_3296605 Kronos3413 6154 G A Het Het ctggtcacgggctctagC ctggtcacgggctctagT cagcactgagagacatggaC
IWGSC_CSS_3B_scaff_10693516 Kronos3413 12632 C T Het Het ctaggcttggacaaacaggC ctaggcttggacaaacaggT agcttgcatctatgggcatT
IWGSC_CSS_5AS_scaff_1547699 Kronos3413 2686 G A Het Het gCtacaaccttcaccaatcgC gCtacaaccttcaccaatcgT gacggctttgaagtgtcatC
IWGSC_CSS_5BL_scaff_10856077 Kronos3413 5853 G A Het Het agagcttcaccccatgctC agagcttcaccccatgctT acgCacatttAatagctgaagC
IWGSC_CSS_6AL_scaff_5750718 Kronos3413 11046 G A Hom Hom cacgcTtcccgacttcttataG cacgcTtcccgacttcttataA AgacgatgtgatcaggattcaG
IWGSC_CSS_7AL_scaff_4433177 Kronos3413 3511 C T Het Het GaTgctccGtcaggctgG GaTgctccGtcaggctgA cactactggacaagctcttgG
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IWGSC_CSS_7BL_scaff_6742567 Kronos3413 667 C T Het Het gttgcttgcgtggcagaC gttgcttgcgtggcagaT cattttgcaccgtgtgtcTG
IWGSC_CSS_1AL_scaff_3976389 Kronos3935 10941 C T Hom Hom ggtgaggagatcggCgatG ggtgaggagatcggCgatA cagtcatctacatgagaggtcaG
IWGSC_CSS_1BL_scaff_3873362 Kronos3935 1392 G A Het Het cagatctgaagcctaGcacatG cagatctgaagcctaGcacatA actaccagaatcagcacaaaaAC
IWGSC_CSS_2BL_scaff_7882382 Kronos3935 2721 C T Het Het gcaagctaagatgtaccgtagC gcaagctaagatgtaccgtagT gccacagtaggagaaagactT
IWGSC_CSS_3AL_scaff_4242376 Kronos3935 2410 C T Het Het agaacccaaaacccgTacttaG agaacccaaaacccgTacttaA gtagGgtCcatcCtaaagcttG
IWGSC_CSS_3B_scaff_10485067 Kronos3935 3349 C T Hom Hom gcttgagcaactactccaactG gcttgagcaactactccaactA gcaatttcctttaTccgcagT
IWGSC_CSS_4AS_scaff_5984153 Kronos3935 6006 G A Het Het agCaggtctggccaagttG agCaggtctggccaagttA cgaatGtatgaGtaggcgcT
IWGSC_CSS_4BL_scaff_7019402 Kronos3935 9081 C T Het Het tgcaatcatgtagtgagctgG tgcaatcatgtagtgagctgA agcatgatccctagaaCcataC
IWGSC_CSS_5BL_scaff_10842786 Kronos3935 3304 G A Het Het tggttcccGaagcctgaaC tggttcccGaagcctgaaT cgcatacttgaaacaTGagcAC
IWGSC_CSS_6BS_scaff_3045205 Kronos3935 2293 G A Het Het aaggaccaagcccaaactctcG aaggaccaagcccaaactctcA agtgatcaagcccaatgtcgcA
IWGSC_CSS_7AL_scaff_4555249 Kronos3935 4487 C T Het Het cAgtgctcgagatggcgC cAgtgctcgagatggcgT cCttgcaaccctcctgatT
IWGSC_CSS_1BL_scaff_3918498 Kronos4240 6096 G A Het Het ttgcatgccccaagaagaG ttgcatgccccaagaagaA tgggcgaactggtaatgtgG
IWGSC_CSS_2BS_scaff_5131713 Kronos4240 5900 G A Het Het cctttatcgaggaaagagacacC cctttatcgaggaaagagacacT caccattgtagggttccttTttC
IWGSC_CSS_5AL_scaff_2769540 Kronos4240 9626 C T Het Het tgCagtgtgggaaacggaG tgCagtgtgggaaacggaA catgagtGagatcttcctgcT
IWGSC_CSS_5BL_scaff_10871091 Kronos4240 7062 G A Het Het gccaaggAaccataacctgC gccaaggAaccataacctgT GgactcttggcAaccggA
IWGSC_CSS_6AL_scaff_5800333 Kronos4240 2360 G A Het Het cgacaggattgtgagCgC cgacaggattgtgagCgT tcagatgctgcaagattcatcT
IWGSC_CSS_7BL_scaff_6716931 Kronos4240 2613 G A Het Het gGtgGgtattTgcttggtgaG gGtgGgtattTgcttggtgaA tgGtggactcgacaGtGtA
IWGSC_CSS_2BL_scaff_8029221 Kronos4346 2860 G A Het Het tgcttccgctcttgctcC tgcttccgctcttgctcT atTtgcatTCgAtcgggcC
IWGSC_CSS_3B_scaff_10460714 Kronos4346 14359 C T Hom Hom ctaccttgccatgcgacatG ctaccttgccatgcgacatA agcaccccagtctttgacG
IWGSC_CSS_4AS_scaff_5989735 Kronos4346 6404 G A Hom Hom acgcatgctaacatcagcC acgcatgctaacatcagcT actcaagataccaCcgcacG
IWGSC_CSS_5BL_scaff_7648030 Kronos4346 6893 C T Het Het taccctttcctactggcagG taccctttcctactggcagA ttttcagaggaacacaggtatcA
IWGSC_CSS_6AL_scaff_5755840 Kronos4346 778 C T Het Het atcgagtaagctgtcacCgC atcgagtaagctgtcacCgT acctgcatgtcaCatccaC
IWGSC_CSS_6BS_scaff_2972151 Kronos4346 7876 G A Hom Hom gcagcaatgtcActgtttgG gcagcaatgtcActgtttgA gcttggactgggcatttatG
IWGSC_CSS_7AL_scaff_4542983 Kronos4346 18700 G A Het Het gcagggctAccggatacC gcagggctAccggatacT catctgccGgttaaacatgC
IWGSC_CSS_7BS_scaff_3098098 Kronos4346 5183 C T Het Het gCgatatggtacttgcaatgaG gCgatatggtacttgcaatgaA ttacattgcttataGTttgCcgG
IWGSC_CSS_1AS_scaff_3259804 Kronos4485 219 C T Het Het gtcggcacaaccccttgC gtcggcacaaccccttgT gcttctttaaggagggcgA
IWGSC_CSS_2AL_scaff_6315418 Kronos4485 10490 G A Hom Hom gcccctctcaaCcttctcagC gcccctctcaaCcttctcagT ttcagacgctCgaggaatttccC
IWGSC_CSS_2BS_scaff_5181092 Kronos4485 3742 G A Het Het TggccagcacacctgcaG TggccagcacacctgcaA tggacgatgagTgatggAaaT
IWGSC_CSS_3B_scaff_10425015 Kronos4485 2372 C T Het Het gctactgaagttggCtcGG gctactgaagttggCtcGA cttcacatccttgggggTtC
IWGSC_CSS_3B_scaff_10775915 Kronos4485 4701 C T Het Het ccaagggctgcagagagG ccaagggctgcagagagA agacctcacgatGtcctcC
IWGSC_CSS_5AL_scaff_2754304 Kronos4485 2301 G A Het Het taacccTgccatcgcccG taacccTgccatcgcccA cattgGccagccaTgacT
IWGSC_CSS_5BL_scaff_10919959 Kronos4485 1867 C T Hom Hom gatgccctttgtggagaagG gatgccctttgtggagaagA tcttgttcccgaaacatgtcA
IWGSC_CSS_7AS_scaff_4245431 Kronos4485 3402 G A Hom Hom aaggcgcctggtgtttcC aaggcgcctggtgtttcT agtaagtggaAcagctaagatcaT
IWGSC_CSS_7BL_scaff_6667357 Kronos4485 641 C T Het Het gatcAgctgctcattcgagG gatcAgctgctcattcgagA ttccctgtcaattgatgccC
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Appendix B

Quality Control

B.1 Sequence read quality
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Sample Read 1 Read 2
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B.2 Sequence GC content
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Sample Read 1 Read 2
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This repository Pull requests Issues Gist

Clone this wiki locally

AllConcat
Ricardo H. Ramírez-Gonzalez edited this page a minute ago · 1 revision

Welcome to the expvip-web wiki! This wiki contains tutorials on how to setup the database
and run it locally.

Updating the virtual machine Before loading the metadata, double click on
!update_expvip.sh! in the desktop to get the latest version of expVIP.

1. Loading Virtual Machine. Instructions on how to setup Virtual Box to run expVIP
2. Loading Metadata. Detailed scripts in the virtual machine to prepare expVIP for your

samples.
3. Loading data. Description on how to prepare and load the data to expVIP.
4. Running Kallisto. Instructions on how to run Kallisto and load the results in the database in

a single step
5. Running Kallisto in batch. Instructions on how to run Kallisto and load the results in the

database in a single step from multiple samples
6. Starting up the web server. Instructions on how to start the local web server for expVIP
7. Exporting Data. How to extract data from expVIP database.
8. Graphical Interface Tutorial. How to get the most of the expVIP graphical interface,

exemplified with the Wheat Genome Browser.

Loading Virtual Machine
The !expVIP! Virtual Machine (VM) allows you to analyse your own RNA-Seq expression
experiments locally.

Requirements

The virtual machine requires:

VirtualBox, version 5 or newer.
6GB of RAM
A 64-bit operating system running on an x86_64 architecture. (Intel, AMD)
10GB of free space.

Default data

The default values loaded in the virtual machine are available in this link. These correspond to
the wheat data from Borrill, Ramirez-Gonzalez and Uauy, 2015 (submitted).

You can get a virtual machine with expVIP installed with either the wheat data preloaded or an
empty database for your analysis here.

Available VMs

Search

homonecloco / expvip-web

 Code  Issues 5  Pull requests 0  Projects 0  Wiki  Pulse  Graphs  Settings

Edit New PageNew Page

 Pages 11

Home

AllConcat

ExportData

List of tutorial videos

LoadingData

LoadingMetadata

LoadingVM

RunKallisto

RunKallistoBatch

StartWebServer

Tutorial expVIP Graphical
Interface (Wheat Expression
Browser example)

 Add a custom sidebar

https://github.com/homonecloco/expvip;web.wiki.git

 Clone in Desktop

4 33 Unwatch  Star  Fork
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1. expVIPNoData.ova This VM is ready to use, but it has no data on it. You can load a
custom set of RNA-seq reads, transcriptome reference and metadata.

2. expVIPwithWheatData.ova This has all the data loaded from www.wheat-
expression.com. You can add your own data and compare it with the values of publicly
available experiments.

Setup shared folders

To load your custom RNA-seq experiments, you have to setup a shared folder with your input
files. This shared folder will contain the data and information required by the VM to implement
expVIP and it provides the "connection" between your computer and the VM. This shared
folder should include:

1. RNA-seq reads: as !fastq! or !fq.gz! files.

2. Transcriptome reference: currently only the cdna fasta file from ensembl is supported.
3. Metadata: this includes two separate files; one factor file and one metadata file (explained

here).

Some important information:

The shared folder must contain one sub-folder per each set of RNA-seq reads. So for
example if you wish to analyse data from three samples, you will need three sub-folders
(one each with the individual sample RNA-seq reads)
Each RNA-seq sub-folder must be named with the same accession number that you use
in your metadata (see here).
If you wish to add your own wheat data to that previously provided in www.wheat-
expression.com you will need to include sub-folders with your RNA-seq reads and then
modify the metadata files: !default_metadata.txt! and !FactorOrder.tsv! which are provided
in the !expVIPwithWheatData.ova! or can be downloaded here. Additional factors and
metadata can be added at the end of these files following similar nomenclature as that
already present in the files.

Loading the virtual machine

Download the !ova! virtual machine and double click it. Virtual Box will open it. Accept the
default options.

If The virtual machine is not loaded, go to the menu !File! and click !Import!appliance!. Open
the !.ova! you want to use

Availabe VMs:

!expVIP.ova! expVIP is installed with an empty database. This VM requires to setup your
own samples.

!expVIPwithWheatData.ova! expVIP is installed with the wheat expression data,
transcriptome reference and metadata. This VM allows the inclusion of additional samples
to integrate with the previously analysed wheat data.

1. On the Oracle VM VirtualBox Manager select expVIP and click on the settings button 
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2. Click in !Shared!folders! 

3. Add a new folder
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4. Search the !Folder!path! with the experiments and the files with the metadata 

 
5. Select the folder 

6. Make sure that the !Auto;mount! option is selected.
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7. Accept the settings 

Starting the virtual machine

Select !expVIP! from the VM list and press start.
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NOTES

kallisto is included as part of the virtual machine and is free for non-commercial use. However,
it requires a license for commercial use. The distribution of kallisto, with the corresponding
license is included in !~/software/! in the VM.

Loading expVIP metadata
This tutorial covers the shell scripts that can be used to load the metadata with the graphical
interface, with screenshots, and the rake task, to be run in the command line, if you are more
comfortable in the terminal. The assumption is that expVIP is located in !~/expvip;web/!

Loading !factor!file!

The first thing to do is to setup the available factors. The !factor!file! is a text file, where each
field is separated by tabs. A header is necesary on each column. The headers are the
following:

factor: The name of the factor to group. These must match those used in the metadata
file (see below).
order: Default display order in the graphical interface.
name: The long name of the grouped factor. These must match those used in the
metadata file (see below).
short: Short name of the grouped factor. This is used in the graphical interface when
many factors are displayed.
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!factor!file! example:

factor!!order!!!name!!!!short

Age!1!!!7!days!!7d

Age!2!!!seedling!stage!!see

Age!3!!!14!days!14d

Age!4!!!three!leaf!stage!!!!3_lea

Age!5!!!24!days!24d

Age!6!!!tillering!stage!till

Age!7!!!fifth!leaf!stage!!!!5_lea

Age!8!!!1!cm!spike!!1_sp

Age!9!!!two!nodes!detectable!!!!2_no

Age!10!!flag!leaf!stage!f_lea

Age!11!!anthesis!!!!anth

Age!12!!2!dpa!!!2dpa

Age!13!!4!dpa!!!4dpa

High!level!age!!1!!!seedling!!!!see

High!level!age!!2!!!vegetative!!veg

High!level!age!!3!!!reproductive!!!!repr

High!level!stress;disease!!!1!!!none!!!!none

High!level!stress;disease!!!2!!!disease!dis

High!level!stress;disease!!!3!!!abiotic!abio

High!level!stress;disease!!!4!!!transgenic!!trans

High!level!tissue!!!1!!!spike!!!spike

High!level!tissue!!!2!!!grain!!!grain

...

Wizard to load factors

1. Double click in !load_factors.sh! in the desktop 

2. When prompted, run execute in terminal
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3. By default, the script goes to !/media!, which is the folder containing the !shared!folders!
that we have setup in the LoadingVM step.

4. If the factors are loaded correctly, a pop up window will notify about it 

5. If there was an error loading the factors, a message will notify about it. The error log may
give a hint of what went wrong, but if you can't figure out send a screenshot of the
terminal to the developers.
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Rake task

To load the factors, you can run directly the rake task from !~/expvip;web/!.

rake!load_data:factor[FILE_WITH_FACTORS];!

Loading metadata

The second step is to load the experiment metadata. Currently, a tab separated file is the input
and it must contain the following columns with the header named exactly as stated:

secondary_study_accession: The accession number for experiments carried as part of a
single study. This is usually the high level BioProject or SRA number.
run_accession: The accession of the individual run.
scientific_name: of the species.
experiment_title: A description for the individual RNA-seq sample.
study_title: A description of the general study.
Variety
Tissue
Age
Stress-disease
Manuscript: The DOI of the study.
Group_for_averaging A description of the experiment. This must be the same all the
replicates in the same study.
Group_number_for_averaging: A short name for replicated experiments.
Total reads: (optional)
Mapped reads: (optional)
High level variety: A higher level grouping to get summarized data of the factors.
High level tissue
High level age
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High level stress-disease

Important points

!Variety!, !Tissue!, !Age!, !Stress;disease!, and their corresponding !High!level! factors
must be exactly the same as in the columns !factor! and !name! from the !factor!file! (see
above).
The graphical interface will group samples based on these factors. Therefore these can be
defined based on the user needs. For example the factor !High!level!tissue! will include
tissue types such as !grain!, !roots!, !spike! and !leaves/shoots!. Within each of these
tissue types, a more detailed description can be included under the !Tissue! heading. For
example: !starchy!endosperm!, !seed!coat!, !transfer!cells!, etc. RNA-seq samples which
share factor names in common will be displayed as groups in the visual interface.
If !Mapped!reads! and !Total!reads! are missing, you need to run !kallisto! mapping from
the !rake! task.

Using the graphical interface

The process is similar to loading the factors. However, the metadata file is selected.

1. Double click on the !load_metadata.sh! icon in the desktop 

2. Choose execute in terminal 
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3. Select the metadata file 

Rake task

rake!load_data:metadata[FILE_WITH_THE_METADATA]

Loading the gene sets

Before loading the actual expression data or running kallisto, it is necessary to load the gene
models. Currently, only the fasta file with the cdna from ensembl is supported. The fasta
header should contain the following fields, besides the gene name (first string in the header).

cdna
chromosome or scaffold are converted to position
gene
transcript
description a free text, in quotes. Any other field with quotes may fail in the load.

Besides the fasta file, it is necessary to give a name to the gene set. For this tutorial, the
!gene_set! will be !IWGSC2.26!

Example fasta file

Graphical interface

1. Double click on the !load_gene_set! script 

>Traes_5BL_3FC5BA305.1!cdna:novel!scaffold:IWGSC2:IWGSC_CSS_5BL_scaff_1082268:5:199:;1!gene:Traes_5BL_3FC5BA305!transcript:Traes_5BL_3FC5BA305.1

TGCTGCTGCTAGGCTTGAAGAGGTTGCTGGCAAGCTCCAGTCTGCTCGGCAGCTCATTCA

GAGGGGCTGTGAGGAGTGCCCCAAGAACGAGGATGTTTGGTTCGAGGCATGCCGGTTGGC

TAGCCCAGATGAGTCAAAGGCAGTAATTGCCAGGGGTGTGAAGGCAATTCCCAACTCTGT

GAAGCTGTGGCTGCA

>Traes_6BL_9BB648D51.1!cdna:novel!scaffold:IWGSC2:IWGSC_CSS_6BL_scaff_430516:302:1741:;1!gene:Traes_6BL_9BB648D51!transcript:Traes_6BL_9BB648D51.1

TCCCTATCTGTTTCCTTGGCAGCTCCCTGATCCAATCGATCCATCAGGGCTCGACTAACT

TCTTCCAGCGCCTCTTCAGCGCGGGAGATCTACCAGCGTCGGCGGAGGGGCGTAGGTGCA

GGCGTGCAGCCCAAGTCCGCACCCGGCTCTAGGTTTCTGCTAATCTTCTTCCACCTGTGA

TACGCGCTCCGGGGCTAGGAGCACTCGTTGCCGGCTGCCTCGTGCTCGGAATGGCGGATG
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2. Select !Execute!in!Terminal! 

3. Here you can name the gene set.

4. And select the reference file. This may take a few minutes to load. 
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5. Successfully loaded genes 

Rake task

rake!load_data:ensembl_genes[IWGSC2.26,/Triticum_aestivum.IWGSC2.26.cdna.all.fa]

Loading the homoeologues

In order to show the homoeologues, a file with the homoeologies must be loaded. The file is
tab separated with the following format:

Gene!!!!A!!!B!!!D!!!Group!!!Genome

Traes_5BS_0AFC3F795!!!!!Traes_5BS_0AFC3F795!Traes_5DS_C204EBAA9!5!!!B

Traes_5DS_C204EBAA9!!!!!Traes_5BS_0AFC3F795!Traes_5DS_C204EBAA9!5!!!D

Traes_7DL_82360D4EE1!!!!!!!!!!!!Traes_7DL_82360D4EE1!!!!7!!!D

Traes_2AL_1368BE0AD!Traes_2AL_1368BE0AD!Traes_2BL_CD459994C1!!!!!!!!2!!!A

...
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Note that the gene names are not the same as the transcript names, they correspond to the
gene name.

Generating the file with the homoeologues from Ensembl compara

The file can be genrated with ensembl compara, using the following query:

SELECT!

!!!!homology_member.homology_id,!cigar_line,!perc_cov,!perc_id,!perc_pos,!

!!!!gene_member.stable_id!as!genes,!

!!!!gene_member.genome_db_id

FROM!

!!!!homology_member!

INNER!JOIN!homology!USING!(homology_id)!

INNER!JOIN!method_link_species_set!USING!(method_link_species_set_id)!

INNER!JOIN!gene_member!USING!(gene_member_id)

WHERE!method_link_species_set.name="T.aes!homoeologues";

Then, to format the result of the query (saved as !compara_homology.txt!), you can use the
provided script

ruby!bin/homologyTable.rb!compara_homolgy.txt!homology.txt!homology_counts.txt

You can get your homoeologies elsewhere, as long as you keep the file format.

At this point, the homoloeologues are called A,B and D. This is going to change on a future
release to allow any chromosome group naming.

1. Double click on the !load_homoeologues.sh! script 

2. Select !Execute!in!Terminal! 
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3. Here you can name the gene set. It must be the same name you added for the gene
reference.

4. And select the homoeologues file.

5. Succesfully loaded. At the end of the log you can see which how many homologies where
loaded. 
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Rake task

rake!load_data:homology[IWGSC2.26,/homology.txt]

Data loading
Once the database has been created, expVIP currently supports two methods to load
expression data onto the database:

1. Load the precomputed expression values into the database, or
2. Run kallisto to generate the expression data. These are then loaded directly into the

database.

Single big table

The fastest way to load the data to expVIP is to produce a table with all the values for each
expression unit (tpm, counts). The table must contain a column !target_id! that has the gene
name, as the first field in the fasta file used for the mapping. The rest of the columns most
contain a header with the accession of the experiment. Each row represents a value. All the
values in the table must be from the same time.

For the case of wheat in which we have already generated the kallisto mapping of 418 RNA-
seq studies, the expression table can be downloaded directly from here. The !txt! files are
called !final_output_counts.txt! and !final_output_tpm.txt! for the corresponding expression
unit.

Loading from the script
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1. Double click on the !load_values.sh! 

2. Click one !Execute!in!Terminal! 

3. Select a name for the set of alignments. expVIP can keep several runs of alignments in the
database. The ability to select between them will be added in a future release.
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4. The names of the gene set must be the same used when loading the metadata 

5. Select the file with the big table. The process takes some time, so be patient.
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6. An alert comes when the data finished loading.

If the accession numbers are not the same as in the metadata the process will fail.

Rake Task

In order to load the data, the task !load_data:values! is provided. For example, to load the tpm,
the following command is used.

rake!"load_data:values[First!run,IWGSC2.26,tpm,edited_final_output_tpm.txt]"

Running Kallisto

You can load the data directly to the database provided that you generated the !Kallisto!
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index on your reference:

You can modify the index options as you find it suitable for your experiment.

To run Kallisto on single sample, the following task is available:

The task requires that the reads are in a folder named exactly as the
!secondary\_study\_accession*! column in the metadata file. If the accession doesn't exist, the
task will fail. !experiment_title! is a name to group alignments.

Run Kallisto on a single sample
expVIP can run !Kallisto! and load the !tpm! and !counts! to the database. The only
requirement is to run !kallisto!index! on the transcriptome reference.

Graphical interface

kallisto!index!;;index=Triticum_aestivum.IWGSC2.26.cdna.all.fa.kallisto.k31!Triticum_aestivum.IWGSC2.26.cdna.all.fa

rake!kallisto:runAndStorePaired[Index,folder/with/samples/ACCESSION,experiment_title,IWGSC2.26]
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1. Double click on !run_kallisto.sh! 

2. Click on !Execute!on!terminal! 

3. Give a name to the set of mappings to be grouped. All mappings done with the same
reference and preference should have the same name.
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4. Get the name of the reference. This name must be the same used when loading the
metadata

5. Select a folder with the reads. The reads must be paired reads. The folder name must be
the same as the !accession! used on the metadata.
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6. Select the kallisto index 

7. Wait for Kallisto to run and load the data 
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You can reepeat this with all the samples or you can use the batch load.

Rake task

kallisto:runAndStorePaired[kallistoIndex,input_folder,metaExperimentName,geneSetName]

Where !metaExperimentName! is the name of the group of alignments under the same conditions
and `!geneSetName! is the name of the reference.

Run Kallisto on a multiple samples
expVIP can run !Kallisto! and load the !tpm! and !counts! to the database from multiple
samples. The only requirement is to run !kallisto!index! on the transcriptome reference.

Graphical interface
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1. Double click on !run_kallisto.sh! 

2. Click on !Execute!on!terminal! 

3. Give a name to the set of mappings to be grouped. All mappings done with the same
reference and preference should have the same name.



17/09/2016 13:39AllConcat · homonecloco/expvip-web Wiki

Page 26 of 40https://github.com/homonecloco/expvip-web/wiki/AllConcat

4. Get the name of the reference. This name must be the same used when loading the
metadata

5. Select a folder with the folders containing the reads. The reads must be paired reads. The
subfolder names must be the same as the !accession! used on the metadata. If a subfolder
has an experiment that has been loaded already, it is not loaded. 
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6. Select the kallisto index 

7. Wait for Kallisto to run and load the data 
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Repeat this with all the samples.

Rake task

Where !metaExperimentName! is the name of the group of alignments under the same conditions
and `!geneSetName! is the name of the reference.

Starting expVIP web server
Once the data is loaded, you can visualize the the expression in the expVIP virtual machine.

1. Double click on !start_expvip_server.sh!

kallisto:runAndStorePairedFolder[kallistoIndex,input_folder,metaExperimentName,geneSetName]
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2. Click on !Execute!on!terminal! 
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3. Wait fot the webserver to start. You know it is ready when the line
!WEBrickHTTPServer#start:!pid=xxxx!port=3000! appers in the console

4. Double click in Chromium Web Broser.
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5. Your local instance of expVIP is running!

Export data
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The data loaded in !expVIP! can be exported to be run in DESeq2, or any other software to do
differential expression analysis.

Wizard to export data

1. Double clicl on the the !export_tables.sh! script 

2. Execute it on the terminal 

3. Select the value you want to export. If you have used !Kallisto!, the available options are
!count! and !tpm!. If you imported the data manually, it will be whatever units you inserted 
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4. Select a location for the output file. It is suggested to export it in the shared folder with the
host machine.

Rake tast

rake!"export:values[tpm,tpm.csv]"

Abundance files
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To use Sleuth, the abundance files from the !Kallisto! runs can be grabed from the folder
!kallisto! inside the folder with reads.

The abundance files for the runs in the VM and in wheat-expression.com can be found in thie
here.

Troublshooting

If you get an error like this:

You can try increasing the size of the virtual machine disk or install expVIP in a dedicated
workstation. The best thing to do is to download the precalculated tables from the expVIP
website and add the columns with your experiment at the end of the table.

This tutorial is based on the !Wheat!Expression!Browser!. However, the principles are the same
for any transcriptome study which is powered by the expVIP graphical interface.

Home Page
The home page allows the user to insert a gene name to search and to define which studies
are to be included in the visualisation interface. By default all studies are selected, but users
can select/deselect a study by simply clicking on the specific button.

You can also compare expression between two genes by introducing both gene names in the
boxes and pressing the !Compare! button.

Alternatively you can compare expression across multiple genes (up to 50) to generate a
heatmap. You can add a list of genes separate by commas or one gene per line in the
!Multiple!genes! box.

All gene names are based on the transcriptome reference used for expVIP: for the case of the
Wheat Expression Browser we used the IWGSC transcriptome available through Ensembl
Plants release 26.

Visualisation interface

Single gene or two-gene comparison

Once the gene expression loads the page includes several features. These are shown below
and explained point by point:

ActiveRecord::StatementInvalid:!Mysql2::Error:!Error!writing!file!'/tmp/MYg0xdqm'!(Errcode:!28!;!No!space!left!on!device):
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Figure 1: Overall description of features on Wheat Expression Browser

1. !Search!box!: at any point you can type or copy a new gene name (based on Ensembl
Plants nomenclature) and generate a new set of expression data.

2. !Compare!box!: you can type a second gene name and press the !Compare! button to
generate two expression graphs drawn at the same scale.

3. !Menu!options!: this includes a series of links to different options:

!Home!: return to !home! screen.

!Studies!: opens up a popup screen with a summary and short description of each
study and a link to manuscript.
!Download!: link to download all the wheat expression database including !tpm! and
!counts! and associated metadata.

!Add!your!data!: link to GitHub to download virtual machine.

!Tutorials!: link to Wheat Expression Browser Tutorial.

!Videos!: link to Wheat Expression Browser Video Tutorial.

4. !Gene!: shows the gene which is currently being displayed with link to Ensembl Plants gene
page.

5. !Expression!unit!: allows user to select the expression unit used to visualise the
expression data. This can be either “transcript per million (!tpm!)” or “estimated counts
(!counts!)”. We have not provided RPKM given the inconsistencies generated across
samples when using this measure. A detailed discussion can be found in Wagner et al
(2012). It is important to mention that !tpm! is preferred over RPKM since it allows an
easier comparison for abundances between samples. However it is important to stress
that while !tpm! serves as a relative measure to compare genes across experiments, a
proper normalisation and statistical analysis with differential gene expression programs
must be performed. !expVIP! generates outputs which allow easy implementation of
!sleuth!, !DESeq! and !EdgeR!.

6. !Save!graph!: these two buttons allow users to save the current graphs in either !SVG! (to
work on Adobe Ilustrator) or as !PNG! files. The graphical file will render based on the
current selection and order of factors as displayed on the screen.
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7. !Save!data!: this allows the user to download a !csv! file with the data based on the current
selection and order of factors as displayed on the screen. The data will include the
standard errors and the number of samples that make up each value.

8. !Homoeologues!: by clicking on this button, the !Wheat!Expression!Browser! will display the
expression graphs of known homoeologues of the original primary gene. This gene name
will remain in bold and the homoeologous graphs will be displayed according to A, B, D
genome ordering. When homoeologues are displayed the same expression scale is used
across graphs and the sorting and filtering of factors is simultaneous to allow easier
comparison.

9. !Gene!names!: gene name for corresponding graph. When homoeologues are shown the
original gene used for the search is shown in bold.

10. !Expression!level!: the expression level adjusts according to the expression of each set of
gene homoeologues. The scale remains consistent across homoeologues to allow easier
comparison. The values are based on the unit selected in the !expression!unit! box (see
point 5 above). 

Figure 2: Overall description of features on Wheat Expression Browser (continued)
11. !Filter!: This feature open a pop-up window which reveals all the levels within the

particular category. All levels are pre-selected, but users can choose to display specific
levels by selecting or deselecting them accordingly. If a level is deselected, then the data
associated with this factor is removed from the graph. Within the pop-up window levels
can also be re-arranged according to the user’s preference by dragging the level to the
specific position within the pop-up window (see Features section below).

12. !Display/hide!category!: Each individual category can be displayed or hidden by pressing
the !+/;! button. When a category is displayed, the expression graphs will re-arrange
according to the new category which has been introduced. If a category is hidden, then
the graphs will also adjust accordingly. Data is not removed when doing this, rather it is
grouped within the categories selected such that the total samples displayed remains the
same. The colours within the category correspond to unique values or levels (up to 24
different colours) and are also used in the bar graphs corresponding to the expression
data.

13. !Expression!bars!: These bars represent the expression level of the “n” samples which are
grouped according to the factors chosen based on the selection criteria (11 and 12
above). When hovering over the bar with the mouse a small tooltip will indicate the
expression level (!tpm! or !counts!) and the standard error (sem) used for the error bars (see
14)

14. !Error!bars!: Standard error of the means for the “n” expression values on which the bar
graph is based.
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15. !Factors!: Coloured rectangles represent the categories which are displayed according to
the factors chosen based on the selection criteria (11 and 12 above). When hovering
above the rectangles a tooltip will appear to show the long name of the level being
examined.

16. !Description!: Text description of the factors chosen based on the selection criteria (11
and 12 above) and the number of RNAseq samples (n) which meet this specific criterion.

Multiple gene comparisons

17. !Expression!unit!: For heatmaps, log2(tpm) is suggested as the expression unit as this
provides better resolution to compare multiple genes across several categories.

18. !Heatmap!: Expression data is represented as a heatmap. As for single genes, categories
can be sorted and filtered using the same tools. Gene names appear on the top of each
column. Currently, up to 50 genes can be visualised in one heatmap. In Figure 3, for
example, the two right-most genes are expressed solely in grains, with one being
expressed to higher levels as suggested by the dark blue colour.

19. !Scale!: Colour scale for the expression values in the heatmap. The values adjust
according to the highest tpm value being displayed within the current heatmap
visualisation. Since tpm values below 2 are considered as very low expressed genes and
log2 values of tpm<1 result in negative expression values, we forced tpm values below 1
to have a log2 value of cero (i.e. log2(<1)=0).

Figure 3: Description of features on Wheat Expression Browser using Multiple gene
comparisons.

Features

Sorting

Factors can be sorted within each category in two ways.

1. The first is by simply clicking the mouse on top of the coloured rectangles underneath the
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heading. For example in Figure 2 samples are sorted on !High!level!age! from !seedling!
(red), !vegetative! (blue) to !reproductive! (green). If the user clicks on any of the coloured
rectangles in the !High!level!tissue! category, then the graph is automatically reorganised
based on this factor. In this case it includes four categories as defined by the user in the
metadata and the bar graphs on the right hand side change colour according to the latest
factor used for sorting. The previous factor used (in this case !high!level!age!) remains as
a secondary sorting factor (Figure 3).

Figure 4: Example of new sorting of data based on clicking of rectangles within “high level
tissue”.

2. Alternatively, the user can define the exact order of factors within the browser interface. To
do so the !filter! option (point 11 above) can be used. By clicking on the double arrow
button the user opens a pop-up window which shows the levels within the factor. In this
example by pressing the double-arrow underneath !high!level!tissue! a pop-up with four
levels appears based on the order as determined in the user defined metadata (!spike!,
!grain!, !leaves/shoots!, !roots!). To rearrange this, the user can simply click, hold and drag
the level to the desired position. This will automatically re-arrange the data based on the
new order and the corresponding graph and legends will follow suit. The bottom panel of
Figure 5 shows a new order of !roots!, !leaves/shoots!, !spike! and !grain!. 
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Figure 5: Example of sorting of data based on new user defined order within the filter
pop-up window.

Filtering

In cases it may be required to remove certain samples from the visualisation. Note that
displaying or hiding a category (point 12 above) does not remove the underlying data from the
visualisation: this just simply groups the data within the selected category. Therefore to
remove samples from the visualisation the user can open the filter pop-up as described for the
!Sorting! option. Individual levels within the category can then be removed by using the
“check-box” on the left hand side of the level name. By de-selecting a given level (in the
example for Figure 6 we have deselected !leaves/shoots! and !spike!), samples defined as
such will be removed from the analysis and will not be shown in the bar graphs. In Figure 6
now only two levels remain (!roots! and !grains!) and hence the bar graphs only show these
two levels. Notice that the numbers of samples which comprise each bar graph are the same
as those on Figure 5. The pop-up window also includes an !all! and !none! option to rapidly
select/deselect individual samples. The filtering option can be used on any factor: for example
to remove a complete study from the analysis the easiest way is to select the !study! filtering
pop-up on the far left and deselect the study in question.
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Figure 6: Example of filtering data based on user defined selection within the filter pop-up
window.
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Acronyms

ACID Atomicity, Consistency, Isolation and Durability. 114

AVS Avocet S. 10, 69, 71, 73–75, 77, 78, 85, 92, 99, 104

BC Back-cross. 16, 69, 75

BFR Bulk Frequency Ratio. 66, 77, 82, 96, 97, 104, 105

BSA Bulk Segregant Analysis. 65, 101, 103, 105

cDNA coding deoxyribonucleic acid. 67, 125

CS Chinese Spring. 24, 26, 153, 154

CSS Chinese Spring Chromosome arm survey sequence. 9, 26–28, 41,
53, 54, 60, 67, 75, 79, 82, 87, 89, 98, 99, 102, 103, 105, 151, 154,
160

CSV comma separated values. 49

DH Doubled Haploid. 16, 17, 28, 152

EBI European Bioinformatics Institute. 106, 140, 141

EI Earlham Institute. 146, 152

EST Encoding Sequence Tag. 26, 103

expVIP expression Visualisation and Integration Platform. 7, 8, 107,
116, 117, 119, 121, 122, 125, 130, 136, 138, 140, 141, 144–148, 158

FPKM Fragments Per Kilobase of transcript per Million of mapped
reads. 117

GUI Graphical User Interface. 7, 131, 132, 134
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HPC High Performance Computing. 143

indels insertions and deletions. 6, 38, 42, 44, 46

IUPAC International Union of Pure and Applied Chemistry. 9, 23, 73

IWGSC International Wheat Genome Sequencing Consortium. 24, 117,
141, 145, 147, 154

JIC John Innes Centre. 75, 77

MAS Marker Assisted Selection. 90

MVC Model View Controller. 7, 114–116, 130

NCBI National Center for Biotechnology Information. 26, 60

NGS Next Generation Sequencing. 19, 23, 27, 66, 79, 102, 105

NIL Near Isogenic Line. 16, 64, 69, 75, 103

PCR Polymerase Chain Reaction. 32, 33, 60

PST Puccinia striiformis f. sp. tritici. 57, 64

QTL Quantitative Trait Locus. 79

RDBMS Relational Database Management System. 114, 115, 121

RIL Recombinant Inbred Line. 16

RoR Ruby on Rails. 115, 116, 125, 128, 130

RPKM Reads Per Kilobase of transcript per Million of mapped reads.
24, 117, 141, 142

SNP Single Nucleotide Polymorphism. 23, 27, 28, 32, 39, 62, 67, 73–75,
77, 82, 87, 104, 105, 152, 159

SQL Standard Query Language. 112, 114

SSR Simple Sequence Repeat. 57, 90

T-DBG transcriptome de Bruijn Graph. 110, 144
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TPM Transcripts per Million of mapped reads. 24, 117, 127, 132, 137,
142

UCW University of California Wheat. 26, 67, 73–75

WGS whole genome shotgun. 24, 26

Yr15 Avocet + Yr15 . 7, 10, 69–71, 73–75, 77–79, 82, 83, 85, 89, 90, 92,
93, 99, 102, 151
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