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Genome-wide methylation analysis of a large
population sample shows neurological pathways
involvement in chronic widespread
musculoskeletal pain
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Alex MacGregora,d, Jordana T. Bella, Frances M.K. Williamsa,*

Abstract
Chronic widespread musculoskeletal pain (CWP), has a considerable heritable component, which remains to be explained.
Epigenetic factors may contribute to and account for some of the heritability estimate. We analysed epigenome-wide methylation
using MeDIPseq in whole blood DNA from 1708 monozygotic and dizygotic Caucasian twins having CWP prevalence of 19.9%.
Longitudinally stable methylation bins (lsBINs), were established by testing repeatedmeasurements conducted$3 years apart, n5
292. DNA methylation variation at lsBINs was tested for association with CWP in a discovery set of 50 monozygotic twin pairs
discordant for CWP, and in an independent dataset (n 5 1608 twins), and the results from the 2 samples were combined using
Fisher method. Functional interpretation of the most associated signals was based on functional genomic annotations, gene
ontology, and pathway analyses. Of 723,029 signals identified as lsBINs, 26,399 lsBINs demonstrated the same direction of
association in both discovery and replication datasets at nominal significance (P # 0.05). In the combined analysis across 1708
individuals, whereas no lsBINs showed genome-wide significance (P , 10-8), 24 signals reached p#9E-5, and these included
association signals mapping in or near to IL17A, ADIPOR2, and TNFRSF13B. Bioinformatics analyses of the associatedmethylation
bins showed enrichment for neurological pathways in CWP.We estimate that the variance explained by epigenetic factors in CWP is
6%. This, the largest study to date of DNA methylation in CWP, points towards epigenetic modification of neurological pathways in
CWP and provides proof of principle of this method in teasing apart the complex risk factors for CWP.
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1. Introduction

Chronic widespread pain (CWP) is a common musculoskeletal
condition with a lifetime prevalence of 5% to 15% in European
populations.44,52 The estimates of prevalence vary depending on
definition; however, it is agreed that the frequency of CWP
condition increases sharply in females and with increasing

age41,55,62 and that CWP is very costly to society.23 The etiology
of CWP is complex and poorly understood, but CWP has been
shown by several groups to be heritable with heritability estimates
usually exceeding 30%.34,48 Of the many risk factors that have
been proposed for CWP, increased bodymass index (BMI) is one
of the strongest and most consistently reported.36,40,57 Our work
has shown the influence of BMI on CWP risk to be through
increased fat mass.33 We have also shown that the risk of CWP
correlates inversely with the circulating levels of biochemical
factors related to androsterone metabolism, in particular epian-
drosterone sulphate and dihydroepiandrosterone sulphate.8,33

Epidemiological studies of CWP show that it co-occurs with
other chronic pain and affective syndromes such as irritable
bowel syndrome, anxiety, and depression. Our studies and those
of others suggest that shared genetic factors (pleiotropy) may
affect simultaneously different chronic pain syndromes.8,58 Over
the last decade, several candidate genes have been identified
that are potentially linked to CWP31,45,47, however, only a few of
these genes have been reliably replicated. Agnostic approaches
such as at genome-wide linkage and association have produced
some novel findings13,16 but together they explain only a fraction
of the genetic contribution.

It is well established that genes undergo substantial changes in
their pattern of expression throughout the course of life. These
patterns are, to an extent, coordinated by epigenetic mecha-
nisms such as DNA methylation that mainly occurs at cytosine
residues in the CpG dinucleotides within gene promoter regions.4
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There is evidence that DNA methylation contributes to the
development of many diseases, eg, cancer46 and cardiovascular
disease18 through interfering with gene expression. Epigenetic
processes could plausibly be involved in the pathogenesis of
chronic pain.3,29 For instance, histone acetylation and methyla-
tion, additional important mechanisms of regulation of gene
expression, have been implicated in the etiology of chronic pain29

and neuropathic pain in particular.21 However, experimental data
on this topic remain sparse and we are aware of only 1, extremely
limited clinical (10 patients), epigenome-wide association study
(EWAS).37 Our group has previously conducted an EWAS of the
heat pain sensitivity in small sample of 100 volunteer twins (free of
CWP), and detected epigenetic change in both novel and
established candidate pain genes.5 We set out in the current
study, therefore, to analyse genome-wide changes in blood DNA
methylation levels in a much larger, population sample charac-
terised for CWP.

2. Methods

2.1. Study sample

The subjects in the present study were from the TwinsUK Adult
Twin Registry, described in detail elsewhere.39 The registry had
been collected from the general population through national
media campaigns in the United Kingdom and without ascer-
tainment for any particular characteristics, diseases, or traits.
The sample included 1708 women (age ranged from 17 to 82
years, with average 51.8 6 13.7 years) with questionnaire
responses to CWP assessment (see below) and having
methylation level measurements (n 5 2002, some individuals
were repeatedly measured). The sample comprised 565 mono-
zygotic (MZ) twin pairs, 244 dizygotic (DZ) twin pairs, and 90
singletons (individual twins with missing cotwin data). For all
singletons, the CWP status of their respective sibling was
known. All participants gave written informed consent before
entering the study and the St. Thomas’ Hospital Research
Ethics Committee had approved the project.

2.2. CWP definition

The London Fibromyalgia Epidemiology Study Screening Ques-
tionnaire had been sent to twins for self-completion, without
reference to the cotwin.61 Twins with pain on both left and right
sides of the body, above and below the diaphragm, duration of 7
days or more within the preceding 3 months were considered as
cases. These twins had participated in the CWP genome-wide
association study meta-analysis47 and in the recent omics
study.33 In clinical visits, body height and weight were measured
and BMI (in kg/m2) was calculated.

2.3. Smoking scores

The present sample included 1307 individuals, for whom the
information on smoking habits was available. Of these, 588 (45%)
individuals were ever smokers including 99 current smokers and
489 ex-smokers.

2.4. Blood cell composition

Whole blood cell (WBC) subtype counts were obtained for 441
individuals using flow cytometry analysis of peripheral blood.43

WBC subtype cell counts were available for 4 cell types:
neutrophils, eosinophils, monocytes, and lymphocytes.

2.5. MeDIP-sequencing and DNA methylation quantification

Thismethodologywas describedby us recently elsewhere (Livshits
et al).32 Briefly, whole blood DNA was fragmented to a smear of
200 to 500 bp with the Bioruptor NGS System (Diagenode) and
subsequently methylated DNA was immunoprecipitated using the
Magnetic Methylated DNA Immunoprecipitation Kit (Diage-
node).5,28 After efficiency and sensitivity assessment by qPCR,
MeDIP-seq libraries were prepared by amplification, purification,
and validation followed by high-throughput sequencing (Illumina
HiSeq2000) that generated ;50 million 50 bp single-end reads.
After adapter and base quality trimming, sequencing reads were
mapped to hg19 using BWA v0.5.9.23 Alignments with low quality
scores (Q, 10) and duplicates were filtered, which resulted in an
average of 15,684,723 uniquely mapped reads that were sub-
sequently extended to 350 bp to represent the average MeDIP
fragment size. Fragments per kilobasepermillionwerequantified in
bins (methylation sites) of 500 bp (250 bp overlap) genome wide
using MEDIPS v1.6.10

2.6. Design of the study and statistical analysis

The methylation levels were assessed at 11,524,145 CpG sites,
genome wide (bins) in each of the 1708 individuals in the sample.
The data analysis was carried out in several stages, diagram-
matically shown in Figure 1. Individuals having repeated
measures of methylation (n 5 388) included 292 samples
analysed in the same laboratory batch, which were used to
identify longitudinally stable DNA methylation regions. After
quality control and exclusion of all bins for which $ 20%
individuals had zero methylation, 6,501,931 bins remained. To
test longitudinal stability of the methylation levels, we computed
Pearson correlations between these bins in all individuals whose
methylation levels were measured 2 times at least 3 years apart
(mean5 7.0 years, SD5 1.2 years, range: 3.4-10.8 years). Bins
displaying significant intraindividual correlation (P , 0.05) were
considered as longitudinally stable (called “lsBIN” below) and
were used for subsequent analysis. To clarify the extent to which
the interindividual variation in methylation levels of longitudinally
stable methylation bins (lsBINs) was governed by additive genetic
factors we computed correlations between the twin measure-
ments for each of the lsBINs for MZ and DZ pairs separately.

Next, we identified bins associated with CWP occurrence
using a discovery set of 50 pairs ofMZ-twins discordant (affected/
nonaffected) for CWP. Here, the difference between the date of
DNA extraction and CWP assessment was, 5 years for 46 pairs
and 5 to 10 years for 4 MZ twin pairs. Paired Student’s t test was
performed to compare methylation levels in CWP-affected and
nonaffected twins.

The nominally significantly (P , 0.05) associated lsBINs were
then examined in the replication sample (total remaining sample,
N 5 1608 individuals) implementing t test after adjustment of
methylation levels for age and age2 (as the relationship with age
was nonlinear). The P-values for the results obtained in 2
nonoverlapping samples were combined using Fisher method.14

Once the most significant lsBINs have been identified, the
association of each bin with CWP was tested using modified
multiple logistic regression. In addition to methylation levels, we
also examined the effect of BMI, smoking, and WBC subtype
counts, simultaneously adjusting for age and cotwin CWP-
affection status (covariates).

To evaluate the relative contribution of additive genetic factors
(narrow sense heritability, h2) and methylation in top-ranked bins
toCWP,we carried outmodified variance decomposition analysis
based on a classical polygenic concept of the heritability of
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threshold traits.15 The analysis was conducted using Mendelian
Analysis Package (MAN) for family-based samples.34,35

2.7. Multiple testing correction

The false discovery rate for multiple testing under dependency was
estimated.7 Methylation levels in neighbouring and other genomic
sites may not be independent, so we calculated the effective
number of independent tests using eigenvalues of the correlation
matrix of tested bins after a modified version of Li and Ji (2005).22

This procedure was carried out in the total sample (n 5 1708) on
lsBINs. Significance was considered if the combined results of the
discovery and replication sets reached epigenome-wide signifi-
cance (P# 10E-7) estimated from thenumber of independent tests.

2.8. Functional genomic annotations and gene
ontology analysis

The top lsBINs displaying significant association with CWP in the
discovery set and validated in the replication sample were
mapped to genomic regions implementing the HapMap re-
pository (https://hapmap.ncbi.nlm.nih.gov/) and GeneCards
database (http://www.genecards.org/).

Gene ontology (GO) analysis was carried out based on both sets
of results. First, we assigned the lsBINs to nearbyENSEMBLgenes
using MEDIPS package for R.30 For genes with multiple bins
assigned we retained the lsBIN with the lowest P-value for
association with CWP. Using Fisher approach we took the
combined P-values and carried out GO analysis using the
weight01 algorithm implemented in the topGO package for R.1

The statistical significance of over-representation of GO terms was
estimated using Fisher exact test. Two GO domains have been
analysed, Biological Process (BP) and Cellular Component (CC).
QIAGEN’s Ingenuity Pathway Analysis (IPA; QIAGEN Redwood
City, www.qiagen.com/ingenuity) was used for pathway analysis.

3. Results

3.1. Descriptive statistics and identification of longitudinally
stable DNA methylation regions

The basic descriptive statistics of the study sample, by affection
status are given in Table 1. The CWP-affected females were
older, had higher BMI and tended to smoke significantly more
than unaffected individuals. Note, however, the smoking data
was available for a subset (n 5 1307) participants.

A total of 6,501,931 bins (56.4%) remained (from the initial
11,524,145 bins) after quality control testing and exclusion of bins
displaying zero methylation levels in .20% of the study sample.
Nominally significant (P, 0.05) Pearson correlations between the
repeatedmeasurements (Rrepeat) in 292 selected individuals were
found for 723,029 bins (lsBINs; 6.3% of the initial 11,524,145
bins). The size of the correlations varied between 0.114 and
0.905, with the median 0.145.

3.2. Heritability of lsBIN methylation levels

The analysis of methylation levels per bin within the twin pairs
showed that MZ twin correlations (RMZs) had mean 0.210 6

Figure 1. The main lines of the design of the present study.
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0.016; whereas DZ twins correlations (RDZs) had mean 0.161 6
0.018. Both RMZ and RDZ estimates clearly increased with Rrepeat,
with the corresponding linear correlations lying between 0.516
(for RMZ) and 0.347 (for RDZ) (P , 0.0001in all instances). We
observed also a notable positive dependence (P, 0.0001) of the
RMZ/RDZ ratio on correlation between the repeated measure-
ments (Rrepeat). The linear correlation between the RMZ/RDZ and
Rrepeat, ranged between 0.416 and 0.527, and in combination
with the parallel elevation in correlation size between the twins,
suggesting the increasing role of heritability with the increase in
the longitudinal stability of the methylation site.

3.3. Identification of lsBINs associated with CWP in
discovery set

We compared methylation levels of 723,029 lsBINs in 50 CWP
discordant MZ twin pairs using the paired t test. Overall, 50,621
bins showed nominal significance for association (P, 0.05) which
is close to the theoretically expected distribution (Fig. S1,
supplementary material, available online at http://links.lww.com/
PAIN/A395). However, the observed number of significant
P-values is likely underestimated because of nonindependence
of individuals, correlation between the methylation levels in twins,
and nonindependence of bins, many of which are located very
close to one another and display similar patterns of variation.
Besides, the adjacent bins overlapped by 250 bps. All significantly
associated bins were therefore tested in validation analysis.

3.4. Validation of association between selected lsBINs
and CWP in replication set

A similar comparison of the methylation levels of all lsBINs in
affected vs nonaffected twins was tested in our replication
sample of 1608 individuals. The methylation levels were adjusted
for age before analysis and then compared by t test. This resulted
in 49,416 nominally significant differentially methylated lsBINs.
We combined the significant results observed in both analyses
implementing Fisher method (Fig. S2, supplementary material 1,
available online at http://links.lww.com/PAIN/A395). In this
method, nominally significant (P , 0.05) P-values obtained in
the 2 independent samples were combined, restricting results to
bins where the same direction of association between the
methylation level andCWP- affection statuswas observed in both
datasets. This generated 26,399 nominally significant signals with

the same direction of the effect. We next checked whether the
size of the association signals correlated with the Rrepeat. As seen
in Figure S3 (supplementary material 1, available online at http://
links.lww.com/PAIN/A395) there was a slight positive, but not
statistically significant trend: the small surplus of the most
significant associations (P , 0.01) was observed in Rrepeat

categories .0.30. The 24 most highly associated lsBINs by
Fisher method are shown in Table 2.

In total, we tested 723,029 bins. Our estimates of the effective
number of independent tests (see M&M above) lay between
365,101 and 236,923, suggesting that the epigenome-wide
significance level (accepting a 5 0.05 for individual tests) is
#1.36e-7. The lowest P-values for lsBINs associated with CWP
were at the levels of “suggestive association” (https://www.
biostars.org/p/141785/) ranging between 9.1e-5 and 2.5e-6,
with no bin reaching epigenome-wide significance. However, it is
also important that the direction of effect as established by the
direction of the t statistic (positive or negative) was the same in
both analyses with respect to .26,399 methylation sites, and in
particular in all listed lsBINs (Table 2). That is, the bins showed
elevated (or diminished) methylation levels in CWP-affected vs
unaffected persons studied in both the discovery and replication
datasets. As the 2 samples are independent, this finding adds
confidence to the results. In addition, we estimated the proportion
of methylation variation in top lsBINs attributable to CWP in the
total sample and found it to be modest: it ranged between 0.31%
(Chr#22, position starts 43,243,751) and 1.1% (Chr#8, position
starts 110,713,751) by 1-way analysis of variance.

Next, we implemented multiple logistic regression tests with
CWP as a dependent variable andmethylation level of each bin as
an independent variable and age, BMI and affection status of
cotwin as covariates. Although the association of all listed
covariates with CWP was statistically significant, the association
of all the tested lsBINs also remained significant, with only a small
change in the respective P-values (Table S1, supplementary
material, available online at http://links.lww.com/PAIN/A395).
Interestingly, smoking was significantly associated with CWP (P
5 9.0E-05) in univariate analysis (Table 1) but was not retained in
multiple logistic regression analysis for any of the tests (P
consistently .0.05). We also tested for the independent effects
of WBC subtype counts as covariates for each of the listed lsBINs
and found no statistically significant result in any case.

Since the influence of the individual lsBINs on CWP may be
nonindependent, we checked the combined effect of the1sBINs

Table 1

Basic descriptive statistics of the study sample.

Variable Study chronic widespread pain cohort Comparison

Total Affected (1) Nonaffected (0) 1 vs 0

Sample size 1708 340 1368 N/A

Age, y 55.48 58.59 54.71 t 5 5.76

Mean (range) 16.8-83.8 18.7-83.8 16.8-83.0 P 5 9.8E-09

Monozygotic-twins, % 1182, 69.2 222, 65.3 960, 70.2 x2 5 3.04

Dizygotic-twins, % 526, 30.8 118, 34.7 408, 29.8 P 5 0.081

Body mass index, kg/m2, mean (SD) 24.93 (4.52) 26.04 (5.00) 24.65 (4.36) t 5 4.68; P 5 3.1E-06

Currently smoking 99 36 63 x2 5 18.63

Previously smoked 489 100 389 df 5 2

Nonsmoking 719 128 591 P 5 9.0E-05
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using multiple logistic regression. We simultaneously tested the
association of top 4 lsBINs (because of limited sample size) with
CWP diagnosis. The total sample of 1708 individuals was
examined. The final regression model retained all 4 lsBINs
included at the first stage of the analysis (Table 3), with virtually
the same P-values as in their separate analysis (Table 1),
suggesting the lsBINs are independent in their association with
CWP. The contribution of other tested covariates (age, BMI, and
cotwin affection status) also remained statistically significant and
were independent from one another and from the effect of
methylation levels, demonstrating that the epigenetic changes
were not mediated through these known risk factors. Similar
testing of 4 other lsBINs (listed among the top bins identified in
multiple logistic regressions testing each bin separately, Table S1,
http://links.lww.com/PAIN/A395) led us to the same conclusion,
ie, association of each of themethylation sites with CWP ismostly
independent from one another, and as well as independent from
other tested covariates (not shown).

3.5. Functional genomic annotations of bins most
significantly associated with CWP

Using HapMap repository andGeneCards databasewe reviewed
the genomic location and functional description of the most
significantly associated bins. The list of the potentially functional
genomic regions mapped to/or close to identified methylation
signal(s) is provided in the right-hand column in Table 2. Their
detailed description, according to chromosome and location is
given in Supplementary material 2 (available online at http://links.
lww.com/PAIN/A395). A preponderance of these genomic
regions are involved in nervous system functions and inflamma-
tion. Thus, the top 3 bins included Chr17_16613001, annotated
to overlap with the enhancer located near ZNF624 gene known to
be involved in transcriptional regulation and TNFRSF13B encod-
ing tumour necrosis factor receptor; Chr22_41618751 mapped
to protein kinase C and casein kinase substrate in neurons 2
(PACSIN2) gene. The protein encoded by this gene is involved in
linking the actin cytoskeleton with vesicle formation by regulating

Table 2

Summary of comparison of methylation levels between chronic widespread pain -affected and nonaffected individuals in 2

samples.

Methylation site position Statistical test for association and sample Fisher combined
probability (P)

Closest genes*

Chr Start End 50 discordant twin pairs Major sample, 1608
inds

P_discord† t_discord P_1608‡ t_1608

17 16,613,001 16,613,500 1.40E-05 24.823 1.10E-02 22.539 2.50E-06 ZNF624, TNFRSF13B

22 41,618,751 41,619,250 8.00E-04 23.571 1.00E-03 23.295 1.20E-05 PACSIN2

11§ 1,691,501 1,692,000 7.80E-02 21.802 1.70E-05 24.312 1.90E-05 HCCA2

6 52,193,001 52,193,500 1.00E-04 24.213 1.40E-02 22.461 2.10E-05 IL17A, IL17F

10 96,095,251 96,095,750 3.40E-05 4.55 5.30E-02 1.934 2.60E-05 PLCE1

22 19,608,251 19,608,750 3.00E-04 23.885 6.60E-03 22.72 2.80E-05 CRKL

15 53,335,251 53,335,750 6.90E-05 4.342 3.10E-02 2.161 3.00E-05 LOC105370826‖

715 70,488,751 70,489,250 4.70E-03 22.961 5.60E-04 23.456 3.60E-05 FLJ27523

1 1,317,251 1,317,750 7.80E-04 23.577 3.50E-03 22.926 3.80E-05 CCNL2

14 53,172,501 53,173,000 1.50E-03 23.354 2.00E-03 23.092 4.20E-05 BMP4, DDHD1

11§ 1,691,751 1,692,250 9.00E-02 21.727 3.60E-05 24.145 4.40E-05 HCCA2

22 43,243,751 43,244,250 7.80E-05 24.304 5.10E-02 21.949 5.40E-05 LOC105373050‖

8 110,713,751 110,714,250 9.10E-03 2.713 4.80E-04 3.496 5.90E-05 FLJ20366

21 42,722,751 42,723,250 8.70E-02 21.745 5.10E-05 24.06 6.00E-05 NCAM2‖

22 31,467,001 31,467,500 9.30E-03 22.705 5.00E-04 23.49 6.10E-05 SYN3

2 238,359,501 238,360,000 4.20E-02 22.089 1.30E-04 23.84 7.00E-05 FLJ40411, LRRFIP1

12 1,707,251 1,707,750 1.40E-04 4.122 3.70E-02 2.082 7.00E-05 ADIPOR2, CACNA2D4

9 139,779,251 139,779,750 1.90E-02 22.415 3.00E-04 23.625 7.60E-05 COBRA1, LOC651337

16 88,004,001 88,004,500 1.40E-04 24.116 4.30E-02 22.026 8.00E-05 BANP‖

10 80,259,001 80,259,500 2.20E-04 3.99 2.90E-02 2.182 8.20E-05 ZMIZ1, PPIF

16 84,937,751 84,938,250 1.40E-03 23.377 4.50E-03 22.846 8.30E-05 FOXF1, MTHFSD

9 81,598,001 81,598,500 1.40E-03 3.395 4.90E-03 2.817 8.60E-05 TLE4

10 12,122,001 12,122,500 6.40E-03 22.847 1.10E-03 23.271 9.00E-05 UPF2, DHTKD1

2 8,666,001 8,666,500 1.10E-02 22.627 6.20E-04 23.429 9.10E-05 ID2, KIDINS220

Top lsBINs combined by Fisher method, with P , 1024 and the same direction of t tests in 2 samples are provided. The data sorted by Fisher P-value.

* Genes definitions are given according to HapMap Project (version Feb_2016).

† Pair-wised t test (affected vs not affected) for 50 pairs of discordant twins tested at the same age.

‡ t test for group means (affected vs not affected) in major sample, 1608 individuals (290 affected), methylation level was adjusted for age.

§ Overlapped bins on the chromosome.

‖ Genes definitions are given according to NCBI Map Viewer. Detail information on the listed genes, their established functions and genomic location is given in Supplementary material 2, http://links.lww.com/PAIN/A395.
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tubulin polymerization; Chr11_1691501 located in vicinity of
genes with no clearly interpretable or relevant to CWP function.
Other bins of interest and biological relevance include: (1)
Chr6_52193001 in vicinity of IL17 gene. This gene encodes
IL-17, a proinflammatory cytokine produced by activated T cells
and is implicated in inflammatory arthritis and psoriasis; IL-17
blocking antibody is already in clinical use, confirming the IL-17
proinflammatory function and suggesting its possible involvement
in pain symptoms. (2) Chr8_110713751 located within the
syntabulin (SYBU) gene genomic region. Syntabulin is thought
to mediate anterograde transport of mitochondria along neuronal
processes. (3) Chr12_1707251 mapped close to the adiponectin
receptor genes, ADIPO-R1 and -R2, which serve as receptors for
globular and full-length adiponectin which may provide the link
with BMI predisposing to CWP. (4) Chr22_31467001 located in
the genomic region that harbours synapsin III (SYN3) gene. This
gene is a member of the synapsin gene family that encodes
neuronal phosphoproteins, which associate with the cytoplasmic
surface of synaptic vesicles.

3.6. Gene ontology and pathway analyses

The GO analysis tests for over-representation of GO terms in
a given set of genes. For GO analysis we chose 1392 genes that
were nominally significant (P , 0.01) in both the discovery and
replication samples, and had a combined P , 0.001. We set up
a threshold for GO P-values as P , 0.001.

Overall, 23 and 14 GO terms that passed the significance
threshold were identified for BP and CC GO domains, re-
spectively (Tables S2 & S3, supplementary material 2, available
online at http://links.lww.com/PAIN/A395). The most significant
GO term for BP domain was “positive regulation of GTPase
activity” (P 5 1.4e-11) represented by 78 genes, the top 10
including TIAM1, RAPGEF1, DOCK9, SH3BP1, RASGEF1C,
TBC1D5, RAP1GAP2, ASAP1, MCF2L, and AGAP1. The most
significant GO term for CC domain was “cell junction” (8.50e-11)
represented by 141 genes, the top 10 including GRIN2B, TIAM1,
SHANK2, SH3PXD2A, SV2C,MAGI2, EGFR, PCDH9, GABRB1,
andNUP214. Notably, a number of themost significant GO terms
are directly related to nervous system activity and development,
eg, “neuron recognition”, “nervous system development”,
“neuron projection”, “presynaptic membrane”, and others.

The importance of neurological components was further
highlighted by the results of pathway analysis performed using

Ingenuity Pathway Analysis (IPA) tool. For the same set of 1392
genes, the most highly significant canonical pathways were
“Synaptic Long Term Depression” (P 5 1.2e-8), “Axonal
Guidance Signaling” (P 5 3.4e-7), “CREB (cAMP response
element-binding protein) Signaling in Neurons” (P 5 4.3e-7),
“Neuropathic Pain Signaling in Dorsal Horn Neurons” (P 5 4.7e-
7), and “Melatonin signalling” (P 5 5e-7). The top diseases and
biofunctions for “Physiological system development and func-
tion” in IPA analysis were “Behaviour” (P-values for different
subcategories ranged from 3.1e-4 to 8.5e-7), “Reproductive
System Development and Function” (P 5 5.3e-3 to 6e-5) and
“Nervous System Development and Function” (P 5 1. e-2 to
2.3e-4). Finally, the top network built by the IPA was associated
with “Nervous System Development and Function” category.

We were interested in the contribution of the DNA methylation
signals relative to other risk factors to CWP. To this aim, we explored
the relationship between genetic and epigenetic factors in CWP.
Liability toCWPexhibited a significant heritability estimate of 0.6366
0.174.Permutingall possible combinationsof the24most significant
lsBINs (Table 3), we found the 4 top but also independent
methylation sites. These bins, BMI and age were added into genetic
model and the results are summarised in Figure 2. They confirm the
importance of the genetic component for CWP (by likelihood ratio
test, VAD . 0; P 5 0.015) and also showed that the 4 lsBINs have
a significant association with CWP which was independent of
genetic and other risk factors. The proportion of explained
variance attributable to their effect varied between ;1.0%
(lsBIN_17_16613001) and;3.0% (lsBIN_6_52193001). The 4 bins
together explain ;6% of CWP-liability variance. These data show
that the epigenetic influence at the top 4 loci are not acting on CWP
through genetics, or BMI or age.

4. Discussion

We have conducted the first large-scale EWAS to identify
methylation sites associated with CWP. Epigenetic factors, in
particular DNA methylation, may be responsible for long lasting
changes in gene expression, and may account for a substantial
fraction of the “missing heritability”.54 On the other hand, an
individual’s epigenetic profile is dynamic and prone to environ-
mental influence as well as genetic factors. Twins, particularly MZ
twins, offer the ideal study subjects asMZ twin pairs are completely
matched for genetic factors and age and often have very similar
environmental influences, particularly in early development. We

Table 3

Multiple logistic regression analysis of chronic widespread pain association with 4 independent top longitudinally stable bins

selected by smallest Fisher P-value (Table 1) in the total available sample (N 5 1708 individuals).

Variable Estimate SE t P Or (SD/Unit) 295%CI 195%CI

Age 1.95 0.61 3.19 1.5E-03 7.031 2.116 23.363

Age2 21.67 0.57 22.91 3.6E-03 0.188 0.061 0.579

Body mass index 0.19 0.06 2.99 2.9E-03 1.211 1.068 1.373

Dizygotic_sib_CWP 1.77 0.21 8.40 9.4E-17 5.855 3.875 8.846

Monozygotic_sib_CWP 2.23 0.17 13.39 2.0E-20 9.290 6.702 12.877

lsBin_6_52193001 20.28 0.07 23.85 1.2E-04 0.753 0.651 0.870

lsBin_17_16613001 20.23 0.07 23.17 1.5E-03 0.795 0.689 0.916

lsBin_11_1691501 20.18 0.07 22.49 1.3E-02 0.836 0.726 0.962

lsBin_22_41618751 20.15 0.07 22.14 3.2E-02 0.858 0.747 0.987

lsBin, Longitudinally stable methylation bin; CWP,chronic widespread pain; Other covariates include age, BMI, and affection status of cotwin, by twins’ zygosity (DZ_sib_CWP and MZ_sib_CWP).
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examined longitudinally stablemethylation signals becauseCWP is
a chronic, long termcondition and itmadebiological sense to focus
on the stable methylation differences in twins having vs not having
CWP. After QC and testing of repeatedly measured methylation
levels, we identified 723,029 methylation bins with statistically
significant longitudinal correlation. These lsBINs had a significant
additive genetic component (heritability), but represent only aminor
fraction, about 11% of the total bins that passed the QC (n 5
6,501,931). This is in agreement with other studies, eg,9,56

showing that the variation of most methylation sites is likely
influenced by environmental factors. For example, van Dongen
et al56 in their study of 411,169methylation sites in 2603 individuals
from twin families, found the average correlation in MZ twins (r 5
0.20) was approximately twice as large as that in DZ twins (r 5
0.09), and the average heritability estimate across the genomewas
;0.20, with very wide range between sites. The variation of lsBINs
in this study, however, as attested by the significant twin
correlations, is governed to a different extent by the genetic
factors, with clear tendency to increase with the size of the
correlation between the repeated measures. Smoking was
significantly associated with CWP-affection status in our univariate
analysis. It is also known to affect DNA methylation levels.27,51

However, in our multiple regression analyses it was not in-
dependently associated with pain, and also showed no significant
correlation with our top lsBINs. It is possible the reason for this is
that we examined longitudinally stable methylation sites, with
a significant heritability component, and therefore less prone to
environmental influences.

A comparison of the methylation levels between MZ-twins
discordant for CWP revealed 50,621 nominally significant
statistical differences. In the replication set, we identified 49,416
bins exhibiting nominal statistical significant associations with
CWP. Combining the results resulted in 40,916 nominally
significant results (P , 0.05), of which 24 had P , 1024.
However, they were obtained using different approaches in 2
virtually independent samples, and not only showed significant

differences between the groups of affected and nonaffected
individuals but also differences that were in the same direction.

A GO enrichment analysis identified a number of terms
enriched among high-ranking methylation sites that were in
agreement in the discovery and replication sets. The top GO
category in BP domain was GO:0043547 “positive regulation of
GTPase activity”. Importantly, over the past decade it has
become obvious that GTPase activity is crucially important in
many aspects of neuronal development, such as neurite out-
growth, axon pathfinding, neuronal differentiation, dendritic spine
formation, and maintenance. Mutations in genes involved in
GTPase activity are known to be associated with neurological
diseases in humans.17 Our top differentially methylated loci
contributing to this BP have been found to be critically involved in
neurogenesis. For instance, TIAM1 gene has been shown to be
involved in neurons morphology and axon formation25,53 as well
as neurite outgrowth.50 RAPGEF1 gene is essential for such
aspects of cortex development as radial glial attachment and
neuronal migration59 as well as in the establishment of a polarized
morphology of developing neurons.49 DOCK9 gene is important
for the growth of dendrites in hippocampal neurons.26 MCF2L

gene may be involved into IL1RAPL1-dependent formation and
stabilization of glutamatergic synapses of cortical neurons.19

AGAP1 was found to affect dendritic spine morphology and
endosomal traffic in neurones.2 This gene also mediates
dopamine release through an interaction with M5 muscarinic
acetylcholine receptor.6

These findings suggest that the differential methylation of
genes is important for the development and maintenance of
neurons and the nervous system and may be an important factor
in the development of CWP. This conclusion is further supported
by the finding that other most significant GO terms for BP and CC
domains were related to the neurological system and sensory
functions, such as “neuron recognition,” “neuron projection,”
“neuronal cell body,” and variety of synapse-related features.

Also, the top network built by the IPA was associated with the
“NervousSystemDevelopment andFunction” category.Moreover,
some of the genes contributing to these GO terms and pathways
have previously been implicated in various pain phenotypes. For
instance, the GRIN2B gene was found to be important in
neuropathic pain60 and is essential for neuroplasticity.11 CABRB1
gene associated with pain related movement limitations.38

Remarkably, the most significant lsBINs associated with CWP
are located within or around highly plausible candidate genes
(according to analysis of corresponding genomic region annota-
tions) with respect to neurological and other relevant aspects of
CWP pathogenesis. The examples include PACSIN2, SYBU, and
SYN3 genes among top association signals, all related to
neuronal activity. Two others, tumour necrosis factor receptor
and IL17, are related to inflammation. One of them, IL17, encodes
respective proinflammatory cytokine which was implicated in
pelvic pain42 and experimental neuropathic pain.24 Finally,
ADIPOR1 and ADIPOR2 genes encoding receptors for adipo-
nectin, a protein expressed in many tissues, (including central
nervous system) and involved in regulation of BMI and in-
flammatory pain regulation.20 These genes also may be a part of
a functional bridge connecting BMI44 and specifically fat mass to
CWP, a linkage which we have already explored.33

Thus, the results of the association analysis and GO/pathway
analysis are complementary in terms of pointing to a neurological
component in CWP development and manifestation. The
summary analysis of the various potential risk factors to liability
to CWP, tested in this study suggests that although the additive
genetic component remains the leading factor (;63% of the total

Figure 2. Summary of variance component analysis of chronic widespread
pain -liability variation with covariates in total UK twins studied sample, 1708
individuals. AGF, additive genetic factors; EGF, epigenetic factors; RES,
unexplained residual component of variation. The details of the implemented
method given in Malkin et al.34
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variance), the contribution of epigenetic factors is also sizable,
and explains at least 6% of the variation in CWP.

The study has several limitations. The twins studied are
community dwelling volunteers and therefore are not the same
as hospital patients, in terms of severity and accuracy of case
assignment which was performed by validated questionnaire.
However, the benefit of this approach is the availability of a large
sample which can address major social and medical problems.
There is no standardised definition for the diagnosis of CWP; we
used a validated questionnaire, which was the best tool available
for epidemiological study at the time,61 and have continued with
this method for the generation of longitudinal data to allow
accurate comparison case control status over time. As CWP
shares genetic predisposition with other types of pain,34,58 the
results of any analysis may depend on the phenotypic compo-
sition of the sample. There are also statistical issues related to the
multiple testing problem that appears at different stages of the
analysis, including computation of the large number of correla-
tions to identify lsBINs and numerous association tests between
them andCWP. Taken together this suggests that large consortia
having standardised CWP definitions will be needed to define
precisely the methylation loci predisposing to CWP.

Note also that the analysis was based on whole blood, which is
not the optimal tissue to study in CWP. Although human tissue
from dorsal root ganglia or brain are becoming available [http://
www.iiam.org/humanTissueForResearch.php; Ref. 12] large col-
lections of this type of tissue from CWP patients are unlikely to be
gathered. It is important to note, however, that there is a correlation
between brain methylation and that seen in whole blood,12 so we
believe that our results likely reflect methylation patterns in nervous
system tissue to some extent. This is especially highlighted by the
GO analysis for CC domain, as the molecules whose genes
contributed to the most significant GO terms, operate within
neurons and their compartments, such as synapses. Finally,
variations in blood cell composition may affect the results of the
methylation analysis. However, in the subsample having WBC
composition information (n 5 441), the pattern of associations
between methylation and CWP for the 10 top-ranked CWP-
associated signals remained unchangedwith inclusion of theWBC
composition in the regressionmodel (data not shown). Thus, blood
cell composition did not influence our results.

In conclusion, this large study of DNA methylation in twins
provides evidence of epigenetic change in DNA accounting for
6% of the liability to CWP. Functional analysis of the genes in
close vicinity to differentially methylated regions showed highly
significant enrichment for neurological pathways. There is a clear
need for further examination of the potential role of DNA
methylation, and the use of other omics, to understand better
the biological mechanisms leading to CWP. The pathways
identified provide an important starting point for the identification
of novel targets for therapeutic intervention.
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